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Abstract   To improve the design and safety of power plant components, long-term high-

temperature creep behaviour of a power-plant material, such as Cr-based alloy, should be 

assessed. Prior studies indicate that power-plant components undergo material degradation 

and premature failure by nucleation, growth and coalescence of microvoids as a result of 

creep damage. In classical crystal-plasticity-based models, a flow rule and a hardening law do 

not account for global stiffness degradation of materials due to evolving microvoids, having a 

significant influence on material behaviour, especially under large deformations. In this study, 

a crystal-plasticity scheme coupled with an appropriate continuum damage model is 

developed to capture the anisotropic creep-damage effect on the overall deformation 

behaviour of Cr-based power-plant steel. Numerical simulations show that the developed 

approach can characterize creep deformation of the material exposed to a range of stress 

levels and temperatures under consideration of stiffness degradation under large deformation. 
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1 Introduction 

   Power-plant components are commonly exposed to time-varying mechanical and thermal 

loads at elevated temperatures; as a result, effects of multiaxial creep deformation should be 

fully assessed to ensure safe operation of the component during its lifetime. Extensive 

research has been conducted to characterize creep deformation of power-plant materials using 

macroscopic continuum-damage models (Cui and Wang, 2014; Jiang et al., 2015; JianPing et 

al., 2003; Wichtmann, n.d.; Xu, 2007), which account for progressive degradation of 

mechanical properties caused by irreversible microstructural changes during the deformation 

process. Creep damage, accompanied by nucleation, growth and coalescence of microvoids, is 

closely related to the microstructure of materials. However, macroscopic constitutive models 

do not account for the underlying microstructure of the material (for example, activation of 

slip systems and void nucleation at grain boundaries are ignored). As a result, such models 

have inherent drawbacks in their predictive capability.  

   For crystalline materials, it is important to incorporate the effect of underlying 

microstructure and associated micromechanics into a continuum constitutive description of 

finite-strain plasticity. A popular physics-based crystal plasticity (CP) modelling framework 

was successfully used to account for important micromechanical features of plastic flow at the 

scale of single grains (Roters et al., 2010). To study the material failure, CP may be coupled 

with an appropriate damage-mechanics model (Ekh et al., 2004; Feng et al., 2004; Hu et al., 

2016; Kalnaus and Jiang, 2006; Potirniche et al., 2007). Most studies are still concerned with 

single-crystal materials, and often ignore a complex polycrystalline microstructure of real-life 

components. Luo et al. (Luo et al., 2009; Luo and Chattopadhyay, 2011) introduced a 

multiscale damage criterion incorporating CP at the microscale, which was suitable for 

predicting the initiation of fatigue cracks in components made of polycrystalline Al-based 

alloy. Anahid et al. (Anahid et al., 2011) developed a CP-based crack-nucleation model for 

polycrystalline microstructures considering room-temperature creep phenomenon and applied 

it to predict fatigue-crack nucleation in a dual-phase titanium alloy undergoing cyclic dwell 

loading. However, these models did not consider a post-crack-nucleation response of the 

material. For power-plant materials, such as polycrystalline Cr-based alloys, to the best of the 

authors’ knowledge, no studies exist on modelling of creep-damage behaviour based on the 

CP theory, especially under consideration of stiffness degradation during all three stages of 

creep.   

In this paper, a constitutive model coupling CP and continuum damage mechanics (CDM) 
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was developed and implemented in a computational framework for assessing the creep 

behaviour of a Cr-based power-plant material. A second-order symmetric tensor was used in 

this model to describe the anisotropic creep damage. The damage-evolution equation was 

thermodynamically consistent, accounting for the variation of material stiffness with induced 

damage. Uniaxial creep tests at three temperatures were used to calibrate damage parameters. 

