

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Decision Tree Learning for Intelligent
Mobile Robot Navigation

by

G. H. Shah Hamzei

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy

iý <yýý

.,., . of

Loughboroüghn University

Department of Electronic and Electrical Engineering

October 1998

© by G. H. Shah Hamzei 1998

j-)

Synopsis

0

-SIS

I think,
therefore I am.

R. Descartes
The French Mathematician, Philosopher and Psychologist

The replication of human intelligence, learning and reasoning by means of computer

algorithms is termed Artificial Intelligence (Al) and the interaction of such

algorithms with the physical world can be achieved using robotics. The work described in

this thesis investigates the applications of concept learning (an approach which takes its

inspiration from biological motivations and from survival instincts in particular) to robot

control and path planning. The methodology of concept learning has been applied using

learning decision trees (DTs) which induce domain knowledge from a finite set of training

vectors which in turn describe systematically a physical entity and are used to train a robot

to learn new concepts and to adapt its behaviour.

To achieve behaviour learning, this work introduces the novel approach of hierarchical

learning and knowledge decomposition to the frame of the reactive robot architecture.

Following the analogy with survival instincts, the robot is first taught how to survive in

very simple and homogeneous environments, namely a world without any disturbances or

any kind of "hostility". Once this simple behaviour, named a primitive, has been

Synopsis

established, the robot is trained to adapt new knowledge to cope with increasingly complex

environments by adding further worlds to its existing knowledge. The repertoire of the

robot behaviours in the form of symbolic knowledge is retained in a hierarchy of clustered

decision trees (DTs) accommodating a number of primitives. To classify robot perceptions,

control rules are synthesised using symbolic knowledge derived from searching the

hierarchy of DTs.

A second novel concept is introduced, namely that of multi-dimensional fuzzy associative

memories (MDFAMs). These are clustered fuzzy decision trees (FDTs) which are trained

locally and accommodate specific perceptual knowledge. Fuzzy logic is incorporated to

deal with inherent noise in sensory data and to merge conflicting behaviours of the DTs.

In this thesis, the feasibility of the developed techniques is illustrated in the robot

applications, their benefits and drawbacks are discussed.

Keywords: Robotics, Intelligent Navigation, Decision Tree Learning, Fuzzy Decision

Trees, Fuzzy ITI, Multi Dimensional Fuzzy Associative Memory (MDFAM), Intelligent

Control

Acknowledgements

Acknowledgements
What we observe

is not nature itself,
but nature exposed to our method of questioning.

Werner Heisenberg
Physics and Philosophy

As far as certain habits and traditions are concerned, I am a fairly unorthodox person. One

such tradition in the academic domain is this part of my PhD thesis that I am authoring

now. Technically expressed, I always used to consider this part of others' PhD theses as

very predictable in terms of its contents and hence, somewhat "redundant".

However, now, after spending a number of years in carrying out this research, I have at

least one good reason to be orthodox and follow the path of tradition, as far as this part is

concerned, namely to have a monologue with some closest people to me throughout the

accomplishment of this work.

I very much wish to express my gratitude and appreciation to my mentor Dr. David

Mulvaney, for his generous, critical and constructive supervision and friendship without

which I would not be able to be at the stage where I am now. I would also like to address

my gratefulness to Dr. Ian Sillitoe of The University of Boräs, Sweden, as my first

supervisor with whom I embarked on this undertaking. My special thanks and LOVE go to

Acknowledgements

my parents and my sisters, Roya, Kathy and Zari who were my greatest source of

inspiration and encouragement to educational excellence. My sincere thanks and

Dankeschön goes out to Saide, Babak and Mehri who were a great fun and supported me

genuinely throughout my work.

Of great acknowledgement and thankfulness, is the support of all my friends, academic and

non-academic, who in one way or another inspired and entertained me scientifically and

mentally. Mentioning their very names would be a great pleasure, but beyond the limited

space considered in this thesis. Therefore, I define, in the following, a "crisp" set, F, that

incorporates all my friends that I met in Loughborough to thank them all collectively,

without ordering, numbering, or ranking.

Fcrisp

All my friends in Loughborough,

whom I met, I laughed with,

and I had compassion with.

Finally, I need to thank my University for providing financial support for this work.

Dedication

_D_e_dic_ation
I dedicate this work,

to my loving grandmother,

Mrs. Soghra Hamzei,

and to my loving aunt,

Mrs. Zahra Hamzei,

for their unconditional LOVE and incentives. This work is

a small token of my immense LOVE and gratitude to them

both.

Es möge, daß ihre Namen verewigt bleiben.

Kawe

Publications

Publications

The Following is the list of author's publications (in their chronological order) which have

been produced during the time this research was carried out.

1. G. H. Shah Hamzei and D. J. Mulvaney, "Behaviour-driven decision tree switching to

identify and resolve system instability in reactive robot control, Fifth International

Workshop on Advanced Robotics and Intelligent Machines, March 1997, Salford,

Manchester, UK.

2. G. H. Shah-Hamzei and D. J. Mulvaney, "System instability and oscillation resolution in

reactive robotics using DT-based approach to learning", International Conference on

Artificial Intelligence and Soft Computing, Banff, Canada, July 27 - August 1,1997.

3. G. H. Shah-Hamzei, D. J. Mulvaney and I. P. W. Sillitoe, "Multi-layer hierarchical rule

learning in reactive robot control using incremental decision trees", The International

Journal of Intelligent and Robotics Systems, Kluwer Academic Publishers (In Press).

4. G. H. Shah-Hamzei, D. J. Mulvaney and I. P. Sillitoe, " Batch-mode decision tree

learning applied to intelligent reactive robot control", IEEE Sixth International

Conference on Emerging Technology and Factory Automation, Los Angeles,

September 9-12,1997.

Publications

5. G. H. Shah-Hamzei, D. J. Mulvaney and P. Sillitoe, "Becoming incrementally reactive:

on-line learning of an evolving decision tree array for robot navigation", Robotica,

International Journal of Information, Education and research in Robotics and

Artificial Intelligence (In Press).

6. G. H. Shah-Hamzei and D. J. Mulvaney, "Self-organising fuzzy decision trees for robot

navigation: an On-line learning approach", IEEE International Conference on Systems,

Man and Cybernetics SMC'98, October 1998, San Diego, CA, USA.

7. G. H. Shah-Hamzei and D. J. Mulvaney, "On-line learning of fuzzy decision trees for

global path planning", The International Journal of Intelligent Real-Time Automation,

Engineering Applications of Artificial Intelligence, An Affiliated Journal of IFAC,

Elsevier Science Ltd. (In Press).

S. G. H. Shah-Hamzei and D. J. Mulvaney, "Fuzzy ITI for automatic generation of control

rules", The Fifth UK Fuzzy Systems, Recent Advances in and Applications of Fuzzy

Systems, 26-27 May, 1998, The University of Sheffield, UK.

Contents

SYNOPSIS

CERTIFICATE OF ORGINIALITY

ACKNOWLEGEMENTS

DEDICATION

PUBLICATIONS

ABBREVIATIONS .. I

SYMBOLS ..
iv

CHAPTER 1
INTRODUCTION ...

1

1.1 Background ..
1

1.2 Aim, Motivations and Objectives ..
2

1.3 Structure of the Thesis ...
4

CHAPTER 2
LITERATURE SURVEY: Learning and Intelligent Robots ..

8

2.1 Introduction ..
9

2.2 Epistemology of Learning and Intelligence ...
9

2.3 Robot Technology ..
11

2.3.1 What is a robot? ..
12

Contents

2.3.2 Why is there a need of learning? ...
12

2.4 Basic Robot Architectures ..
13

2.4.1 Planer based architectures ...
14

2.4.2 Reactive architectures ...
15

2.4.3 Behaviour based architectures ..
16

2.5 Previous Work and Approaches to Intelligent Robotics and Control
17

2.5.1 Reinforcement learning (RL) ..
17

Basic elements of RL ..
18

Applications of RL to robotics ..
20

2.5.2 Neural Learning
.. 21

2.5.3 Evolutionary Learning
..

22

2.5.4 Inductive Learning
.. 24

2.5.5 Hybrid Learning Techniques
...

25

Neuro-fuzzy learning .. 26
..

Fuzzy genetic learning ... 27

Fuzzy decision tree learning .. 28

Neuro-fuzzy genetic learning
... 29

2.6 Summary .. 30

References ... 31

CHAPTER 3
DECISION TREE LEARNING: Theoretical Issues and Background 40

3.1 A Taxonomy of Machine Leaning Techniques .. 41

3.2 Introduction to DTs .. 42

3.3 The Underlying Principles of DT Construction ...
43

3.4 Types of DTs .. 47

3.4.1 Alternative DT implementations
...

49

3.4.2 Modes of operation ... 50

3.5 Recent Advances and Developments ... 51

3.6 Applications of DTs ... 53

3.7 Summary .. 54

Contents

References ... 55

CHAPTER 4
OFF-LINE LEARNING OF A DT HIERARCHY APPLIED TO ROBOT

CONTROL: Simplified Environments
..

59

4.1 Introduction .. 60

4.2 The Rationale of Hierarchical Learning Design ...
62

4.3 Terminology and Notation ...
62

4.3.1 Sensor configuration ...
63

4.3.2 Representation of the robot environment ..
64

4.4 Calculation of the Robot Divergence Angle ..
66

4.5 Performance Criterion for Training Set Construction ..
68

4.6 Robot Training and Decision Tree Generation ..
68

4.7 Decision Tree for Classification
... 70

4.7.1 An example of the rule layer switching ..
70

4.8 Noise and Uncertainty
.. 72

4.8.1 Noise modelling .. 72

4.8.2 Modified learning algorithm ... 73

4.8.3 An example of rule firing in the presence of uncertain data
75

4.8.4 Decision tree post-pruning .. 76

4.9 Dynamic Rule Inhibition and DT Augmentation
...

76

4.10 Results and Discussion
... 77

4.11 Summary .. 79

References ..

CHAPTER 5
ON-LINE LEARNING OF AN ADAPTIVE DT ARRAY APPLIED TO ROBOT

CONTROL: Realistic Environments
... 101

5.1 Introduction
.. 102

5.2 Terminology
... 103

5.3 Description of the Robot .. 104

5.3.1 Robot positioning .. 105

Contents

5.3.2 Configuration of the proximity sensors ..
105

5.4 Control System Architecture ..
106

5.5 Incremental Tree Evolution ..
106

5.5.1 Feature selection ...
108

5.5.2 Automatic knowledge acquisition and class prediction mechanism
109

5.5.3 Local independence and global coupling of DTs ..
110

5.6 Algorithms ...
110

5.7 Illustration of a Locally Trained Binary DT ...
112

5.8 Action Selection and Conflict Resolution ..
113

5.9 Dynamic Rule Inhibition
..

113

5.10 Results and Discussion ...
114

5.11 Comparison with Related Learning Systems ...
116

5.12 Summary .. 119

References ... 120

Appendix A ... 122

CHAPTER 6
FUZZY LOGIC: Set Theoretical Foundations

...
135

6.1 The History of Fuzzy Logic ...
136

6.2 Fuzzy Sets and Membership Functions ..
137

6.2.1 Fuzzy numbers and linguistic variables ..
139

An example ...
140

6.2.2 Fundamental operations on fuzzy sets ..
141

Union of fuzzy sets
142

Intersection of fuzzy sets ...
142

Fuzzy complement .. 143

6.3 Fuzzy Relations .. 143

Fuzzy Cartesian product ..
143

6.4 Compositions of Fuzzy Relations
147

...
6.5 Fuzzy Reasoning and Inference Mechanism

..
148

6.5.1 Fuzzy rules and implication ..
149

Contents

.. 2 Inference mechanism 5 6 151
.............. . .

Mamdani's method of inference ...
152

Compositional rule of inference ...
154

.. 6 Fuzzy Logic Control (FLC) 6 157
.............. .

.. 1 Fuzzification 6 6 159
............................. . .

6.6.2 Defuzzification ..
159

The centre of gravity (COG) method ...
160

6.7 Summary ..
161

References ...
162

CHAPTER 7
HYBRID LEARNING: Self-organising Fuzzy Decision Trees Applied to Robotic

Environments ...
164

7.1 Objectives ...
165

7.2 The Mobile Platform and Sensor Arrangements ..
166

7.3 Automatic Fuzzy Data Acquisition ..
169

7.3.1 On-line fuzzification of state variables ...
171

Joint fuzzy sets ..
174

7.4 Fuzzy Knowledge Generation ..
175

7.5 The Control System Architecture ...
176

7.6 Fuzzy Reasoning and Inference Mechanism ..
178

7.7 A Practical Approach to Defuzzification ...
179

7.8 Classification by Isolating Contributive Fuzzy Rules ..
180

7.8.1 An analogous problem ..
182

7.8.2 A Robot perception example ..
182

7.9 Overfitting Inception and Tree Pruning ...
184

7.9.1 Classification accuracy ..
185

7.10 A Detailed Example of the Novel Approach ...
186

7.10.1 Automatic fuzzy data acquisition ..
187

7.10.2 Generation of FDTs ..
187

7.10.3 Generation of fuzzy rules ..
187

Contents

7.11 Simulated Behaviour Learning ...
188

7.12 Results and Discussion ...
189

7.13 Comparison with other Learning Systems ...
191

7.14 Summary ..
193

References ...
193

Appendix A ...
223

Appendix B ..
224

Appendix C ..
226

CHAPTER 8
CONCLUSIONS AND FURTHER WORK ...

227

8.1 Conclusion ...
228

Off-line hierarchical learning approach ..
228

On-line learning in realistic environments ..
229

Adaptive fuzzy DTs for behaviour fusion
...

230

MDFAMs for the management of non-linear fuzzy input spaces
231

8.2 Comparison of the Alternative Techniques ..
231

8.3 Potential Application Areas
...

232

8.4 Suggestions for Further Research ..
233

References ... 235

Abbreviations 1

Ahire4. a. tioias
AGV: Automatically Guided Vehicle

AI: Artificial Intelligence

ALife: Artificial Life

ANN: Artificial Neural Networks

ART: Adaptive Resonance Theory

BR: Back Right

BL: Back Left

CL: Close

COG: Centre of Gravity method for defuzzification

DT: Decision Tree

E: East

F: Front

FAM: Fuzzy Associative Memory

FDT: Fuzzy Decision Tree

FL: Fuzzy Logic, Front Left

FLC: Fuzzy Logic Control

FR: Front Right, Front

FSM: Finite State Machine

GA: Genetic Algorithm

GMP: Generalised Modus Ponens

Abbreviations

GMT: Generalised Modus Tollens

goal_rel_loc: Goal location relative to the robot

GoalRelLoc: Goal location relative to the robot

GR: Gain Ratio

GRL: Goal Location Relative to the robot

IFSA: International Fuzzy Systems Association

KB: Knowledge Base

KS: Kolmogrov-Smirnoff

L: Left

LB: Left Big

LE; Left

MDFAM: Multi Dimensional Fuzzy Associative Memory

MDFDT: Multi Dimensional Fuzzy Decision Tree

MISO: Multi Input Single Output

ML: Machine Learning

MOMO: Multi Input Multi Output

N: North

NE: North East

NN: Neural Networks

NW: North West

R: Right

RAM: Random Access Memory

RB: Right Big

RI: Right

RIA: Robot Institute of America

RL: Reinforcement Learning

ROM: Read Only Memory

SAMUEL: Strategy Acquisition Method Using Empirical Learning

SC: Soft Computing, Slightly Close

SE: South East

11

Abbreviations iii

SF: Slightly Far

SL: Slightly Left

SR: Slightly Right

SW: South West

T: Temperature

TFW: Turn Forward

TLB: turn Left Big

TLE; Turn Left

TRI: Turn Right

TRB: Turn Right Big

TSL: Turn Slightly Left

TSR: Turn Slightly Right

U: Universe of discourse

TD: Temporal Difference

T-conorms: Triangular Conorms

T-norms: Triangular Norms

VC: Very Close

VF: Very Far

W: West

WallLoc: Wall Location relative to the robot

2D: Two-Dimensional

3D: Three-Dimensional

Symbols

Symbols

IV

E;: Entropy related to the i-th branch of a decision tree

w;: Weight related to the i-th branch of a decision tree; perception classified as world i

pi: Probability of the i-th event or the i-th branch of a decision tree

loge: Logarithm to the basis of 2

FA(x): The cumulative distributive function of a class A

S;: the i-th proximity sensor of the robot
D;: The distance associated with Si

h: The robot heading vector

h: The robot heading unit vector

g: The goal vector

g: The goal unit vector

0: The angle between the robot heading vector and the line connecting the robot to the goal

(divergence angle)

a: The robot absolute heading angle
(XR, YR): The Cartesian co-ordinates of the robot
(XG, YG): The Cartesian co-ordinates of the goal

E,,: Euclidean distance between the robot and the goal at time step n
f: Feature i used in the training examples
f,, ß: The j-th value of feature i

Symbols

c;: The i-th class or label used to categorise a training example

P� : Perceptual state vector at time step n

hA: Membership function associated with fuzzy set A

0: An empty set

I (a, b) : Implication operation on fuzzy sets a and b

T(x): Term set of variable x

91j: The i-th rule of a given rule set 91

V

Chapter 1: Introduction 1

teiri

Introduction
To be, or not to be: that is the question:
whether 'tis nobler in the mind to suffer

the slings and arrows of outrageous fortune,

or to take arms against a sea of troubles,
and, by opposing, end them.

William Shakespeare
Hamlet, Act III, Scene 1,1602

1.1 Background
How human beings are able to learn, represent and reason about the physical world

has, for at least many thousands of years, been subjected to exploration by scientists

and philosophers. In recent years, this has led to the emergence of new scientific areas such

as evolutionary computing, neural networks and fuzzy logic. These techniques have been

introduced to solve complex and challenging industrial problems of the modern age by

mimicking human behaviour in learning, reasoning and adapting to new environments.

Chapter 1: Introduction 2

Artificial Intelligence (Al) algorithms have been designed and implemented that are able to

perform logical inferences on a domain of given knowledge. Once applied to a certain

domain, these are able to demonstrate improved performance on repetition of the same task

or even "unseen" situations (from the same population) due to their generalisation

capabilities. They are said to be able to "learn". Such learning algorithms have been

adopted in both physical and social sciences and applied to applications such as banking,

management and engineering. There is currently extensive activity in exploiting concepts
from the field of Al to conceive, design and realise intelligent control systems [1]. These

systems incorporate the new scientific areas individually, or combine these into hybrid

systems to exploit complementary effects.

One branch of intelligent control systems research is robotics, which, in recent decades has

proved to be a suitable test-bed for Al techniques that incorporated autonomous learning

and reasoning. These so-called autonomous robots are mechanical systems which are able

to perceive their environment using a variety of sensing devices, process this information,

make an appropriate decision, and act on their environment. Although today's autonomous

robots and the achievements in this area are still some way from the totally autonomous

robots which are the ultimate goal of researchers and engineers, they provide significant

and well-developed background knowledge for the development of future artificially
intelligent "beings".

1.2 Aim, motivations and objectives
The problem of designing intelligent robots operating in uncertain environments with the

minimum of supervision and with the capability to interact with humans is a greatly

pursued but challenging task. The present work is aimed at making a novel contribution to

the body of the existing knowledge regarding intelligent and learning robots by designing

and implementing of an intelligent control strategy for an autonomous mobile robot.

In view of the drawbacks of traditional approaches to robotics (to be discussed in Section

2.4), there is a clear need to develop new methods that can more effectively lead to the next

generation of intelligent robots. One way this could be pursued follows from the

observation of biological organisms such as ants and bees, who exhibit primitive

Chapter 1: Introduction 3

perceptual reflexes or behaviours for their survival. Such a methodology was first set out

by Brooks [2,3], and was called behaviour-based learning, in which intelligence is

organised [2] and distributed in a hierarchy.

The work presented in this thesis takes its inspirations from biological motivations, from

survival instincts inherent in biological systems, and is based upon the general principles of

human processes in remembering and forgetting events to build up experience and hence

intelligence. This means that the objective learning system should macroscopically parallel

learning processes in humans and their survival mechanism. The system should exhibit the

following characteristics.

" Learn concepts and behaviours by being taught (training) as well as exploration (self-

supervision).

" Learn from past experiences in an incremental fashion similar to humans.

" Make predictions (decision-making) in unseen scenarios, based on what was learned

previously, in order to survive in unstructured and dynamically changing

environments.

" Perform a globally tuned learning rather than use local intelligence or map-making.

" Synthesise automatically adaptive hypotheses in the form of intelligible control rules.

" Easy to implement and be computationally low-cost.

" Cope with noise and imprecision of input information to deliver appropriate

predictive estimates (control actions).

" Show smooth responses to sudden environmental changes due to differing

behaviours.

To develop an intelligent control architecture, this work formulates the methodology of

Hierarchical Learning and Knowledge Decomposition in the frame of a reactive robot

architecture. Intelligence is decomposed into a number of simple behaviours in a layered

hierarchy. As there is little direct relevance which has been done before, the current work

takes a somewhat exploratory approach to the design of a suitable intelligent control

systems. To meet the aim and considering the learning technique which has led to the

motivation of the current work, the objectives can now be stated as follows:

Chapter 1: Introduction 4

" To develop an intelligent control technique based on hierarchical learning and

knowledge decomposition.

" To test the feasibility of the technique and qualitatively assess its performance in a

simplified robot environment.

" To extend the application of the technique to a realistic mobile robot environment.

" To compare the performance of the technique with existing approaches and suggest

refinements.

" To introduce fuzzy logic to provide smoother transitions between the levels in the

hierarchy.

1.3 Structure of the thesis
This thesis is the documentation of the research carried out to design and implement an

intelligent control strategy for an autonomous robot. The thesis has been divided into nine

chapters including the current chapter. In the following, the structure of the thesis and the

arrangement of its chapters in the order they appear in the thesis along with the issue of

discussion in each chapter are briefly described. To allow the reader to select their own

path through the thesis, Figure 1.1 provides a graphical "road-map" of the thesis showing

its division between theory and background, application and evaluation.

Chapter 2 first provides a concise introduction to the most commonly used learning

techniques, and provides further relevant references for the interested reader. It then

presents an up-to-date review of past work and research carried out in the design of

intelligent robots and systems, discussing their efficiency, drawbacks and their relevance to

the current work.

Chapter 3 presents a taxonomical view of machine learning techniques with emphasis on

learning from examples, which is a paradigm for supervised learning. It then introduces

and discusses thoroughly the concept of decision tree learning, one of the most common

representations of inductively drawn knowledge. The related terminology, semantics and

the underlying principles of decision trees and their construction are discussed and

explained. References to external literature are also provided if the reader requires details

or derivations. A simple worked numerical example is used to demonstrate the

Chapter 1: Introduction $

fundamentals of feature partitioning in growing a decision tree for classification. The

various types of decision trees are introduced, their modes of operation are discussed, and

some recent developments and implementations of learning from examples (decision tree

and rule set generation) are introduced.

Chapters 4 and 5 discuss the development of the hierarchical learning technique based on

decision trees. Chapter 4 implements and tests the algorithm in an off-line mode and makes

a number of simplifying assumptions about the robot and its environment to make a

qualitative assessment on the feasibility and applicability of the approach. Chapter 5

concentrates on developing and testing the learning approach in an on-line and incremental

fashion to build an array of adaptive hypotheses. It uses realistic assumptions about both

the robot and the environment.

Chapter 6 gives an introduction to the history as well as the theory and foundations of
fuzzy sets and fuzzy logic with an emphasis on its application to control engineering and
intelligent and multi-strategy systems. This chapter delivers the necessary mathematical
background for the understanding of an application chapter, namely chapter 7. This chapter
introduces a novel approach to the design of a hybrid learning system, namely fuzzy

decision trees, for the automatic generation of linguistically formulated control rules. This

chapter also introduces the concept of multi-dimensional fuzzy associative memories

which are able to encode as well as fuse multi-variable inputs into lower dimensions.

Results and a comparison of the learning techniques introduced in this thesis, are presented
in chapter 8. This chapter also reviews and discusses the contribution of this work, and
identifies areas of application and research directions along which future work may be

conducted.

Chapter 1: Introduction

Chapter 2 Chapter 4
Literature

. Survey Learning

Lend:

An --- *E Knowledge of A is not
necessary, but useful to
understand B

D
-E Knowledge of A is

necessary to understand B

Chapter 3 Chapter 5
Chapter 8

Theory of On-line
Conclusions

and DT-Learning Learning
Further Work

Chapter 6 Chapter 7

Theory of
Hybrid

Fuzzy Logic (Fuzzy-DT)
Learning

9 Q

U
cu

JQ

%-4 21

6

Figure 1.1 The general structure of the thesis and the relationship between chapters.

Chapter 1: Introduction 7

References

[1] Irwin, "Computing and Control: Back to the Future", IEE Computer and Control

Engineering Journal, Vol. 9, No. 1, February 1998, pp. 39-45.

[2] R. A. Brooks, "A Robust Layered Control System for a Mobile Robot", IEEE Journal

of Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14-23.; also MIT Al

Memo 864, September 1985.

[3] R. A. Brooks, "New Approaches to Robotics", Science, Vol. 253, September 1991,

pp. 1227-1232.

Chapter 2: Literature Survey 8

....,, ý -ý ý,
a

Literature Survey:
Learning and Intelligent Robots

That which is apprehended by intelligence and reason
is always in the same state, but

that which is conceived by opinion with the
help of sensation and without reason, is

always a process of becoming and
perishing and never really is.

Timaeus, in the "Dialogues of Plato"

The
objective of this literature survey is to provide an up-to-date review of approaches

to robot learning techniques, compare their performance, and draw conclusions on

their drawbacks, efficiency and applicability to industrial problems, especially in the area

of mobile robotics and control.

Chapter 2: Literature Survey 9

This survey should provide a broad basis in understanding and efficient deployment of

learning techniques towards the development of intelligent robots. It discusses learning,

provides an epistemological view of intelligence in humans and artificial agents, and

introduces the robot architectures, described in the literature. Particular emphasis is placed

on the review of past and recent work pertaining to robot learning.

2.1 Introduction
Complex computer software and both fast and highly parallel hardware have been designed

and developed to meet the emerging needs of high performance, robust, reliable and

automated environments. This need is, in particular, perceived in working areas where the

presence of human beings is either expensive or hazardous. Mobile robots have received

great attention in recent years due to their potential to fulfil these demands, as their

presence is becoming increasingly common in the manufacturing industries.

Mobile robotics has been employed in such diverse fields as: plant control stations,

underwater research and remote disposal of nuclear waste. If mobile robots are to be

integrated into human environments, they must be able to closely parallel human learning,

by being able to learn from experience. They must also be able to communicate and be safe

[1]. Machine learning techniques can be utilised to satisfy these challenging demands, and

overcome the inherent limitations of static behaviours resulting from purely hand-coded

programs. In principle, machine learning techniques can allow a robot to adapt successfully

its behaviour in response to changing circumstances without the intervention of a human

programmer [2]. Next chapter discusses in more detail the paradigm of learning from

examples which underlies the current work.

2.2 Epistemology of learning and intelligence
Although, an appropriate definition of intelligence has been a subject of much controversy

[3], sciences such as neuro-anatomy, neuro-physiology, neuro-pharmacology, psycho-

physics, anthropology and behavioural psychology have revealed much about the

mechanisms and function of intelligence. Biological paradigms borrowed from humans and

animals such as learning, adaptation, self-repair, social behaviour, evolution and cognition

have been the subjects of extensive research, including that associated with building

Chapter 2: Literature Survey 10

intelligent machines such as intelligent robots. These should not only be able to exhibit, at

least in part, the innovation and the degree of achievement of humans in creating intelligent

"beings", but also they should assist humans in performing a variety of tasks. Imparting

intelligence to man-made beings or artificial agents is a challenging task for scientists and

engineers. Engineers may be interested in developing an analytical model of a physical

system in order to learn how to manipulate the system efficiently. However, if this is

impossible due to the intrinsic complexities of the physical system or due to the lack of

available data, they may resort to human cognition, common sense and expertise to resolve

the problem. This is, for example, the founding issue of the well-known fuzzy theory and
fuzzy logic, introduced by Zadeh [4].

Intelligence and learning are complementary terms, in the sense that a system (biological or

artificial) is called intelligent if it is able to learn, and a learning system is assumed to

exhibit intelligence. However, these terms find different definitions and interpretations in

different disciplines. For psychologists, intelligence might be defined as a behavioural

strategy that gives each individual a means for maximising the likelihood of propagating its

own genes [3]. From an engineering point of view, Albus in [3] defines intelligence as "the

ability of a system to act appropriately in an uncertain environment, where appropriate

action is that which increases the probability of success, and success is the achievement of
behavioural sub-goals that support the system's ultimate goal. Both the criteria of success

and the system's ultimate goal are external to the intelligent system. For an intelligent

machine system, the goal and success criteria are typically defined by the designers,

programmers, etc.. For intelligent biological creatures, the ultimate goal is gene

propagation, and success criteria are defined by the process of natural selection".

Albus is of the opinion that "intelligence can be observed to grow and evolve ... In natural

systems, intelligence grows over the life time of an individual, through maturation and

learning... ". He also maintains the opinion that "learning is not required to be intelligent,

only to become more intelligent as a result of experience.... It is, however, assumed that

many creatures can exhibit intelligent behaviour using instinct, without having learned

anything". He leaves to be inferred that intelligence is instinctive, on the other hand, he

believes that intelligence is subject to experience. The author finds these statements of

Chapter 2: Literature Survey 11

Albus in [3] rather paradox and somewhat confusing in trying to present a definition of

intelligence. The author argues that intelligence (both in biological and artificial systems) is

the consequence of learning, and learning is experience, and experience is History. The

author also believes that if intelligence were instinctive, all creatures would have to be

intelligent and not "many creatures", as stated by Albus, because all creatures enter history

with a set of instincts or as stated by K. Kautsky in [5] "a set of inborn drives", namely

self-preservation drive, sex drive and a social drive.

The definition of learning introduced by Simon in [6], is the closest definition in the

context of this work, namely robot learning. His definition is as follows: "learning is any

change in a system that allows it to perform better the second time on repetition of the

same task or on another task drawn from the same population". The system showing this

ability is called an intelligent system. This definition comes close to the author's
interpretation of intelligence as, "intelligence is the capacity of exhibiting altered behaviour

because of experience, in favour of an ultimate goal, where the ultimate goal can be, for

example, gene propagation (biological systems) or optimising a cost function (artificial or

machine systems). "

As a contribution towards the ultimate target of introducing a coherent theory of
intelligence encompassing the biological and machine instantiations, Albus in [3]

introduces and elaborates a theoretical model of intelligence with the aim of combining all

separate but related areas of knowledge and expertise into a unified framework. This

should eventually help engineers, in particular, build intelligent systems.

2.3 Robot technology
Technical aspiration, combined with economic rationale, including mass production, cost

and time efficiency, have together brought the concept of automation and automatic

control, with humans playing an ever decreasing role in the physical manipulation of

production systems. Although the idea of total automation is not new and dates back to the

post war era, it initiated a new academic and engineering discipline, namely robotics.

Chapter 2: Literature Survey 12

2.3.1 What is a robot?
This term was first used during 1920's and 1930's, following the appearance of a play by

the Czech author Karel Capek, called RUR (Rossum's Universal Robots) [7]. In the play,

small, artificial and anthropomorphic creatures strictly obeyed the instructions of their

master. These creatures were called robot. This word is derived from the Czech word

robota, meaning "forced labour".

There exists, however, various definitions, partially complementarily, in the literature for

the term robot. For example, the definition supplied by the Robot Institute of America

(RIA) is as follows [7]:

"A programmable and multifunctional manipulator, devised for the transport of

materials, parts, tools or specialised systems, with varied and programmed

movements, with the aim of carrying out varied tasks".

Though, not perfect, the definition above reflects some of the capabilities of today's robots.

These definitions are all subject to changes, developments and advances in the field of

robotics.

2.3.2 Why is there a need of learning in robotics?
At their introduction, the versatility and flexibility of the robotic systems markedly

distinguished them from automated machines. It was soon realised that a wide range of

physical tasks could be entrusted to robots, especially, the repetitive ones. It was also

noticed that robots have the potential of replacing a large number of existing machines, and

also human operators to an extent.

The majority of early robots, especially the industrial robots, were task-specifically

programmed machines, yet capable of performing a variety of tasks (versatility). They were

limited by the fact that they were not able to react to changes in their environments. To

achieve the aspiration of total automation, a new era in the development of robotic systems

began with the aim of achieving flexible automation by building mechanical systems that

could execute anthropomorphic functions and mimic the behaviour of the biological

systems (such as humans or animals). The aim was to build intelligent robots.

Chapter 2: Literature Survey 13

The development of intelligent robots arose from the following considerations:

9 The range of application and ability of programmed robots was limited and these

could be significantly enhanced using sensing devices.

Although many tasks performed by humans seemed to be repetitive in nature, and

hence directly replaceable by programmed robots, they required constant adjustments

due to slight changes in the working environment.

In contrast to programmed robots whose operation is limited to structured environments,
intelligent robots should be capable of reacting (in favour of some goal) to unpredictable

changes in unstructured environments. Consequently, intelligent robots need to exhibit
decision-making capabilities aimed at mimicking the process of decision-making in

biological systems. An intelligent robot is expected to demonstrate the following

characteristics [8]:

" Perceive the environment

" Reason about the perceived information

" Make decisions based on this perceptions, and

" Act according to some strategy at a very high level.

The question of which aspects of the robot system should be physically designed, which

should be left to the robot to learn, and to what extent the above features can be realised,

has been the issue of extensive research and development over the past decades. This has

lead to the introduction and development of a number of diverse approaches in the

development of robot learning techniques and control architectures which are reviewed in

the following sections.

2.4 Basic robot architectures
The control architecture of an autonomous robot determines the way it perceives its

environment, the way it reasons and how it acts in reaching an ultimate goal. The spectrum

of the basic robot architecture includes the following strategies:

Chapter 2: Literature Survey

" Planner-based

" Purely reactive

Behaviour-based

14

The first two strategies provide the architectural extremes [9], while the behaviour-based

approach falls somewhere in between. In the following subsections, these basic robot

architectures are outlined and their characteristic constraints are discussed.

2.4.1 Planner-based architectures
This type of control strategy constructs and maintains a model of the world as a centralised

representation. Path planning is performed by using the information contained in the model

in order to generate the most appropriate sequence of actions, i. e. the plan. There exists

various approaches to plan generation and map making of the environment. One approach,

used in [10], is the generation of visibility graphs in which the vertices of the visible

obstacles are scanned. An algorithm chooses then the one with the highest priority

determined at the design stage. These points are generated iteratively and the robot is

navigated along the line connecting these points. A somewhat similar approach to map-

making of the robot environment has been taken in [11] in which fuzzy logic is used to

reason about the location and the distance of perceived obstacles.

A further method for building topological maps of the environment while navigating the

robot, is the potential field approach [12,13]. This is based on a virtual force field which is

composed of individual repulsive force vectors issued by proximity sensors and a constant

attracting force which guides the robot towards the target. Approaches based on the

potential field do not always guarantee a solution to navigation, and it is likely that the

robot will fall into oscillatory motions around the local minima.

Since most practical systems rely on ultrasonic sensors for distance measurements, they are

susceptible to errors due to uncertainty and the noisy characteristic of the sensors. An

alternative method in this category, which also reduces the noise error, is the grid

representation [14,15,16] of obstacles in the environment which is derived from sensory

information. In this method, a so-called certainty value is calculated (based on the repeated

sensor measurements) and allocated to each grid cell according to the corresponding

Chapter 2: Literature Survey 15

distance sensor. These values are continuously updated and used for navigation. A

limitation of grid-based methods is the rapid growth of information that needs to be stored

to provide such a representation as the number of cells discovered by the robot increases

and this limits the use of this technique in practical applications [14].

Path planning systems are often criticised as being slow and of being unable to cope with

and survive in dynamic scenarios [17]. This is demonstrated by the need to re-plan a task

needed if an area which was free at planning time is subsequently blocked as the robot is

attempting its navigation. Typically, the robot will fail to reach the desired goal. However,

due to their structural architecture, planning systems can be efficiently employed in

structured and human built environments with predefined and almost stationary layouts,

such as hospitals and offices.

2.4.2 Reactive architectures
Reactive systems [18,191 embed the control strategy of the agent into an array of simple

perception-action stimuli. They maintain no world model and relate directly the sensor
information to the appropriate responses. These action-stimuli pairs can be encoded in the

form of a set of reactive rules, a table, a whole set of potential field functions, or a set of

weights stored in a connectionist network.

Purely reactive strategies have proved effective for a variety of problems that can be

specified at the design stage [20]. However, such strategies are inflexible at run time due to

their inability to acquire information dynamically. Although analytically difficult to prove,
it is commonly believed that pure reactive systems are less powerful than behaviour-based

approaches [21]. Strictly speaking, this is a task specific observation, meaning that if a

robot is expected to achieve certain goals at run time which are not specified at the design

stage, then purely reactive systems would, in general, not be able to perform these tasks

satisfactorily. For example, dynamically changing or unknown robot environments are

more elegantly tackled using behaviour-based approaches. Reactive systems, however,

offer greater efficiency in computation time as less information needs to be stored and

processed.

Chapter 2: Literature Survey 16

2.4.3 Behaviour-based architectures
The foundations of behaviour-based robot control were biologically inspired and first set

out by Brooks in [22,23]. Brooks [23] concentrated on organising intelligence in such a

way that it is reactive to those dynamic aspects of the environment that a mobile robot

experiences. Intelligence should also be able to generate robust behaviour in the presence

of uncertain sensor information, an unpredictable environment and a changing world [23].

Brooks argued for the decomposition of tasks that a robot is expected to perform rather

than the traditional functional decomposition of a task. The development of subsumption

architecture [22] was the consequence of this methodology. In this approach, control layers

were implemented as networks of message-passing finite state machines [23] which

operate asynchronously. The behavioural competence of the robot can be improved by

adding further behaviour-specific networks to those already existing. Brooks called this

process layering in that the output of a higher-level layer can inhibit (subsume) that of its

predecessor, hence the term subsumption. His argument in favour of the subsumption

architecture was two fold.

" Previous reasoning approaches were slow and they were unable to adapt to changing

and dynamic environments.

" Many actions of agents are quite separable; coherent intelligence can merge from

independent sub-components interacting in the world.

Brooks implemented this approach on real robots that could explore the environment, build

maps, navigate, walk [24] and learn how to co-ordinate internal conflicting behaviours

[25]. According to Brooks, behaviour-based systems facilitate the ability of robots to find

out about their particular world by themselves. This appears to be a suitable substratum for

behaviour learning robots and has been demonstrated on the mobile robots "Don Group"

by Mataric [20].

A shortcoming inherent to basic behaviour-based systems is the problem of conflicting
behaviours when multiple behaviours compete to generate a control action. Brooks solved

this problem in his early implementations with a pre-prioritised scheme to handle conflicts

which was a behaviour arbitration. More elegant and efficient approaches for merging

Chapter 2: Literature Survey 17

behaviours rather than arbitration have been introduced in recent years (to be discussed in

sections 2.5.5) using multi-strategy systems.

2.5 Previous work and approaches to intelligent robotics and control
Robotics as an engineering discipline encompasses industrial and mobile robots and has

been a suitable test bed for the application of automatic control techniques, especially

applied artificial intelligence (AI). The aspiration of replicating human intelligence as

closely as possible in mechanical systems has inspired researchers to create autonomous

robots. Autonomy in this context, means that, in an unguided fashion, a robot is able to

perceive its environment, has the capacity of reasoning about it by making appropriate
decisions in favour of some goal(s), and eventually to act on its environment.

A robot can perceive, in general, its environment by three types of information sources:

" Numerical data from measuring sensors (vision, actuators, wheel encoders, etc.)

9 Heuristics in the form of linguistic data from expert human operators (speed is high,

temperature is medium, pressure is low)

9 Reactions of the robot to its environmental characteristics (behaviours)

With the aim of providing autonomy, a variety of algorithms and techniques have been

developed which are based on one of the above sources, some combination of them, and

also the extent of built-in information. The amount of meta-knowledge and degree of

autonomy of a robot determine the type of learning approach, such as on-line and off-line.
In the following, the most common learning techniques applied to robotics are discussed,

and conclusions are drawn on their efficiency and shortcomings.

