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 10 

Crash databases are one of the primary data sources for road safety research.  Therefore, their quality 11 

is fundamental for the accuracy of crash analyses and, consequently the design of effective 12 

countermeasures. Although crash data often suffer from correctness and completeness issues, these 13 

are rarely discussed or addressed in crash analyses. Crash reports aim to answer the five “W” 14 

questions (i.e. When?, Where?, What?, Who? and Why?) of each crash by including a range of 15 

attributes. This paper reviews current literature on the state of crash data quality for each of these 16 

questions separately. The most serious data quality issues appear to be: inaccuracies in crash location 17 

and time, difficulties in data linkage (e.g. with traffic data) due to inconsistencies in databases, 18 

severity misclassification, inaccuracies and incompleteness of involved users’ demographics and 19 

inaccurate identification of crash contributory factors. It is shown that the extent and the severity of 20 

data quality issues are not equal between attributes and the level of impact in road safety analyses is 21 

not yet entirely known. This paper highlights areas that require further research and provides some 22 

suggestions for the development of intelligent crash reporting systems. 23 
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1 Introduction 26 

 27 

The “garbage in garbage out” (GIGO) principle suggests that the quality of input data is directly 28 

related with the outputs of an analysis (Oliveira et al., 2005). Data quality is however a subjective 29 

measure that refers to the level of appropriateness of data for a specific use (e.g.  Juran and Godfrey 30 

1999; Herzog et al. 2007;). The intended use largely determines data collection methods as well as the 31 

contents and the details of the included attributes. As a consequence, when datasets are used for 32 

purposes different from the primary, data quality might not be ideal. One example of such datasets 33 
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that may have multiple uses is road crash reports collected by public authorities (in most cases the 1 

local police). Crash reports typically provide sufficient information for their primary use to provide 2 

information when civil claims arise and to develop regional and national safety performance statistics. 3 

However, due to the lack of alternatives and despite the limitations, police crash reports are also the 4 

main source of data for road safety research (OECD/ITF, 2015).  5 

As crashes are one of the main externalities of transport systems (Johansson et al., 2014), a significant 6 

amount of resources is invested every year for their mitigation. The number of crashes has indeed 7 

been reduced over time, especially in the developed countries, although the decrease may not be 8 

attributed entirely to improvements in road infrastructure, traffic conditions or driving behaviour but it 9 

might be also related with improved vehicle quality and medical services. The development of 10 

measures for crash prevention largely relies on the outcomes of road safety analyses. Whether focused 11 

on road users or the environment, road safety analyses aim to unveil the conditions that are more 12 

likely to lead to crashes; that is why they are usually data demanding. It is unclear to which extent 13 

crash records are accurate enough to be considered “fit for purpose” for road safety analyses, as little 14 

research has been done towards this direction. There are indications though that crash data have 15 

considerable shortcomings, which imply a potential distortion of research outcomes and a subsequent 16 

negative impact on developing countermeasures. 17 

The two main problems of crash data relate to completeness and accuracy. Crash under-reporting is a 18 

well-recognised and studied problem of road safety research globally (Alsop and Langley, 2001; 19 

Salifu and Ackaah, 2012; Watson et al., 2013). The reporting authorities are not always responsible 20 

for this issue; there are various reasons why a percentage of crashes are not included in the official 21 

records. For instance, police might not have been notified of the crashes either because the users agree 22 

to sign private settlements for insurance purposes or there was no third party participation (i.e. single 23 

vehicle crashes) or there were not obvious injuries just after the crash (Amoros et al., 2006; Barancik 24 

and Fife, 1985). Although there are variations in the estimated levels of under-reporting across 25 

countries, there is an agreement that selection biases are mainly related with injury severity and road 26 

user type. Obviously fatal or serious crashes are more likely to be reported to the police, while a large 27 

proportion (approximately two-thirds and beyond) of slight and property damage crashes remain 28 

unreported (Abay, 2015; Alsop and Langley, 2001; Amoros et al., 2006; Elvik and Mysen, 1999). 29 

Similarly, motorcyclist and cyclist injuries have the highest under-reporting rates among road users 30 

(Salifu and Ackaah, 2012; Watson et al., 2015). The impact of under-reporting on the outcomes of 31 

road safety analyses is not just a speculation. Missing crash records have been found to affect both 32 

injury severity analyses (Yamamoto et al., 2008; Yasmin and Eluru, 2013; Ye and Lord, 2011) and 33 

crash frequency models (Ma, 2009) due to under-representation of some injury categories.  34 
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On the other hand, reported crash data are not perfect either. Misreporting and incompleteness are two 1 

serious issues of crash databases. The problem is more evident, and possibly more serious, when the 2 

key variables that are used for integrating crash datasets with other explanatory datasets (e.g. traffic 3 

data) or the variables that describe the outcomes and the circumstances of crashes (e.g. severity) are 4 

inaccurate or missing. Road safety research has evolved rapidly in terms of traffic data quality and 5 

methodological approaches (Mannering and Bhat, 2014). However, crash data seem not to have 6 

followed a similar trend in terms of quality and might be inadequate for current sophisticated analyses 7 

that are not necessarily capable of addressing this issue. Errors and inaccuracies in crash datasets are 8 

challenging, if not impossible, to be identified and corrected by data users and that partially explains 9 

why research on the particular area is limited.  10 

This paper summarises findings of existing research on crash data limitations in order to highlight 11 

potential issues that could emerge in multiple different types of road safety analyses. This will be 12 

enhanced using evidence from four crash datasets from different countries. The purpose of this paper 13 

is to increase awareness of crash data limitations, to pinpoint areas that require further research and to 14 

provide ideas about future crash reporting systems. 15 

2 The five W’s of crash reports 16 

 17 

Crashes are rare and often multi-causal events that follow a unique sequence of events. It is therefore 18 

not always straightforward to identify their exact causes. To capture as much useful information about 19 

crash occurrences as possible, local authorities develop specialised report forms (paper-based or 20 

electronic) that need to be completed after a crash. The information can be categorised using the five 21 

“W” questions: 22 

• “Where?”: crash location; 23 

• “When?”: crash time; 24 

• “What?”: crash severity; 25 

• “Who?”: involved users (and vehicles) and;  26 

• “Why?”: crash contributing factors.  27 

Depending on their scope and perspective, road safety analyses may employ a plethora of different 28 

combinations of information included in crash reports. These five categories are not equally useful for 29 

all analyses; for example, in a network-level crash frequency model individual driver-related data 30 

might not be considered, while in a study on the crash characteristics of different driver profiles, crash 31 

time and location might not be important. Additionally, some of the variables that consist these 32 

categories are significantly easier to be reported (e.g. driver’s gender) compared to others (e.g. crash 33 
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location), therefore misreporting and missing data problems are not equally distributed between 1 

variables. The following sections will summarise some of the most significant flaws of crash data that 2 

have been discussed in existing literature. 3 

2.1 Crash location and time 4 

 5 

Location and time are two fundamental elements of a crash report. For crash analyses that aim to 6 

explain fully or partially crash occurrence through environmental conditions (e.g. traffic, weather, 7 

road geometry) these variables are of particular importance because they enable linkage of crash 8 

datasets with datasets that include environmental conditions information. One major issue that arises 9 

when data linkage is required is the lack of common and comparable spatial and temporal attributes 10 

between datasets. This happens because most of the datasets are held by different organisations that 11 

typically are not road safety-focused, so direct matching is rarely possible. For instance, crash 12 

locations might be reported with a set of coordinates, traffic data might be reported with reference to 13 

the links of a base map, geometry data might be represented by another more detailed base map and 14 

finally, weather data might be obtained from the closest weather stations that are represented by a set 15 

of coordinates (examples of detailed description of data linkage for crash modelling can be found in 16 

Abdel-Aty and Pemmanaboina (2006) and Imprialou et al. (2016)). The combination of multiple 17 

datasets with different spatial and temporal attributes becomes even more challenging when these 18 

datasets contain inaccuracies.  19 

Errors in reported crash location and time add complexity in data pre-processing, especially for 20 

studies that heavily rely on these attributes1. The required level of details for crash location and time 21 

varies between different types of studies. For example, in order to develop annual crash frequency 22 

models each crash that occurred during the study year should be allocated to one road link (or section) 23 

which is relatively simple to be identified. On the other hand, in real-time crash prediction models 24 

where the exact pre-crash conditions should be examined, apart from the location, that should be 25 

precise enough to identify upstream and downstream traffic sensors, the exact time of the crash is also 26 

required.  27 

Crash location is reported with multiple different systems around the world such as linear referencing, 28 

offset from junction, coordinates and address. Considerable inaccuracies in crash locations have been 29 

reported for all systems (e.g. Dutta & Noyce 2005; Burns et al. 2013; Brown et al. 2015;). For 30 

instance, Miler et al. (2016) found that a 33.5% of the crashes of a relatively large database (8,550 31 

observations) had inaccurate crash location attributes. The inaccuracies may be due to human error, 32 

                                                      
1 Studies that employ disaggregated information on the traffic and environmental conditions that are related with 
individual crashes such as real-time crash prediction models (Hossain and Muromachi, 2013) or condition-based 
count modelling (Imprialou et al., 2016).  
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equipment failure (when GPS is used), limited training of personnel or can be inherent to the reporting 1 

method (e.g. Brown et al., 2015; Imprialou et al., 2015). Existing crash mapping algorithms employ a 2 

broad range of methods and attributes of crash records in order to correct erroneous crash locations. 3 

Early crash mapping algorithms primarily employ reported road name, road type and simple 4 

geometric approaches such as buffer zones (Austin, 1995) or shortest distance from the reported crash 5 

location to the road network (Loo, 2006). More recent algorithms consider additional attributes from 6 

crash reports such as vehicle direction just before the crash and employ advanced statistical or 7 

Artificial Intelligence (AI) concepts. For example, Artificial Neural Networks (Deka and Quddus, 8 

2014) and Fuzzy Logic (Imprialou et al., 2014) have been applied to correct freeway crash locations 9 

achieving matching accuracy of 98.4% and 98.9% respectively (for a detailed overview of crash 10 

mapping algorithms the reader is referred to Imprialou et al. (2015)).   11 

Despite the fact that substantial improvements in crash location have been achieved through crash 12 

mapping algorithms, the vast majority of crash analyses do not perform this kind of data pre-13 

processing. This may be due to the fact that crash mapping algorithms are relatively complex to 14 

develop and evaluate (e.g. the validation of some of the aforementioned crash mapping algorithms 15 

requires some hundreds of manual identifications of crash locations). Another reason could be that the 16 

impact of using less accurate crash location is not entirely known. 17 

There is a gap in knowledge on whether crash data with inaccurate crash locations are appropriate for 18 

road safety analyses. There are, however, indications that crash locations affect the evaluation of 19 

countermeasures (Brown et al., 2015) as well as the estimation of coefficients of crash frequency 20 

models (Imprialou, 2015). The impact of location inaccuracies is likely to be more significant for 21 

studies that require more detailed location information on pre-crash conditions.  22 

Many crash reports do not contain minute-level time accuracy as reported crash time might rely on 23 

witnesses’ statements which means that time is by default rounded (Golob and Recker, 2003). Figures 24 

1-4 show the distribution of the reported crash times by minute (reported in hours-minutes format, 25 

HH:MM) of four official crash datasets: 26 

a) STATS19 the official Police crash database in the UK that contains all reported crashes 27 

(fatal, serious or slight) that occurred in the country during 2014 (Department for Transport, 28 

2011a).  29 

b) FARS the US fatality analysis reporting system that contains information for all fatal crashes 30 

during 2014 extracted from multiple official documents including Police reports (U. S. 31 

Department of Transportation, 2010) 32 

c) Australian Road Deaths Database that includes Police reports for all fatal crashes during 33 

2015 (BITRE, 2016) 34 
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d) Attica Tollway crash database that includes crashes of all severities occurred during 2009 1 

on a 65km urban motorway (Attica Tollway) in Athens, Greece (Attiki Odos, 2017). 2 

The periodic spikes of the distributions show that a disproportionate number of crashes have been 3 

reported at times when the minute (MM) indication ended with zero or five; 66.4%, 42.4%, 83% and 4 

27.8% for datasets a, b, c and d respectively. It is noteworthy that in Attica Tollway crash database 5 

that has the lowest percentage, crash times are determined with the aid of automatic incident detection 6 

cameras. The assumption that crash time has a uniformly distributed error of 2.5 minutes is probably 7 

incorrect though, as a large proportion of crashes are reported at the first and/or the thirtieth minute 8 

(e.g. 41% of all crashes in the Australian Road Deaths Database, Figure 3). 9 

The impact of misreported time might be significant for studies that take into account instant traffic 10 

changes such as real-time crash prediction. So far, in studies that require the identification of pre-11 

crash conditions many researchers use the traffic conditions several minutes (typically 5 to 15 12 

minutes) prior to the reported crash time (e.g. Xu et al. 2013; Abdel-Aty et al. 2012). This approach 13 

reduces the problem if the error of the reported time is known and positive (i.e. the crash time is 14 

assumed to be recorded at a later time in relation to the actual time) that for the aforementioned 15 

reasons might not be true. If a crash report includes crash time that is earlier than the one that the 16 

crash actually occurred, the selected pre-crash conditions might not represent the conditions of 17 

interest, but the conditions that occurred as a result of the crash.  18 

Abdel-Aty et al. (2005) suggest to employ the speed of the shockwave that propagates backwards 19 

upstream of a crash as the upstream traffic starts decelerating after the occurrence. Shockwave speed 20 

can be estimated by dividing the distance between two contiguous traffic measurement stations 21 

upstream of the crash location (e.g. loop detectors) with the time difference of shockwave arrival at 22 

these locations. If the shockwave speed is known, the time when a shockwave arrived at a specific 23 

network location can be estimated. Therefore, the time that the shockwave arrived at the crash 24 

location is assumed to be the actual crash time. Although theoretically valid, this method requires the 25 

availability of spatially and temporally disaggregated traffic data that are may not be available, 26 

especially for urban road networks. Moreover, this correction method assumes that crash location is 27 

accurate, which may not always be the case. To the best of the authors’ knowledge, the impact of 28 

inaccurate crash time in crash analyses has not been formally evaluated yet, so research is required in 29 

this unexplored area.  30 

 31 
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 1 

Figure 1: Distribution of minutes of the reported crash times in STATS 19 database. 2 

 3 

 4 

Figure 2: Distribution of minutes of the reported crash times in FARS database. 5 
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 1 

Figure 3: Distribution of minutes of the reported crash times in the Australian Road Deaths Database. 2 

 3 

 4 

 5 

 6 

Figure 4: Distribution of minutes of the reported crash times in Attica Tollway crash database. 7 
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2.2 Crash severity 1 

 2 

Not all crashes have equal societal impact and therefore public authorities typically prioritise crashes 3 

by severity in their crash mitigation strategies (e.g. Vision Zero introduced by Sweden) (Whitelegg 4 

and Haq, 2006). Crash outcomes in terms of their severity are therefore particularly interesting for 5 

road safety research because they are related with the effective allocation of resources for crash 6 

prevention. Crash severity corresponds to the maximum injury severity of all involved casualties. 7 

Severity characterisation by the police is typically based on fixed criteria such as the level of personal 8 

injuries and the length of stay in hospital (e.g. typically a crash is reported as fatal if it results in the 9 

death of at least one of the casualties within a 30-day period after the crash) (U. S. Department of 10 

Transportation, 2010) but the definitions are not uniform all over the world which suggests a lack of 11 

consistency and comparability between studies. Also, in many places around the world property 12 

damage only crashes are not recoded by the police which also leads to remarkable data losses. For 13 

example in the US Highway Safety Information System (HSIS) collisions are divided into five main 14 

severity categories (i.e. fatal, incapacitating, non-incapacitating, minor injury and property damage 15 

only) (Council and Mohamedshah, 2009) whereas in UK STATS 19 crashes are only split into three 16 

categories (fatal, serious and slight) (Department for Transport, 2011b) despite the fact that property 17 

damage only crashes in the UK are estimated to be approximately 94% of all crashes (Department for 18 

Transport, 2013). 19 

Moreover, the fixed criteria that police uses for injury severity classification are not always 20 

sufficiently accurate, leading to potential misclassifications as it has been proven by a number of 21 

studies that conducted comparisons of crash reports with hospital records from multiple countries 22 

(Morris et al., 2003; Watson et al., 2015; Yannis et al., 2014). Generally, more serious crashes tend to 23 

be more accurately reported in terms of severity but also of other reported attributes (such as speed 24 

just before the crash) (Chung and Chang, 2015). While the identification of fatally injured and non-25 

injured users involved in a crash is more straightforward, the classification between different (non-26 

fatal) severity levels has been found to be challenging (Farmer, 2003). Dove et al. (1986) suggested 27 

that one third of the reported as “severe” injuries were over-classified and another third were under-28 

classified. This is consistent with the findings of other studies that found that approximately one third 29 

of injuries characterised by the police as “incapacitating” were medically classified as “minor” 30 

(Popkin et al., 1991; Sherman et al., 1976). However, McDonald et al. (2009) report  that a 15% of 31 

reported as “slight” injury crashes were found to be in fact “life threatening” according to hospital 32 

data.   33 

Injury severity misclassification is not random as it has been found to be related with specific crash or 34 

user characteristics (for instance, sensitive user injuries tend to be over-classified) (Amoros et al., 35 
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2006). In addition to selection bias arising from the crash under-reporting, classification bias might 1 

further affect analyses that use crash severity in order to explain crash occurrences such as severity 2 

modelling or multivariate count regression models. To overcome this problem some researchers have 3 

suggested linkage of crash data with hospital data prior to any analyses (e.g. Watson et al. 2015) that 4 

might be quite effective but possibly time and data demanding.  5 

2.3 Crash involved users 6 

 7 

Road users involved in a crash can be either drivers or vehicle passengers or pedestrians (termed here 8 

as: other road users). As driver errors are considered to be associated with approximately three 9 

quarters of all crashes (Department for Transport, 2015; Stanton and Salmon, 2009) many studies 10 

analyse driver characteristics in order to identify and explain cohort-related differences in the 11 

frequency and type of crashes. Although typically not related with the cause of crashes, the 12 

characteristics of other road users are also particularly interesting for road safety research, especially 13 

when they belong to special user groups (e.g. children).  14 

Police crash reports normally include demographic information of the drivers and other users as well 15 

as seat belt usage and their positions in the vehicle. Involved user data are affected by selection bias 16 

because specific user groups have been found to be consistently under-reported. For instance, crashes 17 

involving younger users tend to be less frequently reported compared to crashes involving older ones 18 

(Amoros et al., 2006; Janstrup et al., 2016). Literature does not highlight any serious misreporting 19 

issues for user demographics which might be explained by the fact that demographic characteristics 20 

are straightforward to be reported and can be also corrected after leaving the crash scene if necessary. 21 

Although the literature on this topic is not extensive, seat belt usage rate was found to be 13-18% 22 

over-reported in data collected over a 15-year period (1993-2007) from the US Crashworthiness Data 23 

System of the National Automotive Sampling System (NASS-CDS) (Viano and Parenteau, 2009). 24 

Similarly to other attributes, seat belt use is likely to be more accurately reported in crashes that 25 

resulted in at least one fatality (Cummings, 2002). 26 

Examining user demographics of FARS and STATS 19, it was revealed that the latter dataset includes 27 

flaws even in the aforementioned “straightforward-to-report” attributes. Missing values for driver age 28 

and gender were less than 2% in FARS but 11% of all driver demographics had one or more missing 29 

values in STATS 19. Missing values can affect the outcomes of analyses and the list-wise approach of 30 

deleting incomplete observations is not a panacea when the “missing completely at random” (MCAR) 31 

assumption is not true (Heitjan and Basu, 1996). Moreover, as it can be seen in Figure 5, reported 32 

ages in STATS19 included some periodic spikes in ages between 25 and 55 years old. Although not 33 

as substantial as with crash times, the shape of this distribution implies that there is some rounding in 34 
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the ages of the involved drivers that could potentially impact analyses relying on this data. However, 1 

FARS did not appear to have a similar pattern2.    2 

 3 

 4 

Figure 5: Distribution of reported driver ages in STATS 19 5 

  6 

2.4 Crash contributory factors  7 

 8 

Understanding crash causation is probably the most critical element for developing crash preventive 9 

measures. Most police crash reports include information on the potential reasons that lead to crashes 10 

as these were evaluated by police officers that attended the scene after a crash occurrence. The reports 11 

typically include a fixed list of potential contributory factors related with the road environment, 12 

drivers, vehicles and weather conditions and the officers need to select (and sometimes prioritise) 13 

those that seem more relevant to the circumstances of a crash. This is not an easy task to complete; 14 

due to the inherent complexity of a crash mechanism understanding and reporting their underlying 15 

causes in minimal time using solely a generic, pre-designed form is probably an unrealistic goal. 16 

Officers due to time restrictions, in addition to lack of experience, are likely to report the minimum 17 

permitted number of contributory factors that may be inaccurate or incomplete. The extent of these 18 

