
Coordinated Trajectory Planning for Efficient Communication
Relay Using Multiple UAVs

Seungkeun Kima, Hyondong Ohb,∗, Jinyoung Suka, Antonios Tsourdosc

aDepartment of Aerospace Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-gu, Daejeon 305-764, Korea

bDepartment of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK
cDivision of Engineering Sciences, Cranfield University, Cranfield, MK43 0AL, UK

Abstract

This paper investigates the use of small UAVs as communication relay nodes for

expanding communications links and improving communication quality for a fleet

of naval vessels. This paper firstly deals with the UAV deployment for stationary

communication nodes, and then, proposes a decentralised nonlinear model predic-

tive trajectory planning strategy for a dynamic environment. By exploiting motion

estimates of vessels and states of UAVs, the trajectory planning algorithm finds a

control input sequence optimising network connectivity over a certain time hori-

zon. Numerical simulations are performed for both stationary and manoeuvring

vessels to verify the feasibility and benefit of the proposed approach.

Keywords: Unmanned Aerial Vehicles, Communications Relay, Trajectory

Planning, Global Message Connectivity, Minimum Spanning Tree.

1. Introduction

Traditionally communication relay was considered a secondary mission on a plat-

form deployed on another main mission. However, with the advent of lightweight,
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robust and autonomous platforms as well as wireless networking technologies,

UAVs (unmanned aerial vehicles) can now perform this relay mission. UAV com-

munication relay is intended to replace the legacy radios currently being used on

tactical size UAVs such as Predator, Fire Scout, and Hunter, among others [1].

Regarding the airborne communication relay payload, Northrop Grumman devel-

oped a communication relay package to provide four communication software pro-

grammable channels, which can be configured to provide ground to ground, air to

air, or ground to air relay [2]. Thales is also developing a dedicated version of

the LMAR (Lightweight Multiband Airborne Radio) for the British Watchkeeper

program [3]. This study is motivated by using such a capability for expanding

communication links and improving communication quality, primarily for a fleet

of ground or navy vessels. An airborne relay can effectively connect to units op-

erating over the horizon, beyond normal communication range, or under limited

satellite communication environments. However, even if the equipment develop-

ment is relatively mature, and considerable research on a mobile ad-hoc network-

ing has been performed for ground robot teams [4, 5, 6], where to locate UAVs for

efficient relay is still a pending problem due to UAV’s dynamic and operational

constraints.

The feasibility study to use UAVs as communication relay is performed mainly

in support of a battlefield information transmission system initiative [7]. The main

objective of this program was to provide beyond line-of-sight communications

within an area of operations without using scarce satellite resources. Cerasoli [8]

assessed the practical effectiveness of a UAV communication relay in an urban

area using the ray tracing method. Kim et al. [9] proposed a path planning strategy

of multiple UAV for communication relay between ground control station and a

friendly fleet. This work considered communication range and other constraints

such as maximum curvature and no fly zone; it was devoted to designing off-line
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trajectories of UAVs with known motion planning of a friendly fleet. Basu et al.

[10] investigated the optimal number and placement of UAVs as well as heuristic

flocking algorithm, in order to connect all mobile ground nodes. In this work, con-

nectivity between nodes is characterised by only communication range. Zhu et al.

[11] proposed an online optimisation algorithm of the location and movement of

UAVs to improve the connectivity of a wireless network. They considered a real-

istic wireless communication model, four different types of network connectivity,

and the speed constraints for optimal UAV movement. However, this study investi-

gated the effect of a single UAV only, and the turning constraint of the UAV is not

addressed, resulting in discontinuous trajectories.