The coupled numerical model was implemented as a user material subroutine in the general-

purpose finite-element (FE) program Abaqus/Explicit (Abaqus, n.d.). A 3-D polycrystalline 

representative volume element (RVE) was generated to model the underlying microstructure 

of the material. A series of numerical simulations were conducted based on the RVE to 

demonstrate the capability of the coupled model in creep assessment of the material. 
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2 Constitutive Model 

   Here, the constitutive model coupling CP with a CDM-based approach is presented. A 

material subroutine (VUMAT) was developed based on the work of Huang (Huang, 1991) 

and Busso (Busso et al., 2000; Meissonnier et al., 2001). The VUMAT allows element 

deletion in the FE analysis, indicating the nucleation and growth of microvoids in the 

polycrystalline material. 

2.1 Crystal plasticity 

Here, a brief summary of the crystal-plasticity modelling framework used to capture an 

anisotropic constitutive response due to the effect of grain morphology and crystallographic 

orientation is provided.  

The deformation gradient F  can be decomposed into elastic and plastic parts as,  

pe FFF  ,                                                                                                                            (1) 

where p
F  is plastic deformation in an intermediate configuration, and e

F  is the elastic 

component of the deformation gradient, which includes deformation by both stretching and 

rotation of the lattice. The velocity gradient, L , in the current configuration is related to the 

deformation gradient by 

pe LLFFL  1
,                                                                                                                 (2) 

where 
1 eee FFL 
 and 

11  eppep FFFFL 
. 

The inelastic deformation of a single crystal is assumed to be generated only from the 

crystalline slip. The plastic velocity gradient may be rewritten in terms of the slip strain rate, 

( ) , the slip direction, ( )
S , and the normal to the slip plane, ( )

m , as  

( ) ( ) ( )p   



 L S m ,                                                                                                              (3) 

where   represents the slip system (ranging from 1 to 48 for this BCC material). The 

resolved shear stress is derived from the Cauchy stress tensor by  

 ( ) ( ) ( ):
sym

    σ S m .                                                                                                            (4) 

where   is the dyadic product and sym  is the symmetrical part of the tensor. The slip 

direction and the normal to the slip plane (as used above) are in the deformed configuration. 

The relationship between the slip systems in the deformed configuration and those in the 

reference configuration can be expressed as: 
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where ( )

0


S  and ( )

0


m  are the slip direction and slip plane normal, respectively, in the 

reference configuration for the slip system  . The flow rule is assumed to follow a power-

law relation (Huang, 1991),  

 
( ) ( )

( ) ( ) ( ) ( )

0 ( )
sgn

n

g

 
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
  ,                                                                              (6) 

where 
( )

g


 and 
( )

  are the isotropic hardening and kinematic hardening, respectively, and 

sgn  is the sign of the term. The hardening laws are presented as (Sinha and Ghosh, 2006), 
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and 

( ) ( ) ( )( )b r  
    ,                                                                                                            (9) 

where h  are the isotropic hardening moduli. The variables b and r  are the direct 

hardening and dynamic recovery coefficients, respectively, and q  is the latent hardening 

parameter. 

The Cr-based alloy, X12CrMoWVNbN10-1-1, may be the most representative kind of 

ferrite-martensite steel in thermal power units. It has a body-centered cubic (BCC) crystalline 

structure with 12 main slip systems ({110} <111>) and 36 secondary slip systems ({112} 

<111> and {123} <111>), which contribute to crystalline slip (Golden et al., 2014; Li et al., 

2017). The cumulative shear strain on all slip systems was obtained by 

dt
t





0

)( .                                                                                                                   (10) 

Material parameters in the CP model (shown in Table 1) are calibrated using experimental 

data obtained from isothermal strain-controlled cyclic tension and compression experimental 

tests at 550°C, 600°C, and 625°C, and further validated by isothermal strain-controlled test 

data with holding times. Details are available in a prior work of some of the authors (Zhao et 

al., 2017).  
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Table 1 Material parameters in CP at different temperatures. 

Elastic modulus 550°C 600°C 625°C 

11C / GPa 174 167.2 163.2 

12C / GPa 146.2 140.5 138.4 

44C / GPa 78 74.9 73.2 

Material constants in flow rule 

n 30 

0γ / 
-1

 0.001 

Material constants in self- and latent- isotropic hardening for the main slip systems 

 

0h / MPa 1420 1340 1200 

sτ / MPa 280 270 240 

0τ / MPa 160 150 135 

q  1 

Material constants in self- and latent- isotropic hardening for the secondary slip systems 

 

0h / MPa 7100 6700 6000 

sτ / MPa 1400 1350 1200 

0τ / MPa 800 750 675 

q  1 

Material constants in kinematic hardening 

b / MPa 6150 5800 5450 

r  2 

 

2.2 Continuum damage mechanics 

Since the pioneering work of Kachanov (Kachanov, 1958) and Rabotnov (Rabotnov, 1969), 

CDM has been extensively used in research. CDM attempts to represent the progressive 

mechanical degradation of materials subjected to imposed mechanical loads. It is well-known 

that creep is accompanied by nucleation, growth and coalescence of microvoids. The process 

of formation of microvoids occurs anisotropically in the material volume. At the scale of 

individual grains, in addition to material texture, damage-induced anisotropy must be 

accounted for. In this regard, a second-order symmetric tensor may be used to represent 
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geometric properties of a given state of microvoids in the continuum (Qi and Bertram, 1998, 

1999). 

According to the effective-stress concept of CDM, mechanical behaviour of the material 

considering damage may be described by a constitutive equation, where the stress tensor is 

replaced by an effective stress tensor, σ , which accounts for the current state of damage in the 

material. The effective stress in the present model is defined as (Lemaitre and Chaboche, 

1994) 

1 1
2 2(

 

  σ (I -D) σ I -D) ,                                                                                                          (11) 

where σ , I  and D  denote the stress tensor, the identity tensor of rank two and 

(anisotropic) damage tensor, respectively.  

Considering the influence of damage (material stiffness degradation) on material 

deformation, the resolved shear stress (Eq. (4)) and isotropic hardening variable in CP are 

rewritten as (Feng et al., 2004): 

( ) ( ) ( ): ( )sym

    σ S m ,                                                                                                          (12) 

and 

    ( ) ( ) ( ) ( ):
sym

g g     I D S m .                                                                                          (13) 

Accordingly, the flow rule (Eq. (6)) is redefined as 

( ) ( )

( ) ( ) ( ) ( )

0 ( )
sgn( )

n

g

 

   



 
   


  .                                                                                  (14) 

Here, both isotropic hardening and the slip in individual slip systems are coupled to 

account for damage. Thus, damage is expected to influence the overall material deformation, 

especially at the secondary and tertiary creep stages (where damage is significant). 

2.3 Damage assessment and evolution 

Damage in the material is caused by progressive irreversible changes in its internal 

structure during deformation, which leads to a reduction of stiffness. Creep damage, 

accompanied by the nucleation, growth and coalescence of microcracks and microvoids, has 

anisotropic characteristics in a multiaxial stress state, which should be accounted for in the 

damage assessment.  

For a process undergoing creep, damage may be expressed as (JianPing et al., 2003; 

Lemaitre and Chaboche, 1994) 
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where 
ijD  are components of the damage tensor D , ij

Ⅱ  and ij
Ⅲ  are the secondary and 

tertiary creep rates, respectively, which are measured as functions of time on the creep curve, 

and 'n  is a material parameter that needs to be calibrated. 

A thermodynamically consistent creep damage evolution as proposed by Lemaitre and 

Chaboche (Lemaitre and Chaboche, 1994) is adopted here, which is known to be ideally 

suited for Cr-based alloys (Jing et al., 2003). An incremental change in damage ( dD ) is 

represented by 

 

1
m

d dt
 


 
 
 

D
I D

 ,                                                                                                            (16) 

where  ,  , m  are material parameters to be determined and dt  is a time increment. The 

term  


I D  implies a tensor power series. 

To determine parameters in CDM, uniaxial creep experiments on standard specimen were 

performed. Experimental data were assessed at temperatures of 550°C, 600°C and 625°C 

(these are common operating temperatures for power-plant materials), with three stress levels 

considered for each temperature. Further details of the experimental procedure are available in 

(Wang et al., 2015). 

   Assuming an initial damage-free state (i.e. 0D   at 0t  ) in Eq. (16), the relation for 

uniaxial creep damage can be obtained in terms of stress and time via integration: 

   

1

1

1 1 1

m

D t









   
  
  

   

.                                                                                                       (17) 

   By defining a rupture time ( ct ), corresponding to a state of critical damage ( cD ), the 

following relation can be obtained: 

   
11

1 1
1

m

c cDt











  


  
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.                                                                                                    (18) 

   For most metallic materials,   ranges from 5 to 15 and cD  from 0.3 to 0.9. Hence, 1
(1 )cD


  

may be ignored. Thus, ct   and D  may be simplified as 

   1

1

m

ct











 
 
 

                                                                                                                        (19) 

   and  

   
1

1

1 1
c

tD
t


  

 
  

.                                                                                                                   (20) 
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   At each temperature, the initial values of m  and   can be calculated by using two creep 

curves (at two stress levels- 1  and 2 ) with 
ct  as (Shi and Yang, 2004), 

    1 2

2 1

ln ln

ln ln

c ct t
r

 





                                                                                                                       (21) 

    and 

    
   

1 1

1 1 2 21 1

2

m m
c ct t   

 
         .                                                                                      (22) 

  After determination of initial values, the parameters are optimized based on experimental 

data for each temperature using the least-square method (Fig. 1); Table 2 lists the optimised 

values. We observe that   increases with temperature, while   shows an inverse effect. To 

determine the parameters at other temperatures an appropriate interpolation technique may be 

used.  

 

 

Fig. 1 Calibration of damage parameters at three temperatures. 

 
Table 2 Material parameters in CDM at different temperatures. 

Parameters 550°C 600°C 625°C 

  15.47 16.27 22.95 

  4800.47 2510.88 2150.59 

m  7.15 

 

In the optimization process, the first and secondary stages of creep and the transition 

between the secondary and tertiary stage play a significant role. During the (final) tertiary 

stage, coalescence of microvoids occurs extensively leading to a rapid rise in damage. 

However, the mechanism of void coalescence is beyond the scope of the current damage 

model. Hence, we do not attempt to model/predict damage beyond 0.4D  . It is worth noting 

that the tertiarty stage of creep is very short compared to the other two stages. From a 

practical standpoint, the initiation of tertiary stage and failure are often treated to be identical.  
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Based on this consideration, the critical damage value ( cD ) was set as 0.4 in the FE analysis, 

which implies element deletion when one of its damage components reaches or exceeds 0.4. 

Since, the damage level increases rapidly after this value, the simulated results are not 

representative of the experimental tests. After deletion, the element will be subjected to zero 

stresses and strain increments (Abaqus, n.d.), essentially implying the generation of a 

microvoid at the location. 
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3 Finite-element model 

       3-D polycrystalline FE models were developed in this study to demonstrate the capability 

of the coupled model for creep-damage assessment. An RVE based approach (Kovač and 

Cizelj, 2005) was implemented to account for the underlying polycrystallinity of the 

component. By using this approach, a homogenized mesoscale stress-strain response can be 

obtained (Zhang et al., 2013; 2015).  

3.1 3-D polycrystalline FE model 

 A cubic RVE of a side of 1.5 mm, containing 27 grains was generated with the Voronoi 

tessellation technique using a freely available software (Quey et al., 2011), as shown in Fig. 2 

(a) (together with a FE mesh). The average grain size was determined by optical microscopy 

studies of 12% Cr steel (Dong et al., 2013; Yaso et al., 2009). Temperature-dependent 

physical properties of the material are available in (Wang, 2014). A set of random 

crystallographic orientations was assigned to each grain, with the inverse pole figure shown in 

Fig. 2 (b). Tetrahedron elements (C3D4) available in Abaqus (Abaqus, n.d.) were used in the 

FE analysis. A mesh-sensitivity study was carried out for the polycrystalline model, with 

three sets of elements: 989, 3204 and 5536. It is imperative to assess the local stresses and the 

damage parameter in mesh convergence studies, as a substantial variation in the local stresses 

would inevitably affect the onset of creep damage in the material. Results obtained from the 

mesh convergence study show acceptable convergence for the 3204-element mesh.  

Periodic boundary conditions were imposed on the four lateral faces (X0, X1, Z0 and Z1) as 

shown in Fig. 2 (c). This effectively treats the domain boundary as grain boundaries of the 

chosen polycrystalline ensemble. The bottom surface (Y0) was fixed in the Y-direction. 

Tensile stress was applied on the top face in the positive y-direction (Y1) to simulate the 

uniaxial stress-controlled loading condition. To obtain the macroscopic mechanical response 

of the material, homogenized strain (
ij ) and damage ( ijD  ) responses were evaluated for the 

RVE volume:  

1
ij ij

V
dV

V
                                                                                                                      (23) 

and 

1
ij ij

V
D D dV

V
  .                                                                                                                  (24) 
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Fig. 2 (a) Geometry and FE mesh of 3-D 27-grains RVE model (colours designate crystallographic 

orientation); (b) inverse pole figure for grains in RVE model; (c) schematic of imposed boundary 

conditions. 

  

3.2 Effect of grain orientation 

To assess the possible influence of the chosen random crystallographic orientations on the 

obtained macroscopic results, an alternative set of (randomly generated) orientations was 

assigned to the polycrystalline structure in the RVE with identical boundary conditions. A 

comparison of global strain for varying temperature and stress states is shown in Fig. 3. The 

random crystallographic orientations have almost no effect on the strain response during the 

first and secondary stages of creep, with minor differences during the tertiary stage. The 

maximum difference in strain was <5.5% for the three loading conditions, which implies that 

the effect of chosen (random) grain orientations on the global response was limited. 

 

 

 

Fig. 3 Strain comparison for different sets of orientations and grain numbers of RVE model. 

 

3.3 Effect of number of grains in RVE 

The chosen number of grains in the RVE model needs to be sufficiently large to represent 

the entire material volume. To study this an RVE of 2 × 2 × 2 mm
3
 size with 64 grains of the 
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same average size with random crystalline orientations was generated employing the Voronoi 

tessellation technique; Figure 4 (a) shows the corresponding geometry and mesh. The 

imposed (periodic) boundary conditions were the same as in the model described in Section 

3.1. Because of long simulation times, calculations were carried out at the maximum imposed 

stress with short creep fracture time for each temperature; the comparison of global strain is 

shown in Fig. 3. During the first and secondary stages of creep, there were almost no 

differences between the results for 27- and 64-grain FE models. At the tertiary stage, the creep 

strain of the 64-grain FE model was found to be slightly smaller than that for the 27-grain FE 

model at the stress of 301.4 MPa at 600℃; these differences are not significant. Therefore, FE 

analysis was performed with the RVE with 27 grains meshed with 3204 elements to evaluate 

global and local creep deformations for all other loading conditions for numerical and 

computational efficiency. 

 

 

Fig. 4 (a) Geometry and FE mesh of a 3-D 64-grains polycrystalline RVE model (colours designate 

crystallographic orientation); (b) inverse pole figure for grains in model. 
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4 Results and discussion 

   In this section, numerical results obtained with the coupled CP and CDM model are 

presented and some of the critical observations are discussed. In particular, the focus is on 

macro- and microscale-variables used in the model and their effect on prediction of creep in 

the material. 

4.1 Prediction of creep deformation 

   First, creep deformation was studied using the developed coupled model at the macroscale. 

Figure 5 provides a comparison of the numerical results with the experimental data at 

different stress levels and temperatures. The strain-time curves obtained with the coupled 

numerical model capture the three stages of creep deformation reasonably well, except for the 

last measured state of maximum strain for each case. This was due to the lack of accounting 

of the mechanism of microvoids coalescence in the damage model; as a result, strain 

prediction for the tertiary creep was not accurate. Interestingly, a rapid strain increase during 

tertiary creep was successfully captured. 

 

 

 

Fig. 5 Comparison of simulated and measured strains at different stresses at three temperatures. 

 

   To assess the effectiveness of the proposed coupled model accounting for damage, creep 

curves calculated with the coupled model and the pure CP model (without damage) were 

compared for the maximum stress at each temperature (Fig. 6). It was found that the creep 

rate obtained from the coupled model was always higher than that calculated with the CP 

model. Though the differences were small at the early stages of creep, the difference became 

larger with increasing damage accumulation in the material. The coupled model with damage 

was capable of capturing the complete creep behaviour till rupture, thus such an approach 

may be used in prediction of material creep lifetime. Without the consideration of damage, the 
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strain kept increasing at a steady rate (as there was no reduction in material stiffness) after the 

initial rapid rise (the first stage of creep). This leads to a deviation at secondary and tertiary 

stages of creep. 

 

 

 

Fig. 6 Comparison of creep strain predictions with coupled model and CP model, for three loading 

cases. 

 

4.2 Damage evolution 

Damage plays a significant role in prediction of creep deformation, especially with 

increasing loading time (Fig. 6). Under uniaxial tension the stress was applied in the positive 

Y-direction (shown in Fig. 2 (c)); hence the normal damage component in this direction ( 22D ) 

was much larger than the other normal components ( 11D , 33D ). The variation of average 

damage components ( 11D , 22D  and 33D ) in the material is shown in Fig. 7. Here, the values 

presented were obtained by averaging the value of all elements in the mesh including the 

deleted elements; this was done by assigning a value of 1 to those elements. Generally, the 

damage parameter quickly reaches this level once the value exceeds 0.4-the critical value for 

element deletion. The results show that the average values of 11D  and 33D  were nearly 

identical, and approximately three orders of magnitude lower than that of 22D . The damage 

corresponding to the direction of uniaxial tension ( 22D ) exhibited the highest magnitude, as 

expected. Thus, the developed model captured the anisotropic damage evolution in addition to 

the elastic-plastic crystalline anisotropy. 
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Fig. 7 Variation of average damage components at the maximum stress at three temperatures. 

 

Evolution of the 22D  damage variable at the three loading cases are shown in Fig. 8. Three 

relevant moments of time, corresponding to (i) the time just before deletion of the first 

element, (ii) the time when the average 22D  began to increase rapidly, and (iii) the moment of 

rupture are presented (see Figs. 8 (a4), (b4) and (c4)). Prior to the element deletion, damage 

was concentrated around the middle part of the RVE, related to larger effective normal stress 

in the tension direction ( 22 ) as shown in Figs. 9 (a1), (b1) and (c1). According to Eq. (16), all 

components of the effective stress contribute to 22D ; however, the influence of  22  was larger 

due to the uniaxial tension state in the y-direction (corresponds to the 2 direction). Observed 

inhomogeneous stress distribution of 22  was due to the differences in grain orientation in the 

RVE. Element deletion was observed to occur in the stiffest grain which was spatially located 

at the RVE centre (coincidentally). When 22D  (the largest damage component) of an element 

reached or exceeded cD =0.4, the element would be deleted, releasing the local stress 

concentration, and the stress was transferred to other stiff (in the y-direction) grains (shown in 

Figs. 9 (a2), (b2) and (c2)). As a result, element deletion was not limited to the middle part of 

the RVE, as shown in Figs. 9 (a3), (b3) and (c3). As the number of elements reduced 

gradually with increasing damage, implying creation of internal detects (microvoids) inside 

the material, the global material stiffness reduced. Therefore, material deformation became 

easier, accelerating damage accumulation and further deletion of elements. Strain was 

observed to increase rapidly, indicating the beginning of tertiary creep. 

 

 

 



 17 

 

Fig. 8 Evolution of damage component 22D  at stress of 380.6 MPa at 550℃ ((a1)-(a4)), 301.4 MPa at 

600℃ ((b1)-(b4)) and 244 MPa at 625℃ ((c1)-(c4)). 

 

Fig. 9 Evolution of effective stress component 22  at stress of 380.6 MPa at 550℃ ((a1)-(a3)), 301.4 

MPa at 600℃ ((b1)-(b3)) and 244 MPa at 625℃((c1)-(c3)). 



 18 

  The temporal evolution of maximum and average magnitudes of 22D  are shown in Figs. 8 

(a4), (b4) and (c4). In general, the curves for the three loading conditions show similarity. The 

rate of increase of maximum 22D  was significantly larger than that of average 22D  at the early 

stage of the creep process. With the deletion of the first element (which corresponds to the 

element with maximum 22D ), an internal defect in the RVE was generated, affecting the 

surrounding elements of the simulated domain. At the end of each loading condition, the 

average 22D  reached a value of ~0.2. By inspection, the element A in the FE mesh (Figs. 8 

(a3), (b3) and (c3)) was on the final fracture surfaces and had the largest value of 22D  at the 

end of the three loading processes. This particular element was found to be representative of 

the elements on the final fracture surfaces; thus, it was selected for an in-depth analysis of slip 

systems, to further assess the creep deformation process at the micro-scale. 

4.3 Evolution of slip systems 

   In the CP model, the resolved shear stress ( ( ) ) plays a decisive role in the development of 

slip strain (inelastic strain) (Eq. (6)). It was observed that the contribution of secondary slip 

systems to the overall slip strain was considerably lower; thus, only the contribution from the 

active main slip systems (MSSs) at the chosen element A is shown in Figs. 10 (a1), (a2) and 

(a3), along with the damage curves ( 22D ) for the element (Figs. 10 (b1), (b2) and (b3)). The 

eight MSSs are detailed in Table 3. The evolution profile of 22D  in the selected element shows 

similarity with the global 22D  profile (Figs. 8 (a4), (b4) and (c4)). At each loading condition, 

( )  in the eight active MSSs may be roughly divided into four groups, with each group 

showing (almost) identical ( )  values. For each MSS， ( )  increased gradually over time, 

especially for MSSs 1, 6, 7, 11 with larger ( )  (Figs. 10 (a1), (a2) and (a3)). At stress of 

380.6 MPa at 550℃, 22D  increased rapidly at around t = 100 h, accompanied by a rapid 

increase in ( ) . This evolution profile was similar to the other two loading conditions. With a 

growth in 22D , the effective stress σ  increased, contributing to the rise in ( )  (Eq. (12)). In 

addition, due to the reduction of the external stress level, the magnitude of ( )  in each MSS 

reduced gradually from the first loading condition (at 380.6 MPa at 550℃) to the final test 

case (at 244 MPa at 625℃). However, the magnitude of 22D  did not vary greatly amongst the 

three loading conditions. This implies that at a higher temperature (from 550℃ to 625℃), 

accumulation of damage was easier, with increase of propensity for creep failure, even though 

the stress level and the slip’s driving force ( ( ) ) were lower. 
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Fig. 10 Evolution of resolved shear stress ( ( ) ) of MSSs and damage curves ( 22D )  at element A at 

stress of 380.6 MPa at 550℃ ((a1) and (b1)),  301.4 MPa at 600℃ ((a2) and (b2)) and 244 MPa at 625℃ 

((a3) and (b3)).  

