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Synopsis 

0 

-SIS 

I think, 
therefore I am. 

R. Descartes 
The French Mathematician, Philosopher and Psychologist 

The replication of human intelligence, learning and reasoning by means of computer 

algorithms is termed Artificial Intelligence (Al) and the interaction of such 

algorithms with the physical world can be achieved using robotics. The work described in 

this thesis investigates the applications of concept learning (an approach which takes its 

inspiration from biological motivations and from survival instincts in particular) to robot 

control and path planning. The methodology of concept learning has been applied using 

learning decision trees (DTs) which induce domain knowledge from a finite set of training 

vectors which in turn describe systematically a physical entity and are used to train a robot 

to learn new concepts and to adapt its behaviour. 

To achieve behaviour learning, this work introduces the novel approach of hierarchical 

learning and knowledge decomposition to the frame of the reactive robot architecture. 

Following the analogy with survival instincts, the robot is first taught how to survive in 

very simple and homogeneous environments, namely a world without any disturbances or 

any kind of "hostility". Once this simple behaviour, named a primitive, has been 
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established, the robot is trained to adapt new knowledge to cope with increasingly complex 

environments by adding further worlds to its existing knowledge. The repertoire of the 

robot behaviours in the form of symbolic knowledge is retained in a hierarchy of clustered 

decision trees (DTs) accommodating a number of primitives. To classify robot perceptions, 

control rules are synthesised using symbolic knowledge derived from searching the 

hierarchy of DTs. 

A second novel concept is introduced, namely that of multi-dimensional fuzzy associative 

memories (MDFAMs). These are clustered fuzzy decision trees (FDTs) which are trained 

locally and accommodate specific perceptual knowledge. Fuzzy logic is incorporated to 

deal with inherent noise in sensory data and to merge conflicting behaviours of the DTs. 

In this thesis, the feasibility of the developed techniques is illustrated in the robot 

applications, their benefits and drawbacks are discussed. 

Keywords: Robotics, Intelligent Navigation, Decision Tree Learning, Fuzzy Decision 

Trees, Fuzzy ITI, Multi Dimensional Fuzzy Associative Memory (MDFAM), Intelligent 

Control 
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teiri 

Introduction 
To be, or not to be: that is the question: 
whether 'tis nobler in the mind to suffer 

the slings and arrows of outrageous fortune, 

or to take arms against a sea of troubles, 
and, by opposing, end them. 

William Shakespeare 
Hamlet, Act III, Scene 1,1602 

1.1 Background 
How human beings are able to learn, represent and reason about the physical world 

has, for at least many thousands of years, been subjected to exploration by scientists 

and philosophers. In recent years, this has led to the emergence of new scientific areas such 

as evolutionary computing, neural networks and fuzzy logic. These techniques have been 

introduced to solve complex and challenging industrial problems of the modern age by 

mimicking human behaviour in learning, reasoning and adapting to new environments. 
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Artificial Intelligence (Al) algorithms have been designed and implemented that are able to 

perform logical inferences on a domain of given knowledge. Once applied to a certain 

domain, these are able to demonstrate improved performance on repetition of the same task 

or even "unseen" situations (from the same population) due to their generalisation 

capabilities. They are said to be able to "learn". Such learning algorithms have been 

adopted in both physical and social sciences and applied to applications such as banking, 

management and engineering. There is currently extensive activity in exploiting concepts 
from the field of Al to conceive, design and realise intelligent control systems [1]. These 

systems incorporate the new scientific areas individually, or combine these into hybrid 

systems to exploit complementary effects. 

One branch of intelligent control systems research is robotics, which, in recent decades has 

proved to be a suitable test-bed for Al techniques that incorporated autonomous learning 

and reasoning. These so-called autonomous robots are mechanical systems which are able 

to perceive their environment using a variety of sensing devices, process this information, 

make an appropriate decision, and act on their environment. Although today's autonomous 

robots and the achievements in this area are still some way from the totally autonomous 

robots which are the ultimate goal of researchers and engineers, they provide significant 

and well-developed background knowledge for the development of future artificially 
intelligent "beings". 

1.2 Aim, motivations and objectives 
The problem of designing intelligent robots operating in uncertain environments with the 

minimum of supervision and with the capability to interact with humans is a greatly 

pursued but challenging task. The present work is aimed at making a novel contribution to 

the body of the existing knowledge regarding intelligent and learning robots by designing 

and implementing of an intelligent control strategy for an autonomous mobile robot. 

In view of the drawbacks of traditional approaches to robotics (to be discussed in Section 

2.4), there is a clear need to develop new methods that can more effectively lead to the next 

generation of intelligent robots. One way this could be pursued follows from the 

observation of biological organisms such as ants and bees, who exhibit primitive 
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perceptual reflexes or behaviours for their survival. Such a methodology was first set out 

by Brooks [2,3], and was called behaviour-based learning, in which intelligence is 

organised [2] and distributed in a hierarchy. 

The work presented in this thesis takes its inspirations from biological motivations, from 

survival instincts inherent in biological systems, and is based upon the general principles of 

human processes in remembering and forgetting events to build up experience and hence 

intelligence. This means that the objective learning system should macroscopically parallel 

learning processes in humans and their survival mechanism. The system should exhibit the 

following characteristics. 

" Learn concepts and behaviours by being taught (training) as well as exploration (self- 

supervision). 

" Learn from past experiences in an incremental fashion similar to humans. 

" Make predictions (decision-making) in unseen scenarios, based on what was learned 

previously, in order to survive in unstructured and dynamically changing 

environments. 

" Perform a globally tuned learning rather than use local intelligence or map-making. 

" Synthesise automatically adaptive hypotheses in the form of intelligible control rules. 

" Easy to implement and be computationally low-cost. 

" Cope with noise and imprecision of input information to deliver appropriate 

predictive estimates (control actions). 

" Show smooth responses to sudden environmental changes due to differing 

behaviours. 

To develop an intelligent control architecture, this work formulates the methodology of 

Hierarchical Learning and Knowledge Decomposition in the frame of a reactive robot 

architecture. Intelligence is decomposed into a number of simple behaviours in a layered 

hierarchy. As there is little direct relevance which has been done before, the current work 

takes a somewhat exploratory approach to the design of a suitable intelligent control 

systems. To meet the aim and considering the learning technique which has led to the 

motivation of the current work, the objectives can now be stated as follows: 
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" To develop an intelligent control technique based on hierarchical learning and 

knowledge decomposition. 

" To test the feasibility of the technique and qualitatively assess its performance in a 

simplified robot environment. 

" To extend the application of the technique to a realistic mobile robot environment. 

" To compare the performance of the technique with existing approaches and suggest 

refinements. 

" To introduce fuzzy logic to provide smoother transitions between the levels in the 

hierarchy. 

1.3 Structure of the thesis 
This thesis is the documentation of the research carried out to design and implement an 

intelligent control strategy for an autonomous robot. The thesis has been divided into nine 

chapters including the current chapter. In the following, the structure of the thesis and the 

arrangement of its chapters in the order they appear in the thesis along with the issue of 

discussion in each chapter are briefly described. To allow the reader to select their own 

path through the thesis, Figure 1.1 provides a graphical "road-map" of the thesis showing 

its division between theory and background, application and evaluation. 

Chapter 2 first provides a concise introduction to the most commonly used learning 

techniques, and provides further relevant references for the interested reader. It then 

presents an up-to-date review of past work and research carried out in the design of 

intelligent robots and systems, discussing their efficiency, drawbacks and their relevance to 

the current work. 

Chapter 3 presents a taxonomical view of machine learning techniques with emphasis on 

learning from examples, which is a paradigm for supervised learning. It then introduces 

and discusses thoroughly the concept of decision tree learning, one of the most common 

representations of inductively drawn knowledge. The related terminology, semantics and 

the underlying principles of decision trees and their construction are discussed and 

explained. References to external literature are also provided if the reader requires details 

or derivations. A simple worked numerical example is used to demonstrate the 
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fundamentals of feature partitioning in growing a decision tree for classification. The 

various types of decision trees are introduced, their modes of operation are discussed, and 

some recent developments and implementations of learning from examples (decision tree 

and rule set generation) are introduced. 

Chapters 4 and 5 discuss the development of the hierarchical learning technique based on 

decision trees. Chapter 4 implements and tests the algorithm in an off-line mode and makes 

a number of simplifying assumptions about the robot and its environment to make a 

qualitative assessment on the feasibility and applicability of the approach. Chapter 5 

concentrates on developing and testing the learning approach in an on-line and incremental 

fashion to build an array of adaptive hypotheses. It uses realistic assumptions about both 

the robot and the environment. 

Chapter 6 gives an introduction to the history as well as the theory and foundations of 
fuzzy sets and fuzzy logic with an emphasis on its application to control engineering and 
intelligent and multi-strategy systems. This chapter delivers the necessary mathematical 
background for the understanding of an application chapter, namely chapter 7. This chapter 
introduces a novel approach to the design of a hybrid learning system, namely fuzzy 

decision trees, for the automatic generation of linguistically formulated control rules. This 

chapter also introduces the concept of multi-dimensional fuzzy associative memories 

which are able to encode as well as fuse multi-variable inputs into lower dimensions. 

Results and a comparison of the learning techniques introduced in this thesis, are presented 
in chapter 8. This chapter also reviews and discusses the contribution of this work, and 
identifies areas of application and research directions along which future work may be 

conducted. 
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Figure 1.1 The general structure of the thesis and the relationship between chapters. 
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....,, ý -ý ... ... . ý, 
a 

Literature Survey: 
Learning and Intelligent Robots 

That which is apprehended by intelligence and reason 
is always in the same state, but 

that which is conceived by opinion with the 
help of sensation and without reason, is 

always a process of becoming and 
perishing and never really is. 

Timaeus, in the "Dialogues of Plato" 

The 
objective of this literature survey is to provide an up-to-date review of approaches 

to robot learning techniques, compare their performance, and draw conclusions on 

their drawbacks, efficiency and applicability to industrial problems, especially in the area 

of mobile robotics and control. 
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This survey should provide a broad basis in understanding and efficient deployment of 

learning techniques towards the development of intelligent robots. It discusses learning, 

provides an epistemological view of intelligence in humans and artificial agents, and 

introduces the robot architectures, described in the literature. Particular emphasis is placed 

on the review of past and recent work pertaining to robot learning. 

2.1 Introduction 
Complex computer software and both fast and highly parallel hardware have been designed 

and developed to meet the emerging needs of high performance, robust, reliable and 

automated environments. This need is, in particular, perceived in working areas where the 

presence of human beings is either expensive or hazardous. Mobile robots have received 

great attention in recent years due to their potential to fulfil these demands, as their 

presence is becoming increasingly common in the manufacturing industries. 

Mobile robotics has been employed in such diverse fields as: plant control stations, 

underwater research and remote disposal of nuclear waste. If mobile robots are to be 

integrated into human environments, they must be able to closely parallel human learning, 

by being able to learn from experience. They must also be able to communicate and be safe 

[1]. Machine learning techniques can be utilised to satisfy these challenging demands, and 

overcome the inherent limitations of static behaviours resulting from purely hand-coded 

programs. In principle, machine learning techniques can allow a robot to adapt successfully 

its behaviour in response to changing circumstances without the intervention of a human 

programmer [2]. Next chapter discusses in more detail the paradigm of learning from 

examples which underlies the current work. 

2.2 Epistemology of learning and intelligence 
Although, an appropriate definition of intelligence has been a subject of much controversy 

[3], sciences such as neuro-anatomy, neuro-physiology, neuro-pharmacology, psycho- 

physics, anthropology and behavioural psychology have revealed much about the 

mechanisms and function of intelligence. Biological paradigms borrowed from humans and 

animals such as learning, adaptation, self-repair, social behaviour, evolution and cognition 

have been the subjects of extensive research, including that associated with building 
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intelligent machines such as intelligent robots. These should not only be able to exhibit, at 

least in part, the innovation and the degree of achievement of humans in creating intelligent 

"beings", but also they should assist humans in performing a variety of tasks. Imparting 

intelligence to man-made beings or artificial agents is a challenging task for scientists and 

engineers. Engineers may be interested in developing an analytical model of a physical 

system in order to learn how to manipulate the system efficiently. However, if this is 

impossible due to the intrinsic complexities of the physical system or due to the lack of 

available data, they may resort to human cognition, common sense and expertise to resolve 

the problem. This is, for example, the founding issue of the well-known fuzzy theory and 
fuzzy logic, introduced by Zadeh [4]. 

Intelligence and learning are complementary terms, in the sense that a system (biological or 

artificial) is called intelligent if it is able to learn, and a learning system is assumed to 

exhibit intelligence. However, these terms find different definitions and interpretations in 

different disciplines. For psychologists, intelligence might be defined as a behavioural 

strategy that gives each individual a means for maximising the likelihood of propagating its 

own genes [3]. From an engineering point of view, Albus in [3] defines intelligence as "the 

ability of a system to act appropriately in an uncertain environment, where appropriate 

action is that which increases the probability of success, and success is the achievement of 
behavioural sub-goals that support the system's ultimate goal. Both the criteria of success 

and the system's ultimate goal are external to the intelligent system. For an intelligent 

machine system, the goal and success criteria are typically defined by the designers, 

programmers, etc.. For intelligent biological creatures, the ultimate goal is gene 

propagation, and success criteria are defined by the process of natural selection". 

Albus is of the opinion that "intelligence can be observed to grow and evolve ... In natural 

systems, intelligence grows over the life time of an individual, through maturation and 

learning... ". He also maintains the opinion that "learning is not required to be intelligent, 

only to become more intelligent as a result of experience.... It is, however, assumed that 

many creatures can exhibit intelligent behaviour using instinct, without having learned 

anything". He leaves to be inferred that intelligence is instinctive, on the other hand, he 

believes that intelligence is subject to experience. The author finds these statements of 
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Albus in [3] rather paradox and somewhat confusing in trying to present a definition of 

intelligence. The author argues that intelligence (both in biological and artificial systems) is 

the consequence of learning, and learning is experience, and experience is History. The 

author also believes that if intelligence were instinctive, all creatures would have to be 

intelligent and not "many creatures", as stated by Albus, because all creatures enter history 

with a set of instincts or as stated by K. Kautsky in [5] "a set of inborn drives", namely 

self-preservation drive, sex drive and a social drive. 

The definition of learning introduced by Simon in [6], is the closest definition in the 

context of this work, namely robot learning. His definition is as follows: "learning is any 

change in a system that allows it to perform better the second time on repetition of the 

same task or on another task drawn from the same population". The system showing this 

ability is called an intelligent system. This definition comes close to the author's 
interpretation of intelligence as, "intelligence is the capacity of exhibiting altered behaviour 

because of experience, in favour of an ultimate goal, where the ultimate goal can be, for 

example, gene propagation (biological systems) or optimising a cost function (artificial or 

machine systems). " 

As a contribution towards the ultimate target of introducing a coherent theory of 
intelligence encompassing the biological and machine instantiations, Albus in [3] 

introduces and elaborates a theoretical model of intelligence with the aim of combining all 

separate but related areas of knowledge and expertise into a unified framework. This 

should eventually help engineers, in particular, build intelligent systems. 

2.3 Robot technology 
Technical aspiration, combined with economic rationale, including mass production, cost 

and time efficiency, have together brought the concept of automation and automatic 

control, with humans playing an ever decreasing role in the physical manipulation of 

production systems. Although the idea of total automation is not new and dates back to the 

post war era, it initiated a new academic and engineering discipline, namely robotics. 
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2.3.1 What is a robot? 
This term was first used during 1920's and 1930's, following the appearance of a play by 

the Czech author Karel Capek, called RUR (Rossum's Universal Robots) [7]. In the play, 

small, artificial and anthropomorphic creatures strictly obeyed the instructions of their 

master. These creatures were called robot. This word is derived from the Czech word 

robota, meaning "forced labour". 

There exists, however, various definitions, partially complementarily, in the literature for 

the term robot. For example, the definition supplied by the Robot Institute of America 

(RIA) is as follows [7]: 

"A programmable and multifunctional manipulator, devised for the transport of 

materials, parts, tools or specialised systems, with varied and programmed 

movements, with the aim of carrying out varied tasks". 

Though, not perfect, the definition above reflects some of the capabilities of today's robots. 

These definitions are all subject to changes, developments and advances in the field of 

robotics. 

2.3.2 Why is there a need of learning in robotics? 
At their introduction, the versatility and flexibility of the robotic systems markedly 

distinguished them from automated machines. It was soon realised that a wide range of 

physical tasks could be entrusted to robots, especially, the repetitive ones. It was also 

noticed that robots have the potential of replacing a large number of existing machines, and 

also human operators to an extent. 

The majority of early robots, especially the industrial robots, were task-specifically 

programmed machines, yet capable of performing a variety of tasks (versatility). They were 

limited by the fact that they were not able to react to changes in their environments. To 

achieve the aspiration of total automation, a new era in the development of robotic systems 

began with the aim of achieving flexible automation by building mechanical systems that 

could execute anthropomorphic functions and mimic the behaviour of the biological 

systems (such as humans or animals). The aim was to build intelligent robots. 
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The development of intelligent robots arose from the following considerations: 

9 The range of application and ability of programmed robots was limited and these 

could be significantly enhanced using sensing devices. 

Although many tasks performed by humans seemed to be repetitive in nature, and 

hence directly replaceable by programmed robots, they required constant adjustments 

due to slight changes in the working environment. 

In contrast to programmed robots whose operation is limited to structured environments, 
intelligent robots should be capable of reacting (in favour of some goal) to unpredictable 

changes in unstructured environments. Consequently, intelligent robots need to exhibit 
decision-making capabilities aimed at mimicking the process of decision-making in 

biological systems. An intelligent robot is expected to demonstrate the following 

characteristics [8]: 

" Perceive the environment 

" Reason about the perceived information 

" Make decisions based on this perceptions, and 

" Act according to some strategy at a very high level. 

The question of which aspects of the robot system should be physically designed, which 

should be left to the robot to learn, and to what extent the above features can be realised, 

has been the issue of extensive research and development over the past decades. This has 

lead to the introduction and development of a number of diverse approaches in the 

development of robot learning techniques and control architectures which are reviewed in 

the following sections. 

2.4 Basic robot architectures 
The control architecture of an autonomous robot determines the way it perceives its 

environment, the way it reasons and how it acts in reaching an ultimate goal. The spectrum 

of the basic robot architecture includes the following strategies: 
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" Planner-based 

" Purely reactive 

Behaviour-based 

14 

The first two strategies provide the architectural extremes [9], while the behaviour-based 

approach falls somewhere in between. In the following subsections, these basic robot 

architectures are outlined and their characteristic constraints are discussed. 

2.4.1 Planner-based architectures 
This type of control strategy constructs and maintains a model of the world as a centralised 

representation. Path planning is performed by using the information contained in the model 

in order to generate the most appropriate sequence of actions, i. e. the plan. There exists 

various approaches to plan generation and map making of the environment. One approach, 

used in [10], is the generation of visibility graphs in which the vertices of the visible 

obstacles are scanned. An algorithm chooses then the one with the highest priority 

determined at the design stage. These points are generated iteratively and the robot is 

navigated along the line connecting these points. A somewhat similar approach to map- 

making of the robot environment has been taken in [11] in which fuzzy logic is used to 

reason about the location and the distance of perceived obstacles. 

A further method for building topological maps of the environment while navigating the 

robot, is the potential field approach [12,13]. This is based on a virtual force field which is 

composed of individual repulsive force vectors issued by proximity sensors and a constant 

attracting force which guides the robot towards the target. Approaches based on the 

potential field do not always guarantee a solution to navigation, and it is likely that the 

robot will fall into oscillatory motions around the local minima. 

Since most practical systems rely on ultrasonic sensors for distance measurements, they are 

susceptible to errors due to uncertainty and the noisy characteristic of the sensors. An 

alternative method in this category, which also reduces the noise error, is the grid 

representation [14,15,16] of obstacles in the environment which is derived from sensory 

information. In this method, a so-called certainty value is calculated (based on the repeated 

sensor measurements) and allocated to each grid cell according to the corresponding 
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distance sensor. These values are continuously updated and used for navigation. A 

limitation of grid-based methods is the rapid growth of information that needs to be stored 

to provide such a representation as the number of cells discovered by the robot increases 

and this limits the use of this technique in practical applications [14]. 

Path planning systems are often criticised as being slow and of being unable to cope with 

and survive in dynamic scenarios [17]. This is demonstrated by the need to re-plan a task 

needed if an area which was free at planning time is subsequently blocked as the robot is 

attempting its navigation. Typically, the robot will fail to reach the desired goal. However, 

due to their structural architecture, planning systems can be efficiently employed in 

structured and human built environments with predefined and almost stationary layouts, 

such as hospitals and offices. 

2.4.2 Reactive architectures 
Reactive systems [18,191 embed the control strategy of the agent into an array of simple 

perception-action stimuli. They maintain no world model and relate directly the sensor 
information to the appropriate responses. These action-stimuli pairs can be encoded in the 

form of a set of reactive rules, a table, a whole set of potential field functions, or a set of 

weights stored in a connectionist network. 

Purely reactive strategies have proved effective for a variety of problems that can be 

specified at the design stage [20]. However, such strategies are inflexible at run time due to 

their inability to acquire information dynamically. Although analytically difficult to prove, 
it is commonly believed that pure reactive systems are less powerful than behaviour-based 

approaches [21]. Strictly speaking, this is a task specific observation, meaning that if a 

robot is expected to achieve certain goals at run time which are not specified at the design 

stage, then purely reactive systems would, in general, not be able to perform these tasks 

satisfactorily. For example, dynamically changing or unknown robot environments are 

more elegantly tackled using behaviour-based approaches. Reactive systems, however, 

offer greater efficiency in computation time as less information needs to be stored and 

processed. 
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2.4.3 Behaviour-based architectures 
The foundations of behaviour-based robot control were biologically inspired and first set 

out by Brooks in [22,23]. Brooks [23] concentrated on organising intelligence in such a 

way that it is reactive to those dynamic aspects of the environment that a mobile robot 

experiences. Intelligence should also be able to generate robust behaviour in the presence 

of uncertain sensor information, an unpredictable environment and a changing world [23]. 

Brooks argued for the decomposition of tasks that a robot is expected to perform rather 

than the traditional functional decomposition of a task. The development of subsumption 

architecture [22] was the consequence of this methodology. In this approach, control layers 

were implemented as networks of message-passing finite state machines [23] which 

operate asynchronously. The behavioural competence of the robot can be improved by 

adding further behaviour-specific networks to those already existing. Brooks called this 

process layering in that the output of a higher-level layer can inhibit (subsume) that of its 

predecessor, hence the term subsumption. His argument in favour of the subsumption 

architecture was two fold. 

" Previous reasoning approaches were slow and they were unable to adapt to changing 

and dynamic environments. 

" Many actions of agents are quite separable; coherent intelligence can merge from 

independent sub-components interacting in the world. 

Brooks implemented this approach on real robots that could explore the environment, build 

maps, navigate, walk [24] and learn how to co-ordinate internal conflicting behaviours 

[25]. According to Brooks, behaviour-based systems facilitate the ability of robots to find 

out about their particular world by themselves. This appears to be a suitable substratum for 

behaviour learning robots and has been demonstrated on the mobile robots "Don Group" 

by Mataric [20]. 

A shortcoming inherent to basic behaviour-based systems is the problem of conflicting 
behaviours when multiple behaviours compete to generate a control action. Brooks solved 

this problem in his early implementations with a pre-prioritised scheme to handle conflicts 

which was a behaviour arbitration. More elegant and efficient approaches for merging 
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behaviours rather than arbitration have been introduced in recent years (to be discussed in 

sections 2.5.5) using multi-strategy systems. 

2.5 Previous work and approaches to intelligent robotics and control 
Robotics as an engineering discipline encompasses industrial and mobile robots and has 

been a suitable test bed for the application of automatic control techniques, especially 

applied artificial intelligence (AI). The aspiration of replicating human intelligence as 

closely as possible in mechanical systems has inspired researchers to create autonomous 

robots. Autonomy in this context, means that, in an unguided fashion, a robot is able to 

perceive its environment, has the capacity of reasoning about it by making appropriate 
decisions in favour of some goal(s), and eventually to act on its environment. 

A robot can perceive, in general, its environment by three types of information sources: 

" Numerical data from measuring sensors (vision, actuators, wheel encoders, etc. ) 

9 Heuristics in the form of linguistic data from expert human operators (speed is high, 

temperature is medium, pressure is low) 

9 Reactions of the robot to its environmental characteristics (behaviours) 

With the aim of providing autonomy, a variety of algorithms and techniques have been 

developed which are based on one of the above sources, some combination of them, and 

also the extent of built-in information. The amount of meta-knowledge and degree of 

autonomy of a robot determine the type of learning approach, such as on-line and off-line. 
In the following, the most common learning techniques applied to robotics are discussed, 

and conclusions are drawn on their efficiency and shortcomings. 

2.5.1 Reinforcement learning (RL) 
Learning from interaction is the underlying principle in almost all theories of learning and 
intelligence. RL is a computational approach to learning from interaction and is much more 
focused on goal-directed learning from interaction than are other approaches to machine 
learning [26]. RL is rooted in the idea: "what policy to take, in order to maximise a reward 

signal". The learner must find out which actions result in the highest reward by simply 

trying them. This implies that an action may affect not only the immediate reward, but also 



Chapter 2: Literature Survey 18 

the next situation, and this in turn, all subsequent rewards. This gives rise to two 

characteristics, namely the trial-and-error search and delayed rewards, which are specific to 

RL. 

An important difference between RL and most machine learning techniques (such as neural 

networks, and decision trees) is that the latter are supervised. Supervised learning involves 

learning from examples which are correct, and representative, and which are provided 

either by an external teacher or supervisor or by the system itself (self-supervised systems). 

However, RL is able to achieve learning as a result of interactions or of typical problem 

scenarios, where it is impractical to learn from examples, or where these are inaccessible. 

RL is in its philosophy similar to that of learning from observations and discovery, which 
is a type of machine learning typically with the highest degree of inference. This method is 

addressed in greater detail in section 3.1. 

Basic elements of RL 
An RL system is in fact an interface between an agent and its environment. RL can be 

identified by 3 basic elements (and an optional fourth) as shown below. 

"A policy 

"A reward function 

"A value function (also called a utility function) 

"A model of the environment (this is an optional feature [26]) 

A policy specifies the behaviour of the agent at a given time by, for example, mapping the 

perceived state to an action. In certain circumstances, the policy can be a simple lookup 

table, or computationally as expensive as a search space. 

A reward function provides the short term goal of an RL system, in the sense that it 

determines, in terms of some aspect of the system performance, what actions are good and 

what are bad in an immediate sense. The reward function is required to map state-action 

pairs on a scalar which is called reward, and which indicates the desirability of that state. 

The ultimate goal of an RL system is to maximise the total reward it receives over a 
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significant period of operation and if the reward is too small this is used as a basis to 

change the policy. 

The value function (also called the utility function) is used to determine the quality of a 

large sequence of operations in many states. Its value obtained in a state n can be 

formulated as the total reward an agent scores following initiation in the state n. For 

instance, a state may have a low immediate reward, but still score a high value because 

later states yield high rewards. The main concern of RL in decision processes is the 

magnitude of the values and to maximise the number of states that generate high values 

rather than high rewards. Rewards are obtained directly from the immediate environment, 

whereas values must be estimated from the sequence of available rewards that an agent 

experiences. Hence, efficiently estimating value functions (or learning the utility function) 

of an RL system is one of the most important components of such systems. The vast 

majority of RL methods have been structured to predict values or utility functions. They 

may employ search methods such as genetic algorithms, or function approximators such as 

neural networks for their prediction. Alternative methods to approximate values have been 

introduced by a number of researchers including temporal difference (TD) learning 

developed by Sutton [27]. TD is an incremental learning procedure and is driven by the 

error obtained from the differences between the temporally successive predictions for the 

value function. Another optimisation technique to learn the utility function is Q-learning 

[28,29]. Q-learning is fundamentally a hybrid approach combining both policy and value 
function optimisation. The reader is referred to [30,31,32] for a concise introduction, 

whereas [27,28] provide a rigorous and formal treatment of Q-learning. 

In contrast to early RL systems, which were based only on trial and error, a number of 

researchers now incorporate planning into their RL systems. In such systems, a model is 

needed which simulates the behaviour of the environment and makes decisions on the 

executions of some actions by considering possible future situations. For alternative 

concise introductions to RL, the reader is referred to [30,33,34], and [26] deals with RL in 

a rigorous manner. 
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Applications of RL to robotics 
RL has found applications in a wide variety of learning tasks such as manufacturing 

systems, game playing and robotics [31]. Similar to many other learning approaches, RL 

has been applied to a variety of robotic tasks involving learning through interaction with 

the environment. 

Mahadevan and Connell [35] applied RL incorporating Q-learning to a mobile robot in an 

attempt to train it to push large boxes around its environment. In spite of immense 

uncertainty in the outcome of the actions, the robot's performance was similar to that 

achieved by an expert-programmed algorithm. 

Millan and Torras describe an RL-based control architecture, named TESEO [36], which 

incorporates a connectionist method for optimising the policy of the RL system. This 

means that the algorithm learns to perform those actions that maximise the total 

reinforcement during a target-seeking task. TESEO was implemented on a mobile robot to 

perform target-seeking navigation in the office environment and the robot was able to learn 

the shortest and safest trajectory after 10 training epochs. The TESEO architecture was not 

intended to be learned from scratch: some basic reflexes [36] were built in the system to be 

accessed when the neural network failed to generalise from the available knowledge, and 

also to facilitate fast learning. These reflexes were particularly used in the first epoch of the 

training where the robot was approaching a dead-end, and they were needed in order to 

navigate the robot away. Further examples of RL applications to robotics can be found in 

[37,38]. 