With this background, this paper proposes high-level deployment algorithms

to optimise the trajectory of multiple UAVs for improving the connectivity of a

wireless network among a fleet of vessels considering various operational and dy-

namic constraints of the UAV. In this study, network connectivity is modelled by

the context of MANETs (Mobile Ad hoc NETworks) based on global message con-

nectivity. This connectivity is defined by the probability of successful propagation

of commands to all the distributed vessels. Typically, a communication system of

vessels has enough transmit power to be able to communicate with one another

amongst a fleet within a bounded area in maritime environment. However, as the

number of vessels in a fleet increases, the communication network complexity in-

creases significantly; thus ensuring network connectivity for sharing information

efficiently amongst them becomes a challenging issue. In such a case, it is required

to determine which links should be used to distribute information throughout the

entire network such that: i) all the nodes are connected; and ii) the overall network

connectivity is maximised in terms of global message connectivity.

To achieve aforementioned objectives, the concept of minimum spanning tree

(MST) from graph theory [12] is used to obtain the highest probability of a suc-
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cessful transmission using minimum possible links. To further improve network

connectivity along with this MST, UAVs equipped with wireless transceivers can

be involved as communication relay in a wireless ad hoc network, whilst flying

over a fleet of vessels and communicating with other ground nodes as well as other

UAVs. Exploiting UAVs is advantageous in that: i) there is less signal attenua-

tion in ground-to-air communication compared to ground-to-ground case suffering

from obstacles such as terrain or waves; and ii) UAVs are generally faster than ves-

sels and thus can be rapidly deployed whenever needed, e.g. when there is a partial

communication link failure. It is worth noting that UAVs that are able to hover,

usually rotorcrafts, might be a good choice to be deployed for stationary commu-

nication nodes. In this case, vehicle speed and operational ranges are limited. On

the other hand, a fixed-wing UAV can be much faster and operated in much wider

areas than those of rotorcrafts; however, it has dynamic and kinematic constraints

represented as the minimum (or stall) velocity and turning radius. These constraints

should be addressed for the use of fixed-wing UAVs as communication relay.

This paper firstly deals with the UAV deployment for stationary communication

nodes, which finds the fixed optimal location of UAVs ensuring the maximum net-

work connectivity. Then, considering movement of vessels and constraints of the

fixed-wing UAV in a dynamic environment, this study proposes a nonlinear model

predictive control (NMPC) based trajectory planning strategy. By exploiting mo-

tion estimates of vessels and states of UAVs, the NMPC algorithm finds a control

input sequence for a certain time horizon which optimises network connectivity.

Collision between UAVs is also included in the cost function of the optimisation

process. In this NMPC frame, since it would be almost infeasible to optimise the

control inputs of entire multiple UAVs in a centralised system at once, this study

uses a fully-decentralised NMPC concept; each UAV optimises its controller in-

dividually based on the future state predictions of the other UAVs. Numerical
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simulations using multiple UAVs as communication relay are performed for both

stationary and mobile node case with a fleet of vessels to verify the feasibility and

benefits of the proposed approach.

The overall structure of this paper is given as follows. Section 2 explains UAV,

vessels and sensor model and the tracking filter used in this study. Section 3 in-

troduces a wireless communication model and modelling of network connectivity

using the concept of MST. Section 4 proposes optimisation algorithms for UAV po-

sition and trajectory to maximise network connectivity. Section 5 presents numer-

ical simulation results to communication relay scenarios depending on the number

of vessels and available UAVs. Lastly, conclusions and future work are given in

Section 6.

2. Problem Definition

2.1. UAV dynamic model

Assuming each UAV has a low-level flight controller such as SAS (Stability

Augmentation System) and CAS (Controllability Augmentation System) for head-

ing and velocity hold functions, this study aims to design guidance inputs to this

low-level controller for efficient communication relay. Consider a two-dimensional

UAV kinematic model [13] as:

ẋ

ẏ

ψ̇

v̇

ω̇


= f(x,u) =



v cosψ

v sinψ

ω

− 1
τv
v + 1

τv
uv

− 1
τω
ω + 1

τω
uω


(1)

where x = (x, y, ψ, v, ω)T are the inertial position, heading, speed and yaw rate

of the UAV, respectively. τv and τω are time constants for considering actuator
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delay, which can be determined experimentally by analysing the characteristics of

the UAV autopilot. u = (uv, uω)T are the commanded speed and turning rate

constrained by the following dynamic limits of fixed-wing UAV:

|uv − v0| ≤ vmax (2)

|uω| ≤ ωmax (3)

where v0 is a nominal speed of the UAV. The continuous UAV model in Eq. (1) can

be discretised by Euler integration into:

xk+1 = fd(xk,uk) = xk + Tsf(xk,uk) (4)

where xk = (xk, yk, ψk, vk, ωk)
T , uk = (uvk, uωk)

T , and Ts is a sampling time.