2.5.1 Reinforcement learning (RL)
Learning from interaction is the underlying principle in almost all theories of learning and
intelligence. RL is a computational approach to learning from interaction and is much more
focused on goal-directed learning from interaction than are other approaches to machine
learning [26]. RL is rooted in the idea: "what policy to take, in order to maximise a reward

signal". The learner must find out which actions result in the highest reward by simply

trying them. This implies that an action may affect not only the immediate reward, but also

Chapter 2: Literature Survey 18

the next situation, and this in turn, all subsequent rewards. This gives rise to two

characteristics, namely the trial-and-error search and delayed rewards, which are specific to

RL.

An important difference between RL and most machine learning techniques (such as neural

networks, and decision trees) is that the latter are supervised. Supervised learning involves

learning from examples which are correct, and representative, and which are provided

either by an external teacher or supervisor or by the system itself (self-supervised systems).

However, RL is able to achieve learning as a result of interactions or of typical problem

scenarios, where it is impractical to learn from examples, or where these are inaccessible.

RL is in its philosophy similar to that of learning from observations and discovery, which
is a type of machine learning typically with the highest degree of inference. This method is

addressed in greater detail in section 3.1.

Basic elements of RL
An RL system is in fact an interface between an agent and its environment. RL can be

identified by 3 basic elements (and an optional fourth) as shown below.

"A policy

"A reward function

"A value function (also called a utility function)

"A model of the environment (this is an optional feature [26])

A policy specifies the behaviour of the agent at a given time by, for example, mapping the

perceived state to an action. In certain circumstances, the policy can be a simple lookup

table, or computationally as expensive as a search space.

A reward function provides the short term goal of an RL system, in the sense that it

determines, in terms of some aspect of the system performance, what actions are good and

what are bad in an immediate sense. The reward function is required to map state-action

pairs on a scalar which is called reward, and which indicates the desirability of that state.

The ultimate goal of an RL system is to maximise the total reward it receives over a

Chapter 2: Literature Survey 19

significant period of operation and if the reward is too small this is used as a basis to

change the policy.

The value function (also called the utility function) is used to determine the quality of a

large sequence of operations in many states. Its value obtained in a state n can be

formulated as the total reward an agent scores following initiation in the state n. For

instance, a state may have a low immediate reward, but still score a high value because

later states yield high rewards. The main concern of RL in decision processes is the

magnitude of the values and to maximise the number of states that generate high values

rather than high rewards. Rewards are obtained directly from the immediate environment,

whereas values must be estimated from the sequence of available rewards that an agent

experiences. Hence, efficiently estimating value functions (or learning the utility function)

of an RL system is one of the most important components of such systems. The vast

majority of RL methods have been structured to predict values or utility functions. They

may employ search methods such as genetic algorithms, or function approximators such as

neural networks for their prediction. Alternative methods to approximate values have been

introduced by a number of researchers including temporal difference (TD) learning

developed by Sutton [27]. TD is an incremental learning procedure and is driven by the

error obtained from the differences between the temporally successive predictions for the

value function. Another optimisation technique to learn the utility function is Q-learning

[28,29]. Q-learning is fundamentally a hybrid approach combining both policy and value
function optimisation. The reader is referred to [30,31,32] for a concise introduction,

whereas [27,28] provide a rigorous and formal treatment of Q-learning.

In contrast to early RL systems, which were based only on trial and error, a number of

researchers now incorporate planning into their RL systems. In such systems, a model is

needed which simulates the behaviour of the environment and makes decisions on the

executions of some actions by considering possible future situations. For alternative

concise introductions to RL, the reader is referred to [30,33,34], and [26] deals with RL in

a rigorous manner.

Chapter 2: Literature Survey 20

Applications of RL to robotics
RL has found applications in a wide variety of learning tasks such as manufacturing

systems, game playing and robotics [31]. Similar to many other learning approaches, RL

has been applied to a variety of robotic tasks involving learning through interaction with

the environment.

Mahadevan and Connell [35] applied RL incorporating Q-learning to a mobile robot in an

attempt to train it to push large boxes around its environment. In spite of immense

uncertainty in the outcome of the actions, the robot's performance was similar to that

achieved by an expert-programmed algorithm.

Millan and Torras describe an RL-based control architecture, named TESEO [36], which

incorporates a connectionist method for optimising the policy of the RL system. This

means that the algorithm learns to perform those actions that maximise the total

reinforcement during a target-seeking task. TESEO was implemented on a mobile robot to

perform target-seeking navigation in the office environment and the robot was able to learn

the shortest and safest trajectory after 10 training epochs. The TESEO architecture was not

intended to be learned from scratch: some basic reflexes [36] were built in the system to be

accessed when the neural network failed to generalise from the available knowledge, and

also to facilitate fast learning. These reflexes were particularly used in the first epoch of the

training where the robot was approaching a dead-end, and they were needed in order to

navigate the robot away. Further examples of RL applications to robotics can be found in

[37,38].

The drawbacks of RL are that it may not perform appropriately if the environment is

constantly changing [34], its convergence is often slow in comparison with other learning

algorithms and most implementations lack incremental improvement. However, RL has

shown relatively good results when applied to non-manipulative tasks with a very large

state-space, such as game playing. In TD-gammon [30], a backgammon playing program

which incorporates the TD-learning algorithm in combination with a multi-layer neural

network, two agents played each other for more than a million times. Only at the end of

each game did the agents receive a reward and the mappings stored in the weights of the

Chapter 2: Literature Survey 21

neural net. The resulting program could play at world championship level [30]. However,

perhaps, due to the unstructured representation of the learned knowledge which was in the

form of real numbers stored in the connectionist network, the developers were unable to

understand or explain the program's performance.

A comprehensive narrative history of RL development from its early days is provided by

Richard Sutton in [26].

2.5.2 Neural learning
Another class of learning algorithms, is that provided by neural networks [39]. A neural

network (NN) is an information processing system mimicking the behaviour of the human

brain in a mathematical model. NNs exhibit fast processing speeds (due to their massive

parallelism) and are able to learn a concept from a set of training examples. They have been

applied in a wide range of areas, including function approximation [36], pattern recognition
[40], optimisation problems [41] and, relevant to the current work, in intelligent robot

control and learning [42,43]. For further detailed information on NNs, the reader is referred
to [39,44,45,46].

Neural networks are able to implement a number of learning algorithms, such as back-

propagation [39,47] and reinforcement learning [42]. In the ALVINN system [47], a multi-
layer NN is trained using back-propagation learning algorithm to map digital images on

appropriate steering angles for a mobile robot. The learning process is off-line, since the

training patterns are collected while the vehicle is driven by a human operator. The trained

system aims to follow a road mimicking the human reactions. ALVINN was successfully
implemented on a real robot to carry out this mission. However, back-propagation sets
limitations on the system flexibility (especially reactive systems), as successful learning is

not always guaranteed [45], training is time consuming, learning is off-line and may
become trapped in local minima (in case of multi-valued outputs). Research has been

carried out [48,49,50] with the aim of reducing the convergence time of the back-

propagation algorithm and of finding the global minimum of a neural system by coding

variables and attempting to determine the required number of neurons needed in its layers,

and, in particular, for hidden layers.

Chapter 2: Literature Survey 22

In [42], a neural network is used to learn a set of reactive rules that model two basic

locomotion reflexes of a mobile robot, namely target-seeking and obstacle-avoidance. The

learning process is on-line and is performed from scratch. The control architecture is

divided into two modules both to partition the perceptual space (classification) and to

associate the control actions and these are implemented as two separate NNs. The former is

a single layer NN and implements a reinforcement learning rule, and the latter is a fuzzy

adaptive-resonance-theory NN [51]. The learning NN has three neurons (one for each

steering command) which can be independently excited by the fuzzy-ART NN. The action

associated with the most excited neuron of the second NN is chosen to drive the robot. The

corresponding weights are reinforced or punished, if the performed action is feasible or if it

carries the risk of a collision, respectively. This technique aimed to demonstrate the

efficiency of learning by trial-and-error and from scratch. It was implemented in a

simulated robot and showed an improved steady state efficiency [42] at the end of the third

epoch and this is attributed to the characteristic of the ART-NN which preserves the

already existing knowledge. It was reported, however, that this system failed to perform in

the presence of local minima where the goal is hidden behind long walls, and the system
falls into oscillatory movements.

2.5.3 Evolutionary learning
Evolutionary learning is based on genetic algorithms (GAs), which were first introduced by

John Holland [52] in 1970s. GAs are a class of adaptive search techniques based on the

mechanics of natural selection, natural genetics and evolutionary principles such as
inheritance and mutation. GAs have proven to be a powerful tool within the area of

machine learning [53], allowing computers to evolve solutions to problems, using function

optimisation, search and learning.

The basic operation of a GA is conceptually simple and can be summarised as follows:

" maintain a population of trial solutions to a problem (chromosomes)

" select the better solutions for recombination with each other, and

" use their offspring to replace poorer solutions.

Chapter 2: Literature Survey 23

GAs are, in general, able to find good solutions to a wide class of application problems in

reasonable amounts of time. However, the time required to find adequate solutions tends to

increase when the dimensionality of the problem rises. To remedy this, a great deal of

research has been carried out into increasing the speed of GAs by introducing parallel

architectures [54].

Evolutionary algorithms have found application in intelligent robots, including areas such

as collision avoidance [55], and, in particular, in automatic behaviour learning [56,57]. One

of the well-known research paradigms in evolutionary learning robotics is the artificial life

(ALife) paradigm, and perhaps one of the most successful applications is the evolutionary
learning system SAMUEL (Strategy Acquisition Method Using Empirical Learning) [58].

The ALife paradigm has been inspired by a number of issues in robotics.

" Emergence of and learning complex behaviours, especially in multi-agent systems

where individual agents compete under a variety of situations for resources and

struggle for survival.

"A more realistic alternative to the model-based robot design rooted in traditional Al.

This usually fails to reflect the complexities, noise, errors that arise in real sensors

and actuation operating in real world conditions [57]. Moreover, AI-based reasoning

usually assumes the error free translation of continuous signals to symbols.

These issues and shortcomings have inspired researchers such as Mataric [59] and Brooks

[60] to argue for the development of adaptive robots that evolve behaviours without using a

pre-specified model of their environments. Current research themes in evolutionary

learning robots include behaviour evolution, organisation and the study of multi robot

systems for identifying the emergence of complex behaviours.

Behaviour learning in SAMUEL is an evolutionary process in which candidate solutions to

a problem (e. g. obstacle avoidance) are situation-action reactive rules. Rule representation
in SAMUEL is designed to promote the inclusion of heuristics into initial populations for

complex robotics tasks where random initial rule populations are unlikely to perform well.
SAMUEL has been used for behaviour learning to control an autonomous underwater robot

Chapter 2: Literature Survey 24

[55], missile evasion [58], and other simulated tasks. For more details and information on

SAMUEL, and also applications of GAs in robotics, the reader is referred to [58,61,62,63,

64,65].

The main strength of an evolutionary algorithm is in rapidly finding the most promising

regions to investigate the complex search space. This ability is largely due to the implicitly

parallel search that it performs on a population of candidate solutions. However, these

methods are less efficient at fine-tuning candidate solutions, and hybrid systems have been

developed which provide efficient local optimisation methods to improve the final

solutions found by evolutionary systems [57].

2.5.4 Inductive learning
Inductive learning is the process of acquiring knowledge (new facts) or to discover patterns

in collections of observations (existing facts) by drawing inductive inferences. This is, in

general, concerned with the generation of hypotheses and their validation [66]. Historically,

inductive learning is an area of contention between philosophers and logicians, and this is

due to an observation made by the Scottish philosopher David Hume in the 18`h century.

He observed that inductively gained assertions are hypotheses, and these can potentially
have an infinite number of consequences, while only a finite number of these can be

validated. Discussions regarding the validation of a hypothesis are often found in

philosophical debates and are generally of lesser importance in the context of inductive

learning in engineering applications. In common with most empirical studies, the current

work assumes that the generated hypotheses are assessed by human experts, or are tested

by known methods.

Studying and modelling inductive learning is one of the central topics of machine learning.

The knowledge representation in inductive learning can be in the form of decision trees

[67] (see chapter 3), a set of production rules [68], or a set of real-valued numbers

(weights) stored in a connectionist network. The two most widely used forms of inductive

learning technique are:

" Learning from observations and discovery

" Learning from examples [69]

Chapter 2: Literature Survey 25

These two techniques are further discussed in chapter 3. Inductive learning as a learning

methodology is relevant to a wide range of applications such as automatic knowledge

acquisition for expert systems in PLANT/DS for the diagnosis of soybean disease [70],

diagnostic systems for fault detection [711 and various experimental sciences such as

biology, chemistry, psychology, medicine and genetics [72], where traditional

mathematical and statistical techniques, such as regression analysis or factor analysis, are

not sufficiently powerful [66]. More important to the current work are the applications of

inductive learning to robotics [73], automatic behaviour learning [74,75], industrial process

control [76] and power system security [77].

Although the learning mechanism in neural networks is of an inductive nature, decision

tree and rule learning approaches are the most common and, perhaps, the most established

representations of inductively learned knowledge. Inductive learning has proven to be a

powerful tool for the automatic learning of domain knowledge. An example is the

PLANT/DS expert system in which diagnostic rules were formulated in two ways, namely
by formalising experts' diagnostic knowledge and by induction from examples. These sets

of rules were then tested on a few hundred disease cases. Michalski and Chilauski reported
in [70] that the inductively derived knowledge (rules) outperformed those derived from

experts.

Michalski formulates in [66] a general paradigm for inductive inference. The major forms

of inductive learning, namely learning from examples and learning from observations, are
discussed in detail in chapters 3,4,9,11 of [78]. Chapter 10 introduces the system
BACON. 4 which is an application of learning from observation and is a layered inductive

learning system which is able to discover empirical laws, whose heuristics are general

mechanisms and are applicable to diverse range of domains.

2.5.5 Hybrid learning techniques
The learning techniques discussed above generally perform well in their application to a

specific problem, but their performance is generally poor in their transference to other

application areas and under a different set of constraints. It is becoming increasingly

evident that it is advantageous to employ multi-strategy hybrid systems in the conception

Chapter 2: Literature Survey 26

and design of intelligent systems such as intelligent autonomous robots. Soft computing

(SC) techniques may present a promising way forward for intelligent systems that need to

be able to perceive under conditions of noise and uncertainty, and which need to make

decisions and act in dynamically changing environments. SC aims at accommodation

among the imprecision of the real world, its guiding principle being to:

"exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability,

robustness and low cost solutions [79]".

The principle constituents of SC are: fuzzy logic [80,81], neural networks and probabilistic

reasoning, which includes genetic algorithms. In the following, the most common hybrid

techniques which have been applied to intelligent robotics are outlined, and conclusions are

drawn on their degree of applicability and efficiency.

Neuro-fuzzy learning
Neuro-fuzzy techniques are one of the most intensely researched multi-strategy systems. In

this type of hybrid learning system, fuzzy logic (FL) is mainly concerned with imprecision

and approximate reasoning, and NNs deal with learning and curve fitting (function

approximation). This implies that the overall system should be able to learn to approximate

functions under conditions of noise and uncertainty, in which NNs influence the learning

parameters of the fuzzy system. Nauk and Kruse [82] define neuro-fuzzy systems as: "the

development of heuristic learning strategies derived from the domain of neural network

theory to support the development of fuzzy systems".

In single strategy systems, FL has been applied to a variety of process control and robotic

tasks in order to either incorporate expertise of human operators formulated in linguistic

rules, or exploit the qualitative nature of fuzzy theory for approximate reasoning. Chapter 6

introduces FL and its main areas of application.

In most robotic applications involving navigation, neuro-fuzzy algorithms have two distinct

tasks:

Chapter 2: Literature Survey 27

" NNs are used to learn certain patterns describing behaviours [83];

" FL is used to deal with uncertainty, blend conflicting behaviours and assure smooth

trajectories [84,85].

Using such an approach, the neuro-fuzzy system would be able to automate the process of

generating fuzzy rules. A novel approach was taken by Li in [83], who employed a

cascaded system with a NN in series with a fuzzy system. The numeric values of 15 sonar

sensors as well as the heading angle of the robot were supplied to the NN. The output of

the NN is a reference direction of motion which is supplied to the fuzzy systems along with

the 15 sensor readings. According to [83], the real direction of motion is calculated by

either system (FL and NN) in such a way that the erroneous output of one system is

compensated by the other. However, the details of this mechanism have not been reported.

The only navigational improvement of this configuration, compared to the earlier work,

appears to be its ability to prevent the robot turning into shallow U-shaped obstacles, and

instead to navigate past the obstacles. How the robot behaves should the dead-end become

greater in depth, is not documented. Although, the overall performance of the system in

demonstrated navigation tasks seems to be satisfactory, the process of learning the fuzzy

rules appeared to be hand-crafted.

Fuzzy-genetic learning
The inherent parallelism of GAs in search and optimisation can be used to automate a

number of tasks in fuzzy-based systems. Since the design and shaping of fuzzy

membership functions is often an ad hoc and problem specific process, the GA's capability

to performing parallel search can be used to tune a set of membership functions. In [86],

GAs are used to tune the membership functions of 33 fuzzy rules which were manually

configured prior to the training of a simulated robot for navigation purposes. The

population sizes used in the experiment ranged from 100 to 1000 individuals

(chromosomes) and, after tuning the membership functions, the results were transferred to

a real robot to perform wall following missions.

An alternative method of implementing the neural training of fuzzy rules is to synthesise

fuzzy rules by using GAs [87,88]. The underlying aim of this operation is to overcome the

Chapter 2: Literature Survey 28

common weaknesses of neural computing stated in [87], namely the absence of an

analytical recipe to determine the network configuration, and the tendency of the process to

become trapped in local optima during the learning process. GAs offer a procedural

mechanism of learning design and perform a global search which results in a population of

solutions to a specific problem, although these may not necessarily include an optimum

solution, since GAs do not perform a local search in order to find the "best" solution.

The evolutionary fuzzy system used in [89], employs fuzzy reasoning to assess the fitness

of evolving solution populations in a linguistic manner. An example of one of the rules

used is: IF move slowly THEN fitness low, or IF obstacle hit THEN fitness zero. The

system is used to train a robot to follow long walls without divergence or collision and the

linguistic character of FL systems is used to mimic human behaviour in assessing the

quality of the automatically tuned fitness function of the learning system.

Fuzzy decision tree learning
Operationally, fuzzy decision tree learning systems are identical to neuro-fuzzy learning

systems, in that decision trees are incorporated to generate automatically fuzzy control

rules from a finite set of training examples. Rule synthesis is performed in either an off-line

or an on-line manner (incremental mode). In the former, fuzzy rules are extracted from a

batch of data sample, and are applied to the process to be controlled to classify unseen

scenarios, whereas in the latter, more than one hypothesis is set up and updated

successively as new data increments arrive.

Fuzzy decision trees (FDTs) have been investigated theoretically by a number of

researchers [90,91], and have also been applied to a variety of problems, in particular in

robot learning and intelligent navigation [92,93,94]. In [92], Shibata et al developed a

fuzzy ID3 system to automate the process of motion planning for industrial robots. The

model they used was based on the situation-action scenarios which occur when a human

operator, while cutting 3-D work pieces, sets a path with many points each specifying a

rotational angle for the mounted tool. Each training example consisted of nine input

variables and a single output and the generated FDT incorporated three features from a

total of nine in its classification of 297 training examples. Shibata et al also formulated an

Chapter 2: Literature Survey 29

evaluation function for a GA using these three features as the criteria of a skilled operator

and the GA was used to optimise the path planning process. The FDT was applied to a

robot to whose gripper a plasma torch for cutting 3-D objects was connected. They report

that the algorithm showed effective results, and also could save labour and time for

supervising other industrial robots.

Hsu et al [93] generated 21 fuzzy rules extracted from a set of 300 training examples, in

which each example consisted of 16 ultrasonic sensor readings and a corresponding

direction output and were collected using a skilled human expert instructing the mobile

robot to follow walls on its right side. Using ID3 [95] as the learning algorithm, these rules

synthesised a fuzzy controller of the mobile robot Nomad 200 on wall-following missions,

and the resulting controller was able to navigate the robot along walls in a terrain similar to

the training but in which the layout was slightly modified. The quality of the trajectory

produced by the fuzzy controller was claimed to be at least as good as that achieved by the

human expert. However, the process of rule extraction was off-line, as a skilled operator

was used and is not fully automated, since the induced DT is built on crisp data and the

rules generated by the crisp DT are manually fuzzified prior to navigation.

The current work [94], acquires fuzzy data (rather than crisp data) and this process is fully

automated and is accomplished algorithmically. Rule synthesis is performed by searching

the space of FDTs and in an on-line fashion, see chapter 7. A particularly important

attribute of FDTs is the intelligibility of control rules due to the symbolic nature of the

induced knowledge. The symbolic nature of the approach is complementary to that of the

linguistic mechanism of the fuzzy reasoning approach.

Neuro-fuzzy genetic learning
Once a set of input/output relationships describing a certain control system or behaviours is

available, a multi-strategy learning system such as the evolutionary neuro-fuzzy system in

[96] is able to extract optimised fuzzy rules. This system is capable of the automatic

construction of fuzzy membership functions (by the incorporated neural network) and the

tuning of them, resulting in an improved behaviour of the GAs. Surmann et al have applied

this technique in [96] to data samples from gas furnace [97] control data consisting of 296

Chapter 2: Literature Survey 30

input/output training examples which are measured every nine seconds. The input is the

gas flow rate into the furnace, and the output is the concentration of CO2 in the exhaust

gas. Surmann et al report that their genetically optimised neuro-fuzzy system outperforms

single-strategy fuzzy-based systems using the same training data.

2.6 Summary
This chapter has presented an overview of recent contributions to the building of intelligent

and autonomous robots. This has included both the early approaches to intelligent robots as

well recent intelligent agent which integrates multi-strategy learning techniques borrowed

from a variety of soft computing algorithms. The trend evident in the pattern of recent

techniques for autonomous robots demonstrates that there is an increasing interest in

robotic architectures which impose constraints taken from biological paradigms in their

interaction with the environments, and these include: perception, action, adaptation,

learning and social behaviour (in multi-robot systems).

In recent research more information is being left for robots to learn than is being designed

into their initial architecture. Modern learning techniques also try to capture the

environmental changes (information) in numeric, cognitive or behavioural form, or as some

combination of these, and this is in contrast to early approaches which used only numeric

information. This highlights the current emphasis being placed on multi-strategy systems in

intelligent robotics.

In the context of this literature survey, the work reported in chapters 4,5 and 7 relating to

intelligent robotics takes its inspiration from the survival instincts of biological systems.

Within this field, as far as the author is aware, no system has yet been reported which fully

automates the process of acquiring fuzzy data. This important contribution of the current

work is reported in chapter 7. The following three chapters of this thesis concentrate on the

development and testing of a DT-based algorithm for the automatic behaviour learning of

an autonomous robot.

Chapter 2: Literature Survey 31

References
[1] M. Kaiser, V. Klingspor, J. R. Milan and M. Accame, "Using Machine Learning

Techniques in Real-World Mobile Robots", IEEE Expert, April 1995, pp. 37-45.

[2] M. Dorigo an M. Colombetti, "Robot Shaping, An Experiment in Behaviour

Engineering", The MIT Press, ISBN: 0-262-04162-2,1998.

[3] J. S. Albus, "Outline for a Theory of Intelligence", IEEE Transactions on Systems,

Man and Cybernetics, Vol. 21, No. 3, May/June 1991, pp. 473-509.

[4] L. A. Zadeh, "Fuzzy Sets", Information and Control, Vol. 8, New York: Academic

Press, 1965, pp. 338-352, Fuzzy Sets and Applications: Selected Papers by L. A.

Zadeh, R. R. Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen (Eds.), pp. 29-44,

ISBN 0-471-85710-6.

[5] K. Kautsky, "The Materialist Conception of History", J. H. Kautsky (Ed.), Translation

of. Die Materialistische Geschichtsauffaßung, Yale University Press, 1998, ISBN: 0-

300-04168-3.

[6] H. A. Simon, "Why Should Machines Learn? ", Machine Learning, An Artificial

Intelligence Approach, R. S. Michalski, J. C. Carbonell and T. M. Mitchell (Eds.),

1983, ISBN: 0-938382-05-4.

[7] P. Coiffet and M. Chirouze, "An Introduction to Robot Technology", Translated by

Meg Tombs from "Elements de Robotique", Hermes Publishing (France), ISBN: 0-

85038-637-3,1983.

[8] J. Angeles, "Fundamentals of Robotic Mechanical Systems, Theory, Methods and

Algorithms", Springer-Verlag, 1997, ISBN: 0-387-94540-7.

[9] M. J. Mataric, "Behaviour-based Control: Main Properties and Implications",

Proceedings of IEEE International Conference on Robotics and Automation,

Workshop on Architectures for Intelligent Systems, Nice, France, May 1992, pp. 46-

54.

[10] S. V. R. Nageswara and S. S. Iyengar, "Autonomous Robot Navigation in Unknown

Terrains: Incidental Learning and Environmental Exploration", IEEE Transactions

on Systems, Man and Cybernetics, Vol. 20, NO. 6, November/December 1990, pp.

1443-1449.

Chapter 2: Literature Survey 32

[111 B. Beaufrer and S. Zeghloul, "Navigation Method for a Mobile Robot using a Fuzzy

Based Method: Simulation and Experimental Aspects", International Journal of

Robotics and Automation, Vol. 10, Issue 3,1995, pp. 106-113.

[12] J. Borenstein and Y. Koren, "Real-time Obstacle avoidance for Fast Mobile Robots",

IEEE Transactions on Systems, Man and Cybernetics, Vol. 19,1989, pp. 1179-1187.

[13] C. W. Warren, "Multiple Robot Path Coordination using Artificial Potential Fields",

Proceedings of IEEE Conference on Robotics and Automation, Cincinnati. Ohio,

1990, pp. 500-505.

[14] Z. Q. Ma and Z. R. Yuan, "Real-time Navigation and Obstacle Avoidance on Grids

Method for Fast Mobile Robots", Engineering Applications of Artificial Intelligence,

Vol. 8, No. 1,1995, pp. 91-95.

[15] A. Elfes, "Sonar-based Real World Mapping and Navigation", IEEE Journal of

Robotics and Automation, Vol. 3. No. 3,1987.

[16] M. Mataric, "Integration of Representation into Goal-driven, Behaviour-based

Robots", IEEE Transactions on Robotics and Automation, Vol. 8, No. 3, June 1992,

pp. 304-312.

[17] C. C. Neves and J. O. Gray, "Comparative Analysis of Three Architectures using a

Generalised Framework", Proceedings of the Fifth International Workshop on

Advanced Robotics and Intelligent Machines, March 1997, Manchester, UK.

[18] A. Dubrawski and J. L. Crowley, "Self-supervised Neural Systems for Reactive

Navigation", Proceedings of the IEEE International Conference on Robotics and
Automation, Vol. 3,1994, pp. 2076-81.

[19] P. Reignier, "Fuzzy Logic Techniques for Mobile robot Obstacle Avoidance",

Journal of Robotics and Autonomous Systems, Vol. 12,1994, pp. 143-153.

[20] M. J. Mataric, "Behaviour-based Control: Examples from Navigation, Learning and

Group Behaviour", Journal of Experimental and Theoretical Artificial Intelligence,

special issue on Software Architectures for Physical Agents, Vol. 9, Nos. 2-3,

Hexmoor, Horswill and Kortenkamp (Eds.), 1997, pp. 323-336.
[21] M. J. Mataric, "Behaviour-Based Control: Main Properties and Implications",

Proceedings of IEEE International Conference on Robotics and Automation,

Chapter 2: Literature Survey 33

Workshop on Architectures for Intelligent Control Systems, Nice, France, May 1992,

pp. 46-52.

[22] R. A. Brooks, "A Robust Layered Control System for a Mobile Robot", IEEE Journal

of Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14-23.; also MIT Al

Memo 864, September 1985.

[23] R. A. Brooks, "New Approaches to Robotics", Science, Vol. 253, September 1991,

pp. 1227-1232.

[24] R. A. Brooks, "A Robot that Walks; Emergent Behaviours form a Carefully Evolved

Network", Neural Computation, Vol. 1 No. 2,1989, pp. 253-262, Also in IEEE

International Conference on Robotics and Automation, Scottsdale, AZ, May 1989,

pp. 292-296.

[25] P. Maes and R. A. Brooks, "Learning to Coordinate Behaviours", AAAI, Boston, MA,

August 1990, pp. 796--802.

[26] R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction", MIT Press,

A Bradford Book, Cambridge, MA, 1998.

[27] R. S. Sutton, "Learning to Predict by the Methods of Temporal Differences", Machine

Learning, 3 (1988), pp. 9-44.

[281 C. J. C. H. Watkins, "Learning from Delayed Rewards", Doctoral Thesis, Cambridge

University, Cambridge, England, 1989.

[29] C. J. C. H. Watkins and P. Dayan, "Technical Note: Q-Learning", Machine Learning, 8

(1992), pp. 279-292.

[30] S. T. Hagen and B. Kröse, "A Short Introduction into Reinforcement Learning",

Proceedings of the Seventh Belgian-Dutch Conference on Machine Learning,

BENELEARN'97,1997, pp. 7-12.

[31] L. P. Kaelbling, M. L. Littman and A. W. Moore, "Reinforcement Learning: A

Survey", Journal of Artificial Intelligence Research, 4 (1996), pp. 237-285.

[32] M. E. Harmon, "Reinforcement Learning: A Tutorial", Available at: http: //www-

anw. cs. umass. edu/-mharmon/rltutorial/frames. html.

[33] B. Kröse, "Learning from Delayed Rewards", Special Issue of Robotics and

Autonomous Systems, 15 (1995), pp. 233-235.

Chapter 2: Literature Survey 34

[341 S. Singh, P. Norvig and D. Cohn, "How to Make Software Agents to Do Right

Things: An Introduction to RL",

http: //envy. cs. umass. edu/People/singh/RLMasses/RL. html.

[35] S. Mahadevan and J. Connell, "Automatic Programming of Behaviour-based Robots

using Reinforcement Learning", Proceedings of the Ninth National Conference on

Artificial Intelligence, Anaheim, CA, 1991.

[36] J. R. Milan and C. Torras, "Efficient Reinforcement Learning of Navigation

Strategies in an Autonomous Robot", Proceedings of IEEE Conference on Intelligent

Robots and Systems, 1994, pp. 15-22.

[37] A. H. Fagg, D. Lotspeich an G. A. Bekey, "A Reinforcement Learning Approach to

Reactive Control Policy Design for Autonomous Design", Proceedings of IEEE

International Conference on Robotics and Automation, San Diego, CA, 1994, pp. 39-

44.

[38] H. R. Beom and H. S. Cho, "A Sensor-based Navigation for a Mobile Robot using

Fuzzy Logic and Reinforcement Learning", IEEE Transactions on Systems, Man and

Cybernetics, Vol. 25, No. 3, March 1995, pp. 464-477.

[39] R. P. Lippmann, "An Introduction to Computing with Neural Nets", The IEEE

Acoustics, Speech and Signal Processing Magazine, 4 (2), April 1987, pp. 4-22.

[40] H. C. Lui and S. L. Lau, "Character Recognition on Grey Level Image using Neural

Nets", Proceedings of IJCNN'91, Vol. 1, Singapore, 1991, pp. 325-330.

[41] G. Fahner, "An Algorithm Structured Neural Net for the Shortest Path Problem",

Proceedings of IJCNN'91, Vol. 1,1991, pp. 153-158.

[42] A. Dubrawski and J. L. Crowley, "Self-supervised Neural System for Reactive

Navigation", IEEE International Conference on Robotics and Automation, Vol. 3,

1994, pp. 2076-2081.

[43] A. Dubrawski and J. L. Crowley, "Learning Locomotion Reflexes: A Self-supervised

Learning Systems for a Mobile Robot", Journal of Robotics and Autonomous

Systems, 12 (1994), pp. 133-142.

[44] C. M. Bishop, "Neural Networks and Their Applications", Review of Scientific

Instruments, 65 (6), June 1994, American Institute of Physics, pp. 1803-1832.

Chapter 2: Literature Survey 35

[45] T. Fokuda and T. Shibata, "Theory and Applications of Neural Networks for

Industrial Control Systems", IEEE Transactions on Industrial Electronics, Vol. 39,

No. 6, December 1992, pp. 472-489.

[46] D. R. Hush and B. G. Home, "Progress in Supervised Neural Networks", IEEE Signal

Processing Magazine, January 1993, pp. 8-39.

[47] D. A. Pomerleau, "Efficient Training of an Artificial Neural Network for

Autonomous Navigation", Journal of Neural Computation, Vol. 3,1991.

[48] A. R. Jacobs, "Increased Rates of Convergence Through learning Rate Adaptation",

IEEE Transactions on Neural Networks, Vol. 1, No. ?, 1988, pp. 295-307.

[49] N. Baba, "A New Approach for Finding the Global Minimum of Error Function of

Neural Networks", IEEE Transactions on Neural Networks, Vol. 2, No. ?, 1989, pp.

367-373.

[50] T. Fukuda, T. Shibata, M. Tokita and T. Mitsuoka, "Neural Network Application for

Robotic Motion Control: Adaptation and Learning", Proceedings of International

Joint Conference on Nural Ntworks'90, San Diego, CA, 1990, pp. 447-45 1.

[51] G. A. Carpenter, S. Grossberg and D. Rosen, "Fuzzy ART: Fast Stable Learning of

Analogue Patterns By an Adaptive Resonance System", Neural networks, Vol. 3,

1991.

[52] J. H. Holland, "Adaptation in Natural and Artificial Systems",, Univresity of

Michigan Press, 1975.

[53] U. Rost and P. Öchtering, "Knowledge-based Genetic Learning", Proceedings of the

Sixth Scandinavian Conference on Artificial Intelligence (SCAI-97), Helsinki,

Finnland, 18-20 August, 1997.

[54] E. Cantu-Paz, "A Survey of Parallel Genetic Algorithms", Technical Report, No.

95007, Illinois GA Laboratory I11iGAL.

[55] A. C. Schultz, "Using a Genetic Algorithm to Learn Strategies for Collision

Avoidance and Local Navigation", Proceedings of the Seventh International

Symposium on Unmanned Untethered Submersible Technology, University of New

Hampshire, Marine Systems Engineering Laboratory, 1991, pp. 213-225.

Chapter 2: Literature Survey 36

[56] A. C. Schultz, "Learning Robot Behaviours using Genetic Algorithms", Proceedings

of The International Symposium on Robotics and Manufacturing, August 14-18,

1994.

[57] J. Grefenstette, "Evolutionary Algorithms in Robotics", Proceedings of The Fifth

International Symposium on Robotics and Manufacturing ISRAM'94,1994.

[58] J. J. Grefenstette, C. L. Ramsey and A. C. Schultz, "Learning Sequential Decision

Rules using Simulation Models and Competition", Machine Learning 5(4), 1990, pp.

355-381.

[59] M. J. Mataric, "Coordination and Learning in Multi-Robot Systems", IEEE Intelligent

Systems, Mar/Apr 1998, pp. 6-8.

[60] R. Brooks, "Artificial Life and Real Robots", Towards a Practice of Autonomous

Systems: European Conference on Artificial Life, Paris, France, MIT Press,

December 1991, pp. 3-10.

[61] J. J. Grefenstette, "Lamarkian Learning in Multi-agent Environments", Proceedings

of The Fourth International Conference on Genetic Algorithms, San Diego, CA,

1991, pp. 303-310.

[62] J. J. Grefenstette and H. C. Cobb, "User's Guide for SAMUEL, Version 4.0", 1994,

Naval Research Lab Report, Washington, DC.

[63] J. J. Grefenstette, "Evolutionary Algorithms in Rbotoics", Robotics and

Manufacturing: Recent Trends in Research, Education, and Applications, Vol 5,

(Eds. Mohammad Jamshidi, Charles Nguyen), Proceedings Of the First World

Automation Congress (WAC '94) and Fifth International Symposium on Robotics and

Manufacturing (ISRAM '94), August 14-17,1994, p127-132.

[64] A. C. Schultz and J. J. Grefenstette, "Using a Genetic Algorithm to Learn Behaviours

for Autonomous Vehicles", Proceedings of American Institute of Aeronautics and

Astronautics Guidance, Navigation and Control Conference, Hilton Head, SC,

AIAA, 1992, pp. 739-749.

[65] M. Dorigo and U. Schneff, "Genetics-based Machine Learning and Behaviour-based

Robotics", IEEE Transactions on System, Man and Cybernetics, SMC-23,1,1993.

Chapter 2: Literature Survey 37

[66] R. S. Michalski, "A Theory and Methodology of Inductive Learning", Machine

Learning, An Artificial Intelligence Approach, R. S. Michalski, J. G. Carbonell and

T. M. Mitchell (Eds.), Tioga Publishing Company, 1983.

[67] J. R. Quinlan, "Decision Trees and Decisionmaking", IEEE Transactions on Systems,

Man and Cybernetics, Vol. 20, No. 2, March/April 1990, pp. 339-346.

[68] J. Cendrowska, "PRISM: An Algorithm for Producing Modular Rules", International

Journal of Man-Machine Studies, Vol. 27,1987, pp. 394-370.

[69] J. G. Carbonell, R. S. Michalski and T. M. Mitchell, "An Overview of Machine

Learning", Machine Learning, An Artificial Intelligence Approach, R. S. Michalski,

J. G. Carbonell and T. M. Mitchell (Eds.), Tioga Publishing Company, 1983.

[70] R. S. Michalski and R. L. Chilauski, "Learning by Being Told and Learning from

Examples: An Experimental Comparison of the Two Methods of Knowledge

Acquisition in the Context of Developing an Expert System for the Soybean Disease

Diagnosis", Policy'Analysis and Information Systems (Special Issue on Knowledge

Acquisition and Induction), Vol. 4, No. 2, June 1980, pp. 125-160.

[71] Y. Nakakuki, Y. Koseki and M. Tanaka, "Inductive Learning in Probabilistic

Domain", Machine Learning, Vol. ?, Year ?, pp. 809-814.

[72] S. Salzberg, "Locating Protein Coding Regions in Human DNA using a Decision

Tree Algorithm", Journal of Computational Biology, 2(3), 1995, pp. 473-485.

[73] I. Sillitoe and T. Elomaa, "Learning Decision Trees For Mapping The Local

Environment in Mobile Robot Navigation", Proceedings MLC-COLT Workshop on

Robot Learning, July 1994, New Brunswick, N. J, pp. 119-125.

[74] T. Zrimec and P. Mowforth, "Learning By an Autonomous Agent in The Pushing

Domain", Robotics and Autonomous Systems, 0921-8830/91,1991, Elsevier Science

Publishers B. V.

[75] G. H. Shah Hamzei, D. J. Mulvaney and I. P. W. Sillitoe, "Batch-Mode Decision Tree

Learning Applied to Intelligent Reactive Robot Control", Sixth IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA'97),

September 9-12,1997, Los Angeles, USA.

[76] B. Evans and D. Fisher, "Overcoming Process Delays with Decision Tree Induction",

IEEE Expert, February 1994, pp. 60-66.

Chapter 2: Literature Survey 38

[77] L. Wehenkel, "Machine Learning Approaches to Power-Systems Security

Assessment", IEEE Expert, September/October 1997, pp. 60-72.

[78] R. S. Michalski, J. G. Carbonell and T. M. Mitchell, "Machine Learning, An Artificial

Intelligence Approach, R. S. Michalski, J. G. Carbonell and T. M. Mitchell (Eds.),

Tioga Publishing Company, 1983.

[79] L. A. Zadeh, "Foreword", Third European Congress on Intelligent Techniques and

Soft Computing EUFIT'95, Aachen Germany, August 28-31,1995.

[80] L. A. Zadeh, "Fuzzy Sets", Information and Control, Vol. 8, New York: Academic

Press, 1965, pp. 338-352, Fuzzy Sets and Applications: Selected Papers by L. A.

Zadeh, (Edit.) R. R. Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen, pp. 29-44,

ISBN 0-471-85710-6.

[81] L. A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and

Processes", IEEE Transactions on Systems, Man and Cybernetics, SMC-3 (1973),

pp. 28-44, Fuzzy Sets and Applications: Selected Papers by L. A. Zadeh, (Edit.) R. R.

Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen, pp. 105-146, ISBN 0-471-

85710-6.

[821 D. Nauk and R. Kruse, "What are Neuro-Fuzzy Classifiers? ", Proceedings of Seventh

International Fuzzy Systems Association World Congress IFSA'97, Vol. IV, 1997,

pp. 228-233.

[831 W. Li, "Neuro-Fuzzy Systems for Intelligent Robot Navigation and Control Under

Uncertainty", Proceedings of IEEE, 1995, pp. 1747-1754.

[84] P. Reignier, "Fuzzy Logic Techniques for Mobile Robot Obstacle Avoidance",

Robotics and Autonomous Systems, Vol. 12,1994, pp. 143-153.

[85] A. Safiiotti, E. H. Ruspini and K. Konolige, "Blending reactivity and Goal-

Directedness in a Fuzzy Controller", Proceedings of the Second IEEE Conference on

Fuzzy Systems, San Francisco, CA, March 1993, pp. 134-139.

[86] R. Braunstigl, J. Mojika and J. P. Uribe, "A Wall Following Robot with a Fuzzy

Logic Controller Optimised with a Genetic Algorithm", FUZZ-1 EEE/IFES'95 Fuzzy

Robot Competition, Yokohama, March 1995, pp. 77-82.

[87] Y, Tuan and H. Zhuang, "A Genetic Algorithm for Generating Fuzzy Classification

Rules", Fuzzy Sets and Systems, 84 (1996), pp. 1-19.

Chapter 2: Literature Survey 39

[88] E. Dadios, "Non-conventional Control of the Flexible Pole-Cart Balancing Problem",

PhD Thesis, Department of Manufacturing Engineering, Loughborough University,

Loughborough, UK, 1996.

[89] R. Braunstigl and A. Ollero, "Evaluating the Wall Following Behaviour of a Mobile

Robot with Fuzzy Logic", Proceedings of The International Workshop on Artificial

Intelligence in Real Time Control, Bled, Slovenia, November 1995, pp. 89-93.

[90] C. Z. Janikow, "Fuzzy Decision Trees: Issues and Methods", IEEE Transactions on

Systems, Man, and Cybernetics, 1997.

[91] L. S. Sison and E. K. P. Chong, "Fuzzy Modelling by Induction and Pruning of

Decision Trees", The International Symposium on Intelligent Control, August, 1994,

Columbus, Ohio, USA, pp. 166-171.

[92] T. Shibata, T. Abe, K. Tanie and M. Nose, "Motion Planning of a Redundant

Manipulator-Criteria of Skilled Operators by Fuzzy-ID3 and GNDH and

Optimisation by GA", The IEEE Interdnational Conference, 1995, pp. 99-102.

[93] S. H. Hsu, J. Y. Hsu and I. J. Chiang, "Automatic Generation of Fuzzy Control Rules

by Machine Leaning Methods", The IEEE International Conference on Robotics and

Automation, Nagoya, Japan, 1995, Vol. 1, pp. 287-292.

[94] G. H. Shah-Hamzei and D. J. Mulvaney, "Self-organising Fuzzy Decision Trees for

Robot Navigation: an On-line Learning Approach", IEEE International Conference

on Systems, Man and Cybernetics SMC'98, October 1998, San Diego, CA, USA,

(Forthcoming).

[95] J. R. Quinlan, "Learning Efficient Classification Procedures and Their Application to

Chess and Games", Machine Learning, An Artificial Intelligence Approach, R. S.

Michalski, J. G. Carbonell and T. M. Mitchell (Eds.), Tioga Publishing Company,

ISBN: 0-935382-05-4, pp. 463-482.

[96] H. Surmann, A. Kanstein and K. Gosar, "Self-organising and Genetic Algorithms for

an Automatic Design of Fuzzy Control and Decision Systems", Proceedings of the 1"

European Congress on Fuzzy and Intelligent Technologies, EUFIT'93, Aachen 7-10

September, 1993, pp. 1097-1104.

[97] G. E. P. Box and G. M. Jenkins, "Time Series Analysis", Forecasting and Control, San

Diego, CA, Holden Day, 1976.

Chapter 3: Decision Tree Learning 40

te

Decision Tree
Learning:

Theoretical Issues and Background

If 1 hear, I forget
If 1 see, I remember
If I do, I understand

A Proverb

Quoted by S. Yalamanchili in "VHDL Starter's Guide"

This chapter addresses the underlying principles and learning strategies of decision

trees (DTs) which are presented as a classification model. An in-depth explanation of

the formalisms and associated algorithms is avoided, since this is beyond the scope of the

current work. A general view of machine learning techniques, with emphasis on inductive

Chapter 3: Decision Tree Learning 41

learning techniques, is presented. Basic terms and expressions of inductive knowledge

acquisition, especially DT learning, are defined, explained and illustrated, and the

interested reader is directed to the related literature and theoretical foundations, where

necessary.

3.1 A taxonomy of machine learning techniques
This section provides a taxonomic consideration of machine learning (ML) in terms of the

underlying learning strategy, the available data and the source of information. Particular

attention is paid to the inductive learning approaches, whose application is the issue of

chapters 4,5 and 7. Machine learning approaches can be categorised into the following

groups.

" Rote learning The learning task is performed either by being programmed or by

memorising given facts and data [1]. Examples of this approach are procedural

computer programming or the use of data bases.

" Learning from instructions The source of knowledge is a teacher or other organised

sources such as a text book. The learner's task is to transform the knowledge to an

internally usable representation and the amount of inference from the learner is very

limited. Most formal education methods where the advice and instructions of the

teacher are accepted and applied, are examples of this learning method.

" Learning by analogy In this approach, new knowledge is derived by transforming or

augmenting the existing knowledge known to the learner. For example, a person who

is just learning how to play tennis, but has a good command of table-tennis may be

able to transfer their table-tennis skills to learn the new task. The amount of inference

needed is more than that in the first two groups.

" Learning from examples This method is a special case of inductive learning. The

learner is presented with a finite number of examples (training vectors) and is

expected to induce a general concept. The amount of inference performed by the

learner is significantly greater than in the first two approaches, and also more than in

analogous learning, as there exists no background knowledge from which the new

concept can be learned. As far as the underlying learning mechanism is concerned,

this type of inductive learning is central to learning and adaptation in the author's

Chapter 3: Decision Tree Learning 42

current work in its application to the robotics domain. The formalisms of learning

and knowledge representation in this approach are further discussed in the

application chapters of this work, namely chapters 4,5 and 7 and the more specific

details and the related aspects of learning from examples are thoroughly discussed in

[2].

" Learning from observations and discovery This is a general form of inductive

learning, and is also called unsupervised learning [2]. The amount of inference that

needs to be performed by the learner is more than that in any of the approaches so far

discussed. The learner is not provided with a set of examples of a particular concept,

nor does it have access to a mechanism of labelling the internally generated

instances. An important sub-set of learning from observations is active

experimentation, where the learner perturbs its environment to observe its result. For

example, this can be guided by some theoretical constraints or some general criteria

of interest.

Learning from observations as a result of environmental experimentation, as a general

concept, is the issue of the learning algorithms addressed in chapters 5 and 7 of the current

work. However, these algorithms fall in the category of learning from examples, as far as

the learner (the induction mechanism) is concerned. Chapters 4,9,10 and 11 of [2] provide

a rigorous treatment of this type of learning.

3.2 Introduction to DTs
From the point of view of data abstraction, a DT is a data structure, usually organised in a

top-down manner, incorporating a finite number of nodes (blocks 1 to 6 of Figure 3.1)

connected together by straight lines termed branches. The nodes of a DT are called

decision nodes (blocks 1 and 3) and terminal nodes (shaded blocks). A decision node

accommodates a feature and is a node in which the outcome of testing this feature results in

one or more feature values. A terminal node, as the name suggests, has no "children" nodes

and is commonly known as a leaf. This is a feature value rather than a feature and

represents the class or the category which labels a certain pattern initiated in the root of the

DT (block 1).

Chapter 3: Decision Tree Learning

Figure 3.1 A typical decision tree organised in a top-down structure

43

In Figure 3.1, Goal_Loc and S2 are both features (attributes), and their outgoing branches

are the sub-set of the possible values that these features can assume. The terminal nodes,

however, are the labels or classes that categorise a certain pattern starting in the root of the

tree (block 1) and terminating in that class. For further illustration, consider the two

directed paths (broken and solid lines). Searching the DT along those paths would generate

two rules, as shown in Table 3.1.

911: IF Goal_Loc = North A S2 = Obst THEN FR. (Path 1,3,5)

9t2: IF Goal_Loc = North A S2 = No_Obst THEN F. (Path 1,3,6)

Table 3.1 A sub-set of the possible rules generated by searching the space of the DT

3.3 The underlying principles of DT construction
DTs are one way of representing inductive knowledge. The foundations of DT learning are

rooted in concept learning systems. Such systems attempt to learn or to model a certain

Chapter 3: Decision Tree Learning 44

concept by a set of examples. The learned concept can then be modelled either in the

graphical form (as in Figure 3.1) or as a set of rules, as partially shown in Table 3.1.

Two different implementations of concept learning systems are the algorithms ID3 [3] and

AQ [4]. The structural difference between these two implementations is that ID3 generates

DTs of the type shown in Figure 3.1, whereas AQ produces a set of production rules more

suitable for expert system applications. These two algorithms have been used as the basis

for the development of many other learning techniques, for instance ID3 is the ancestor of

ASSISTANT-86 [5], C4 [6], C4.5 [7], ID4 [8], ID5 [9], ID5R [10] and all the versions of

ITI, namely ITI-2.5 [111 and ITI-2.8 [121. The AQ algorithm is the origin of AQ 11 [13],

AQR [14], AQ15 [15] and CN2 [14]. The descendants of ID3 and AQ have been designed

to cope with larger data sets, missing values, noise and improved feature selection, are able

to produce smaller DTs or rule spaces and can perform incrementality while keeping the

core learning algorithms intact.

The skeleton of the mechanism for DT construction is that of "divide and conquer". This

formalism was first implemented in ID3. In the following, this is briefly discussed in a

rather descriptive manner. However, for further details the reader is referred to [3,7,16].

Consider a set of training examples T and a set of classes C={ C1, C2, ..., C� }. The DT

generation starts at a node containing all the training examples. ID3 checks if the set T can

be classified by a single class. If such is the case, the DT is limited to the one node and the

algorithm stops. If the examples are of mixed classes, branches need to be grown on that

node which will test an attribute of the examples, and classify them into groups

corresponding to the values of that attribute [16]. An attribute is considered as a good test

to use when most examples with the same attribute value also have the same class label.

The efficiency of attributes in ID3 is measured by a heuristic function called entropy E (the

lower the entropy, the more efficient the classification), defined as follows:

E=EwiEi (3.1)

i

Chapter 3: Decision Tree Learning 45

where w; is the weight of the ih branch defined as the number of training examples in

branch i divided by the total number of examples at the parent node, and E; is the entropy

of the i`h branch given by:

E; = -E Pi loge Pi
i

(3.2)

pj is the probability of occurrence the j`h class in this branch, as estimated from the training

data. The attribute yielding the lowest entropy is placed on the node which is expanded,

and branches are attached to that node which correspond to the different values of that

attribute.

Each individual leaf in the new DT is examined. If all the examples at a leaf have the same

class, this node is complete and the class is assigned to that node. If the examples are of

mixed classes, the DT must be expanded at this node. To accomplish this, the same

procedure is repeated again, as follows:

" Test each individual feature

9 Pick the best (the lowest entropy)

" Expand the node by adding branches corresponding to the number of feature values

To clarify the above algorithm, we consider a small data set adapted from [16] which

contains eight training vectors of the form shown in Table 3.2. To demonstrate how the

algorithm works, consider the placement of the feature Age at the root of a virtual DT. To

evaluate the entropy E and using the data in Table 3.2, it can be observed how the

examples are classified into groups at this node.

Age = Old: 1 example is of Lion and 2 are of Not lion

Age = Young: 2 examples are of Lion and 3 are of Not lion

The values of E; and E are calculated as follows:

E,, 1d =- (1/3 * 10921 /3 + 2/3 * 10g22/3) = 0.918

Eyoung =- (2/5 * 10922/5+3/5* 10g23/5) = 0.971

Chapter 3: Decision Tree Learning

E= 3/8 * Eold + 5/8 * Eyoung

E=0.951

Attributes (Features)
Cl

Furry Age Size
ass

Yes Old Large Lion
......................

No
......................

........................
Young

.......................
Large

.

........................
Not lion
.................... .

Yes
......................

........................
Young

..

................... ..
Medium

..

.. .
Lion

.......................
Yes

......................

.
Old

.........................

.....................
Small

.......................

.
Not lion

......................... Yes
......................

Young
.....

Small Not lion
.......................

Yes
.....................

.
Young

.........................

.......................
Large

.......................

.
Lion

........................
No Young Small Not lion

No Old Large Not lion

46

Table 3.2 A small set of training vectors for illustrating DT induction (adopted from [16])

Applying the same procedure, the entropies for Furry and Size would be 0.607 and 0.500,

respectively. It is evident that the feature Size scores the lowest entropy value, hence it is

chosen for splitting the DT at the root. The feature values Small and Medium classify the

corresponding examples into distinct classes Not Lion and Lion, respectively. However,

the training examples containing Large are of mixed classes and hence the DT must be

expanded at this node. According to the previous calculations, Furry scores the second

highest entropy value, and is chosen to expand the DT at this node. This attribute is able to

classify the remaining examples into unique classes, and the algorithm stops. This is shown

in the DT generated by the ID3 algorithm (Figure 3.2), and contrasted with the rule set

which is produced by the AQ algorithm (Table 3.3).

Chapter 3: Decision Tree Learning

Size

Small /_
-

1. \ Large

Not Lion II Lion I (Furry

Yes No

Lion Not Lion

Figure 3.2 A multi-split DT generated by ID3 [3] using the data set of Table 3.2

47

Criteria for efficient feature selection are discussed in [7,9,10,12,17,18,19]. For example,

the algorithm FOCUS-2, introduced in [17], is reported to improve greatly the performance

of ID3 if the training data is pre-processed (prior to supplying to ID3) using FOCUS-2 to

filter out the irrelevant features.

911: IF Furry = Yes A Size = Large THEN Class = Lion

9t2 : IF Size = Medium THEN Class = Lion

913: IF Furry = No THEN Class = Not Lion

94: IF Size = Small THEN Class = Not Lion

Table 3.3 A set of rules induced by AQ [4] using the data set of Table 3.2

3.4 Types of DTs
As far as the tree structure is concerned, DTs can generally be divided into two categories:

" Multi-split DTs

" Binary DTs.

Chapter 3: Decision Tree Learning 48

As shown in Figures 3.1 and 3.2, multi-split DTs have the characteristic of being able to

generate multi-dimensional outcomes as the result of testing a feature in a decision node.

Binary DTs, however, always evaluate the result of testing a condition into a fixed set of

logical values, namely yes and no. The left branch emerging from any decision node

corresponds to yes and the right branch to no, as depicted in Figure 3.3.

Is" Inc =N?

3 *'/
\

no

Is $2=Ot? I IR

Figure 3.3 An example of a binary DT (e. g. ITI (1 1])

To illustrate what information is contained in binary DTs, consider the two distinct paths

(solid and broken lines) starting at the root of the DT shown in Figure 3.3 and ending at the

two terminal nodes. Traversing the DT along these paths would result in the following

rules:

IN IF Goal_Loc = North A S2 = Obst THEN FR. (Solid Lines)

9Z, IF Goal_Loc = North A S2 =- Obst THEN F. (Broken Lines)

Table 3.4 A set of rules produced after traversing the binary DT of Figure 3.3

mlkhý

Chapter 3: Decision Tree Learning 49

An important difference in the formulation of the two sets of rules (Table 3.1 and Table

3.4) can be seen when testing the state of S2 in the second rule in each set. Although

No_Obst and -, Obst may initially appear to be logically identical, No_Obst is a unique

feature value from the set of values that feature S2 can take, whereas -, Obst specifically

excludes the feature value Obst, thereby implying that S2 can be in any state other than

Obst. Techniques such as ID3 and C4.5 implement the multi-split approach, whereas the

tree networks generated by ITI are binary in nature. All DT networks produced in the

current work are generated by ITI.

3.4.1 Alternative DT implementations
In order to enhance the predictive power of DTs, and also to meet other criteria such as

keeping the size of the resultant DT small, a number of alternative measures of assessing

the results of tests and partitioning DTs have been developed. For example, ID3

implements the entropy measure for evaluating the outcome of a decision test, but Quinlan

[7] considered that this approach exhibited a serious deficiency, in that ID3 has a strong

bias towards these tests resulting in multiple outcomes. It was found that these tests tended

to yield the smallest total entropy (highest gain) as the result of multiple partitioning

(according to expression (3.2)) and this is a weak strategy as far as predictiveness is

concerned. To remedy this problem, the inherent bias in gain was replaced by a normalised

gain which implements the gain ratio (GR) [7]. This measures the information relevant to

classification, whereas the entropy method represents an information gain by dividing the

DT into n sub trees (see [7] for more details). Quinlan reports in [7] that the GR criterion is

robust and typically gives a consistently better choice of test than the gain criterion.

The early implementations of ID3 could only handle symbolic knowledge, and were

consequently limited in the applications which could be tackled. Different application

domains and constraints such as noise tolerance, dealing with numerical feature values and

missing data have posed heavy demands on the quality of DT learning and construction.

C4.5, a successor to the ID3 algorithm, is able to cope with the problem of numerical

feature values and missing data (although not in an optimised sense). C4.5 allowed the

application of DTs to a wider range of subject areas.

Chapter 3: Decision Tree Learning 50

Resting on the same core mechanism of DT construction, the early versions of ITI such as

ITI 2.5 [11] also implement the GR for testing attributes. However, an alternative

mechanism, namely the modified Kolmogrov-Smirnoff (KS) distance, has been adopted in

ITI-2.8 and is able to generate smaller trees and reduce the expected number of tests in

each decision node without incurring a significant change in the classification accuracy

[12]. For example, consider a two-class case, A and B, with a continuous variable x. The

KS method attempts to find an optimal cut point a that partitions the values of x into two

distinct blocks. Given the cumulative distributions functions associated with each class,

namely FA(x) and FB(x), an optimal cutpoint a is the one that maximises IFA (a) - FB (a)I .

This maximum value is the KS distance for that specific variable. In the majority of cases,

neither FA(a) nor FB(a) is analytically available, in which case they are approximated by

counting how many instances from each class fall into each block of the partition [12]. For

further details on KS distance, the reader is referred to [12,20].

Utgoff has incorporated the KS distance feature selection metric in ITI-2.8 and has

demonstrated in [12] that the size of DTs generated are significantly smaller than those

produced using the GR as the partition metric. Similarly, the expected number of tests in

induced DTs is significantly fewer than that produced using GR. The number of expected

tests plays an important role in DT induction, as it determines how many tests should be

performed on average to determine a classification [12]. Both approaches, however,

typically achieve the same classification accuracy.

3.4.2 Modes of operation
The paradigms of learning from examples can be implemented to learn the new concept in

one of two modes:

" Batch-mode, one-trial mode or off-line mode

" Incremental or on-line mode

In batch-mode learning, all training examples are presented to the system at once, and the

learner forms one hypothesis about the concept to be learned. In incremental learning,

however, training examples are supplied singly and in succession, the learner builds one or

more hypotheses consistent with the training data and the new hypotheses refine the

Chapter 3: Decision Tree Learning 51

previous ones, thereby accommodating the new knowledge. Incremental mode learning

more closely parallels its human counterpart, in that the learner is able to use partially-

learned concepts. In the currently available DT learning systems (both commercial and

non-commercial), ID3 and C4.5 implement the batch-mode approach, whereas all versions

of ITI are capable of both batch-mode and incremental learning.

The author argues that the characteristics found in incremental learning paradigms such as

ITI are appropriate to the current work and to on-line learning systems, in general. This

argument is justified in the discussions and analyses presented in chapters 4,5 and 7 and is

supported by the experimental results presented in these chapters.

3.5 Recent advances and developments
DT learning paradigms have undergone extensive research and development since the

introduction of ID3 in early 1980s. These efforts and investigations have been in response

to the needs of the industrial, economic and business sectors, and include the following.

" Optimisation of tree size

" Improving classification accuracy

" Achieving optimum feature selection

" Noise tolerance and coping with noisy data

" Coping with incomplete and partial data

" Incrementality and successive learning

" Generating production rules

" Handling numerical values as well as symbolic knowledge

It is apparent that one can not integrate all the above features in any one implementation, as

the dominance of one characteristic usually reduces the effect of one or more of the others.

In general, any implementation will involve making a trade-off between the individual

characteristics of the learning process.

Recently, there have been three systems of significance developed from the original ID3.

These are ITI-3.8, See5/C5.0 and Cubist and those are now briefly discussed and their

capabilities outlined.

Chapter 3: Decision Tree Learning 52

ITI-3.8 is the most recent offspring of the ITI family. This algorithm remains similar to the

version applied in the current work, namely ITI-2.8, but the improvements achieved

provide a more compact and faster learning process. The ITI family is well known for its

incremental nature and knowledge induction and is also capable of producing, on average,

smaller DTs while maintaining the same classification accuracy compared to techniques

such as C4.5. The ITI family is freeware (for research purposes), non-commercial data

mining tools.

The latest DT development from the author of ID3 is See5 (for Windows 95/NT) and C5.0

(for UNIX). This tool is capable of constructing production rules which replicate their

counterpart DT produced on the same set of data. The emphasis of this implementation has

been placed on rule induction rather than DT construction, but this is also available for

historical reasons [21]. A sample of rule induction by See5 which has been adopted from

[21] is shown below. The data set used has been obtained from bank credit card applicants.

Rule 1: (cover 8)
age <= 41
home telephone = given
current occupation = sales
time with bank <= 3
monthly housing expense > 110
savings account balance <= 8

-> class reject [0.900]

Rule 2: (cover 6)
current occupation = office staff
current job status = private sector
liability reference =f
monthly housing expense > 110
savings account balance <= 228

-> class reject [0.875]

Above, cover indicates how many training examples from the data set match this rule, and

the figure in square brackets (e. g., [0.900]) is an approximation of the classification

accuracy of this rule which is in this case 90%.

See5/C5.0 and its "sister system" (as it is called by Quinlan [22]) Cubist are similar in that

both can handle either numerical or symbolic knowledge. However, See5/C5.0 produces

classification models, whereas Cubist generates numerical models of the concept to be

learned. This means that classes (the labels in See5/C5.0) are symbolic, whereas they are

numeric in Cubist. Unlike See5/C5.0 which produces both DTs and rule sets, Cubist is

designed only for the generation of the production rules. In statistical terminology, the

former is called classification-based learning, whereas the latter is called regression-based

Chapter 3: Decision Tree Learning 53

learning, hence the term regression DTs is often used. Cubist associates each rule with a

multivariate numerical model and when a new example matches the antecedents of a rule,

the corresponding multivariate model is used to predict a numerical value.

In the following, a small set of rules induced by Cubist is shown (adopted from [22]) to

demonstrate the way the inductive knowledge is represented by Cubist.

Rule 1: [40 cases, mean 11.6, range 3 to 23, est err 3.2]
IF

SDAFBTMP <= 65
INVHT <= 2270
DAGPG > -10

THEN
Max 03 = -14.11 + 0.029 HMDTY + 0.047 SDAFBTMP + 0.013 DAGPG +0.345 INVTMP

Rule 2: [132 cases, mean 19.0, range 4 to 38, est err 4.2]
IF

SDAFBTMP > 65
THEN

Max 03 = -27.4 + 0.185 HMDTY + 0.034 SDAFBTMP + 0.433 INVTMP

Above, the information given in the square brackets is statistical data (these are not vital

for the understanding of the rule). The features shown in the rules are abbreviations for

"Temperature, Sandberg AFB", "Inversion base height, LAX", "Pressure gradient

LAX/Daggett" and "Humidity", respectively. These rules are a sub-set of rules generated

by Cubist based on 330 training examples [22] indicating the maximum ozone level (Max

03) in LA as a function of atmospheric information (the parameters mentioned above).

Cubist produces a model described by a total of five rules that is able to predict the ozone

level in the air by providing the daily atmospheric information. The model shows that

Cubist performs a non-linear numerical mapping in contrast to See5/C5.0 which generate a

symbolic label. See5/C5.0 and Cubist are both commercial data mining tools.

3.6 Applications of DTs
As an inductive learning paradigm, DT learning systems offer a number of attractive

features such as high prediction accuracy (comparable with that of connectionist methods)

[23], comprehensibility (unlike connectionist methods) and ease of use which render them

Chapter 3: Decision Tree Learning 54

practical for a wide range of subject areas. They have been applied to a number of

application areas, in one of the following two manners.

" In an off-line manner to construct the model of a general concept for prediction of

unseen cases.

" Integrated in multi-strategy systems for learning, adaptation and automation.

Some examples of applications that fall into the first category include: medical diagnosis

[24], aviation [25], texture classification [26], cosmic rays identification [27], protein

coding location in human DNA [23] and robot perception classification [28]. DTs are also

used in embedded control, adaptive systems and multi-strategy systems to enhance learning

and automation such as: pattern classification [29], motion planning of a robot manipulator

[30], fuzzy rule induction [31] and fuzzy DTs for the automatic generation of control rules

in the current work [32].

3.7 Summary
This chapter has provided an introduction to machine learning techniques with an emphasis

on learning from examples. The learning systems based on this paradigm are able to

produce rule sets or DTs (which are employed extensively in this thesis) to conform to

specific applications.

This theoretical chapter conveys the necessary information and background which are

central to the understanding of the application chapters of this thesis, namely chapters 4,5

and 7. Due to the improved performance of ITI-2.8 (compared with that of ITI-2.5, C4.5

and ID3) and its availability at the time of the development of this work, it is used in its

two modes of operation, namely off-line and on-line learning, and serves as the core of the

learning algorithms proposed in chapters 4,5 and 7 for the synthesis of control rules. The

most significant attribute in the current work which favours the use of ITI-2.8 compared to

other DTs, is its ability to be embedded in multi-strategy systems for on-line learning and

this is the issue of chapter 7. Chapters 4 and 5 apply ITI-2.8 to an off-line and supervised
learning mode, and specifically chapter 4 assesses the feasibility of the proposed learning

algorithm in qualitative terms, and chapter 5 discusses its application in realistic

environments. In chapter 7, ITI-2.8 is integrated into a self-supervised hybrid system which

Chapter 3: Decision Tree Learning 55

is able to learn incrementally fuzzy control rules which are in turn used to navigate a robot

in unseen and unstructured environments.

References
[1] Carbonell, R. S. Michalski and T. M. Mitchell, "An Overview of Machine Learning",

R. S. Michalski, J. G. Carbonell and T. M. Mitchell, Machine Learning, An Artificial

Intelligence Approach (Eds.), Tioga Publishing Company, pp. 3-23,1983.

[2] R. S. Michalski, J. G. Carbonell and T. M. Mitchell, "Machine Learning, An Artificial

Intelligence Approach" (Eds.), Tioga Publishing Company, 1983.

[3] J. R. Quinlan, "Learning Efficient Classification Procedures and Their Application to

Chess and Games", Machine Learning, An Artificial Intelligence Approach, R. S.

Michalski, J. G. Carbonell and T. M. Mitchell (Eds.), Tioga Publishing Company,

ISBN: 0-935382-05-4, pp. 463-482.

[4] R. S. Michalski, "On the Quasi-minimal Solution of the General Covering Problem",

Proceedings of the Fifth International Symposium on Information Processing (FCIP

69), Vol. A3 (Switching Circuits), Bled, Yugoslavia, pp. 125-128,1969.

[5] B. Cestnik, I. Kononenko and I. Bratko, "Assistant 86: A Knowledge Elicitation Tool

for Sophisticated Users", Progress in Machine Learning (Proceedings of the second

European Working Session on Learning, I. Bratko and N. Lavrac (Eds.), Sigma

Wilmslow, UK, pp. 31-45,1987.

[6] J. R. Quinlan, P. J. Compton, K. A. Horn and L. Lazarus, "Inductice Knowledge

Acquisition: A Case Study", In Applications of Expert Systems, Edison-Wesley

Wokingham, UK, pp. 157-173,1987.

[7] J. R. Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann

Publishers, 1993.

[8] J. C. Schlimmer and D. Fisher, "A Case Study of Incremental Concept Induction",

Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia,

PA: Morgan Kaufmann, pp. 496-501,1986.

[9] P. E. Utgoff, "ID5: An Incremental ID3", Proceedings of the Fifth International

Conference on Machine Learning, Ann Arbor, MI: Morgan Kaufmann, pp. 107-120,

1988.

Chapter 3: Decision Tree Learning 56

[10] P. E. Utgoff, "Incremental Induction of Decision Trees", Machine Learning, Vol. 4,

Kluwer Academic Publishers, pp. 161-186,1989.

[11] P. E. Utgoff, N. C. Berkman and J. A. Clouse, "Decision Tree Induction Based on

Efficient Tree Restructuring", Machine Learning, Vol. 29,1997, pp. 5-44 (P. E.

Utgoff, Technical Report 95-18, March 17,1995).

[12] Utgoff and J. A. Clouse, "A Kolmogroph-Smirnoff Metric for Decision Tree

Induction", Technical Report 96-3, January 10,1996.

[13] R. S. Michalski and J. Larson, "Incremental Generation of VL1 Hypotheses: The

Underlying methodology and the Description of Programms ESEL and AQ11",

UIUCDCS-R 78-867, Dept. of Computer Science, University of Illinois at Urbana-

Champaign, Urbana, 1978.

[14] P. Clark and T. Niblett, "The CN2 Induction Algorithm", Machine Learning Journal,

Kluwer Academic Publishers, 3 (4), pp. 261-283,1989.

[15] R. Michalski, I. Mozetic, J. Hong and N. Lavarac, "The Multi-purpose Incremental

Learning System AQ15 and its testing Application to Three medical Domains",

AAAI-86, Morgan Kaufmann, California, pp. 1041-1045,1986.

[16] P. Clark, "Machine Learning: Techniques and Recent Developments", Artificial

Intelligence, Concepts and Applications in the Engineering (Ed.), Chapman and Hall,

pp. 65-93.

[17] H. Almualim and T. G. Dietterich, "Efficient Algorithms for Identifying Relevant

Features", Proceedings of the Ninth Canadian Conference on Artificial Intelligence,

Vancouver, BC: Morgan Kaufmann, May 11-15, pp. 38-45,1992.

[18] U. M. Fayyad and K. B. Irani, "The Attribute Selection Problem in Decision Tree

Generation", The Tenth Annual Conference on Artificial Intelligence, San Jose, pp.

104-110,1992.

[19] U. M. Fayyad, "Branching on Attribute Values in Decision Tree Generation ", The

National Conference on Artificial Intelligence, Vol. 1, pp. 601-606,1994.

[20] J. H. Friedman, "A Recursive Partitioning Decision Rule for Nonparametric

Classification", IEEE Transactions on Computers, April 1977, Vol. C-26, pp. 404-

408.

Chapter 3: Decision Tree Learning 57

[21] J. R. Quinlan, "Data Mining Tools See5 and C5.0", Available at:

http: //www. rulequest. com/see5-info. html.

[22] J. R. Quinlan, "Data Mining with Cubist", Available at:

http: //www. rulequest. com/cubist-info. htn-A.

[231 S. Salzberg, "Locating Protein Coding Regions in Human DNA using a Decision

Tree Algorithm", Journal of Computational Biology, 2: 3,1995, pp. 473-485.

[24] I. Kononenko, "Inductive and Baysian Learning in Medical Diagnosis", Applied

Artificial Intelligence: vol. 7,1993, Taylor and Francis, pp. 317-337.

[25] C. Sammut, S. Hurst, D. Kedzier and D. Michie (Eds.), "Learning to Fly",

Proceedings of the Ninth Machine Learning Conference, Morgan Kaufmann, 1992,

pp. 385-393.

[26] I. Sillitoe and T. Elomaa, "Learning Decision Trees For Mapping The Local

Environment in Mobile Robot Navigation", Proceedings MLC-COLT Workshop on

Robot Learning, July 1994, New Brunswick, N. J, pp. 119-125.

[27] S. Salzberg, R. Chander, H. Ford, S. K. Murthy and R. L. White, "Decision Tree for

Automated Identification of Cosmic Ray Hits in Hubble Space Telescope Images",

Publications of Astronomical Society of the Pacific 107, May 1995.

[28] G. H. Shah-Hamzei, D. J. Mulvaney and I. P. Sillitoe, " Batch-Mode Decision Tree

Learning Applied to Intelligent Reactive Robot Control", IEEE Sixth International

Conference on Emerging Technology and Factory Automation, Los Angeles,

September 9-12,1997, pp. 416-420.

[291 J. Bala, J. Huang and H. Vafaie, "Hybrid Learning Using Genetic Algorithms and

Decision Trees for Pattern Classification", IJCAI Conference, Montreal, August,

1995.

[30] T. Shibata, T. Abe, K. Tanie and M. Nose, "Motion Planning of a Redundant

Manipulator-criteria of Skilled Operators by Fuzzy-ID3 and GMDH and

Optimisation by GA", 0-7803-2461-7/95, IEEE.

[31] L. O. - Hall and P. Lande, "Generating Fuzzy Rules from Data", Fifth IEEE

International Conference on Fuzzy Systems, 1996, New Orleans, Vol. 3, pp. 1757-

1762.

Chapter 3: Decision Tree Learning 58

[32] G. H. Shah-Hamzei and D. J. Mulvaney, "Self-organising Fuzzy Decision Trees for

Robot Navigation: An On-line Learning Approach", IEEE International Conference

on Systems, Man and Cybernetics SMC'98, October 11-14,1998, San Diego, CA,

USA.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 59

chapter_4 "ýw.... __... wrM...., w.....
MÖpM...... r ..

Off-line Learning of a DT
Hierarchy Applied to Robot

Control:
Simplified Environments

Keep it simple,
as simple as possible,

but no simpler.

Albert Einstein
Quoted by B. Stroustrup in The C++ Programming Language

This
chapter presents the application of decision trees (DTs) to behaviour learning in

robotic environments. In particular, it discusses the methodology of domain

knowledge decomposition into an array of decision trees to grow a hierarchy of individual

and homogeneous DTs.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 60

To verify the feasibility of DT applications to robot path planning in the frame of

hierarchical learning, this chapter considers the application of this methodology to

simplified environments, in which only discrete movements and turning angles are

considered and the robot is assumed to be a point object. The next chapter is concerned

with the implementation of the same learning concept, but in realistic environments and in

an on-line mode.

4.1 Introduction
Robotics has been a popular test bed in recent years for a wide range of learning

algorithms. Robot motion planning and navigation, especially reactive-based approaches,

have received particular attention, witnessing the application of symbolic techniques

[1,2,3,4], connectionist methods [5,6] and fuzzy logic [1,7,8,9,10,11].

Purely reactive strategies [7] implement control laws from a collection of perception-action

stimuli to navigate a robot. Reignier utilises a fuzzy data base [7] to implement a system

which is not capable of learning, but in which the domain knowledge has been

accommodated beforehand in the database in the form of a set of fuzzy rules which cover

the entire perception space. Behaviour-based approaches [12,13] tend to be more

distributed in nature, incorporating a repertoire of parallel executing behaviours performed

by individual units. Although, analytically difficult to prove, it is commonly believed that

pure reactive systems are less powerful than behaviour-based approaches [14]. Strictly

speaking, this is a task-specific observation, meaning that if a robot is expected to achieve

certain goals at run time which are not specified at the design stage, then, generally, purely

reactive systems would not be able to perform these tasks satisfactorily. For example,

dynamically changing or unknown robot environments are more elegantly tackled using

behaviour-based approaches. Reactive systems, however, offer greater efficiency in

computation time as less information needs to be stored and processed.

Decision trees [15,16,17,18] have been successfully employed in a number of areas of

robotics, particularly in classifiers designed to make decisions based on a set of training

examples of symbolic data or numerical values [19,20]. They are used in [3] to classify the

contours of local environment after training using data collected from echoes of an

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 61

ultrasonic sensor array, in [1] to predict the motion of a robot manipulator and in [2,21] for

behaviour learning.

This chapter presents a DT-based hybrid architecture combining the features of low

computational complexity (reactive systems) with flexibility at run time to cope with

dynamic and unknown environments (behaviour-based systems). As the system is self-

learning, no initial knowledge of the environment is provided to the robot, and there is no

map making or planning, since planned navigation of a mobile robot is either susceptible to

failure due to unpredictable environmental changes or requires the assumption that the

surrounding world is stationary [8]. The overall control is distributed over a hierarchy of

decision tree networks. The hierarchy is globally trained rather being tuned to a certain

perceived world and is able to cope with dynamically changing environments.

The robot explores and is trained in a series of homogenous, yet increasingly complex

environments in such a way that the robot sensory perception is decomposed at the training

stage into a hierarchy of progressively complex worlds. The worlds' complexity depends

on the immediate obstacle configuration rather than the total number of disjoint obstacles

in the environment. Each generated world is then mapped on a unique layer represented by

a DT which accommodates the perceptual situation-action knowledge encoded in rules.

The robot builds up its knowledge base from scratch to a level involving a hierarchy of five

individual layers. The simplest layer, in which the perception-action stimuli are highly goal

oriented, represents the world with no obstacles; the most complex layer in which object

avoidance behaviour is the dominant behaviour, is the one where the robot is trapped in a

dead-end and all sensors detect objects within a specified distance from the robot.

The author chooses to use ITI-2.8 which is the latest version of the incremental decision

trees induction (ITI) [16] as the fundamental building block of the learning system. This

has the ability to generate tree networks in batch mode as well as in incremental mode.

This chapter presents the underlying idea of the hierarchical learning approach and

describes how individual DTs are generated and are able to co-operate in the solution of

complex navigatory tasks. Results of the experiments conducted using a simulated robot

are presented.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 62

4.2 The rationale of hierarchical learning design
A robust navigation system relies heavily on safe and simple motions. Safe and simple

motions are generally local in nature [22]. That is, simple situation-action reactive rules are

needed to deal with the intermediate robot environment to ensure collision free

movements. On the other hand, global planning is needed to approach a remote target

while avoiding obstacles.

Knowledge. decomposition, which is introduced in this chapter, allows local tuning of the

DTs in the hierarchy, as described in the previous section. That means, each individual DT

in the hierarchy is local to a certain environmental perception. However, complex and

global navigatory tasks can only be accomplished by introducing coherence and performing

a sequence of consecutive elementary motions. The coherence in motions, on the other

hand, is introduced into the algorithm by continuously sampling appropriate behaviour-

based DTs for the time a navigation task is in process. This imparts global tuning to the

conceptually resultant path. Another aspect of knowledge decomposition is the efficiency

in managing complex knowledge and multi-dimensional input sensory data.

A somewhat similar approach to the decision tree method applied in the current work has

been taken by Sammut et al [23] to control dynamic sub-systems of a Cessna aeroplane in

an attempt to produce an artificial autopilot by cloning the behaviour of skilled human

pilots. The constructed autopilot successfully managed to fly an entire flight mission.

4.3 Terminology and notation
A world is defined to be the instantaneous perception of the robot of its environment, based

on the sensory stimuli. The robot is initially at a starting point S and is expected to reach

the target G. The navigation process is the set containing the finite number of motions the

robot carries out in moving from S to G. The input perception P is defined to be the set of

five circumference sensors as P= {So
, Sl , S2 , S3 , S4 } in which each Si = {0,1}

. This is

mapped on the symbolic set S; =
in, y} , where n means no obstacle has been detected and

y means that an obstacle has been detected. Any perceived world is an element of the set

W= {wo, wl 9 w2 9 w3 , w4 }, where wo is the simplest in which 7, Si =0 and w4 the most

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 63

complex world (as far as the rule layers are concerned) in which 7, S; =4 with i=0,1,..., 4.

w4 is not represented as an independent rule layer in the hierarchy as the action space in

w4 is limited to a single class regardless of the goal location. This renders the generation of

a corresponding tree unnecessary.