The drawbacks of RL are that it may not perform appropriately if the environment is 

constantly changing [34], its convergence is often slow in comparison with other learning 

algorithms and most implementations lack incremental improvement. However, RL has 

shown relatively good results when applied to non-manipulative tasks with a very large 

state-space, such as game playing. In TD-gammon [30], a backgammon playing program 

which incorporates the TD-learning algorithm in combination with a multi-layer neural 

network, two agents played each other for more than a million times. Only at the end of 

each game did the agents receive a reward and the mappings stored in the weights of the 
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neural net. The resulting program could play at world championship level [30]. However, 

perhaps, due to the unstructured representation of the learned knowledge which was in the 

form of real numbers stored in the connectionist network, the developers were unable to 

understand or explain the program's performance. 

A comprehensive narrative history of RL development from its early days is provided by 

Richard Sutton in [26]. 

2.5.2 Neural learning 
Another class of learning algorithms, is that provided by neural networks [39]. A neural 

network (NN) is an information processing system mimicking the behaviour of the human 

brain in a mathematical model. NNs exhibit fast processing speeds (due to their massive 

parallelism) and are able to learn a concept from a set of training examples. They have been 

applied in a wide range of areas, including function approximation [36], pattern recognition 
[40], optimisation problems [41] and, relevant to the current work, in intelligent robot 

control and learning [42,43]. For further detailed information on NNs, the reader is referred 
to [39,44,45,46]. 

Neural networks are able to implement a number of learning algorithms, such as back- 

propagation [39,47] and reinforcement learning [42]. In the ALVINN system [47], a multi- 
layer NN is trained using back-propagation learning algorithm to map digital images on 

appropriate steering angles for a mobile robot. The learning process is off-line, since the 

training patterns are collected while the vehicle is driven by a human operator. The trained 

system aims to follow a road mimicking the human reactions. ALVINN was successfully 
implemented on a real robot to carry out this mission. However, back-propagation sets 
limitations on the system flexibility (especially reactive systems), as successful learning is 

not always guaranteed [45], training is time consuming, learning is off-line and may 
become trapped in local minima (in case of multi-valued outputs). Research has been 

carried out [48,49,50] with the aim of reducing the convergence time of the back- 

propagation algorithm and of finding the global minimum of a neural system by coding 

variables and attempting to determine the required number of neurons needed in its layers, 

and, in particular, for hidden layers. 
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In [42], a neural network is used to learn a set of reactive rules that model two basic 

locomotion reflexes of a mobile robot, namely target-seeking and obstacle-avoidance. The 

learning process is on-line and is performed from scratch. The control architecture is 

divided into two modules both to partition the perceptual space (classification) and to 

associate the control actions and these are implemented as two separate NNs. The former is 

a single layer NN and implements a reinforcement learning rule, and the latter is a fuzzy 

adaptive-resonance-theory NN [51]. The learning NN has three neurons (one for each 

steering command) which can be independently excited by the fuzzy-ART NN. The action 

associated with the most excited neuron of the second NN is chosen to drive the robot. The 

corresponding weights are reinforced or punished, if the performed action is feasible or if it 

carries the risk of a collision, respectively. This technique aimed to demonstrate the 

efficiency of learning by trial-and-error and from scratch. It was implemented in a 

simulated robot and showed an improved steady state efficiency [42] at the end of the third 

epoch and this is attributed to the characteristic of the ART-NN which preserves the 

already existing knowledge. It was reported, however, that this system failed to perform in 

the presence of local minima where the goal is hidden behind long walls, and the system 
falls into oscillatory movements. 

2.5.3 Evolutionary learning 
Evolutionary learning is based on genetic algorithms (GAs), which were first introduced by 

John Holland [52] in 1970s. GAs are a class of adaptive search techniques based on the 

mechanics of natural selection, natural genetics and evolutionary principles such as 
inheritance and mutation. GAs have proven to be a powerful tool within the area of 

machine learning [53], allowing computers to evolve solutions to problems, using function 

optimisation, search and learning. 

The basic operation of a GA is conceptually simple and can be summarised as follows: 

" maintain a population of trial solutions to a problem (chromosomes) 

" select the better solutions for recombination with each other, and 

" use their offspring to replace poorer solutions. 
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GAs are, in general, able to find good solutions to a wide class of application problems in 

reasonable amounts of time. However, the time required to find adequate solutions tends to 

increase when the dimensionality of the problem rises. To remedy this, a great deal of 

research has been carried out into increasing the speed of GAs by introducing parallel 

architectures [54]. 

Evolutionary algorithms have found application in intelligent robots, including areas such 

as collision avoidance [55], and, in particular, in automatic behaviour learning [56,57]. One 

of the well-known research paradigms in evolutionary learning robotics is the artificial life 

(ALife) paradigm, and perhaps one of the most successful applications is the evolutionary 
learning system SAMUEL (Strategy Acquisition Method Using Empirical Learning) [58]. 

The ALife paradigm has been inspired by a number of issues in robotics. 

" Emergence of and learning complex behaviours, especially in multi-agent systems 

where individual agents compete under a variety of situations for resources and 

struggle for survival. 

"A more realistic alternative to the model-based robot design rooted in traditional Al. 

This usually fails to reflect the complexities, noise, errors that arise in real sensors 

and actuation operating in real world conditions [57]. Moreover, AI-based reasoning 

usually assumes the error free translation of continuous signals to symbols. 

These issues and shortcomings have inspired researchers such as Mataric [59] and Brooks 

[60] to argue for the development of adaptive robots that evolve behaviours without using a 

pre-specified model of their environments. Current research themes in evolutionary 

learning robots include behaviour evolution, organisation and the study of multi robot 

systems for identifying the emergence of complex behaviours. 

Behaviour learning in SAMUEL is an evolutionary process in which candidate solutions to 

a problem (e. g. obstacle avoidance) are situation-action reactive rules. Rule representation 
in SAMUEL is designed to promote the inclusion of heuristics into initial populations for 

complex robotics tasks where random initial rule populations are unlikely to perform well. 
SAMUEL has been used for behaviour learning to control an autonomous underwater robot 



Chapter 2: Literature Survey 24 

[55], missile evasion [58], and other simulated tasks. For more details and information on 

SAMUEL, and also applications of GAs in robotics, the reader is referred to [58,61,62,63, 

64,65]. 

The main strength of an evolutionary algorithm is in rapidly finding the most promising 

regions to investigate the complex search space. This ability is largely due to the implicitly 

parallel search that it performs on a population of candidate solutions. However, these 

methods are less efficient at fine-tuning candidate solutions, and hybrid systems have been 

developed which provide efficient local optimisation methods to improve the final 

solutions found by evolutionary systems [57]. 

2.5.4 Inductive learning 
Inductive learning is the process of acquiring knowledge (new facts) or to discover patterns 

in collections of observations (existing facts) by drawing inductive inferences. This is, in 

general, concerned with the generation of hypotheses and their validation [66]. Historically, 

inductive learning is an area of contention between philosophers and logicians, and this is 

due to an observation made by the Scottish philosopher David Hume in the 18`h century. 

He observed that inductively gained assertions are hypotheses, and these can potentially 
have an infinite number of consequences, while only a finite number of these can be 

validated. Discussions regarding the validation of a hypothesis are often found in 

philosophical debates and are generally of lesser importance in the context of inductive 

learning in engineering applications. In common with most empirical studies, the current 

work assumes that the generated hypotheses are assessed by human experts, or are tested 

by known methods. 

Studying and modelling inductive learning is one of the central topics of machine learning. 

The knowledge representation in inductive learning can be in the form of decision trees 

[67] (see chapter 3), a set of production rules [68], or a set of real-valued numbers 

(weights) stored in a connectionist network. The two most widely used forms of inductive 

learning technique are: 

" Learning from observations and discovery 

" Learning from examples [69] 
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These two techniques are further discussed in chapter 3. Inductive learning as a learning 

methodology is relevant to a wide range of applications such as automatic knowledge 

acquisition for expert systems in PLANT/DS for the diagnosis of soybean disease [70], 

diagnostic systems for fault detection [711 and various experimental sciences such as 

biology, chemistry, psychology, medicine and genetics [72], where traditional 

mathematical and statistical techniques, such as regression analysis or factor analysis, are 

not sufficiently powerful [66]. More important to the current work are the applications of 

inductive learning to robotics [73], automatic behaviour learning [74,75], industrial process 

control [76] and power system security [77]. 

Although the learning mechanism in neural networks is of an inductive nature, decision 

tree and rule learning approaches are the most common and, perhaps, the most established 

representations of inductively learned knowledge. Inductive learning has proven to be a 

powerful tool for the automatic learning of domain knowledge. An example is the 

PLANT/DS expert system in which diagnostic rules were formulated in two ways, namely 
by formalising experts' diagnostic knowledge and by induction from examples. These sets 

of rules were then tested on a few hundred disease cases. Michalski and Chilauski reported 
in [70] that the inductively derived knowledge (rules) outperformed those derived from 

experts. 

Michalski formulates in [66] a general paradigm for inductive inference. The major forms 

of inductive learning, namely learning from examples and learning from observations, are 
discussed in detail in chapters 3,4,9,11 of [78]. Chapter 10 introduces the system 
BACON. 4 which is an application of learning from observation and is a layered inductive 

learning system which is able to discover empirical laws, whose heuristics are general 

mechanisms and are applicable to diverse range of domains. 

2.5.5 Hybrid learning techniques 
The learning techniques discussed above generally perform well in their application to a 

specific problem, but their performance is generally poor in their transference to other 

application areas and under a different set of constraints. It is becoming increasingly 

evident that it is advantageous to employ multi-strategy hybrid systems in the conception 
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and design of intelligent systems such as intelligent autonomous robots. Soft computing 

(SC) techniques may present a promising way forward for intelligent systems that need to 

be able to perceive under conditions of noise and uncertainty, and which need to make 

decisions and act in dynamically changing environments. SC aims at accommodation 

among the imprecision of the real world, its guiding principle being to: 

"exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, 

robustness and low cost solutions [79]". 

The principle constituents of SC are: fuzzy logic [80,81], neural networks and probabilistic 

reasoning, which includes genetic algorithms. In the following, the most common hybrid 

techniques which have been applied to intelligent robotics are outlined, and conclusions are 

drawn on their degree of applicability and efficiency. 

Neuro-fuzzy learning 
Neuro-fuzzy techniques are one of the most intensely researched multi-strategy systems. In 

this type of hybrid learning system, fuzzy logic (FL) is mainly concerned with imprecision 

and approximate reasoning, and NNs deal with learning and curve fitting (function 

approximation). This implies that the overall system should be able to learn to approximate 

functions under conditions of noise and uncertainty, in which NNs influence the learning 

parameters of the fuzzy system. Nauk and Kruse [82] define neuro-fuzzy systems as: "the 

development of heuristic learning strategies derived from the domain of neural network 

theory to support the development of fuzzy systems". 

In single strategy systems, FL has been applied to a variety of process control and robotic 

tasks in order to either incorporate expertise of human operators formulated in linguistic 

rules, or exploit the qualitative nature of fuzzy theory for approximate reasoning. Chapter 6 

introduces FL and its main areas of application. 

In most robotic applications involving navigation, neuro-fuzzy algorithms have two distinct 

tasks: 
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" NNs are used to learn certain patterns describing behaviours [83]; 

" FL is used to deal with uncertainty, blend conflicting behaviours and assure smooth 

trajectories [84,85]. 

Using such an approach, the neuro-fuzzy system would be able to automate the process of 

generating fuzzy rules. A novel approach was taken by Li in [83], who employed a 

cascaded system with a NN in series with a fuzzy system. The numeric values of 15 sonar 

sensors as well as the heading angle of the robot were supplied to the NN. The output of 

the NN is a reference direction of motion which is supplied to the fuzzy systems along with 

the 15 sensor readings. According to [83], the real direction of motion is calculated by 

either system (FL and NN) in such a way that the erroneous output of one system is 

compensated by the other. However, the details of this mechanism have not been reported. 

The only navigational improvement of this configuration, compared to the earlier work, 

appears to be its ability to prevent the robot turning into shallow U-shaped obstacles, and 

instead to navigate past the obstacles. How the robot behaves should the dead-end become 

greater in depth, is not documented. Although, the overall performance of the system in 

demonstrated navigation tasks seems to be satisfactory, the process of learning the fuzzy 

rules appeared to be hand-crafted. 

Fuzzy-genetic learning 
The inherent parallelism of GAs in search and optimisation can be used to automate a 

number of tasks in fuzzy-based systems. Since the design and shaping of fuzzy 

membership functions is often an ad hoc and problem specific process, the GA's capability 

to performing parallel search can be used to tune a set of membership functions. In [86], 

GAs are used to tune the membership functions of 33 fuzzy rules which were manually 

configured prior to the training of a simulated robot for navigation purposes. The 

population sizes used in the experiment ranged from 100 to 1000 individuals 

(chromosomes) and, after tuning the membership functions, the results were transferred to 

a real robot to perform wall following missions. 

An alternative method of implementing the neural training of fuzzy rules is to synthesise 

fuzzy rules by using GAs [87,88]. The underlying aim of this operation is to overcome the 
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common weaknesses of neural computing stated in [87], namely the absence of an 

analytical recipe to determine the network configuration, and the tendency of the process to 

become trapped in local optima during the learning process. GAs offer a procedural 

mechanism of learning design and perform a global search which results in a population of 

solutions to a specific problem, although these may not necessarily include an optimum 

solution, since GAs do not perform a local search in order to find the "best" solution. 

The evolutionary fuzzy system used in [89], employs fuzzy reasoning to assess the fitness 

of evolving solution populations in a linguistic manner. An example of one of the rules 

used is: IF move slowly THEN fitness low, or IF obstacle hit THEN fitness zero. The 

system is used to train a robot to follow long walls without divergence or collision and the 

linguistic character of FL systems is used to mimic human behaviour in assessing the 

quality of the automatically tuned fitness function of the learning system. 

Fuzzy decision tree learning 
Operationally, fuzzy decision tree learning systems are identical to neuro-fuzzy learning 

systems, in that decision trees are incorporated to generate automatically fuzzy control 

rules from a finite set of training examples. Rule synthesis is performed in either an off-line 

or an on-line manner (incremental mode). In the former, fuzzy rules are extracted from a 

batch of data sample, and are applied to the process to be controlled to classify unseen 

scenarios, whereas in the latter, more than one hypothesis is set up and updated 

successively as new data increments arrive. 

Fuzzy decision trees (FDTs) have been investigated theoretically by a number of 

researchers [90,91], and have also been applied to a variety of problems, in particular in 

robot learning and intelligent navigation [92,93,94]. In [92], Shibata et al developed a 

fuzzy ID3 system to automate the process of motion planning for industrial robots. The 

model they used was based on the situation-action scenarios which occur when a human 

operator, while cutting 3-D work pieces, sets a path with many points each specifying a 

rotational angle for the mounted tool. Each training example consisted of nine input 

variables and a single output and the generated FDT incorporated three features from a 

total of nine in its classification of 297 training examples. Shibata et al also formulated an 
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evaluation function for a GA using these three features as the criteria of a skilled operator 

and the GA was used to optimise the path planning process. The FDT was applied to a 

robot to whose gripper a plasma torch for cutting 3-D objects was connected. They report 

that the algorithm showed effective results, and also could save labour and time for 

supervising other industrial robots. 

Hsu et al [93] generated 21 fuzzy rules extracted from a set of 300 training examples, in 

which each example consisted of 16 ultrasonic sensor readings and a corresponding 

direction output and were collected using a skilled human expert instructing the mobile 

robot to follow walls on its right side. Using ID3 [95] as the learning algorithm, these rules 

synthesised a fuzzy controller of the mobile robot Nomad 200 on wall-following missions, 

and the resulting controller was able to navigate the robot along walls in a terrain similar to 

the training but in which the layout was slightly modified. The quality of the trajectory 

produced by the fuzzy controller was claimed to be at least as good as that achieved by the 

human expert. However, the process of rule extraction was off-line, as a skilled operator 

was used and is not fully automated, since the induced DT is built on crisp data and the 

rules generated by the crisp DT are manually fuzzified prior to navigation. 

The current work [94], acquires fuzzy data (rather than crisp data) and this process is fully 

automated and is accomplished algorithmically. Rule synthesis is performed by searching 

the space of FDTs and in an on-line fashion, see chapter 7. A particularly important 

attribute of FDTs is the intelligibility of control rules due to the symbolic nature of the 

induced knowledge. The symbolic nature of the approach is complementary to that of the 

linguistic mechanism of the fuzzy reasoning approach. 

Neuro-fuzzy genetic learning 
Once a set of input/output relationships describing a certain control system or behaviours is 

available, a multi-strategy learning system such as the evolutionary neuro-fuzzy system in 

[96] is able to extract optimised fuzzy rules. This system is capable of the automatic 

construction of fuzzy membership functions (by the incorporated neural network) and the 

tuning of them, resulting in an improved behaviour of the GAs. Surmann et al have applied 

this technique in [96] to data samples from gas furnace [97] control data consisting of 296 
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input/output training examples which are measured every nine seconds. The input is the 

gas flow rate into the furnace, and the output is the concentration of CO2 in the exhaust 

gas. Surmann et al report that their genetically optimised neuro-fuzzy system outperforms 

single-strategy fuzzy-based systems using the same training data. 

2.6 Summary 
This chapter has presented an overview of recent contributions to the building of intelligent 

and autonomous robots. This has included both the early approaches to intelligent robots as 

well recent intelligent agent which integrates multi-strategy learning techniques borrowed 

from a variety of soft computing algorithms. The trend evident in the pattern of recent 

techniques for autonomous robots demonstrates that there is an increasing interest in 

robotic architectures which impose constraints taken from biological paradigms in their 

interaction with the environments, and these include: perception, action, adaptation, 

learning and social behaviour (in multi-robot systems). 

In recent research more information is being left for robots to learn than is being designed 

into their initial architecture. Modern learning techniques also try to capture the 

environmental changes (information) in numeric, cognitive or behavioural form, or as some 

combination of these, and this is in contrast to early approaches which used only numeric 

information. This highlights the current emphasis being placed on multi-strategy systems in 

intelligent robotics. 

In the context of this literature survey, the work reported in chapters 4,5 and 7 relating to 

intelligent robotics takes its inspiration from the survival instincts of biological systems. 

Within this field, as far as the author is aware, no system has yet been reported which fully 

automates the process of acquiring fuzzy data. This important contribution of the current 

work is reported in chapter 7. The following three chapters of this thesis concentrate on the 

development and testing of a DT-based algorithm for the automatic behaviour learning of 

an autonomous robot. 
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te 

Decision Tree 
Learning: 

Theoretical Issues and Background 

If 1 hear, I forget 
If 1 see, I remember 
If I do, I understand 

A Proverb 

Quoted by S. Yalamanchili in "VHDL Starter's Guide" 

This chapter addresses the underlying principles and learning strategies of decision 

trees (DTs) which are presented as a classification model. An in-depth explanation of 

the formalisms and associated algorithms is avoided, since this is beyond the scope of the 

current work. A general view of machine learning techniques, with emphasis on inductive 
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learning techniques, is presented. Basic terms and expressions of inductive knowledge 

acquisition, especially DT learning, are defined, explained and illustrated, and the 

interested reader is directed to the related literature and theoretical foundations, where 

necessary. 

3.1 A taxonomy of machine learning techniques 
This section provides a taxonomic consideration of machine learning (ML) in terms of the 

underlying learning strategy, the available data and the source of information. Particular 

attention is paid to the inductive learning approaches, whose application is the issue of 

chapters 4,5 and 7. Machine learning approaches can be categorised into the following 

groups. 

" Rote learning The learning task is performed either by being programmed or by 

memorising given facts and data [1]. Examples of this approach are procedural 

computer programming or the use of data bases. 

" Learning from instructions The source of knowledge is a teacher or other organised 

sources such as a text book. The learner's task is to transform the knowledge to an 

internally usable representation and the amount of inference from the learner is very 

limited. Most formal education methods where the advice and instructions of the 

teacher are accepted and applied, are examples of this learning method. 

" Learning by analogy In this approach, new knowledge is derived by transforming or 

augmenting the existing knowledge known to the learner. For example, a person who 

is just learning how to play tennis, but has a good command of table-tennis may be 

able to transfer their table-tennis skills to learn the new task. The amount of inference 

needed is more than that in the first two groups. 

" Learning from examples This method is a special case of inductive learning. The 

learner is presented with a finite number of examples (training vectors) and is 

expected to induce a general concept. The amount of inference performed by the 

learner is significantly greater than in the first two approaches, and also more than in 

analogous learning, as there exists no background knowledge from which the new 

concept can be learned. As far as the underlying learning mechanism is concerned, 

this type of inductive learning is central to learning and adaptation in the author's 
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current work in its application to the robotics domain. The formalisms of learning 

and knowledge representation in this approach are further discussed in the 

application chapters of this work, namely chapters 4,5 and 7 and the more specific 

details and the related aspects of learning from examples are thoroughly discussed in 

[2]. 

" Learning from observations and discovery This is a general form of inductive 

learning, and is also called unsupervised learning [2]. The amount of inference that 

needs to be performed by the learner is more than that in any of the approaches so far 

discussed. The learner is not provided with a set of examples of a particular concept, 

nor does it have access to a mechanism of labelling the internally generated 

instances. An important sub-set of learning from observations is active 

experimentation, where the learner perturbs its environment to observe its result. For 

example, this can be guided by some theoretical constraints or some general criteria 

of interest. 

Learning from observations as a result of environmental experimentation, as a general 

concept, is the issue of the learning algorithms addressed in chapters 5 and 7 of the current 

work. However, these algorithms fall in the category of learning from examples, as far as 

the learner (the induction mechanism) is concerned. Chapters 4,9,10 and 11 of [2] provide 

a rigorous treatment of this type of learning. 

3.2 Introduction to DTs 
From the point of view of data abstraction, a DT is a data structure, usually organised in a 

top-down manner, incorporating a finite number of nodes (blocks 1 to 6 of Figure 3.1) 

connected together by straight lines termed branches. The nodes of a DT are called 

decision nodes (blocks 1 and 3) and terminal nodes (shaded blocks). A decision node 

accommodates a feature and is a node in which the outcome of testing this feature results in 

one or more feature values. A terminal node, as the name suggests, has no "children" nodes 

and is commonly known as a leaf. This is a feature value rather than a feature and 

represents the class or the category which labels a certain pattern initiated in the root of the 

DT (block 1). 
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Figure 3.1 A typical decision tree organised in a top-down structure 
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In Figure 3.1, Goal_Loc and S2 are both features (attributes), and their outgoing branches 

are the sub-set of the possible values that these features can assume. The terminal nodes, 

however, are the labels or classes that categorise a certain pattern starting in the root of the 

tree (block 1) and terminating in that class. For further illustration, consider the two 

directed paths (broken and solid lines). Searching the DT along those paths would generate 

two rules, as shown in Table 3.1. 

911: IF Goal_Loc = North A S2 = Obst THEN FR. (Path 1,3,5) 

9t2: IF Goal_Loc = North A S2 = No_Obst THEN F. (Path 1,3,6) 

Table 3.1 A sub-set of the possible rules generated by searching the space of the DT 

3.3 The underlying principles of DT construction 
DTs are one way of representing inductive knowledge. The foundations of DT learning are 

rooted in concept learning systems. Such systems attempt to learn or to model a certain 
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concept by a set of examples. The learned concept can then be modelled either in the 

graphical form (as in Figure 3.1) or as a set of rules, as partially shown in Table 3.1. 

Two different implementations of concept learning systems are the algorithms ID3 [3] and 

AQ [4]. The structural difference between these two implementations is that ID3 generates 

DTs of the type shown in Figure 3.1, whereas AQ produces a set of production rules more 

suitable for expert system applications. These two algorithms have been used as the basis 

for the development of many other learning techniques, for instance ID3 is the ancestor of 

ASSISTANT-86 [5], C4 [6], C4.5 [7], ID4 [8], ID5 [9], ID5R [10] and all the versions of 

ITI, namely ITI-2.5 [111 and ITI-2.8 [121. The AQ algorithm is the origin of AQ 11 [ 13], 

AQR [14], AQ15 [15] and CN2 [14]. The descendants of ID3 and AQ have been designed 

to cope with larger data sets, missing values, noise and improved feature selection, are able 

to produce smaller DTs or rule spaces and can perform incrementality while keeping the 

core learning algorithms intact. 

The skeleton of the mechanism for DT construction is that of "divide and conquer". This 

formalism was first implemented in ID3. In the following, this is briefly discussed in a 

rather descriptive manner. However, for further details the reader is referred to [3,7,16]. 

Consider a set of training examples T and a set of classes C={ C1, C2, ..., C� }. The DT 

generation starts at a node containing all the training examples. ID3 checks if the set T can 

be classified by a single class. If such is the case, the DT is limited to the one node and the 

algorithm stops. If the examples are of mixed classes, branches need to be grown on that 

node which will test an attribute of the examples, and classify them into groups 

corresponding to the values of that attribute [16]. An attribute is considered as a good test 

to use when most examples with the same attribute value also have the same class label. 

The efficiency of attributes in ID3 is measured by a heuristic function called entropy E (the 

lower the entropy, the more efficient the classification), defined as follows: 

E=EwiEi (3.1) 

i 
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where w; is the weight of the ih branch defined as the number of training examples in 

branch i divided by the total number of examples at the parent node, and E; is the entropy 

of the i`h branch given by: 

E; = -E Pi loge Pi 
i 

(3.2) 

pj is the probability of occurrence the j`h class in this branch, as estimated from the training 

data. The attribute yielding the lowest entropy is placed on the node which is expanded, 

and branches are attached to that node which correspond to the different values of that 

attribute. 

Each individual leaf in the new DT is examined. If all the examples at a leaf have the same 

class, this node is complete and the class is assigned to that node. If the examples are of 

mixed classes, the DT must be expanded at this node. To accomplish this, the same 

procedure is repeated again, as follows: 

" Test each individual feature 

9 Pick the best (the lowest entropy) 

" Expand the node by adding branches corresponding to the number of feature values 

To clarify the above algorithm, we consider a small data set adapted from [ 16] which 

contains eight training vectors of the form shown in Table 3.2. To demonstrate how the 

algorithm works, consider the placement of the feature Age at the root of a virtual DT. To 

evaluate the entropy E and using the data in Table 3.2, it can be observed how the 

examples are classified into groups at this node. 

Age = Old: 1 example is of Lion and 2 are of Not lion 

Age = Young: 2 examples are of Lion and 3 are of Not lion 

The values of E; and E are calculated as follows: 

E,, 1d =- (1/3 * 10921 /3 + 2/3 * 10g22/3) = 0.918 

Eyoung =- (2/5 * 10922/5+3/5* 10g23/5) = 0.971 
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E= 3/8 * Eold + 5/8 * Eyoung 

E=0.951 

Attributes (Features) 
Cl 

Furry Age Size 
ass 

Yes Old Large Lion 
...................... 

No 
...................... 

........................ 
Young 

....................... 
Large 

. 

........................ 
Not lion 
.................... . 

Yes 
...................... 

........................ 
Young 

.. 

................... .. 
Medium 

.. 

.. . 
Lion 

....................... 
Yes 

...................... 

. ...................... 
Old 

......................... 

..................... 
Small 

....................... 

. 
Not lion 

......................... Yes 
...................... 

Young 
..... 

Small Not lion 
....................... 

Yes 
..................... 

. ................... 
Young 

......................... 

....................... 
Large 

....................... 

. 
Lion 

........................ 
No Young Small Not lion 

No Old Large Not lion 
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Table 3.2 A small set of training vectors for illustrating DT induction (adopted from [16]) 

Applying the same procedure, the entropies for Furry and Size would be 0.607 and 0.500, 

respectively. It is evident that the feature Size scores the lowest entropy value, hence it is 

chosen for splitting the DT at the root. The feature values Small and Medium classify the 

corresponding examples into distinct classes Not Lion and Lion, respectively. However, 

the training examples containing Large are of mixed classes and hence the DT must be 

expanded at this node. According to the previous calculations, Furry scores the second 

highest entropy value, and is chosen to expand the DT at this node. This attribute is able to 

classify the remaining examples into unique classes, and the algorithm stops. This is shown 

in the DT generated by the ID3 algorithm (Figure 3.2), and contrasted with the rule set 

which is produced by the AQ algorithm (Table 3.3). 
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Size 

Small /_ 
- 

1. \ Large 

Not Lion II Lion I (Furry 

Yes No 

Lion Not Lion 

Figure 3.2 A multi-split DT generated by ID3 [3] using the data set of Table 3.2 
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Criteria for efficient feature selection are discussed in [7,9,10,12,17,18,19]. For example, 

the algorithm FOCUS-2, introduced in [17], is reported to improve greatly the performance 

of ID3 if the training data is pre-processed (prior to supplying to ID3) using FOCUS-2 to 

filter out the irrelevant features. 

911: IF Furry = Yes A Size = Large THEN Class = Lion 

9t2 : IF Size = Medium THEN Class = Lion 

913: IF Furry = No THEN Class = Not Lion 

94: IF Size = Small THEN Class = Not Lion 

Table 3.3 A set of rules induced by AQ [4] using the data set of Table 3.2 

3.4 Types of DTs 
As far as the tree structure is concerned, DTs can generally be divided into two categories: 

" Multi-split DTs 

" Binary DTs. 
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As shown in Figures 3.1 and 3.2, multi-split DTs have the characteristic of being able to 

generate multi-dimensional outcomes as the result of testing a feature in a decision node. 

Binary DTs, however, always evaluate the result of testing a condition into a fixed set of 

logical values, namely yes and no. The left branch emerging from any decision node 

corresponds to yes and the right branch to no, as depicted in Figure 3.3. 

Is" Inc =N? 