Note that the effect of wind is not considered in this study.

2.2. Marine vessel and sensor model

This study considers acceleration dynamics to estimate the movement of ma-

rine vessels or ground vehicles. This dynamic model defines the target acceleration

as a correlated process with a decaying exponential autocorrelation function, which

means if there is a certain acceleration rate at a time t then it is likely to be corre-

lated via the exponential at a time instant t+ τ . A discretised system equation for

the acceleration model is thus expressed in the form:

xvk = Fkx
v
k−1 + ηk (5)

here the state vector is xvk = (xvk, ẋ
v
k, ẍ

v
k, y

v
k, ẏ

v
k, ÿ

v
k)T , and where ηk is a process

noise which represents the acceleration characteristics of the target. The state tran-
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sition matrix Fk is given by:

Fk =



1 Ts Φ 0 0 0

0 1 (1−e−αvTs )
αv

0 0 0

0 0 e−αTs 0 0 0

0 0 0 1 Ts Φ

0 0 0 0 1 (1−e−αvTs )
αv

0 0 0 0 0 e−αvTs


(6)

where Φ = (e−αvTs + αvTs − 1)/α2
v, and αv is a correlation parameter which

models different classes of manoeuvring targets. The details of the covariance

matrix Qk of the process noise ηk and other characteristics of this model can be

found in [14].

Assuming that global x and y positions of vessels are available to UAVs as

measurements using GPS (global positioning system) or other type of sensors, the

sensor model can be expressed as:

zk = Hkx
t
k + νk (7)

where the measurement matrix is Hk =

 1 0 0 0 0 0

0 0 0 1 0 0

 . The covariance

of measurement noise νk ∼ N(0, Rk) can be expressed as:

Rk =

 σ2
x 0

0 σ2
y

 (8)

where σx and σy are the standard deviations of the position of x and y, respectively.

2.3. Tracking filter

To estimate the states (position, velocity, and acceleration) of vessels, the Kalman

filter (KF) is designed. The estimates of states will be used to predict the future
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positions of the vessel for a model-based optimal UAV trajectory planning in Sec-

tion 4.2. For a general discrete KF, two steps are required: i) prediction step where

extrapolation of states and associated error covariance matrix is performed using

vessel dynamics as in Eq. (5); and ii) update step where correction is performed

which produces a minimum variance estimate of the states with an associated error

covariance matrix, using measurements and a sensor model as in Eq. (7). Depend-

ing on the type of sensors, different filtering techniques (e.g. nonlinear estimation

if sensor measurements are range and/or bearing angle) can be used, and sensor

fusion can also be implemented combining data from other sensors or UAVs to

improve the estimation accuracy [13, 15].

3. Communication Network Connectivity

In this study, network connectivity is modelled in the context of MANETs (Mo-

bile Ad hoc NETworks) based on global message connectivity. This connectivity

is defined by the probability of successful propagation of commands to all the dis-

tributed vessels. This section introduces a realistic wireless communication model

and how to achieve efficient network connectivity using the concept of minimum

spanning tree.