For example, considering the sensor pattern in Figure 4.1 and with the robot at state Ro in

Figure 4.2, the perceived world is wo and the returned value of all sensors is zero (no

obstacles). At state Ri, however, wi is perceived, indicating that only one sensor from the

sensor set detects an obstacle and the robot has four possible directions of motion.

4.3.1 Sensor configuration
Figure 4.1 demonstrates the configuration of range sensors scanning the proximity of

objects in front of the robot. Adjacent sensors are separated by an angle of 450 relative to

the robot centre where each sensor's angle of detection falls into a cone of ±22.5 about

each sensor axis. In modelling the behaviour of the range sensors, the following

assumptions are made:

" Each single movement of the robot covers one cell, i. e. from the centre of one cell to

the centre of the adjacent cells, see Figure 4.2.

" Within a specified sampling time, the return value of each proximity sensor has a

binary state which is set when an obstacle is detected.

Uncertainty in the values of sensor readings and the possibility of errors in observations

and data increments, generally termed as noise, are discussed further in section 4.8. The

nature and sources of error, the way it affects input training data and its impact on DT-

structure are also addressed in section 4.8.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 64

\\\
NN

NH

NE

/
/

/

Figure 4.1 Robot shown with circumference sensors (So, S1, S2, S3, S4) and direction cones
corresponding to compass points

4.3.2 Representation of the robot environment
The navigation terrain is represented as a 2D-grid, depicted in Figure 4.2. Objects may be

individual and well scattered each occupying a single square on the grid or they may be

combined to form extended objects covering a number of adjacent squares on the grid. The

instantaneous heading vector of the robot is shown as an emphasised directional arrow in

Figure 4.2 and sensor returns indicating obstacles and the absence of obstacles are shown

by broken and unbroken arrows, respectively.

To clarify further the robot-world relationship, consider some examples of robot states. The

sensory perception of the robot at state R3, heading -45` ,
is P= In, y, y, y, n} and this

corresponds to w3 as three of the sensors detect obstacles. Robot states such as R30, R3 1,

R32 are further examples of w3 in which the robot has two choices from which to select its

next direction of motion. An assumption made is that the size of the robot is sufficiently

small in comparison to that of the obstacles [8]. This implies that robot has sufficient space

to manoeuvre between two objects which are diagonally adjacent, so for example, at R32

the robot is able to advance at an angle of either -135 or -45'.

If in a w3 state such as R30, the target is exactly behind the wall, the resulting robot

motion could be oscillatory in that it performs a repeating sequence of movements. This is

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 65

a problem inherent in minimum seeking behaviours [5,24]. This problem is resolved by the

fact that the robot is trained to identify cases which may lead to oscillatory movements and

this information is used to grow a so-called oscillatory decision tree [25]. Since this DT

incorporates a wall-following behaviour, it is activated in circumstances when a possible

oscillation is detected and remains active for classification of the robot perceptions as long

as the oscillation remains. Figure 4.3 summarises the interrelationship between worlds in

the hierarchy as their complexity varies.

R3

R4

RI

Figure 4.2 Grid representation of the environment and examples of the robot instantaneous

perceptions

Wo
simpler more complex

WI

more specific rules T more generalised rules W2
more goal - oriented more obstacle avoiding

W3

Figure 4.3 Worlds' functionality and interrelationship in the hierarchy

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 66

4.4 Calculation of the robot divergence angle
The robot divergence angle 6 is required for the following purposes:

" To generate an appropriate steering angle.

" To determine the goal location relative to the robot at any time rather than using

absolute data. This significantly reduces the dimensionality of the feature vector used

in DT generation.

The divergence angle is defined as the angle between the robot heading unit vector h and

the goal unit vector g, the vector joining the robot R and the goal G, as depicted in Figure

4.4

0l XG XR xw

J

...........:.. YR

YG r

G

Yw

Figure 4.4 Instantaneous goal location relative to the robot at 0 in azimuth in absolute
world co-ordinates

In the following we define the corresponding unit vectors h and g to derive the

divergence angle 0.

h =cosa"i+sina. j (4.1)

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 67

g=. (XG-XR)"i++(YG-YR)j (4.2)

L= (Xc-XR)2+(YG-YR)2 (4.3)

We use the scalar product between h and g to calculate the modulus of 9 and their vector

product to work out the sign of 0 as follows:

h"g
cos 0=-=h"g (4.4) fr!. II

ijk

Xi Y0 =ß"i+"Sj+, Z"k (4.5)

XZ Yk 0

where

A=XhYR -YhXB (4.6)

Substituting (4.1) and (4.2) into (4.4) and (4.6), the robot divergence angle in terms of its

modulus and sign at any time is completely described by the following set of equations:

0= cos-' Ic La (Xa - XR) + S1La (Yc - YR) I" sgn ý (4.7)

Cos a (Yc-YR)-SiLa (XG-XR) (4.8)
L

In all the above equations, a and R(XR, YR) are the robot absolute heading and Cartesian

co-ordinates respectively, and G(XG, YG) are the goal Cartesian co-ordinates.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 68

4.5 Performance criterion for training set construction
Since the robot motion directions are generated randomly at the training stage, we define

usefulness U=f (C) as a measure of goodness of the performed actions. Following the

transition from a previous state n -I to a current state n, the cost associated with each

motion C is defined as

E,.
-Id-E. C=(dJ sgn(cos(9n - On -1)) (4.9)

and the usefulness is defined as

_1
if C? 0

U0
if C<0

(4.10)

In (4.9), d is the total travelled distance, E is the Euclidean distance between the robot and

the goal, and 0 is the robot divergence angle. Only the states delivering a usefulness of

unity are positively reinforced by being remembered, the remainder being forgotten.

Remembered experiences are collected to form the training examples for DT generation.

4.6 Robot training and decision tree generation
In the training phase where the robot is set to exploratory mode, observations which lead to

useful actions are reinforced by being remembered. An observation contains the state of all

proximity sensors and the position of the robot relative to the target. A further step needs to

be taken to conform each observation increment to the format suitable for DT induction.

To grow a decision tree network, ITI [15] requires a set of training vectors having the

format f o, fj,..., fi,..., f,,,, c1, in which f, is a feature with f; EF and

F= If o, f i,..., f, ,...,
f� } is the space of features (input variables) each being defined on a

unique space of feature values such as f; _ {fo;, fli
9f2i9 .,. 9 fmi }. c; is a class with c; EC

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 69

from the set of available classes C= {c12c29...
9 c; 9... 9ck

} in which each class has a finite

number of discrete values.

The format of the training vectors are configured as a function of world intricacy in order

to keep as small as possible the dimensionality of world-dependent trees. That means, in an

environment such as wo (the first and the simplest layer in the hierarchy) with no

obstacles, the perceptual state reduces to only a single feature, namely the relative position

of the robot to the target. The robot divergence angle 8 is used to supply the instantaneous

relative location of the goal, requiring no absolute data to be present in the tree

construction. This reduces significantly the size of the tree and tunes the tree globally, as

far as the target-seeking behaviour is concerned. Since there is no obstacle in wo, the robot

position relative to the target is used as the only feature and a corresponding class is

required in the form of: goal_rel_loc, c, . The set of values that the feature (goal_rel_loc)

and the class (c;) can take are:

goal_ rel_ loc =- {north, n_ east, east, s_ east, south, s_ west, west, n_ west} and

C= {0,1,2,3,4} _ {left, left_ front, front, right_ front, right}.

Consequently, depending on the location of the goal, each individual class c; is mapped on

an output reflex from the above set to drive the robot.

Having specified the format of the training entities, the algorithm generates an appropriate

class to complete each training vector needed for tree construction. There is no domain

expert intervention in the process of class generation; the algorithm evaluates each motion

with the usefulness function and reinforces the positive ones. Positive experiences are

remembered iteratively and collected to train the robot. Figure 4.5 (see page 84) shows the

tree network to represent world wo of the tree hierarchy.

Tree induction in the remaining worlds is carried out in the same manner, except that the

increase in the dimensionality of the feature vector is augmented by the sensory data to the

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 70

new format, namely So , Sl , S2 , S3 , S4 , goal_ rel_ loc, c; . Figures 4.6,4.7 and 4.8 (see pages

85 to 87) demonstrate DTs representing worlds wl, w2 and w3 .

When inconsistent training examples occur [15,16] and this will result in leaves in the DT

representing more than one class, feature patterns can be classified into multiple classes. In

terms of output reflexes, when the robot is in a certain state relative to the goal, more than

one direction of motion is predicted leading to a conflict in the rules. To produce a single

output reflex from those available, a random selection is made.

4.7 Decision trees for classification
Section 3.4 of the previous chapter introduced the notion of DTs, various types and their

implementation, particularly in this work. In the following, a simple navigation task is

decomposed into its world specific perceptions, and it is demonstrated how each perception

is mapped on a unique DT to synthesise control rules.

4.7.1 An example of the rule layer switching
To clarify the fundamental principles on which the navigation is based and to demonstrate

how different rule layers are sampled based on instantaneous perceptions, a simple

example of a target-seeking task is considered.

With the robot located at position R20 in Figure 4.2, the aim is to reach the target G

(shown top centre) while avoiding obstacles. The robot is assumed to have an initial

heading angle of -90*. The goal location relative to the robot is initially calculated to be in

the north, but will be updated in every state. Table 4.1 illustrates how different worlds are

perceived as vector P changes state and how the robot acts on them. Using the state vector
P and the state variable goal_ rel_ loc , the DTs corresponding to W2 and W3 are

traversed in order to classify the perception patterns. These paths are shown as directed

lines and numbered in the order they are searched in the DTs for the worlds W2 and W3

(Figure 4.7 and Figure 4.8 (see pages 86 and 87), respectively). The directions of motion

are determined by the terminal nodes, their values consistently being "2" in this particular

example. As described in section 4.6, this class corresponds to front as an output reflex that

drives the robot forwards.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 71

Firing
Order

Robot
State

Perception P Goal_rel_loc World
State

Direction
of
Motion

1 Rxo n, n, n, y, y north W2 forwards
2 R21 n, n, n, , north W2 forwards
3 R22 n, y, n, y, y north W3 forwards

__
4 123 , n, n, , yyy north W3 forwards
5 R24 n, n, n, y, y north W2 oal state

Table 4.1 Decomposition of a sample navigation task in terms of state variables and output
reflexes

Table 4.2 demonstrates how each individual control rule can be synthesised by switching

between DTs using the same robot states as those used in Table 4.1. Each individual rule is

the result of following a DT along the path leading to a terminal node.

Robot Control Rules
State
R20 IF (S2 = -, y) A (S 1= -, y) A (goal_rel

_loc = -, s_east) A
(goal_rel_loc = n_east) A (goal_rel_ loc = -, n_west) A
(goal_rel_loc = -, north) THEN C=2

R21 IF (S2 ='-I y) A (S i =--I y) A (goal_rel
_loc = s_east) A

(goal_rel_loc = -i n_east) A (goal_rel_ loc = n_west) A
(goal_rel_loc = -, north) THEN C=2

R22 IF (S2 =" y) A (S1 = y) A (S4 = y) THEN C=2
R23 IF (S2 = -, y) A (Si = -, y) A (goal_rel

_loc = -, n_east)
THEN C=2

R24 IF (S2 =" y) A (S1 = -, y) A (goal_rel
_loc = -, s_east) A

(goal_rel_loc = -, n_east) A (goal_rel_ loc =- n_west) A
(goal_rel_loc =, north) THEN C=2

Table 4.2 Control rules synthesised by searching different rule layers to describe a specific
trajectory. Above, symbol -, is to be interpreted as logical NOT and C=2 as "output reflex

is front", as shown in section 4.6.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 72

4.8 Noise and uncertainty
In the real-world, errors in the presentation of sensor values to the learning algorithm affect

its performance. Such errors can arise because of mistakes in the recording feature values,

incorrect classification of training vectors by the teacher [26,27] or erroneous sensory data.

The first two types are both systematic errors, whereas the latter is categorised as random

error or noise [28]. In the current work, the first two sources of error are excluded since the

generation and classification of training examples are performed entirely automatically

with no external intervention. Hence, the source of error is limited to the additive noise

which can be attributed to uncertainty in sensor readings.

Under ideal circumstances, an obstacle's presence would always be correctly indicated by a

sensor when it falls within its field of detection. However, in real world environments, due

to sensor noise, there will be cases where sensor readings fall into a region where

misclassification can occur. It is important that any learning process is able to continue to

perform satisfactorily under these circumstances. In order to deal with such noisy data, a

suitable noise model and a modification to the learning algorithm were developed and these

are described below. As the introduction of noisy examples into the training of the DTs

produces larger trees, methods for pruning trees are also considered.

4.8.1 Noise modelling
As discussed, behaviour learning is based on the observations of the robot from its physical

environments. These observations which are suitably formatted for knowledge extraction

correspond directly to the robot perceptions (sensor readings). These perceptions are

derived using proximity sensor values and are used to deduce whether an obstacle is

present. To determine whether an input value D; associated with sensor S; indicates an

obstacle's presence, a suitable threshold function is used, Figure 4.9.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 73

No Obstacle Obstacle
Sensor Statef Uncertain

r
0 0.35: 0.5 0.65 1 Normalised

Input Value

Figure 4.9 The threshold function used to classify sensor values into three categories: (a)

no obstacle is detected if the input value falls below 0.35; (b) an obstacle is detected if the
input value is above 0.65 or (c) it is uncertain whether an obstacle is present if the sensor

value is within ±0.15 of the threshold.

From Figure 4.9, it is known that the presence of noise may cause an error in

misclassification of those sensor readings close to the threshold. The extent of this area of

potential misclassification is shown shaded. For the environment considered in the current

work, a width of ±0.15 around the threshold was found to be suitable.

4.8.2 Modified learning algorithm
The training method previously described involves training a hierarchy of DTs ranging

from wo with no obstacles, to w4 where all sensors detect obstacles. To show how training

can be carried out when sensor noise is present, consider the example shown in Figure 4.10

when training the DT for w1, that is, it is known a priori that only one sensor should detect

an obstacle.

'ý...

ký

F
i
t

mlkký

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 74

(a)

SO Sl S2 S3 S4
Perception

P
0.2 0.3 0.7 0.4 0.1

r

0.2 0.3 0.7 - 0.1

n n y y n

(b)

0.2 0.3 0.7 - 0.1

n n y n n

Figure 4.10 The mapping of robot perception P in wi, where the input value for S3 falls
into the uncertain area shown in Figure 4.9. This gives rise to two possible symbolic

interpretations of P for S3, shown in (a) as "y" and in (b) as "n".

In order for the navigation system to operate successfully in the face of sensor noise, a

perception where one or more sensor inputs fall into the uncertain area needs to be used as

an example in the training of the DTs. In Figure 4.10, a single sensor input falls into the

uncertain area and this is represented by allowing two possible symbolic interpretations. As

training is taking place for wl, the example must be used in the training of wl, even though,

strictly speaking, pattern (a) represents W2, as two sensors detect obstacles. In the context of

inductive learning, training examples such as pattern (a) are considered as counter-

examples to the noise-free representative and homogeneous training examples describing

wj. Counter-examples can be introduced to the batch of uniform and representative

examples to expand the search space so as to produce noise tolerant production rules [27].

The existence of counter-examples, however, leads to the specialisation of the training

patterns which reduces the generalisation ability of DTs, and hence produces larger tree

networks. This effect is shown in Figures 4.11 to 4.13 which are the noisy versions of

Figures 4.6 to 4.8.

Once the DTs have been trained as described above, they can be used on real-world

examples. Having described the mechanism of training under uncertainty, the strategy to

classify imperfect data is considered using examples of real world perceptions.

Chapter 4. Off-line Learning of a DT Hierarchy Applied to Robot Control 75

4.8.3 An example of rule firing in the presence of uncertain data
The DTs in the hierarchy are able to cope with uncertain data existing in the robot

perceptions when navigating in unseen environments. The algorithm is modified in such a

way that mapping a perception on a world no longer depends on the total number of

sensors that detect obstacles, but on the number of sensors whose readings fall outside the

uncertain region of the threshold function. Three example of sensor values are shown

shaded in Table 4.3 (a) as perceptions PI, P2 and P3.

Table 4.3 (a) Three examples of uncertain sensory data (in bold face) each interpreted into

either a symbolic "y" or "n" using the threshold function. (b) The number of sensor values
indicating obstacles with certainty (shaded) in each pattern gives rise to the world on which

each pattern is mapped.

An instantaneous robot perception from its environment such as Pj needs to be mapped on

a unique rule layer to be further classified by searching the tree. In the presence of noise in

sensor readings, there exists no direct mapping between the perceptions and the worlds.

That is, perceptions such as P, are not mapped on w2 (although two sensors detect

obstacles), but on w1 because the state value of S1 in Table 4.3 (a) is uncertain and the

classification is performed using only partial data. Since the hierarchy has been trained

using counter-examples to the uniform representatives, it is able to cope with and to

classify inhomogeneous patterns such as in Table 4.3 (b).

(a) (b)

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 76

4.8.4 Decision tree post-pruning
To deal with the larger trees which result from the use of imperfect data examples in

inductive learning systems, rule-truncation or decision tree post-pruning can be employed

[18,27,28]. In this approach, after a DT has been grown to completion, components

deemed unreliable are removed. These components are usually sub-trees which represent a

weak correlation between classes and feature-values; the classification task of these sub-

trees are usually moved to terminal nodes. The resulting DTs are smaller in size, more

generalised in character and better able to cope with imperfect data. For example, Figures

4.14 to 4.16 show the pruned versions of the DTs (demonstrated in Figures 4.11 to 4.13)

obtained for the noisy sensor data.

Tree pruning is not appropriate when small sample sizes are involved as this would result

in overgeneralised DTs with low classification accuracy. Conversely, a large number of

training examples tends to produce ovetted DTs which are themselves large in size and

which try to represent individual patterns. Consequently, achieving appropriately-sized

DTs with acceptable classification accuracy is a trade-off between the two cases. Our

experimental results demonstrate that a sample size of approximately 200 training vectors

is appropriate if post-pruning is to be performed on the generated DTs.

4.9 Dynamic rule inhibition and DT augmentation
The learning algorithm of the intelligent system benefits from two mechanisms which

refine the trees dynamically and these are discussed below.

Firstly, during the navigation process when the robot applies the learned knowledge to

predict its future direction, rules are evaluated as they are fired. Since some rules,

particularly those in multiple-class leaves, have been generated when the goal has been

located in the overlapping area of two adjacent sensor cones (inconsistent training cases),

they prove to be inefficient (by producing negative costs) when applied consecutively to a

certain state. The algorithm identifies such rules and inhibits them and restructures the tree

accordingly. The inhibited rules are not used thereafter and these are shown shaded in

Figures 4.5 and 4.6 which show the DTs for worlds wo and wl , respectively.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 77

Secondly, the algorithm identifies rules which are overgeneralised in the process of tree

induction. A rule such as this may drive the robot in certain circumstances towards

obstacles and in others towards the target. In such conflicting cases and after the

identification process, new training examples are automatically generated. These are

integrated incrementally into the tree to augment it and to specialise such rules by re-

inferring the tree. For example, the DT shown in Figure 4.17 is the augmented version of

Figure 4.12, and Figure 4.18 being its truncated version.

4.10 Results and discussion
The learning mechanism presented in this thesis introduces an efficient approach to

synthesising control rules by employing self-learning of domain knowledge from inception

rather than under supervision. This has been achieved using DTs and performing symbolic

learning without the intervention of human experts. This is similar in concept to the

approach taken in [29] and contrasts with that taken in [11] where control rules are

manually constructed prior to navigation. However, a major advantage of the approach

presented in this work is that the generated rules are highly intelligible to human users and

easy to follow as can be seen by examining the rules shown in Table 4.2.

Since the principal emphasis of this chapter is to demonstrate the feasibility of DT-based

learning for high level decision making rather than low level control, the control algorithm

is simulated with a simple character-based user interface. Consequently, the steering angles

that can be externally resolved (in the user interface only) for the actuators are in 45'

increments, making certain trajectories appear longer than expected, as will be shown in

pictures to follow.

In all navigation examples, the robot is positioned at an arbitrary starting point S and is

expected to reach the target G avoiding obstacles. Figure 4.19 (a) shows the first stage of

learning in the environment without obstacles, namely wo. The initial leg of the trajectory is

rather more exploratory than target-seeking. The locations visited by the robot more than

once are highlighted. This shows that the robot first moves away from the target,

generating negative costs. The performance then improves and the robot heads towards the

goal. After 10 training epochs, the robot demonstrates a significant improvement in finding

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 78

the target while keeping the same settings, namely the robot having the same location and

starting angle, and also the same goal position. Figure 4.20 is a scenario where the robot is

navigating in a sparsely obstacle-populated terrain. In such environments, the robot has

access to the knowledge learned in wo and wl. Figures 4.21 to 4.23 are examples of

navigation scenarios in more complex surroundings, in which the DTs in the hierarchy

have already been grown and are accessible to the robot. Table 4.4 shows the number of

training vectors needed on average to build up each individual DT and the entire hierarchy.

Worlds

WI wl W2 W3 W4

Average 10 11 12 10 8
Number of Runs

Number of
Training 58 112 95 60 68
Examples

Total number of training runs to build up the 51 hierarchy (Mean)

Table 4.4 The approximate number of trials and the training examples needed to set up
each individual DT in the hierarchy.

The simulation results are of rather more qualitative than quantitative significance for the

evaluation of the learning approach. The significant improvement that the robot

demonstrates during navigation is that it does not exhibit repetitive motions such as that

shown in Figure 4.19 (a), and it is always able to find the target. In some instances, the

generated trajectories appear longer than the shortest route available; this can be attributed

in part to the simplification made in the resolution used for the turning angle, but it is well

known that reactive path planners do not always produce the shortest trajectory [30].

A further limitation which is inherent to purely reactive systems is demonstrated in Figure

4.23. This occurs when the two available behaviours, namely reactivity and target-seeking

behaviour are applied alternatively. This mostly happens when the robot follows a long

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 79

wall while heading the target and in such circumstances, absolute behaviour arbitration

leads to the so-called zigzag trajectories for the time the robot shows wall-following

behaviour.

As stated previously, the main objectives of this chapter are to demonstrate that the DT-

based hierarchical learning approach is capable of generating safe and simple locomotion

reflexes. To demonstrate this, a number of simplifying assumptions were made about the

nature of the robot, actuation and the environment. These were implemented in order to

keep the dimensionality of the problem domain at a manageable level, thereby allowing a

qualitative judgement of the overall performance of the learning mechanism to be made.

Therefore, no comprehensive comparison is made at this stage with previous work, as far

as the performance of the learning algorithm is concerned. The experimental results prove

the feasibility of the approach [21] and provide the incentive for the work presented in the

next chapter where (a) the learning algorithm is modified to incorporate incremental and

on-line learning, (b) realistic and higher resolution environments and robot configurations

are considered.

4.11 Summary
This chapter has demonstrated a symbolic approach based on decision tree learning to the

intelligent control of a mobile robot. The perceived world is decomposed into a hierarchy

of simple, homogeneous worlds that a positively reinforced robot learning system

experiences. At each level, the navigation data collected are applied to train and grow an

I TI-based decision tree. Each world is mapped on a rule layer in which the learned

knowledge is encoded and, depending on the complexity of the perceived world, rule layers

are "switched on" to navigate the robot through an unknown and cluttered environment.

The navigation algorithm behaves intelligently in that, following poor performance during

the navigation process, learned rules in any layer can be dynamically inhibited or "switched

off'. The rule layers can also be dynamically augmented to specialise certain

overgeneralised rules and this is achieved by the on-line restructuring of the DTs to

integrate the new knowledge into existing trees.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 80

The control concept, namely the knowledge decomposition, ensures safe and globally tuned

navigation due to the emphasis on reactivity. Safety is achieved in performing local

environmental mapping, whereas the global nature is provided by circular sampling of

decision tree networks to generate a sequence of elementary motions.

The next chapter of this thesis demonstrates the application of the DT-based hierarchical

learning to higher resolution and realistic environments by using simulated environments

for the miniature robot Khepera [31,32].

References
[1] Shibata, T. Abe, K. Tanie, and M. Nose, "Motion Planning of a Redundant

Manipulator-Criteria of Skilled Operators by Fuzzy-ID3 and GMDH and

Optimisation by GA", Proceedings of IEEE Conference, 0-7803-2461-7/95,1995.

[2] T. Zrimec and P. Mowforth, "Learning By an Autonomous Agent in The Pushing

Domain", Robotics and Autonomous Systems, 0921-8830/91,1991, Elsevier Science

Publishers B. V.

[3] I. Sillitoe and T. Elomaa, "Learning Decision Trees For Mapping The Local

Environment in Mobile Robot Navigation", Proceedings MLC-COLT Workshop on

Robot Learning, July 1994, New Brunswick, N. J, pp. 119-125.

[4] M. Salganicoff and L. G. Kunin, "Active Exploration Based ID-3 Learning for Robot

Grasping", Proceeding MLC-COLT Workshop on Robot Learning, July 10th 1994,

New Brunswick, N. J.

[5] A. Dubrawski and J. Crowley, "Self-Supervised Neural System For Reactive

Navigation", Robotics and Automation IEEE International Conference, 3 (1994), pp.

2076-81.

[6] J. Tani and N. Fukumura, "Learning Goal-Directed Sensory-Based Navigation of a

Mobile Robot", Neural Networks, 7 (1994) 3. pp. 553-563, Elsevier Science Ltd.

[7] P. Reignier, "Fuzzy Logic Techniques For Mobile Robots Obstacle Avoidance",

Robotics and Autonomous Systems, 12 (1994), pp. 143-153.

[8] C. J. Wu, "Fuzzy Robot Navigation In Unknown Environments", IEEE International

Workshop on Emerging Technology and Factory Automation, August 11-14,1992.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 81

[9J R. Braunsting, J. Mujika and J. P. Uribe, "A Wall Following Robot With a Fuzzy

Logic Controller Optimised by a Genetic Algorithm", IEEE, 0-7803-2461-7/95,

1995.

[10] R. Braunsting and A. Ollero, "Evaluating The Wall Following Behaviour of a Mobile

Robot With Fuzzy Logic", IFAC/IMACS International Workshop on Artificial

Intelligence in Real Time Control, Bled, Slovenia, Nov. 1995, pp. 89-93.

[11] H. Surmann, J. Huser and L. Peters, "A Fuzzy System For Indoor Mobile Robot

Navigation", IEEE, 0-7803-2461-7/95,1995.

[12] P. Maes and R. A. Brooks, "Learning to Co-ordinate Behaviours", Proceedings of

AAAI'91, Boston, MA, pp. 796-802,1991.

[13] M. A. Salichs, E. A. Puente, D. Gachet and J. R. Pimente, "Learning Behavioural

Control by Reinforcement for an Autonomous Mobile Robot", Proceeding of

IECON'93, Vol. 3, pp. 1436-1441,1993.

[14] M. J. Mataric, "Behaviour-Based Control: Main Properties and Implications",

Proceedings of IEEE International Conference on Robotics and Automation,

Workshop on Architectures for Intelligent Control Systems, Nice, France, May 1992.

[15] P. E. Utgoff, N. C. Berkman and J. A. Clouse, "Decision Tree Induction Based on

Efficient Tree Restructuring", Machine Learning, Vol. 29,1997, pp. 5-44.

[16] P. E. Utgoff, "Incremental Induction of Decision Trees", Machine Learning, 4 (1989),

Kluwer Academic Publishers.

[17] J. R. Quinlan, "Decision Trees and Decisionmaking", IEEE Transactions on Systems,

Man, And Cybernetics; 20 (1990) 2, March/April 1990.

[18] J. R. Quinlan, "C4.5: Programming For Machine Learning"; Morgan Kaufmann

Publishers, 1992.

[19] J. R. Quinlan, "Improved Use of Continuous Attributes in C4.5", Journal of Artificial

Intelligence Research, 4 (1996), pp. 77-90.

[20] T. Elomaa, and J. Rousu, "Finding Optimal Multi-Splits for Numerical Attributes in

Decision Tree Learning", NeuroCOLT, Technical Report Series, NC-TR-96-041,

March 1996.

[21] G. H. Shah Hamzei, D. J. Mulvaney and I. P. W. Sillitoe, "Batch-Mode Decision Tree

Learning Applied to Intelligent Reactive Robot Control", Sixth IEEE International

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 82

Conference on Emerging Technologies and Factory Automation (ETFA'97),

September 9-12,1997, Los Angeles, USA.

[22] M. Kaiser, V. Klingspor, J. Millan, and M. Accame, "Using Machine Learning

Techniques in Real-World Mobile Robots", Intelligent Robot Systems, IEEE Expert,

0885-9000/95,1995.

[23] C. Sammut, S. Hurst, D. Kedzier and D. Michie (Eds.), "Learning to Fly",

Proceedings of the Ninth Machine Learning Conference, Morgan Kaufmann, 1992,

pp. 385-393.

[24] G. H. Shah Hamzei and D. J. Mulvaney, "Behaviour-driven Decision Tree Switching

to Identify and Resolve System Instability in Reactive Robot Control", Proceedings

of the Fifth International Workshop on Advanced Robotics and Intelligent Machines,

April, 1997, Manchester, UK.

[25] G. H. Shah Hamzei D. J. and Mulvaney, "Local Minima and Oscillation Resolution in

Reactive Robotics Using Decision Tree Learning", LASTED International

Conference on Artificial Intelligence and Soft Computing, July 27-August 1,1997,

Banff, Canada.

[26] R. J. Hickey, "Noise Modelling and Evaluating Learning from Examples", Artificial

Intelligence, 82 (1996) 157-179.

[27] P. Clark and T. Niblett, "Induction in Noisy Domains", Proceeding 2nd European

Machine Learning Conference (EWSL - 87); 1987, pp. 11-30.

[28] P. Bradzil and P. Clark, "Learning from Imperfect Data", Machine Learning, Meta-

reasoning and Logics, (Eds.) P. B. Bradzil and K. Konolige, 1990, Kluwer, pp. 207-

232.

[29] A. Dubrawski and J. Crowley, "Learning Locomotion Reflexes: A Self-Supervised

Neural System for a Mobile Robot", Robotic and Autonomous Systems, 12 (1994),

pp. 133-142.

[30] D. T. Lawton, R. C. Arkin and J. M. Cameron, "Qualitative Spatial Understanding and

Reactive Control for Autonomous Robots", IEEE International Workshop on

Intelligent Robots and Systems, Vol. 2, pp. 709-714,1990.

[31] 0. Michel, Mage Team, Bs Laboratory, CNRS, University of Nice-Sophia Antipolis,

France, Khepera Simulator was provided for the Official Khepera Contest at

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 83

Evolution Artificial Conference (Nimes, 1997), downloadable from:

http: //alto. unice. fr/-om/khep-contest. html.

[32] 0. Michel and P. Collard, "Artificial Neurogenesis: An Application to Autonomous

Robotics ", Proceedings of the 8th International Conference on Tools with Artificial

Intelligence, pp. 207-214, IEEE Computer Society Press, 1996.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 84

Figure 4.5 Layer zero of the rule hierarchy representing w0. Classes which are shaded have
delivered poor performance during navigation. These are completely inhibited.

I

,

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 85

Figure 4.6 Layer one of the rule hierarchy corresponding to wj. Shaded classes have been
identified as performing poorly and switched off dynamically in the navigation process.

i

R
k

ý:

L:
f

ý..
ý ..

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 86

Figure 4.7 Layer-two of the rule layers to represent W2. Directional lines demonstrate an
example of traversing the tree to fire a rule given a certain robot state.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 87

Figure 4.8 A typical much generalised layer-three of the rule hierarchy to represent w3. An

example of how a rule is fired is shown.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 88

_`T'ý..

Figure 4.11 Layer-one of the hierarchy representing wi. This DT has been grown on noisy
sensory data, in contrast to Figure 4.6.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 89

Figure 4.12 Layer-two of the DT hierarchy to represent w2. This incorporates data taken
from noise simulated proximity sensors.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 90

Figure 4.13 A DT network for classification of perception related to w3. This is grown on
noisy sensory data.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 91

S2=n

so =niI goal_reI_Ioc = north

=east I2I SO =n goal_rel_loc = n_east
1

S3=n U

I
4
ii

U
S 1 S3'=n

3

32 14 4 00 4 0 2 0 1
3 3

Figure 4.14 The post-pruned version of Figure 4.11. This DT represents wl incorporating

noisy data.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 92

Figure 4.15 The DT representing layer-two of the hierarchy (shown in Figure 4.12) after

post-pruning and replacing sub-trees with decision nodes.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 93

Figure 4.16 The post-pruned version of the DT shown in Figure 4.13. This represents
layer-three of the hierarchy.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 94

bA

UD

O

t].

v
a)

O
.0 O

cýY
U
O
4-
'b
c)
4 cd

U
Cl*

. C:

N

th

bA

0

H

w O
0

oA
03
aý

w

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 95

3
cn
c

aý
aý

aý

U
4-

0

.C
C
O
.,
CCS

150. a

vý .b
0) o
.ca
ÜO

CZ .
-4

b

U

N

2

bn

0
0

aý
b aý

4
0

Go

c.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 96

(a)

] Mauigation Field 1 [1],

(b)

Figure 4.19 Training the robot on the first layer of the hierarchy (w0) with no obstacles to

establish target-seeking behaviour, (a) where locations visited by the robot more than twice

are highlighted. Figure (b) demonstrates a navigation with the same robot-goal setting after

the robot has sufficiently been trained. This environment can be navigated using the DT of
Figure 4.5.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 97

naulgation rye =[ý

Figure 4.20 Navigation on an environment containing sparse obstacles after sufficient

training. For navigation on such terrains only the DTs associated with W and wl are

appropriately activated.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 98

Figure 4.21 Target-seeking while avoiding obstacles in a complex environment.

IML

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 99

4 auigation Pie

S

Alt-X Exit Alt-F3 Close

Figure 4.22 Navigation of a homing task showing reactivity and wall-following behaviour.
In such environments the robot has access to the entire DTs in the hierarchy.

Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 100

Figure 4.23 The zigzag trajectory is an example of behaviour which can result from

transition between rule layers at either ends of the hierarchy due to behaviour dominance.

EMIL

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 101

t Ik

On-line Learning of an
Adaptive DT Array Applied

to Robot Control:
Realistic Environments

To learn is to change, and to change is to learn.

Bart Kosko
Fuzzy Thinking

The previous chapter introduced an approach to behaviour learning in which the

knowledge space was decomposed into a layered hierarchy of control rules each

encoded in a distinct DT. The strengths of the proposed approach were shown to be the

efficient management of the overall knowledge complexity, ease of implementation and the

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 102

generation of expressive control rules due to the intelligibility of induced knowledge which

is characteristic to DTs. The experiments conducted were largely of qualitative significance

in their demonstration of the feasibility of the approach, and were performed by making a

number of simplifying assumptions about the robot and its environment in order to keep

the dimensionality of the problem domain manageable and under control. This chapter

takes further the approach introduced in the previous chapter by investigating the

performance of the control concept in environments with realistic assumptions, as well as

considering the characteristics of a physical robot with finite dimensions.

5.1 Introduction
This chapter implements the methodology of the hierarchical learning design introduced in

the previous chapter, augments the method with incremental and on-line learning and

considers a continuous perception-action space. This allows the quantitative assessment of

the approach and its application to real world scenarios. Unlike the preliminary

experiments in which the robot was considered as a point object (one of infinitesimally

small physical dimensions), the perception-action was discretised and learning was

performed off-line; this chapter is concerned with the application of the approach

considering the following aspects:

" the robot has finite physical dimensions;

" the environment is continuous;

" the action space is continuous;

" the learning mode is incremental and on-line.

In contrast to the supposition of a discrete environment, the continuous perception-action

space suggests an increase in the dimensionality of the DTs, and consequently the

generation of a significantly larger rule space to search. This is because the number of

possible states increases, which is directly related to the diversity of training examples

which are supplied to the learning algorithm. Investigations into: how large the DTs will

grow, whether they are able to suitably generalise new concepts, and whether DT

truncation affects the generalisation capabilities of the DTs, will be carried out.

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 103

This chapter defines the relevant terminology used and introduces the features of the

simulated mobile platform used in the experiments. The control architecture of the system

is outlined and the method of development of the incremental tree induction is described.

The concept of incremental evolution of DTs is illustrated in an example, illustrating the

continuous adaptation of DTs as new knowledge is provided. The results are taken from a

number of typical navigatory scenarios and include investigations of the efficiency and the

limits of applicability of the approach. Possible improvements of the current technique are

also discussed.

5.2 Terminology
As in the previous chapter, world is defined to be the instantaneous robot perception. The

input perception P is defined to be that provided by the set of six circumference sensors as

P= {So
,
Si , S2 , S3 , S4 , S5 } in which the range of each sensor value is defined by

Si = {0,1,2,3,..., 1023} (to be discussed in section 5.3). However, the numerical outcome of

each sensor is mapped on the symbolic set Sis = (Y, N), meaning that an obstacle is

detected (Y), or no obstacle is detected (N). The experimental results demonstrated that Si =

750 is a suitable threshold for classifying a numerical sensor value into either region of a

decision plane (Figure 4.9 of chapter 4) in the same manner as discussed in section 4.8.1.

Noise and uncertainty associated with sensor values and partitioning of the decision space

is tackled in the same way as described in section 4.8.

Any perceived world is an element of W= {0
, Wl, w2 , W3, W4

},
where wo is the simplest

and w4 the most complex world. w4 is not represented as an independent rule layer in the

hierarchy as the action space in w4 is limited to a single class regardless of the goal

location, making the generation of a corresponding tree unnecessary. Training vectors need

to have the format: V= Ifo, fl,..., f;,.. ., f,, , cj
1,

where f is a feature with fEF and

F= If o, f i,..., f ,..., fn} is the space of features (input variables) each being defined on a

unique space of feature values such as f; ={ fog
,f li , fei

, ".. fmi }. cc is a class (control

action) with c; EC from the set of output reflexes C= {ci, c2,..., Cj,..., cn}.

T
Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 104

5.3 Description of the robot
To verify the proposed control algorithm, the Khepera robot simulator is used [I]. Khepera

is a commercially-available miniature mobile robot, shown in Figure 5.1, and Figure 5.2

shows the simulated counterpart. Khepera in its basic configuration has a diameter of

55mm, a height of 30mm and weighs 70g. The onboard computation contains a Motorola

68331 microprocessor with 256 Kbyte RAM and 256 Kbyte ROM. Khepera has access to

an array of eight light sensors as well as eight infra-red proximity sensors for range

measurement. The current work uses only the six frontal infra-red distance sensors to scan

the areas to the front and sides of the robot for object detection and each returns a value in

the range 0 to 1023 depending on the nature and the range of the detected objects. In

general, the greater the magnitude of a sensor return value, the closer is the obstacle. For

example, 0 means that no obstacle is detected while 1023 means that an obstacle is very

close to the robot (almost collision). The Khepera simulator has been designed to

incorporate realistic assumptions and to minimise the presence of unrealistic suppositions,

facilitating the transfer of the simulation results without major change directly to the real

Khepera robot [2,3]. For more information about the Khepera robot, the reader is referred

to [1].

-

5

Figure 5.1 Actual Khepera robot

equipped with gripper, vision and extra

processing modules (Photo by Alain

Herzog, Courtesy of EPFL Laboratory,
Lausanne).

Figure 5.2 Simulated Khepera robot seen
from above.

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 105

5.3.1 Robot positioning
The simulated robot is steered differentially by controlling the wheels individually. Robot

positioning is performed by incremental encoders placed on each motor axis for step

counting (dead-reckoning). This mechanism is used in the simulated counterpart for

positioning the robot. The position vector of Khepera which is continuously changing

consists of an x-value, a y-value and the direction-indicating angle a (the robot absolute

direction). The current position (x,,, y,, a�) is calculated from the previous one (x�_,, y�_,,

C(M) using the number of wheel rotations n1, and nR given by the incremental encoders

placed on each motor axis.