3 *'/ 
\ 

no 

Is $2=Ot? I IR 

Figure 3.3 An example of a binary DT (e. g. ITI (1 1]) 

To illustrate what information is contained in binary DTs, consider the two distinct paths 

(solid and broken lines) starting at the root of the DT shown in Figure 3.3 and ending at the 

two terminal nodes. Traversing the DT along these paths would result in the following 

rules: 

IN IF Goal_Loc = North A S2 = Obst THEN FR. (Solid Lines) 

9Z, IF Goal_Loc = North A S2 =- Obst THEN F. (Broken Lines) 

Table 3.4 A set of rules produced after traversing the binary DT of Figure 3.3 

mlkhý 
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An important difference in the formulation of the two sets of rules (Table 3.1 and Table 

3.4) can be seen when testing the state of S2 in the second rule in each set. Although 

No_Obst and -, Obst may initially appear to be logically identical, No_Obst is a unique 

feature value from the set of values that feature S2 can take, whereas -, Obst specifically 

excludes the feature value Obst, thereby implying that S2 can be in any state other than 

Obst. Techniques such as ID3 and C4.5 implement the multi-split approach, whereas the 

tree networks generated by ITI are binary in nature. All DT networks produced in the 

current work are generated by ITI. 

3.4.1 Alternative DT implementations 
In order to enhance the predictive power of DTs, and also to meet other criteria such as 

keeping the size of the resultant DT small, a number of alternative measures of assessing 

the results of tests and partitioning DTs have been developed. For example, ID3 

implements the entropy measure for evaluating the outcome of a decision test, but Quinlan 

[7] considered that this approach exhibited a serious deficiency, in that ID3 has a strong 

bias towards these tests resulting in multiple outcomes. It was found that these tests tended 

to yield the smallest total entropy (highest gain) as the result of multiple partitioning 

(according to expression (3.2)) and this is a weak strategy as far as predictiveness is 

concerned. To remedy this problem, the inherent bias in gain was replaced by a normalised 

gain which implements the gain ratio (GR) [7]. This measures the information relevant to 

classification, whereas the entropy method represents an information gain by dividing the 

DT into n sub trees (see [7] for more details). Quinlan reports in [7] that the GR criterion is 

robust and typically gives a consistently better choice of test than the gain criterion. 

The early implementations of ID3 could only handle symbolic knowledge, and were 

consequently limited in the applications which could be tackled. Different application 

domains and constraints such as noise tolerance, dealing with numerical feature values and 

missing data have posed heavy demands on the quality of DT learning and construction. 

C4.5, a successor to the ID3 algorithm, is able to cope with the problem of numerical 

feature values and missing data (although not in an optimised sense). C4.5 allowed the 

application of DTs to a wider range of subject areas. 
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Resting on the same core mechanism of DT construction, the early versions of ITI such as 

ITI 2.5 [11] also implement the GR for testing attributes. However, an alternative 

mechanism, namely the modified Kolmogrov-Smirnoff (KS) distance, has been adopted in 

ITI-2.8 and is able to generate smaller trees and reduce the expected number of tests in 

each decision node without incurring a significant change in the classification accuracy 

[12]. For example, consider a two-class case, A and B, with a continuous variable x. The 

KS method attempts to find an optimal cut point a that partitions the values of x into two 

distinct blocks. Given the cumulative distributions functions associated with each class, 

namely FA(x) and FB(x), an optimal cutpoint a is the one that maximises IFA (a) - FB (a)I . 

This maximum value is the KS distance for that specific variable. In the majority of cases, 

neither FA(a) nor FB(a) is analytically available, in which case they are approximated by 

counting how many instances from each class fall into each block of the partition [12]. For 

further details on KS distance, the reader is referred to [12,20]. 

Utgoff has incorporated the KS distance feature selection metric in ITI-2.8 and has 

demonstrated in [12] that the size of DTs generated are significantly smaller than those 

produced using the GR as the partition metric. Similarly, the expected number of tests in 

induced DTs is significantly fewer than that produced using GR. The number of expected 

tests plays an important role in DT induction, as it determines how many tests should be 

performed on average to determine a classification [12]. Both approaches, however, 

typically achieve the same classification accuracy. 

3.4.2 Modes of operation 
The paradigms of learning from examples can be implemented to learn the new concept in 

one of two modes: 

" Batch-mode, one-trial mode or off-line mode 

" Incremental or on-line mode 

In batch-mode learning, all training examples are presented to the system at once, and the 

learner forms one hypothesis about the concept to be learned. In incremental learning, 

however, training examples are supplied singly and in succession, the learner builds one or 

more hypotheses consistent with the training data and the new hypotheses refine the 
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previous ones, thereby accommodating the new knowledge. Incremental mode learning 

more closely parallels its human counterpart, in that the learner is able to use partially- 

learned concepts. In the currently available DT learning systems (both commercial and 

non-commercial), ID3 and C4.5 implement the batch-mode approach, whereas all versions 

of ITI are capable of both batch-mode and incremental learning. 

The author argues that the characteristics found in incremental learning paradigms such as 

ITI are appropriate to the current work and to on-line learning systems, in general. This 

argument is justified in the discussions and analyses presented in chapters 4,5 and 7 and is 

supported by the experimental results presented in these chapters. 

3.5 Recent advances and developments 
DT learning paradigms have undergone extensive research and development since the 

introduction of ID3 in early 1980s. These efforts and investigations have been in response 

to the needs of the industrial, economic and business sectors, and include the following. 

" Optimisation of tree size 

" Improving classification accuracy 

" Achieving optimum feature selection 

" Noise tolerance and coping with noisy data 

" Coping with incomplete and partial data 

" Incrementality and successive learning 

" Generating production rules 

" Handling numerical values as well as symbolic knowledge 

It is apparent that one can not integrate all the above features in any one implementation, as 

the dominance of one characteristic usually reduces the effect of one or more of the others. 

In general, any implementation will involve making a trade-off between the individual 

characteristics of the learning process. 

Recently, there have been three systems of significance developed from the original ID3. 

These are ITI-3.8, See5/C5.0 and Cubist and those are now briefly discussed and their 

capabilities outlined. 
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ITI-3.8 is the most recent offspring of the ITI family. This algorithm remains similar to the 

version applied in the current work, namely ITI-2.8, but the improvements achieved 

provide a more compact and faster learning process. The ITI family is well known for its 

incremental nature and knowledge induction and is also capable of producing, on average, 

smaller DTs while maintaining the same classification accuracy compared to techniques 

such as C4.5. The ITI family is freeware (for research purposes), non-commercial data 

mining tools. 

The latest DT development from the author of ID3 is See5 (for Windows 95/NT) and C5.0 

(for UNIX). This tool is capable of constructing production rules which replicate their 

counterpart DT produced on the same set of data. The emphasis of this implementation has 

been placed on rule induction rather than DT construction, but this is also available for 

historical reasons [21]. A sample of rule induction by See5 which has been adopted from 

[21] is shown below. The data set used has been obtained from bank credit card applicants. 

Rule 1: (cover 8) 
age <= 41 
home telephone = given 
current occupation = sales 
time with bank <= 3 
monthly housing expense > 110 
savings account balance <= 8 

-> class reject [0.900] 

Rule 2: (cover 6) 
current occupation = office staff 
current job status = private sector 
liability reference =f 
monthly housing expense > 110 
savings account balance <= 228 

-> class reject [0.875] 

Above, cover indicates how many training examples from the data set match this rule, and 

the figure in square brackets (e. g., [0.900]) is an approximation of the classification 

accuracy of this rule which is in this case 90%. 

See5/C5.0 and its "sister system" (as it is called by Quinlan [22]) Cubist are similar in that 

both can handle either numerical or symbolic knowledge. However, See5/C5.0 produces 

classification models, whereas Cubist generates numerical models of the concept to be 

learned. This means that classes (the labels in See5/C5.0) are symbolic, whereas they are 

numeric in Cubist. Unlike See5/C5.0 which produces both DTs and rule sets, Cubist is 

designed only for the generation of the production rules. In statistical terminology, the 

former is called classification-based learning, whereas the latter is called regression-based 
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learning, hence the term regression DTs is often used. Cubist associates each rule with a 

multivariate numerical model and when a new example matches the antecedents of a rule, 

the corresponding multivariate model is used to predict a numerical value. 

In the following, a small set of rules induced by Cubist is shown (adopted from [22]) to 

demonstrate the way the inductive knowledge is represented by Cubist. 

Rule 1: [40 cases, mean 11.6, range 3 to 23, est err 3.2] 
IF 

SDAFBTMP <= 65 
INVHT <= 2270 
DAGPG > -10 

THEN 
Max 03 = -14.11 + 0.029 HMDTY + 0.047 SDAFBTMP + 0.013 DAGPG +0.345 INVTMP 

Rule 2: [132 cases, mean 19.0, range 4 to 38, est err 4.2] 
IF 

SDAFBTMP > 65 
THEN 

Max 03 = -27.4 + 0.185 HMDTY + 0.034 SDAFBTMP + 0.433 INVTMP 

Above, the information given in the square brackets is statistical data (these are not vital 

for the understanding of the rule). The features shown in the rules are abbreviations for 

"Temperature, Sandberg AFB", "Inversion base height, LAX", "Pressure gradient 

LAX/Daggett" and "Humidity", respectively. These rules are a sub-set of rules generated 

by Cubist based on 330 training examples [22] indicating the maximum ozone level (Max 

03) in LA as a function of atmospheric information (the parameters mentioned above). 

Cubist produces a model described by a total of five rules that is able to predict the ozone 

level in the air by providing the daily atmospheric information. The model shows that 

Cubist performs a non-linear numerical mapping in contrast to See5/C5.0 which generate a 

symbolic label. See5/C5.0 and Cubist are both commercial data mining tools. 

3.6 Applications of DTs 
As an inductive learning paradigm, DT learning systems offer a number of attractive 

features such as high prediction accuracy (comparable with that of connectionist methods) 

[23], comprehensibility (unlike connectionist methods) and ease of use which render them 
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practical for a wide range of subject areas. They have been applied to a number of 

application areas, in one of the following two manners. 

" In an off-line manner to construct the model of a general concept for prediction of 

unseen cases. 

" Integrated in multi-strategy systems for learning, adaptation and automation. 

Some examples of applications that fall into the first category include: medical diagnosis 

[24], aviation [25], texture classification [26], cosmic rays identification [27], protein 

coding location in human DNA [23] and robot perception classification [28]. DTs are also 

used in embedded control, adaptive systems and multi-strategy systems to enhance learning 

and automation such as: pattern classification [29], motion planning of a robot manipulator 

[30], fuzzy rule induction [31] and fuzzy DTs for the automatic generation of control rules 

in the current work [32]. 

3.7 Summary 
This chapter has provided an introduction to machine learning techniques with an emphasis 

on learning from examples. The learning systems based on this paradigm are able to 

produce rule sets or DTs (which are employed extensively in this thesis) to conform to 

specific applications. 

This theoretical chapter conveys the necessary information and background which are 

central to the understanding of the application chapters of this thesis, namely chapters 4,5 

and 7. Due to the improved performance of ITI-2.8 (compared with that of ITI-2.5, C4.5 

and ID3) and its availability at the time of the development of this work, it is used in its 

two modes of operation, namely off-line and on-line learning, and serves as the core of the 

learning algorithms proposed in chapters 4,5 and 7 for the synthesis of control rules. The 

most significant attribute in the current work which favours the use of ITI-2.8 compared to 

other DTs, is its ability to be embedded in multi-strategy systems for on-line learning and 

this is the issue of chapter 7. Chapters 4 and 5 apply ITI-2.8 to an off-line and supervised 
learning mode, and specifically chapter 4 assesses the feasibility of the proposed learning 

algorithm in qualitative terms, and chapter 5 discusses its application in realistic 

environments. In chapter 7, ITI-2.8 is integrated into a self-supervised hybrid system which 
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is able to learn incrementally fuzzy control rules which are in turn used to navigate a robot 

in unseen and unstructured environments. 
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Off-line Learning of a DT 
Hierarchy Applied to Robot 

Control: 
Simplified Environments 

Keep it simple, 
as simple as possible, 

but no simpler. 

Albert Einstein 
Quoted by B. Stroustrup in The C++ Programming Language 

This 
chapter presents the application of decision trees (DTs) to behaviour learning in 

robotic environments. In particular, it discusses the methodology of domain 

knowledge decomposition into an array of decision trees to grow a hierarchy of individual 

and homogeneous DTs. 
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To verify the feasibility of DT applications to robot path planning in the frame of 

hierarchical learning, this chapter considers the application of this methodology to 

simplified environments, in which only discrete movements and turning angles are 

considered and the robot is assumed to be a point object. The next chapter is concerned 

with the implementation of the same learning concept, but in realistic environments and in 

an on-line mode. 

4.1 Introduction 
Robotics has been a popular test bed in recent years for a wide range of learning 

algorithms. Robot motion planning and navigation, especially reactive-based approaches, 

have received particular attention, witnessing the application of symbolic techniques 

[1,2,3,4], connectionist methods [5,6] and fuzzy logic [1,7,8,9,10,11]. 

Purely reactive strategies [7] implement control laws from a collection of perception-action 

stimuli to navigate a robot. Reignier utilises a fuzzy data base [7] to implement a system 

which is not capable of learning, but in which the domain knowledge has been 

accommodated beforehand in the database in the form of a set of fuzzy rules which cover 

the entire perception space. Behaviour-based approaches [12,13] tend to be more 

distributed in nature, incorporating a repertoire of parallel executing behaviours performed 

by individual units. Although, analytically difficult to prove, it is commonly believed that 

pure reactive systems are less powerful than behaviour-based approaches [14]. Strictly 

speaking, this is a task-specific observation, meaning that if a robot is expected to achieve 

certain goals at run time which are not specified at the design stage, then, generally, purely 

reactive systems would not be able to perform these tasks satisfactorily. For example, 

dynamically changing or unknown robot environments are more elegantly tackled using 

behaviour-based approaches. Reactive systems, however, offer greater efficiency in 

computation time as less information needs to be stored and processed. 

Decision trees [ 15,16,17,18] have been successfully employed in a number of areas of 

robotics, particularly in classifiers designed to make decisions based on a set of training 

examples of symbolic data or numerical values [19,20]. They are used in [3] to classify the 

contours of local environment after training using data collected from echoes of an 
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ultrasonic sensor array, in [1] to predict the motion of a robot manipulator and in [2,21 ] for 

behaviour learning. 

This chapter presents a DT-based hybrid architecture combining the features of low 

computational complexity (reactive systems) with flexibility at run time to cope with 

dynamic and unknown environments (behaviour-based systems). As the system is self- 

learning, no initial knowledge of the environment is provided to the robot, and there is no 

map making or planning, since planned navigation of a mobile robot is either susceptible to 

failure due to unpredictable environmental changes or requires the assumption that the 

surrounding world is stationary [8]. The overall control is distributed over a hierarchy of 

decision tree networks. The hierarchy is globally trained rather being tuned to a certain 

perceived world and is able to cope with dynamically changing environments. 

The robot explores and is trained in a series of homogenous, yet increasingly complex 

environments in such a way that the robot sensory perception is decomposed at the training 

stage into a hierarchy of progressively complex worlds. The worlds' complexity depends 

on the immediate obstacle configuration rather than the total number of disjoint obstacles 

in the environment. Each generated world is then mapped on a unique layer represented by 

a DT which accommodates the perceptual situation-action knowledge encoded in rules. 

The robot builds up its knowledge base from scratch to a level involving a hierarchy of five 

individual layers. The simplest layer, in which the perception-action stimuli are highly goal 

oriented, represents the world with no obstacles; the most complex layer in which object 

avoidance behaviour is the dominant behaviour, is the one where the robot is trapped in a 

dead-end and all sensors detect objects within a specified distance from the robot. 

The author chooses to use ITI-2.8 which is the latest version of the incremental decision 

trees induction (ITI) [16] as the fundamental building block of the learning system. This 

has the ability to generate tree networks in batch mode as well as in incremental mode. 

This chapter presents the underlying idea of the hierarchical learning approach and 

describes how individual DTs are generated and are able to co-operate in the solution of 

complex navigatory tasks. Results of the experiments conducted using a simulated robot 

are presented. 
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4.2 The rationale of hierarchical learning design 
A robust navigation system relies heavily on safe and simple motions. Safe and simple 

motions are generally local in nature [22]. That is, simple situation-action reactive rules are 

needed to deal with the intermediate robot environment to ensure collision free 

movements. On the other hand, global planning is needed to approach a remote target 

while avoiding obstacles. 

Knowledge. decomposition, which is introduced in this chapter, allows local tuning of the 

DTs in the hierarchy, as described in the previous section. That means, each individual DT 

in the hierarchy is local to a certain environmental perception. However, complex and 

global navigatory tasks can only be accomplished by introducing coherence and performing 

a sequence of consecutive elementary motions. The coherence in motions, on the other 

hand, is introduced into the algorithm by continuously sampling appropriate behaviour- 

based DTs for the time a navigation task is in process. This imparts global tuning to the 

conceptually resultant path. Another aspect of knowledge decomposition is the efficiency 

in managing complex knowledge and multi-dimensional input sensory data. 

A somewhat similar approach to the decision tree method applied in the current work has 

been taken by Sammut et al [23] to control dynamic sub-systems of a Cessna aeroplane in 

an attempt to produce an artificial autopilot by cloning the behaviour of skilled human 

pilots. The constructed autopilot successfully managed to fly an entire flight mission. 

4.3 Terminology and notation 
A world is defined to be the instantaneous perception of the robot of its environment, based 

on the sensory stimuli. The robot is initially at a starting point S and is expected to reach 

the target G. The navigation process is the set containing the finite number of motions the 

robot carries out in moving from S to G. The input perception P is defined to be the set of 

five circumference sensors as P= {So 
, Sl , S2 , S3 , S4 } in which each Si = {0,1} 

. This is 

mapped on the symbolic set S; = 
in, y} , where n means no obstacle has been detected and 

y means that an obstacle has been detected. Any perceived world is an element of the set 

W= {wo, wl 9 w2 9 w3 , w4 }, where wo is the simplest in which 7, Si =0 and w4 the most 
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complex world (as far as the rule layers are concerned) in which 7, S; =4 with i=0,1,..., 4. 

w4 is not represented as an independent rule layer in the hierarchy as the action space in 

w4 is limited to a single class regardless of the goal location. This renders the generation of 

a corresponding tree unnecessary. 

For example, considering the sensor pattern in Figure 4.1 and with the robot at state Ro in 

Figure 4.2, the perceived world is wo and the returned value of all sensors is zero (no 

obstacles). At state Ri, however, wi is perceived, indicating that only one sensor from the 

sensor set detects an obstacle and the robot has four possible directions of motion. 

4.3.1 Sensor configuration 
Figure 4.1 demonstrates the configuration of range sensors scanning the proximity of 

objects in front of the robot. Adjacent sensors are separated by an angle of 450 relative to 

the robot centre where each sensor's angle of detection falls into a cone of ±22.5 about 

each sensor axis. In modelling the behaviour of the range sensors, the following 

assumptions are made: 

" Each single movement of the robot covers one cell, i. e. from the centre of one cell to 

the centre of the adjacent cells, see Figure 4.2. 

" Within a specified sampling time, the return value of each proximity sensor has a 

binary state which is set when an obstacle is detected. 

Uncertainty in the values of sensor readings and the possibility of errors in observations 

and data increments, generally termed as noise, are discussed further in section 4.8. The 

nature and sources of error, the way it affects input training data and its impact on DT- 

structure are also addressed in section 4.8. 
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Figure 4.1 Robot shown with circumference sensors (So, S1, S2, S3, S4) and direction cones 
corresponding to compass points 

4.3.2 Representation of the robot environment 
The navigation terrain is represented as a 2D-grid, depicted in Figure 4.2. Objects may be 

individual and well scattered each occupying a single square on the grid or they may be 

combined to form extended objects covering a number of adjacent squares on the grid. The 

instantaneous heading vector of the robot is shown as an emphasised directional arrow in 

Figure 4.2 and sensor returns indicating obstacles and the absence of obstacles are shown 

by broken and unbroken arrows, respectively. 

To clarify further the robot-world relationship, consider some examples of robot states. The 

sensory perception of the robot at state R3, heading -45` , 
is P= In, y, y, y, n} and this 

corresponds to w3 as three of the sensors detect obstacles. Robot states such as R30, R3 1, 

R32 are further examples of w3 in which the robot has two choices from which to select its 

next direction of motion. An assumption made is that the size of the robot is sufficiently 

small in comparison to that of the obstacles [8]. This implies that robot has sufficient space 

to manoeuvre between two objects which are diagonally adjacent, so for example, at R32 

the robot is able to advance at an angle of either -135 or -45'. 

If in a w3 state such as R30, the target is exactly behind the wall, the resulting robot 

motion could be oscillatory in that it performs a repeating sequence of movements. This is 
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a problem inherent in minimum seeking behaviours [5,24]. This problem is resolved by the 

fact that the robot is trained to identify cases which may lead to oscillatory movements and 

this information is used to grow a so-called oscillatory decision tree [25]. Since this DT 

incorporates a wall-following behaviour, it is activated in circumstances when a possible 

oscillation is detected and remains active for classification of the robot perceptions as long 

as the oscillation remains. Figure 4.3 summarises the interrelationship between worlds in 

the hierarchy as their complexity varies. 

R3 

R4 

RI 

Figure 4.2 Grid representation of the environment and examples of the robot instantaneous 

perceptions 

Wo 
simpler more complex 

WI 

more specific rules T more generalised rules W2 
more goal - oriented more obstacle avoiding 

W3 

Figure 4.3 Worlds' functionality and interrelationship in the hierarchy 
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4.4 Calculation of the robot divergence angle 
The robot divergence angle 6 is required for the following purposes: 

" To generate an appropriate steering angle. 

" To determine the goal location relative to the robot at any time rather than using 

absolute data. This significantly reduces the dimensionality of the feature vector used 

in DT generation. 

The divergence angle is defined as the angle between the robot heading unit vector h and 

the goal unit vector g, the vector joining the robot R and the goal G, as depicted in Figure 

4.4 

0l XG XR xw 

J 

...........:.. YR 

YG .......... r 

G 

Yw 

Figure 4.4 Instantaneous goal location relative to the robot at 0 in azimuth in absolute 
world co-ordinates 

In the following we define the corresponding unit vectors h and g to derive the 

divergence angle 0. 

h =cosa"i+sina. j (4.1) 



Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 67 

g=. (XG-XR)"i++(YG-YR)j (4.2) 

L= (Xc-XR)2+(YG-YR)2 (4.3) 

We use the scalar product between h and g to calculate the modulus of 9 and their vector 

product to work out the sign of 0 as follows: 

h"g 
cos 0=-=h"g (4.4) fr!. II 

ijk 

Xi Y0 =ß"i+"Sj+, Z"k (4.5) 

XZ Yk 0 

where 

A=XhYR -YhXB (4.6) 

Substituting (4.1) and (4.2) into (4.4) and (4.6), the robot divergence angle in terms of its 

modulus and sign at any time is completely described by the following set of equations: 

0= cos-' Ic La (Xa - XR) + S1La (Yc - YR) I" sgn ý (4.7) 

Cos a (Yc-YR)-SiLa (XG-XR) (4.8) 
L 

In all the above equations, a and R(XR, YR) are the robot absolute heading and Cartesian 

co-ordinates respectively, and G(XG, YG) are the goal Cartesian co-ordinates. 
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4.5 Performance criterion for training set construction 
Since the robot motion directions are generated randomly at the training stage, we define 

usefulness U=f (C) as a measure of goodness of the performed actions. Following the 

transition from a previous state n -I to a current state n, the cost associated with each 

motion C is defined as 

E,. 
-Id-E. C=(dJ sgn(cos(9n - On -1)) (4.9) 

and the usefulness is defined as 

_1 
if C? 0 

U0 
if C<0 

(4.10) 

In (4.9), d is the total travelled distance, E is the Euclidean distance between the robot and 

the goal, and 0 is the robot divergence angle. Only the states delivering a usefulness of 

unity are positively reinforced by being remembered, the remainder being forgotten. 

Remembered experiences are collected to form the training examples for DT generation. 

4.6 Robot training and decision tree generation 
In the training phase where the robot is set to exploratory mode, observations which lead to 

useful actions are reinforced by being remembered. An observation contains the state of all 

proximity sensors and the position of the robot relative to the target. A further step needs to 

be taken to conform each observation increment to the format suitable for DT induction. 

To grow a decision tree network, ITI [15] requires a set of training vectors having the 

format f o, fj,..., fi,..., f,,,, c1, in which f, is a feature with f; EF and 

F= If o, f i,..., f, ,..., 
f� } is the space of features (input variables) each being defined on a 

unique space of feature values such as f; _ {fo;, fli 
9f2i9 .,. 9 fmi }. c; is a class with c; EC 
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from the set of available classes C= {c12c29... 
9 c; 9... 9ck 

} in which each class has a finite 

number of discrete values. 

The format of the training vectors are configured as a function of world intricacy in order 

to keep as small as possible the dimensionality of world-dependent trees. That means, in an 

environment such as wo (the first and the simplest layer in the hierarchy) with no 

obstacles, the perceptual state reduces to only a single feature, namely the relative position 

of the robot to the target. The robot divergence angle 8 is used to supply the instantaneous 

relative location of the goal, requiring no absolute data to be present in the tree 

construction. This reduces significantly the size of the tree and tunes the tree globally, as 

far as the target-seeking behaviour is concerned. Since there is no obstacle in wo, the robot 

position relative to the target is used as the only feature and a corresponding class is 

required in the form of: goal_rel_loc, c, . The set of values that the feature (goal_rel_loc) 

and the class (c; ) can take are: 

goal_ rel_ loc =- {north, n_ east, east, s_ east, south, s_ west, west, n_ west} and 

C= {0,1,2,3,4} _ {left, left_ front, front, right_ front, right}. 

Consequently, depending on the location of the goal, each individual class c; is mapped on 

an output reflex from the above set to drive the robot. 

Having specified the format of the training entities, the algorithm generates an appropriate 

class to complete each training vector needed for tree construction. There is no domain 

expert intervention in the process of class generation; the algorithm evaluates each motion 

with the usefulness function and reinforces the positive ones. Positive experiences are 

remembered iteratively and collected to train the robot. Figure 4.5 (see page 84) shows the 

tree network to represent world wo of the tree hierarchy. 

Tree induction in the remaining worlds is carried out in the same manner, except that the 

increase in the dimensionality of the feature vector is augmented by the sensory data to the 
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new format, namely So , Sl , S2 , S3 , S4 , goal_ rel_ loc, c; . Figures 4.6,4.7 and 4.8 (see pages 

85 to 87) demonstrate DTs representing worlds wl, w2 and w3 . 

When inconsistent training examples occur [15,16] and this will result in leaves in the DT 

representing more than one class, feature patterns can be classified into multiple classes. In 

terms of output reflexes, when the robot is in a certain state relative to the goal, more than 

one direction of motion is predicted leading to a conflict in the rules. To produce a single 

output reflex from those available, a random selection is made. 

4.7 Decision trees for classification 
Section 3.4 of the previous chapter introduced the notion of DTs, various types and their 

implementation, particularly in this work. In the following, a simple navigation task is 

decomposed into its world specific perceptions, and it is demonstrated how each perception 

is mapped on a unique DT to synthesise control rules. 

4.7.1 An example of the rule layer switching 
To clarify the fundamental principles on which the navigation is based and to demonstrate 

how different rule layers are sampled based on instantaneous perceptions, a simple 

example of a target-seeking task is considered. 

With the robot located at position R20 in Figure 4.2, the aim is to reach the target G 

(shown top centre) while avoiding obstacles. The robot is assumed to have an initial 

heading angle of -90*. The goal location relative to the robot is initially calculated to be in 

the north, but will be updated in every state. Table 4.1 illustrates how different worlds are 

perceived as vector P changes state and how the robot acts on them. Using the state vector 
P and the state variable goal_ rel_ loc , the DTs corresponding to W2 and W3 are 

traversed in order to classify the perception patterns. These paths are shown as directed 

lines and numbered in the order they are searched in the DTs for the worlds W2 and W3 

(Figure 4.7 and Figure 4.8 (see pages 86 and 87), respectively). The directions of motion 

are determined by the terminal nodes, their values consistently being "2" in this particular 

example. As described in section 4.6, this class corresponds to front as an output reflex that 

drives the robot forwards. 
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Firing 
Order 

Robot 
State 

Perception P Goal_rel_loc World 
State 

Direction 
of 
Motion 

1 Rxo n, n, n, y, y north W2 forwards 
2 R21 n, n, n, , north W2 forwards 
3 R22 n, y, n, y, y north W3 forwards 

__ 
4 123 , n, n, , yyy north W3 forwards 
5 R24 n, n, n, y, y north W2 oal state 

Table 4.1 Decomposition of a sample navigation task in terms of state variables and output 
reflexes 

Table 4.2 demonstrates how each individual control rule can be synthesised by switching 

between DTs using the same robot states as those used in Table 4.1. Each individual rule is 

the result of following a DT along the path leading to a terminal node. 

Robot Control Rules 
State 
R20 IF (S2 = -, y) A (S 1= -, y) A (goal_rel 

_loc = -, s_east) A 
(goal_rel_loc = n_east) A (goal_rel_ loc = -, n_west) A 
(goal_rel_loc = -, north) THEN C=2 

R21 IF (S2 ='-I y) A (S i =--I y) A (goal_rel 
_loc = s_east) A 

(goal_rel_loc = -i n_east) A (goal_rel_ loc = n_west) A 
(goal_rel_loc = -, north) THEN C=2 

R22 IF (S2 =" y) A (S1 = y) A (S4 = y) THEN C=2 
R23 IF (S2 = -, y) A (Si = -, y) A (goal_rel 

_loc = -, n_east) 
THEN C=2 

R24 IF (S2 =" y) A (S1 = -, y) A (goal_rel 
_loc = -, s_east) A 

(goal_rel_loc = -, n_east) A (goal_rel_ loc =- n_west) A 
(goal_rel_loc =, north) THEN C=2 

Table 4.2 Control rules synthesised by searching different rule layers to describe a specific 
trajectory. Above, symbol -, is to be interpreted as logical NOT and C=2 as "output reflex 

is front", as shown in section 4.6. 
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4.8 Noise and uncertainty 
In the real-world, errors in the presentation of sensor values to the learning algorithm affect 

its performance. Such errors can arise because of mistakes in the recording feature values, 

incorrect classification of training vectors by the teacher [26,27] or erroneous sensory data. 