3.1. Realistic wireless communication model

Most previous communication relay research using UAVs have used a simpli-

fied wireless communication model considering a communication range only. This

work adopts a more realistic wireless communication model between vessel nodes

and UAVs, based on the work of [11]. First of all, suppose node i transmits signals

with transmission power Pi and observes noise of average power σ2
i when operat-

ing as a receiver. In military applications, it can be assumed that the bandwidth is
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sufficient, and interference is trivial as different users and UAVs use different fre-

quencies. The received SNR (signal-to-noise ratio) Γij for the signal transmitted

by the i-th node and received by the j-th node is given as:

Γij =
PiGij
σ2
j

(9)

where the channel gain Gij is expressed as:

Gij =
Cij |hij |2

Dα
ij

(10)

where Cij is a constant related to antenna gains and shadowing, hij accounts for

multipath fading, Dij is the distance between two nodes, and α is the propagation

loss factor. For a successful transmission with an acceptably small packet loss,

the SNR needs to be sufficiently high, or in turn, higher than a required minimal

level of link quality γ. Therefore, if the channel has fast Rayleigh fading, i.e. hij is

complex Gaussian with zero mean and unit variance, the probability of a successful

transmission between two nodes i and j can be represented as:

P ijr (Γ ≥ γ) = exp

(
−
σ2
j γD

α
ij

CijPi

)
. (11)

Note that, if P ijr is smaller than a certain threshold, two nodes might be regarded

as disconnected; however, this study assumes that the entire network is connected

to each other with a reasonably strong transmission power and focuses on how to

improve connectivity exploiting this probability P ijr as the network evolves.

3.2. Network connectivity using the concept of MST

As the number of vessels in a fleet increases, the communication network com-

plexity increases significantly; thus ensuring network connectivity for sharing in-

formation efficiently amongst them becomes a challenging issue. In such a case,
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the concept of minimum spanning tree (MST) from graph theory can be used to ob-

tain the highest probability of a successful transmission using minimum possible

links. The definition of a spanning tree is a subgraph that is itself a tree and con-

nects all the vertices of the graph together. Even if a single graph can have many

different spanning trees, a appropriate weight can be assigned to each edge, and the

total cost of a given spanning tree can be computed by summing all the weights.

An MST is then determined as a spanning tree with the cost that is less than or

equal to the cost of every other spanning tree. This study sets the weight of each

graph as a function of the aforementioned probability of a successful transmission

in Eq. (11) as:

Wij = − logP ijr . (12)

The smaller the weight is, the higher the probability of a successful transmission is,

and then, the more likely a message will be delivered to all nodes in the network.

To find the MST solution, a variety of polynomial-time algorithms are available,

and this study uses the Kruskal algorithm [12].

4. Optimal UAV Deployment and Trajectory Planning

To further improve network connectivity along with MST, small UAVs equipped

with wireless transceivers can be used as communication relay, while flying over

a fleet of vessels and communicating with other ground nodes (vessels) as well as

other UAVs via a wireless ad hoc network. This section first presents an optimal

UAV deployment (positioning) strategy for stationary communication nodes (i.e.

static vessels and hovering UAVs); and then an optimal trajectory planning strat-

egy for fixed-wing UAVs follows for mobile nodes based on a nonlinear model

predictive control concept. Figure 1 illustrates an overall flowchart of the proposed

approach for communications relay among a fleet of stationary naval vessels. Es-
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pecially, the communications relay for mobile marine vessel nodes requires the

motion prediction of them. As shown in Fig. 1, each UAV carries out the estima-

tion/prediction for the state of the marine vessels using GPS and/or other sensor

measurements, optimizes its trajectory for global message connectivity, and then

decides its control input for optimal positioning. In the mean time, information

from the other UAVs is fused with its own estimation in a decentralized way along

with the collision avoidance amongst UAVs.

Figure 1: A flowchart of optimal UAV deployment and trajectory planning for communications relay

among a fleet of stationary naval vessels
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4.1. Optimal UAV deployment for stationary nodes

In order to find the optimal locations of UAVs functioning as communication

relay at a fixed position among stationary vessels, let us first define the performance

index for network connectivity. This study uses the definition of the global message

connectivity which represents the probability that a message can successfully be

transmitted to all nodes via the MST. If the positions of UAVs and vessels are given,

the MST can be constructed with the aforementioned weight Wij as in Eq. (12) for

n UAVs and m vessels. Let us the matrix A
′ ∈ R(n+m)×(n+m) represent the

adjacency matrix of the MST for a given configuration, then A
′
ij = 1 if the link

from node i to node j is the part of the MST, and A
′
ij = 0, otherwise. Since

the sum of the weights in the MST corresponds to the overall probability that a

message is successfully transmitted via this MST, the performance index for the

global message connectivity can be set as:

Js(x̄
pos, x̄v,pos) =

n+m∑
i=1

n+m∑
j=1

A
′
ijWij . (13)

Note that the MST A
′

and Wij are determined according to the locations of n

UAVs and m vessels, represented as x̄pos ∈ R2×n and x̄v,pos ∈ R2×m, respec-

tively. Then, the UAV deployment problem can be formulated as minimising the

performance index for the global network connectivity with respect to the UAV

locations x̄pos as:

min
x̄pos

Js(x̄
pos, x̄v,pos) = min

x̄pos

n+m∑
i=1

n+m∑
j=1

A
′
ijWij . (14)

Note that the implementation of this deployment optimisation process is centralised

for a stationary environment, which can be run either in one of UAVs or a mission

control station. Once the optimal locations are determined, UAVs are deployed to

loiter around those points due to their turning constraints, resulting in a standoff

orbit as described in [15].
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4.2. Optimal UAV trajectory planning for mobile nodes

Considering movement of vessels and constraints of the fixed-wing UAV in a

dynamic environment, this section proposes a nonlinear model predictive control

(NMPC) based trajectory planning strategy. By exploiting motion estimates of

vessels obtained from sensor data with filtering techniques (explained in Section 2),

as well as states of UAVs, the NMPC algorithm finds a control input sequenceU ik =

{ui0,ui1, . . . ,uiN−1} ∈ R2×N for the i-th UAV, which minimises the following

performance index:

Jd = φ(x̄N , x̄
v
N ) +

N−1∑
k=0

L(x̄k, x̄
v
k,u

i
k) (15)

s.t. xik+1 = fd(x
i
k,u

i
k) (16)

vmin ≤ uivk ≤ vmax (17)

ωmin ≤ uiωk ≤ ωmax (18)

|C(xik − xj 6=ik )| > rc, ∀j ∈ {1, · · · , n} (19)

where

φ(x̄N , x̄
v
N ) = pcJs(x̄

pos
N , x̄v,posN ) (20)

L(x̄k, x̄
v
k,u

i
k) =

1

2
{qcJs(x̄posk , x̄v,posk )

+rv(
uivk − v0

vmax
)2 + rω(

uiωk
ωmax

)2}. (21)

Inhere, a superscript i corresponds to the value of the i-th UAV, Js represents the

performance index for the global network connectivity as in Eq. (13), x̄posk =

{Cx1
k, · · · , Cxnk} and x̄v,posk = {Cvxv1

k , · · · , Cvxvmk } represent the positions of

the current UAVs and the vessels (which will be propagated using the prediction

step of the Kalman filter), respectively. C ∈ R2×5 and Cv ∈ R2×6 are sim-

ply represented by the definition of state variables of UAVs and vessels: xk =
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(xk, yk, ψk, vk, ωk)
T and xvk = (xvk, ẋ

v
k, ẍ

v
k, y

v
k, ẏ

v
k, ÿ

v
k)T :

C =

 1 0 0 0 0

0 1 0 0 0

 , Cv =

 1 0 0 0 0 0

0 0 0 1 0 0

 . (22)

Also, N is the length of receding horizon, vo is a nominal speed of UAVs, and

rc is a safe distance between the UAVs to prevent collision. pc, qc, rv and rω are

constant weighting factors. Note that this process is repeated at every sampling

time, and thus only the first control input out of a control input sequence U ik is

implemented to control the corresponding UAV.