5.3.2 Configuration of proximity sensors
In order to associate a certain perception with a world (defined in section 5.2) in the

hierarchy and to use the same nomenclature as in chapter 4, frontal sensors are divided into

five groups each containing two adjacent sensors as shown in Figure 5.3. Any two adjacent

sensors comprise a sensor group to indicate the complexity of the world detected. In this

configuration, each sensor group can be considered as a single sensor in order to he

consistent with the sensor configuration introduced in chapter 4.

Grou
iup 4

Figure 5.3 Frontal sensors (SO, S1, S29 S3, S4, SS) are divided into five sensor groups: Group
0 (Left), Group 1 (Front_Left), Group 2 (Front), Group 3 (Front_Right), and Group 4

(Right). In each case, two adjacent sensors form one sensor group.

Group I
Group 2 Group 3

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 106

The number of sensor groups indicating that obstacles are present determines the world

complexity and their nomenclature in the hierarchy. This means that, for example, if only

one sensor group detects an obstacle at a certain distance from the robot that entire

perception is classified as w1 to designate world one, and wo specifies that the

instantaneous environment (world) has no obstacles. In a sensor group, the state of either

sensor determines the state of the group whether the sensor group detects the presence of

obstacles or no obstacles are apparent, and this is demonstrated in Figure 5.4.

5.4 Control system architecture
Figure 5.5 shows the schematic view of the system architecture. This is composed of three

main modules:

1. Environment. The interface providing data from the physical world.

2. Local Perception Space. Each perception is mapped on a certain state that falls into a

unique world category. The output is a state vector containing a finite number of state

variables, and this is used to infer or re-infer tree networks.

3. Controller: This accommodates two sub-modules, namely high-level decision

making (whose architecture is shown in Figure 5.6), and low-level control. The

former performs predictions based on the current state vector, whereas the latter

generates an appropriate control action based on the current decision in order to

provide a movement demand to the robot. The control action a(ß, v) is a state

variable defined in terms of a turning angle ß and a turning velocity v.

As shown in Figure 5.6, the current state vector P� is used to predict the robot motion,

whereas the previous state, P�_i (if positively rewarded) is used to restructure the tree to

incorporate the new item of knowledge.

5.5 Incremental tree evolution
The algorithm houses in its core the Incremental Tree Inducer (ITI-2.8) [4] (which is

modified by the author to be incorporated in the system) as the learning module. ITI is

driven in its incremental mode and on-line. This means that appropriate knowledge entities

are given to ITI either for incorporation into an appropriate existing decision tree or to

instantiate a new tree if none exists already.

Chapter 5: On-line Learning of'an Adaptive DT Arrak Applied to Robot Control

Obstacle

(a)

ýýý (ýbstaclt ...

t
.....

Obstac (ý

(b)

C)bsticle

(c)

107

obstacle

Figure 5.4 Different perceptual situations: (a) Two non-adjacent sensors S2 and S4 covered

by two groups indicating w2. (b) Three consecutive sensors S2 and Sj and S4 detecting

obstacles and represented by two groups indicating w2. (c) Two adjacent sensors S2, S3

detecting obstacles and covered by one group specifying w1.

. 91

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 108

......................

Controller
High Level Decision Making

Inference Engine

Low Level Control

Robot State Rewards Control Action

Sensing

Local Perception Space Environment

Figure 5.5 The overall control architecture

5.5.1 Feature selection
Concept learning requires that the knowledge to induce decision trees is "sculptured" into a

finite number of pre-defined vector entities. This is independent of the mode (either batch

or incremental) in which the tree induction is performed.

To produce trees with high discriminatory powers, the current work uses as features both

the proximity sensor values and the relative location of the target to the robot. To restrict

the dimensionality of the world-dependent trees, the format of the training examples is

configured to be a function of the world complexity. This means that in world wo with no

obstacles, each training example is reduced to the relative location of the goal

(GoalRelLoc) and a single class, allowing the production of a linear decision tree which is

highly goal oriented. In higher order worlds, proximity sensor values are added to the

existing features resulting in the modified format of feature vector,

So 9 SI , S2 9 S3 , S4, S5, GoalRelLoc, c; . In the above, GoalRelLoc = IN, NE, E, SE, SW, W, NW I

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 109

and C= IF, FR, R, BR, BL, L, FL} where F is "front", FR is "front right", BL is "back left",

and so on.

Figure 5.6 High level decision module with parallel co-existing decision trees as
intelligent local planners.

5.5.2 Automatic knowledge acquisition and class prediction mechanism
One aspect of the approach that facilitates the population of the parallel co-existing trees in

incremental mode is the automatic generation of training examples. This is carried out in

order to collect the classification knowledge without intervention by human experts. Since

the robot motion directions are generated randomly at the training stage, the usefulness

U=f (C) is defined as a measure of goodness of the performed actions. Following the

Rewards Perception

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 110

transition from the previous state n -1 to the current state n, the cost C associated with

each motion is calculated according to an heuristic function (described in section 4.5 of

chapter 4). Only those states delivering a usefulness of unity are positively reinforced by

being remembered, the remainder are forgotten. Each individual remembered experience is

supplied to ITI-2.8 as part of the training data for the appropriate tree.

5.5.3 Local independence and global coupling of DTs
Figure 5.6 illustrates that each tree network is an individual computational entity in itself

and is able to make predictions when activated. In environments of greater complexity,

with arbitrarily shaped walls and corners, a range of different trees will generally be

sampled in order to generate the appropriate control actions, a suitable sequence of which

forms the global path.

By analysing the process of tree generation in a finite window of time, one can observe

how each individual tree evolves from a single-class entity to a mature decision tree

capable of predictions, hence the notion of "tree evolution". Table A. 1 of Appendix A

provides an illustration of tree evolution, showing that the effect of behaviour learning is to

improve the robot navigation performance incrementally over a finite number of iterations.

5.6 Algorithms

The complete system incorporates the two algorithms described below.

1. Behaviour learning. This algorithm precedes navigation in the executional context as

it is able to set the robot in exploratory mode in order to acquire knowledge. It also

generates a signal to invoke ITI for tree induction. The pseudocode for this algorithm
is shown below.

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control

IncrementalLearningMode (Tree, World)

Step 1: IF Goal is not reached

Step 2: THEN Choose a direction at random

Step 3: Evaluate the previous motion

Step 4: IF Previous motion interesting (output of the cost function)

Step 5: THEN Set up an appropriate training vector

Step 6: (Re-) Infer previous tree to absorb new knowledge

Step 7: Knowledge = UseKnowledge (Tree, World)

Step 8: IF Knowledge

Step 9: THEN IF Goal

Step 10: THEN Go to step 14

Step 11: ELSE Go to step 3

Step 12: ELSE Go to step 2

Step 13: ELSE Go to step 2

Step 14: END.

111

Note that in step 6 only new knowledge entities are evaluated for possible tree induction.

The sub-routine UseKnowledge allows the tree to be searched concurrently with new

knowledge being acquired, enabling the robot to have access to its previous experiences.

This sub-routine is defined as follows.

UseKnowledge (Tree, World)

Step 1: IF Useful knowledge for the current world

Step 2: THEN Fetch knowledge

Step 3: Generate an appropriate control action using the tree

Step 4: END.

2. Intelligent navigation. This part implements the worlds wo to w3 as finite state machines

(FSMs) in which each world is represented as an independent state. The dynamic

behaviour of the robot occurs as a result both of the actions of the decision trees and of

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 112

the transitions between trees, which are controlled by the FSMs. The procedure for the

intelligent navigation process is shown below.

NavigationMode (Tree, World)

In state n world wX is detected (wx E World)
Step 1: IF Goal is not reached

Step 2: THEN IF tree x exists (tree xE Tree)

Step 3: THEN IF useful knowledge available for current world

Step 4: THEN Fetch knowledge

Step 5: Generate an appropriate control action

Step 6: NavigationMode (Tree, World)

Step 7: ELSE

Step 8: WHILE (x > 0)

Step9: x=x-1

Step 10: Search tree x for knowledge to train world wx+i

Step 11: Go to step 3

Step 12: IncrementalLearningMode(Tree, World)

Step 13: ELSE Go to step 12

Step 14: END.

5.7 Illustration of a locally trained binary DT
In the vast majority of cases, a decision tree consists of a finite number of decision nodes

and terminal nodes (classes) linked together to form a complete network. In extreme cases,

the tree can lead to only a single class (see Table A. 1 (a) of Appendix A). Decision nodes

are generated in descending order from the root of the tree and each accommodates a

particular feature with a unique outcome. The order of each test node in the hierarchy is

arranged either information theoretically [5] or is based on other merits, for example

Kalmogrov-Smirnoff distance in [6].

Unlike C4.5 [5], which is an ID3 descendant, the decision tree networks produced by ITI-

2.8 are of a binary nature. This implies that, at any given test node, if the test result is

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 113

positive (yes) the tree branches to the left, otherwise the search is directed to the right. This

process to find a match for a given pattern proceeds until the leaf is reached which provides

a classification for the pattern.

Figures 5.7 to 5.10 show a number of local predictors (the DTs for the worlds) being used

in combination to provide a plan for the global path. The behaviour dominance in the tree

hierarchy changes in a complementary fashion, meaning that, if goal-orientedness is the

dominant behaviour in a layer such as wo, reactivity is of minor influence. Conversely, in a

highly reactive layer such as w3, target seeking behaviour is practically non-existent.

5.8 Action selection and conflict resolution
From a decision tree point of view, inconsistent training examples occur when more than

one class would be able to classify the same input pattern [4]. In the current robotics

application, for a given perceptual pattern more than one rule can be fired to generate a

control action. To resolve the conflict, a single value is generated from a rectangular

distribution to produce a percentage measure. ITI-2.8 also associates every rule with a

frequency tag, and that rule is fired whose frequency tag matches the randomly generated

frequency measure. This results in consistent action commands being sent to the actuation

level to drive the robot forwards.

5.9 Dynamic rule inhibition
Another important aspect of the proposed learning algorithm is the monitoring and long

term assessment of incrementally-learned rules. In the learning phase, when the goal

direction is located between the lines of maximum sensitivity of two adjacent sensor

groups, rules can be evaluated by the system as useful, although they would quantitatively

be considered to deliver poor performance under normal navigation circumstances. This

effect is also a source of multiple-class generation. To exclude these types of rule, each

individual rule is assessed after it has been fired depending on whether the resulting

performance was satisfactory and the performance is used to give an indication of its

overall usefulness. If the overall usefulness drops below a pre-set level, the rule is flagged

and inhibited. Even though inhibited rules physically exist in the network, they have no

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 114

actual contributions. These rules are shown shaded in Figures 5.7 to 5.10, where

appropriate, to highlight the inhibiting mechanism.

5.10 Results and discussion
Each of the aforementioned modules, namely wo to w3, is a unique computational entity

with a dynamic life time. Some have a process-long life whereas other types of entity can

be generated during the process, but may also be destroyed to avoid an unnecessary

increase in computational cost. Table 5.1 shows that approximately 55 training epochs are

needed to set up the DT hierarchy. It also indicates the average number of training

examples needed to grow each individual DT to capture the representative vectors.

Worlds

WO W] W2 W3 W4

Average 13 12 11 9 10
Number of Runs

Number of
Training 67 180 120 70 105
Examples

Total number of training runs to build up the 55
hierarchy (Mean)

Table 5.1 The approximate number of training epochs and training examples needed to set
up each individual DT of the hierarchy.

As discussed previously, global learning is initiated in wo and propagates up the hierarchy

to the more complex worlds. This is carried out by adjusting the dimensions of the previous

rule layer to adapt to new knowledge in the current layer. In all the examples, the robot is

initially set at the starting point S and is expected to reach the light source G, also indicated

by a star symbol. The navigation fields chosen consist of typical situations that can occur in

a navigatory task, for example sharp corners and edges, right angle corners, and both

straight and rounded walls with or without discontinuities. The different stages of Figure

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 115

5.11 demonstrate an example of the learning process in wo: it illustrates how the learning is

formed (Figure 5.11 (a)) and improved in two-leg (Figure 5.11 (b)) and in multi-leg

trajectories (Figure 5.11 (c)). In wo, the robot learns how to find its target (survival) in an

environment with no disturbances. Figure 5.11 (c) demonstrates that after sufficient

training the robot is able to reach the set target (using similar settings to those used in the

production of Figures 5.11 (a) and (b)) in significantly fewer steps, producing a smooth

trajectory.

The robot is then trained in environments with sparse obstacle population, namely in w1.

The knowledge gained in the previous environment is used as meta-knowledge to aid the

robot to adapt to the new environment with a small degree of hostility, and consequently

generating a new DT to accommodate the adapted knowledge. Figures 5.12 (a) and (b)

show how the robot tries to adapt by producing a new behaviour while heading towards the

target. This adaptation is more evident in Figure 5.12 (a) where the robot first encounters

obstacles. Figure 5.12 (c) is a scenario where the robot is sufficiently trained in wj and

homes in on the target.

Different stages of Figures 5.13 and 5.14 show learning and adaptation in more densely

obstacle-populated environments, and also environments with arbitrarily shaped obstacles,

corners and walls. The navigation performance in Figure 5.13 (c) shows a significant

improvement compared with those shown in Figures 5.13 (a) and (b) which have the same

settings (initial heading angle and position, same target location). Figures 5.14 (a), (b) and

(c) show the robot behaviour while encountering long walls, edges, and corners in homing

tasks.

The experimental results shown in the above figures, reveal two characteristics of the

hierarchical learning system. Firstly, they illustrate an incremental and steady adaptation to

new environments along with improved and smooth trajectories which are reflected in

navigation tasks. Secondly, they demonstrate that the robot is always able to reach the

target while avoiding obstacles of various configurations and shapes. A further

characteristic is the presence of behaviour arbitration when the robot follows long walls,

and this is reflected in the so-called "zigzag" trajectories. This is more evident in Figures

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 116

5.14 (a), (b) and (c) where the robot follows walls, and conflicting behaviours such as

target-seeking and reactivity alternate.

Two possible sources for this zigzag motion are the presence of multiple-class rules and

abrupt behaviour switching as control is moved between rule layers. In the current work,

the effect of the former is not significant as the classes can generally be considered to have

overlapping areas of operation. However, the effect of the latter source does significantly

affect the time taken for the robot to reach its goal. In response to this drawback, chapter 7

introduces fuzziness to the rule hierarchy to blend behaviours and optimise global paths.

5.11 Comparison with related learning systems
This section provides a comparison between the current work and research found in the

literature concerning single-strategy learning systems. The proposed learning system is

operationally similar to that of Tani and Fukumura [7], in that both systems utilise local

sensory information to produce general situation-action hypotheses to implement object-

avoidance and target-seeking behaviours. The objective of the system introduced in [7] is

to construct a hypothetical vector field (based on the information supplied by twenty range

sensors) whose temporal flow was used to navigate the robot towards a set target. This

system incorporates a composite neural network which consists of a Kohonen network and

a three-layer feed-forward network that uses back-propagation learning. The Kohonen

network employed is a three-dimensional lattice, and is used to fuse the input sensory data

into fewer dimensions. The address of the output of the Kohonen network (described by

three parameters in the lattice) at each stage provides three input elements (essential sensor

information) which are presented along with their time-delayed version, to the feed-

forward network. This network has two output nodes which supply the direction of motion

and a stopping command when the goal is reached.

Tani and Fukumura [7] tested their system with a simulated robot which was supervised by

a human operator who knew the optimal path leading to a set target. In each training epoch,

the robot was guided by its supervisor towards the goal, thereby generating training

examples for the learning system. They trained the robot in three consecutive epochs with

38,86 and 195 training examples, respectively. As also stressed in the current work, they

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 117

confirmed that with little training data the robot may get lost or perform erratic movements

by wandering around the terrain, as they observed that the desired vector field was largely

constructed in the third stage of training where almost all representative vectors were

learned. After sufficient training, the system was tested in three navigatory tasks in the

same environment, however, with one additional polygonal obstacle placed at different

locations. They report that the generated trajectories were nearly perfect and the robot

could reach the target, except one situation that the robot was drawn into an unexpected

trajectory.

An important aspect of the learning algorithm in the current work in contrast to the learning

system in [7] is that in the former learning improves incrementally (for example,

concluding legs of trajectories, even at the training stage, are smoother than the initial parts

due to the incremental learning), and after sufficient training the system can be tested in

completely unknown environments with arbitrarily shaped obstacles. This is in contrast to

the learning system in [7], which is reported to be sufficiently robust to cope with only a

restricted class of environmental changes. Tani and Fukumura outline the future direction

of their research as to incorporate self-learning mechanisms without the need for human

guidance - one of the main features of the current work.

The learning system described by Dubrawski and Crowley [8] shares a number of

similarities with the current work, even though the control architecture integrates fuzzy

logic into a neural learning mechanism to form a hybrid system. As performed in the

current work, this system processes the local sensory information to generate reactive

situation-action stimuli which are learnt from inception and in a self-supervising fashion. In

a manner similar to that found in [7], Dubrawski and Crowley [8] fuse the readouts of 24

proximity sensors to derive seven overlapping sensor readings which cover front, left and

right-hand sides of their robot simulator Robuter. These sensor readings, together with a set

of sensor readings delayed by the sampling time, constitute the 14 input signals to an

adaptive resonance theory-based [9] neuro-fuzzy classifier, whose outputs are directed to a

single-layer neural associative memory. This network has three processing elements, each

of which represents one distinct robot motion, namely move straight on, turn left and turn

right. In effect, the adaptive resonance theory (ART) network "stimulates" an appropriate

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 118

processing element of the single-layered neural network, which in turn memorises the

corresponding pattern and generates a control action. Certain properties of ART systems

such as incrementality and fast learning are employed in this system. The aim of the

experiments performed using Robuter was to investigate the efficiency of learning from

scratch, and Dubrawski and Crowley found that in navigation tasks, the robot exhibited

adequately both reactivity and target-seeking behaviour. However, the system showed

unstable behaviour when the robot entered narrow perceptual regions and they also report

that system may perform oscillatory motions with the robot facing long walls, and left and

right turns have equal priority.

As far as the behavioural synthesis (reactivity and goal-seeking), sensor grouping, overall

system performance and trajectory profile in navigation scenarios are concerned, the

current work is similar to the LIFIA control system introduced by Reignier in [10] and

other systems such as those described in [11,12]. The navigation algorithm in LIFIA is a set

of manually engineered reactive rules which perform a mapping from the input space to

control actions. Reignier reports that LIFIA is able to navigate among randomly scattered

obstacles towards a set target. However, it shows oscillatory movements in front of long

walls due to a behaviour arbitration, and sometimes falls into local minima.

Beaufrere and Zeghloul [11] implement a sensor-based navigation with an internal

supervisor that determines the priority in behaviour activation (and to guide the robot

through the shortest path) when obstacles are detected by the sonar sensors. They use two

different sets of fuzzy rules for target-seeking and obstacle avoidance behaviour; but the

number of such rules is not reported. This system performs local mapping by using fuzzy

reasoning without incorporating learning into the algorithm.

The navigation algorithm introduced by Wu [12] treats the robot as a moving point with

physical dimensions that are small in comparison with surrounding obstacles. The

navigation algorithm is fuzzy based and assumes the environment is stationary, and this is

in contrast to the learning algorithm introduced in this thesis. The system in [12] detects the

vertices of polygonal obstacles and drives the robot along the line connecting consecutive

vertices. In a manner similar to the approach taken in [11], this system performs an

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 119

environmental mapping without either exhibiting intelligent behaviour, or being able to

cope with changing environments.

5.12 Summary
Inspired by survival instincts and based on DT learning, this chapter introduced to a

practical robot environment a new approach to behaviour learning and global navigation.

The robot environment is decomposed into a set of homogeneous perceptual worlds of

differing complexity and the robot learning system uses the experience of exploring the

robot environment to train each of the layers on-line and incrementally. At the navigation

stage, each perceptual world is mapped to a unique rule layer which can be searched for

prediction purposes.

The core of the system is composed of two algorithms which together carry out on-line

learning and navigation, which are distributed over a string of four intelligent local

predictors that are independent computational entities with dynamic life times. They are

used in combination and are sampled continuously to perform globally-shaped motion

predictions. An important attribute of the system is the dynamic rule inhibition which is

based on a long term assessment of the performance of the rule layers in the navigation

task. The control system ensures safe and globally tuned predictions: safety is achieved by

individual local predictors and global shaping by their coupling. The symbolic nature of

this technique gives the advantage of control laws which are intelligible to human users, in

contrast to those obtained as a result of applying connectionist methods.

A shortcoming of the current implementation, which is exhibited in some of the homing

tasks, is the unsmoothness of robot trajectories when following long walls. This effect has

also been reported by Reignier in [10]. In the current work, it is the effect of the behaviour

switching as control is moved between rule layers which contributes to this oscillatory

motion. In response to this drawback, and also to compensate the overall noise in the

system, chapter 7 will introduce fuzziness into the learning algorithm to blend behaviours,

optimise global paths and exploit the approximate reasoning of fuzzy theory to cope with

noisy input data. The following chapter is devoted to the introduction of the mathematical

Chapter S: On-line Learning of an Adaptive DT Array Applied to Robot Control 120

and set-theoretical foundations of fuzzy logic in order to aid the understanding of the issue

of discussion in chapter 7.

References
[1] Michel, Mage Team, Bs Laboratory, CNRS, University of Nice-Sophia Antipolis,

France; Khepera Simulator was provided for the Official Khepera Contest at

Evolution Artificial Conference (Nimes, 1997), downloadable from:

http: //alto. unice. fr/-om/khep-contest. html.

[2] 0. Michel and P. Collard, "Artificial Neurogenesis, An Application to Autonomous

Robotics", Proceedings of the Eighth International Conference on Tools with

Artificial Intelligence, IEEE Computer Society Press, 1996, pp. 207-214.

[3] A. Löffler, J. Klahold and U. Ruckert, "The Dynamical Nightwatch's Problem

Solved by the Autonomous Micro-Robot Khepera", J. K. Hao, E. Lutton, E. Ronald,

M. Schoenauer and D. Snyers (Eds.), Artificial Evolution, Third European

Conference AE'97, Nimes, France, October 1997.

[4] P. E. Utgoff, "Decision Tree Induction Based On Efficient Tree Restructuring",

Technical Report 95-18, March 17,1995.

[5] J. R. Quinlan, "C4.5: Programming For Machine Learning", Morgan Kaufmann

Publishers, 1992.

[6] P. E. Utgoff and J. A. Clouse, "A Kolmogrov-Smirnoff Metric for Decision Tree

Induction", Technical Report 96-3,1996.

[7] J. Tani and N. Fukumura, "Learning Goal-directed Sensory-based Navigation of a
Mobile Robot", Neural Networks, Elsevier Science Ltd, Vol. 7, No. 3,1996, pp. 553-

563.

[8] A. Dubrawski and J. L. Crowley, "Learning Locomotion Reflexes: A Self-supervised

Neural System for a Mobile Robot", Robotics and Autonomous Systems, 12 (1994),

ELSEVIER, pp. 133-142.

[9] G. A. Carpenter, S. Grossberg and D. Rosen, "Fuzzy ART: Fast Stable Learning of
Analogue Patterns by an Adaptive Resonance System", Neural Networks, 4 (1991).

[10] P. Reigner, "Fuzzy Logic Techniques for Mobile Robot Obstacle Avoidance",

Robotics and Autonomous Systems, 12 (1994), ELSEVIR, pp. 143-153.

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 121

[11] B. Beaufrer and S. Zeghloul, "Navigation Method for a Mobile Robot Using a Fuzzy

Based Method: Simulation and Experimental Aspects", International Journal of
Robotics and Automation, Vol. 10, Issue 3,1995, pp. 106-113.

[12] C. J. Wu, "Fuzzy Robot Navigation in Unknown Environments", The IEEE

International Workshop on Emerging Technologies and Factory Automation, August

11-14,1992, pp. 624-628.

PAGE
MISSING

IN
ORIGINAL

Chapter 5. On-line Learning of an Adaptive DT Array Applied to Robot Control 123

Figure 5.7 A linear decision tree representing wo (world zero of the hierarchy). This is

used for prediction in environments without any objects. Rules following poor

performance are inhibited during navigation (shaded).

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control

.r

0
o..

0

0

a,
Cv

cl

N

U,

E

..,

3

cn
A

M E
79

0

. ýG
O

C

A
O

C

00
-- cri

1.4
on
w

U

O
ti
U

Lz.
O

bA

O

O

124

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control

GoaIRelLoc =E

BL

S3=N

Goa1RelLoc = NE

S1 =N

S2=N

BL
L
FL

BL

GoaIRelLoc =E

BR BL I84N]

182=NI L
BL

GoaIRelLoc =N BR

BR BR
F

125

Figure 5.9 An intermediate stage to evolve the third rule layer of the hierarchy W2 .

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 126

Figure 5.10 The third tree network from the universe of rule layers for predictions in more
complex environments.

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 127

ýr. ii'
ýWr111WMýr11M111MtlIti11N11ýirINNMYIt11M1111iYINN11ýl1rIýNrIMý11Ntl11ü W11ýýN111W
p

i r4

ýýý0

-a
2 I. 14

ij ><Iwlated Kheywra
dibtano ; nuQr 'ýa11Nf1

 ý
4

ý I)ý

00

_
02

>, wobt` Vih. rni

High
/atIVl ty "J.. I JitJY

(a) First stage of learning in wo in a two-leg trajectory.

jj

nwJ ýoaeJ s! nf Me tf eo ý r. ý Qsj add tur^
ýý

nwý load aswJ atQJ

3

rw! f r! J ooj!,! an

(b) An intermediate stage of learning in w0 (no obstacles) in a two-leg trajectory leading to
incremental improvement.

P
'

Iý

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 129

GY

ýJ(.......... Mýd iQ. f! l {inýJ !4il 'i ý. ll M'J !J.:. w. J . uPI . ýý] !! "fl so!! !J 11 ý±! AJ . 11--l ýfaj
................................ _....... _........ _...................... _... _........................ __......................

(c) A navigation example in wo in a three-leg trajectory.

Figure 5.11 Training and initiating the knowledge base (KB) in wo (no obstacles). SX is the

start and GX is the end of x`h trajectory. Figure (c) demonstrates the improvement of the
robot performance as more knowledge is acquired.

6,

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control

ul. uarld
.....

ý rrrrrrýrrMrrrrrrwrýýrwwriryrrrrsr rrrrrwrý

i G

ý f +P

H

129

3
stimulated Kh«para

0 >) distsa+c* sensor ualuta

}}}L

llý

>. J "tor -41w6
00J

Lau Hi ph
Act iuitu =1J _i -; iJIM

Khapera stopped

atop 403

ill

1/7

.............. »... _...... __.. _.... _......... _............... »......... _«.... «.......................... _..... _.. _... _........ __........... __-

i

ntyf
_l

oadý aavýJ stl
_robotý

Ij snarl r-- a"j turn

(a) Example of learning in wj. Learning to become reactive by avoiding simple obstacles
scattered in the environment.

s , ale

I

...... _.... .. _.. _. _.......... ...
s ý. . s\ i >I dii t nn. aeý. un. urýý...

(b) An intermediate stage of learning in wi with the robot performing two consecutive
homing tasks.

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control

ri.. wrid
ýýrrrrrirwiýrsrrrrrrrrrrr

I

130

---------- - ___
0f _°ý

fg >f sf wlPtM KhspsrP
q

1
0 tý ý103 >j dlstu esnsor vsfuwx

F_
.i

eil >i ýtý .. Iw. ö I. w Nigh
r .,. __4..

Aativit9 »t 1JaJI _i

L/3
,.. {i4. a 'J $! Pj ryJ ..!, t1 jRýj ?J ! r!. ß. 1 J-1 i Ufo]

(c) A navigation example in w, in a single-leg trajectory. The robot demonstrates a

significant improvement in manoeuvring past the obstacles while heading the light source.

Figure 5.12 Different stages of learning, adaptation ((a) and (b)) and navigation (c) in wl
(world with simple and sparse obstacles).

rruJ losdf I pt roba-tj jj aom- r«. ±'J ýl lwn) ý.
'4

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control

(a) Example of learning in and initiating w2 by adapting to new environment.

I

 1
I
1
ýr 1

rid

_________.. M
8! I!

rý
II

f
_o
l

,3

si, iut. tsd KMp, r.
4

.?.
ý dletmww r. nanr valwt

Il ctof vmIw, M

Lou High
Nativity " .0., I .1l,. 1 .. 1 J

131

(b) An intermediate stage of learning in w2 after representative knowledge vectors have
been learned.

al. wlatad Khsprra
iut4?. i dirtwiw **moor velum

. ___ý

,
ý) . ator wlurs

00
La High / RoUOlty : JJj

.ijj

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 132

(c) A navigation example in W2 in a single-leg trajectory. The robot demonstrates a smooth
trajectory compared with Figures (a) and (b) in avoiding obstacles.

Figure 5.13 Examples of learning and adaptation in w2, showing behaviour learning and
performance improvement on homing tasks.

lir `" 1 1 Aig

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control

w3O. W

r--.

0

i

, ̂ ..
daf aul t. robot

aI omI*ted Khepera
>f di. tanoe ownscr wlwu
>. 1 rotor values

Lou Njo
NOt IvItw ,dJdJA .1 .i

Khepera topped

step 4 1405

133

ewe eet rohetJ ýJ eeýnJ reýaHJ ldý tunt 'ýý nwJ ýeadJ xawJ rt"rJ runt r. sU j eeý,.. ýdj 7J . ýl j ýJ Imp

(a) An initial stage of learning to follow corners, edges and long walls.

rýiä

dN auI t. robot

ylaulatad iOwhrr t
dlatanCO ; rnsor vllIuss

actor valuer ö o. Lou High
Actwl tw :2JJ _f J

_I Jr ffi 3

(b) A typical example of incremental improvement in learning wall-following behaviour in

complex environments with arbitrarily shaped-obstacles.

Chapter 5: On-line Learning of an Adaptive DT Array Applied to Robot Control 134

..:.;
dOaul t. rabot

simulated Khopera
distance utnscr val wu

'" f H)
.
>f motor values

o o
Lm Nigh

Khper. stnppad

tap e 9SS

ýý. rsýssrrrrs*as, rrýrrrrrirýýa"ý 1 1/3

load ssvt sit rohe jj -- resat tur *1
nw f lead saw sl run n!. oo! Mf ii Il ýTf

(c) A navigation example in w3 in a single-leg trajectory. The robot demonstrates an
improved behaviour, but the effect of behaviour arbitration (zigzag trajectory)is not

removed.

Figure 5.14 Examples of learning and adaptation in order to avoid obstacles (long walls,
arbitrary shaped objects and corners) and homing in on the target.

Chapter 6: Fuzzy Logic 135

ihapter..

6

Fuzzy Logic:
Set Theoretical Foundations

When the only tool you have is a hammer,
everything begins to look like a nail.

L. A. Zadeh

This
chapter provides an introduction to fuzzy logic (FL) without entering into its

detailed mathematical foundations, as there exists a wealth of literature on this topic

[1,2,3,4,5,6,7,8,9,10,11]. The primary objective, though, is to consider the applications of

FL rather than analyse in detail the set theoretical foundations. The concept, basic

principles, related terminologies and more importantly the engineering applications of

fuzzy theory such as fuzzy logic control (FLC) are discussed and addressed, and where

appropriate, mathematical derivations are also provided to aid the understanding of the

Chapter 6: Fuzzy Logic 136

materials covered in the following chapter. The concluding section is devoted to FLC, in

which cognitive information, human experience, heuristics and intuitions can be

formulated in mathematical terms for process control whereas this would be unutilised in

the context of conventional logic.

6.1 The history of fuzzy logic
Fuzzy set theory, an extension of conventional set theory, was introduced in 1965 after

L. A. Zadeh of University of California at Berkeley published his paper on Fuzzy Sets [12]

in the Journal of Information and Control. Fuzzy theory has had a prolonged and rather

unfortunate childhood (mid 1960's to the early 1980's) in contrast to its booming youth

(mid 1980's to present day). Although it is said that this paper has been completed more

than two years before, though due to its unorthodox and radical ideas initially no technical

authority dared to publish this paper. In later publications, Zadeh laid the foundations of

fuzzy logic and approximate reasoning in complex and decision making processes [13].

The methodology advocated in this paper, namely the "principle of incompatibility", as

termed by Zadeh, might have been the origin of fuzzy logic. The principle of

incompatibility claims that precise and meaningful description of the system's behaviour

becomes impossible as the complexity of the system exceeds a certain limit.

Initially, scientists and engineers were rather reluctant to investigate further its theoretical

foundations or its possible applications to industrial problems. A turning point for fuzzy

logic arrived in September 1974 when Ebrahim Mamdani of the Queen Mary College

London applied for the first time fuzzy algorithms in the form of linguistic IF-THEN rules

to control a laboratory steam engine [14]. This sparked off the first industrial application of

fuzzy logic in 1980 by F. H. Smith of Denmark to control a cement kiln [10]. However, the

forerunners (in the early 1980's) in industrial applications of fuzzy logic were Japanese

companies such as Fuji Electric who applied fuzzy logic to control a water purification

process [8], and Hitachi who transcribed the knowledge of a human expert into a fuzzy rule

base for automatic control of the Sendai subway system[10,15]. This fuzzy controlled train

is said to have the "smoothest ride on earth" and is able to stop within centimetres of the

target [8].

Chapter 6: Fuzzy Logic 137

The second International Fuzzy Systems Association (IFSA) conference (held in Tokyo,

Japan, July 18,1987) is widely recognised as a point of maturity for the application of FL

in Japanese industries. The conference opened three days after the Sendai Subway opened

[8], and control engineers witnessed a demonstration of how easily and inexpensively

Takeshi Yamakawa's controller had achieved the fuzzy control of a self-balancing pole.

Consumer electronics companies such as Mitsushiti subsequently launched one-button

fuzzy washing machines, fuzzy vacuum cleaners, fuzzy rice cookers, fuzzy controlled anti-

jittering camcorders, which helped the capture of the consumer products market. Zadeh

was awarded the Honda Prize of around $77,000 in November 1989; at that time most

western engineers had never heard of fuzzy logic [8].

Japanese engineers have more recently moved onto the fuzzy control of nuclear reactors,

and Mitsubishi's engineers are currently developing a fuzzy controller for the cooling

system of a nuclear reactor [8].

Fuzzy theory can be regarded now as an important part of the modern, intelligent and cost

effective control systems.

6.2 Fuzzy sets and membership functions
A fuzzy set A, defined over a universe of discourse X (from which set elements are chosen),

is a function that maps some elements of universe X on the real numbers in the closed

interval [0,1]. The grade or the extent to which the members of universe X belongs to the

fuzzy set A, is called the membership function and is usually shown as /1A and defined as

µA: X -4
[0,1]. For instance, the membership function of the fuzzy set A defined over

universe X (when X is a continuous function) is defined as f PA(X)IX. This is graphically
x

shown in Figure 6.1.

Chapter 6: Fuzzy Logic

N

/1

Figure 6.1 A continuous fuzzy set A

138

In situations where the universe X is quantised into n discrete levels, as shown in Figure

6.2, the above expression transforms to '2A (x;)A
. The exact definition of a fuzzy set A

defined over the discrete universe X according to Zadeh [13] is defined as follows:

n

A(Xi)Xi
(6.1)

r=ý

A= /IA(x11/Xi +µA(x2)/X2+... +µA(Xn)/Xn (6.2)

Note that in the preceding equations, "I " and "P' do not imply any summation or division

in the ordinary sense applied to conventional (crisp) sets. The same is also applicable to the

integral sign in the first expression. To make these definitions more apparent, consider the

following numerical examples.

Presumably, a given universe of discourse X is defined as X={1,2 ,..., 15), the following

sets are valid fuzzy sets defined over X. They are also graphically depicted in Figure 6.2

and Figure 6.3.

A= 11,2,3,4,5,6,7 } or A=0.25/1 + 0.5/2 + 0.75/3 + 1/4 + 0.75/5 + 0.5/6 + 0.25/7

B= {3,4,5,6,71 or B- 0/2 + 0.5/3 + 1/4 + 115 + 1/6 + 0.5n+018

Chapter 6: Fuzzy Logic 139

9

Figure 6.2 Finite expression of fuzzy set A (Triangular)

µ1

Figure 6.3 Definition of the quantised fuzzy set B over X (Trapezoidal)

6.2.1 Fuzzy numbers and linguistic variables
A fuzzy set C over a continuous universe of discourse X is defined to be a fuzzy number C,

if and only if it satisfies the following conditions:

1. C is a convex fuzzy set.

2. C is a normal fuzzy set.

Convexity and normality of fuzzy sets can be mathematically expressed in terms of their

membership functions as follows:

ILs67°X

IL ý+ diX

Chapter 6: Fuzzy Logic

max, uc (x) =1 (normality)
XEX

`dxi 9 x2 9 x3 E X, xl <_ x2 _< x3 =>11, (X2)22 min(4u (x,), uc (x3)) (convexity)
(6.3)

140

Therefore, it can be inferred that every fuzzy number is a fuzzy set whereas the reverse is

not valid. Figure 6.4 shows some examples of fuzzy numbers and non-fuzzy numbers.

9

1

Figure 6.4 An example of fuzzy numbers (A, B and G) and non fuzzy-numbers (D, E)

It is common practice to swap semantically fuzzy sets with fuzzy numbers, since fuzzy sets

such as D and E (shown in Figure 6.4) are hardly used in engineering applications.

Therefore, in the following chapters fuzzy sets are presumed to be both convex and normal

(fuzzy numbers). Fuzzy sets provide a basis for manipulation of vagueness and

imprecision. To operate and deal with this type of uncertainty, this can be represented by

variables whose values are either fuzzy numbers or linguistic terms. These variables are

called linguistic variables. They are characterised by the triple (x, T(x), X) [16]. Above, x

is a variable, T(x) is the term set of the variable, i. e. the set of linguistic values of the

linguistic variable x with each value being a fuzzy number defined over the universe X.

An example
To clarify the above definitions and to demonstrate the practical significance of fuzzy sets

to deal with uncertainty in various application domains, we consider the scenario of human

Chapter 6: Fuzzy Logic 141

perception when giving information about the room temperature. In this case Temperature

is the linguistic variable. Its term set T (Temperature) may take on, for instance, the

following values:

T(Temperature) = {cold, quite cold, warm, very warm, hot). The vagueness in these terms

arising from human cognition gives rise to interpret them as fuzzy sets rather than crisp

values. Each fuzzy set in T (Temperature) is characterised by its membership function and

is defined over the universe of discourse U= {0,..., 50}°C. Figure 6.5 shows the

distribution of fuzzy sets describing the linguistic variable Temperature.

µ, (x)
Cold Quite_Cold Warm Very_Warm Hot

1

Temperature (T)

ol 10 14 18 22 26 In 'C

Figure 6.5 Representation of the linguistic variable Temperature in terms of its fuzzy

values Cold, Quite Cold, Warm, Very Warm and Hot.

6.2.2 Fundamental operations on fuzzy sets
Since fuzzy set theory can be considered as the extension of classical set theory, set

theoretic operations on fuzzy sets obey the same principles as in the case of crisp sets.

However, the extension to fuzzy sets is not uniquely defined, as /tA(x) and JIB(X)can take on

an infinite number of values from the interval of real numbers [0,1]. Thus, there exists an

infinite number of possible definitions to represent fuzzy union and intersection.

Triangular norms (T-norms) and triangular conorms (T-conorms or S-norms) are different

representations to implement fuzzy intersection and union, respectively, introduced by

different researchers. The definitions of these operations are given below along with the T-

norms and T-conorms introduced by Zadeh [12]. In this thesis, the entire operations on

Chapter 6: Fuzzy Logic 142

fuzzy sets will be based on these implementations. For a comprehensive list of T-norms

and T-conorms the reader is referred to [17,18]. In the following, we also discuss briefly

the complement operation extended to fuzzy sets. However, for more detailed discussions

and derivations on properties of fuzzy sets see [10,16,18].