The first two types are both systematic errors, whereas the latter is categorised as random 

error or noise [28]. In the current work, the first two sources of error are excluded since the 

generation and classification of training examples are performed entirely automatically 

with no external intervention. Hence, the source of error is limited to the additive noise 

which can be attributed to uncertainty in sensor readings. 

Under ideal circumstances, an obstacle's presence would always be correctly indicated by a 

sensor when it falls within its field of detection. However, in real world environments, due 

to sensor noise, there will be cases where sensor readings fall into a region where 

misclassification can occur. It is important that any learning process is able to continue to 

perform satisfactorily under these circumstances. In order to deal with such noisy data, a 

suitable noise model and a modification to the learning algorithm were developed and these 

are described below. As the introduction of noisy examples into the training of the DTs 

produces larger trees, methods for pruning trees are also considered. 

4.8.1 Noise modelling 
As discussed, behaviour learning is based on the observations of the robot from its physical 

environments. These observations which are suitably formatted for knowledge extraction 

correspond directly to the robot perceptions (sensor readings). These perceptions are 

derived using proximity sensor values and are used to deduce whether an obstacle is 

present. To determine whether an input value D; associated with sensor S; indicates an 

obstacle's presence, a suitable threshold function is used, Figure 4.9. 
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No Obstacle Obstacle 
Sensor Statef Uncertain 

r 
0 0.35: 0.5 0.65 1 Normalised 

Input Value 

Figure 4.9 The threshold function used to classify sensor values into three categories: (a) 

no obstacle is detected if the input value falls below 0.35; (b) an obstacle is detected if the 
input value is above 0.65 or (c) it is uncertain whether an obstacle is present if the sensor 

value is within ±0.15 of the threshold. 

From Figure 4.9, it is known that the presence of noise may cause an error in 

misclassification of those sensor readings close to the threshold. The extent of this area of 

potential misclassification is shown shaded. For the environment considered in the current 

work, a width of ±0.15 around the threshold was found to be suitable. 

4.8.2 Modified learning algorithm 
The training method previously described involves training a hierarchy of DTs ranging 

from wo with no obstacles, to w4 where all sensors detect obstacles. To show how training 

can be carried out when sensor noise is present, consider the example shown in Figure 4.10 

when training the DT for w1, that is, it is known a priori that only one sensor should detect 

an obstacle. 
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(a) 

SO Sl S2 S3 S4 
Perception 

P 
0.2 0.3 0.7 0.4 0.1 

r 

0.2 0.3 0.7 - 0.1 

n n y y n 

(b) 

0.2 0.3 0.7 - 0.1 

n n y n n 

Figure 4.10 The mapping of robot perception P in wi, where the input value for S3 falls 
into the uncertain area shown in Figure 4.9. This gives rise to two possible symbolic 

interpretations of P for S3, shown in (a) as "y" and in (b) as "n". 

In order for the navigation system to operate successfully in the face of sensor noise, a 

perception where one or more sensor inputs fall into the uncertain area needs to be used as 

an example in the training of the DTs. In Figure 4.10, a single sensor input falls into the 

uncertain area and this is represented by allowing two possible symbolic interpretations. As 

training is taking place for wl, the example must be used in the training of wl, even though, 

strictly speaking, pattern (a) represents W2, as two sensors detect obstacles. In the context of 

inductive learning, training examples such as pattern (a) are considered as counter- 

examples to the noise-free representative and homogeneous training examples describing 

wj. Counter-examples can be introduced to the batch of uniform and representative 

examples to expand the search space so as to produce noise tolerant production rules [27]. 

The existence of counter-examples, however, leads to the specialisation of the training 

patterns which reduces the generalisation ability of DTs, and hence produces larger tree 

networks. This effect is shown in Figures 4.11 to 4.13 which are the noisy versions of 

Figures 4.6 to 4.8. 

Once the DTs have been trained as described above, they can be used on real-world 

examples. Having described the mechanism of training under uncertainty, the strategy to 

classify imperfect data is considered using examples of real world perceptions. 
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4.8.3 An example of rule firing in the presence of uncertain data 
The DTs in the hierarchy are able to cope with uncertain data existing in the robot 

perceptions when navigating in unseen environments. The algorithm is modified in such a 

way that mapping a perception on a world no longer depends on the total number of 

sensors that detect obstacles, but on the number of sensors whose readings fall outside the 

uncertain region of the threshold function. Three example of sensor values are shown 

shaded in Table 4.3 (a) as perceptions PI, P2 and P3. 

Table 4.3 (a) Three examples of uncertain sensory data (in bold face) each interpreted into 

either a symbolic "y" or "n" using the threshold function. (b) The number of sensor values 
indicating obstacles with certainty (shaded) in each pattern gives rise to the world on which 

each pattern is mapped. 

An instantaneous robot perception from its environment such as Pj needs to be mapped on 

a unique rule layer to be further classified by searching the tree. In the presence of noise in 

sensor readings, there exists no direct mapping between the perceptions and the worlds. 

That is, perceptions such as P, are not mapped on w2 (although two sensors detect 

obstacles), but on w1 because the state value of S1 in Table 4.3 (a) is uncertain and the 

classification is performed using only partial data. Since the hierarchy has been trained 

using counter-examples to the uniform representatives, it is able to cope with and to 

classify inhomogeneous patterns such as in Table 4.3 (b). 

(a) (b) 
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4.8.4 Decision tree post-pruning 
To deal with the larger trees which result from the use of imperfect data examples in 

inductive learning systems, rule-truncation or decision tree post-pruning can be employed 

[18,27,28]. In this approach, after a DT has been grown to completion, components 

deemed unreliable are removed. These components are usually sub-trees which represent a 

weak correlation between classes and feature-values; the classification task of these sub- 

trees are usually moved to terminal nodes. The resulting DTs are smaller in size, more 

generalised in character and better able to cope with imperfect data. For example, Figures 

4.14 to 4.16 show the pruned versions of the DTs (demonstrated in Figures 4.11 to 4.13) 

obtained for the noisy sensor data. 

Tree pruning is not appropriate when small sample sizes are involved as this would result 

in overgeneralised DTs with low classification accuracy. Conversely, a large number of 

training examples tends to produce ovetted DTs which are themselves large in size and 

which try to represent individual patterns. Consequently, achieving appropriately-sized 

DTs with acceptable classification accuracy is a trade-off between the two cases. Our 

experimental results demonstrate that a sample size of approximately 200 training vectors 

is appropriate if post-pruning is to be performed on the generated DTs. 

4.9 Dynamic rule inhibition and DT augmentation 
The learning algorithm of the intelligent system benefits from two mechanisms which 

refine the trees dynamically and these are discussed below. 

Firstly, during the navigation process when the robot applies the learned knowledge to 

predict its future direction, rules are evaluated as they are fired. Since some rules, 

particularly those in multiple-class leaves, have been generated when the goal has been 

located in the overlapping area of two adjacent sensor cones (inconsistent training cases), 

they prove to be inefficient (by producing negative costs) when applied consecutively to a 

certain state. The algorithm identifies such rules and inhibits them and restructures the tree 

accordingly. The inhibited rules are not used thereafter and these are shown shaded in 

Figures 4.5 and 4.6 which show the DTs for worlds wo and wl , respectively. 
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Secondly, the algorithm identifies rules which are overgeneralised in the process of tree 

induction. A rule such as this may drive the robot in certain circumstances towards 

obstacles and in others towards the target. In such conflicting cases and after the 

identification process, new training examples are automatically generated. These are 

integrated incrementally into the tree to augment it and to specialise such rules by re- 

inferring the tree. For example, the DT shown in Figure 4.17 is the augmented version of 

Figure 4.12, and Figure 4.18 being its truncated version. 

4.10 Results and discussion 
The learning mechanism presented in this thesis introduces an efficient approach to 

synthesising control rules by employing self-learning of domain knowledge from inception 

rather than under supervision. This has been achieved using DTs and performing symbolic 

learning without the intervention of human experts. This is similar in concept to the 

approach taken in [29] and contrasts with that taken in [11] where control rules are 

manually constructed prior to navigation. However, a major advantage of the approach 

presented in this work is that the generated rules are highly intelligible to human users and 

easy to follow as can be seen by examining the rules shown in Table 4.2. 

Since the principal emphasis of this chapter is to demonstrate the feasibility of DT-based 

learning for high level decision making rather than low level control, the control algorithm 

is simulated with a simple character-based user interface. Consequently, the steering angles 

that can be externally resolved (in the user interface only) for the actuators are in 45' 

increments, making certain trajectories appear longer than expected, as will be shown in 

pictures to follow. 

In all navigation examples, the robot is positioned at an arbitrary starting point S and is 

expected to reach the target G avoiding obstacles. Figure 4.19 (a) shows the first stage of 

learning in the environment without obstacles, namely wo. The initial leg of the trajectory is 

rather more exploratory than target-seeking. The locations visited by the robot more than 

once are highlighted. This shows that the robot first moves away from the target, 

generating negative costs. The performance then improves and the robot heads towards the 

goal. After 10 training epochs, the robot demonstrates a significant improvement in finding 
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the target while keeping the same settings, namely the robot having the same location and 

starting angle, and also the same goal position. Figure 4.20 is a scenario where the robot is 

navigating in a sparsely obstacle-populated terrain. In such environments, the robot has 

access to the knowledge learned in wo and wl. Figures 4.21 to 4.23 are examples of 

navigation scenarios in more complex surroundings, in which the DTs in the hierarchy 

have already been grown and are accessible to the robot. Table 4.4 shows the number of 

training vectors needed on average to build up each individual DT and the entire hierarchy. 

Worlds 

WI wl W2 W3 W4 

Average 10 11 12 10 8 
Number of Runs 

Number of 
Training 58 112 95 60 68 
Examples 

Total number of training runs to build up the 51 hierarchy (Mean) 

Table 4.4 The approximate number of trials and the training examples needed to set up 
each individual DT in the hierarchy. 

The simulation results are of rather more qualitative than quantitative significance for the 

evaluation of the learning approach. The significant improvement that the robot 

demonstrates during navigation is that it does not exhibit repetitive motions such as that 

shown in Figure 4.19 (a), and it is always able to find the target. In some instances, the 

generated trajectories appear longer than the shortest route available; this can be attributed 

in part to the simplification made in the resolution used for the turning angle, but it is well 

known that reactive path planners do not always produce the shortest trajectory [30]. 

A further limitation which is inherent to purely reactive systems is demonstrated in Figure 

4.23. This occurs when the two available behaviours, namely reactivity and target-seeking 

behaviour are applied alternatively. This mostly happens when the robot follows a long 
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wall while heading the target and in such circumstances, absolute behaviour arbitration 

leads to the so-called zigzag trajectories for the time the robot shows wall-following 

behaviour. 

As stated previously, the main objectives of this chapter are to demonstrate that the DT- 

based hierarchical learning approach is capable of generating safe and simple locomotion 

reflexes. To demonstrate this, a number of simplifying assumptions were made about the 

nature of the robot, actuation and the environment. These were implemented in order to 

keep the dimensionality of the problem domain at a manageable level, thereby allowing a 

qualitative judgement of the overall performance of the learning mechanism to be made. 

Therefore, no comprehensive comparison is made at this stage with previous work, as far 

as the performance of the learning algorithm is concerned. The experimental results prove 

the feasibility of the approach [21] and provide the incentive for the work presented in the 

next chapter where (a) the learning algorithm is modified to incorporate incremental and 

on-line learning, (b) realistic and higher resolution environments and robot configurations 

are considered. 

4.11 Summary 
This chapter has demonstrated a symbolic approach based on decision tree learning to the 

intelligent control of a mobile robot. The perceived world is decomposed into a hierarchy 

of simple, homogeneous worlds that a positively reinforced robot learning system 

experiences. At each level, the navigation data collected are applied to train and grow an 

I TI-based decision tree. Each world is mapped on a rule layer in which the learned 

knowledge is encoded and, depending on the complexity of the perceived world, rule layers 

are "switched on" to navigate the robot through an unknown and cluttered environment. 

The navigation algorithm behaves intelligently in that, following poor performance during 

the navigation process, learned rules in any layer can be dynamically inhibited or "switched 

off'. The rule layers can also be dynamically augmented to specialise certain 

overgeneralised rules and this is achieved by the on-line restructuring of the DTs to 

integrate the new knowledge into existing trees. 
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The control concept, namely the knowledge decomposition, ensures safe and globally tuned 

navigation due to the emphasis on reactivity. Safety is achieved in performing local 

environmental mapping, whereas the global nature is provided by circular sampling of 

decision tree networks to generate a sequence of elementary motions. 

The next chapter of this thesis demonstrates the application of the DT-based hierarchical 

learning to higher resolution and realistic environments by using simulated environments 

for the miniature robot Khepera [31,32]. 
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Figure 4.5 Layer zero of the rule hierarchy representing w0. Classes which are shaded have 
delivered poor performance during navigation. These are completely inhibited. 
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Figure 4.6 Layer one of the rule hierarchy corresponding to wj. Shaded classes have been 
identified as performing poorly and switched off dynamically in the navigation process. 
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Figure 4.7 Layer-two of the rule layers to represent W2. Directional lines demonstrate an 
example of traversing the tree to fire a rule given a certain robot state. 
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Figure 4.8 A typical much generalised layer-three of the rule hierarchy to represent w3. An 

example of how a rule is fired is shown. 



Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 88 

_`T'ý.. 

Figure 4.11 Layer-one of the hierarchy representing wi. This DT has been grown on noisy 
sensory data, in contrast to Figure 4.6. 
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Figure 4.12 Layer-two of the DT hierarchy to represent w2. This incorporates data taken 
from noise simulated proximity sensors. 
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Figure 4.13 A DT network for classification of perception related to w3. This is grown on 
noisy sensory data. 



Chapter 4: Off-line Learning of a DT Hierarchy Applied to Robot Control 91 

S2=n 

so =niI goal_reI_Ioc = north 

=east I2I SO =n goal_rel_loc = n_east 
1 

S3=n U 

I 
4 
ii 

U 
S 1 S3'=n 

3 

32 14 4 00 4 0 2 0 1 
3 3 

Figure 4.14 The post-pruned version of Figure 4.11. This DT represents wl incorporating 

noisy data. 
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Figure 4.15 The DT representing layer-two of the hierarchy (shown in Figure 4.12) after 

post-pruning and replacing sub-trees with decision nodes. 
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Figure 4.16 The post-pruned version of the DT shown in Figure 4.13. This represents 
layer-three of the hierarchy. 
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(a) 

] Mauigation Field 1 [1], 

(b) 

Figure 4.19 Training the robot on the first layer of the hierarchy (w0) with no obstacles to 

establish target-seeking behaviour, (a) where locations visited by the robot more than twice 

are highlighted. Figure (b) demonstrates a navigation with the same robot-goal setting after 

the robot has sufficiently been trained. This environment can be navigated using the DT of 
Figure 4.5. 
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Figure 4.20 Navigation on an environment containing sparse obstacles after sufficient 

training. For navigation on such terrains only the DTs associated with W and wl are 

appropriately activated. 
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Figure 4.21 Target-seeking while avoiding obstacles in a complex environment. 
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Figure 4.22 Navigation of a homing task showing reactivity and wall-following behaviour. 
In such environments the robot has access to the entire DTs in the hierarchy. 
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Figure 4.23 The zigzag trajectory is an example of behaviour which can result from 

transition between rule layers at either ends of the hierarchy due to behaviour dominance. 
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On-line Learning of an 
Adaptive DT Array Applied 

to Robot Control: 
Realistic Environments 

To learn is to change, and to change is to learn. 

Bart Kosko 
Fuzzy Thinking 

The previous chapter introduced an approach to behaviour learning in which the 

knowledge space was decomposed into a layered hierarchy of control rules each 

encoded in a distinct DT. The strengths of the proposed approach were shown to be the 

efficient management of the overall knowledge complexity, ease of implementation and the 
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generation of expressive control rules due to the intelligibility of induced knowledge which 

is characteristic to DTs. The experiments conducted were largely of qualitative significance 

in their demonstration of the feasibility of the approach, and were performed by making a 

number of simplifying assumptions about the robot and its environment in order to keep 

the dimensionality of the problem domain manageable and under control. This chapter 

takes further the approach introduced in the previous chapter by investigating the 

performance of the control concept in environments with realistic assumptions, as well as 

considering the characteristics of a physical robot with finite dimensions. 

5.1 Introduction 
This chapter implements the methodology of the hierarchical learning design introduced in 

the previous chapter, augments the method with incremental and on-line learning and 

considers a continuous perception-action space. This allows the quantitative assessment of 

the approach and its application to real world scenarios. Unlike the preliminary 

experiments in which the robot was considered as a point object (one of infinitesimally 

small physical dimensions), the perception-action was discretised and learning was 

performed off-line; this chapter is concerned with the application of the approach 

considering the following aspects: 

" the robot has finite physical dimensions; 

" the environment is continuous; 

" the action space is continuous; 

" the learning mode is incremental and on-line. 

In contrast to the supposition of a discrete environment, the continuous perception-action 

space suggests an increase in the dimensionality of the DTs, and consequently the 

generation of a significantly larger rule space to search. This is because the number of 

possible states increases, which is directly related to the diversity of training examples 

which are supplied to the learning algorithm. Investigations into: how large the DTs will 

grow, whether they are able to suitably generalise new concepts, and whether DT 

truncation affects the generalisation capabilities of the DTs, will be carried out. 
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This chapter defines the relevant terminology used and introduces the features of the 

simulated mobile platform used in the experiments. The control architecture of the system 

is outlined and the method of development of the incremental tree induction is described. 

The concept of incremental evolution of DTs is illustrated in an example, illustrating the 

continuous adaptation of DTs as new knowledge is provided. The results are taken from a 

number of typical navigatory scenarios and include investigations of the efficiency and the 

limits of applicability of the approach. Possible improvements of the current technique are 

also discussed. 

5.2 Terminology 
As in the previous chapter, world is defined to be the instantaneous robot perception. The 

input perception P is defined to be that provided by the set of six circumference sensors as 

P= {So 
, 
Si , S2 , S3 , S4 , S5 } in which the range of each sensor value is defined by 

Si = {0,1,2,3,..., 1023} (to be discussed in section 5.3). However, the numerical outcome of 

each sensor is mapped on the symbolic set Sis = (Y, N), meaning that an obstacle is 

detected (Y), or no obstacle is detected (N). The experimental results demonstrated that Si = 

750 is a suitable threshold for classifying a numerical sensor value into either region of a 

decision plane (Figure 4.9 of chapter 4) in the same manner as discussed in section 4.8.1. 

Noise and uncertainty associated with sensor values and partitioning of the decision space 

is tackled in the same way as described in section 4.8. 

Any perceived world is an element of W= {0 
, Wl, w2 , W3, W4 

}, 
where wo is the simplest 

and w4 the most complex world. w4 is not represented as an independent rule layer in the 

hierarchy as the action space in w4 is limited to a single class regardless of the goal 

location, making the generation of a corresponding tree unnecessary. Training vectors need 

to have the format: V= Ifo, fl,..., f;,.. ., f,, , cj 
1, 

where f is a feature with fEF and 

F= If o, f i,..., f ,..., fn} is the space of features (input variables) each being defined on a 

unique space of feature values such as f; ={ fog 
,f li , fei 

, ".. fmi }. cc is a class (control 

action) with c; EC from the set of output reflexes C= {ci, c2,..., Cj,..., cn}. 
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5.3 Description of the robot 
To verify the proposed control algorithm, the Khepera robot simulator is used [I]. Khepera 

is a commercially-available miniature mobile robot, shown in Figure 5.1, and Figure 5.2 

shows the simulated counterpart. Khepera in its basic configuration has a diameter of 

55mm, a height of 30mm and weighs 70g. The onboard computation contains a Motorola 

68331 microprocessor with 256 Kbyte RAM and 256 Kbyte ROM. Khepera has access to 

an array of eight light sensors as well as eight infra-red proximity sensors for range 

measurement. The current work uses only the six frontal infra-red distance sensors to scan 

the areas to the front and sides of the robot for object detection and each returns a value in 

the range 0 to 1023 depending on the nature and the range of the detected objects. In 

general, the greater the magnitude of a sensor return value, the closer is the obstacle. For 

example, 0 means that no obstacle is detected while 1023 means that an obstacle is very 

close to the robot (almost collision). The Khepera simulator has been designed to 

incorporate realistic assumptions and to minimise the presence of unrealistic suppositions, 

facilitating the transfer of the simulation results without major change directly to the real 

Khepera robot [2,3]. For more information about the Khepera robot, the reader is referred 

to [1]. 

- 

5 

Figure 5.1 Actual Khepera robot 

equipped with gripper, vision and extra 

processing modules (Photo by Alain 

Herzog, Courtesy of EPFL Laboratory, 
Lausanne). 

Figure 5.2 Simulated Khepera robot seen 
from above. 
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5.3.1 Robot positioning 
The simulated robot is steered differentially by controlling the wheels individually. Robot 

positioning is performed by incremental encoders placed on each motor axis for step 

counting (dead-reckoning). This mechanism is used in the simulated counterpart for 

positioning the robot. The position vector of Khepera which is continuously changing 

consists of an x-value, a y-value and the direction-indicating angle a (the robot absolute 

direction). The current position (x,,, y,, a�) is calculated from the previous one (x�_,, y�_,, 

C(M) using the number of wheel rotations n1, and nR given by the incremental encoders 

placed on each motor axis. 

5.3.2 Configuration of proximity sensors 
In order to associate a certain perception with a world (defined in section 5.2) in the 

hierarchy and to use the same nomenclature as in chapter 4, frontal sensors are divided into 

five groups each containing two adjacent sensors as shown in Figure 5.3. Any two adjacent 

sensors comprise a sensor group to indicate the complexity of the world detected. In this 

configuration, each sensor group can be considered as a single sensor in order to he 

consistent with the sensor configuration introduced in chapter 4. 

Grou 
iup 4 

Figure 5.3 Frontal sensors (SO, S1, S29 S3, S4, SS) are divided into five sensor groups: Group 
0 (Left), Group 1 (Front_Left), Group 2 (Front), Group 3 (Front_Right), and Group 4 

(Right). In each case, two adjacent sensors form one sensor group. 

Group I 
Group 2 Group 3 
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The number of sensor groups indicating that obstacles are present determines the world 

complexity and their nomenclature in the hierarchy. This means that, for example, if only 

one sensor group detects an obstacle at a certain distance from the robot that entire 

perception is classified as w1 to designate world one, and wo specifies that the 

instantaneous environment (world) has no obstacles. In a sensor group, the state of either 

sensor determines the state of the group whether the sensor group detects the presence of 

obstacles or no obstacles are apparent, and this is demonstrated in Figure 5.4. 

5.4 Control system architecture 
Figure 5.5 shows the schematic view of the system architecture. This is composed of three 

main modules: 

1. Environment. The interface providing data from the physical world. 

2. Local Perception Space. Each perception is mapped on a certain state that falls into a 

unique world category. The output is a state vector containing a finite number of state 

variables, and this is used to infer or re-infer tree networks. 

3. Controller: This accommodates two sub-modules, namely high-level decision 

making (whose architecture is shown in Figure 5.6), and low-level control. The 

former performs predictions based on the current state vector, whereas the latter 

generates an appropriate control action based on the current decision in order to 

provide a movement demand to the robot. The control action a(ß, v) is a state 

variable defined in terms of a turning angle ß and a turning velocity v. 

As shown in Figure 5.6, the current state vector P� is used to predict the robot motion, 

whereas the previous state, P�_i (if positively rewarded) is used to restructure the tree to 

incorporate the new item of knowledge. 

5.5 Incremental tree evolution 
The algorithm houses in its core the Incremental Tree Inducer (ITI-2.8) [4] (which is 

modified by the author to be incorporated in the system) as the learning module. ITI is 

driven in its incremental mode and on-line. This means that appropriate knowledge entities 

are given to ITI either for incorporation into an appropriate existing decision tree or to 

instantiate a new tree if none exists already. 
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obstacle 

Figure 5.4 Different perceptual situations: (a) Two non-adjacent sensors S2 and S4 covered 

by two groups indicating w2. (b) Three consecutive sensors S2 and Sj and S4 detecting 

obstacles and represented by two groups indicating w2. (c) Two adjacent sensors S2, S3 

detecting obstacles and covered by one group specifying w1. 

. 91 
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...................... 

Controller 
High Level Decision Making 

Inference Engine 

Low Level Control 

Robot State Rewards Control Action 

Sensing 

Local Perception Space Environment 

Figure 5.5 The overall control architecture 

5.5.1 Feature selection 
Concept learning requires that the knowledge to induce decision trees is "sculptured" into a 

finite number of pre-defined vector entities. This is independent of the mode (either batch 

or incremental) in which the tree induction is performed. 

To produce trees with high discriminatory powers, the current work uses as features both 

the proximity sensor values and the relative location of the target to the robot. To restrict 

the dimensionality of the world-dependent trees, the format of the training examples is 

configured to be a function of the world complexity. This means that in world wo with no 

obstacles, each training example is reduced to the relative location of the goal 

(GoalRelLoc) and a single class, allowing the production of a linear decision tree which is 

highly goal oriented. In higher order worlds, proximity sensor values are added to the 

existing features resulting in the modified format of feature vector, 

So 9 SI , S2 9 S3 , S4, S5, GoalRelLoc, c; . In the above, GoalRelLoc = IN, NE, E, SE, SW, W, NW I 
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and C= IF, FR, R, BR, BL, L, FL} where F is "front", FR is "front right", BL is "back left", 

and so on. 

Figure 5.6 High level decision module with parallel co-existing decision trees as 
intelligent local planners. 

5.5.2 Automatic knowledge acquisition and class prediction mechanism 
One aspect of the approach that facilitates the population of the parallel co-existing trees in 

incremental mode is the automatic generation of training examples. This is carried out in 

order to collect the classification knowledge without intervention by human experts. Since 

the robot motion directions are generated randomly at the training stage, the usefulness 

U=f (C) is defined as a measure of goodness of the performed actions. Following the 

Rewards Perception 
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transition from the previous state n -1 to the current state n, the cost C associated with 

each motion is calculated according to an heuristic function (described in section 4.5 of 

chapter 4). Only those states delivering a usefulness of unity are positively reinforced by 

being remembered, the remainder are forgotten. Each individual remembered experience is 

supplied to ITI-2.8 as part of the training data for the appropriate tree. 

5.5.3 Local independence and global coupling of DTs 
Figure 5.6 illustrates that each tree network is an individual computational entity in itself 

and is able to make predictions when activated. In environments of greater complexity, 

with arbitrarily shaped walls and corners, a range of different trees will generally be 

sampled in order to generate the appropriate control actions, a suitable sequence of which 

forms the global path. 

By analysing the process of tree generation in a finite window of time, one can observe 

how each individual tree evolves from a single-class entity to a mature decision tree 

capable of predictions, hence the notion of "tree evolution". Table A. 1 of Appendix A 

provides an illustration of tree evolution, showing that the effect of behaviour learning is to 

improve the robot navigation performance incrementally over a finite number of iterations. 

5.6 Algorithms 

The complete system incorporates the two algorithms described below. 

1. Behaviour learning. This algorithm precedes navigation in the executional context as 

it is able to set the robot in exploratory mode in order to acquire knowledge. It also 

generates a signal to invoke ITI for tree induction. The pseudocode for this algorithm 
is shown below. 
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IncrementalLearningMode (Tree, World) 

Step 1: IF Goal is not reached 

Step 2: THEN Choose a direction at random 

Step 3: Evaluate the previous motion 

Step 4: IF Previous motion interesting (output of the cost function) 

Step 5: THEN Set up an appropriate training vector 

Step 6: (Re-) Infer previous tree to absorb new knowledge 

Step 7: Knowledge = UseKnowledge (Tree, World) 

Step 8: IF Knowledge 

Step 9: THEN IF Goal 

Step 10: THEN Go to step 14 

Step 11: ELSE Go to step 3 

Step 12: ELSE Go to step 2 

Step 13: ELSE Go to step 2 

Step 14: END. 

111 

Note that in step 6 only new knowledge entities are evaluated for possible tree induction. 

The sub-routine UseKnowledge allows the tree to be searched concurrently with new 

knowledge being acquired, enabling the robot to have access to its previous experiences. 

This sub-routine is defined as follows. 

UseKnowledge (Tree, World) 

Step 1: IF Useful knowledge for the current world 

Step 2: THEN Fetch knowledge 

Step 3: Generate an appropriate control action using the tree 

Step 4: END. 

2. Intelligent navigation. This part implements the worlds wo to w3 as finite state machines 

(FSMs) in which each world is represented as an independent state. The dynamic 

behaviour of the robot occurs as a result both of the actions of the decision trees and of 
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the transitions between trees, which are controlled by the FSMs. The procedure for the 

intelligent navigation process is shown below. 

NavigationMode (Tree, World) 

In state n world wX is detected (wx E World) 
Step 1: IF Goal is not reached 

Step 2: THEN IF tree x exists (tree xE Tree) 

Step 3: THEN IF useful knowledge available for current world 

Step 4: THEN Fetch knowledge 

Step 5: Generate an appropriate control action 

Step 6: NavigationMode (Tree, World) 

Step 7: ELSE 

Step 8: WHILE (x > 0) 

Step9: x=x-1 

Step 10: Search tree x for knowledge to train world wx+i 

Step 11: Go to step 3 

Step 12: IncrementalLearningMode(Tree, World) 

Step 13: ELSE Go to step 12 

Step 14: END. 

