
Description Logic based Knowledge Merging for

Concrete and Fuzzy Domain Ontology
Sri Krishna Kumar* and J. A. Harding*ϯ

*Wolfson School of Mechanical Engineering, Loughborough University, UK

ϯ
Communicating Author: J.A.Harding@lboro.ac.uk

Abstract:

Enterprises, especially virtual enterprises (VEs) are nowadays getting more knowledge

intensive and adopting efficient Knowledge management (KM) systems to boost their

competitiveness. The major challenge for KM for VEs is to acquire, extract and integrate

new knowledge with the existing source. Ontologies have been proved to be one of the

best tools for representing knowledge with class, role and other characteristics. It is

imperative to accommodate the new knowledge in the current ontologies with logical

consistencies as it is tedious and costly to construct new ontologies every time after

acquiring new knowledge. This paper introduces a mechanism and a process to

integrate new knowledge in to the current system (ontology). Separate methods have

been adopted for fuzzy and concrete domain ontologies. The process starts by finding

the semantic and structural similarities between the concepts using Wordnet and

Description logic (DL). DL-based reasoning is used next to determine the position and

relationships between the incoming and existing knowledge. The experimental results

provided show the efficacy of the proposed Method.

Keywords: Description Logic, Fuzzy Logic, Fuzzy-DL, Knowledge Merging, Knowledge

Management, Ontology

INTRODUCTION:

 In the current era of globalization industries are facing stiff competition through

shorter product life-cycles, volatile markets and swift technological advancement.

Under these circumstances, enterprises are collaborating to form large supply chain

networks or virtual enterprises (VE). Such networks or VEs allow enterprises to

provide advanced and multifaceted products or services to customers whilst focusing

on their core-competencies and collaborating for other complementary aspects to

remain competitive in the market. However, managing and operating a successful VE

can be more complex than managing the individual member enterprises and strong

communication, cooperation & collaboration in-line with interoperability is required

between the member enterprises.

A successful VE needs to develop a mechanism for seamless transfer of data,

information and knowledge among member enterprises1. Information and

communication technology (ICT) can help to achieve collaboration in VEs at a technical

level2 whilst ontologies have been proved to be important tools at the semantic level.

Generally each individual enterprise builds its own ontology, based on the domain of

their operation, to represent the enterprise’s knowledge. It is imperative that enterprise

ontology should holds two features: 1. Interoperability (current aspect): to be able to

collaborate with other enterprises and 2. Maintenance (continuous or on-going aspect):

to accommodate new knowledge. Interoperability means that information and

knowledge transferred using ontologies need to be understood accurately, i.e. with

correct intention and extension3. However, as ontologies may be developed

independently to suit personnel requirements, it is impossible to avoid heterogeneity in

the terminology used for concepts and their relation and mappings between ontologies

are required to interrelate different concepts and to achieve interoperability. Many

mapping techniques have been adopted and proposed, in the literature, to achieve

uniformity and to tackle interoperability of the enterprise ontologies (current aspect)4-5.

 Nowadays knowledge has become one of the most precious resources for any

enterprise. However, this knowledge is more valuable if it can be made inferable and

deducible. The future success of enterprises is coupled with their knowledge assets so

enterprises need to accumulate knowledge (or create knowledge) from information e.g.

by updating their knowledge in the form of ontology. According to Mo and Zhou6,

knowledge is power and its proper management is necessary to preserve valuable

content, learn new things, solve problems, consolidate core competency and discover

and implement new technologies. Enterprises should be able to maintain their

ontologies to accommodate new knowledge to stay competitive and successfully

collaborate in VEs not only in the current time but also in the future. For this reason,

maintenance of ontology is termed as a continuous or on-going aspect of virtual

enterprises.