If we generalise the membership functions of two fuzzy sets A and B, JA(x) and UB(x),

union, intersection and complement of the above sets are then defined as shown below.

Union of fuzzy sets
Considering A and B to be fuzzy sets defined over universe X, the union of these fuzzy sets,
AUB, is itself a fuzzy set over X defined by its membership function as:

PAUB(x) _' A(x)VPB(x) or

= max(µA(x)'JUB(x)/

where

(6.4)

1PA(x) if 4UA(x)
>
-

/1B(x)

max(µA(x), µe(x)) _ (6.5) µB(X) if ýA(x) <YB(x)

Intersection of fuzzy sets
The intersection of two fuzzy sets A and B, A (l B, is a fuzzy set over X defined by its

membership function as:

µanB(x) = µa(x) A µB(x) or

= (6.6)

where

Chapter 6: Fuzzy Logic

µA(x) if PA(x) <- /l
ß(x)

min(PA(x), #B(x)) _
II II

(6.7)

J B(x)
if JUA(x) > J4B(x)

143

Fuzzy complement
The complement of a fuzzy set A, ; 1, is a fuzzy set over X defined in terms of its

membership function as:

4U; i
(x) =1-/IA(x) (6.8)

Note that the only properties of crisp sets which are, in general, not valid for fuzzy sets are:

the law of the excluded middle:

AUA #X (6.9)

the law of contradiction:

AnÄ#0 (6.10)

where 0 is an empty set. More details on related materials can be found in [10,18,19].

6.3 Fuzzy relations
The dynamics of the fuzzy-based systems are described by fuzzy relations. They play a key

role in these systems, because they characterise the interrelationships between fuzzy sets or

more generally fuzzy variables.

Since fuzzy relations are directly coupled with another concept, namely fuzzy Cartesian

product, this is first defined to provide a better understanding of underlying principles

associated with fuzzy relations.

Fuzzy Cartesian product
Let Al, ..., An be fuzzy sets in X1, ..., X,,, respectively. The Cartesian product of A,, ..., A� is

a fuzzy set in the product space X1 X X2x... xXn and is defined as follows:

Chapter 6: Fuzzy Logic 144

Al X A2X... XA� =$ min(ito, (xl),..., /LAA(xn))/(xl,..., xn) (6.11)
x, x x2 x... x x,

Where the membership function of this product is defined as:

µA, XA2 x... xA�
(X1, x2 , ..., x�)= min(MA, (x1), µA2 (x2)...., µA� (xn)) (6.12)

An n-ary fuzzy relation R in the Cartesian product space X1 X X2 X... xX� is a fuzzy set

whose membership function has n variables and is defined as follows:

R=
{/IR(XI9X2,...,

Xn)I
(X1,

XZ,..., Xn)I Xl E X1, X2 E X2,..., Xn E Xn} (6.13)

or alternatively

R= jµR(xl)x2,..., xn)l (x1, x2,...)x�) (6.14)
x, xx2X... xxn

where /1R is the membership function of R and is a mapping function given by:

µR' XI X X2X... XX� --*
[0,1] (6.15)

A practical example of fuzzy relations is that they describe a fuzzy set in a multi-

dimensional space such as a Cartesian product space. This has a central meaning, since

fuzzy relations can be utilised to model linguistic associations, correlations and relations

between the elements of the product space in practical applications. These include, for

instance, statements such as "slightly smaller than", "about the same as", `fairly close to",

etc.

To visualise the importance of fuzzy relations and their significance in dealing with vague

information, a pictorial image of fuzzy relations is demonstrated by considering a

hypothetical example.

Chapter 6: Fuzzy Logic 145

Figures 6.6(a) and (b) show two fuzzy sets "High Temperature" and "Medium Pressure",

taken from the term set of Temperature and Pressure defined in a unique universe X and Y,

respectively. However, Figure 6.7 demonstrates the fuzzy set describing the interaction

between Temperature and Pressure in a two-dimensional space. This set is called a fuzzy

relation and is defined in the Cartesian product space of XxY.

µßf-

(a)

N1, (ß

(b)

Figure 6.6 Individual fuzzy sets defined in independent universes X an Y.

0

Figure 6.7 A fuzzy relation in the multi-dimensional space of Temperature and Pressure

characterising the interaction between the two universes.

I IC.)) it i UU' Temperature T

Chapter 6: Fuzzy Logic 146

In most practical applications, the dimensionality of n-ary fuzzy relations is reduced to two

or more dimensions such as binary relations for two-dimensional cases. In binary relations,

the expressions (6.14) and (6.15) are reduced to the following forms:

R= jµR(x, Y)/(x, Y) X xY
(6.16)

where PR is the membership function of R given by the Cartesian product XxY as:

/2 XxY -*
[0,1] (6.17)

A practical way of implementing fuzzy relations in a computer algorithm is to express the

proceeding definitions into a matrix representation as shown in the following. Let universes

X and Y be defined as follows:

1x={x1, x2,., x}

Y={YI IYZ,.. ", YnI
(6.18)

The binary relationship between the elements of the two universes is fully determined by

the following matrix.

yL y2 ... Ym

Xi /IR(x1, Yi) /R(x>9Y2) ... IIR(X1, Ym)

R= X2 I R(x2, Y1) ILR(X2, Y2) ... 1R(X2 $Ym) 6.19 C)

Xn /tR(x>>Y1) /R(Xl, Y2) ... µR(Xn, Ym)

The above matrix is also called a fuzzy matrix and is fundamental to the entire operations

on fuzzy reasoning.

Chapter 6: Fuzzy Logic 147

Since a relation itself is a set, all operations on fuzzy sets and their properties are entirely

extendible to fuzzy relations. For further details, the reader is referred to [20,21 23].

6.4 Compositions of fuzzy relations
In many applications composition, symbolised by the operator o, plays an important role.

Composition is a binary operation and can operate on two fuzzy relations as well as fuzzy

sets and relations. In the following, the general definition of composing two fuzzy relations

is given.

Let R be a fuzzy relation on XxY and Sa fuzzy relation on YxZ. The composition of R

and S is a fuzzy relation on YxZ and is defined as:

Q=ROS

or in terms of its membership function:

PQ (x, z) =
yEP

(µR (x, y)* PS (y, z))

(6.20)

XEX, yEY, ZEZ (6.21

Above, "*" could be any operator from the set of triangular norms such as minimum (min)

or algebraic product (A) [22]. Expression (6.21) is also called sup-star composition in the

literature.

The minimum operator (min) is the most commonly used T-norm (proposed by Zadeh [12])

to represent conjunctions in control applications throughout this thesis. Consequently,

equation (6.21) transforms to the following expression.

/1Q(x, z) = supmin(#R(x, y), µs(Y, z)) x r: X, y E Y, z EZ
yEY

(6.22)

Nevertheless, equations (6.20) and (6.21) reduce to the following forms, in the case when

the composition operates on the combination of a fuzzy set and a fuzzy relation rather than

solely on fuzzy relations.

Chapter 6: Fuzzy Logic 148

B=AoR (6.23)

µe(y)=supmin(#A(x), /IR(x, y)) xEX, yEY and AcX, BcY (6.23)
XEX

In the latter equation, A and B are both fuzzy sets with B being the induced outcome of the

composition operation defined on Y.

In software, compositions are commonly implemented as matrix operations which have the

basic properties of matrix manipulations, but where algebraic operators are substituted by

their set theoretic counterparts. The induction of new relations by means of composition is

block-diagrammatically depicted in Figure 6.8.

X= xo Y= f(xo) = Yo x=A y=AoR
-º R

(a)

x=A IIY

(c)

(b)

z=Ao(RoS)

Figure 6.8 (a) A mapping between crisp numbers by a function f, (b) mapping between
fuzzy sets by means of fuzzy relation R, and (c) a series of cascaded fuzzy relations

composing a single fuzzy relation to produce the final output. Note that f is a crisp function

with R and S both being fuzzy relations defined over multi-dimensional spaces.

6.5 Fuzzy reasoning and inference mechanism
A basic, though important, concept in fuzzy logic is fuzzy propositions. A fuzzy

proposition represents, in general, a statement such as "x is A", where x is a linguistic

Chapter 6: Fuzzy Logic 149

variable and A is a linguistic label, namely a fuzzy set defined over a universe of discourse.

For example, the above proposition may take on specific forms such as:

"Temperature is high", "Speed is moderate", etc., where Temperature and Speed are fuzzy

variables and high and moderate are their associated lables. Fuzzy propositions can be

combined using the connectives AND or OR implemented by T-norms and T-conorms,

respectively. Where the propositions are related to different universes, a logical connective

results in a fuzzy relation. For example, in the following two-dimensional proposition

xisAANDyisB

where A and B are characterised by the membership functions ILIA
(x) and /l ß

(x)
, the

proposition can then be represented by the following fuzzy relation:

#R(x, Y) = T(/lA(x), µa(Y)) (6.24)

In the above equation, T can be any T-norm for modelling the connective AND.

6.5.1 Fuzzy rules and implication

To be able to perform fuzzy reasoning, there should exist fuzzy inference rules which in

turn must be represented by an implication function. In binary logic, the implication

function is defined by

A -ý B (6.24)

is the mathematical representation of the statement

IFA THEN B

In fuzzy logic, statements such as that above, where A and B are fuzzy propositions, are

called fuzzy if-then rules or simply fuzzy rules. A is the antecedent and B is the consequent

of the fuzzy rule. In most applications, the antecedents of fuzzy rules contain more than

one proposition combined by the logical connective AND such as follows:

Chapter 6: Fuzzy Logic 150

IF x is A AND y is B THEN z is C

The above statement can be represented by the fuzzy relation R, as shown below.

R= I(T(A, B), c) (6.25)

Above, T is a T-norm to model the conjunction and I is an implication function to model

the implication if-then. Equation (6.25) can be formulated as a fuzzy relation in terms of its

fuzzy propositions, as shown below:

MR(x, Y, z) =I
(T(µn(x)Iµ8(Y»'µc(Z»

(6.26)

The implication function I is commonly denoted by I(a, b) where a, b E [0, I]. There exists

a variety of representations for the implication function I in the literature. However, the

most popular implications in engineering applications are the Mamdani's and Larsen's

implication as shown below:

min(a, b) Mamdani

1(a, b) = ab Larsen

(6.27)

(6.28)

Since Mamdani's implication is computationally easier to implement and faster in run-time

and also has been more widely used in control applications, implication operations on

fuzzy relations in this thesis will adopt Mamdani's approach.

An explicit and direct application of the composition of fuzzy relations, namely the

inference of a single fuzzy rule has been demonstrated. This was introduced by Zadeh [13]

and was termed the compositional rule of inference. This has been expressed as a fuzzy

rule in equation (6.26), but in the following section, this mechanism is discussed in terms

of modus ponens and modus tollens of inference mechanism found in classical logic.

Chapter 6: Fuzzy Logic 151

6.5.2 Inference mechanism
In classical logic, reasoning is based on modus ponens and modus tollens and is defined as

follows:

" Modus ponens:
Rule: A --* B

Fact: A
(6.29)

..
B

. Modus tollens:
Rule: A -ý B

Fact: -, B
(6.30)

.. -11

In the preceding expressions, we interpret A -* B as "if A is true, then B is true" where the

operator -4 denotes implication.

In fuzzy logic, the aforementioned expressions are expanded to fuzzy sets and termed as

the generalised modus ponens (GMP) and the generalised modus tollens (GMT) by Zadeh

[13] and defined as:

. GMP:
Rule: if x is A then y is B

Fact: x is A'
(6.31)

., y is B'

Chapter 6: Fuzzy Logic 152

" GMT:
Rule: if x is A then y is B

Fact: y is B'
(6.32)

xis A'

where A, A, B and B' are fuzzy sets. A significant difference between GMP and the

conventional modus ponens is that fuzzy sets A and A' in the first and second premise of

expression (6.31) do not need to be precisely the same whereas in binary logic they must be

identical. This has given rise to an alternative terminology for fuzzy reasoning, namely

approximate reasoning [10,16].

In most practical applications, the antecedent of a fuzzy rule is multitudinous in the number

of propositions to assure flexible reasoning. In the following, we consider two somewhat

different approaches to the formulation of fuzzy reasoning. The first approach implements

fuzzy reasoning in a rather graphical manner (Mamdani's method) whereas the second

implementation which was first introduced by Zadeh [13] is based on the compositional

rule of inference. This converts entire fuzzy rules to corresponding fuzzy relations which

are then aggregated and utilised to induce new knowledge by means of matrix operations.

Mamdani's method of inference

In order to describe the underlying mechanism of Mamdani's method, consider the

following simple rule base consisting of two fuzzy rules.

911: IF x is A, AND y is B1 THEN z is C1

912: IF x is A2 AND y is B2 THEN z is C2

Above, x, y and z are fuzzy linguistic variables with A;, B; and Cl their associated fuzzy

sets, where x c- X, yEY and zEZ. Mamdani's reasoning process is composed of three

steps to induce new knowledge which is, in general, represented as a fuzzy set. These steps

are discussed below and illustrated in Figure 6.9.

Chapter 6: Fuzzy Logic

Step 1: Calculate the firing strength of each individual rule, a; , for given inputs.

153

Assuming, the inputs to the system are xo and yo, as shown in Figure 6.9, the

associated firing strengths are:

al = min(/1A, (xo), /lel (Yo)) (6.33)

a2 = min(/iAZ (xo), /1 BZ
(Yo)) (6.34)

al and a2 are shown in Figures 6.9 (a) and (d), respectively.

Step2: Apply the firing strength a; to the consequence of fuzzy rule 9,, to calculate the

intermediate output, , ic; (z)
, for the number of given fuzzy rules on the rule list. This

operation truncates the output fuzzy set to a fuzzy sub-area whose height equals a; .
These areas are shown shaded in Figures 6.9 (c) and (f) and are represented by the

following equations, respectively.

yc, - (z) = min(al, 4uc,
(z)) (6.35)

gc2- (z) = min(a2, /1 (z)) (6.36)

Step 3: Aggregate the intermediate fuzzy outputs associated with each rule to the final

fuzzy output set, Uc(z). Mamdani's approach implements this operation using a fuzzy

logical OR (max-operation) to compile the final fuzzy output set as follows:

µc(z) = max(, uc' (z), µc2' (z)) (6.37)

Equation (6.37) is graphically shown as the shaded concave area in Figure 6.9 (g). This is a

fuzzy set describing the induced data.

Chapter 6: Fuzzy Logic

I
a,

0

(a)

0
xO

(d)

I

0

O

(b) (c)

Yo
0

(e) (I)

()

zo (COG)

(g)

Figure 6.9 Procedure of fuzzy reasoning based on Mamdani's method.

154

For the sake of simplicity of explanation, Figure 6.9 illustrated the reasoning process

applied to a two-dimensional fuzzy rule list. Nevertheless, the approach is generally

applicable to an n-dimensional fuzzy rule list.

Compositional rule of inference

Reasoning based on this approach makes the assumption that each individual rule from the

fuzzy rule list is represented by a fuzzy relation R;. To illustrate the validity of this

Chapter 6: Fuzzy Logic 155

assumption, it is necessary to consider how a linguistic fuzzy rule can be converted to a
fuzzy relation.

Consider the fuzzy rule:

% IF x is A AND y is B THEN z is C.

This rule can also be expressed as:

(A AND B) --4 C (6.38)

However, according to [10,18]

AANDB= AxB

fXXY(pA(x) A B(Y))/(x, Y) (6.39)

Hence, the fuzzy rule expressed in equation (6.38) can be translated to a fuzzy relation R

using Mamdani's implication method as follows:

R=(AANDB) -->C

= AxBxC

= JxXYXZ(µn(x)A/
B(Y)A ,

(z))/(x, y, z) (6.40)

The above relation is characterised in terms of its membership function as:

PR (x, y, z) = µn (x) A µa (y) ^µß(z) (6.41)

or alternatively as:

/ R(x, Y, z) = min(PA(x), 1 B(Y), /C(z» (6.42)

Chapter 6: Fuzzy Logic 156

Now that we are able to capture a fuzzy linguistic rule in a fuzzy relation R, the

compositional rule of inference is defined as [13]:

C' = A'o(B'oR) = B'o(A'oR) (6.43)

This equation is the mathematical representation of the GMP expressed in (6.31) expanded

to three-dimensional space. This means, having the knowledge of the input-output

relationship, R, new information, C', can be induced when two inputs, A' and B' are

presented to this inference system. Equation (6.42) demonstrates that the resultant fuzzy

relation is three-dimensional when a fuzzy rule has two input variables. Each individual

element of the three-dimensional membership function of the fuzzy relation is calculated

according to the following scheme:

!
R(x;,

Yj , zk)=I A(xi)^µB(YJ)^uC(zk)
(6.43)

., n
ti,

j, k=1,2,..

where n is the number of elements of each fuzzy set.

The fuzzy relation R in Equation (6.43) is the representation of a single fuzzy rule.

However, in most applications the reasoning is based on a set of fuzzy rules forming the

fuzzy knowledge base (KB) or the fuzzy rule list of a system. That means, generally,

relation R represents a finite set of fuzzy rules each expressed as a fuzzy relation R;. These

relations are then subsumed with a representative relation R. This operation is called

aggregation.

Mamdani's inference mechanism implements the aggregation operation as a logical OR,

which is the union of n fuzzy relations. The aggregated relation R is then defined as

follows:

n

R=R1UR2U... URn =URi (6.44)
i=l

Chapter 6: Fuzzy Logic 157

For further details and also other aggregation operators, the reader is referred to [10,22,23].

Compositional rule of inference is then carried out following the three steps listed below:

Step 1: Convert each individual linguistic rule to a corresponding fuzzy relation.

Step 2: Aggregate the fuzzy relation using a suitable aggregation operation.

Step 3: Compose the available data (usually a fuzzy set) with the aggregated fuzzy

relation to induce new data.

Having illustrated various ways of reasoning about fuzzy concepts, a pertinent question is

how the performances of the various approaches compare. Since there exists no scientific

proof or evidence that one method is superior to the other or vice versa, one should perhaps

choose the method which suits best the objectives of the work. It has generally been found

that Mamdani's approach to reasoning is the most suitable when the number of rules is

relatively small [101, but the choice generally depends on empirical results.

6.6 Fuzzy logic control (FLC)
In the previous sections, was shown that the compositional rule of inference [12] performs

a non-linear mapping in that it transforms a multi-dimensional fuzzy vector (whose

elements are fuzzy sets) into a single fuzzy vector (the output space). In this operation, the

fuzzy relation describing the input/output relationship is crucial and central to this

operation. In most practical applications, this relationship is the representative of a finite

number of fuzzy rules composing the fuzzy rule base or fuzzy knowledge base (KB) of a

fuzzy system.

Fuzzy reasoning was first applied by Mamdani [14] to control a simple experimental

control system. In this approach, the fuzzy output vector was converted into a scalar (rather

than crisp) number which was then used to control the plant. The output of the plant

(control parameter) which was a crisp number needed to be converted into a fuzzy set to

perform fuzzy reasoning. The KB of his system consisted of a number of heuristic rules

extracted from the knowledge of a human who was expert in controlling such a plant.

This section describes an FLC system in terms of its constituent units and the way they are

interconnected to form a working control system.

Chapter 6: Fuzzy Logic 158

...
Fuzzy Controller

Knowledge Base (KB)

A, B-_A'oR B,
fDefuzzifier

(Inference Engine)

x Plant N---

Figure 6.10 Block diagrammatic representation of a fuzzy logic system (FLS)
incorporating a fuzzy controller.

As depicted in Figure 6.10, the fuzzy controller is composed of four modules:

" Fuzzifier

" Inference engine

" Knowledge base (KB) or fuzzy rules

" Defuzzifier

The inference engine performs fuzzy reasoning on the input data, A', to generate an output,

B', by means of linguistic knowledge formulated in the fuzzy rules. KB is, technically

speaking, the control algorithm in the from of IF-THEN fuzzy rules which are in turn

extracted from human domain expertise. Fuzzification and defuzzification convert crisp

numbers to fuzzy sets and vice versa. Both operations explained in detail in the following

sub-sections.

Chapter 6: Fuzzy Logic 159

6.6.1 Fuzzification
The process of mapping input data into fuzzy sets is called fuzzification and defined as:

A' = fuuifier (xo) (6.45)

where xo is the crisp input, A' is the associated output and the fuuifer operator is a

mapping function. In fuzzy control applications, the input data are crisp numbers (sensor

values) and fuzzification involves matching the sensor measurements against the associated

fuzzy sets [19,22,24] to obtain the degree of membership in a fuzzy set. This is

demonstrated in Figure 6.11.

PAW

1

JA(XO)

0
x0 Input Variable

Figure 6.11 Mapping the crisp value xo to its membership degree,, UA(xo), by means of the

membership function uA(x).

Figure 6.11 states that a certain crisp value xo from a universe of discourse X is associated

with the fuzzy set A with the degree of membership pA(xo).

6.6.2 Defuzzification

As depicted in Figure 6.10, the output of the inference unit is the fuzzy set B' which

represents the possibility distribution of the output parameter. However, the control action

applied to the plant needs to be a crisp value, for example zo. The operation that determines

a representative for the output set is called defuzzification and is defined as:

Zo = defuzzifier (B') (6.46)

Chapter 6: Fuzzy Logic 160

where defuzzifier can be any defuzzification operator. There exists a number of different

defuzzification approaches which have been suggested by different researchers, but the one

most widely used in control applications is the centre of gravity (COG) method.

The centre of gravity (COG) method
Let the possibility distribution of the output fuzzy set be defined by the membership

function µß(z). The COG method calculates literally the geometrical centre of this set

which is a crisp value in the universe of definition. Having a discrete universe of discourse

Z, the COG method is calculated as follows:

tzi
PAC (z;)

zo = ,.

l µc(Z;)
i=l

(6.47)

Above, zo is the crisp control action and n is the number of quantisation levels of the

output. The method is graphically shown in Figure 6.12 which is adapted from the

reasoning process described in section 6.5.2.1.

µ

Figure 6.12 Producing a crisp control action, zo, by applying the centre of gravity (COG)
method to defuzzify the output fuzzy set C.

For further material on this subject and also other defuzzification strategies the reader is

referred to [17,19,22,24].

Zo (COG)

Chapter 6: Fuzzy Logic 161

6.7 Summary
The extension of the classical binary logic to multi-valued logic and the ability to reason

with vagueness and uncertainty constitute fuzzy logic (FL). FL attempts to mimic the way

humans think and reason with linguistic concepts. Linguistic variables are the basic

ingredients of fuzzy propositions and fuzzy propositions of different universes are

combined to form the antecedents (commonly in multitude) and the consequences of fuzzy

if-then rules.

Fuzzy rules are the verbal representations of fuzzy relations describing the correlation,

association or the interaction of fuzzy sets. Fuzzy relations are implication functions which

can be implemented in several ways depending on their suitability for the application under

consideration.

Inference is used to obtain new knowledge by composing fuzzy relations with the data

being used. The inference mechanism is usually performed on a set of parallel fuzzy rules.

Two approaches to the inference can be distinguished; namely local and global inference

[171. The former performs inference with individual fuzzy rules and combines the

intermediate outcomes to form the final result. This method is known as Mamdani's direct

method of inference, which can readily be illustrated graphically. The latter, however,

aggregates the entire rules of a fuzzy rule set by logically connecting their corresponding

fuzzy relations into a representative fuzzy relation. The compositional rule of inference is

then applied to infer new data.

The principles underlying the applications of fuzzy reasoning to control problems, namely

fuzzy logic control, have also been addressed in this chapter. Since input/output parameters

of the process to be controlled are usually crisp values, techniques to fuzzify and defuzzify

these values for the reasoning process are presented.

The material discussed in this chapter provides the mathematical foundations and

theoretical knowledge of FL to aid the understanding of the next chapter which applies FL

to build a hybrid learning system.

Chapter 6: Fuzzy Logic

References
[1] Fuzzy Sets and Systems, An International Journal, North-Holland Publishing

Company, Amsterdam.

[2] Fuzzy Systems, IEEE Transactions.

[3] L. A. Zadeh and J. Kacprzyk, Eds., "Fuzzy Logic for the Management of

Uncertainty", John Wiley and sons, ISBN: 0-471-54799-9.

[4] A. Kaufmann, "Introduction to the Theory of Fuzzy Subsets", Vol. I, Academic

Press, ISBN: 0-12-402301-0.

[5] E. H. Mamdani and B. R. Gaines, Eds., "Fuzzy Reasoning and its Applications",

Academic Press, 1981, ISBN: 0-12-467750-9.

162

[6] B. Kosko, "Fuzzy Thinking", Harper Collins Publishers, 1993, ISBN: 0 00 255352

X.

[7] R. R. Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen, Eds., "Fuzzy Sets and

Applications, Selected Papers by L. A. Zadeh", John Wiley and Sons, Inc., 1987,

ISBN: 0-471-85710-6.

[8] D. McNeill and P. Freiberger, "Fuzy Logic", Simon & Chuster, 1993, ISBN: 0-671-

73843-7.

[9] J. Yen, R. Langari and L. A. Zadeh, "Industrial Applications of Fuzzy Logic", IEEE

Press, 1995, ISBN: 0-7803-1048-9.

[10] K. Tanaka, Translated by T. Niimura, "An Introduction to Fuzzy Logic for

Applications", Springer Verlag, 1997, ISBN: 0-387-94807-4.

[11] G. J. Klir and T. A. Folger, "Fuzzy Sets, Uncertainty and Information", Prentice Hall,

1988, ISBN: 0-13-345984-5.

[12] L. A. Zadeh, "Fuzzy Sets", Information and Control, Vol. 8, New York: Academic

Press, 1965, pp. 338-352, Fuzzy Sets and Applications: Selected Papers by L. A.

Zadeh, (Edit.) R. R. Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen, pp. 29-44,

ISBN 0-471-85710-6.

[13] L. A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and

Processes", IEEE Transactions on Systems, Man and Cybernetics, SMC-3 (1973),

pp. 28-44, Fuzzy Sets and Applications: Selected Papers by L. A. Zadeh, (Edit.) R. R.

Chapter 6: Fuzzy Logic

Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen, pp. 105-146, ISBN 0-471-

85710-6.

163

[14] E. H. Mamdani, "Applications of Fuzzy Algorithms for Control of Simple Dynamic

Plant", Proceedings of IEE, Control and Science, Vol. 121, No. 12, December 1974,

pp. 1585-1588.

[15] J. Yen, R. Langari and L. A. Zadeh (Eds.), "Industrial Applications of Fuzzy Logic

and Intelligent Systems", IEEE Press, ISBN 0-7803-1048-9.

[161 C. C. Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part I", IEEE

Transactions on Systems, man and Cybernetics, Vol. 20, No. 1, March. /April 1990.

[17] R. Jager, "Fuzzy Logic in Control", PhD Thesis, 1995, ISBN 90-9008318-9.

[18] J. S. R. Jang, C. T. Sun and E. Mizuyani, "Neuro-Fuzzy and Soft Computing, A

Computational Approach to Learning and Machine Intelligence", Prentice Hall Upper

Saddle River, NJ 07458,1997, ISBN 0-13-261066-3.

[19] R. Fuller, "Lecture Notes on Fuzzy Decision Making", Available to download from

WWW at: http: //www. tucs. abo. fi/courses/95-96/material/fuzzydec. html.

[20] G. J. Klir and B. Yuan, "Fuzzy Sets and Fuzzy Logic", Theory and Applications,

Prentice Hall, ISBN: 0-13-101171-5.

[21] G. Klir and T. A. Folger, "Fuzzy Sets, Uncertainty and Information", Prentice Hall,

1988, ISBN 0-13-345984-5 025.

[22] C. C. Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part II", IEEE

Transactions on Systems, man and Cybernetics, Vol. 20, No. 1, March. /April 1990.

[23] T. J. Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, Inc., ISBN

0-07-053917-0.

[24] H. R. Berenji, "An Introduction into Fuzzy Logic Applications in Intelligent

Systems", R. R. Yager an L. A. Zadeh (Eds.), Kluwer Academic publishers, ISBN: 0-

7923-9191-8.

Chapter 7: Hybrid Learning 164

_c

ter

Hybrid Learning:
Self-organising Fuzzy Decision

Trees Applied to Robotic
Environments

So far as the laws of mathematics refer to reality, they are not certain.
And so far as they are certain, they do not refer to reality.

Albert Einstein
Theoretical Physist and Nobel laureate

"Goemetrie und Erfahrung ", Lecture to Prussian Academy, 1921

With the aid of the theory presented in the preceding chapter, this chapter introduces

a hybrid learning technique in which fuzzy logic (FL) is incorporated into DTs to

produce a multi-strategy learning system incorporating the benefits of the individual

Chapter 7: Hybrid Learning 165

techniques. The resulting fuzzy decision trees (FDTs) are demonstrated in their application

to navigation and, in particular, to control a robot in dynamic and unstructured

environments.

Section 7.1 outlines the objectives of fusing the two methodologies in the context of robot

navigation. Section 7.2 introduces the physical nature and sensor configuration of the

simulated mobile platform used for experimental results. The remaining sections, namely

7.3 to 7.13 present the author's original work (except most of section 7.6 which has been

didactically placed in this chapter) and develop the application of FDTs to robot control.

7.1 Objectives
Chapter 5 discussed a control architecture in which a hierarchy of self-organising decision

trees (DTs) was utilised to navigate a robot in unstructured environments. The system

architecture combined the characteristics of behaviour-based systems [1,2,3] and reactive

systems [4,5] to form a hybrid architecture. The resultant system was able to respond to

immediate robot perceptions (reactivity) to avoid obstacles while incorporating a

distributed mechanism of behaviour execution. Navigation experiments, however, revealed

that the robot performs oscillatory movements when approaching and following long walls.

This problem is inherent to reactive systems and is produced as the result of conflicting

behaviours which are also reported in [4].

As discussed in the preceding chapter, the compositional rule of inference is based on a

finite set of contributive fuzzy rules populating the fuzzy rule list. The idea of partial

contribution of fuzzy rules which underlies the aggregation operation and also the

qualitative reasoning inherent to fuzzy logic [6] together provide flexible control and allow

the merging of conflicting behaviours [7,8]. This chapter is devoted to test the validity of

the foregoing statement by applying fuzzy reasoning to the inductive symbolic knowledge

encoded in the DTs to synthesise fuzzy control rules. The new hybrid learning system,

namely fuzzy decision trees should similarly provide robust reasoning and smooth control

in the presence of partial information and uncertainty in sensory data [9,10,11,12,13,14].

These are the two primary objectives of constructing fuzzy-based systems, in particular, the

hybrid system addressed in this chapter.

Chapter 7: Hybrid Learning 166

In an attempt to automate the process of fuzzy rule generation, Hsu et al in [15] and Hall

and Lande in [16] applied decision tree learning. In both approaches a crisp decision tree

was produced which was then transformed into a set of fuzzy rules. However, compared to

these two methods, the approach described in this chapter is a significant improvement in

two respects:

" In addition to automatic fuzzy rule generation, the approach is incremental and

capable of automatic fuzzy data acquisition which imparts the capability of on-line

fuzzy-rule learning to the algorithm.

Both data acquisition and rule generation are performed automatically and operate on

fuzzy data without the need for intermediate transformation.

This work uses the problem of behaviour learning and robot path planning as a testbed for

FDTs. These are applied to navigate a robot in unseen and unstructured environments. This

chapter relies on the methodology and architecture of fuzzy logic control systems and

presents the analysis and development of FDTs in the automatic synthesis of linguistically

formulated fuzzy rules. Figure 7.1 is the schematic representation of the control

architecture used to demonstrate the subsequent development steps (modules 1 to 6) from

crisp data acquisition (module 1) to FDT generation (module 4). The results of on-line

experiments conducted on this controller are presented in this chapter.

7.2 The mobile platform and sensor arrangements
The learning algorithm to be described is implemented as an extension to the mobile

platform shown in Figure 7.2, namely the simulated counterpart of the real miniature robot

Khepera [17], Figure 7.3. Khepera has two drive wheels and an array of eight infra-red

circumferential sensors to detect the proximity of objects. Robot positioning, which is a

measure of target location, is performed by wheel encoded dead reckoning. The input

variables of the system consist of the six frontal sensors, the wall location in situations

where the robot follows long walls and the relative location of the target is derived from

the instantaneous robot position (see chapter 4 for the derivation method). Drive wheels are

steered differentially to generate an appropriate control action.

Chapter 7: Hybrid Learning

12

Data Acquisition Sa
and Fuzzification

Vectorisation 1h

Perceptions
Robot

167

34
FDT'

ITI-2.8
(Knowledge Base)

5

Fuzzy Inference

61

Defuzzitication

Control Actions

Figure 7.1 The block diagram representation of the control system in terms of individual

working units. The numbers associated with the units are used for reference in the text.

IR Proximity Sensors

/"

"

Steering Wheels

Figure 7.2 The top-view of the

simulated Khepera with infra-red

proximity sensors.

Figure 7.3 Khepera robot equipped with
gripper and vision (Photo by Alain Herzog,
Courtesy of EPFL Laboratory, Lausanne)

"\
"

Chapter 7: Hybrid Learning 168

A perception P with P= {So, Sl , Sz
,
S3, S4

,
SS }, is defined to be the set of six frontal

sensors to detect the proximity of objects. This is further mapped one-to-one to the

perception P' _
{D0, D1, D2

,
D3, D4 , D5 } for distance measurements, that is, D, is the

distance between sensor Si and the object contour. Any two adjacent sensors comprise a

sensor group to indicate the complexity of the world detected. As in chapter 4, a world is

defined to be the instantaneous perception of the robot in its environment. In order to

associate a certain perception with a world in the hierarchy and to use the same

nomenclature as in chapter 4, frontal sensors are divided into five groups each containing

two adjacent sensors as shown in Figure 7.4. In this configuration, each sensor group can

be considered as a single sensor in order to be consistent with the sensor configuration

introduced in chapter 4.

Group 0 Group 4

Figure 7.4 Sensor input variables (So, S 1, S2, S39 S45 SS) are divided into five sensor groups:
Group 0 (Left), Group 1 (Front_Left), Group 2 (Front), Group 3 (Front_Right), and Group

4 (Right). In each case, two adjacent sensors form one sensor group.

Group I
Group 2 Group 3

Chapter 7: Hybrid Learning 169

The number of sensor groups indicating that obstacles are present determines the world

complexity and their nomenclature in the hierarchy. This means that, for example, if only

one sensor group detects an obstacle at a certain distance from the robot that entire

perception is classified as w1 to designate world one, and wo specifies that the

instantaneous environment (world) has no obstacles. In a sensor group, the state of either

sensor determines the state of the group whether the sensor group detects the presence of

obstacles or no obstacles are apparent, and this is demonstrated in Figure 7.5.

Reignier [4] took a similar approach to grouping proximity sensors in order to reduce the

dimensionality of the perceptual space and to locate obstacle positions.

7.3 Automatic fuzzy data acquisition
To acquire knowledge by means of DTs, concept learning requires formatted data as vector

entities such as: V= jfOjj,
---jj,... jcjj, where f" is a feature with fEF and

F= if o, f i,..., A... ' fn} is the space of features (input variables) each being defined on a

unique space of feature values such as f; =
{i

;, fl; ,f2; , ..., fm; 1. cc is a class (control

action) with cj EC from the set of output reflexes C= {c1, c2,..., Cj,..., cn} . These training

vectors can be supplied to ITI-2.8 (Figure 7.1) either in batch-mode (off-line) or

incrementally (on-line). In the incremental mode, each time-delayed robot rewarded

experience is encoded in such a vector and exposed to ITI for knowledge extraction. Action

assessment is performed by a cost function (chapter 4) to provide a class cc by remembering

useful actions while forgetting the rest. In the following, the entire input/output variables

which compose a training vector are established and their associated domains of validity

are defined.

Chapter 7: Hybrid Learning

Uhslacle

(a)

00

(c)

00

(b)

8
114

(d)

170

Figure 7.5 Different perceptual situations: (a) Two separate groups in which only one

sensor detects obstacles is recorded as w1 (the second obstacle is assumed to be outside the

range of detection of the sensors). (b) Two adjacent sensors S,, and S3 detecting obstacles

and represented by one group indicating wi. (c) Two non-adjacent sensors S2 and S4

covered by two groups indicating w2. (d) Three sensors S2, S3 and S4 detecting obstacles
and covered by two groups specifying w2.

Chapter 7: Hybrid Learning 171

f Inputs
" Do-Ds: D; is the distance from the object associated with sensor Si. They are

defined over the universe of discourse X= [0,1,..., 1023].

" GRL: target location relative to the robot; GRL is entirely defined over the

universe W= [-180',..., 180`].

" WallLoc: a dynamic (state-dependent) state variable indicating the location of a

long wall. WallLoc is a compound state variable and its domain of definition Z is

given by Z=XxW.

f Outputs

" 8: turning angle; 0 is defined over the same universe as GRL, namely W.

Having specified the input/output variables, a training example (feature vector) has the

following general format:

V, =
IDO, DI, D2, D3, D4, D5, GRL, C}

14

(7.1)

where Do-Ds are the distance measures, GRL is the relative location of the target to the

robot and C is the control action on which this input pattern is mapped.

Vector V; is an output of module 1 shown in Figure 7.1. In order to generate formatted

vectors for unit 3 of this system, vector V; needs to be re-expressed in terms of fuzzy sets.

This process is performed in module 2 and is discussed in the next section.

7.3.1 On-line fuzzification of state variables
In order to supply data increments to the ITI-module (module 3), the input domain needs to

be fuzzified in terms of suitable fuzzy linguistic variables. A fuzzy variable is fully defined

as the triple (x, T(x), U) [18,19] in which xis the name of the variable, T(x) the term set of

x, that is, the set of names of the linguistic values of x with each value being a fuzzy

number defined on U. Each fuzzy linguistic variable can be described as a set of some

fuzzy numbers (labels assigned to this variable) each characterised by a membership

function. It is also necessary to establish the shapes and the regions of those membership

functions. The assignment of the fuzzy sets to the fuzzy linguistic variables is an ad hoc

Chapter 7: Hybrid Learning 172

design and intuitive. In the current work, this is based on our contextual and semantic

knowledge of the system. However, the shapes of the fuzzy sets on a creation universe are

empirical and based on experimental results. Subsequently, the term sets of input/output

variables are defined in terms of their associated fuzzy sets and the domain of their validity.

f Inputs

" Do-D5: D; is the distance from the object associated with sensor S; with the term

set of D; defined as T(D,) _ {VF, SF, SC, CL, VC} on the universe of discourse

X= [0,1,..., 1023].

" GRL: target location relative to the robot; the term set of GRL is defined as

T(GRL) = {LB, LE, SL, FR, SR, RI, RB} over the universe of discourse

W=[-180 ,..., 180].

" WallLoc: the location of a perceiving long wall detected on either side of the

robot; Wa11Loc is a compound state variable and its term set T(Wa11Loc) is

defined to be T(WallLoc) = {LE, R11 over Z which is in turn defined as :

Z=XxW.

f Outputs

9 0: turning angle; 0 is defined over the same universe as GRL, namely W with its

term set being T(O) = {TLB, TLE, TSL, TFW, TSR, TRI, TRB}.

Figures 7.6 to 7.8 represent the normalised input/output variables and the membership

functions of their corresponding fuzzy sets. These membership functions are used for on-

line fuzzification and also defuzzification of the output sets.

Chapter 7: Hybrid Learning

0

173

Figure 7.6 Membership functions for the normalised distance between the robot and the

target on fuzzy sets: VF (Very Far), SF (Slightly Far), SC (Slightly Close), CL (Close) and
VC (Very Close)

Figure 7.7 Membership functions for the normalised robot position on fuzzy sets: LB (Left

Big), LE (Left), SL (Slightly Left), FR (Front), SR (Slightly Right), RI (Right) and RB
(Right Big)

u(0)

Figure 7.8 Membership functions for the normalised turning angle on fuzzy sets: TLB
(Turn Left Big), TLE (Turn Left), TSL (Turn Slightly Left), TFW (Turn Forward), TSR

(Turn Slightly Right), TRI (Turn Right) and TRB (Turn Right Big)

-1 o

o -1

Chapter 7: Hybrid Learning 174

As in the manner described in section 6.6.1, fuzzification is used to transform the sensor

readings to relevant corresponding linguistic labels. Since all state variables assume crisp

values, then fuzzification is merely the matching of an input variable to the membership

function of the corresponding linguistic label. This process is illustrated in Figure 7.9

9A(X)

1

RA(XO)

Figure 7.9 Fuzzification of the value of a state variable x by means of a fuzzy set A to

achieve the degree of membership of xo in A.