5.7 Illustration of a locally trained binary DT 
In the vast majority of cases, a decision tree consists of a finite number of decision nodes 

and terminal nodes (classes) linked together to form a complete network. In extreme cases, 

the tree can lead to only a single class (see Table A. 1 (a) of Appendix A). Decision nodes 

are generated in descending order from the root of the tree and each accommodates a 

particular feature with a unique outcome. The order of each test node in the hierarchy is 

arranged either information theoretically [5] or is based on other merits, for example 

Kalmogrov-Smirnoff distance in [6]. 

Unlike C4.5 [5], which is an ID3 descendant, the decision tree networks produced by ITI- 

2.8 are of a binary nature. This implies that, at any given test node, if the test result is 
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positive (yes) the tree branches to the left, otherwise the search is directed to the right. This 

process to find a match for a given pattern proceeds until the leaf is reached which provides 

a classification for the pattern. 

Figures 5.7 to 5.10 show a number of local predictors (the DTs for the worlds) being used 

in combination to provide a plan for the global path. The behaviour dominance in the tree 

hierarchy changes in a complementary fashion, meaning that, if goal-orientedness is the 

dominant behaviour in a layer such as wo, reactivity is of minor influence. Conversely, in a 

highly reactive layer such as w3, target seeking behaviour is practically non-existent. 

5.8 Action selection and conflict resolution 
From a decision tree point of view, inconsistent training examples occur when more than 

one class would be able to classify the same input pattern [4]. In the current robotics 

application, for a given perceptual pattern more than one rule can be fired to generate a 

control action. To resolve the conflict, a single value is generated from a rectangular 

distribution to produce a percentage measure. ITI-2.8 also associates every rule with a 

frequency tag, and that rule is fired whose frequency tag matches the randomly generated 

frequency measure. This results in consistent action commands being sent to the actuation 

level to drive the robot forwards. 

5.9 Dynamic rule inhibition 
Another important aspect of the proposed learning algorithm is the monitoring and long 

term assessment of incrementally-learned rules. In the learning phase, when the goal 

direction is located between the lines of maximum sensitivity of two adjacent sensor 

groups, rules can be evaluated by the system as useful, although they would quantitatively 

be considered to deliver poor performance under normal navigation circumstances. This 

effect is also a source of multiple-class generation. To exclude these types of rule, each 

individual rule is assessed after it has been fired depending on whether the resulting 

performance was satisfactory and the performance is used to give an indication of its 

overall usefulness. If the overall usefulness drops below a pre-set level, the rule is flagged 

and inhibited. Even though inhibited rules physically exist in the network, they have no 
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actual contributions. These rules are shown shaded in Figures 5.7 to 5.10, where 

appropriate, to highlight the inhibiting mechanism. 

5.10 Results and discussion 
Each of the aforementioned modules, namely wo to w3, is a unique computational entity 

with a dynamic life time. Some have a process-long life whereas other types of entity can 

be generated during the process, but may also be destroyed to avoid an unnecessary 

increase in computational cost. Table 5.1 shows that approximately 55 training epochs are 

needed to set up the DT hierarchy. It also indicates the average number of training 

examples needed to grow each individual DT to capture the representative vectors. 

Worlds 

WO W] W2 W3 W4 

Average 13 12 11 9 10 
Number of Runs 

Number of 
Training 67 180 120 70 105 
Examples 

Total number of training runs to build up the 55 
hierarchy (Mean) 

Table 5.1 The approximate number of training epochs and training examples needed to set 
up each individual DT of the hierarchy. 

As discussed previously, global learning is initiated in wo and propagates up the hierarchy 

to the more complex worlds. This is carried out by adjusting the dimensions of the previous 

rule layer to adapt to new knowledge in the current layer. In all the examples, the robot is 

initially set at the starting point S and is expected to reach the light source G, also indicated 

by a star symbol. The navigation fields chosen consist of typical situations that can occur in 

a navigatory task, for example sharp corners and edges, right angle corners, and both 

straight and rounded walls with or without discontinuities. The different stages of Figure 
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5.11 demonstrate an example of the learning process in wo: it illustrates how the learning is 

formed (Figure 5.11 (a)) and improved in two-leg (Figure 5.11 (b)) and in multi-leg 

trajectories (Figure 5.11 (c)). In wo, the robot learns how to find its target (survival) in an 

environment with no disturbances. Figure 5.11 (c) demonstrates that after sufficient 

training the robot is able to reach the set target (using similar settings to those used in the 

production of Figures 5.11 (a) and (b)) in significantly fewer steps, producing a smooth 

trajectory. 

The robot is then trained in environments with sparse obstacle population, namely in w1. 

The knowledge gained in the previous environment is used as meta-knowledge to aid the 

robot to adapt to the new environment with a small degree of hostility, and consequently 

generating a new DT to accommodate the adapted knowledge. Figures 5.12 (a) and (b) 

show how the robot tries to adapt by producing a new behaviour while heading towards the 

target. This adaptation is more evident in Figure 5.12 (a) where the robot first encounters 

obstacles. Figure 5.12 (c) is a scenario where the robot is sufficiently trained in wj and 

homes in on the target. 

Different stages of Figures 5.13 and 5.14 show learning and adaptation in more densely 

obstacle-populated environments, and also environments with arbitrarily shaped obstacles, 

corners and walls. The navigation performance in Figure 5.13 (c) shows a significant 

improvement compared with those shown in Figures 5.13 (a) and (b) which have the same 

settings (initial heading angle and position, same target location). Figures 5.14 (a), (b) and 

(c) show the robot behaviour while encountering long walls, edges, and corners in homing 

tasks. 

The experimental results shown in the above figures, reveal two characteristics of the 

hierarchical learning system. Firstly, they illustrate an incremental and steady adaptation to 

new environments along with improved and smooth trajectories which are reflected in 

navigation tasks. Secondly, they demonstrate that the robot is always able to reach the 

target while avoiding obstacles of various configurations and shapes. A further 

characteristic is the presence of behaviour arbitration when the robot follows long walls, 

and this is reflected in the so-called "zigzag" trajectories. This is more evident in Figures 
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5.14 (a), (b) and (c) where the robot follows walls, and conflicting behaviours such as 

target-seeking and reactivity alternate. 

Two possible sources for this zigzag motion are the presence of multiple-class rules and 

abrupt behaviour switching as control is moved between rule layers. In the current work, 

the effect of the former is not significant as the classes can generally be considered to have 

overlapping areas of operation. However, the effect of the latter source does significantly 

affect the time taken for the robot to reach its goal. In response to this drawback, chapter 7 

introduces fuzziness to the rule hierarchy to blend behaviours and optimise global paths. 

5.11 Comparison with related learning systems 
This section provides a comparison between the current work and research found in the 

literature concerning single-strategy learning systems. The proposed learning system is 

operationally similar to that of Tani and Fukumura [7], in that both systems utilise local 

sensory information to produce general situation-action hypotheses to implement object- 

avoidance and target-seeking behaviours. The objective of the system introduced in [7] is 

to construct a hypothetical vector field (based on the information supplied by twenty range 

sensors) whose temporal flow was used to navigate the robot towards a set target. This 

system incorporates a composite neural network which consists of a Kohonen network and 

a three-layer feed-forward network that uses back-propagation learning. The Kohonen 

network employed is a three-dimensional lattice, and is used to fuse the input sensory data 

into fewer dimensions. The address of the output of the Kohonen network (described by 

three parameters in the lattice) at each stage provides three input elements (essential sensor 

information) which are presented along with their time-delayed version, to the feed- 

forward network. This network has two output nodes which supply the direction of motion 

and a stopping command when the goal is reached. 

Tani and Fukumura [7] tested their system with a simulated robot which was supervised by 

a human operator who knew the optimal path leading to a set target. In each training epoch, 

the robot was guided by its supervisor towards the goal, thereby generating training 

examples for the learning system. They trained the robot in three consecutive epochs with 

38,86 and 195 training examples, respectively. As also stressed in the current work, they 
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confirmed that with little training data the robot may get lost or perform erratic movements 

by wandering around the terrain, as they observed that the desired vector field was largely 

constructed in the third stage of training where almost all representative vectors were 

learned. After sufficient training, the system was tested in three navigatory tasks in the 

same environment, however, with one additional polygonal obstacle placed at different 

locations. They report that the generated trajectories were nearly perfect and the robot 

could reach the target, except one situation that the robot was drawn into an unexpected 

trajectory. 

An important aspect of the learning algorithm in the current work in contrast to the learning 

system in [7] is that in the former learning improves incrementally (for example, 

concluding legs of trajectories, even at the training stage, are smoother than the initial parts 

due to the incremental learning), and after sufficient training the system can be tested in 

completely unknown environments with arbitrarily shaped obstacles. This is in contrast to 

the learning system in [7], which is reported to be sufficiently robust to cope with only a 

restricted class of environmental changes. Tani and Fukumura outline the future direction 

of their research as to incorporate self-learning mechanisms without the need for human 

guidance - one of the main features of the current work. 

The learning system described by Dubrawski and Crowley [8] shares a number of 

similarities with the current work, even though the control architecture integrates fuzzy 

logic into a neural learning mechanism to form a hybrid system. As performed in the 

current work, this system processes the local sensory information to generate reactive 

situation-action stimuli which are learnt from inception and in a self-supervising fashion. In 

a manner similar to that found in [7], Dubrawski and Crowley [8] fuse the readouts of 24 

proximity sensors to derive seven overlapping sensor readings which cover front, left and 

right-hand sides of their robot simulator Robuter. These sensor readings, together with a set 

of sensor readings delayed by the sampling time, constitute the 14 input signals to an 

adaptive resonance theory-based [9] neuro-fuzzy classifier, whose outputs are directed to a 

single-layer neural associative memory. This network has three processing elements, each 

of which represents one distinct robot motion, namely move straight on, turn left and turn 

right. In effect, the adaptive resonance theory (ART) network "stimulates" an appropriate 
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processing element of the single-layered neural network, which in turn memorises the 

corresponding pattern and generates a control action. Certain properties of ART systems 

such as incrementality and fast learning are employed in this system. The aim of the 

experiments performed using Robuter was to investigate the efficiency of learning from 

scratch, and Dubrawski and Crowley found that in navigation tasks, the robot exhibited 

adequately both reactivity and target-seeking behaviour. However, the system showed 

unstable behaviour when the robot entered narrow perceptual regions and they also report 

that system may perform oscillatory motions with the robot facing long walls, and left and 

right turns have equal priority. 

As far as the behavioural synthesis (reactivity and goal-seeking), sensor grouping, overall 

system performance and trajectory profile in navigation scenarios are concerned, the 

current work is similar to the LIFIA control system introduced by Reignier in [10] and 

other systems such as those described in [11,12]. The navigation algorithm in LIFIA is a set 

of manually engineered reactive rules which perform a mapping from the input space to 

control actions. Reignier reports that LIFIA is able to navigate among randomly scattered 

obstacles towards a set target. However, it shows oscillatory movements in front of long 

walls due to a behaviour arbitration, and sometimes falls into local minima. 

Beaufrere and Zeghloul [11] implement a sensor-based navigation with an internal 

supervisor that determines the priority in behaviour activation (and to guide the robot 

through the shortest path) when obstacles are detected by the sonar sensors. They use two 

different sets of fuzzy rules for target-seeking and obstacle avoidance behaviour; but the 

number of such rules is not reported. This system performs local mapping by using fuzzy 

reasoning without incorporating learning into the algorithm. 

The navigation algorithm introduced by Wu [12] treats the robot as a moving point with 

physical dimensions that are small in comparison with surrounding obstacles. The 

navigation algorithm is fuzzy based and assumes the environment is stationary, and this is 

in contrast to the learning algorithm introduced in this thesis. The system in [12] detects the 

vertices of polygonal obstacles and drives the robot along the line connecting consecutive 

vertices. In a manner similar to the approach taken in [11], this system performs an 
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environmental mapping without either exhibiting intelligent behaviour, or being able to 

cope with changing environments. 

5.12 Summary 
Inspired by survival instincts and based on DT learning, this chapter introduced to a 

practical robot environment a new approach to behaviour learning and global navigation. 

The robot environment is decomposed into a set of homogeneous perceptual worlds of 

differing complexity and the robot learning system uses the experience of exploring the 

robot environment to train each of the layers on-line and incrementally. At the navigation 

stage, each perceptual world is mapped to a unique rule layer which can be searched for 

prediction purposes. 

The core of the system is composed of two algorithms which together carry out on-line 

learning and navigation, which are distributed over a string of four intelligent local 

predictors that are independent computational entities with dynamic life times. They are 

used in combination and are sampled continuously to perform globally-shaped motion 

predictions. An important attribute of the system is the dynamic rule inhibition which is 

based on a long term assessment of the performance of the rule layers in the navigation 

task. The control system ensures safe and globally tuned predictions: safety is achieved by 

individual local predictors and global shaping by their coupling. The symbolic nature of 

this technique gives the advantage of control laws which are intelligible to human users, in 

contrast to those obtained as a result of applying connectionist methods. 

A shortcoming of the current implementation, which is exhibited in some of the homing 

tasks, is the unsmoothness of robot trajectories when following long walls. This effect has 

also been reported by Reignier in [10]. In the current work, it is the effect of the behaviour 

switching as control is moved between rule layers which contributes to this oscillatory 

motion. In response to this drawback, and also to compensate the overall noise in the 

system, chapter 7 will introduce fuzziness into the learning algorithm to blend behaviours, 

optimise global paths and exploit the approximate reasoning of fuzzy theory to cope with 

noisy input data. The following chapter is devoted to the introduction of the mathematical 
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and set-theoretical foundations of fuzzy logic in order to aid the understanding of the issue 

of discussion in chapter 7. 
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Figure 5.7 A linear decision tree representing wo (world zero of the hierarchy). This is 

used for prediction in environments without any objects. Rules following poor 

performance are inhibited during navigation (shaded). 
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Figure 5.9 An intermediate stage to evolve the third rule layer of the hierarchy W2 . 
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Figure 5.10 The third tree network from the universe of rule layers for predictions in more 
complex environments. 
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(c) A navigation example in wo in a three-leg trajectory. 

Figure 5.11 Training and initiating the knowledge base (KB) in wo (no obstacles). SX is the 

start and GX is the end of x`h trajectory. Figure (c) demonstrates the improvement of the 
robot performance as more knowledge is acquired. 
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(c) A navigation example in w, in a single-leg trajectory. The robot demonstrates a 

significant improvement in manoeuvring past the obstacles while heading the light source. 

Figure 5.12 Different stages of learning, adaptation ((a) and (b)) and navigation (c) in wl 
(world with simple and sparse obstacles). 
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(a) Example of learning in and initiating w2 by adapting to new environment. 
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(b) An intermediate stage of learning in w2 after representative knowledge vectors have 
been learned. 
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(c) A navigation example in W2 in a single-leg trajectory. The robot demonstrates a smooth 
trajectory compared with Figures (a) and (b) in avoiding obstacles. 

Figure 5.13 Examples of learning and adaptation in w2, showing behaviour learning and 
performance improvement on homing tasks. 
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(b) A typical example of incremental improvement in learning wall-following behaviour in 

complex environments with arbitrarily shaped-obstacles. 
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(c) A navigation example in w3 in a single-leg trajectory. The robot demonstrates an 
improved behaviour, but the effect of behaviour arbitration (zigzag trajectory)is not 

removed. 

Figure 5.14 Examples of learning and adaptation in order to avoid obstacles (long walls, 
arbitrary shaped objects and corners) and homing in on the target. 
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ihapter.. 

6 .... 

Fuzzy Logic: 
Set Theoretical Foundations 

When the only tool you have is a hammer, 
everything begins to look like a nail. 

L. A. Zadeh 

This 
chapter provides an introduction to fuzzy logic (FL) without entering into its 

detailed mathematical foundations, as there exists a wealth of literature on this topic 

[1,2,3,4,5,6,7,8,9,10,11]. The primary objective, though, is to consider the applications of 

FL rather than analyse in detail the set theoretical foundations. The concept, basic 

principles, related terminologies and more importantly the engineering applications of 

fuzzy theory such as fuzzy logic control (FLC) are discussed and addressed, and where 

appropriate, mathematical derivations are also provided to aid the understanding of the 
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materials covered in the following chapter. The concluding section is devoted to FLC, in 

which cognitive information, human experience, heuristics and intuitions can be 

formulated in mathematical terms for process control whereas this would be unutilised in 

the context of conventional logic. 

6.1 The history of fuzzy logic 
Fuzzy set theory, an extension of conventional set theory, was introduced in 1965 after 

L. A. Zadeh of University of California at Berkeley published his paper on Fuzzy Sets [ 12] 

in the Journal of Information and Control. Fuzzy theory has had a prolonged and rather 

unfortunate childhood (mid 1960's to the early 1980's) in contrast to its booming youth 

(mid 1980's to present day). Although it is said that this paper has been completed more 

than two years before, though due to its unorthodox and radical ideas initially no technical 

authority dared to publish this paper. In later publications, Zadeh laid the foundations of 

fuzzy logic and approximate reasoning in complex and decision making processes [13]. 

The methodology advocated in this paper, namely the "principle of incompatibility", as 

termed by Zadeh, might have been the origin of fuzzy logic. The principle of 

incompatibility claims that precise and meaningful description of the system's behaviour 

becomes impossible as the complexity of the system exceeds a certain limit. 

Initially, scientists and engineers were rather reluctant to investigate further its theoretical 

foundations or its possible applications to industrial problems. A turning point for fuzzy 

logic arrived in September 1974 when Ebrahim Mamdani of the Queen Mary College 

London applied for the first time fuzzy algorithms in the form of linguistic IF-THEN rules 

to control a laboratory steam engine [14]. This sparked off the first industrial application of 

fuzzy logic in 1980 by F. H. Smith of Denmark to control a cement kiln [10]. However, the 

forerunners (in the early 1980's) in industrial applications of fuzzy logic were Japanese 

companies such as Fuji Electric who applied fuzzy logic to control a water purification 

process [8], and Hitachi who transcribed the knowledge of a human expert into a fuzzy rule 

base for automatic control of the Sendai subway system[10,15]. This fuzzy controlled train 

is said to have the "smoothest ride on earth" and is able to stop within centimetres of the 

target [8]. 
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The second International Fuzzy Systems Association (IFSA) conference (held in Tokyo, 

Japan, July 18,1987) is widely recognised as a point of maturity for the application of FL 

in Japanese industries. The conference opened three days after the Sendai Subway opened 

[8], and control engineers witnessed a demonstration of how easily and inexpensively 

Takeshi Yamakawa's controller had achieved the fuzzy control of a self-balancing pole. 

Consumer electronics companies such as Mitsushiti subsequently launched one-button 

fuzzy washing machines, fuzzy vacuum cleaners, fuzzy rice cookers, fuzzy controlled anti- 

jittering camcorders, which helped the capture of the consumer products market. Zadeh 

was awarded the Honda Prize of around $77,000 in November 1989; at that time most 

western engineers had never heard of fuzzy logic [8]. 

Japanese engineers have more recently moved onto the fuzzy control of nuclear reactors, 

and Mitsubishi's engineers are currently developing a fuzzy controller for the cooling 

system of a nuclear reactor [8]. 

Fuzzy theory can be regarded now as an important part of the modern, intelligent and cost 

effective control systems. 

6.2 Fuzzy sets and membership functions 
A fuzzy set A, defined over a universe of discourse X (from which set elements are chosen), 

is a function that maps some elements of universe X on the real numbers in the closed 

interval [0,1]. The grade or the extent to which the members of universe X belongs to the 

fuzzy set A, is called the membership function and is usually shown as /1A and defined as 

µA: X -4 
[0,1]. For instance, the membership function of the fuzzy set A defined over 

universe X (when X is a continuous function) is defined as f PA(X)IX. This is graphically 
x 

shown in Figure 6.1. 



Chapter 6: Fuzzy Logic 

N 

/1 

Figure 6.1 A continuous fuzzy set A 
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In situations where the universe X is quantised into n discrete levels, as shown in Figure 

6.2, the above expression transforms to '2A (x; )A 
. The exact definition of a fuzzy set A 

defined over the discrete universe X according to Zadeh [13] is defined as follows: 

n 

A(Xi)Xi 
(6.1) 

r=ý 

A= /IA(x11/Xi +µA(x2)/X2+... +µA(Xn)/Xn (6.2) 

Note that in the preceding equations, "I " and "P' do not imply any summation or division 

in the ordinary sense applied to conventional (crisp) sets. The same is also applicable to the 

integral sign in the first expression. To make these definitions more apparent, consider the 

following numerical examples. 

Presumably, a given universe of discourse X is defined as X={1,2 ,..., 15), the following 

sets are valid fuzzy sets defined over X. They are also graphically depicted in Figure 6.2 

and Figure 6.3. 

A= 11,2,3,4,5,6,7 } or A=0.25/1 + 0.5/2 + 0.75/3 + 1/4 + 0.75/5 + 0.5/6 + 0.25/7 

B= {3,4,5,6,71 or B- 0/2 + 0.5/3 + 1/4 + 115 + 1/6 + 0.5n+018 



Chapter 6: Fuzzy Logic 139 

9 

Figure 6.2 Finite expression of fuzzy set A (Triangular) 

µ1 

Figure 6.3 Definition of the quantised fuzzy set B over X (Trapezoidal) 

6.2.1 Fuzzy numbers and linguistic variables 
A fuzzy set C over a continuous universe of discourse X is defined to be a fuzzy number C, 

if and only if it satisfies the following conditions: 

1. C is a convex fuzzy set. 

2. C is a normal fuzzy set. 

Convexity and normality of fuzzy sets can be mathematically expressed in terms of their 

membership functions as follows: 

ILs67°X 

IL ý+ diX 
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max, uc (x) =1 (normality) 
XEX 

`dxi 9 x2 9 x3 E X, xl <_ x2 _< x3 =>11, (X2)22 min(4u (x, ), uc (x3 )) (convexity) 
(6.3) 
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Therefore, it can be inferred that every fuzzy number is a fuzzy set whereas the reverse is 

not valid. Figure 6.4 shows some examples of fuzzy numbers and non-fuzzy numbers. 

9 

1 

Figure 6.4 An example of fuzzy numbers (A, B and G) and non fuzzy-numbers (D, E) 

It is common practice to swap semantically fuzzy sets with fuzzy numbers, since fuzzy sets 

such as D and E (shown in Figure 6.4) are hardly used in engineering applications. 

Therefore, in the following chapters fuzzy sets are presumed to be both convex and normal 

(fuzzy numbers). Fuzzy sets provide a basis for manipulation of vagueness and 

imprecision. To operate and deal with this type of uncertainty, this can be represented by 

variables whose values are either fuzzy numbers or linguistic terms. These variables are 

called linguistic variables. They are characterised by the triple (x, T(x), X) [ 16]. Above, x 

is a variable, T(x) is the term set of the variable, i. e. the set of linguistic values of the 

linguistic variable x with each value being a fuzzy number defined over the universe X. 

An example 
To clarify the above definitions and to demonstrate the practical significance of fuzzy sets 

to deal with uncertainty in various application domains, we consider the scenario of human 
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perception when giving information about the room temperature. In this case Temperature 

is the linguistic variable. Its term set T (Temperature) may take on, for instance, the 

following values: 

T(Temperature) = {cold, quite cold, warm, very warm, hot). The vagueness in these terms 

arising from human cognition gives rise to interpret them as fuzzy sets rather than crisp 

values. Each fuzzy set in T (Temperature) is characterised by its membership function and 

is defined over the universe of discourse U= {0,..., 50}°C. Figure 6.5 shows the 

distribution of fuzzy sets describing the linguistic variable Temperature. 

µ, (x) 
Cold Quite_Cold Warm Very_Warm Hot 

1 

Temperature (T) 

ol 10 14 18 22 26 In 'C 

Figure 6.5 Representation of the linguistic variable Temperature in terms of its fuzzy 

values Cold, Quite Cold, Warm, Very Warm and Hot. 

6.2.2 Fundamental operations on fuzzy sets 
Since fuzzy set theory can be considered as the extension of classical set theory, set 

theoretic operations on fuzzy sets obey the same principles as in the case of crisp sets. 

However, the extension to fuzzy sets is not uniquely defined, as /tA(x) and JIB(X)can take on 

an infinite number of values from the interval of real numbers [0,1]. Thus, there exists an 

infinite number of possible definitions to represent fuzzy union and intersection. 

Triangular norms (T-norms) and triangular conorms (T-conorms or S-norms) are different 

representations to implement fuzzy intersection and union, respectively, introduced by 

different researchers. The definitions of these operations are given below along with the T- 

norms and T-conorms introduced by Zadeh [12]. In this thesis, the entire operations on 
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fuzzy sets will be based on these implementations. For a comprehensive list of T-norms 

and T-conorms the reader is referred to [17,18]. In the following, we also discuss briefly 

the complement operation extended to fuzzy sets. However, for more detailed discussions 

and derivations on properties of fuzzy sets see [10,16,18]. 

If we generalise the membership functions of two fuzzy sets A and B, JA(x) and UB(x), 

union, intersection and complement of the above sets are then defined as shown below. 

Union of fuzzy sets 
Considering A and B to be fuzzy sets defined over universe X, the union of these fuzzy sets, 
AUB, is itself a fuzzy set over X defined by its membership function as: 

PAUB(x) _' A(x)VPB(x) or 

= max(µA(x)'JUB(x)/ 

where 

(6.4) 

1PA(x) if 4UA(x) 
> 
- 

/1B(x) 

max(µA(x), µe(x)) _ (6.5) µB(X) if ýA(x) <YB(x) 

Intersection of fuzzy sets 
The intersection of two fuzzy sets A and B, A (l B, is a fuzzy set over X defined by its 

membership function as: 

µanB(x) = µa(x) A µB(x) or 

= (6.6) 

where 
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µA(x) if PA(x) <- /l 
ß(x) 

min(PA(x), #B(x)) _ 
II II 

(6.7) 

J B(x) 
if JUA(x) > J4B(x) 
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Fuzzy complement 
The complement of a fuzzy set A, ; 1, is a fuzzy set over X defined in terms of its 

membership function as: 

4U; i 
(x) =1-/IA(x) (6.8) 

Note that the only properties of crisp sets which are, in general, not valid for fuzzy sets are: 

the law of the excluded middle: 

AUA #X (6.9) 

the law of contradiction: 

AnÄ#0 (6.10) 

where 0 is an empty set. More details on related materials can be found in [ 10,18,19]. 

6.3 Fuzzy relations 
The dynamics of the fuzzy-based systems are described by fuzzy relations. They play a key 

role in these systems, because they characterise the interrelationships between fuzzy sets or 

more generally fuzzy variables. 

Since fuzzy relations are directly coupled with another concept, namely fuzzy Cartesian 

product, this is first defined to provide a better understanding of underlying principles 

associated with fuzzy relations. 

Fuzzy Cartesian product 
Let Al, ..., An be fuzzy sets in X1, ..., X,,, respectively. The Cartesian product of A,, ..., A� is 

a fuzzy set in the product space X1 X X2x... xXn and is defined as follows: 
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Al X A2X... XA� =$ min(ito, (xl),..., /LAA(xn))/(xl,..., xn) (6.11) 
x, x x2 x... x x, 

Where the membership function of this product is defined as: 

µA, XA2 x... xA� 
(X1, x2 , ..., x�)= min(MA, (x1), µA2 (x2)...., µA� (xn )) (6.12) 

An n-ary fuzzy relation R in the Cartesian product space X1 X X2 X... xX� is a fuzzy set 

whose membership function has n variables and is defined as follows: 

R= 
{/IR(XI9X2,..., 

Xn)I 
(X1, 

XZ,..., Xn)I Xl E X1, X2 E X2,..., Xn E Xn} (6.13) 

or alternatively 

R= jµR(xl)x2,..., xn)l (x1, x2,... )x�) (6.14) 
x, xx2X... xxn 

where /1R is the membership function of R and is a mapping function given by: 

µR' XI X X2X... XX� --* 
[0,1] (6.15) 

A practical example of fuzzy relations is that they describe a fuzzy set in a multi- 

dimensional space such as a Cartesian product space. This has a central meaning, since 

fuzzy relations can be utilised to model linguistic associations, correlations and relations 

between the elements of the product space in practical applications. These include, for 

instance, statements such as "slightly smaller than", "about the same as", `fairly close to", 

etc. 

To visualise the importance of fuzzy relations and their significance in dealing with vague 

information, a pictorial image of fuzzy relations is demonstrated by considering a 

hypothetical example. 
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Figures 6.6(a) and (b) show two fuzzy sets "High Temperature" and "Medium Pressure", 

taken from the term set of Temperature and Pressure defined in a unique universe X and Y, 

respectively. However, Figure 6.7 demonstrates the fuzzy set describing the interaction 

between Temperature and Pressure in a two-dimensional space. This set is called a fuzzy 

relation and is defined in the Cartesian product space of XxY. 

µßf- 

(a) 

N1, ( ß 

(b) 

Figure 6.6 Individual fuzzy sets defined in independent universes X an Y. 

0 

Figure 6.7 A fuzzy relation in the multi-dimensional space of Temperature and Pressure 

characterising the interaction between the two universes. 

I IC. )) it i UU' Temperature T 
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In most practical applications, the dimensionality of n-ary fuzzy relations is reduced to two 

or more dimensions such as binary relations for two-dimensional cases. In binary relations, 

the expressions (6.14) and (6.15) are reduced to the following forms: 

R= jµR(x, Y)/(x, Y) X xY 
(6.16) 

where PR is the membership function of R given by the Cartesian product XxY as: 

/2 XxY -* 
[0,1] (6.17) 

A practical way of implementing fuzzy relations in a computer algorithm is to express the 

proceeding definitions into a matrix representation as shown in the following. Let universes 

X and Y be defined as follows: 

1x={x1, x2,., x} 

Y={YI IYZ,.. ", YnI 
(6.18) 

The binary relationship between the elements of the two universes is fully determined by 

the following matrix. 

yL y2 ... Ym 

Xi /IR(x1, Yi) /R(x>9Y2) ... IIR(X1, Ym) 

R= X2 I R(x2, Y1) ILR(X2, Y2) ... 1R(X2 $Ym) 6.19 C) 

Xn /tR(x>>Y1) /R(Xl, Y2) ... µR(Xn, Ym) 

The above matrix is also called a fuzzy matrix and is fundamental to the entire operations 

on fuzzy reasoning. 
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Since a relation itself is a set, all operations on fuzzy sets and their properties are entirely 

extendible to fuzzy relations. For further details, the reader is referred to [20,21 23]. 

6.4 Compositions of fuzzy relations 
In many applications composition, symbolised by the operator o, plays an important role. 

Composition is a binary operation and can operate on two fuzzy relations as well as fuzzy 

sets and relations. In the following, the general definition of composing two fuzzy relations 

is given. 

Let R be a fuzzy relation on XxY and Sa fuzzy relation on YxZ. The composition of R 

and S is a fuzzy relation on YxZ and is defined as: 

Q=ROS 

or in terms of its membership function: 

PQ (x, z) = 
yEP 

(µR (x, y)* PS (y, z)) 

(6.20) 

XEX, yEY, ZEZ (6.21 

Above, "*" could be any operator from the set of triangular norms such as minimum (min) 

or algebraic product (A) [22]. Expression (6.21) is also called sup-star composition in the 

literature. 

The minimum operator (min) is the most commonly used T-norm (proposed by Zadeh [12]) 

to represent conjunctions in control applications throughout this thesis. Consequently, 

equation (6.21) transforms to the following expression. 

/1Q(x, z) = supmin(#R(x, y), µs(Y, z)) x r: X, y E Y, z EZ 
yEY 

(6.22) 

Nevertheless, equations (6.20) and (6.21) reduce to the following forms, in the case when 

the composition operates on the combination of a fuzzy set and a fuzzy relation rather than 

solely on fuzzy relations. 
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B=AoR (6.23) 

µe(y)=supmin(#A(x), /IR(x, y)) xEX, yEY and AcX, BcY (6.23) 
XEX 

In the latter equation, A and B are both fuzzy sets with B being the induced outcome of the 

composition operation defined on Y. 

In software, compositions are commonly implemented as matrix operations which have the 

basic properties of matrix manipulations, but where algebraic operators are substituted by 

their set theoretic counterparts. The induction of new relations by means of composition is 

block-diagrammatically depicted in Figure 6.8. 

X= xo Y= f(xo) = Yo x=A y=AoR 
-º R 

(a) 

x=A IIY 

(c) 

(b) 

z=Ao(RoS) 

Figure 6.8 (a) A mapping between crisp numbers by a function f, (b) mapping between 
fuzzy sets by means of fuzzy relation R, and (c) a series of cascaded fuzzy relations 

composing a single fuzzy relation to produce the final output. Note that f is a crisp function 

with R and S both being fuzzy relations defined over multi-dimensional spaces. 

6.5 Fuzzy reasoning and inference mechanism 
A basic, though important, concept in fuzzy logic is fuzzy propositions. A fuzzy 

proposition represents, in general, a statement such as "x is A", where x is a linguistic 
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variable and A is a linguistic label, namely a fuzzy set defined over a universe of discourse. 

For example, the above proposition may take on specific forms such as: 

"Temperature is high", "Speed is moderate", etc., where Temperature and Speed are fuzzy 

variables and high and moderate are their associated lables. Fuzzy propositions can be 

combined using the connectives AND or OR implemented by T-norms and T-conorms, 

respectively. Where the propositions are related to different universes, a logical connective 

results in a fuzzy relation. For example, in the following two-dimensional proposition 

xisAANDyisB 

where A and B are characterised by the membership functions ILIA 
(x) and /l ß 

(x) 
, the 

proposition can then be represented by the following fuzzy relation: 

#R(x, Y) = T(/lA(x), µa(Y)) (6.24) 

In the above equation, T can be any T-norm for modelling the connective AND. 

6.5.1 Fuzzy rules and implication 

To be able to perform fuzzy reasoning, there should exist fuzzy inference rules which in 

turn must be represented by an implication function. In binary logic, the implication 

function is defined by 

A -ý B (6.24) 

is the mathematical representation of the statement 

IFA THEN B 

In fuzzy logic, statements such as that above, where A and B are fuzzy propositions, are 

called fuzzy if-then rules or simply fuzzy rules. A is the antecedent and B is the consequent 

of the fuzzy rule. In most applications, the antecedents of fuzzy rules contain more than 

one proposition combined by the logical connective AND such as follows: 
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IF x is A AND y is B THEN z is C 

The above statement can be represented by the fuzzy relation R, as shown below. 

R= I(T(A, B), c) (6.25) 

Above, T is a T-norm to model the conjunction and I is an implication function to model 

the implication if-then. Equation (6.25) can be formulated as a fuzzy relation in terms of its 

fuzzy propositions, as shown below: 

MR(x, Y, z) =I 
(T(µn(x)Iµ8(Y»'µc(Z» 

(6.26) 

The implication function I is commonly denoted by I(a, b) where a, b E [0, I]. There exists 

a variety of representations for the implication function I in the literature. However, the 

most popular implications in engineering applications are the Mamdani's and Larsen's 

implication as shown below: 

min(a, b) Mamdani 

1(a, b) = ab Larsen 

(6.27) 

(6.28) 

Since Mamdani's implication is computationally easier to implement and faster in run-time 

and also has been more widely used in control applications, implication operations on 

fuzzy relations in this thesis will adopt Mamdani's approach. 

An explicit and direct application of the composition of fuzzy relations, namely the 

inference of a single fuzzy rule has been demonstrated. This was introduced by Zadeh [ 13] 

and was termed the compositional rule of inference. This has been expressed as a fuzzy 

rule in equation (6.26), but in the following section, this mechanism is discussed in terms 

of modus ponens and modus tollens of inference mechanism found in classical logic. 
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6.5.2 Inference mechanism 
In classical logic, reasoning is based on modus ponens and modus tollens and is defined as 

follows: 

" Modus ponens: 
Rule: A --* B 

Fact: A 
(6.29) 

------------ 

.. 
B 

. Modus tollens: 
Rule: A -ý B 

Fact: -, B 
(6.30) 

------------ 

.. -11 

In the preceding expressions, we interpret A -* B as "if A is true, then B is true" where the 

operator -4 denotes implication. 

In fuzzy logic, the aforementioned expressions are expanded to fuzzy sets and termed as 

the generalised modus ponens (GMP) and the generalised modus tollens (GMT) by Zadeh 

[13] and defined as: 

. GMP: 
Rule: if x is A then y is B 

Fact: x is A' 
(6.31) 

----------------------- 

., y is B' 
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" GMT: 
Rule: if x is A then y is B 

Fact: y is B' 
(6.32) 

xis A' 

where A, A, B and B' are fuzzy sets. A significant difference between GMP and the 

conventional modus ponens is that fuzzy sets A and A' in the first and second premise of 

expression (6.31) do not need to be precisely the same whereas in binary logic they must be 

identical. This has given rise to an alternative terminology for fuzzy reasoning, namely 

approximate reasoning [10,16]. 

In most practical applications, the antecedent of a fuzzy rule is multitudinous in the number 

of propositions to assure flexible reasoning. In the following, we consider two somewhat 

different approaches to the formulation of fuzzy reasoning. The first approach implements 

fuzzy reasoning in a rather graphical manner (Mamdani's method) whereas the second 

implementation which was first introduced by Zadeh [13] is based on the compositional 

rule of inference. This converts entire fuzzy rules to corresponding fuzzy relations which 

are then aggregated and utilised to induce new knowledge by means of matrix operations. 

Mamdani's method of inference 

In order to describe the underlying mechanism of Mamdani's method, consider the 

following simple rule base consisting of two fuzzy rules. 

911: IF x is A, AND y is B1 THEN z is C1 

912: IF x is A2 AND y is B2 THEN z is C2 

Above, x, y and z are fuzzy linguistic variables with A;, B; and Cl their associated fuzzy 

sets, where x c- X, yEY and zEZ. Mamdani's reasoning process is composed of three 

steps to induce new knowledge which is, in general, represented as a fuzzy set. These steps 

are discussed below and illustrated in Figure 6.9. 
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Step 1: Calculate the firing strength of each individual rule, a; , for given inputs. 

153 

Assuming, the inputs to the system are xo and yo, as shown in Figure 6.9, the 

associated firing strengths are: 

al = min(/1A, (xo), /lel (Yo)) (6.33) 

a2 = min(/iAZ (xo ), /1 BZ 
(Yo)) (6.34) 

al and a2 are shown in Figures 6.9 (a) and (d), respectively. 

Step2: Apply the firing strength a; to the consequence of fuzzy rule 9,, to calculate the 

intermediate output, , ic; (z) 
, for the number of given fuzzy rules on the rule list. This 

operation truncates the output fuzzy set to a fuzzy sub-area whose height equals a; . 
These areas are shown shaded in Figures 6.9 (c) and (f) and are represented by the 

following equations, respectively. 

yc, - (z) = min(al, 4uc, 
(z)) (6.35) 

gc2- (z) = min(a2, /1 (z)) (6.36) 

Step 3: Aggregate the intermediate fuzzy outputs associated with each rule to the final 

fuzzy output set, Uc(z). Mamdani's approach implements this operation using a fuzzy 

logical OR (max-operation) to compile the final fuzzy output set as follows: 

µc(z) = max(, uc' (z), µc2' (z)) (6.37) 

Equation (6.37) is graphically shown as the shaded concave area in Figure 6.9 (g). This is a 

fuzzy set describing the induced data. 
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Figure 6.9 Procedure of fuzzy reasoning based on Mamdani's method. 
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For the sake of simplicity of explanation, Figure 6.9 illustrated the reasoning process 

applied to a two-dimensional fuzzy rule list. Nevertheless, the approach is generally 

applicable to an n-dimensional fuzzy rule list. 

Compositional rule of inference 

Reasoning based on this approach makes the assumption that each individual rule from the 

fuzzy rule list is represented by a fuzzy relation R;. To illustrate the validity of this 
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assumption, it is necessary to consider how a linguistic fuzzy rule can be converted to a 
fuzzy relation. 

Consider the fuzzy rule: 

% IF x is A AND y is B THEN z is C. 

This rule can also be expressed as: 

(A AND B) --4 C (6.38) 

However, according to [10,18] 

AANDB= AxB 

fXXY(pA(x) A B(Y))/(x, Y) (6.39) 

Hence, the fuzzy rule expressed in equation (6.38) can be translated to a fuzzy relation R 

using Mamdani's implication method as follows: 

R=(AANDB) -->C 

= AxBxC 

= JxXYXZ(µn(x)A/ 
B(Y)A , 

(z))/(x, y, z) (6.40) 

The above relation is characterised in terms of its membership function as: 

PR (x, y, z) = µn (x) A µa (y) ^µß(z) (6.41) 

or alternatively as: 

/ R(x, Y, z) = min(PA(x), 1 B(Y), /C(z» (6.42) 
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Now that we are able to capture a fuzzy linguistic rule in a fuzzy relation R, the 

compositional rule of inference is defined as [13]: 

C' = A'o(B'oR) = B'o(A'oR) (6.43) 

This equation is the mathematical representation of the GMP expressed in (6.31) expanded 

to three-dimensional space. This means, having the knowledge of the input-output 

relationship, R, new information, C', can be induced when two inputs, A' and B' are 

presented to this inference system. Equation (6.42) demonstrates that the resultant fuzzy 

relation is three-dimensional when a fuzzy rule has two input variables. Each individual 

element of the three-dimensional membership function of the fuzzy relation is calculated 

according to the following scheme: 

! 
R(x;, 

Yj , zk)=I A(xi)^µB(YJ)^uC(zk) 
(6.43) 

., n 
ti, 

j, k=1,2,.. 

where n is the number of elements of each fuzzy set. 

The fuzzy relation R in Equation (6.43) is the representation of a single fuzzy rule. 

However, in most applications the reasoning is based on a set of fuzzy rules forming the 

fuzzy knowledge base (KB) or the fuzzy rule list of a system. That means, generally, 

relation R represents a finite set of fuzzy rules each expressed as a fuzzy relation R;. These 

relations are then subsumed with a representative relation R. This operation is called 

aggregation. 

Mamdani's inference mechanism implements the aggregation operation as a logical OR, 

which is the union of n fuzzy relations. The aggregated relation R is then defined as 

follows: 

n 

R=R1UR2U... URn =URi (6.44) 
i=l 
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For further details and also other aggregation operators, the reader is referred to [10,22,23]. 

Compositional rule of inference is then carried out following the three steps listed below: 

Step 1: Convert each individual linguistic rule to a corresponding fuzzy relation. 

Step 2: Aggregate the fuzzy relation using a suitable aggregation operation. 

Step 3: Compose the available data (usually a fuzzy set) with the aggregated fuzzy 

relation to induce new data. 

Having illustrated various ways of reasoning about fuzzy concepts, a pertinent question is 

how the performances of the various approaches compare. Since there exists no scientific 

proof or evidence that one method is superior to the other or vice versa, one should perhaps 

choose the method which suits best the objectives of the work. It has generally been found 

that Mamdani's approach to reasoning is the most suitable when the number of rules is 

relatively small [101, but the choice generally depends on empirical results. 

6.6 Fuzzy logic control (FLC) 
In the previous sections, was shown that the compositional rule of inference [ 12] performs 

a non-linear mapping in that it transforms a multi-dimensional fuzzy vector (whose 

elements are fuzzy sets) into a single fuzzy vector (the output space). In this operation, the 

fuzzy relation describing the input/output relationship is crucial and central to this 

operation. In most practical applications, this relationship is the representative of a finite 

number of fuzzy rules composing the fuzzy rule base or fuzzy knowledge base (KB) of a 

fuzzy system. 

Fuzzy reasoning was first applied by Mamdani [14] to control a simple experimental 

control system. In this approach, the fuzzy output vector was converted into a scalar (rather 

than crisp) number which was then used to control the plant. The output of the plant 

(control parameter) which was a crisp number needed to be converted into a fuzzy set to 

perform fuzzy reasoning. The KB of his system consisted of a number of heuristic rules 

extracted from the knowledge of a human who was expert in controlling such a plant. 

This section describes an FLC system in terms of its constituent units and the way they are 

interconnected to form a working control system. 
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............................................................................................................................................. 
Fuzzy Controller 

Knowledge Base (KB) 

A, B-_A'oR B, 
fDefuzzifier 

(Inference Engine) 

x Plant N--- 

Figure 6.10 Block diagrammatic representation of a fuzzy logic system (FLS) 
incorporating a fuzzy controller. 

As depicted in Figure 6.10, the fuzzy controller is composed of four modules: 

" Fuzzifier 

" Inference engine 

" Knowledge base (KB) or fuzzy rules 

" Defuzzifier 

The inference engine performs fuzzy reasoning on the input data, A', to generate an output, 

B', by means of linguistic knowledge formulated in the fuzzy rules. KB is, technically 

speaking, the control algorithm in the from of IF-THEN fuzzy rules which are in turn 

extracted from human domain expertise. Fuzzification and defuzzification convert crisp 

numbers to fuzzy sets and vice versa. Both operations explained in detail in the following 

sub-sections. 
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6.6.1 Fuzzification 
The process of mapping input data into fuzzy sets is called fuzzification and defined as: 

A' = fuuifier (xo) (6.45) 

where xo is the crisp input, A' is the associated output and the fuuifer operator is a 

mapping function. In fuzzy control applications, the input data are crisp numbers (sensor 

values) and fuzzification involves matching the sensor measurements against the associated 

fuzzy sets [19,22,24] to obtain the degree of membership in a fuzzy set. This is 

demonstrated in Figure 6.11. 

PAW 

1 

JA(XO) 

0 
x0 Input Variable 

Figure 6.11 Mapping the crisp value xo to its membership degree,, UA(xo), by means of the 

membership function uA(x). 

Figure 6.11 states that a certain crisp value xo from a universe of discourse X is associated 

with the fuzzy set A with the degree of membership pA(xo). 

6.6.2 Defuzzification 

As depicted in Figure 6.10, the output of the inference unit is the fuzzy set B' which 

represents the possibility distribution of the output parameter. However, the control action 

applied to the plant needs to be a crisp value, for example zo. The operation that determines 

a representative for the output set is called defuzzification and is defined as: 

Zo = defuzzifier (B') (6.46) 
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where defuzzifier can be any defuzzification operator. There exists a number of different 

defuzzification approaches which have been suggested by different researchers, but the one 

most widely used in control applications is the centre of gravity (COG) method. 

The centre of gravity (COG) method 
Let the possibility distribution of the output fuzzy set be defined by the membership 

function µß(z). The COG method calculates literally the geometrical centre of this set 

which is a crisp value in the universe of definition. Having a discrete universe of discourse 

Z, the COG method is calculated as follows: 

tzi 
PAC (z; ) 

zo = ,. 

l µc(Z; ) 
i=l 

(6.47) 

Above, zo is the crisp control action and n is the number of quantisation levels of the 

output. The method is graphically shown in Figure 6.12 which is adapted from the 

reasoning process described in section 6.5.2.1. 

µ 

Figure 6.12 Producing a crisp control action, zo, by applying the centre of gravity (COG) 
method to defuzzify the output fuzzy set C. 

For further material on this subject and also other defuzzification strategies the reader is 

referred to [ 17,19,22,24]. 

Zo (COG) 
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6.7 Summary 
The extension of the classical binary logic to multi-valued logic and the ability to reason 

with vagueness and uncertainty constitute fuzzy logic (FL). FL attempts to mimic the way 

humans think and reason with linguistic concepts. Linguistic variables are the basic 

ingredients of fuzzy propositions and fuzzy propositions of different universes are 

combined to form the antecedents (commonly in multitude) and the consequences of fuzzy 

if-then rules. 

Fuzzy rules are the verbal representations of fuzzy relations describing the correlation, 

association or the interaction of fuzzy sets. Fuzzy relations are implication functions which 

can be implemented in several ways depending on their suitability for the application under 

consideration. 

Inference is used to obtain new knowledge by composing fuzzy relations with the data 

being used. The inference mechanism is usually performed on a set of parallel fuzzy rules. 

Two approaches to the inference can be distinguished; namely local and global inference 

[171. The former performs inference with individual fuzzy rules and combines the 

intermediate outcomes to form the final result. This method is known as Mamdani's direct 

method of inference, which can readily be illustrated graphically. The latter, however, 

aggregates the entire rules of a fuzzy rule set by logically connecting their corresponding 

fuzzy relations into a representative fuzzy relation. The compositional rule of inference is 

then applied to infer new data. 

The principles underlying the applications of fuzzy reasoning to control problems, namely 

fuzzy logic control, have also been addressed in this chapter. Since input/output parameters 

of the process to be controlled are usually crisp values, techniques to fuzzify and defuzzify 

these values for the reasoning process are presented. 

The material discussed in this chapter provides the mathematical foundations and 

theoretical knowledge of FL to aid the understanding of the next chapter which applies FL 

to build a hybrid learning system. 
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_c 

ter 

Hybrid Learning: 
Self-organising Fuzzy Decision 

Trees Applied to Robotic 
Environments 

So far as the laws of mathematics refer to reality, they are not certain. 
And so far as they are certain, they do not refer to reality. 

Albert Einstein 
Theoretical Physist and Nobel laureate 

"Goemetrie und Erfahrung ", Lecture to Prussian Academy, 1921 

With the aid of the theory presented in the preceding chapter, this chapter introduces 

a hybrid learning technique in which fuzzy logic (FL) is incorporated into DTs to 

produce a multi-strategy learning system incorporating the benefits of the individual 
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techniques. The resulting fuzzy decision trees (FDTs) are demonstrated in their application 

to navigation and, in particular, to control a robot in dynamic and unstructured 

environments. 

Section 7.1 outlines the objectives of fusing the two methodologies in the context of robot 

navigation. Section 7.2 introduces the physical nature and sensor configuration of the 

simulated mobile platform used for experimental results. The remaining sections, namely 

7.3 to 7.13 present the author's original work (except most of section 7.6 which has been 

didactically placed in this chapter) and develop the application of FDTs to robot control. 

7.1 Objectives 
Chapter 5 discussed a control architecture in which a hierarchy of self-organising decision 

trees (DTs) was utilised to navigate a robot in unstructured environments. The system 

architecture combined the characteristics of behaviour-based systems [1,2,3] and reactive 

systems [4,5] to form a hybrid architecture. The resultant system was able to respond to 

immediate robot perceptions (reactivity) to avoid obstacles while incorporating a 

distributed mechanism of behaviour execution. Navigation experiments, however, revealed 

that the robot performs oscillatory movements when approaching and following long walls. 

This problem is inherent to reactive systems and is produced as the result of conflicting 

behaviours which are also reported in [4]. 

As discussed in the preceding chapter, the compositional rule of inference is based on a 

finite set of contributive fuzzy rules populating the fuzzy rule list. The idea of partial 

contribution of fuzzy rules which underlies the aggregation operation and also the 

qualitative reasoning inherent to fuzzy logic [6] together provide flexible control and allow 

the merging of conflicting behaviours [7,8]. This chapter is devoted to test the validity of 

the foregoing statement by applying fuzzy reasoning to the inductive symbolic knowledge 

encoded in the DTs to synthesise fuzzy control rules. The new hybrid learning system, 

namely fuzzy decision trees should similarly provide robust reasoning and smooth control 

in the presence of partial information and uncertainty in sensory data [9,10,11,12,13,14]. 

These are the two primary objectives of constructing fuzzy-based systems, in particular, the 

hybrid system addressed in this chapter. 
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In an attempt to automate the process of fuzzy rule generation, Hsu et al in [15] and Hall 

and Lande in [16] applied decision tree learning. In both approaches a crisp decision tree 

was produced which was then transformed into a set of fuzzy rules. However, compared to 

these two methods, the approach described in this chapter is a significant improvement in 

two respects: 

" In addition to automatic fuzzy rule generation, the approach is incremental and 

capable of automatic fuzzy data acquisition which imparts the capability of on-line 

fuzzy-rule learning to the algorithm. 

Both data acquisition and rule generation are performed automatically and operate on 

fuzzy data without the need for intermediate transformation. 

This work uses the problem of behaviour learning and robot path planning as a testbed for 

FDTs. These are applied to navigate a robot in unseen and unstructured environments. This 

chapter relies on the methodology and architecture of fuzzy logic control systems and 

presents the analysis and development of FDTs in the automatic synthesis of linguistically 

formulated fuzzy rules. Figure 7.1 is the schematic representation of the control 

architecture used to demonstrate the subsequent development steps (modules 1 to 6) from 

crisp data acquisition (module 1) to FDT generation (module 4). The results of on-line 

experiments conducted on this controller are presented in this chapter. 

7.2 The mobile platform and sensor arrangements 
The learning algorithm to be described is implemented as an extension to the mobile 

platform shown in Figure 7.2, namely the simulated counterpart of the real miniature robot 

Khepera [17], Figure 7.3. Khepera has two drive wheels and an array of eight infra-red 

circumferential sensors to detect the proximity of objects. Robot positioning, which is a 

measure of target location, is performed by wheel encoded dead reckoning. The input 

variables of the system consist of the six frontal sensors, the wall location in situations 

where the robot follows long walls and the relative location of the target is derived from 

the instantaneous robot position (see chapter 4 for the derivation method). Drive wheels are 

steered differentially to generate an appropriate control action. 
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Figure 7.1 The block diagram representation of the control system in terms of individual 

working units. The numbers associated with the units are used for reference in the text. 

IR Proximity Sensors 
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Figure 7.2 The top-view of the 

simulated Khepera with infra-red 

proximity sensors. 

Figure 7.3 Khepera robot equipped with 
gripper and vision (Photo by Alain Herzog, 
Courtesy of EPFL Laboratory, Lausanne) 

"\ 
" 
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A perception P with P= {So, Sl , Sz 
, 
S3, S4 

, 
SS }, is defined to be the set of six frontal 

sensors to detect the proximity of objects. This is further mapped one-to-one to the 

perception P' _ 
{D0, D1, D2 

, 
D3, D4 , D5 } for distance measurements, that is, D, is the 

distance between sensor Si and the object contour. Any two adjacent sensors comprise a 

sensor group to indicate the complexity of the world detected. As in chapter 4, a world is 

defined to be the instantaneous perception of the robot in its environment. In order to 

associate a certain perception with a world in the hierarchy and to use the same 

nomenclature as in chapter 4, frontal sensors are divided into five groups each containing 

two adjacent sensors as shown in Figure 7.4. In this configuration, each sensor group can 

be considered as a single sensor in order to be consistent with the sensor configuration 

introduced in chapter 4. 

Group 0 Group 4 

Figure 7.4 Sensor input variables (So, S 1, S2, S39 S45 SS) are divided into five sensor groups: 
Group 0 (Left), Group 1 (Front_Left), Group 2 (Front), Group 3 (Front_Right), and Group 

4 (Right). In each case, two adjacent sensors form one sensor group. 

Group I 
Group 2 Group 3 
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The number of sensor groups indicating that obstacles are present determines the world 

complexity and their nomenclature in the hierarchy. This means that, for example, if only 

one sensor group detects an obstacle at a certain distance from the robot that entire 

perception is classified as w1 to designate world one, and wo specifies that the 

instantaneous environment (world) has no obstacles. In a sensor group, the state of either 

sensor determines the state of the group whether the sensor group detects the presence of 

obstacles or no obstacles are apparent, and this is demonstrated in Figure 7.5. 

Reignier [4] took a similar approach to grouping proximity sensors in order to reduce the 

dimensionality of the perceptual space and to locate obstacle positions. 

7.3 Automatic fuzzy data acquisition 
To acquire knowledge by means of DTs, concept learning requires formatted data as vector 

entities such as: V= jfOjj, 
---jj,... jcjj, where f" is a feature with fEF and 

F= if o, f i,..., A... ' fn} is the space of features (input variables) each being defined on a 

unique space of feature values such as f; = 
{i 

;, fl; ,f2; , ..., fm; 1. cc is a class (control 

action) with cj EC from the set of output reflexes C= {c1, c2,..., Cj,..., cn} . These training 

vectors can be supplied to ITI-2.8 (Figure 7.1) either in batch-mode (off-line) or 

incrementally (on-line). In the incremental mode, each time-delayed robot rewarded 

experience is encoded in such a vector and exposed to ITI for knowledge extraction. Action 

assessment is performed by a cost function (chapter 4) to provide a class cc by remembering 

useful actions while forgetting the rest. In the following, the entire input/output variables 

which compose a training vector are established and their associated domains of validity 

are defined. 



Chapter 7: Hybrid Learning 

Uhslacle 

(a) 

00 

(c) 

00 

(b) 

8 
114 
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Figure 7.5 Different perceptual situations: (a) Two separate groups in which only one 

sensor detects obstacles is recorded as w1 (the second obstacle is assumed to be outside the 

range of detection of the sensors). (b) Two adjacent sensors S,, and S3 detecting obstacles 

and represented by one group indicating wi. (c) Two non-adjacent sensors S2 and S4 

covered by two groups indicating w2. (d) Three sensors S2, S3 and S4 detecting obstacles 
and covered by two groups specifying w2. 
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f Inputs 
" Do-Ds: D; is the distance from the object associated with sensor Si. They are 

defined over the universe of discourse X= [0,1,..., 1023]. 

" GRL: target location relative to the robot; GRL is entirely defined over the 

universe W= [-180',..., 180`]. 

" WallLoc: a dynamic (state-dependent) state variable indicating the location of a 

long wall. WallLoc is a compound state variable and its domain of definition Z is 

given by Z=XxW. 

f Outputs 

" 8: turning angle; 0 is defined over the same universe as GRL, namely W. 

Having specified the input/output variables, a training example (feature vector) has the 

following general format: 

V, = 
IDO, DI, D2, D3, D4, D5, GRL, C} 

14 

(7.1) 

where Do-Ds are the distance measures, GRL is the relative location of the target to the 

robot and C is the control action on which this input pattern is mapped. 

Vector V; is an output of module 1 shown in Figure 7.1. In order to generate formatted 

vectors for unit 3 of this system, vector V; needs to be re-expressed in terms of fuzzy sets. 

This process is performed in module 2 and is discussed in the next section. 

7.3.1 On-line fuzzification of state variables 
In order to supply data increments to the ITI-module (module 3), the input domain needs to 

be fuzzified in terms of suitable fuzzy linguistic variables. A fuzzy variable is fully defined 

as the triple (x, T(x), U) [18,19] in which xis the name of the variable, T(x) the term set of 

x, that is, the set of names of the linguistic values of x with each value being a fuzzy 

number defined on U. Each fuzzy linguistic variable can be described as a set of some 

fuzzy numbers (labels assigned to this variable) each characterised by a membership 

function. It is also necessary to establish the shapes and the regions of those membership 

functions. The assignment of the fuzzy sets to the fuzzy linguistic variables is an ad hoc 
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design and intuitive. In the current work, this is based on our contextual and semantic 

knowledge of the system. However, the shapes of the fuzzy sets on a creation universe are 

empirical and based on experimental results. Subsequently, the term sets of input/output 

variables are defined in terms of their associated fuzzy sets and the domain of their validity. 

f Inputs 

" Do-D5: D; is the distance from the object associated with sensor S; with the term 

set of D; defined as T(D, ) _ {VF, SF, SC, CL, VC} on the universe of discourse 

X= [0,1,..., 1023]. 