In above NMPC formulation, since it would be almost infeasible to optimise

the control inputs of entire multiple UAVs in a centralised system at once, this

study uses a fully-decentralised NMPC concept. Each UAV independently deter-

mines the MST and optimises its controller using the future state predictions of

the other UAVs and the estimates of all vessels, under the assumption that required

information can be shared between UAVs via communication within a single sam-

pling time. Depending on the capability of a communications relay equipment

on-board and the number of UAVs, this assumption can be relaxed by increasing

a sampling time. Decentralized optimisation is performed after receiving the con-

trol inputs at the previous sampling and the current state of the other UAVs. At

each time step, the MST solutions for the entire network to maintain (enforcing the

network connectedness) obtained by UAVs would be the same if UAVs share the

same positional information. However, the MST of each UAV might intermittently

be different from each other due to communications delay and corruption. One of

the possible ways to address this issue would be to communicate the MST struc-

ture tagged with each UAV’s ID among the mobile nodes and to select an MST

having the lowest cost in case of the discrepancy between UAVs. Compared to a

centralised one, the proposed structure is beneficial in that each UAV performs its
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own optimisation using as best information as possible with a much reduced com-

putation burden while providing a sub-optimal solution. In addition, the proposed

decentralised strategy can be viewed as more robust in terms of the mission success

since even in case of the failure of some UAVs in the group, remaining UAVs can

continue the communication relay mission.

5. Numerical Simulations

This section carries out numerical simulations using the proposed optimal UAV

deployment and trajectory planning algorithms for a fleet of eight naval vessels.

The parameters used for the simulation are shown in Table 1, and the optimisation

solution is computed numerically using Matlab. Eight naval vessels are used as

an example case in this paper. Note that as the number of vessels increases, time

to find a minimum spanning tree solution in the network increases, which sub-

sequently will increase the whole optimisation process time. In addition, it will

require higher communication bandwidth for the UAV to obtain information of all

vessels. Therefore, the maximum number of vessels the proposed algorithm can

cover needs to be further investigated considering given computation and commu-

nication resources.

There are also trade-offs between performance and sampling time. The faster

the sampling frequency is, the better performance on the global message connec-

tivity it might have, but the heavier computation load the NMPC requires due to

the larger number of receding horizon steps for a given period. Since the surface

mobile vessels move with lower speed than the UAVs in the air, the frequency to

produce a guidance command for communications relay could be lower than that

for control or observation action. In this regard, a sampling time of 0.5 second

is used for this simulation; however, a shorter sampling period would be required
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to cover the communications relay among fast-moving ground robots or surface

vessels. In a real application, the sampling time for predictive control should be

decided by taking into account the number of UAVs and their on-board computa-

tion capability.

As shown in Fig. 2(a), the eight vessels are spread out in the area of 1km by

1km. The lines of Fig. 2(a) represent all available communication channels among

the vessels, and the numbers on each line display the probability of a successful

transmissionWij of each channel. The red lines in Fig. 2(a) represent the final MST

of eight vessels without UAVs. The total cost of the global message connectivity is

J = 4.3040 in this case.

Figure 2(b) shows the optimised MST connection of the fleet with a single UAV

engaged for communication relay. With this optimised positioning of the UAV, the

total cost of the global message connectivity dramatically decreases to J=2.7437

compared to J=4.3040 with no UAV engagement. This means that deployment of

only one UAV node for naval vessels improves 156% of communication quality.

The more UAVs are engaged, the smaller the cost of global message connectivity

(equivalent to the higher the probability of successful transmission) is obtained,

as shown in Fig. 2(c) and Fig. 3(a). However, note that as the number of UAVs

increases, the improvement rate of the connectivity becomes insignificant as can

be seen in Fig. 3(a). In this figure, it can also be observed that the cost of global

message connectivity varies depending on the transmission power Pi, and the less

power the communication nodes have, the more improvement it can be obtained

by the deployment of UAVs as communication relay.