In Figure 7.9, the crisp value of a state variable x, namely x0, falls in the region described

by the fuzzy set A. Fuzzification of xO involves matching xo against the fuzzy set A to find

the degree to which x is a member of A. This is represented as /A(xo) and is linguistically

expressed as "x is A".

Joint fuzzy sets
In the current work, due to the incremental nature of fuzzy rule generation, the fuzzification

process is performed on-line and iteratively using the membership functions shown in

Figures 7.6 to 7.8. The fuzzification process serves the following two distinct purposes

(illustrated by switch S in Figure 7.1).

" Fuzzification of state variables to produce fuzzy propositions such as: "x is A" in

order to compose a fuzzy vector to be supplied to ITI-2.8 (state a of switch S). This

mode is responsible for on-line generation of fuzzy associative memories (FAMs)

which make up the KB of the system (unit 4 in Figure 7.1).

xo x

Chapter 7: Hybrid Learning 175

" Fuzzification of state variables to produce a perception dependent fuzzy proposition

such as "y is B" to be set theoretically composed with appropriate fuzzy rules

encoded in the knowledge base (KB) of the system (state b of switch S). The

composition operation is performed in the unit "Fuzzy Inference" and its output

represents the fuzzy control action space.

State variables can assume values which may fall into the overlapping area of two adjacent

fuzzy sets, as depicted in Figure 7.10.

µ(A)
µ(B)

0.5
0.3

Figure 7.10 Resolving ambiguity in fuzzification of joint sets

In such circumstances, on-line fuzzification involves joint fuzzy sets rather than a single

fuzzy set. To deal with this problem, the membership function of the resultant fuzzy set C

associated with the crisp value xO is defined to be

µc(xo) = max {µn(XO), UB(XO)}

which is a single fuzzy set.

(7.2)

7.4 Fuzzy knowledge generation
As described in chapter 6, the core of any fuzzy reasoning system consists of a repertoire of

fuzzy linguistic rules stored in and managed by fuzzy associative memories (FAMs) (also

known as the system KB or the fuzzy rule list) and a mechanism performing the

compositional rule of inference (inference engine). This implies that the FAMs are static

and their existence is a pre-requisite to fuzzy reasoning.

xo Distance D

Chapter 7: Hybrid Learning 176

Unlike conventional methods where FAMs are configured prior to process control, in this

work fuzzy rules are learned and generated in an incremental manner. This implies that

world-specific FAMs need to be generated on-line, requiring the implementation of

dynamic FAMs. By virtue of having multi-dimensional input training vectors, multi-

dimensional decision trees are generated in a binary structure which is specific to ITI-2.8. If

a world specific decision tree does not already exist, it is initiated and evolves to

convergence as new knowledge is acquired. Decision trees are then interpreted into a

hierarchy of perceptual fuzzy rules by searching the space of trees. This is conceptually

equivalent to searching a hierarchy of nested two-dimensional FAMs. Nesting two-

dimensional FAMs to cope with higher-dimensional fuzzy rules in a multiple fuzzy logic

system has been addressed and implemented in [20] to resolve the non-linear problem of

flexible pole-cart balancing.

Figure 7.11 (see page 198) demonstrates a non-linear multi-dimensional FAM encoded in a

binary decision tree and can be compared to an array of two-dimensional FAMs shown in

Figure 7.12 (see page 198). The former highlights the intelligibility and expressive power

of DT-based FAMs as opposed to conventional FAMs as the dimensionality of the input

vector increases. Figures 7.13 to 7.17 (see pages 199 to 203) show the multi-dimensional

FAMs encoded in binary DTs. They have been grown incrementally while training the

robot in different worlds, and classified as FDT-0 to FDT-4 in the hierarchy. They are then

searched to synthesise appropriate control rules.

7.5 The control system architecture
The previous section addressed the nature and the mechanism by which FAMs are

generated in the current work. This implies that the FAMs are no longer static nor fixed in

size or dimensionality. A change in size or dimensionality occurs each time a new data

increment is supplied to ITI. Since the DTs from incremental ITI are inclined to generalise

the concept they are constantly learning, they re-organise the tree structure continuously to

incorporate new data to augment the learning behaviour. Hence the FAMs used in this

work are both dynamic and self-organising.

Chapter 7: Hybrid Learning 177

Figure 7.18 shows the overall control system architecture. As depicted, this is a modified

version of the traditional fuzzy-based two-level architectures [8,12,21] for autonomous

robots. This approach is somewhat similar to the approach proposed in [21] in the way that

both architectures utilise a combination of high-level symbolic planning techniques with

low-level continuous control. The author's approach, however, merges the planner and the

rule base of the fuzzy controller of these architectures into a hierarchy of dynamic FAMs

that evolve progressively and on-line. Together with ITI-2.8 and the fuzzy inference

engine, they compose the high level fuzzy decision making unit of the system. From an

internal operational view, complex tasks are learned and decomposed into simpler ones and

sub-tasks are each encoded and assigned to a certain FAM. However, from the view of the

symbolic control action (planner's output), FAMs appear to perform in a similar way to

ordinary high-level planners as far as behaviour activation is concerned.

High Level Fuzzy Decision Making

...............................

FAMs

i

FDT-0

FDT-1

FDT-2

FDT-3

FDT -4

Classification
Using FDT-n

Fuzzy
Inference EM-2.8 F

Evolution of FDT- n

Fuzzy P

Fuzzification

Fuzzy Output Set

Defuzzification

Crisp Control
Action

Rewards

Robot

Perception P

Figure 7.18 The overall system architecture

Chapter 7: Hybrid Learning 178

7.6 Fuzzy reasoning and inference mechanism
The fuzzy reasoning mechanism adopted in this work follows that of Mamdani [22] and is

generally termed local inference. The process of reasoning is accomplished in module 5 of

Figure 7.1. The mechanism of local inference was introduced in chapter 6 and is developed

further below.

Consider a world specific fuzzy decision tree mapped on a set of rules

91 `
19119 912

9 ... 19111*-9%-11

where

91, : IF xj is Ali and x2 is A2; and ... and x,, is A,,; THEN z is C.

91, can be implemented by the following fuzzy relation R;:

Ri(X19X29... 9Xn$Z)=
(Ali X A2iX... XAn; -> C;)(X1, X2,..., Xn9Z)

(7.3)

or

Ri (XI
9
X2,..., Xn, Z) _ [Ali (X,) ̂ Ali (X2)A.... AA�i (Xn)] --> Ci(Z) (7.4)

where n is the dimension of the input vector. To classify an n-dimensional fuzzy input

vector x with x=Y20,..., and where x; o is the fuzzified crisp value x; o , into a

fuzzy output class C(z), we need to compose first the input vector x with the calculated

fuzzy relation R; to produce the intermediate result

Ci' - x10 x x20 x... xx0o R ýi (7"5)

C. ' is the output of the i`h rule and is set-theoretically defined as:

Chapter 7: Hybrid Learning 179

(7.6) Ci ýZ) = [Ali (x1o) n AZ; x20)n... nAni (x�0)] -i Ci (Z)

Then, all C are combined by some aggregation operator to obtain the overall system

output as follows:

(7.7) C=Ü Ci =U
([Ali

(x10) A Ali (X20)A...
AA i

(XnO)]
-i Ci W)

i=l i=1

where m is the number of contributing rules on the list. If we relate the j`h fuzzy set of the

I: h fuzzy rule, A1; (x
j;

), to its membership function, #(x1), and model the fuzzy

implication by Mamdani's min operator and also interpret the logical OR of rules by the

max operator, equations (7.3) and (7.7) can be rewritten using min-max composition in

terms of their membership functions as:

n

/1R; x11 +x2; ,..., xnº) = min µA,
(Xji(7.8)

; _l

and

pc
(y)

= max min
[PAj, (xJ),

R;
(XI

9 X2 , ... , xn , y)J (7.9)

i=i ; =i XEU

where m is the number of effectively contributive rules. The underlying principles of

labelling some fuzzy rules as effectively contributive are discussed in details in section 7.8.

The above expression characterises the membership function of the output set which

determines the space of possible outputs (control actions).

7.7 A practical approach to defuzzification

The output of the decision making module, , llc (y)
, is a fuzzy set specifying the possibility

distribution of the control action. Therefore, the process of reducing this fuzzy set to a crisp

single-valued output is termed defuzzification. Since no defuzzifier has been derived from

first principles [23] and due to the need for the computational simplicity, this work uses the

Chapter 7: Hybrid Learning 180

centroid method to generate a crisp control action. This specifies the centre of gravity of

the output fuzzy set, C(z), as zo defined as follows:

J zµc (z)dz
s z0 - Jµc(z)dz
s

(7.10)

where S spans over the support of yc(z) with /1 (z) being continuous. However, for an

efficient implementation of the above equation, the author implements the following

equation:

t
(A` PC (z)M`1

ZO (A, pc, (z)) ; _,

where

Ai = 05(a + b) (7.12)

is the area of the i`h output fuzzy set, M; is the parallel through the centre of the i`h output

fuzzy set, with a and b its corresponding base, if we assume the general shape of fuzzy

outputs is trapezoidal, whereas, Llc, (z) is the firing strength of the i`h output fuzzy set. All

areas, A;, are calculated during initialisation to provide computationally faster

defuzzification during training.

7.8 Classification by isolating contributive fuzzy rules
As demonstrated in Figure 7.11, the DTs generate multi-class leaves [24] that assign a

certain perceptual pattern to more than one class. To investigate this multi-dimensionality

in both input and output parameters and their consequence with regard to the

dimensionality of the fuzzy rules which effectively contribute to the output, the following

hypothetical scenario is first considered.

Chapter 7: Hybrid Learning 181

In a certain state, GRL may have an actual crisp value, x0, which falls in the overlapping

area between fuzzy sets SL and LE and D, with an actual crisp value of xj falling in the

overlapping area between fuzzy sets SF and SC. According to the linear FAM shown in

Figure 7.19, this perception activates the following four fuzzy rules to contribute

collectively towards a single control action.

gi, : IF GRL is SL and D1 is SF THEN 0 is TSL.

9t2 : IF GRL is SL and Di is SC THEN 0 is TRI.

R3 : IF GRL is LE and D1 is SF THEN e is TSL.

9t4 : IF GRL is LE and DI is SC THEN 0 is TSR.

GRL

01 LBILE ISL I FR ISR Ir

VF

SF TSL TSL
Dl

SC TSR TRI

CL

vc

Figure 7.19 An example of a linear 2D-FAM

The above rule list illustrates that a two-dimensional input vector with a single output

would create four fuzzy rules. However, the pertinent question is whether the

dimensionality of the rule lists is linearly proportional to the combination of the input-

output vectors' dimensions, as far as multi-dimensional input/output DTs are concerned. In

the next section, it is demonstrated that the length of any perceptual fuzzy rule list, such as

above, is directly proportional to the total number of classes in the leaf which classifies that

perception.

Chapter 7: Hybrid Learning 182

7.8.1 An analogous problem
To demonstrate the validity of the statement mentioned above, a physical analogy shown in

Figure 7.20 is considered.

F F

Figure 7.20 An analogous example describing min-max operation

As shown above, three physically separate chain branches are placed together at their ends

to make up a chain system. Each branch consists of a finite number of chain links. To

assess the strength of one branch, one would exert suitable equal and opposite forces, F, at

either end of that branch. Therefore, the strength of the branch would be dominated by its

weakest link. That is, the minimum (min) resistance of an entire branch in the presence of

an exerting force is determined by its weakest chain link. Now, consider an increasing

tensile force exerted at either end of the entire chain system. Weaker links would break

down one after the other as the force increases further along. Hence, the strength of the

entire chain system is governed by the strongest chain branch. In other words, the maximum

(max) resistance of the entire chain system under an increasingly exerting force is dictated

by the strongest branch.

This analogy is utilised to filter the effectively contributing fuzzy rules from the list of

contributive fuzzy rules.

7.8.2 A robot perception example
This process can be made further apparent by considering an example of the robot

perception in w3 (shown in Table 7.1) and observing how the corresponding tree would be

searched to classify this pattern.

Chain Link

Chapter 7: Hybrid Learning 183

Perception P Class (Fuzzy output)
DO, D 1, D2, D3, D4, D5, GRL

(Actual crisp values)
310,150,165,255,110,140,25 TFW, TSR

Table 7.1 An instantaneous perception of the robot

This perceptual state can be classified by searching the tree along the path shown in Figure

7.16. This path can be automatically transformed into the following generic rules:

gt,: IFD2=SF A D1=SF A Dj=-'VF A D4=VFTHEN 0= TFW.

92: IF D2 = SF A D1= SF A D3 = -, VF A D4 = VF THEN 0= TSR.

Considering the actual crisp value of D3 (255) and replacing the fuzzy set (-, VF) with its

complement, the above rules are altered as shown in Table 7.2.

gt, : IF D2 = SF A D1= SF A D3 = SF A D4 = VF THEN 0= TFW.

IF D2 = SF A Dj=SF A D3=SC A D4=VFTHEN 0 =TSR.

Table 7.2 The generic rule set resulting from the search for effective contribution to
generate the final control action

As depicted in Table 7.2, the crisp values of input parameters fall into the overlapping

areas of two adjacent fuzzy sets activating an array of 16 fuzzy rules (considering only one

class) and a total of 32 fuzzy rules (16 rule combinations and 2 classes), as illustrated in

Appendix A. To combine such a number of rules to generate one control action is

computationally expensive due to the complex defuzzification involved and may well

result in a delayed response to such perceived situations. Also, the antecedent of each

individual rule, 9t;, on the list contributes a degree of membership, pcjy) , which

determines the extent to which the corresponding fuzzy output set is truncated (termed as

firing strength). This implies that from the set of two arbitrary membership functions,

µ, (y) and , 11c2 (y) with , llc, (y) > /-
2
(y), the former dominates the effect of the latter

Chapter 7: Hybrid Learning 184

Expanding the analogy of the chain system to the list of 16 fuzzy rules to compute the

highest membership degree 1,1c(y), each individual rule, 93j, is analogous to each chain

branch (with min operating on antecedents of each rule) and the maximum contribution

(with max operating on 16 fuzzy rules) of the entire list of 16 fuzzy rules would be

equivalent to the strength of the entire chain system. The expression ji (y) of Appendix A

indicates the highest firing strength that the fuzzy rule list can contribute. This implies that

on applying this strategy, regardless of the total number of the generated rules on the list

(16 rules), the maximum firing strength is computed and applied to all available classes in

that leaf. Consequently, the total number of the effectively contributive rules is equal to the

number of classes found in that leaf, as shown in Table 7.2.

7.9 Overfitting inception and tree pruning
Individual decision trees are grown to a size dependent upon the diversity in the patterns of

their training vectors and the number of training vectors supplied to ITI. The experimental

results demonstrate that wo (the world with no obstacles) and w3 tend to generate smaller

trees than the others (wl, w2 and w4). This is due respectively to the small number of

features and the limited number of directions available to the robot.

Highly non-linear training vectors demand a large number of training examples to produce

trees with appropriate accuracy, whereas large numbers of training examples endanger the

generalisation capability of the tree and may lead to overfitting. In this case, the

dimensionality of trees grows unreasonably and trees tend to specialise each individual

pattern. Consequently, generating appropriately-sized decision trees is a matter of trade-off

between the two factors.

To suppress possible overfitting without compromising the generalisation nor the

classification accuracy, an algorithm has been developed to perform automatically pruning

or unpruning of the active tree.

Chapter 7: Hybrid Learning 185

STEP 1: Detect the active FDT

STEP 2: IF the threshold on the number of training examples exceeded

STEP 3: THEN Prune FDT

STEP 4: IF Accuracy of pruned FDT falls below desired threshold

STEP 5: THEN Unprune FDT

STEP 6: GOTO Step 8

STEP 7: ELSE Save pruned FDT

STEP 8: END.

7.9.1 Classification accuracy
A reliable estimate of classification accuracy of the generated DTs is the statistical method

of n-fold cross-validation [25,26]. The training vectors are split into n blocks of

approximately the same length and class distribution. To test each training vector only

once, for each block a DT is constructed from the remaining training vectors and tested on

the hold-out block. The error rate of a classifier constructed in such a way is the ratio of the

total number of errors in the hold-out blocks to the total number of training vectors. The

average error rate of cross-validations is a relatively reliable estimate (compared to the

performance of this classifier on a set of new data) of the error rate of a single classifier

produced from these training vectors [26].

When prompted, the integrated ITI in the current work performs a 15-fold cross-validation

on the available training vectors to produce the classification accuracy of the active FDT.

Figures 7.21 to 7.25 (see pages 204 to 208) show the pruned versions of FDTs depicted in

Figures 7.13 to 7.17 (see pages 199 to 203) which are unpruned and 15-fold cross-

validated. Table 7.3 demonstrates the prediction accuracy of the different FDTs before and

after post-pruning.

It can be observed that pruning not only has achieved a significant reduction on tree size,

but also it generally enhances the generalisation ability of trees which in turn increases the

prediction accuracy. After pruning the tree, a 15-fold cross-validation was run two

consecutive times on the tree. Table B. 1 and Table B. 2 of Appendix B contrast the

prediction accuracy before and after pruning by conducting two runs of 15-fold cross-

Chapter 7: Hybrid Learning 186

validation on the FDT representing wl, shown in Figure 7.14. It is evident that the average

classification accuracy of the pruned tree has been enhanced compared to that of the

unpruned version, with correct classification being improved from 81.76% to 83.31% of

cases.

Average Prediction Accuracy after 5 Runs
with 15-fold Cross-Validation in %

Worlds WO WI W2 W3 W4

Before Pruning 70.20 81.52 78.60 96.67 69.66

After Pruning 69.25 83.01 79.50 96.67 69.22

Table 7.3 The prediction accuracy of 15-fold cross-validated FDTs before and after
exposing to pruning in percentage.

7.10 A detailed example of the novel approach
As discussed in the foregoing sections, the process of generating FDTs involves the

following stages:

1. Automatic fuzzy data acquisition

2. Generation of fuzzy FDTs

3. Generation of fuzzy rules

To demonstrate the above mechanisms, we consider a simple example in which a small

number of training vectors is collected, the tree is initiated and incrementally re-inferred;

the tree is then searched to classify a robot perception.

Chapter 7: Hybrid Learning 187

7.10.1 Automatic fuzzy data acquisition
In the training mode, the algorithm evaluates in state n the performed robot motion of state

n-1 using the cost function. This mechanism is preceded by fuzzification of the entire

perceptual state variables, section 7.3.1. If it results in a positive action, this perception is

kept in a continuously up-dated memory store which is accessed directly by ITI when a

new perception arrives. Appendix C is a collection of 40 such training vectors (describing

partially W2) whose elements are fuzzy sets and are the results of positively rewarded robot

motions.

7.10.2 Generation of FDTs

The process of growing FDTs is incremental and is triggered when a new training vector is

supplied. This means that FDTs adapt and alter their structure to incorporate the incoming

data. The learning algorithm presented in this work, is able to search the space of FDTs in

the intervals between two successive tree manipulations. Figure 7.26 shows the FDT which

is grown on the fuzzy data acquired in the previous section.

7.10.3 Generation of fuzzy rules
Synthesis of fuzzy rules is accomplished on-line and concurrently with searching the trees.

A certain robot perception can activate one or more fuzzy rules which are then aggregated

to a single fuzzy output set and defuzzified to generate a suitable control action. For

instance, consider the following robot perception shown in Table 7.6.

State Variables (Crisp Values) Corres.
World

Doi DI D2 D3 D4 D5 GRL

220 120 180 310 102 110 -30 W2

State Variables (Fuzzified) Cones.

Do D, D2 D3 D4 D5 GRL
World

SF VF SF Sc VF VF SL W2

(a) (b)

Table 7.4 An instantaneous robot state perceived from w2 in terms of (a) its crisp values
and (b) after fuzzification.

Chapter 7: Hybrid Learning 188

To classify the robot state, the FDT shown in Figure 7.26 is followed along the directed

path to the terminal node containing the fuzzy output sets. This results in activating one

fuzzy rule, as in shown in Table 7.5.

IF D2=-+VFADI=ýSFAD2=ýSCAD4=-, SCTHEN C=TLB.

Table 7.5: The synthesised fuzzy rule after searching the FDT to classify the robot
perception shown in Table 7.4 (b)

In Table 7.5, D, is the i`h sensor and C is the class or the control action. Note that the FDT

depicted in Figure 7.26, does not include all representative training vectors as it is rather

"immature" and may misclassify certain robot states. Therefore, this example should only

highlight the essential steps involved in the learning algorithm without presenting specific

details of its development process.

7.11 Simulated behaviour learning
The hierarchical approach facilitates global learning which is initiated in wo and propagates

up the hierarchy to more complex worlds. This is performed in such a way that the

knowledge in the previous layer is modified to adapt to the current perception in order to

grow knowledge for the current layer. The on-line learning technique presented in this

work has been verified using the Khepera robot simulator. Due to the realistic assumptions

made in the design of the simulator, this facilitates the transfer of the simulation results

without major alterations to the real Khepera robot [27].

In all homing tasks, the robot is set at a starting point S with an arbitrary heading angle and

is expected to reach a target labelled G, Figure 7.27 (see page 210). The simulation results

aim to illustrate the feasibility of overall knowledge decomposition into a hierarchy of

fuzzy decision trees that are trained and developed locally. Qualitative reasoning with

fuzzy symbolic data in behaviour learning such as object avoidance, target seeking and

wall following behaviour are demonstrated in the next section.

Chapter 7: Hybrid Learning 189

7.12 Results and discussion
The principal strength of the technique proposed is incremental behaviour learning in the

frame of a reactive architecture. The hierarchy is set up to integrate two fundamental

behaviours (object avoidance and target seeking behaviour) in such a way that dominance

of one behaviour in the hierarchy reduces the presence of the other behaviour. A further

behaviour, namely the wall-following behaviour, is also integrated in the hierarchy, and is

activated when local minima are detected [28]. This behaviour is encoded in w4. For

instance, wo (perception with no obstacles) is highly goal-oriented as opposed to w3 in

which reactivity is the dominant behaviour (see also Figure 4.3 in chapter 4). This implies

that certain environmental configurations (obstacle positions) can activate one of these two

behaviours immediately prior to the second. This can then lead to oscillatory trajectories

which are inherent to reactive strategies [4]. Table 7.6 shows the average number of runs

needed to train FDTs to the size incorporating the representative feature vectors. It also

demonstrates that the number of training examples varies in different FDTs depending on

the world-specific obstacle configurations.

Figures 7.27 (a) and (b) demonstrate the first stages of learning in which the robot is

trained in the world with no obstacles. In this world, the robot establishes the goal-seeking

behaviour which is encoded in wo. The gradually smoothing trajectories demonstrate the

incremental nature of the learning algorithm. After sufficient training, the robot is able to

reach the set target (using similar settings to those used in the production of Figures 7.27

(a) and (b)) in significantly fewer steps, Figures 7.28 (a) and (b).

Having access to the knowledge learned in wo, the robot is trained in a slightly more

complex world, wl, which is sparsely populated with obstacles. Figures 7.29 (a) and (b)

show how the robot tries to adapt by producing a new behaviour while heading towards the

target. This adaptation is more evident, particularly in Figure (a) where the robot first

encounters obstacles. Figures 7.30 (a) and (b) are navigation scenarios in the same unseen

environment where the robot utilises the learned knowledge to home in on the goal.

Figures 7.31 (a) and (b) show an intermediate stage of learning (w2) where the robot is

trained in a more "hostile" environment in which obstacles are more densely situated. The

Chapter 7: Hybrid Learning 190

robot learns how to avoid larger obstacles. Once the robot has been sufficiently trained in

this environment, it is navigated in a modified terrain. The robot can bypass the obstacles

and demonstrates a smooth behaviour, particularly, in front of the disjoint long obstacles,

as shown in Figures 7.32 (a) and (b).

Worlds

WO W1 W2 W3 W4

Average 15 13 10 8 12
No. of Runs

Number of
Training 78 223 118 72 212
Examples

Total no. of training runs to build up the hierarchy 58
(Average)

Table 7.6 The average number of trials and the training examples in different worlds
needed to set up the FDT hierarchy

A third behaviour which is also integrated in the hierarchy and encoded in w4, is that of

wall-following. This behaviour is triggered in situations when the robot follows long

parallel walls or the algorithm detects local minima. This happens when the target is

located behind long walls or nested walls, corners and dead-ends, in which case the robot

would perform oscillatory movements in infinite loops. Figures 7.33 (a), (b) and (c) are

examples where the robot is presented with long walls and corners to adapt to the

aforementioned situations.

Figure 7.34 (a) illustrates a navigation scenario using pure DT learning where the two

behaviours (target-seeking and obstacle avoidance) alternate. This gives rise to the

oscillatory path which is typical in situations where the robot follows long walls or parallel

Chapter 7: Hybrid Learning 191

corridors of walls to reach a set target. This shortcoming has been overcome, as

demonstrated in Figure 7.34 (b), by introducing fuzziness into the DT-based hierarchy,

thereby merging the conflicting behaviours and assuring smooth trajectories in the presence

of long walls. However, the variations remaining are due to the physical discontinuities of

the long wall and are removed, as shown in Figure 7.34 (c), when the wall is physically

augmented.

Figures 7.35 to 7.38 are various scenarios to demonstrate the performance of the robot in

navigatory tasks where the robot has access to the knowledge in the entire hierarchy.

Figures 7.37 and 7.39 show that reactive path planners are not always time-efficient as far

as the length of the generated trajectories is concerned. They are, however, effective and

can generate the shortest path, as shown in Figures 7.35 and 7.38.

7.13 Comparison with other learning systems
In this section, a comparison is made between the author's approach to the development of

a hybrid learning system and previous work carried out in the frame of reactive

architecture.

Since the learning algorithm in this work is that of a self-learning system in which the

entire hierarchy is learned incrementally and the knowledge is acquired automatically, the

new algorithm is able to learn automatically from its environment, providing a significant

training advantage when compared with supervised learning systems. In these systems, the

intervention (partially or completely) of a teacher or a trainer is inevitable in that the robot

is either taught to learn [29] or its actions are punished or rewarded. The control

architecture of the AuotonoMouse (a mouse-like robot) in [29] embodies a three-stage

developmental learning, namely baby stage (in which the assistance of a trainer is needed),

young stage and adult stage. The author's work can be considered to bypass the baby stage

is implemented by the learning system.

Since reactivity directly transforms perceptions to actions, artificial neural networks (ANN)

provide an obvious method for learning reactive transformations from perception to action.

ANN systems have been developed which implement either a reinforcement algorithm

[30,31] or a back propagation algorithm for learning and adaptation [32]. A drawback of

Chapter 7: Hybrid Learning 192

the learning techniques developed for ANN systems is that they are often very dependent

on the presentation of meta-knowledge in order to achieve fast convergence, as can be

observed in [30,33]. A similarity to the current work that the connectionist architecture,

called TESEO, in [30] exhibits, is that it has been designed to overcome perceived

limitations of the reinforcement learning technique, such as slow convergence and lack of

incremental improvement. A significant architectural difference, however, between TESEO

and the current work is that in the former the learning is augmented by built-in primitives

(simple stimuli-responses) operating as background knowledge, whereas in the author's

approach the learning is performed uniformly from inception to convergence with no a

priori knowledge. The experimental results conducted on TESEO have demonstrated that

the robot, after 10 training epochs, learns how to reach a target on a smooth trajectory and

with the shortest path. The algorithm in this work, though, may not always generate the

shortest path (as shown in Figures 7.34 and 7.38)due to its reactivity, as does TESEO, but

it is effective and capable of always reaching the target. However, once trained, TESEO

appears to learn a specific environmental structure of the navigation terrain; requiring re-

training if the environment changes significantly. In the author's work, the algorithm is

globally tuned, in that it does not require re-training for new environments.

The hybrid approach proposed in [33] which is a neuro-fuzzy robot learning system, also

relies heavily on a priori knowledge. In an example of this approach, the knowledge

encoded in an expert system is used to initialise learning which consequently updates the

meta-knowledge of the expert systems. As far as the comprehensibility of the learned

knowledge is concerned, it is very hard to understand the learned "rules" of a neural

system, since the knowledge of the neural nets resides in the connections between the

processing units (neurons) in the form of real numbers (weights), whereas the internal

representation of DTs is highly intelligible to human users due to their symbolic nature.

The author's approach also improves on previous work in that it addresses a number of

non-trivial real world issues and constraints such as sensor noise, reactivity, incrementality,

short training times and robustness harnessing the power of decision trees and fuzzy theory

for learning and adaptation in a robotic system.

Chapter 7: Hybrid Learning 193

7.14 Summary
A new approach for setting up an array of fuzzy associative memories (FAMs) in the

context of hybrid learning has been introduced. FAMs are engineered on-line and

incrementally without human intervention. This multi-strategy learning technique unites

the features of inductive learning and fuzzy techniques to cope with inherent uncertainty in

sensory data and to reason on high-level symbolic data. Fuzzy logic is also used to merge

conflicting behaviours to assure smooth trajectories.

The novelty of the proposed hybrid technique is three-fold: automatic fuzzy data

acquisition, automatic generation of fuzzy decision trees (FDTs) from inception and the

introduction of DT-based FAMs. The latter feature facilitates non-linear and multi-

dimensional FAMs accommodating fuzzified symbolic knowledge while offering

intelligibility and expressive power (inherent to decision trees) to the fuzzy control rules.

As demonstrated, this would be virtually equivalent to searching the space of a hierarchy of

nested linear FAMs.

Behaviour learning and dominance is decomposed into a hierarchy of locally tuned FAMs

each encoded in an individual FDT as physically isolated computational entities with

dynamic life times. Global path planning can also be accomplished by coupling an array of

locally tuned FAMs.

References
[1] Maes and R. A. Brooks, "Learning to Co-ordinate Behaviours", Proceedings of

AAAI'91, Boston, MA, 1991, pp. 796 - 802.

[2] M. J Mataric, "Behaviour-Based Control: Main Properties and Implications",

Proceedings of IEEE International Conference on Robotics and Automation,

Workshop on Architectures for Intelligent Control Systems, Nice, France, May 1992.

[3] M. J. Mataric, "Behaviour-Based Control: Examples from Navigation, Learning, and
Group Behaviour", Journal of Experimental and Theoretical Artificial Intelligence,

Special Issue on Software Architectures for Physical Agents, Vol. 9, Nos. 2-3,

Hexmoor, Horswill, and Kortenkamp, Eds., 1997, pp. 323-336.

Chapter 7: Hybrid Learning 194

[4] P. Reignier, "Fuzzy Logic Techniques For Mobile Robots Obstacle Avoidance",

Robotics and Autonomous Systems, 12 (1994), pp. 143-153, ELSEVIER.

[5] D. T. Lawton, R. C. Arkin and J. M. Cameron, "Qualitative Spatial Understanding and

Reactive Control for Autonomous Robots", The IEEE Workshop on Intelligent

Robots and Systems, 1990, Vol. 2, pp. 709-714.

[6] A. Safiiotti, "The Uses of Fuzzy Logic in Autonomous Robot Navigation: a

Catalogue Raisonne"', Soft Computing, Vol. 1, No. 4,1997, Springer Verlag.

[7] A. Safiiotti, E. H. Ruspini and K. Konolige, "Blending Reactivity and Goal-

Directedness in a Fuzzy Controller", The Second IEEE Conference on Fuzzy Systems,

San Francisco, CA, March 1993, pp. 134-139.

[8] A. Safiiotti, E. H. Ruspini and K. Konolige, "Robust Execution of Robot Plans using

Fuzzy Logic", Lecture Notes in Artificial Intelligence 847, Springer Verlag, pp. 24-

37.

[g] A. Saffiotti and E. H. Ruspini, "Using Fuzzy Logic for Mobile Robot Control",

International Handbook of Fuzzy Sets and Possibility Theory, D. Dubois, H. Prade

and H. J. Zimmermann, Eds., 1997, Kluwer Academic.

[10] A. M. Gonsalz de Miguel, P. Vacher, P. Collinwood and R. Osborn, "An Avoidance

Fuzzy Logic Controller for the Mobile Robot Khepera", Fifth International

Workshop on Advanced Robotics and Intelligent Machines, University of Salford,

UK, March 1997.

[11] H. Rak and H. S. Cho, "A Sensor-Based Navigation for a Mobile Robot Using Fuzzy

Logic and Reinforcement Learning", IEEE Transactions on Systems, Man and

Cybernetics, Vol. 25, No. 3, March 1995.

[12] H. Surmann, J. Huser and L. Peters, "A Fuzzy System for Mobile Robot Navigation",

The Fourth IEEE Conference on Fuzzy Systems, Yokohama, Japan, March 1995, pp.

83-86.

[13] G. H. Shah-Hamzei and D. J. Mulvaney, "Self-organising Fuzzy Decision Trees for

Robot Navigation: An On-line Learning Approach", IEEE International Conference

on Systems, Man and Cybernetics SMC'98, October 11-14,1998, San Diego, CA,

USA, (Forthcoming).

Chapter 7: Hybrid Learning 195

[14] M. Benreguieg, P. Hoppenot, H. Maaref, E. Colle and C. Barret, "Fuzzy Navigation

Startegy: Application to Two Distinct Autonomous Robots", Robotica, Vol. 15,

1997, Cambridge University Press, pp. 609-615.

[15] S. C. Hsu, J. Y. Hsu and I. J. Chiang, "Automatic Generation of Fuzzy Control Rules

by Machine Learning Methods", IEEE International Conference on Robotics and

Automation, 1995, pp. 287-292.

[16] L. O. Hall and P. Lande, "Generating Fuzzy Rules from Data", Fifth IEEE

International Conference on Fuzzy Systems, 1996, New Orleans, Vol. 3, pp. 1757-

1762.

[17] 0. Michell, Mage Team, 13s Laboratory, CNRS, University of Nice-Sophia

Antipolis, France; Khepera Simulator was provided for the Official Khepera Contest

at Evolution Artificial Intelligence Conference (Nimes, 1997), Downloadable from

http: //alto. unice. fr/-om/khep-contest. html.

[18] C. C. Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part IV, IEEE

Transactions on Systems, man and Cybernetics, Vol. 20, No. 1, March. /April 1990.

[19] C. C. Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part I", IEEE

Transactions on Systems, man and Cybernetics, Vol. 20, No. 1, March. /April 1990.

[20] E. P. Dadios, "Non-Conventional Control of the Flexible Pole-Cart Balancing

Problem", PhD Thesis, Department of Manufacturing Engineering, Loughborough

University, 1996.

[21] E. H. Ruspini, A. Safiiotti and K. Konolige, "Progress in Research on Autonomous

Vehicle Motion Planning", J. Jen, R. Langari and L. A. Zadeh (Eds.), Industrial

Applications of fuzzy Logic and Intelligent Systems, IEEE Press, 1994, ISBN: 0-

7803-1048-9, pp. 157-190.

[22] E. H. Mamdani, "Applications of Fuzzy Algorithms for Control of Simple Dynamic

Plant", Proceedings of IEE, Control and Science, Vol. 121, No. 12, December 1974,

pp. 1585-1588.

[23] J. M. Mendel, "Fuzzy Logic Systems for Engineering: A Tutorial", Proceedings of the

IEEE, Special Issue on Engineering Applications of Fuzzy Logic, Vol. 83, No. 3,

march 1995, pp. 343-377.

Chapter 7: Hybrid Learning

[24] G. H. Shah-Hamzei, D. J. Mulvaney and I. P. W. Sillitoe, "Multi-layer Hierarchical

Rule Learning in Reactive Robot Control using Incremental Decision Trees", The

International Journal of Intelligent and Robotic Systems, Kluwer Academic

Publishers (In Press).

[25] J. R. Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann

Publishers, 1992.

196

[26] J. R. Quinlan, "Using C5.0: An Informal Tutorial", Available to download on WWW

at: http: //www. rulequest. com/tutorial. html.

[271 0. Michell and P. Collard, "Artificial Neurogenesis: An Application to Autonomous

Robotics", Proceedings of the Eighth International Conference on Tools with
Artificial Intelligence, IEEE Computer Society Press, 1996, pp. 207 - 214.

[28] G. H. Shah-Hamzei and D. J. Mulvaney, "System Instability and Oscillation

Resolution in Reactive Robotics using DT-based Approach to Learning",

International Conference on Artificial Intelligence and Soft Computing, Banff,

Canada, July 27 - August 1,1997, pp. 411 - 414.

[29] M. Dorigo and M. colombetti, "The Role of the Trainer in Reinforcement Learning",

MLC-COLT Workshop on Robot Learning, July 10,1994, Rutgers University, new

Brunswick, N. J, pp. 37-45.

[30] J. R. Milan and C. Torras, "Efficient Reinforcement Learning of Navigation

Strategies in an Autonomous Robot", IEEE Conference on Intelligent Robots and

Systems, September 1994, Munich, Germany, pp. 15-22.

[31] A. H. Fagg, D. Lotspeich and G. A. Bekey, "A Reinforcement Approach to Reactive

Control Policy Design for Autonomous Robots", The IEEE International Conference

on Robotics and Automation, May 1994, San Diego, CA, pp. 39-44.

[321 W. Li, "Neuro-Fuzzy Systems for Intelligent Robot Navigation and Control under
Uncertainty", IEEE Proceedings, ISBN: 0-7803-2461-7,1995, pp. 1747-1754.

[33] A. Kandel, G. Langhlz and M. Schneider, "Artificial Fuzzy Neural Networks and

Their Application to Intelligent Robot Control Systems", The Sixth IFAC Symposium

on Large Scale Systems, August 1992, Beijing, pp. 391-396.

PAGE
MISSING

IN
ORIGINAL

Chapter 7: Hybrid Learning 98

Figure 7.11 Searching the space of a DT-based FAM (representing a complete w,). The

broken directed lines show an example path to classify a perceptual pattern.

Do

Figure 7.12 Mapping the multi-dimensional input vector of Figure 7.11 (directed path) on
a hierarchy of nested 2D-FAMs (representing a portion of w2)

Chapter 7: Hybrid Learning

GRL = FR

GRL = LB
TSR
TSL

TLB GRL = LE
TLE

TLB GRL = SL
TLE

TLBI IGRL = RB

TRI GRL- RI
TRB

TSRJ TSR
TRI TRI

199

Figure 7.13 The first layer of the fuzzy rule hierarchy representing environments with no
obstacles

Chapter 7: Hybrid Learning 200

Z. O

O

O

U

Qr

ýý'
N
U

O
c)

Ü
U

O

hO

o
a

ü

10 to Z
o

14

I) aý
.r C
0

U
Q)

b

N
N

w

b
aý

a
a a
C

N

L4

Chapter 7. " Hybrid Learning 201

Figure 7.15 An unpruned version of the FDT representing w2

Chapter 7: Hybrid Learning

D2 = SF

//
D1 = SFI ITLB

/r
D3 = VFI ITSR

TFWI IN = VF

TFW I
TSR

202

Figure 7.16 A more generalised FDT for the environments with more complex-shaped
obstacles and configurations, namely W3

Chapter 7: Hybrid Learning 203

Figure 7.17 An unpruned version of the FDT used for wall-following scenarios after a long

wall is detected, and this describes w4.

Chapter 7: Hybrid Learning

TSR
TSL

GRL = FR

GRL = LB

TLB GRL = LE
TLE
TFW

GRL = SL

TLBI IGRL = RB

TRI GRL = RI
TRB
TSR

TRI II TRI

204

Figure 7.21 An FDT representing wO after performing virtual pruning. It is evident that

pruning has not affected this FDT as it is in its general form.