" GRL: target location relative to the robot; the term set of GRL is defined as 

T(GRL) = {LB, LE, SL, FR, SR, RI, RB} over the universe of discourse 

W=[-180 ,..., 180 ]. 

" WallLoc: the location of a perceiving long wall detected on either side of the 

robot; Wa11Loc is a compound state variable and its term set T(Wa11Loc) is 

defined to be T(WallLoc) = {LE, R11 over Z which is in turn defined as : 

Z=XxW. 

f Outputs 

9 0: turning angle; 0 is defined over the same universe as GRL, namely W with its 

term set being T(O) = {TLB, TLE, TSL, TFW, TSR, TRI, TRB}. 

Figures 7.6 to 7.8 represent the normalised input/output variables and the membership 

functions of their corresponding fuzzy sets. These membership functions are used for on- 

line fuzzification and also defuzzification of the output sets. 
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Figure 7.6 Membership functions for the normalised distance between the robot and the 

target on fuzzy sets: VF (Very Far), SF (Slightly Far), SC (Slightly Close), CL (Close) and 
VC (Very Close) 

Figure 7.7 Membership functions for the normalised robot position on fuzzy sets: LB (Left 

Big), LE (Left), SL (Slightly Left), FR (Front), SR (Slightly Right), RI (Right) and RB 
(Right Big) 

u(0) 

Figure 7.8 Membership functions for the normalised turning angle on fuzzy sets: TLB 
(Turn Left Big), TLE (Turn Left), TSL (Turn Slightly Left), TFW (Turn Forward), TSR 

(Turn Slightly Right), TRI (Turn Right) and TRB (Turn Right Big) 

-1 o 

o -1 



Chapter 7: Hybrid Learning 174 

As in the manner described in section 6.6.1, fuzzification is used to transform the sensor 

readings to relevant corresponding linguistic labels. Since all state variables assume crisp 

values, then fuzzification is merely the matching of an input variable to the membership 

function of the corresponding linguistic label. This process is illustrated in Figure 7.9 

9A(X) 

1 

RA(XO) 

Figure 7.9 Fuzzification of the value of a state variable x by means of a fuzzy set A to 

achieve the degree of membership of xo in A. 

In Figure 7.9, the crisp value of a state variable x, namely x0, falls in the region described 

by the fuzzy set A. Fuzzification of xO involves matching xo against the fuzzy set A to find 

the degree to which x is a member of A. This is represented as /A(xo) and is linguistically 

expressed as "x is A". 

Joint fuzzy sets 
In the current work, due to the incremental nature of fuzzy rule generation, the fuzzification 

process is performed on-line and iteratively using the membership functions shown in 

Figures 7.6 to 7.8. The fuzzification process serves the following two distinct purposes 

(illustrated by switch S in Figure 7.1). 

" Fuzzification of state variables to produce fuzzy propositions such as: "x is A" in 

order to compose a fuzzy vector to be supplied to ITI-2.8 (state a of switch S). This 

mode is responsible for on-line generation of fuzzy associative memories (FAMs) 

which make up the KB of the system (unit 4 in Figure 7.1). 

xo x 
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" Fuzzification of state variables to produce a perception dependent fuzzy proposition 

such as "y is B" to be set theoretically composed with appropriate fuzzy rules 

encoded in the knowledge base (KB) of the system (state b of switch S). The 

composition operation is performed in the unit "Fuzzy Inference" and its output 

represents the fuzzy control action space. 

State variables can assume values which may fall into the overlapping area of two adjacent 

fuzzy sets, as depicted in Figure 7.10. 

µ(A) 
µ(B) 

0.5 
0.3 

Figure 7.10 Resolving ambiguity in fuzzification of joint sets 

In such circumstances, on-line fuzzification involves joint fuzzy sets rather than a single 

fuzzy set. To deal with this problem, the membership function of the resultant fuzzy set C 

associated with the crisp value xO is defined to be 

µc(xo) = max {µn(XO), UB(XO)} 

which is a single fuzzy set. 

(7.2) 

7.4 Fuzzy knowledge generation 
As described in chapter 6, the core of any fuzzy reasoning system consists of a repertoire of 

fuzzy linguistic rules stored in and managed by fuzzy associative memories (FAMs) (also 

known as the system KB or the fuzzy rule list) and a mechanism performing the 

compositional rule of inference (inference engine). This implies that the FAMs are static 

and their existence is a pre-requisite to fuzzy reasoning. 

xo Distance D 
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Unlike conventional methods where FAMs are configured prior to process control, in this 

work fuzzy rules are learned and generated in an incremental manner. This implies that 

world-specific FAMs need to be generated on-line, requiring the implementation of 

dynamic FAMs. By virtue of having multi-dimensional input training vectors, multi- 

dimensional decision trees are generated in a binary structure which is specific to ITI-2.8. If 

a world specific decision tree does not already exist, it is initiated and evolves to 

convergence as new knowledge is acquired. Decision trees are then interpreted into a 

hierarchy of perceptual fuzzy rules by searching the space of trees. This is conceptually 

equivalent to searching a hierarchy of nested two-dimensional FAMs. Nesting two- 

dimensional FAMs to cope with higher-dimensional fuzzy rules in a multiple fuzzy logic 

system has been addressed and implemented in [20] to resolve the non-linear problem of 

flexible pole-cart balancing. 

Figure 7.11 (see page 198) demonstrates a non-linear multi-dimensional FAM encoded in a 

binary decision tree and can be compared to an array of two-dimensional FAMs shown in 

Figure 7.12 (see page 198). The former highlights the intelligibility and expressive power 

of DT-based FAMs as opposed to conventional FAMs as the dimensionality of the input 

vector increases. Figures 7.13 to 7.17 (see pages 199 to 203) show the multi-dimensional 

FAMs encoded in binary DTs. They have been grown incrementally while training the 

robot in different worlds, and classified as FDT-0 to FDT-4 in the hierarchy. They are then 

searched to synthesise appropriate control rules. 

7.5 The control system architecture 
The previous section addressed the nature and the mechanism by which FAMs are 

generated in the current work. This implies that the FAMs are no longer static nor fixed in 

size or dimensionality. A change in size or dimensionality occurs each time a new data 

increment is supplied to ITI. Since the DTs from incremental ITI are inclined to generalise 

the concept they are constantly learning, they re-organise the tree structure continuously to 

incorporate new data to augment the learning behaviour. Hence the FAMs used in this 

work are both dynamic and self-organising. 
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Figure 7.18 shows the overall control system architecture. As depicted, this is a modified 

version of the traditional fuzzy-based two-level architectures [8,12,21] for autonomous 

robots. This approach is somewhat similar to the approach proposed in [21] in the way that 

both architectures utilise a combination of high-level symbolic planning techniques with 

low-level continuous control. The author's approach, however, merges the planner and the 

rule base of the fuzzy controller of these architectures into a hierarchy of dynamic FAMs 

that evolve progressively and on-line. Together with ITI-2.8 and the fuzzy inference 

engine, they compose the high level fuzzy decision making unit of the system. From an 

internal operational view, complex tasks are learned and decomposed into simpler ones and 

sub-tasks are each encoded and assigned to a certain FAM. However, from the view of the 

symbolic control action (planner's output), FAMs appear to perform in a similar way to 

ordinary high-level planners as far as behaviour activation is concerned. 

High Level Fuzzy Decision Making 

............................... 

FAMs 

i 

FDT-0 

FDT-1 

FDT-2 

FDT-3 

FDT -4 

Classification 
Using FDT-n 

Fuzzy 
Inference EM-2.8 F 

Evolution of FDT- n 

Fuzzy P 

Fuzzification 

Fuzzy Output Set 

Defuzzification 

Crisp Control 
Action 

Rewards 

Robot 

Perception P 

Figure 7.18 The overall system architecture 
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7.6 Fuzzy reasoning and inference mechanism 
The fuzzy reasoning mechanism adopted in this work follows that of Mamdani [22] and is 

generally termed local inference. The process of reasoning is accomplished in module 5 of 

Figure 7.1. The mechanism of local inference was introduced in chapter 6 and is developed 

further below. 

Consider a world specific fuzzy decision tree mapped on a set of rules 

91 ` 
19119 912 

9 ... 19111*-9%-11 

where 

91, : IF xj is Ali and x2 is A2; and ... and x,, is A,,; THEN z is C. 

91, can be implemented by the following fuzzy relation R;: 

Ri(X19X29... 9Xn$Z)= 
(Ali X A2iX... XAn; -> C; )(X1, X2,..., Xn9Z) 

(7.3) 

or 

Ri (XI 
9 
X2,..., Xn, Z) _ [Ali (X, ) ̂  Ali (X2)A.... AA�i (Xn)] --> Ci(Z) (7.4) 

where n is the dimension of the input vector. To classify an n-dimensional fuzzy input 

vector x with x=Y20,..., and where x; o is the fuzzified crisp value x; o , into a 

fuzzy output class C(z), we need to compose first the input vector x with the calculated 

fuzzy relation R; to produce the intermediate result 

Ci' - x10 x x20 x... xx0o R ýi (7"5) 

C. ' is the output of the i`h rule and is set-theoretically defined as: 
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(7.6) Ci ýZ) = [Ali (x1o) n AZ; x20 )n... nAni (x�0)] -i Ci (Z) 

Then, all C are combined by some aggregation operator to obtain the overall system 

output as follows: 

(7.7) C=Ü Ci =U 
([Ali 

(x10) A Ali (X20 )A... 
AA i 

(XnO )] 
-i Ci W) 

i=l i=1 

where m is the number of contributing rules on the list. If we relate the j`h fuzzy set of the 

I: h fuzzy rule, A1; (x 
j; 

), to its membership function, #(x1), and model the fuzzy 

implication by Mamdani's min operator and also interpret the logical OR of rules by the 

max operator, equations (7.3) and (7.7) can be rewritten using min-max composition in 

terms of their membership functions as: 

n 

/1R; x11 +x2; ,..., xnº) = min µA, 
(Xji(7.8) 

; _l 

and 

pc 
(y) 

= max min 
[PAj, (xJ), 

R; 
(XI 

9 X2 , ... , xn , y)J (7.9) 

i=i ; =i XEU 

where m is the number of effectively contributive rules. The underlying principles of 

labelling some fuzzy rules as effectively contributive are discussed in details in section 7.8. 

The above expression characterises the membership function of the output set which 

determines the space of possible outputs (control actions). 

7.7 A practical approach to defuzzification 

The output of the decision making module, , llc (y) 
, is a fuzzy set specifying the possibility 

distribution of the control action. Therefore, the process of reducing this fuzzy set to a crisp 

single-valued output is termed defuzzification. Since no defuzzifier has been derived from 

first principles [23] and due to the need for the computational simplicity, this work uses the 



Chapter 7: Hybrid Learning 180 

centroid method to generate a crisp control action. This specifies the centre of gravity of 

the output fuzzy set, C(z), as zo defined as follows: 

J zµc (z)dz 
s z0 - Jµc(z)dz 
s 

(7.10) 

where S spans over the support of yc(z) with /1 (z) being continuous. However, for an 

efficient implementation of the above equation, the author implements the following 

equation: 

t 
(A` PC (z)M`1 

ZO (A, pc, (z)) ; _, 

where 

Ai = 05(a + b) (7.12) 

is the area of the i`h output fuzzy set, M; is the parallel through the centre of the i`h output 

fuzzy set, with a and b its corresponding base, if we assume the general shape of fuzzy 

outputs is trapezoidal, whereas, Llc, (z) is the firing strength of the i`h output fuzzy set. All 

areas, A;, are calculated during initialisation to provide computationally faster 

defuzzification during training. 

7.8 Classification by isolating contributive fuzzy rules 
As demonstrated in Figure 7.11, the DTs generate multi-class leaves [24] that assign a 

certain perceptual pattern to more than one class. To investigate this multi-dimensionality 

in both input and output parameters and their consequence with regard to the 

dimensionality of the fuzzy rules which effectively contribute to the output, the following 

hypothetical scenario is first considered. 
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In a certain state, GRL may have an actual crisp value, x0, which falls in the overlapping 

area between fuzzy sets SL and LE and D, with an actual crisp value of xj falling in the 

overlapping area between fuzzy sets SF and SC. According to the linear FAM shown in 

Figure 7.19, this perception activates the following four fuzzy rules to contribute 

collectively towards a single control action. 

gi, : IF GRL is SL and D1 is SF THEN 0 is TSL. 

9t2 : IF GRL is SL and Di is SC THEN 0 is TRI. 

R3 : IF GRL is LE and D1 is SF THEN e is TSL. 

9t4 : IF GRL is LE and DI is SC THEN 0 is TSR. 

GRL 

01 LBILE ISL I FR ISR Ir 

VF 

SF TSL TSL 
Dl 

SC TSR TRI 

CL 

vc 

Figure 7.19 An example of a linear 2D-FAM 

The above rule list illustrates that a two-dimensional input vector with a single output 

would create four fuzzy rules. However, the pertinent question is whether the 

dimensionality of the rule lists is linearly proportional to the combination of the input- 

output vectors' dimensions, as far as multi-dimensional input/output DTs are concerned. In 

the next section, it is demonstrated that the length of any perceptual fuzzy rule list, such as 

above, is directly proportional to the total number of classes in the leaf which classifies that 

perception. 
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7.8.1 An analogous problem 
To demonstrate the validity of the statement mentioned above, a physical analogy shown in 

Figure 7.20 is considered. 

F F 

Figure 7.20 An analogous example describing min-max operation 

As shown above, three physically separate chain branches are placed together at their ends 

to make up a chain system. Each branch consists of a finite number of chain links. To 

assess the strength of one branch, one would exert suitable equal and opposite forces, F, at 

either end of that branch. Therefore, the strength of the branch would be dominated by its 

weakest link. That is, the minimum (min) resistance of an entire branch in the presence of 

an exerting force is determined by its weakest chain link. Now, consider an increasing 

tensile force exerted at either end of the entire chain system. Weaker links would break 

down one after the other as the force increases further along. Hence, the strength of the 

entire chain system is governed by the strongest chain branch. In other words, the maximum 

(max) resistance of the entire chain system under an increasingly exerting force is dictated 

by the strongest branch. 

This analogy is utilised to filter the effectively contributing fuzzy rules from the list of 

contributive fuzzy rules. 

7.8.2 A robot perception example 
This process can be made further apparent by considering an example of the robot 

perception in w3 (shown in Table 7.1) and observing how the corresponding tree would be 

searched to classify this pattern. 

Chain Link 
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Perception P Class (Fuzzy output) 
DO, D 1, D2, D3, D4, D5, GRL 

(Actual crisp values) 
310,150,165,255,110,140,25 TFW, TSR 

Table 7.1 An instantaneous perception of the robot 

This perceptual state can be classified by searching the tree along the path shown in Figure 

7.16. This path can be automatically transformed into the following generic rules: 

gt,: IFD2=SF A D1=SF A Dj=-'VF A D4=VFTHEN 0= TFW. 

92: IF D2 = SF A D1= SF A D3 = -, VF A D4 = VF THEN 0= TSR. 

Considering the actual crisp value of D3 (255) and replacing the fuzzy set (-, VF) with its 

complement, the above rules are altered as shown in Table 7.2. 

gt, : IF D2 = SF A D1= SF A D3 = SF A D4 = VF THEN 0= TFW. 

IF D2 = SF A Dj=SF A D3=SC A D4=VFTHEN 0 =TSR. 

Table 7.2 The generic rule set resulting from the search for effective contribution to 
generate the final control action 

As depicted in Table 7.2, the crisp values of input parameters fall into the overlapping 

areas of two adjacent fuzzy sets activating an array of 16 fuzzy rules (considering only one 

class) and a total of 32 fuzzy rules (16 rule combinations and 2 classes), as illustrated in 

Appendix A. To combine such a number of rules to generate one control action is 

computationally expensive due to the complex defuzzification involved and may well 

result in a delayed response to such perceived situations. Also, the antecedent of each 

individual rule, 9t;, on the list contributes a degree of membership, pcjy) , which 

determines the extent to which the corresponding fuzzy output set is truncated (termed as 

firing strength). This implies that from the set of two arbitrary membership functions, 

µ, (y) and , 11c2 (y) with , llc, (y) > /- 
2 
(y), the former dominates the effect of the latter 
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Expanding the analogy of the chain system to the list of 16 fuzzy rules to compute the 

highest membership degree 1,1c(y), each individual rule, 93j, is analogous to each chain 

branch (with min operating on antecedents of each rule) and the maximum contribution 

(with max operating on 16 fuzzy rules) of the entire list of 16 fuzzy rules would be 

equivalent to the strength of the entire chain system. The expression ji (y) of Appendix A 

indicates the highest firing strength that the fuzzy rule list can contribute. This implies that 

on applying this strategy, regardless of the total number of the generated rules on the list 

(16 rules), the maximum firing strength is computed and applied to all available classes in 

that leaf. Consequently, the total number of the effectively contributive rules is equal to the 

number of classes found in that leaf, as shown in Table 7.2. 

7.9 Overfitting inception and tree pruning 
Individual decision trees are grown to a size dependent upon the diversity in the patterns of 

their training vectors and the number of training vectors supplied to ITI. The experimental 

results demonstrate that wo (the world with no obstacles) and w3 tend to generate smaller 

trees than the others (wl, w2 and w4 ). This is due respectively to the small number of 

features and the limited number of directions available to the robot. 

Highly non-linear training vectors demand a large number of training examples to produce 

trees with appropriate accuracy, whereas large numbers of training examples endanger the 

generalisation capability of the tree and may lead to overfitting. In this case, the 

dimensionality of trees grows unreasonably and trees tend to specialise each individual 

pattern. Consequently, generating appropriately-sized decision trees is a matter of trade-off 

between the two factors. 

To suppress possible overfitting without compromising the generalisation nor the 

classification accuracy, an algorithm has been developed to perform automatically pruning 

or unpruning of the active tree. 
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STEP 1: Detect the active FDT 

STEP 2: IF the threshold on the number of training examples exceeded 

STEP 3: THEN Prune FDT 

STEP 4: IF Accuracy of pruned FDT falls below desired threshold 

STEP 5: THEN Unprune FDT 

STEP 6: GOTO Step 8 

STEP 7: ELSE Save pruned FDT 

STEP 8: END. 

7.9.1 Classification accuracy 
A reliable estimate of classification accuracy of the generated DTs is the statistical method 

of n-fold cross-validation [25,26]. The training vectors are split into n blocks of 

approximately the same length and class distribution. To test each training vector only 

once, for each block a DT is constructed from the remaining training vectors and tested on 

the hold-out block. The error rate of a classifier constructed in such a way is the ratio of the 

total number of errors in the hold-out blocks to the total number of training vectors. The 

average error rate of cross-validations is a relatively reliable estimate (compared to the 

performance of this classifier on a set of new data) of the error rate of a single classifier 

produced from these training vectors [26]. 

When prompted, the integrated ITI in the current work performs a 15-fold cross-validation 

on the available training vectors to produce the classification accuracy of the active FDT. 

Figures 7.21 to 7.25 (see pages 204 to 208) show the pruned versions of FDTs depicted in 

Figures 7.13 to 7.17 (see pages 199 to 203) which are unpruned and 15-fold cross- 

validated. Table 7.3 demonstrates the prediction accuracy of the different FDTs before and 

after post-pruning. 

It can be observed that pruning not only has achieved a significant reduction on tree size, 

but also it generally enhances the generalisation ability of trees which in turn increases the 

prediction accuracy. After pruning the tree, a 15-fold cross-validation was run two 

consecutive times on the tree. Table B. 1 and Table B. 2 of Appendix B contrast the 

prediction accuracy before and after pruning by conducting two runs of 15-fold cross- 
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validation on the FDT representing wl, shown in Figure 7.14. It is evident that the average 

classification accuracy of the pruned tree has been enhanced compared to that of the 

unpruned version, with correct classification being improved from 81.76% to 83.31% of 

cases. 

Average Prediction Accuracy after 5 Runs 
with 15-fold Cross-Validation in % 

Worlds WO WI W2 W3 W4 

Before Pruning 70.20 81.52 78.60 96.67 69.66 

After Pruning 69.25 83.01 79.50 96.67 69.22 

Table 7.3 The prediction accuracy of 15-fold cross-validated FDTs before and after 
exposing to pruning in percentage. 

7.10 A detailed example of the novel approach 
As discussed in the foregoing sections, the process of generating FDTs involves the 

following stages: 

1. Automatic fuzzy data acquisition 

2. Generation of fuzzy FDTs 

3. Generation of fuzzy rules 

To demonstrate the above mechanisms, we consider a simple example in which a small 

number of training vectors is collected, the tree is initiated and incrementally re-inferred; 

the tree is then searched to classify a robot perception. 
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7.10.1 Automatic fuzzy data acquisition 
In the training mode, the algorithm evaluates in state n the performed robot motion of state 

n-1 using the cost function. This mechanism is preceded by fuzzification of the entire 

perceptual state variables, section 7.3.1. If it results in a positive action, this perception is 

kept in a continuously up-dated memory store which is accessed directly by ITI when a 

new perception arrives. Appendix C is a collection of 40 such training vectors (describing 

partially W2) whose elements are fuzzy sets and are the results of positively rewarded robot 

motions. 

7.10.2 Generation of FDTs 

The process of growing FDTs is incremental and is triggered when a new training vector is 

supplied. This means that FDTs adapt and alter their structure to incorporate the incoming 

data. The learning algorithm presented in this work, is able to search the space of FDTs in 

the intervals between two successive tree manipulations. Figure 7.26 shows the FDT which 

is grown on the fuzzy data acquired in the previous section. 

7.10.3 Generation of fuzzy rules 
Synthesis of fuzzy rules is accomplished on-line and concurrently with searching the trees. 

A certain robot perception can activate one or more fuzzy rules which are then aggregated 

to a single fuzzy output set and defuzzified to generate a suitable control action. For 

instance, consider the following robot perception shown in Table 7.6. 

State Variables (Crisp Values) Corres. 
World 

Doi DI D2 D3 D4 D5 GRL 

220 120 180 310 102 110 -30 W2 

State Variables (Fuzzified) Cones. 

Do D, D2 D3 D4 D5 GRL 
World 

SF VF SF Sc VF VF SL W2 

(a) (b) 

Table 7.4 An instantaneous robot state perceived from w2 in terms of (a) its crisp values 
and (b) after fuzzification. 
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To classify the robot state, the FDT shown in Figure 7.26 is followed along the directed 

path to the terminal node containing the fuzzy output sets. This results in activating one 

fuzzy rule, as in shown in Table 7.5. 

IF D2=-+VFADI=ýSFAD2=ýSCAD4=-, SCTHEN C=TLB. 

Table 7.5: The synthesised fuzzy rule after searching the FDT to classify the robot 
perception shown in Table 7.4 (b) 

In Table 7.5, D, is the i`h sensor and C is the class or the control action. Note that the FDT 

depicted in Figure 7.26, does not include all representative training vectors as it is rather 

"immature" and may misclassify certain robot states. Therefore, this example should only 

highlight the essential steps involved in the learning algorithm without presenting specific 

details of its development process. 

7.11 Simulated behaviour learning 
The hierarchical approach facilitates global learning which is initiated in wo and propagates 

up the hierarchy to more complex worlds. This is performed in such a way that the 

knowledge in the previous layer is modified to adapt to the current perception in order to 

grow knowledge for the current layer. The on-line learning technique presented in this 

work has been verified using the Khepera robot simulator. Due to the realistic assumptions 

made in the design of the simulator, this facilitates the transfer of the simulation results 

without major alterations to the real Khepera robot [27]. 

In all homing tasks, the robot is set at a starting point S with an arbitrary heading angle and 

is expected to reach a target labelled G, Figure 7.27 (see page 210). The simulation results 

aim to illustrate the feasibility of overall knowledge decomposition into a hierarchy of 

fuzzy decision trees that are trained and developed locally. Qualitative reasoning with 

fuzzy symbolic data in behaviour learning such as object avoidance, target seeking and 

wall following behaviour are demonstrated in the next section. 
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7.12 Results and discussion 
The principal strength of the technique proposed is incremental behaviour learning in the 

frame of a reactive architecture. The hierarchy is set up to integrate two fundamental 

behaviours (object avoidance and target seeking behaviour) in such a way that dominance 

of one behaviour in the hierarchy reduces the presence of the other behaviour. A further 

behaviour, namely the wall-following behaviour, is also integrated in the hierarchy, and is 

activated when local minima are detected [28]. This behaviour is encoded in w4. For 

instance, wo (perception with no obstacles) is highly goal-oriented as opposed to w3 in 

which reactivity is the dominant behaviour (see also Figure 4.3 in chapter 4). This implies 

that certain environmental configurations (obstacle positions) can activate one of these two 

behaviours immediately prior to the second. This can then lead to oscillatory trajectories 

which are inherent to reactive strategies [4]. Table 7.6 shows the average number of runs 

needed to train FDTs to the size incorporating the representative feature vectors. It also 

demonstrates that the number of training examples varies in different FDTs depending on 

the world-specific obstacle configurations. 

Figures 7.27 (a) and (b) demonstrate the first stages of learning in which the robot is 

trained in the world with no obstacles. In this world, the robot establishes the goal-seeking 

behaviour which is encoded in wo. The gradually smoothing trajectories demonstrate the 

incremental nature of the learning algorithm. After sufficient training, the robot is able to 

reach the set target (using similar settings to those used in the production of Figures 7.27 

(a) and (b)) in significantly fewer steps, Figures 7.28 (a) and (b). 

Having access to the knowledge learned in wo, the robot is trained in a slightly more 

complex world, wl, which is sparsely populated with obstacles. Figures 7.29 (a) and (b) 

show how the robot tries to adapt by producing a new behaviour while heading towards the 

target. This adaptation is more evident, particularly in Figure (a) where the robot first 

encounters obstacles. Figures 7.30 (a) and (b) are navigation scenarios in the same unseen 

environment where the robot utilises the learned knowledge to home in on the goal. 

Figures 7.31 (a) and (b) show an intermediate stage of learning (w2) where the robot is 

trained in a more "hostile" environment in which obstacles are more densely situated. The 
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robot learns how to avoid larger obstacles. Once the robot has been sufficiently trained in 

this environment, it is navigated in a modified terrain. The robot can bypass the obstacles 

and demonstrates a smooth behaviour, particularly, in front of the disjoint long obstacles, 

as shown in Figures 7.32 (a) and (b). 

Worlds 

WO W1 W2 W3 W4 

Average 15 13 10 8 12 
No. of Runs 

Number of 
Training 78 223 118 72 212 
Examples 

Total no. of training runs to build up the hierarchy 58 
(Average) 

Table 7.6 The average number of trials and the training examples in different worlds 
needed to set up the FDT hierarchy 

A third behaviour which is also integrated in the hierarchy and encoded in w4, is that of 

wall-following. This behaviour is triggered in situations when the robot follows long 

parallel walls or the algorithm detects local minima. This happens when the target is 

located behind long walls or nested walls, corners and dead-ends, in which case the robot 

would perform oscillatory movements in infinite loops. Figures 7.33 (a), (b) and (c) are 

examples where the robot is presented with long walls and corners to adapt to the 

aforementioned situations. 

Figure 7.34 (a) illustrates a navigation scenario using pure DT learning where the two 

behaviours (target-seeking and obstacle avoidance) alternate. This gives rise to the 

oscillatory path which is typical in situations where the robot follows long walls or parallel 
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corridors of walls to reach a set target. This shortcoming has been overcome, as 

demonstrated in Figure 7.34 (b), by introducing fuzziness into the DT-based hierarchy, 

thereby merging the conflicting behaviours and assuring smooth trajectories in the presence 

of long walls. However, the variations remaining are due to the physical discontinuities of 

the long wall and are removed, as shown in Figure 7.34 (c), when the wall is physically 

augmented. 

Figures 7.35 to 7.38 are various scenarios to demonstrate the performance of the robot in 

navigatory tasks where the robot has access to the knowledge in the entire hierarchy. 

Figures 7.37 and 7.39 show that reactive path planners are not always time-efficient as far 

as the length of the generated trajectories is concerned. They are, however, effective and 

can generate the shortest path, as shown in Figures 7.35 and 7.38. 

7.13 Comparison with other learning systems 
In this section, a comparison is made between the author's approach to the development of 

a hybrid learning system and previous work carried out in the frame of reactive 

architecture. 

Since the learning algorithm in this work is that of a self-learning system in which the 

entire hierarchy is learned incrementally and the knowledge is acquired automatically, the 

new algorithm is able to learn automatically from its environment, providing a significant 

training advantage when compared with supervised learning systems. In these systems, the 

intervention (partially or completely) of a teacher or a trainer is inevitable in that the robot 

is either taught to learn [29] or its actions are punished or rewarded. The control 

architecture of the AuotonoMouse (a mouse-like robot) in [29] embodies a three-stage 

developmental learning, namely baby stage (in which the assistance of a trainer is needed), 

young stage and adult stage. The author's work can be considered to bypass the baby stage 

is implemented by the learning system. 

Since reactivity directly transforms perceptions to actions, artificial neural networks (ANN) 

provide an obvious method for learning reactive transformations from perception to action. 

ANN systems have been developed which implement either a reinforcement algorithm 

[30,31] or a back propagation algorithm for learning and adaptation [32]. A drawback of 
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the learning techniques developed for ANN systems is that they are often very dependent 

on the presentation of meta-knowledge in order to achieve fast convergence, as can be 

observed in [30,33]. A similarity to the current work that the connectionist architecture, 

called TESEO, in [30] exhibits, is that it has been designed to overcome perceived 

limitations of the reinforcement learning technique, such as slow convergence and lack of 

incremental improvement. A significant architectural difference, however, between TESEO 

and the current work is that in the former the learning is augmented by built-in primitives 

(simple stimuli-responses) operating as background knowledge, whereas in the author's 

approach the learning is performed uniformly from inception to convergence with no a 

priori knowledge. The experimental results conducted on TESEO have demonstrated that 

the robot, after 10 training epochs, learns how to reach a target on a smooth trajectory and 

with the shortest path. The algorithm in this work, though, may not always generate the 

shortest path (as shown in Figures 7.34 and 7.38)due to its reactivity, as does TESEO, but 

it is effective and capable of always reaching the target. However, once trained, TESEO 

appears to learn a specific environmental structure of the navigation terrain; requiring re- 

training if the environment changes significantly. In the author's work, the algorithm is 

globally tuned, in that it does not require re-training for new environments. 