                                                      
2 The difference of error between the two datasets may be related with the fact that FARS includes only fatal 
crashes which are expected to be more carefully reported.  
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errors is practically unknown because, unlike to some other crash attributes, the evaluation and 1 

correction of these potential errors are not easy and require substantial amounts of resources and 2 

evidence. In-depth crash investigations, where crash investigation teams visit the crash scene and 3 

collect data independently of the police and evaluate the possible reasons for accidents, can 4 

significantly enhance the quality of contributory factors (e.g. Beanland et al., 2013; Flannagan et al., 5 

2015). This data collection method is available in many countries around the world and can contribute 6 

to the development of methods for improving the quality of crash reports (e.g. Couto et al., 2016). It 7 

should however be noted that an in-depth investigation is typically implemented on a small scale  due 8 

to the high operational cost and therefore it is unlikely to replace the most commonly used crash 9 

reporting system.  In one of the few studies that compare contributory factors identified by the police 10 

and by independent specialist teams after visiting the crash site, it was found that there were 11 

significant differences between them (Montella 2011). Specifically, contributory factors in police 12 

crash reports were mainly focused on drivers’ errors while transport experts were concentrated on the 13 

interactions between vehicles and the road environment. 14 

An important issue with many contributory factors is the lack of objective and generally accepted 15 

descriptors and this is more evident in driver-related factors. For example, fatigue and sleepiness 16 

could play a substantial role in crashes, but their definition is not always clear and the perceptions of 17 

drivers and police officers might be different (Dobbie, 2002; Stutts et al., 2003). Because of this and 18 

also due to the fact that some of the drivers involved in fatigue-related crashes have fatal injuries, 19 

fatigue is considered to be generally under-reported (Corfitsen, 1999; Michalaki et al., 2015; Sagberg, 20 

1999). One solution to this problem could be self-reported contributory factors (when possible) as 21 

they are more likely to be more accurate than those included in crash reports (Stutts et al., 2003).  22 

It is debatable whether self-reporting would be suitable for contributory factors that are related to 23 

drivers’ unlawful behaviours such as driving under the influence (DUI). That is because drivers might 24 

not want or be able to recall whether they were impaired by a substance (e.g. alcohol, cannabis etc.) 25 

(OECD, 2010). Although DUI is a contributory factor that is relatively easy to be assessed 26 

objectively, not all involved drivers are tested (ETSC, 2006; Orsay et al., 1994). In the UK, for 27 

example, only 54% of drivers involved in crashes had a breath test afterwards between 2003 and 2015  28 

(Department for Transport, 2015). This could be due to difficulty of officers in identifying potentially 29 

impaired users, unavailability or malfunction of necessary equipment, time pressure if one or more of 30 

the involved users is seriously or fatally injured and even refusal of the involved drivers. Additionally, 31 

even if a test takes place, the results might not be included in the actual report (ETSC, 2006). 32 

 33 

 34 
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3 Future Directions to Improve Crash data  1 

 2 

Crash reports were, have been and will remain valuable for all road safety analyses as long as 3 

researchers are aware of their limitations and use them with caution. Summarising the previous 4 

sections, crash reports are likely to contain missing or inaccurate information mainly in crash location 5 

and time, severity, participants’ characteristics and contributory factors. The issues are not equally 6 

serious for all attributes and across datasets. However, poor quality crash data can hinder or damage 7 

safety analyses and consequently affect the evaluation and development of successful road safety 8 

interventions.  9 

3.1 Topics for further research 10 

 11 

The impact of some of the aforementioned crash data flaws on road safety analyses is not yet entirely 12 

understood and so more research is needed. Further attention should be also given to the development 13 

of transferable methods for addressing crash data inaccuracies that can be broadly applied by safety 14 

researchers and practitioners. These efforts can significantly improve the quality and reliability of the 15 

datasets however, post-processing approaches are more likely to address some but not all the 16 

limitations. To significantly enhance the quality of crash data, radical improvements in crash reporting 17 

systems are essential. 18 

Evaluating existing literature on crash data quality few issues that the road safety research community 19 

needs to be aware of have been identified: 20 

• Impact of inaccurate reported crash locations on the outcomes of crash analyses (e.g. risk 21 

mapping, hot-spot identification, link-based crash frequency models, real-time crash 22 

prediction) 23 

• Impact of incorrect reported crash time on the outcomes of crash analyses that consider pre-24 

crash traffic/geometric/weather conditions (e.g. real-time crash prediction, condition-based 25 