Figure 3(b) shows time histories of the total connectivity cost for a fleet of ma-

noeuvring naval vessels with random noise inputs using the proposed NMPC-based

trajectory planning algorithm. Similar to the stationary node case, as the number

of UAVs increases, communication quality improves significantly. Figure 4 shows
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(a) No UAV

(b) One UAV

(c) Four UAVs

Figure 2: Optimal UAV deployment result and the MST connection for a fleet of stationary naval

vessels
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(a) Stationary nodes

(b) Mobile nodes

Figure 3: The cost of total global message connectivity
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Table 1: Simulation parameters

Parameter Value Unit

Sampling time Ts 0.5 sec

Receding horizon step N 5 N/A

Sensor noise std (σx, σy) (5, 5) m

Nominal speed of the UAV vo 20 m/s

Safe distance between UAVs rc 50 m

Speed constraints (vmin, vmax) (10,30) m/s

Heading rate constraints (ωmin, ωmax) (-0.2,0.2) rad/s

Actuator delay (τv, τω) 1/3 sec

Weighting factor (pc, qc, rv, rω) (1e1,pc/N,1e4,1e5) N/A

Transmission power Pi 300 dBm

Noise power σ2 1e-7 dBm

SNR requirement γ 10 dB

Propagation loss factor α 3 N/A

Antenna gain constant Cij 1 N/A

the optimal trajectory planning result including trajectories of three UAVs and ma-

noeuvring vessels, and the optimised MST connection at each time instant. By

controlling the speed and turning rates given by the optimisation process as shown

in Fig. 5, UAVs fly over a fleet of vessels ensuring locally minimum cost of the

global message connectivity.

Note that the optimisation process to find trajectory planning commands on

speed and heading rates can be computationally intractable. If computational ca-

pability of the UAV is not enough for the proposed algorithm to be applied in
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(a) T=10s (b) T=20s

(c) T=30s (d) T=40s

(e) T=50s (f) T=60s

Figure 4: Optimal UAV trajectory planning results and the MST connection using three UAVs for a

fleet of moving naval vessels
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(a) Control input for UAV velocity: uv

(b) Control input for UAV turn rate: uω

Figure 5: Control histories of an optimal UAV trajectory planning using three UAVs for a fleet of

moving naval vessels
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real-time, several alternatives can be adopted to address this issue by: i) reduc-

ing receding horizon step or increasing sampling time step; ii) discretising control

inputs into a couple of segmented values. For instance, speed commands can be

found among discretised values such as 10, 15, 20, 25, 30 m/s rather than contin-

uous values between 10 to 30 m/s. This will reduce computational burden signifi-

cantly (but degrading the communication quality performance); and iii) if there are

too many vessels involved, we could probably split them into several groups (by

clustering geographically close vessels into the same group), and then optimise the

cost function within the group with a reduced problem dimension. These methods

are sacrificing optimality in terms of performance for real-time operation. Above

i) and ii) can be applied directly with the proposed framework if a mission scenario

and specification are given. However, to apply (iii), further consideration needs to

be made, and that will be the future research direction extending the current work.

6. Conclusions and Future Work

This paper has presented high-level deployment algorithms to optimise the lo-

cation and trajectory of multiple UAVs for improving the connectivity of a wireless

network amongst a fleet of naval vessels. In particular, a decentralised nonlinear

model predictive trajectory planning strategy was proposed to consider movements

of vessels and constraints of the fixed-wing UAV in a dynamic environment. Nu-

merical simulation results verified that a mobile ad hoc network in which UAVs

are engaged can improve the network connectivity significantly for both static and

dynamic environments. It is assumed that the altitude can be maintained by the

autopilot of the UAV. Compared to distance between UAVs and vessels, altitude

change resulting from disturbances would be insignificant. Although 3-D trajec-

tory planning with 3-D model can be exploited, it can increase problem dimension
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and computation time which might be detrimental to a NMPC framework to obtain

the control inputs in time.

The proposed algorithm allows the location and movement of UAVs to be de-

cided automatically, and thus it increases the quality of network connectivity as

well as communication coverage for a mobile ad-hoc network in an efficient man-

ner. Moreover, this work can be easily extended to civilian ground domain for

enhancing network connectivity. Research on how to reduce computational com-

plexity of the optimisation process as well as to avoid possible local minimum

solutions will be followed as future work of this study. If the frequencies of the

guidance law (trajectory planning) and autopilot are not too close, it is common

to initially design and verify the guidance law and control algorithm separately,

thus this study used simple kinematics for the UAV model. The final validation of

the proposed approach with higher complexity simulation models and flight tests

remain as another future work.
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