Ontologies definitely play important roles in knowledge management7, but the

knowledge discovery possess is equally important to identify and accommodate new

knowledge within existing ontologies. The discovered knowledge will not be useful

unless it is mapped semantically and structurally with the existing ontologies. To merge

knowledge correctly, both the syntax and semantics must be considered, in order to:

1. Deduce similar or new concepts

2. Deduce the possibility of merging concepts, i.e. by restructuring an ontology.

3. Achieve logically consistent mappings.

 This paper tackles all three of these problems and develops a mechanism for ontology

mapping in the same domain i.e. by enhancing the enterprises’ knowledge by

accommodating new knowledge into an existing ontology. Moreover, this paper tackles

the above problem by using the Description Logic (DL) paradigm as enterprises are

increasingly using OWL (web ontology language) to store, use and transfer data and

knowledge through the web and OWL is based on DL which is a fragment of first order

logic (FOL). The proposed approach can be widely applicable in E-Commerce8, product

design9, product development10 and medical domain11, where new information is being

gathered with time. Ontology based knowledge merging approach, proposed here, will

help in making their knowledge bases coherent. Furthermore, nowadays enterprises are

moving from traditional product lifecycle management (PLM) to knowledge based PLM,

in which ontologies play a crucial role12. This approach can help enterprises in updating

their knowledge bases for improved and efficient knowledge based PLM.

The next section reviews in detail the current progress in the area. Section 3 gives the

preliminaries about ontology construction methods (DL, fuzzy logic, fuzzy-DL) and

Wordnet used to identify the meaning and relation of the words used for concept

creation. Section 4 describes a method for finding similarity between concepts. The

process of merging and reconfiguration is dealt with in section 5. The proposed

techniques have been implemented and they are demonstrated through an example

which is presented in section 6 and section 7 concludes the paper.

LITERATURE SURVEY:

Exhaustive surveys have been carried out on KM13-14 and its tools15. KM in enterprises is

mostly tackled at the subjective level and this can be divided in three different stages: 1.

Knowledge creation 2. Ontology development for new knowledge and 3. Merging new

knowledge in the existing sources.

Knowledge plays a significant role in the organizational performance16. Due to the

widespread application of different information systems, a large amount of different

knowledge is accumulated during collaboration between enterprises. One of the most

important factors in knowledge management is knowledge discovery. Proliferation of

data has created a completely new and different area of knowledge management17

requiring the extraction of knowledge from abundant data and the organization and

merging of this knowledge with existing knowledge. Existing knowledge supports

organizations in creating new knowledge and updating the overall knowledge base18.

Knowledge discovery includes discovering implicit knowledge from the data, often

using Data Mining techniques to extract knowledge from data sources. Exhaustive

literature surveys illustrate that Knowledge Management frameworks, Knowledge-

based systems (KBS), information and communication technology (ICT), artificial

intelligence and expert systems, database technology etc. have all been adopted by

enterprises to exploit knowledge in order to solve their current problems and enhance

their expertise. A detailed review has been done by Liao15. Pollalis and Dimitriou4 first

proposed the different initiatives needed for knowledge creation and then developed

the requirements at each stage of the KM-lifecycle.

Ontology based frameworks have been proven to be the ideal tools for knowledge

representation as they provide uniform frameworks to identify similarities and

differences between different entities in the specific domain9. Many researchers have

proposed different methodologies for ontology creation from new knowledge. Huang

and Diao19 proposed a methodology for creating a Concept Map based ontology

construction method for knowledge integration. This accumulates knowledge in the

business processes and rules and constraints are implemented using SWRL (semantic

web rule language). However to implement this in the VE scenario, enterprises need to

reconstruct their ontology every time they move to a new collaboration. Ling et al.20

proposed an ontology-based method to build an integrated knowledge base from

heterogeneous sources operating in a single domain. Rajsiri et al.21 developed a

knowledge based ontology model for the collaborative business process model. A

distributed enterprise system framework for KM is developed by Ho et al.22 (2004).

Pirro et al.23 developed a framework for creating, managing and sharing knowledge

within an organization with a distributed functional system. Mo and Zhou6 developed

tools and methods for managing the intangible knowledge of VE. Ling et al.20 proposed

an ontology based method for knowledge integration in a collaborative environment.

