Loughborough University
Browse
SAE_2017-01-1552.pdf (2.28 MB)

Coupled level-set volume of fluid simulations of water flowing over a simplified drainage channel with and without air coflow

Download (2.28 MB)
journal contribution
posted on 2017-03-23, 09:27 authored by Mehriar Dianat, Maciej Skarysz, Graham Hodgson, Andrew GarmoryAndrew Garmory, Martin Passmore
The motivation for this paper is to predict the flow of water over exterior surfaces of road vehicles. We present simulations of liquid flows on solid surfaces under the influence of gravity with and without the addition of aerodynamic forces on the liquid. This is done using an implementation of a Coupled Level Set Volume of Fluid method (CLSVOF) multiphase approach implemented in the open source OpenFOAM CFD code. This is a high fidelity interface-resolving method that solves for the velocity field in both phases without restrictions on the flow regime. In the current paper the suitability of the approach to Exterior Water Management (EWM) is demonstrated using the representative test cases of a continuous liquid rivulet flowing along an inclined surface with a channel located downstream perpendicular to the oncoming flow. Experimental work has been carried out to record the motion of the rivulet in this case and also to measure the contact angle of the liquid with the solid surface. The measurements of the liquid/solid characteristics such as equilibrium and dynamic contact angles are described along with the analytical expression for contact angle vs. capillary number used in the CFD code. The results from the simulations are compared to experimental measurements. The simulations are carried out with air co-flows of 0, 0.5 and 10 m/s. The simulations are seen to reproduce physical phenomena such as the liquid pinning at sharp corners and the longitudinal stretching of the rivulet with higher air velocity.

Funding

This work was supported by Jaguar Land Rover and the UK Engineering and Physical Sciences Research Council grant EP/K014102/1 as part of the jointly funded Programme for Simulation Innovation. Calculations were performed on HPC-Midlands funded by the UK EPSRC, Grant EP/K000063/1.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

SAE International Journal of Passenger Cars - Mechanical Systems

Volume

10

Issue

1

Citation

DIANAT, M. ... et al, 2017. Coupled level-set volume of fluid simulations of water flowing over a simplified drainage channel with and without air coflow. SAE International Journal of Passenger Cars - Mechanical Systems, 10 (1), pp. 369-377.

Publisher

© SAE International

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2017-02-17

Publication date

2017-03-28

Notes

This paper was accepted for publication in the journal SAE International Journal of Passenger Cars - Mechanical Systems and is also available at http://dx.doi.org/10.4271/2017-01-1552.

ISSN

1946-4002

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC