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A shape of charge liners has a great effect on formation of a metal jet and its penetration into a tar-
get. In this paper, three different shapes of a charge liner, namely, conical, hemispherical and spheri-
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1. Introduction

TaggedPNaval structures can be severely damaged by a shock wave
[1�4] and a metal jet [5�6] associated with underwater explo-
sion. The metal jet can be classified into three main modes -
Shaped Charge Jet (SCJ) [7�13], Jetting Projectile Charge (JPC)
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TaggedPaluminum SCJ in 1974. Masahide et al. [10] proposed numerical-
analysis methods to investigate non-inhibited and inhibited coni-
cal shaped charges. Molinari [13] adopted a finite-element
Lagrangian code to simulate formation, fragmentation and pene-
tration in a plate of a shaped charge jet. In their research of the
JPC, Liao et al. [14] combined numerical simulation and experi-
ments to study properties of a shaped charge with a semi-spher-
ical liner. Murphy [16] introduced a unified analytical approach
to solve a problem of shaped-charge penetration in concrete. Wu
et al. [19] utilized 3D LS-DYNA in their simulation of the entire
process of collapse and break-up of the JCP. As for the research
of the EFP, Yu et al. [22] carried out many penetration tests into
rocks of different strengths. Johnson et al. [25] discussed some
technical issues and showed results for 3D EFP computations. Lin
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TaggedPet al. [27] analysed distributions of velocity and pressure theo-
retically, and the obtained analytical results agreed well with the
experimental data. However, most of these studies were focused
on cases of air explosion, with few published papers discussing
the processes associating with underwater explosion.

TaggedPIt was found that various parameters [28�35], such as initiation
modes, a charge length and a liner material, affect significantly a
cumulative effect of a shaped charge. Li et al. [29] focused on the
influence of annular multi-point initiation on formation of the EFP.
Bai et al. [31] discussed the effect of interaction mechanism between
a jet and a target on penetration performance of a shaped charge
liner. Ayisit et al. [32�33] studied the effect of off-axis initiation for
shaped charges with different L/D ratios. Wang et al. [35] conducted
experiments to investigate penetration of shaped charges with dif-
ferent cone angles and liner materials into concrete target. A shape
of the liner has an important effect on formation of a metal jet and
its penetration performance as well. Fu et al. [20] used LS-DYNA soft-
ware to investigate formation, elongation and penetration processes
of rod-like jets with three jetting penetrator charges (JPCs) - spheri-
cal cone, truncated wide-angle and spherical-segment liners. The
use of traditional finite-element software is limited by computa-
tional difficulties caused by grid distortion related to high deforma-
tions in highly nonlinear problems of shaped charges. A Smoothed
Particle Hydrodynamics (SPH) method [2,4,7,36�39] has natural
advantages in simulating underwater explosions and metal-jet pen-
etration, since, thanks to its mesh-less nature, it is suitable for solv-
ing problems with large deformations while its Lagrangian
formulation makes it easy to capture material interfaces.

TaggedPTherefore, the SPH method was used to simulate the entire pro-
cess of metal-jet evolution associated with underwater explosion
penetrating a plate in this paper. First, after a brief overview of the
SPH theory a simulation of a shaped charge with a spherical segment
liner was performed, and its numerical results were compared with
the experimental data to verify the validity and feasibility of the pre-
sented SPH method. Second, SPH models for three cases of shaped
charges with different liners - conical, hemispherical and spherical-
segment - were developed to simulate the process starting with det-
onation to the jet penetration. Third, the effects of different liners on
shock-wave propagation, formation of the metal jet and its penetra-
tion performance were analysed. The structure of the paper reflects
this research process.
Table 1
Parameters in Jones�Wilkins�Lee EOS for explosive gas [43].

r0 (kg/m3) A (Pa) B (Pa) R1 R2 v e (J/kg)

1630 3.74 3.75 4.15 0.90 0.35 6.0 £ 106

Table 2
Parameters in Mie�Gruneisen EOS for water [44].

r0 (kg/m3) C0 (m/s) g0 a S1 S2 S3 e (J/kg)

998 1480 0.5 0 2.56 1.986 1.2268 357.1
2. Theory and numerical verification

2.1. Basic SPH equations

TaggedPIn the SPH method, the state of a studied continuum volume can
be represented by a system of arbitrarily distributed particles that
can move according to external forces and internal interactions
between them [40]. As a result, governing equations are transformed
into corresponding integral forms by using a specially selected
smoothing kernel function. A continuous function f(x) and its deriva-
tive r ¢ f(x) can be discretized as [40]
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where Wij is the smoothed function of a pair of particles i and j (the
cubic spline function is employed in this paper); r and m denote
the density and mass, respectively.