modelling) 26 

• Impact of imprecise crash severity on the outcomes of crash analyses (e.g. severity modelling,  27 

risk mapping) 28 

• Impact of unreliable user information on the outcomes of crash analyses (e.g. behavioural 29 

studies, cohort analyses, evaluations of specific users) 30 

• Evaluation of the accuracy of crash database attributes (including reported crash contributory 31 

factors) through comparisons with detailed data sourcing from in-depth crash investigations 32 

or naturalistic studies 33 
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• Methods for crash data post-processing (e.g. crash mapping) for improving data quality and 1 

analytical methods for handling crash data reporting errors 2 

• Development of advanced and more accurate crash reporting methods. 3 

3.2 Intelligent crash reporting systems 4 

 5 

Current paper-based crash reports are eventually going to be incomplete or erroneous to an extent 6 

despite improving officers’ training and applying crash data post-processing. For eliminating the 7 

chances of mistakes, the ultimate goal for the road safety research community is the development of a 8 

seamless crash database where all components can be integrated automatically. A system like that 9 

might be entirely applicable only in the era of automated transport systems (e.g. connected and 10 

autonomous vehicles) where in-vehicle sensor units (e.g. radars integrated with high accuracy GPS) 11 

will have the capability to capture the trajectories of all surrounding vehicles and crashes (if any) will 12 

be automatically reported without any human intervention. Although such transport systems represent 13 

a major innovation for the automotive industry, their potential impact with respect to timing, uptake 14 

and penetration remains uncertain, especially in the near future.  15 

However, the development of more intelligent and integrated crash reporting systems is possible with 16 

the technology that is currently available; in fact, a number of crash reporting systems with intelligent 17 

features are emerging around the world. The first requirement of a seamless crash database is an 18 

official base-map that would store all the road-related attributes (such as traffic and geometry) with 19 

common indexes, so linkage would be direct and accurate. Public authorities by reporting crashes 20 

with the aid of GPS-based applications would enable automatic identification and linkage of the crash 21 

locations with the road environment conditions. Advanced GPS-applications are already being used in 22 

several new crash reporting systems such as Traffic and Criminal Software (TRACS) in the US, 23 

Collision Recording and Sharing (CRASH) in the UK, PRC and ReGIS in Italy (Department for 24 

Transport, 2011c; Montella et al., 2017; Ogle, 2007). Improved accuracy of crash locations combined 25 

with detailed real-time traffic, weather and geometric information would enable the identification of 26 

the actual conditions responsible for the crash occurrence. The system would be enhanced 27 

substantially if the time of crash is reported as the time that the police received the call automatically 28 

so the error in this information could be captured more easily (as it is currently applied in Saudi 29 

Arabia (Altwaijri, 2013)). An alternative to that would be the use of the reported time from in-vehicle 30 

systems that call automatically the nearest emergency centre such as the eCall initiative introduced by 31 

the European Union (European Commission, 2016). 32 

Crash severity and casualty information should be also enhanced and corrected using applications that 33 

will enable the linkage of hospital records and crash databases. Demographic information and crash 34 



15 
 

history of all drivers of a country or region could be stored in a database and could be identified by 1 

the crash reporting application automatically using the driving licence number, magnetic strips or 2 

barcodes that are applied in New York, US (Ogle, 2007). Crash contributory factors remain one of the 3 

most challenging information to be accurately reported however the use of recordings from on-board 4 

and dash-board in-vehicle cameras or event data recorders can significantly enhance the initial 5 

statement about the causes of a crash made by the officers. To that end, when such data will be 6 

available they should be stored and processed in order to identify contributory factors that were not 7 

known or noticed when the report was first completed at scene. 8 

Crash reporting systems that incorporate more technological applications do have limitations. 9 

Reliance on technology may lead to systematic errors or data losses in the case of equipment failure or 10 

misuse and might even be vulnerable to hacking. Moreover, purchasing and developing new crash 11 

reporting systems as well as training of data collecting teams is costly. The time required to fill in 12 

crash report forms is also likely to be increased, at least when a new system is newly introduced 13 

(Montella et al., 2017).  The vision for prefect crash databases may be utopic, however now it is more 14 

timely and necessary than ever to work on improving crash data in anticipation of new and advanced 15 

road safety analyses that will lead to the development of more successful preventive measures and 16 

technologies. 17 
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