 

Table 3 Active MSSs. 

MSSs Slip plane Slip direction 

1 (011) [11̅1] 

2 (011) [111̅] 

5 (110) [1̅11] 

6 (110) [11̅1] 

7 (01̅1) [111] 

8 (01̅1) [1̅11] 

11 (1̅10) [111] 

12 (1̅10) [111̅] 

 

   Additionally, the evolution of slip strain (
( )

 ) in MSSs for the chosen element A is 

presented in Fig. 11. According to the flow rule for 
( )

 (Eq. (6)), due to a difference in ( )  

for the MSSs, 
( )

  was different, with a much larger variation (reaching several orders of 

magnitude) than that in ( ) . Therefore, the global inelastic strain of the element A was 

determined by slip strains from several dominant slip systems (MSSs 1, 6, 7, 11 here). For 
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each MSS, 
( )

  increased at an accelerated pace at the tertiary creep stage, which agrees with 

the evolution of global strain with time (Fig. 5). Though the overall trend of 
( )

  evolution in 

all the MSSs is similar, the relative magnitudes of 
( )

  for the MSSs differ for the three 

loading conditions (e.g., 
( )

  in MSS 8 is approximately 1.8 times of that in MSS 2 at the 

stress of 380.6 MPa at 550˚C, while 2.8 times at the stress of 244 MPa at 625˚C, as shown in 

Figs. 11 (a2) and (c2)). For the single element on the final fracture surfaces, evolution of 
( )

  

was not only related to the damage and effective stress state (with little difference for the 

three loading conditions), but also associated with the evolution of fracture surface. Once 

element deletion began on the fracture surface, the plastic slip was affected according to the 

orientation of slip systems. At different loading conditions, the state of element deletion on 

the fracture surfaces differed; thus, activation of some MSSs was different for the chosen 

element A, as shown in Figs. 11 (a2), (b2) and (c2).  

 

 

Fig. 11 Evolution of slip strain (
( )

 )of active MSSs at element A: (a1) 380.6 MPa at 550˚C; (b1) 

301.4 MPa at 600˚C; (c1) 244 MPa at 625˚C ((a2), (b2) and (c2) are zoomed-in views of respective 

boxes in (a1), (b1) and (c1)). 
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5 Conclusions 

    In this paper, a coupled model of CP and CDM was proposed and implemented 

numerically for complete creep assessment of Cr-based steel. The CP theory was used to 

capture the anisotropic stress-strain response of the studied material due to the effect of grain 

morphology and crystallographic orientation. A second-order symmetric tensor was used to 

describe the anisotropic creep damage response, which affected both isotropic hardening and 

slip strain of slip systems. Uniaxial creep experiments at temperatures of 550˚C, 600˚C, and 

625˚C at different stress levels were used for the calibration of CDM parameters. A series of 

numerical simulations were performed based on a developed polycrystalline RVE to 

demonstrate the capability of the developed coupled model for creep assessment. The main 

conclusions from this study are as follows: 

1. The strain curves simulated based on the suggested numerical scheme and measured 

experimental results were in a fairly good agreement, illustrating the predictive capability of 

the coupled model. 

2. The developed model can capture the underlying plastic anisotropy as well as the 

anisotropic damage evolution associated with the specific loading condition.  

3. Analysis of slip variables revealed that at a higher temperature, damage accumulated 

with ease leading to creep failure, even with smaller resolved shear stresses. The global level 

of inelastic strain of the failed element was determined by slip strain from several dominant 

slip systems.  

In this study, we consider a uniaxial tension loading condition for creep modelling, 

corresponding to the experimental condition. For a multiaxial loading condition, the coupled 

model is expected to predict the creep response accurately as it utilises an anisotropic damage 

variable. This will be investigated in the future. 
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