TaggedPThe standard SPH method is characterised by poor performance
in solving problems with a large density ratio [41]. Hence, a modi-
fied SPH method [42] based on volume approximation is applied to
TaggedPsimulate evolution of a shaped-charge jet associated with underwa-
ter explosion. The conservation of mass, momentum and energy can
be expressed as [42]:
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where v, e, t, x denote the velocity, energy, time and coordinates,
respectively; a and b indicate the directions along the axes; Pij is
artificial viscosity [40]; s is the stress and it can be obtained by solv-
ing the constitutive model.
2.2. Constitutive model

TaggedPThe stress s for water and exploding gas is composed of isotropic
pressure and viscous shear stress; since their viscosity is small, it
can be ignored in analysis of strong impacts such as a case of a
shaped-charge jet associating with underwater explosion. Therefore,
the stress can be obtained by solving a problem with regard to pres-
sure. Pressure of detonation products and water can be presented
with the Jones�Wilkins�Lee (JWL) equation of state (EOS) [43] and
the Mie�Gruneisen equation of state [44], respectively.

TaggedPThe JWL EOS [43] for explosive gas is expressed as
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where r0 is initial density; A, B, R1, R2 and v are the fitting coeffi-
cients obtained from experiments; e is detonation energy per unit
mass; h is the ratio of the density of detonation products to the ini-
tial density of the original explosive. The values of these parameters
used in simulations below are listed in Table 1.

TaggedPThe Mie�Gruneisen equation of state [44] for water is given by
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where r0, C0, a, e and g0 are the initial density, sound velocity, vol-
ume correction coefficient, the specific internal energy per unit vol-
ume and Gruneisen coefficient, respectively; S1, S2 and S3 are fitting
coefficients; m is the compression, mDh¡1, where h is the ratio of
density before and after the explosion, Water is in a compressed
state when m > 0 while in an expanded one when m > 0. The rele-
vant parameters are shown in Table 2.

TaggedPApparently, for solids with high shear strength, contribution of



Table 3
Parameters in Mie�Gruneisen EOS for steel and copper [45].

Material r0 (kg/m3) G Cs (m/s) Ss e (J/kg)

steel 7890 1.587 3075 1.294 0
copper 8960 2.0 3940 1.489 0
Fig. 1. Schematic of SPH model to simulate experiments in [48].
TaggedPshear should be taken into consideration. In this paper, 1006 steel
and copper are used as the materials of the plate and the liner,
respectively. The stress can be presented as a combination of isotro-
pic pressure P and deviatoric stress tensor S. In terms of the pressure
P, the Mie�Gruneisen EOS for solid media [45] is introduced in the
following form:

PD 1¡1
2
Gh

� �
¢ ahCbh2 Cgh3� �CGre ð6Þ

where G , r and e denote the Gruneisen parameter, density and ini-
tial energy, respectively. When a solid is in an expansion state, that
is h � 0, bDg D0, otherwise,

aDr0Cs
2; ð7Þ

bDa½1C2 Ss¡1ð Þ�; ð8Þ

g Da½2 Ss¡1ð ÞC3 Ss¡1ð Þ2�; ð9Þ
where r0, Cs and Ss are the initial density, linear participation coeffi-
cient of impact velocity and particles velocity and slope, respec-
tively. The parameters related to the Mie�Gruneisen EOS for steel
and copper are given in Table 3.

TaggedPThe deviatoric stress tensor S of a solid can be calculated from the
stress rate _S by integration, with _S obtained from the Jaumann stress
rate [40]. The Johnson�Cook [46] model and a von Mises yield crite-
rion were applied to calculate yield strength and determine whether
the stress should be renewed through the comparison between von
Mises stress sMises and yield strength Y. If von Mises stress was less
than the yield strength, there was no need to modify the stress com-
Table 4
Parameters in Johnson�Cook constitutive model for steel and copper [46].

Material s0

ðMPaÞ
B0

ðMPaÞ
_ɛ0
ðs¡1Þ n C M

Tm
ðKÞ

Tr
ðKÞ

Cv

ðJ=kg ¢KÞ
Steel 350 275 1 0.36 0.022 1.0 1811 288 452
Copper 90 292 1 0.31 0.025 1.09 1356 288 383
Fig. 2. Shape of metal jet at different momen
TaggedPponent. On the contrary, the deviatoric stress S should be modified
[47]. The Johnson�Cook [46] model is given as

Y D s0 CB0ɛ
n
e

� 	
1CC ln _ɛe= _ɛ0ð Þ½ � 1¡ðT�ÞM

h i
; ð10Þ

where s0, C and M denote the static yield strength, strain-rate-
strengthening coefficient and thermal-softening coefficient, respec-
tively; B and n are the strain-hardening exponents; ɛe is the equivalent
plastic strain, i.e. ɛe D2

ffiffiffiffiffiffiffi
3I2

p
=3 (I2 is the second invariant of the devia-

toric stress tensor); _ɛe and _ɛ0 are the equivalent plastic strain rate and
reference strain rate, respectively; T* is dimensionless temperature
ts: (a) numerical results; (b) experimental data.



Fig. 3. Numerical models: (a) Case A; (b) Case B; (c) Case C.

Table 5
Parameters in numerical model (in mm; see Fig. 3).

h1 h2 h3 h4 hc d1 d2 r1 r2 rh

190 200 20 40 17.3 1.0 2.0 15 60 15

Table 6
Number of particles in SPH models of different cases.

Cases Liner Numbers of particles

Water TNT Copper Steel Total

Case A Conical 652,500 89,600 4791 24,000 770,891
Case B Hemispherical 652,500 85,214 4520 24,000 766,234
Case C Spherical segment 652,500 92,842 4054 24,000 773,396
TaggedPcorresponding to the current level T, i.e. T� D ðT¡TrÞ=ðTm¡TrÞ, where Tr
is room temperature, Tm is the melting point and
T D Tr C ðe¡e0Þ=ðMCvÞ, where e, e0 and Cv denote specific internal
TaggedPenergy, initial specific internal energy and specific heat. Parameters of
the Johnson�Cook model for steel and cooper are listed in Table 4.
2.3. Numerical verification

TaggedPIn order to verify the effectiveness of the developed SPH method,
its numerical results were compared with the experimental data from
[48]. The numerical model was developed according to the description
in [48]; it is shown in Fig. 1. The magnitudes of length h and diameter
de of the used explosive were respectively 30mm and 60mm. The
liner made of copper had a curvature radius rD60mm and thickness
dD2mm. Thicknesses of the top and side shells made of aluminium
and steel were dtD6mm and dsD3mm. A comparison of numerical
and experimental results is illustrated in Fig. 2 for the moments corre-
sponding to 50ms, 70ms and 100ms after the explosion.

TaggedPThe experimental results [48], shown as Fig. 2(b), were used to ver-
ify the results calculated with the SPH method. As Fig. 2(a-1) and (b-1)
show, under the effect of a detonation wave, the liner converged to
the axis of symmetry and the initial metal jet was formed as a result.
Subsequently, as can be seen from Fig. 2(a-2), (b-2), (a-3) and (b-3),
due to the difference in velocities of different parts, the metal jet elon-
gated to several times of its initial length. It is obvious that the numer-
ical results for the jet shape have a good agreement with the
experimental data. Besides, the jet lengths obtained from the numeri-
cal simulations and in the experiment were respectively 58.1mm and
59.2mm with an error less than 2%. In addition, the difference
between the jet-head velocities in the experiment (about 2 km/s) and
simulations (about 2.15 km/s) is less than 10%. Consequently, the
closeness of numerical results with the experimental ones presented
in [48] proved the effectiveness and accuracy of the presented SPH
method in solution of the problems of the shaped charge.
3. Penetration of shaped charge jet into plate subjected to
underwater explosion

3.1. Numerical models

TaggedPAfter the presented SPH was successfully verified, the effect of
the shape of charge liners was studied for three cases of liners� con-
ical (Case A), hemispherical (Case B) and spherical-segment (Case C),
as discussed in this section. Sketches of the respective models devel-
oped to study the shaped-charge jet penetrating a plate subjected to
underwater explosion are shown in Fig. 3; the magnitudes of geo-
metrical parameters can be found in Table 5. The explosive material
was TNT while the materials for the liner and the plate were copper
and steel, respectively. TNT was detonated from the centre coincid-
ing with the origin of coordinates. Test points A and B are located at
positions (28, 0) and (¡16, 43) (in mm; see Fig. 3c), respectively. The
SPH models were discretized with non-uniform particle spacing,
0.1mm for the plate, copper and TNT and 0.2mm for water. The



Fig. 4. Pressure distribution in explosion process: (a) Case A; (b) Case B; (c) Case C.
TaggedPnumbers of particles used in simulations of different cases are listed
in Table 6.

3.2. Shock-wave propagation in explosion process

TaggedPThe detonation processes of the explosive for the three studied
liners are shown in Fig. 4. Apparently, a spherical detonation wave
was generated in the explosive, with the pressure up to 1.4 GPa at
around 0.4 ms. Meanwhile, a reflected wave was generated in water
TaggedPas well, with a velocity lower than that in the explosive. The reason
for this phenomenon is the fact that surge impedance of water is
lower than that of the TNT. After that, the detonation wave propa-
gated with high speed and the explosion products continued to
expand. As Fig. 4(a-2)�(c-2) show, the shock wave reached the liner
and the pressure peak value soared up to about several GPasat about
5.2 ms. The figures also demonstrate that a rarefaction wave devel-
oped and propagated in the detonation products because of higher
surge impedance of the liner than that of the explosive, and a low-



Fig. 5. Pressure-time curves: (a) point A; (b) point B.
TaggedPpressure area was formed in the detonation products as a result.
Comparing the three cases, it can be seen from Fig. 4(a-2) and (a-3)
that the plastic flow of the liner was generated and accelerated
under the tremendous pressure, and the initial metal jet was formed
in Case A as a result. Still, as shown in Fig. 4b and c, at that moment
through the liners in Cases B and C were significantly affected, the
initial jet was not formed yet. Finally, the detonation finished at
around 6.4 ms and the maximum pressure declined to about 1 GPa.

TaggedPThe history curves of shock-wave pressure at test points A and B,
which are located in the axial and radial directions in the water area
TaggedPand marked in Fig. 3c, are shown in Fig. 5. The shock wave arrived at
point A at around 10 ms and the pressure shot up to about 1.6MPa
(Fig. 5a). Subsequently, the level of pressure rapidly decreased and
stayed steady eventually, corresponding to the predictions of propa-
gation laws for shock waves. Point B was reached by the shock wave
also at about 10 ms as shown in Fig. 5b, with the pressure exceeding
1.9MPa. There is also another peak in each pressure curve for this
point: the first one is caused by the direct wave of the explosion, and
the second one may just result from the second-wave propagation.
As the detonation waves propagated from the explosion site through
the water, the reflection waves were generated and, subsequently,
converged at the TNT centre, leading to generation of compressive
waves back into water again. A comparison of Fig. 5a and b demon-
strates that the peak value of the radial pressure at point B is higher
than that of the axial peak value at point A.

3.3. Formation of metal jet

TaggedPAfter detonation of the explosive, a metal jet was gradually formed
under the effect of the detonation wave. In this section, the process of
its formation is analysed based on simulation results. A velocity distri-
bution for the liner at specific moments is shown in Fig. 6. During the
initial formation of the metal jet (Fig. 6(a-1)�(c-1)), the liner was
squeezed and plasticized under the effect of the detonation wave
causing large deformations, with its top rolling over. As a result of
axial tension and radial compression, the liner converged to the axis
of symmetry and the initial metal jet began to form with high speed.
Apparently, Case A needed the least time (4.4ms; Fig. 6(a-1)) for the
initial formation of the metal jet, faster than in Cases B (7.6ms; Fig. 6
(b-1)) and C (9.6ms; Fig. 6(c-1)).

TaggedPWhen the jet velocity reached the maximum (see Fig. 6(a-2)�(c-2)),
pressure transformed its original outer surface into the inner one as a
result of a large deformation of the liner. Subsequently, the inner sur-
face became the jet head with the metal jet elongated to several times
of its initial length. Then, its velocity reached the peak values 4036m/
s, 2576m/s and 2743m/s, respectively, for the three cases. It is obvious
that the maximum velocity for Case A was higher than that for the
other two cases.

TaggedPThe character of velocity distribution at the moment just before
the jet penetrated the plate is shown in Fig. 6(a-3)�(c-3). At this
stage, a shaped charge jet (SCJ) was formed in Case A; it was thin
and long and had a high speed (Fig. 6(a-3)). In Case B, a jetting pro-
jectile charge (JPC) was formed, with a wide jet head (Fig. 6(b-3)). In
contrast, an explosive formed projectile (EFP) appeared at this stage
in Case C, with a short jet length (Fig. 6(c-3)). In addition, the charge
with the spherical segment liner was more suitable for long-distance
movement than the other two cases because it had a smaller velocity
difference of the jet head.

TaggedP3.3.1. Jet-head velocity
TaggedPObviously, evolution of velocity is one of the most significant fac-

tors for the evaluation of the cumulative effects; thus, it is discussed
in this section. The level of velocity of the jet heads increased signifi-
cantly after the initial jet is formed, reaching its peak and declining
thereafter under the effect of velocity gradient (Fig. 7). After the
begin of plate penetration, the velocity reduced faster and eventually
stayed steady. Comparing three curves of velocity evolution in Fig. 7,
some different features can be highlighted. First, in Case A, the maxi-
mum velocity (4036m/s) is significantly higher than that in the
other two cases (2576m/s and 2743m/s), defined by the phenomena
observed in Fig. 6(a-2)�(c-2). Second, the jet in this case arrived at
the plate faster, which can be observed from the time marked in
Fig. 6(a-3)�(c-3) as well. Third, there was a little increase in the
velocity level after the jet penetrated the plate in Cases B and C,
other than Case A. This was probably due to the fact that the jet-
head velocity formed from the conical liner was higher, and the



Fig. 6. Velocity distribution in liner during the formation of metal jet: (a) Case A; (b) Case B; (c) Case C.
Fig. 7. Velocity-time curves of jets for various liners.
TaggedPTaggedPcraterphenomenonwasnotobviousasaresult.Finally,theresidualveloc-
itieswereabout3084m/s,2175m/sand2035m/s, respectively, forthe
threecasesofliners,indicatingthatvelocityevolutioninCaseAwaschar-
acterizedbythehighermagnitudesduringtheentireprocess,anditmight
causealargerpenetrationdepthasaresult.

3.3.2. Length of jet head

TaggedPJet length is an important factor in underwater explosion as well.
To characterise jet evolution in the three studied cases, two dimen-
sionless parameters were introduced: Lh and Lf - the jet-head length
and the jet length normalized with the diameter of TNT, respectively.
The jet-head length in Case A increased with time, continuously
other than in two other cases demonstrating stages of the increase
followed by the decrease after the peak (Fig. 8a). The reason for this
could be that the jet-head velocity in Case A was much higher.
Besides, the peak point corresponds to the moment when the metal
jet started penetrating the plate (Fig. 6). Apparently, the jet length
increased with time for all the three liners (Fig. 8b). At t � 24.0 ms,
the following values of the jet length were reached: Lh D1.62, 0.83



Fig. 8. Evolution of jet dimensions: (a) jet-head length; (b) jet length.
TaggedPand 0.60, respectively. It indicates that the higher the jet-head veloc-
ity, the longer the jet head length, and the bigger the penetration
depth is, as a result.
Fig. 9. Pressuredistributionwhen shockwave reachesplate: (a) CaseA; (b) CaseB; (c) CaseC.
3.4. Metal-jet penetration into plate

TaggedPThere are two types of loads generated after formation of a
metal-jet, namely, underwater shock-wave loading and a metal jet,
both causing damage in the plate during the process of a metal-jet
penetration into it. Hence, load characteristics of jet penetration are
analysed in this section.



Fig. 10. Evolution of maximum deflection with time for various liners.
TaggedP3.4.1. Damage from underwater shock-wave loading
TaggedPPressure distribution in water when the shock wave arrived

at the plate is shown in Fig. 9; apparently, a transmitted wave
was generated. Meanwhile, due to higher surge impedance of
steel than water, a reflected wave was generated in the latter.
Besides, the shock wave reached the plate faster than the metal
jet. The comparison of the three cases demonstrates that the
shock wave in Cases A and C reached the plate almost at the
same time, different from Case B. In addition, the pressure
peaked at about 4 GPa in Case C, which is higher than that in
Cases A (2.7 GPa) and B (2.3 GPa).

TaggedPThe initial deformation of the plate was caused by the under-
water shock wave; the respective deflection curves are shown in
Fig. 10 (here, the dimensionless parameter D is the ratio of the
maximum deflection of the plate and the diameter of TNT). This
parameter rose with time for all the three cases of liners. The
metal jet in Case B arrived at the plate at 14.0 ms, later than in
the other two cases � at 14.4 ms and 15.2 ms, corresponding to
the moments in Fig. 9. Besides, the deflection in Case C was
larger than that in the other two cases, corresponding to the
pressure peak in Fig. 9. It indicates that the larger the pressure
peak of the shock wave, the larger the deflection of the plate. At
about 24.0 ms, the magnitudes of D for three cases were about
0.90, 0.68 and 0.99, respectively; thus, the deflection in Case C
had the maximum value, i.e. the shock wave in this case induced
a higher damage in the plate.

TaggedP3.4.2. Penetration analysis
TaggedPAfter the shock wave arrived at the plate, the metal jet

started penetrating it. The diagrams of distribution of von Mises
stresses in the plate and the liner are presented in Fig. 11. As the
metal jet began to damage the plate, the stress levels reached
several GPas(Fig. 11(a-1)�(c-1)). Besides, it is clear that there
were two shock waves propagating in the plate - one as a result
of underwater shock wave, another generated in the plate by the
metal jet. As a result, the material around the penetration site
was squeezed, forming a bulge (Fig. 11(a-2)�(c-2)). At the same
stage, the jet head developed into a ‘mushroom’. Because of
accumulation of the metal jet, the penetration was impeded and
TaggedPthe damage zone grew larger with the increased radial velocity
of the metal jet up to the full penetration of the plates (Fig. 11
(a-3)�(c-3)).

TaggedPThe comparison of penetration for the three cases shows that the
penetration duration was 1.6 ms, 2.8 ms and 2.0 ms, respectively. It
means that the SCJ with a high velocity penetrated the plate faster
than the JPC and the EFP. Besides, thanks to the thinner and longer
jet, the jet head of the SCJ was crushed resulting in the irregular
shape. On the contrary, owing to their wide and short jet heads, the
shape of the JPC and the EFP remained smooth. Additionally, because
of the large velocity difference for the SCJ and the JPC, a crack
occurred in the tail of the metal jet, indicating that the shaped
charge with the spherical-segment liner (Case C) had the best
motion stability.

TaggedPEvolution of damage zones in the plate is presented in Fig. 12,
in terms of their dimensionless sizes at the front and the back of
the plate (normalized with the plate thickness), denoted as Cf
and Cb, respectively. Apparently, these zones increased with time
and saturated eventually. The rate of the growth in the early
stage of penetration was higher than that in the later stage
(Fig. 12a). The SCJ arrived at the plate earlier, at about 15.2 ms,
followed by the JPC at about 16.4 ms, which corresponds to the
moments observed in Fig. 11. The magnitudes of Cf were 3.84,
4.16 and 4.40 at around 24.0 ms, respectively, for Cases A, B and
C, indicating that the plate penetrated by the EFP suffered the
greatest damage. Parameters for the back of the plate (Fig. 12b)
have a similar tendency as on its front, albeit being somewhat
smaller. The maximum values of Cb reached 3.47, 3.65 and 4.02
at around 24.0 ms, respectively. In other words, the EFP caused
the largest damage zone for the three cases studied.

4. Conclusion

TaggedPAn SPH method with mesh-free and Lagrange formulation was
utilized to simulate the entire process of such a complex physical
phenomenon as a metal-jet penetration of an underwater plate. In
order to investigate the effect of liners with different shapes on for-
mation of the metal jet and its penetration performance, three cases
with different shapes of the liner - conical (Case A), hemispherical
(Case B) and spherical segment (Case C) - discussed in this paper.
The main conclusion can be drawn as:

TaggedP(1) The results from the numerical calculations in SPH-based simu-
lation of EFP formation are all in good agreement with the
experimental results, thus verifying the feasibility and effective-
ness of the presented SPH method.

TaggedP(2) Three modes of the metal jet were developed - Shaped Charge
Jet (SCJ), Jetting Projectile Charge (JPC) and Explosive Formed
Projectile (EFP) - corresponding to differently shaped liners in
Cases A, B and C, respectively.

TaggedP(3) The shock wave reached the plate earlier than the metal jet, and
caused the initial deformation as a result. In addition, due to the
higher pressure, the shock wave in Case C led to a larger deflec-
tion of the loaded plate.

TaggedP(4) In terms of the jet-head and residual velocities, the SCJ with its
higher velocity in Case A caused a larger penetration depth. As
for the dimensions of the damage (penetration) zone and
motion stability, the EFP with a wider jet head and a lower
velocity difference in Case C caused more serious damage in the
structure.
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Fig. 11. Distribution of von Mises stress (in MPa) in process of metal-jet penetration of plate: (a) Case A; (b) Case B; (c) Case C.



Fig. 12. Evolution of damage zone at front (a) and back (b) surfaces of plate.
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