The hybrid approach proposed in [33] which is a neuro-fuzzy robot learning system, also 

relies heavily on a priori knowledge. In an example of this approach, the knowledge 

encoded in an expert system is used to initialise learning which consequently updates the 

meta-knowledge of the expert systems. As far as the comprehensibility of the learned 

knowledge is concerned, it is very hard to understand the learned "rules" of a neural 

system, since the knowledge of the neural nets resides in the connections between the 

processing units (neurons) in the form of real numbers (weights), whereas the internal 

representation of DTs is highly intelligible to human users due to their symbolic nature. 

The author's approach also improves on previous work in that it addresses a number of 

non-trivial real world issues and constraints such as sensor noise, reactivity, incrementality, 

short training times and robustness harnessing the power of decision trees and fuzzy theory 

for learning and adaptation in a robotic system. 
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7.14 Summary 
A new approach for setting up an array of fuzzy associative memories (FAMs) in the 

context of hybrid learning has been introduced. FAMs are engineered on-line and 

incrementally without human intervention. This multi-strategy learning technique unites 

the features of inductive learning and fuzzy techniques to cope with inherent uncertainty in 

sensory data and to reason on high-level symbolic data. Fuzzy logic is also used to merge 

conflicting behaviours to assure smooth trajectories. 

The novelty of the proposed hybrid technique is three-fold: automatic fuzzy data 

acquisition, automatic generation of fuzzy decision trees (FDTs) from inception and the 

introduction of DT-based FAMs. The latter feature facilitates non-linear and multi- 

dimensional FAMs accommodating fuzzified symbolic knowledge while offering 

intelligibility and expressive power (inherent to decision trees) to the fuzzy control rules. 

As demonstrated, this would be virtually equivalent to searching the space of a hierarchy of 

nested linear FAMs. 

Behaviour learning and dominance is decomposed into a hierarchy of locally tuned FAMs 

each encoded in an individual FDT as physically isolated computational entities with 

dynamic life times. Global path planning can also be accomplished by coupling an array of 

locally tuned FAMs. 
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Figure 7.11 Searching the space of a DT-based FAM (representing a complete w, ). The 

broken directed lines show an example path to classify a perceptual pattern. 

Do 

Figure 7.12 Mapping the multi-dimensional input vector of Figure 7.11 (directed path) on 
a hierarchy of nested 2D-FAMs (representing a portion of w2 ) 
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Figure 7.13 The first layer of the fuzzy rule hierarchy representing environments with no 
obstacles 
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Figure 7.15 An unpruned version of the FDT representing w2 
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Figure 7.16 A more generalised FDT for the environments with more complex-shaped 
obstacles and configurations, namely W3 
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Figure 7.17 An unpruned version of the FDT used for wall-following scenarios after a long 

wall is detected, and this describes w4. 
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Figure 7.21 An FDT representing wO after performing virtual pruning. It is evident that 

pruning has not affected this FDT as it is in its general form. 
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Figure 7.23 The truncated version of FDT shown in Figure 7.15 representing w2 
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Figure 7.24 The truncated version of FDT shown in Figure 7.16 representing w2. It is 

evident that this FDT tend to overgeneralise. 
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Figure 7.25 The FDT activated in wall-following situations after pruning 
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Figure 7.26 The FDT grown on a small batch of fuzzy data. The searched path is specified 
by a directed line. 
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(c) Learning in an environment with arbitrary obstacle configurations (edges, walls and 
corners) 

Figure 7.33 Learning examples from environments where the robot learns to follow long 

walls, corners and edges of arbitrarily-shaped obstacles 
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(c) Smooth trajectory and behaviour in wall-following scenarios when the discontinuities 

are augmented 

Figure 7.34 Performance improvement by applying FDTs to navigation and wall-following 
tasks where the robot may fail to follow smoothly longs walls due to the absolute 

behaviour arbitration in the hierarchy 
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Figure 38 Navigation in an environment where the robot encounters long walls, corners 
and edges, and is able to manoeuvre around towards the target 

Figure 37 Target-seeking in an unseen environment 
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Appendix A 

Generic rule set: 

gt,: IFD2=SF A D, =SF A D3=SF A D4=VFTHEN e= TFW. 

gt2: IFD2=SF A D, =SF A D3=SC A D4=VFTHEN 0 =TSR. 

In order to compute the overall (highest) firing strength, µc(y), the list of all possible 

contributive rules is considered. For simplicity, only the rule antecedents (firing strengths), 

µcß (y), are with the aid of membership functions computed and applied to a single output 

fuzzy set to avoid repetitions. Hence, the resultant fuzzy rule set would be: 

9t,: IFD2=SF A D, =SF A D3=SF A D4=VF UCl(y) =min(1.0,0.95,0.8,0.85)=0.8 
912: IF D2 SF A D1 SF A D3 SF A D4= SF µC2 (y) = min (1.0,0.95,0.8,0.25) = 0.25 

ß't3: IF D2 = SF A D1 = SF A D3 = SC A D4= VF µC3 (y) = min(1.0,0.95,0.1,0.85) = 0.1 

914: IF D2 = SF A D, = VF A D3 = SF A D4= VF µC4 (y) 
= min(1.0,0.5,0.8,0.85) = 0.5 

Sts : IF D2 = VF A D, = SF A D3 = SF A D4= VF Ups (y) = min(0.3,0.95,0.8,0.85) = 0.3 
X916 : IF D2 = SF A D, = SF A D3 = SC A D4= SF 

IUC6 
(y) = min(1.0,0.95,0.1,0.25) = 0.1 

9t7: IFD2=SF A D, =VF A D3 SF A D4=SF JIC7(y) = min(I. 0,0.5,0.8,0.25) = 0.25 

9t : IFD2=VF A D, = SF A D3 SF A D4= SF / C8(y) =min(0.3,0.95,0.8,0.25)=0.25 
9t,: IFD2=SF A D, =VF A D3 SC A D4= VF PC9(y) = min(1.0,0.5,0.1,0.85)=0.1 
9t, () : IF D2 = VF A D, = SF A D3 = SC A D4= VF Pc (y) = min(0.3,0.95,0.1,0.85) = 0.1 

9t,,: IFD2=VF A D, =VF A D3=SF A D4=VF PC,, (y) =min(0.3,0.5,0.8,0.85)=0.3 
9t, 2 : IF D2 = SF A D, =VF A D3=SC A D4= SF UC12 (y) = min(1.0,0.5,0.1,0.25) = 0.1 

9i, 3: IFD2=VF A D1 = SF A Dj=SC A D4= SF PCI3(y) =min(0.3,0.95,0.1,0.25)=0.1 
91l4: IF D2 = VF A D, =VF A D3 = SF A D4= SF µC14 (y) = min(0.3,0.5,0.8,0.25) = 0.25 

9t, 5: IFD2=VF A D1 =VF A D3=SC A D4=VF UCis(y) =min(0.3,0.5,0.1,0.85)=0.1 
9t, 6: IF D2 = VF A D1= VF A D3 = SC A D4= SF µC16 (y) = min(0.3,0.5,0.1,0.25) = 0.1 

µc(y) = 

max 
µc, (Y)' Uc2 (Y)' µc3 (Y)' µc4 (Y)' µc5 (Y)' µc6 (Y), µc, (Y)4 µcß (Y)9 µcy (Y)' /cI( (Y)v 

= 0.8 
µcß. (Y)' Pcý2 (Y)' µc 3 

(Y)' µc4 (Y)' µc. 5 
(Y)+ µc16 (Y) 



Chapter 7: Hybrid Learning 224 

Appendix B 

ing 15-fold cross-validation: 

Assigning instances to folds... 
Running cross-validation; 

.............. Run Modes XTsts Insts Acc 

-- --- --- --- --- ------- 
1: 43.00 5.29 18.00 83.33 
2: 43.00 5.47 18.00 88.89 
3: 43.00 5.51 18.00 72.22 
4: 43.00 5.17 18.00 66.67 
5: 43.00 5.53 18.00 100.00 
6: 41.00 5.51 18.00 61.11 
7: 43.00 5.47 18.00 88.89 
8: 43.00 5.54 18.00 88.89 
9: 39.00 5.15 17.00 88.24 

10: 45.00 5.60 17.00 82.35 
11: 37.00 5.38 17.00 70.59 
12: 43.00 5.11 17.00 76.47 
13: 43.00 5.37 17.00 82.35 
14: 43.00 5.51 17.00 82.35 
15: 43.00 5.44 17.00 94.12 

Avg 42.33 5.40 17.53 81.76 (iti-incremental) 
SDv 1.95 0.16 10.63 (iti-incremental) 

ing 15-fold cross-validation: 

Assigning instances to folds... 
Runn ing cross-validation: 
.. Run ....... Nodes .. XTsts Insts Acc 

1: 43.00 5.48 18.00 88.89 
2: 43.00 5.33 18.00 83.33 
3: 41.00 5.50 18.00 77.78 
4: 43.00 5.48 18.00 77.78 
5: 35.00 5.53 18.00 77.78 
6: 43.00 5.25 18.00 88.89 
7: 43.00 5.54 18.00 61.11 
8: 43.00 5.22 18.00 83.33 
9: 41.00 5.44 17.00 64.71 

10: 43.00 5.40 17.00 88.24 
11: 43.00 5.35 17.00 82.35 
12: 43.00 5.51 17.00 94.12 
13: 43.00 5.15 17.00 88.24 
14: 43.00 5.35 17.00 88.24 
15: 43.00 4.96 17.00 88.24 

42.20 5.37 17.53 82.20 (iti-incremental) 
2.11 0.16 9.22 (iti-incremental) 

Table B. 1 Results from two consecutive runs of 15-fold cross-validated unpruned tree 

shown in Figure 7.14 
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ing tree & turning on virtual pruning. 

Performing 15-fold cross-validation: 

Assigning instances to folds... 
Running cross-validation: 
.............. Run Nodes Xlsts Insts Acc 

1: 23.00 4.55 18.00 94.44 
2: 25.00 4.46 18.00 77.78 
3: 23.00 4.40 18.00 72.22 
4: 27.00 4.84 18.00 83.33 
5: 27.00 4.88 18.00 94.44 
6: 27.00 4.98 18.00 88.89 
7: 27.00 4.96 18.00 66.67 
8: 27.00 5.03 18.00 77.78 
9: 27.00 4.98 17.00 88.24 

10: 27.00 5.02 17.00 70.59 
11: 25.00 4.48 17.00 88.24 
12: 27.00 5.02 17.00 76.47 
13: 27.00 4.98 17.00 94.12 
14: 25.00 4.49 17.00 88.24 
15: 25.00 4.65 17.00 82.35 

Avg 25.93 4.78 17.53 82.92 (iti-incremental) 
SDv 1.49 0.24 9.01 (iti-incremental) 

ng tree & turning on virtual pruning. 

15-fold cross-validation: 

Assigning instances to folds... 
Runn ing cross-validation: 

.. Run ....... Nodes .... XTsts 
------ 

Insts 
------- 

Acc 
----- ---- 

1: 
------- 
25.00 

- 
4.95 18.00 66.67 

2: 27.00 5.06 18.00 77.78 
3: 27.00 4.89 18.00 94.44 
4: 23.00 4.49 18.00 66.67 
5: 33.00 4.91 18.00 72.22 
6: 25.00 4.74 18.00 94.44 
7: 27.00 4.81 18.00 94.44 
8: 23.00 4.22 18.00 88.89 
9: 23.00 4.54 17.00 76.47 

10: 25.00 4.59 17.00 88.24 
11: 27.00 4.99 17.00 88.24 
12: 27.00 4.77 17.00 88.24 
13: 23.00 4.41 17.00 82.35 
14: 23.00 4.54 17.00 94.12 
115: 27.00 4.86 17.00 82.35 

Avg 25.67 4.72 17.53 83.70 (iti-incremental) 
SDv 2.69 0.24 9.81 (iti-incremental) 

Table B. 2 Results from two consecutive runs of 15-fold cross-validated pruned tree 
shown in Figure 7.14 

In both tables, the column "Acc" specifies the prediction accuracy of each block, and the 

element (Avg, Acc) specifies the average prediction accuracy of each the run (averaged 

over 15 blocks). 
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Appendix C 
Fuzzy training examples collected from the training stage describing (partially) w2. 

VF, VF, VF, VC, VC, CL, RI, TLE. 
VF, VF, SF, SF, SF, VF, SR, TLB. 
VF, VF, VC, VC, VF, SC, SR, TLB. 
VF, VF, VF, SC, VC, VF, RI, TLE. 
VF, VF, VF, SC, VC, VF, RI, TRB. 
VF, CL, VC, VC, VF, VF, SR, TLB. 
VF, VF, CL, VC, VC, SF, RI, TLB. 
VF, VF, CL, VC, VC, VF, RI, TLB. 
VF, SC, SC, VF, VF, VF, RI, TRB. 
VF, SF, VC, VF, VF, VF, FR, TFW. 
VF, CL, VC, SC, VF, VF, FR, TLB. 
VF, VF, VC, VC, SC, VF, SR, TLB. 
VF, VF, VF, SC, VC, VC, RI, TFW. 
VF, VF, VF, VC, VC, VC, RI, TFW. 
VF, VF, VF, CL, VC, VC, RB, TLB. 
VF, SC, SC, VF, VF, VF, FR, TSR. 
VF, VF, VC, VC, VC, VC, RB, TLB. 
VF, VF, VF, CL, VC, VC, RB, TLB. 
SF, VF, SF, VF, VF, VF, FR, TRI. 
VC, VF, SF, VF, VF, VF, SL, TRI. 
VC, SC, SF, SF, VF, VF, SL, TLB. 
VF, VC, VF, VF, SF, VF, FR, TRB. 
SF, VF, VF, SF, VF, VF, FR, TLE. 
VF, VF, VC, VC, CL, VF, RB, TLB. 
VF, VF, VF, CL, VC, CL, RB, TLE. 
VF, SF, VF, VF, VC, CL, RI, TLE. 
VF, VF, SF, SF, VF, VC, RI, TLB. 
VF, VF, SF, SF, SF, VF, RB, TLB. 
VF, VF, VF, SC, VC, VF, FR, TLE. 
VF, VF, VF, SF, SF, VF, FR, TLB. 
VC, SC, SF, VF, VF, VF, SL, TLB. 
VF, VC, SC, VF, VF, VF, FR, TRB. 
VF, VF, CL, VC, CL, SC, RI, TLB. 
VF, VC, CL, SF, VF, VF, SL, TLB. 
VF, VF, VC, VC, SF, VF, SR, TLB. 
VF, VF, SF, CL, VC, CL, RI, TLB. 
VF, VF, VF, SF, SC, VF, SR, TLE. 
VF, SF, VC, SF, VF, VF, RI, TFW. 
VF, CL, VC, VC, VF, VF, RI, TLB. 
VF, VF, CL, VC, VC, VF, RI, TLB 
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Lhapter 8 . 

Conclusions and 
Further Work 

There are no facts, 
only interpretations. 

F. Nietzsche 
Nachlaß 

This chapter summarises the author's contribution of new knowledge which relates to 

the design and development of an intelligent control strategy for an autonomous 

robot. It also discusses the results obtained from the implementations of the learning 

systems described in chapters 4,5 and 7, and compares the performances of the alternative 

methods. The potential applications in which the proposed techniques can be employed are 

discussed and areas of further research are identified. 
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8.1 Conclusion 
The aim of this work was to establish a novel intelligent reactive strategy for the control 

and navigation of an autonomous robot. To achieve this, the work formulated the 

methodology of Hierarchical Learning and Knowledge Decomposition in the frame of a 

reactive architecture, in which intelligence is distributed in a hierarchy of behaviour 

complexities accessible to the intelligent agent. The methodology of concept learning was 

employed to establish these layers and they were implemented in decision trees (DTs). 

Learning was initiated in the lowest layer of the hierarchy (the world with no obstacles) in 

order to establish the survival instinct in which the aim is simply to find a set target (target- 

seeking behaviour). Knowledge propagated up the hierarchy during the training of the 

robot to enable it to learn complex behaviours in worlds containing obstacles. The novel 

contributions of the research carried out in this work are summarised below and are 
discussed in detail in the following sub-sections. 

" Introduction of an off-line hierarchical learning approach employing knowledge 

decomposition. 

" On-line implementation of the learning concept in realistic environments. 

" On-line implementation of adaptive fuzzy DTs for behaviour fusion. 

" Introduction and implementation of multi dimensional fuzzy associative memories 
(MDFAMs) to deal with highly non-linear fuzzy input spaces as well as to fuse these 

to lower dimensions. 

Off-line hierarchical learning approach 
The novel approach of hierarchical learning was first introduced and applied (see chapter 
4) to a robot and environment about which a number of simplifying assumptions were 

made. This was used to demonstrate qualitatively the feasibility and robustness of the 
learning approach rather than to develop a navigation system with an optimal response in a 

representative range of perception examples. The training process was performed off-line, 
in that the robot was first trained in an environment by letting it explore its surroundings to 

collect training data. This process was used to grow DTs in an off-line manner which were 

then embedded in the control system and subsequently applied to navigation in unseen 
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situations. The performance of the robot in navigation tasks is hence reflected in the quality 

of its trajectories, and the robustness of the DT hierarchy. 

Experimental results (presented in section 4.10) proved the validity of the approach, in that 

the robot was always able to find its target from any arbitrary position while avoiding 

obstacles. However, due to the assumptions made in the implementation, and in particular 

the low resolution of the working space, the quality of the trajectories was rather sub- 

optimal. However, due to the limited number of feature values which resulted, the trained 

DTs were small and could be built with a moderate number of training examples (the 

maximum required in the tests was 132). 

On-line learning in realistic environments 
The learning algorithm was then modified (see chapter 5) to operate in an on-line and in an 

incremental fashion in such a way that the DTs in the hierarchy were able to behave 

adaptively as new knowledge was gained. In this approach, ITI-2.8 was integrated into the 

control architecture to provide on-line learning, and the simplifying assumptions made 

previously were removed and a continuous environment was considered. Structurally, the 

increase in problem complexity was evident in the larger number of dimensions found in 

the trees following training. In general, an increase in the number of nodes in a DT is 

reflected in the greater specialisation of the DT, which in turn reduces its predictive power. 

To reduce the influence of this effect, post-pruning was performed when the total number 

of the training examples exceeded a set threshold. This kept the size of the DTs under 

control without losing classification accuracy, which was confirmed in the results by a 15- 

fold cross-validation following truncation. 

Operationally, as the behaviours were being formed gradually, the adaptive behaviour 

showed an incremental improvement in the robot trajectories. In this approach, realistic and 

real-world suppositions were made in order to model the robot behaviour in the face of 

uncertainty and non-linearities. The experimental results (see section 5.10) confirmed that 

the learning system was robust and able to cope with non-linearities, both multiple-valued 

and multi-variant control parameters, and with a continuous environment. In contrast to the 
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off-line learning mode, the incremental improvement of the robot behaviour, even in the 

training phase, was evident in the generated trajectories. 

However, one shortcoming (inherent in basic reactive strategies [1,2]) which was also 

observed in the operation of this approach was the problem of unsmooth or "zigzag" 

behaviour exhibited by the robot while following long walls. This arose due to the absolute 

behaviour arbitration within the hierarchy in scenarios where two behaviours activated 

each other alternatively. This problem was removed in the last stage of the development by 

introducing fuzzy logic and reasoning into the hierarchy, and this is discussed in the 

following section. 

Adaptive fuzzy DTs for behaviour fusion 

The outcome of introducing fuzziness into the hierarchy (see chapter 7) was a hybrid fuzzy- 

DT (FDT) learning system that combined symbolic learning and approximate reasoning for 

decision making in the face of partial information, uncertainty and noisy sensory data. The 

rationale of the hybrid system design was two-fold. 

" To provide a more efficient noise rejection mechanism. 

" To blend conflicting behaviours in order to suppress zigzag motions and to replace 

these with smooth trajectories [3]. 

In the vast majority of practical applications in which noise and non-linearity were present, 

implementations using fuzzy logic have been shown to outperform other non-conventional 

control strategies [4]. This effect has been demonstrated in the results achieved in the 

current work using the hybrid technique. FDTs have shown that they are able to blend 

conflicting behaviours by generating smooth trajectories and by being able to cope more 

efficiently with noisy data. 

Although the number of dimensions of the total input space is now larger due to the 

introduction of a new and multiple-valued fuzzy variable (the distance values associated 

with each sensor), there is no significant increase in the size of FDTs compared with that of 

the pure DTs (chapter 5). This is largely the result of the production of the FDTs using ITI- 

2.8 which is able to generate relatively smaller trees. These results confirmed that DT- 



Chapter 8: Conclusions and Further Work 231 

based hierarchical learning orchestrated by fuzzy reasoning has the capability to deal with 

non-trivial real-world problems such as efficient noise cancellation, approximate reasoning 

and behaviour fusion. The results obtained were also very encouraging (as far as simulated 

environments are concerned), and of great value for further application in a real physical 

robot. 

MDFAMs for the management of non-linear fuzzy input spaces 
Another concept which is of a more fundamental significance in that it is applicable to a 

wide variety of fuzzy based intelligent systems, is the concept of multi dimensional fuzzy 

associative memory (MDFAM) which was also introduced and advocated in this work. As 

discussed in chapter 7, this approach provides an improved representation compared to that 

of linear nested FAMs [5]. MDFAMs are able to learn and to accommodate linguistic fuzzy 

rules whose antecedents are highly non-linear and comprise multi-variant parameters. Due 

to the characteristics of DT learning, these are also able to fuse highly non-linear input 

parameters to a number of representative parameters describing a certain concept. 

MDFAMs formed the underlying theory of fuzzy decision trees applied to robot control 

and navigation in this work. 

8.2 Comparison of the alternative techniques 
The experimental results reveal that the learning speed (number of training epochs) varies 

in the same proportion between layers in the hierarchy, regardless of the operation mode 

(on-line or off-line). In a given layer, the learning speed appears to depend on two factors, 

namely the number of input parameters to the learning algorithm and whether and to what 

extent meta-knowledge is available during training. This is most evident in the first layer, 

namely wo, which represents the environment without obstacles. This layer appears to need 

the longest time of all layers to find almost all of the representative vectors, even though 

there is only one input parameter (the relative location of the target) to the learning 

algorithm and the associated DT is a linear tree. In general, the learning time decreases as 

one advances further up the hierarchy. The fact that longer training times are required in 

the first layer of the hierarchy and much shorter times (considering the non-linearity of the 

input space) in the higher layers can be attributed to the fact that the DT in the first layer is 

learned from inception, but as training proceeds to the higher layers, learning speed is aided 
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by the availability of an ever increasing wealth of meta-knowledge gained from the 

preceding layers. 

Another aspect which is implicitly formulated into the structure of the generated DTs, and 

explicitly reflected in the coherence of the robot trajectories, is the quality of the learned 

knowledge. Capturing the most representative training vectors in the first layer of the 

hierarchy, wo, is an important foundation in the production of coherent knowledge in the 

higher order worlds. This does not necessarily mean that the size of the DT for wo should 

be so large that it incorporates all the training vectors describing wo, rather that it should be 

sufficiently general in structure to encode the necessary representative training vectors. 

Comparing the hybrid technique (FDT) with the other two approaches (and particularly the 

on-line learning approach which is more comparable in its application), a significant 

improvement in the robot behaviour can be observed without introducing any major 

additional computational cost. FDTs can also use heuristics or common sense knowledge 

as the learning seed to reduce training time. Due to the linguistic nature of both the learning 

module and the fuzzy control, the generated FDTs are able to represent the control laws in 

the form of a set of intelligible rules which is important to users who require a transparent 

model of the control algorithm applied. 

8.3 Potential application areas 
The performance of the DT-based hierarchical learning, and the hybrid system in particular, 

proved to be robust and efficient in both control and navigation tasks. The next stage of the 

work would be to implement this learning mechanism in real-world navigation problems. 

The nature of this hybrid system suggests a number of areas in which its capabilities can be 

exploited, and put to the test, and these are as follows. 

" Implementation in service robots. 

" Implementation in manufacturing, intelligent transportation and factory automation. 

" Application to intelligent control systems, in which either mode of operation can be 

employed (on-line or off-line learning), depending on the nature of the task. 
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In the above application areas, the second is perhaps the most suitable application for initial 

exploration as it can be investigated without the need to make major changes to the system 

architecture. One possibility is that the system could be applied as an intelligent alternative 

to "unintelligent" and pre-planned automatically guided vehicles (AGVs) which usually 

navigate inductively by following a fixed path of electrical wires and are typically used for 

the transportation of sub-assemblies in the manufacturing sector, and assume an 

unchanging environment. However, they are not flexible in their operation and can be 

expensive to install as they need to work in specially engineered environments. 

The intelligent system introduced in this work can be used to replace the control 

architecture of AGVs to enable them to manoeuvre around obstacles and to make suitable 

decisions in highly dynamic environments such as manufacturing areas. As the intelligent 

algorithm does not require any pre-path planning or map making, no specific areas of the 

shop-floor would need to be allocated to the AGVs. Such an implementation would also 

save on hard wiring costs associated with current AGVs. 

The concept of FDT learning has application to a large number of control systems, 

particularly those in which the plant dynamics are unknown, highly non-linear or difficult 

to model. In such a case, a set of heuristics (as an objective function) can be used to initiate 

the incremental learning of the controller. The controller developed in this way has a 

distinctive advantage compared with other model-based control systems such as those 

based on neural networks, in that the learned control rules are available and intelligible to 

the user. This would also aid the user in the identification of mis-classifications of control 

parameters which may have arisen as the result of firing control rules specified by a DT. 

8.4 Suggestions for further research 
Scientific research is an ongoing process in which existing knowledge is refined and to 

which new knowledge is contributed. In carrying out the work presented in this thesis, a 

number of research areas can be identified for further investigation. 

The most immediate work would be to implement the hybrid system on a real robot and to 

evaluate its behaviour in structured (office areas and corridors) as well as in unstructured 

and dynamically changing environments. Given a reliable dead-reckoning system, the 
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results of self-learning in unstructured environments can be investigated, enabling a 

qualitative comparison to be made with the system performance when simulated learning 

results are transferred to the real robot. The comparison results would provide a suitable 
benchmark to indicate the robustness of the system in real-world scenarios. 

A more challenging task would be to investigate the increase in the robot's degrees of 

freedom (using the same learning architecture) by adding a manipulative task to the 

repertoire of robot behaviour. This would also modify the current system's structure from a 
MISO system to a MIMO system, that is, the training examples would be identified with 

more than one class each of a different nature. 

Since the majority of the currently available DT learning systems operate on single output 
training examples, this in itself would provide a suitable motivation for a theoretical 

investigation and implementation of MIMO-based DTs. The introduction of a MIMO- 

based hierarchical learning may suggest the introduction of neural networks (NNs) or 

genetic algorithm (GAs) into the system to replace DTs. 

NNs and GAs both have the ability to perform learning and optimisation. By replacing the 

DT hierarchy by an array of NNs, the principal learning approach (knowledge 

decomposition) would remain intact. This means that a hierarchy of locally and behaviour- 

based NNs are trained and grown in an incremental manner, in which each NN would be 

used to provide meta-knowledge to train and to initiate the next and more complex NN in 

the hierarchy. The topology of the NNs in the hierarchy would depend on the 

dimensionality of the input-output space which in turn is determined by the number of the 

control parameters. 

As discussed previously, the experimental results demonstrated that the learning 

convergence in the first layer of the hierarchy, wo (the environment without obstacles), is 

relatively slow compared with that of other DT networks and this is due largely to the 

absence of meta-knowledge. The introduction of a MIMO system may further increase the 

convergence time of this layer. Techniques for training NNs have been the subject of much 

research, and to suppress the slow convergence in the first NN layer of the hierarchy would 
be to use a learning algorithm such as conjugate gradients [6] with fast convergence 
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abilities. Although its implementation involves additional computational cost in that the 

Hessian of the function and its gradient need to be found, the algorithm may reduce 

convergence time in the first layer. The learning algorithms used in the higher NN layers of 

the hierarchy may not require application of the conjugate gradient algorithm, as the meta- 

knowledge gained in the previous NN layers would largely compensate the slow 

convergence of standard learning algorithms such as back-propagation. 

The use of GAs in the hierarchical structure could also be investigated as an alternative to 

DTs or NNs. One distinct advantage of GAs in learning from a population of training 

examples is its ability to perform global search and, from this, to identify the global 

maximum or minimum of a desired function. They are also able to provide a population of 

potential solutions (which may not be necessarily optimum) to a given task. The 

disadvantage of the basic GA algorithms is their slow speed in finding the solution 

population if the dimensionality of search space is large, although this problem can be 

tackled by applying parallel GA algorithms and pre-partitioning the search space. In 

hierarchical structure, a hybrid version of GAs and DTs could be used (keeping the 

learning principle of knowledge decomposition intact) in order to generate layers of 

genetically learned knowledge. One advantage of this method would be rapid convergence 

and the identification of a solution population in each layer. DTs can be used to store, 

manage and fuse (keep the most representative chromosomes in each solution population 

and discard the rest) the solution populations. Training of the higher layers can be 

accomplished in the same manner as already described, by using the optimised 

chromosomes stored in the previous layer to form the initial population of the learning 

process for the next layer. A comparison with the purely DT approach could be carried out 

to assess its performance. 
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