They used heterogeneous ontologies to build domain ontology, i.e. by merging them and

through inconsistency elimination. Chen et al.24 used Wordnet and fuzzy formal concept

analysis for merging domain ontologies. Raunich and Rahm25 proposed the ATOM

(Automatic Target-driven Ontology Merging) for integration of multiple ontologies. The

process was based on the equivalent relation between source and target taxonomy and

merging them preserving the target taxonomy. PROMPT26 uses the class-name

similarities and relies on user for specific merge operation whereas, OntoMerge27 uses

the bridge ontology concept for ontology merging.

 It has been widely reported that classical ontologies are not appropriate to deal with

imprecise and vague knowledge inherent to several real world domains28. It is

necessary to merge knowledge in an enterprise, not only for concrete domains, but also

for fuzzy domains. Recently approaches have been reported for extending and

reasoning with ontologies in fuzzy domains28-30.

 It is clear from the literature survey that the 3rd stage of the KM in enterprises, i.e.

merging new knowledge in the existing ones has been given little or no attention. This

paper, introduces a method to map discovered knowledge with existing knowledge

using an ontology and, if needed, reconfiguring the ontology.

THEORY OF ONTOLOGY:

 This section describes the description logic (DL), fuzzy logic, fuzzy-DL and Wordnet

used in this paper. DL is a decidable fragment of first order logic which acts as a

backbone for ontology development. Fuzzy logic and consequently fuzzy-DL deal with

the vague knowledge. Wordnet is helpful in finding semantic similarity between words.

A detailed description of each of these approaches is given in the following section.

Description Logic (DL):

Description logic (DL) provides a logical construction for knowledge bases (KB) and is

comprised of Concepts, Roles and Individuals as basic building blocks. DL has been

proved to be most promising for processing, sharing and interpreting knowledge

especially using the web. Ontologies play a key role in constructing KBs in a hierarchical

manner of concepts and roles in a particular domain.

The formation of a KB in DL starts by defining the atomic concepts and atomic roles.

Atomic concepts and roles generally represent the domain specific, self-explainable

entities that are not defined using other concepts and roles (for more detail see Baader

31). Other general concepts and roles are defined using atomic concepts and general

concepts, atomic roles and general roles and constructors (like union, intersection,

quantifiers etc.). For example the concepts (C) are formed from atomic concepts using

top concept (), bottom concept (), negation (A), union (
1 2C Cò), intersection

(
1 2C Có), existential quantifier (.R C), universal quantifier (.R C), cardinality

restriction (. , . n nRC RC) etc. Similarly Roles (R) are constructed from atomic

roles (P), negation (R), transitive (
R), inverse roles (

R) etc. Concepts and roles,

in DL are seen as unary and binary relations such as: C(x) and R(y, z), where x satisfies

the concept C and y and z are in relation R.

However, simple DL is less appropriate in cases of imprecise definition of concepts and

relations (roles) and therefore fuzzy-DL, which is a mixture of fuzzy logic and DL has

been invented.

Integrating KBs does not simply mean joining an existing KB with a new one. Rather it

requires a unified representation of entities (Concepts, Roles and Individuals) in the

merged KB. Moreover, an integrated KB must contain all the valuable knowledge and

must be free from inconsistencies.

Fuzzy Set and Fuzzy logic:

Fuzzy set theory and fuzzy logic32 are widely adopted for capturing vague knowledge.

Unlike the crisp set, where an element is either a member of a set or not, i.e. the binary

(O and 1) relation, a fuzzy set (X) and its members (
1 2
, ,...x x) are related with a

membership function, 0 1: [,]X  . In other words, an element is a member of the set

with a degree between 0 to 1. In a broader sense the crisp set can also be considered as

a fuzzy set which takes only the boundary values 0 and 1.

