pfc_ddft.pdf (1.33 MB)

Deriving phase field crystal theory from dynamical density functional theory: consequences of the approximations

Download (1.33 MB)
journal contribution
posted on 29.08.2019, 08:42 by Andrew Archer, Daniel Ratliff, Alastair M Rucklidge, Priya Subramanian
Phase field crystal (PFC) theory is extensively used for modelling the phase behaviour, structure, thermodynamics and other related properties of solids. PFC theory can be derived from dynamical density functional theory (DDFT) via a sequence of approximations. Here, we carefully identify all of these approximations and explain the consequences of each. One approximation that is made in standard derivations is to neglect a term of form ∇ · [n∇Ln], where n is the scaled density profile and L is a linear operator. We show that this term makes a significant contribution to the stability of the crystal, and that dropping this term from the theory forces another approximation, that of replacing the logarithmic term from the ideal gas contribution to the free energy with its truncated Taylor expansion, to yield a polynomial in n. However, the consequences of doing this are: (i) the presence of an additional spinodal in the phase diagram, so the liquid is predicted first to freeze and then to melt again as the density is increased; and (ii) other periodic structures, such as stripes, are erroneously predicted to be thermodynamic equilibrium structures. In general, L consists of a nonlocal convolution involving the pair direct correlation function. A second approximation sometimes made in deriving PFC theory is to replace L by a gradient expansion involving derivatives. We show that this leads to the possibility of the density going to zero, with its logarithm going to −∞ whilst being balanced by the fourth derivative of the density going to +∞. This subtle singularity leads to solutions failing to exist above a certain value of the average density. We illustrate all of these conclusions with results for a particularly simple model two-dimensional fluid, the generalised exponential model of index 4 (GEM-4), chosen because a DDFT is known to be accurate for this model. The consequences of the subsequent PFC approximations can then be examined. These include the phase diagram being both qualitatively incorrect, in that it has a stripe phase, and quantitatively incorrect (by orders of magnitude) regarding the properties of the crystal phase. Thus, although PFC models are very successful as phenomenological models of crystallisation, we find it impossible to derive the PFC as a theory for the (scaled) density distribution when starting from an accurate DDFT, without introducing spurious artefacts. However, we find that making a simple one-mode approximation for the logarithm of the density distribution log ρ(x) (rather than for ρ(x)), is surprisingly accurate. This approach gives a tantalising hint that accurate PFC-type theories may instead be derived as theories for the field log ρ(x), rather than for the density profile itself.

Funding

L’Oréal UK and Ireland Fellowship for Women in Science

EPSRC grant EP/P015689/1

EPSRC grant EP/P015611/1

Leverhulme Trust (RF-2018-449/9, AMR)

History

School

  • Science

Department

  • Mathematical Sciences

Published in

Physical Review E

Volume

100

Issue

2

Publisher

American Physical Society

Version

AM (Accepted Manuscript)

Rights holder

© American Physical Society

Publisher statement

This paper was accepted for publication in the journal Physical Review E and the definitive published version is available at https://doi.org/10.1103/PhysRevE.100.022140.

Publication date

2019-08-28

Copyright date

2019

ISSN

2470-0045

eISSN

2470-0053

Language

en

Depositor

Prof Andrew Archer

Article number

022140

Exports

Logo branding

Categories

Exports