Chapter 7: Hybrid Learning 205

L. w
U

H_

b
C
cd

10
U

cu
'b

N
H
O
1.
U

"Cy
w

H

U_

00

0
N
U
U

0

.N .r U
U

10
N
N

U

4r
O

0

U

b
N

bD

W

E
O

b

O

U
Cd
aý

O

Ni.
y

N

O
U

.. r
U

O
.r

N

Chapter 7: Hybrid Learning 206

Figure 7.23 The truncated version of FDT shown in Figure 7.15 representing w2

Chapter 7: Hybrid Learning

D2=SF

D1= SFI ITLB

TFW TSR
TSR

207

Figure 7.24 The truncated version of FDT shown in Figure 7.16 representing w2. It is

evident that this FDT tend to overgeneralise.

Chapter 7: Hybrid Learning 208

Figure 7.25 The FDT activated in wall-following situations after pruning

Chapter 7: Hybrid Learning

ID2=VFI

1D4=SF D1=SF

TLB D3 = SC TF1N D2 = SC

TRB D4=SC
GRL=RI D3=VC

TLE
TRB

ýE D5 = VC TfW
D2 = VC

TFWI ITLE
B

TLB

209

Figure 7.26 The FDT grown on a small batch of fuzzy data. The searched path is specified
by a directed line.

Chapter 7: Hybrid Learning 210

ý.
dtfauit. rcbat

errrrwrrrsrwýwrwrri w 44

 6ý, -,. -
ý.

ý
>J etadlated Ktwprr

4
gu

a5\ 2 >J di. t- . -., wlwu
Mater v01u s

Leu High
Aoti-ity _aaa .i..

we l ! PA!
-dj

nage) xet r°°! J
_!
U a-rj r! J awl k nJ JI

(a) The first stage of learning from inception and initiating the FDT hierarchy

wO. warld defrult. rubot

S$
?i ai. eulatsd Ktxpara

6 it2> dlatanoo aanaor wlUN* g
(_

}
"tor valuae

Low ý. c Act Ivi ty ry
.JJ .ýi

Neil

10iepcrn stopped

uJ .# a"j ast rotrot tJ anan r ow addJ turn '. I
rnrf ýoadf swsl etppJ run_1 nrýl, J aowwandl 31 ! uV. lf f In/ol

...... _.... 7-........ _.. _....... _................. _.......... _.. _...... _....... __.. __.. _

(b) An intermediate stage of learning in wO (environments without obstacles)

Figure 7.27 Training in the world without obstacles

Chapter 7: Hybrid Learning 211

i
u0 _uorld deFaul l. ro0ol 1

iweýerrewrwaýrMpwwrrruaeerrarsýwrrrwe[nwxýtu 3 ý.
32

,?,
f aiýeulsled Klwrpsrs

J ý`
2 > distsno* twor values

Nator aluouae
 00

Low Nigh

Ö0
Aotioity j. .i.. i 7iY

Khe'Pera gtapped

9
ý

step + 5

.
Theta -4.654253

Coct + 0.011941

I I IJor Id0
]

I

loadf s "nnf sst shot If scan ralove Ojd turn ýý
nwf losdý etw.) atýýý run rtast ooýnaiJ 2J

,
yuIt] tý-f In /0

(a) Navigation in wo using the generated FDT

dtfault. robot
ýrrýrrýrrýrrrurrrrýýýýrir rr rrVNrn

a
ý.

6
> simulated Khepere

dlrtenar amino value!

ö ö,
.

low IU

IOleppra ttlq. pad

Tl
.ý il ctcp lAl

Ihata = 3.766839

Cost 0,002178

 U-Id

(b) Another scenario of homing task in wo

Figure 7.28 Homing tasks in an environment without obstacles after the FDT-0 has been

grown

Chapter 7: Hybrid Learning 212

S,
a.

0)j simulated Kh*p. ro
0u ii, 7> dlsts senrar values

j Tatar values

LaY High G'
*ti:.... ' Activity äl JJJ .1 .1.. i

i vMWrs stopred

*j loadj eaýs. ý trl rabotf ý_ý G ni r!! arnnJ ±ah! J Awn)

stop " 249

That. ^7,677977

Cost " 0,005295

World "0

L/3

nýwi .
ýa! k{J S±! ýJ mm r] nrl . ý! tJ oaxwýdl ?.) 9ul! ý 2). '. l A. l

(a) A typical initial stage of learning in wj

ulfua: u. world

1 1

drivel t. ralwl

84ý. ý yl eul alyd K1 p. r t ý.
4h .ýQ ?ý dl alrwu uKwor wlwI

6JI! ý ýi ýla ý. 1ý.,
lw Hlgh
0A -1 -1 -1 -j

(b. p r. O/opprd

. 4v" 209

Theta " -9.234717

Cwt " 0.001070

Warld +0

!JiJ ; wt robatJ -!
J -cord raemv_Si Woj t 2ij *

V3

'! j ýý±gil ! !J ateý1 Lvn. l '. wtl oarj 3J molj J_J 1nfoj
.......... _. _ _. _. _.................................. _........

(b) Learning to avoid obstacles in wt

Figure 7.29 Learning to avoid obstacles while homing on a set target. This is the first stage
of learning to grow FDT- 1.

Chapter 7: Hybrid Learning

rltmst . ewrl8

I

i®1

y ý4

213

dofault. rehot
rýý 1 ý'-

sisuistsd IQwprs

t. .iQ >1 distanor ssn*or omlws

motor uplues Low High
 i . 4ý

polivtty "d .JJ.. 1 .. 1 1 ..
1 "

' KMprs stoºwd

step " A6S

TMts " 12.514M

Cost " 0.000619

world "0

(a) Navigation after learning in w, is established

J

40,

I-iii----

Ytsp 204

Theta . -7.001261

Cost . 0.006691

Uwld .1

IA
sovol "stwpi mn] PryMI OW dj ? lYý Info

(b) Improvement in target-seeking behaviour in w,

del wl t . ruhet

S,
w.

t. J elmiloted "opera
>. j dlstanw sensor values

snta- v. lWs

Low High
RotIvltw aaJ .a .1.. 1 i .J

Kh. N top acl a º
.... , _.. _.........,..

Figure 7.30 Navigatory tasks in wj when the robot has access to both FDT-0 and FDT-

Chapter 7. " Hybrid Learning

u2f uzsyl. wr! d

- r. rý... rrrrýrrrýrýrrýýmusýrrrwwrtý

214

dofaul t. rebet
estrrrw

 2° >. 1 slml. t. d Kh. wrs

M s ,"a, i >f d1. Uros sonar vslu *

k NI >ý btw glues
HIt{h

Uwa 1 1 aoavlt l I l l . .. _ y

Khspsrl toped
................

(a) Learning to improve reactivity in w2

dsi. ull. robct

. ri. ul. t. d Kh. p...
2 >. f dl. l. nae w. ns v. luwn

0_U
ý., - Activity ad _i .dJ .JIt

(b) A preliminary stage of learning and adaptation in w2

Figure 7.31 Training the robot to cope with more complex object configurations to build
FDT-2

Chapter 7: Hybrid Learning

__,....,. w.... ý, wreuýnawrýwe
du/ooI t. robot I

------- -- ---
A--1 >); ulot d kMp, r.

JJ____}- 1 ýi NOter ýrlu*u

215

nwJ ýowJ i. eJ wt roeotJ ýJ soanj r.. eJ add turn) nwJ io. al J st. pJ nni i! nitJ ? It "T i't'

(a) A Navigation task in w2

S

00
100,

S.., 3
>I atwlat. d Kh. p. r.

dt*tawe wwq vvkwv
actor Value.

00
tou High

Khapera Mtapp. d

et. p . 41,3

Theta . 1. b3A898

Casst = 0.007681

IWrld "0

ý. u , wg. s. eý ae, e . ow} : som, .. MOS. . ýw taro! 'J n. pf .
twdJ ea .) ee. P. l runt rvr.. t. l oa.! ýnýl 7. J JU J !. J J

.! ̂ ý J
...

(b) Another example of homing task after FDT-2 has been grown

Figure 7.32 Example of homing tasks in more densely object-populated environments

Chapter 7. Hybrid Learning 216

. 34. worI a
dwf

mI t. robot

0 >J riiutet. d Kt. pwim
A tý t5 >J dl atanoý urn+or valwo

wtw values ýý

law NIyA
(*ti vtty d .JJJJ_. 1

Li

KMpýrý slopped

stop " 566

Theta " 5.824670

cmt . 0.002TZ$

World .0

l oovel Wdl turn : ýý
twwJ

--j exwJ Iwd saw owl robot Ij awn po

(a) Learning to follow walls

V3

runt rq! wtj ! ±ndJ JutJ Intel

'v ' >J . I., I. t., w Kh. wra
tll. tanw .. near value.
'Alor

ö e/
c t/

.

Low High

_
fbtlvl ty U91Iair äl

(b) Learning to follow long walls and edges

I
1
1

S SAS 1111+1S

00. aorld. ddaWt. rhot

Chapter 7. " Hybrid Learning

N wIN

00

j

J Iwd sage wt raboý ! iwin r! J turn

217

d. f aul t. robat

b_Z>. f tti hui stnl K1xp. r. .

g t. i' x >. J dlstvo. snmor udu. e

Lou High

.
Nuti. ity .1 .JJJJJl

a4
Khp.., . topped

rte 1660

Thcta o -10.806374

Cost S 0.001746

Yvld "0

..................

(c) Learning in an environment with arbitrary obstacle configurations (edges, walls and
corners)

Figure 7.33 Learning examples from environments where the robot learns to follow long

walls, corners and edges of arbitrarily-shaped obstacles

Chapter 7: Hybrid Learning

ýFý
Ir

218

d. f aU trat

etwulatatl k . psra

,Tn .
i1 0 dlstanoe . aw valwr

_.. _ý
f ?. f Mator values

Lo, High
Ni 3M1 3. fý Notivitj .1JJJ..! .IJW

nea] leýdJ sawf wt rgý! Stj 1j so- nmýtf !! dj turn xtýpj run rtxýtj oa+ýanýJ It IJZJ Inful

_...... _.......... _.. __......... _ .. __.. __ _... __.... _.:.

(a) Wall-following with absolute behaviour arbitration using pure DT learning

. r----:

ýý

ý,
`ý

00

ý01

w300.
uorld

I
1

ýi 1

44

i
I II

S
S

4)

duf. ul t. royot
4

>1 aiaulst. d K"Per.
2ui, 0 >. I dlatarve a. mar ualuws

i
_J

l >. i . ýtýr aloso
law NI/h

O ,_S
Rot1 ty dJJJJ _I Ad

Kharers stopped
..................

atop 432

Thet. 1.912021

Cnst " 0.003577

World "0

nw(ýuý ä±ieJ aýt_ °o-! 'J 1) äwn. J n' J f! *! i 1 -J IoadJ x"J etepj runt r"tf J Jd2J

(b) Performance improvement in wall-following behaviour using FDT learning

Kh"m, m topped

M-W] loll ±! J Most rabo? J
.!.

J awnJ isýnaýýý ±ddJ turný _ý'

%°/
Low 4 10

tlotlvltY .. t .a.. l a {_ 3

Khspsrý stoppsd

stop " 437

Theta " -2.031532

Cost " 0.003799

Mond"0

MY toed eawJ otrýf rui_J rmJ oýJ ?J quit ý, J: j Infof

(c) Smooth trajectory and behaviour in wall-following scenarios when the discontinuities

are augmented

Figure 7.34 Performance improvement by applying FDTs to navigation and wall-following
tasks where the robot may fail to follow smoothly longs walls due to the absolute

behaviour arbitration in the hierarchy

Chapter 7: Hybrid Learning 220

t I
I E i I
1

2"j LeýI eeej AeL,
-.

4R11 U egmý mm]
.
ýýni *

._'. _J
wýýuýwcsa Rapsr.

15 tý eil S ?J dlst*noe moor values
ý_

_! ..

II) J motor values
0Ö

Low 114gh

nwf Iwdf ea J ! PJ rvgJ rrut. J aoýwa ,,,
J ýJ

. Zug tJ . j_J !. J

Figure 35 Navigation in an unseen environment where the robot has access to the entire
FDT-hierarchy

........... I
1
1
1
1
1

dsisult. rabot
swrýirrrarnsrýrýwsarsýsirsisatersý

S$.......
ý. '".

0 "
., j simulated KirMrs

4u uý Z

f. I ll °

5,1 distance sensor values

>. i tor ýQluws 1 J N w
.1 RatlvttY " _)

jJ .1J

khspsrs utaswd

Figure 36 Target-seeking while avoiding dead-ends using FDTs

wUntw rs. world defaul l. robol
rrreýrrrtirrýrrwrrwewrrrcrrrrarrrýýýrrrrraýrrr
 140

Chapter 7: Hybrid Learning

u3lfu: gl. uwid

11

1 11
1

uJ Ioad ýýt robot eS-j-!:!!! J !! Oj
.
turn 'JI

221

SG
?J simulated Ktmpare X.

60

". S {ý
«

\ii1 dlatanw sensor values
I 11111}

'-'
*otIr "Iu, w

Low Nigh

8' Ä

Khepera atapoed

"t"' ' vet

lh. ta a -11.393063
cot " o. o0IUUI
World .0

rnwJ ýwdJ s+oýJ . stýpl r! J !: m. J ! +a!! ±+P_J 3. J ý! eui __J. -J JnroI

Figure 38 Navigation in an environment where the robot encounters long walls, corners
and edges, and is able to manoeuvre around towards the target

Figure 37 Target-seeking in an unseen environment

Chapter 7: Hybrid Learning 222

m3pounde. wo. Id

rlllýlý1ý11111ý1ý1111111111ý111ý1ý1ýllýlllýilllýlýýr1ý1111rýýý

_I .. _. ___. _ __ý.... _.... _. __. .. x _1..
1

--dofaul
t. robot

_...

1A
1' >1 elaulstad KMpura

1 ý" ýý. 42 ý, ý dlstaoe sanuar ualusu
J motor valurr

00 ,)
Law Hlllh

Figure 39 Demonstrating an intelligent behaviour in a previously unseen environment
where all three behaviours (target-seeking, reactivity and wall-following) are activated

using FDTs which exhibit a robust and coherent trajectory.

Chapter 7: Hybrid Learning 223

Appendix A

Generic rule set:

gt,: IFD2=SF A D, =SF A D3=SF A D4=VFTHEN e= TFW.

gt2: IFD2=SF A D, =SF A D3=SC A D4=VFTHEN 0 =TSR.

In order to compute the overall (highest) firing strength, µc(y), the list of all possible

contributive rules is considered. For simplicity, only the rule antecedents (firing strengths),

µcß (y), are with the aid of membership functions computed and applied to a single output

fuzzy set to avoid repetitions. Hence, the resultant fuzzy rule set would be:

9t,: IFD2=SF A D, =SF A D3=SF A D4=VF UCl(y) =min(1.0,0.95,0.8,0.85)=0.8
912: IF D2 SF A D1 SF A D3 SF A D4= SF µC2 (y) = min (1.0,0.95,0.8,0.25) = 0.25

ß't3: IF D2 = SF A D1 = SF A D3 = SC A D4= VF µC3 (y) = min(1.0,0.95,0.1,0.85) = 0.1

914: IF D2 = SF A D, = VF A D3 = SF A D4= VF µC4 (y)
= min(1.0,0.5,0.8,0.85) = 0.5

Sts : IF D2 = VF A D, = SF A D3 = SF A D4= VF Ups (y) = min(0.3,0.95,0.8,0.85) = 0.3
X916 : IF D2 = SF A D, = SF A D3 = SC A D4= SF

IUC6
(y) = min(1.0,0.95,0.1,0.25) = 0.1

9t7: IFD2=SF A D, =VF A D3 SF A D4=SF JIC7(y) = min(I. 0,0.5,0.8,0.25) = 0.25

9t : IFD2=VF A D, = SF A D3 SF A D4= SF / C8(y) =min(0.3,0.95,0.8,0.25)=0.25
9t,: IFD2=SF A D, =VF A D3 SC A D4= VF PC9(y) = min(1.0,0.5,0.1,0.85)=0.1
9t, () : IF D2 = VF A D, = SF A D3 = SC A D4= VF Pc (y) = min(0.3,0.95,0.1,0.85) = 0.1

9t,,: IFD2=VF A D, =VF A D3=SF A D4=VF PC,, (y) =min(0.3,0.5,0.8,0.85)=0.3
9t, 2 : IF D2 = SF A D, =VF A D3=SC A D4= SF UC12 (y) = min(1.0,0.5,0.1,0.25) = 0.1

9i, 3: IFD2=VF A D1 = SF A Dj=SC A D4= SF PCI3(y) =min(0.3,0.95,0.1,0.25)=0.1
91l4: IF D2 = VF A D, =VF A D3 = SF A D4= SF µC14 (y) = min(0.3,0.5,0.8,0.25) = 0.25

9t, 5: IFD2=VF A D1 =VF A D3=SC A D4=VF UCis(y) =min(0.3,0.5,0.1,0.85)=0.1
9t, 6: IF D2 = VF A D1= VF A D3 = SC A D4= SF µC16 (y) = min(0.3,0.5,0.1,0.25) = 0.1

µc(y) =

max
µc, (Y)' Uc2 (Y)' µc3 (Y)' µc4 (Y)' µc5 (Y)' µc6 (Y), µc, (Y)4 µcß (Y)9 µcy (Y)' /cI((Y)v

= 0.8
µcß. (Y)' Pcý2 (Y)' µc 3

(Y)' µc4 (Y)' µc. 5
(Y)+ µc16 (Y)

Chapter 7: Hybrid Learning 224

Appendix B

ing 15-fold cross-validation:

Assigning instances to folds...
Running cross-validation;

.............. Run Modes XTsts Insts Acc

-- --- --- --- --- -------
1: 43.00 5.29 18.00 83.33
2: 43.00 5.47 18.00 88.89
3: 43.00 5.51 18.00 72.22
4: 43.00 5.17 18.00 66.67
5: 43.00 5.53 18.00 100.00
6: 41.00 5.51 18.00 61.11
7: 43.00 5.47 18.00 88.89
8: 43.00 5.54 18.00 88.89
9: 39.00 5.15 17.00 88.24

10: 45.00 5.60 17.00 82.35
11: 37.00 5.38 17.00 70.59
12: 43.00 5.11 17.00 76.47
13: 43.00 5.37 17.00 82.35
14: 43.00 5.51 17.00 82.35
15: 43.00 5.44 17.00 94.12

Avg 42.33 5.40 17.53 81.76 (iti-incremental)
SDv 1.95 0.16 10.63 (iti-incremental)

ing 15-fold cross-validation:

Assigning instances to folds...
Runn ing cross-validation:
.. Run Nodes .. XTsts Insts Acc

1: 43.00 5.48 18.00 88.89
2: 43.00 5.33 18.00 83.33
3: 41.00 5.50 18.00 77.78
4: 43.00 5.48 18.00 77.78
5: 35.00 5.53 18.00 77.78
6: 43.00 5.25 18.00 88.89
7: 43.00 5.54 18.00 61.11
8: 43.00 5.22 18.00 83.33
9: 41.00 5.44 17.00 64.71

10: 43.00 5.40 17.00 88.24
11: 43.00 5.35 17.00 82.35
12: 43.00 5.51 17.00 94.12
13: 43.00 5.15 17.00 88.24
14: 43.00 5.35 17.00 88.24
15: 43.00 4.96 17.00 88.24

42.20 5.37 17.53 82.20 (iti-incremental)
2.11 0.16 9.22 (iti-incremental)

Table B. 1 Results from two consecutive runs of 15-fold cross-validated unpruned tree

shown in Figure 7.14

Chapter 7: Hybrid Learning 225

ing tree & turning on virtual pruning.

Performing 15-fold cross-validation:

Assigning instances to folds...
Running cross-validation:
.............. Run Nodes Xlsts Insts Acc

1: 23.00 4.55 18.00 94.44
2: 25.00 4.46 18.00 77.78
3: 23.00 4.40 18.00 72.22
4: 27.00 4.84 18.00 83.33
5: 27.00 4.88 18.00 94.44
6: 27.00 4.98 18.00 88.89
7: 27.00 4.96 18.00 66.67
8: 27.00 5.03 18.00 77.78
9: 27.00 4.98 17.00 88.24

10: 27.00 5.02 17.00 70.59
11: 25.00 4.48 17.00 88.24
12: 27.00 5.02 17.00 76.47
13: 27.00 4.98 17.00 94.12
14: 25.00 4.49 17.00 88.24
15: 25.00 4.65 17.00 82.35

Avg 25.93 4.78 17.53 82.92 (iti-incremental)
SDv 1.49 0.24 9.01 (iti-incremental)

ng tree & turning on virtual pruning.

15-fold cross-validation:

Assigning instances to folds...
Runn ing cross-validation:

.. Run Nodes XTsts

Insts

Acc
----- ----

1:

25.00

-
4.95 18.00 66.67

2: 27.00 5.06 18.00 77.78
3: 27.00 4.89 18.00 94.44
4: 23.00 4.49 18.00 66.67
5: 33.00 4.91 18.00 72.22
6: 25.00 4.74 18.00 94.44
7: 27.00 4.81 18.00 94.44
8: 23.00 4.22 18.00 88.89
9: 23.00 4.54 17.00 76.47

10: 25.00 4.59 17.00 88.24
11: 27.00 4.99 17.00 88.24
12: 27.00 4.77 17.00 88.24
13: 23.00 4.41 17.00 82.35
14: 23.00 4.54 17.00 94.12
115: 27.00 4.86 17.00 82.35

Avg 25.67 4.72 17.53 83.70 (iti-incremental)
SDv 2.69 0.24 9.81 (iti-incremental)

Table B. 2 Results from two consecutive runs of 15-fold cross-validated pruned tree
shown in Figure 7.14

In both tables, the column "Acc" specifies the prediction accuracy of each block, and the

element (Avg, Acc) specifies the average prediction accuracy of each the run (averaged

over 15 blocks).

Chapter 7: Hybrid Learning 226

Appendix C
Fuzzy training examples collected from the training stage describing (partially) w2.

VF, VF, VF, VC, VC, CL, RI, TLE.
VF, VF, SF, SF, SF, VF, SR, TLB.
VF, VF, VC, VC, VF, SC, SR, TLB.
VF, VF, VF, SC, VC, VF, RI, TLE.
VF, VF, VF, SC, VC, VF, RI, TRB.
VF, CL, VC, VC, VF, VF, SR, TLB.
VF, VF, CL, VC, VC, SF, RI, TLB.
VF, VF, CL, VC, VC, VF, RI, TLB.
VF, SC, SC, VF, VF, VF, RI, TRB.
VF, SF, VC, VF, VF, VF, FR, TFW.
VF, CL, VC, SC, VF, VF, FR, TLB.
VF, VF, VC, VC, SC, VF, SR, TLB.
VF, VF, VF, SC, VC, VC, RI, TFW.
VF, VF, VF, VC, VC, VC, RI, TFW.
VF, VF, VF, CL, VC, VC, RB, TLB.
VF, SC, SC, VF, VF, VF, FR, TSR.
VF, VF, VC, VC, VC, VC, RB, TLB.
VF, VF, VF, CL, VC, VC, RB, TLB.
SF, VF, SF, VF, VF, VF, FR, TRI.
VC, VF, SF, VF, VF, VF, SL, TRI.
VC, SC, SF, SF, VF, VF, SL, TLB.
VF, VC, VF, VF, SF, VF, FR, TRB.
SF, VF, VF, SF, VF, VF, FR, TLE.
VF, VF, VC, VC, CL, VF, RB, TLB.
VF, VF, VF, CL, VC, CL, RB, TLE.
VF, SF, VF, VF, VC, CL, RI, TLE.
VF, VF, SF, SF, VF, VC, RI, TLB.
VF, VF, SF, SF, SF, VF, RB, TLB.
VF, VF, VF, SC, VC, VF, FR, TLE.
VF, VF, VF, SF, SF, VF, FR, TLB.
VC, SC, SF, VF, VF, VF, SL, TLB.
VF, VC, SC, VF, VF, VF, FR, TRB.
VF, VF, CL, VC, CL, SC, RI, TLB.
VF, VC, CL, SF, VF, VF, SL, TLB.
VF, VF, VC, VC, SF, VF, SR, TLB.
VF, VF, SF, CL, VC, CL, RI, TLB.
VF, VF, VF, SF, SC, VF, SR, TLE.
VF, SF, VC, SF, VF, VF, RI, TFW.
VF, CL, VC, VC, VF, VF, RI, TLB.
VF, VF, CL, VC, VC, VF, RI, TLB

Chapter 8: Conclusions and Further Work 227

Lhapter 8 .

Conclusions and
Further Work

There are no facts,
only interpretations.

F. Nietzsche
Nachlaß

This chapter summarises the author's contribution of new knowledge which relates to

the design and development of an intelligent control strategy for an autonomous

robot. It also discusses the results obtained from the implementations of the learning

systems described in chapters 4,5 and 7, and compares the performances of the alternative

methods. The potential applications in which the proposed techniques can be employed are

discussed and areas of further research are identified.

Chapter 8: Conclusions and Further Work 228

8.1 Conclusion
The aim of this work was to establish a novel intelligent reactive strategy for the control

and navigation of an autonomous robot. To achieve this, the work formulated the

methodology of Hierarchical Learning and Knowledge Decomposition in the frame of a

reactive architecture, in which intelligence is distributed in a hierarchy of behaviour

complexities accessible to the intelligent agent. The methodology of concept learning was

employed to establish these layers and they were implemented in decision trees (DTs).

Learning was initiated in the lowest layer of the hierarchy (the world with no obstacles) in

order to establish the survival instinct in which the aim is simply to find a set target (target-

seeking behaviour). Knowledge propagated up the hierarchy during the training of the

robot to enable it to learn complex behaviours in worlds containing obstacles. The novel

contributions of the research carried out in this work are summarised below and are
discussed in detail in the following sub-sections.

" Introduction of an off-line hierarchical learning approach employing knowledge

decomposition.

" On-line implementation of the learning concept in realistic environments.

" On-line implementation of adaptive fuzzy DTs for behaviour fusion.

" Introduction and implementation of multi dimensional fuzzy associative memories
(MDFAMs) to deal with highly non-linear fuzzy input spaces as well as to fuse these

to lower dimensions.

Off-line hierarchical learning approach
The novel approach of hierarchical learning was first introduced and applied (see chapter
4) to a robot and environment about which a number of simplifying assumptions were

made. This was used to demonstrate qualitatively the feasibility and robustness of the
learning approach rather than to develop a navigation system with an optimal response in a

representative range of perception examples. The training process was performed off-line,
in that the robot was first trained in an environment by letting it explore its surroundings to

collect training data. This process was used to grow DTs in an off-line manner which were

then embedded in the control system and subsequently applied to navigation in unseen

Chapter 8: Conclusions and Further Work 229

situations. The performance of the robot in navigation tasks is hence reflected in the quality

of its trajectories, and the robustness of the DT hierarchy.

Experimental results (presented in section 4.10) proved the validity of the approach, in that

the robot was always able to find its target from any arbitrary position while avoiding

obstacles. However, due to the assumptions made in the implementation, and in particular

the low resolution of the working space, the quality of the trajectories was rather sub-

optimal. However, due to the limited number of feature values which resulted, the trained

DTs were small and could be built with a moderate number of training examples (the

maximum required in the tests was 132).

On-line learning in realistic environments
The learning algorithm was then modified (see chapter 5) to operate in an on-line and in an

incremental fashion in such a way that the DTs in the hierarchy were able to behave

adaptively as new knowledge was gained. In this approach, ITI-2.8 was integrated into the

control architecture to provide on-line learning, and the simplifying assumptions made

previously were removed and a continuous environment was considered. Structurally, the

increase in problem complexity was evident in the larger number of dimensions found in

the trees following training. In general, an increase in the number of nodes in a DT is

reflected in the greater specialisation of the DT, which in turn reduces its predictive power.

To reduce the influence of this effect, post-pruning was performed when the total number

of the training examples exceeded a set threshold. This kept the size of the DTs under

control without losing classification accuracy, which was confirmed in the results by a 15-

fold cross-validation following truncation.

Operationally, as the behaviours were being formed gradually, the adaptive behaviour

showed an incremental improvement in the robot trajectories. In this approach, realistic and

real-world suppositions were made in order to model the robot behaviour in the face of

uncertainty and non-linearities. The experimental results (see section 5.10) confirmed that

the learning system was robust and able to cope with non-linearities, both multiple-valued

and multi-variant control parameters, and with a continuous environment. In contrast to the

Chapter 8: Conclusions and Further Work 230

off-line learning mode, the incremental improvement of the robot behaviour, even in the

training phase, was evident in the generated trajectories.

However, one shortcoming (inherent in basic reactive strategies [1,2]) which was also

observed in the operation of this approach was the problem of unsmooth or "zigzag"

behaviour exhibited by the robot while following long walls. This arose due to the absolute

behaviour arbitration within the hierarchy in scenarios where two behaviours activated

each other alternatively. This problem was removed in the last stage of the development by

introducing fuzzy logic and reasoning into the hierarchy, and this is discussed in the

following section.

Adaptive fuzzy DTs for behaviour fusion

The outcome of introducing fuzziness into the hierarchy (see chapter 7) was a hybrid fuzzy-

DT (FDT) learning system that combined symbolic learning and approximate reasoning for

decision making in the face of partial information, uncertainty and noisy sensory data. The

rationale of the hybrid system design was two-fold.

" To provide a more efficient noise rejection mechanism.

" To blend conflicting behaviours in order to suppress zigzag motions and to replace

these with smooth trajectories [3].

In the vast majority of practical applications in which noise and non-linearity were present,

implementations using fuzzy logic have been shown to outperform other non-conventional

control strategies [4]. This effect has been demonstrated in the results achieved in the

current work using the hybrid technique. FDTs have shown that they are able to blend

conflicting behaviours by generating smooth trajectories and by being able to cope more

efficiently with noisy data.

Although the number of dimensions of the total input space is now larger due to the

introduction of a new and multiple-valued fuzzy variable (the distance values associated

with each sensor), there is no significant increase in the size of FDTs compared with that of

the pure DTs (chapter 5). This is largely the result of the production of the FDTs using ITI-

2.8 which is able to generate relatively smaller trees. These results confirmed that DT-

Chapter 8: Conclusions and Further Work 231

based hierarchical learning orchestrated by fuzzy reasoning has the capability to deal with

non-trivial real-world problems such as efficient noise cancellation, approximate reasoning

and behaviour fusion. The results obtained were also very encouraging (as far as simulated

environments are concerned), and of great value for further application in a real physical

robot.

MDFAMs for the management of non-linear fuzzy input spaces
Another concept which is of a more fundamental significance in that it is applicable to a

wide variety of fuzzy based intelligent systems, is the concept of multi dimensional fuzzy

associative memory (MDFAM) which was also introduced and advocated in this work. As

discussed in chapter 7, this approach provides an improved representation compared to that

of linear nested FAMs [5]. MDFAMs are able to learn and to accommodate linguistic fuzzy

rules whose antecedents are highly non-linear and comprise multi-variant parameters. Due

to the characteristics of DT learning, these are also able to fuse highly non-linear input

parameters to a number of representative parameters describing a certain concept.

MDFAMs formed the underlying theory of fuzzy decision trees applied to robot control

and navigation in this work.

8.2 Comparison of the alternative techniques
The experimental results reveal that the learning speed (number of training epochs) varies

in the same proportion between layers in the hierarchy, regardless of the operation mode

(on-line or off-line). In a given layer, the learning speed appears to depend on two factors,

namely the number of input parameters to the learning algorithm and whether and to what

extent meta-knowledge is available during training. This is most evident in the first layer,

namely wo, which represents the environment without obstacles. This layer appears to need

the longest time of all layers to find almost all of the representative vectors, even though

there is only one input parameter (the relative location of the target) to the learning

algorithm and the associated DT is a linear tree. In general, the learning time decreases as

one advances further up the hierarchy. The fact that longer training times are required in

the first layer of the hierarchy and much shorter times (considering the non-linearity of the

input space) in the higher layers can be attributed to the fact that the DT in the first layer is

learned from inception, but as training proceeds to the higher layers, learning speed is aided

Chapter 8: Conclusions and Further Work 232

by the availability of an ever increasing wealth of meta-knowledge gained from the

preceding layers.

Another aspect which is implicitly formulated into the structure of the generated DTs, and

explicitly reflected in the coherence of the robot trajectories, is the quality of the learned

knowledge. Capturing the most representative training vectors in the first layer of the

hierarchy, wo, is an important foundation in the production of coherent knowledge in the

higher order worlds. This does not necessarily mean that the size of the DT for wo should

be so large that it incorporates all the training vectors describing wo, rather that it should be

sufficiently general in structure to encode the necessary representative training vectors.

Comparing the hybrid technique (FDT) with the other two approaches (and particularly the

on-line learning approach which is more comparable in its application), a significant

improvement in the robot behaviour can be observed without introducing any major

additional computational cost. FDTs can also use heuristics or common sense knowledge

as the learning seed to reduce training time. Due to the linguistic nature of both the learning

module and the fuzzy control, the generated FDTs are able to represent the control laws in

the form of a set of intelligible rules which is important to users who require a transparent

model of the control algorithm applied.

8.3 Potential application areas
The performance of the DT-based hierarchical learning, and the hybrid system in particular,

proved to be robust and efficient in both control and navigation tasks. The next stage of the

work would be to implement this learning mechanism in real-world navigation problems.

The nature of this hybrid system suggests a number of areas in which its capabilities can be

exploited, and put to the test, and these are as follows.

" Implementation in service robots.

" Implementation in manufacturing, intelligent transportation and factory automation.

" Application to intelligent control systems, in which either mode of operation can be

employed (on-line or off-line learning), depending on the nature of the task.

Chapter 8: Conclusions and Further Work 233

In the above application areas, the second is perhaps the most suitable application for initial

exploration as it can be investigated without the need to make major changes to the system

architecture. One possibility is that the system could be applied as an intelligent alternative

to "unintelligent" and pre-planned automatically guided vehicles (AGVs) which usually

navigate inductively by following a fixed path of electrical wires and are typically used for

the transportation of sub-assemblies in the manufacturing sector, and assume an

unchanging environment. However, they are not flexible in their operation and can be

expensive to install as they need to work in specially engineered environments.

The intelligent system introduced in this work can be used to replace the control

architecture of AGVs to enable them to manoeuvre around obstacles and to make suitable

decisions in highly dynamic environments such as manufacturing areas. As the intelligent

algorithm does not require any pre-path planning or map making, no specific areas of the

shop-floor would need to be allocated to the AGVs. Such an implementation would also

save on hard wiring costs associated with current AGVs.

The concept of FDT learning has application to a large number of control systems,

particularly those in which the plant dynamics are unknown, highly non-linear or difficult

to model. In such a case, a set of heuristics (as an objective function) can be used to initiate

the incremental learning of the controller. The controller developed in this way has a

distinctive advantage compared with other model-based control systems such as those

based on neural networks, in that the learned control rules are available and intelligible to

the user. This would also aid the user in the identification of mis-classifications of control

parameters which may have arisen as the result of firing control rules specified by a DT.

8.4 Suggestions for further research
Scientific research is an ongoing process in which existing knowledge is refined and to

which new knowledge is contributed. In carrying out the work presented in this thesis, a

number of research areas can be identified for further investigation.

The most immediate work would be to implement the hybrid system on a real robot and to

evaluate its behaviour in structured (office areas and corridors) as well as in unstructured

and dynamically changing environments. Given a reliable dead-reckoning system, the

Chapter 8: Conclusions and Further Work 234

results of self-learning in unstructured environments can be investigated, enabling a

qualitative comparison to be made with the system performance when simulated learning

results are transferred to the real robot. The comparison results would provide a suitable
benchmark to indicate the robustness of the system in real-world scenarios.

A more challenging task would be to investigate the increase in the robot's degrees of

freedom (using the same learning architecture) by adding a manipulative task to the

repertoire of robot behaviour. This would also modify the current system's structure from a
MISO system to a MIMO system, that is, the training examples would be identified with

more than one class each of a different nature.

Since the majority of the currently available DT learning systems operate on single output
training examples, this in itself would provide a suitable motivation for a theoretical

investigation and implementation of MIMO-based DTs. The introduction of a MIMO-

based hierarchical learning may suggest the introduction of neural networks (NNs) or

genetic algorithm (GAs) into the system to replace DTs.

NNs and GAs both have the ability to perform learning and optimisation. By replacing the

DT hierarchy by an array of NNs, the principal learning approach (knowledge

decomposition) would remain intact. This means that a hierarchy of locally and behaviour-

based NNs are trained and grown in an incremental manner, in which each NN would be

used to provide meta-knowledge to train and to initiate the next and more complex NN in

the hierarchy. The topology of the NNs in the hierarchy would depend on the

dimensionality of the input-output space which in turn is determined by the number of the

control parameters.

As discussed previously, the experimental results demonstrated that the learning

convergence in the first layer of the hierarchy, wo (the environment without obstacles), is

relatively slow compared with that of other DT networks and this is due largely to the

absence of meta-knowledge. The introduction of a MIMO system may further increase the

convergence time of this layer. Techniques for training NNs have been the subject of much

research, and to suppress the slow convergence in the first NN layer of the hierarchy would
be to use a learning algorithm such as conjugate gradients [6] with fast convergence

Chapter 8: Conclusions and Further Work 235

abilities. Although its implementation involves additional computational cost in that the

Hessian of the function and its gradient need to be found, the algorithm may reduce

convergence time in the first layer. The learning algorithms used in the higher NN layers of

the hierarchy may not require application of the conjugate gradient algorithm, as the meta-

knowledge gained in the previous NN layers would largely compensate the slow

convergence of standard learning algorithms such as back-propagation.

The use of GAs in the hierarchical structure could also be investigated as an alternative to

DTs or NNs. One distinct advantage of GAs in learning from a population of training

examples is its ability to perform global search and, from this, to identify the global

maximum or minimum of a desired function. They are also able to provide a population of

potential solutions (which may not be necessarily optimum) to a given task. The

disadvantage of the basic GA algorithms is their slow speed in finding the solution

population if the dimensionality of search space is large, although this problem can be

tackled by applying parallel GA algorithms and pre-partitioning the search space. In

hierarchical structure, a hybrid version of GAs and DTs could be used (keeping the

learning principle of knowledge decomposition intact) in order to generate layers of

genetically learned knowledge. One advantage of this method would be rapid convergence

and the identification of a solution population in each layer. DTs can be used to store,

manage and fuse (keep the most representative chromosomes in each solution population

and discard the rest) the solution populations. Training of the higher layers can be

accomplished in the same manner as already described, by using the optimised

chromosomes stored in the previous layer to form the initial population of the learning

process for the next layer. A comparison with the purely DT approach could be carried out

to assess its performance.

References
[1] P. Reignier, "Fuzzy Logic Techniques for Mobile Robot Obstacle Avoidance",

Robotics and Autonomous Systems, 12 (1994), pp. 143-153.

[2] A. Dubrawski and J. L. Crowley, "Learning Locomotion Reflexes: A Self-supervised

Neural System for a Mobile Robot", Robotics and Autonomous Systems, 12 (1994),

pp. 133-142

Chapter 8: Conclusions and Further Work

[3] A. Saffiotti, E. H. Ruspini and K. Konolige, "Blending Reactivity and Goal-

236

directedness in a Fuzzy Controller", Proceedings of the Second IEEE Conference on

Fuzzy Systems, San Francisco, March 1993, pp. 134-139.

[4] R. M. Tong, "A Control Engineering Review of Fuzzy Systems", Automatica, Vol.

13, Pergamon Press, 1977, pp. 559-569.

[5] E. P. Dadios, "Non-Conventional Control of the Flexible Pole-Cart Balancing

Problem", PhD Thesis, Department of Manufacturing Engineering, Loughborough

University, 1996.

T. Masters, "Practical Neural Network Recipes in C++", Academic Press, Inc., 1993.

CONTAINS DISKETTE

UNABLE TO COPY

CONTACT UNIVERSITY

IF YOU WISH TO SEE

THIS MATERIAL