 Like DL, fuzzy logic also supports operations like complement, union, intersection,

transitivity etc. with the help of strong mathematical principles. A Fuzzy complement

(c) is a unary function defined by 0 1 0 1:[,] [,]c  with interpretation () ()I x I x  . A

Fuzzy complement satisfies the boundary conditions, i.e. 0 1[]c  , 1 0[]c  and is

monotonically increasing, i.e. () ()x y c x c y   . There are many complement

functions defined in the literature, among them are Lukasiewicz negation: 1()c x x 

and Godel complement 1()c x  if 0x  else 0()c x  .

Fuzzy intersection, termed as t-norm, is defined by the function 0 1 0 1 0 1:[,] [,] [,]t  

with interpretation () () ()I x y I x I y   . Fuzzy intersection satisfies the boundary

conditions: 1(,)t x x and 0 0(,)t x  , monotonicity: (,) (,)y z t x y t x z   and other

set theoretic properties like, commutativity: (,) (,)t x y t y x , associativity:

(, (,)) ((,),)t x t y z t t x y z . Most widely used t-norm functions are Lukasiewicz t-norm:

0 1(,) max(,)t x y x y   and product t-norm: (,) .t x y x y .

Fuzzy union, termed as t-conorm, is a function defined by 0 1 0 1 0 1:[,] [,] [,]u   with

interpretation () () ()I x y I x I y   . Similar to fuzzy complement and fuzzy

intersection, fuzzy union also satisfies the boundary conditions: 0(,)u x x , 1 1(,)u x 

and monotonicity. It also follows the commutative and associative rules as in case of

fuzzy intersection. Most commonly used t-conorm functions are Lucksiewicz:

1(,) min(,)u x y x y  , Godel: (,) max(,)u x y x y .

 One of the most important operations in fuzzy logic relating to classical logic is fuzzy

implication. Fuzzy implication is defined by the function: 0 1 0 1 0 1:[,] [,] [,]I   with

interpretation () () ()I x y I x I y   . In classical logic implication A B is

equivalent to A B  or max 0 1{ { , } }t A t B   . In classical logic both are equivalent

but their extension in fuzzy logic leads to S-implication and R-implication respectively

(ref.). Fuzzy implication functions are Luckasiewicz: 1 1(,) min(,)I x y x y   , Godel:

(,)I x y y if x>y , else 1(,)I x y  .

Although, there are many functions related to fuzzy logic, Luckasiewicz, Godel, product

etc., Bobillo and Straccia29 showed the benefit of using Luckasiewicz function and this

paper uses these functions for fuzzy interpretation.

Fuzzy Description Logic:

Fuzzy DL is an extended version of DL where concepts (unary relation) and roles

(binary relations) are extended to fuzzy set and fuzzy binary relations. DL-axioms are

also extended into fuzzy set using degree of truth. Similar to DL, fuzzy-DL consists of

fuzzy-Tbox and fuzzy- Abox. Fuzzy-Tbox consists of the concepts (C, D) and role names

(P, R) along with the general inclusion axioms i.e. ()C D   which means that

concept C is sub-concept of concept D with truth value  where, 0 1[,] . Similarly for

roles ()P R   with 0 1[,] . The fuzzy A-box consists of the fuzzy assertion of

individuals with concept and roles with fuzzy membership value in the form  , where

{ , , , }     and 0 1[,] . Like DL, interpretation of fuzzy-DL
f

I is a pair (,)f fI I
  ,

where fI
 is the fuzzy domain of interpretation and fI

 is interpretation function with

the following characteristics:

For individual a, fIa , For concept C, 0 1: [,]fIIC   , For role R, 0 1: [,]f f fI I IR    .

Comparison between DL and fuzzy-DL interpretation with basic concepts, roles and

constructors is been shown in the table 1. (For more detailed explanations read Stoilos

et. al.,28).

Concepts / Roles DL Interpretation Fuzzy-DL Interpretation

Atomic Concept : A I IA  0 1: [,]I IA  

Top concept: T I 1()IT a 

Bottom concept:   0()I a 

Concept conjunction: C ⊓

D

I IC D () () () ()I I IC D x C x D x ó

Concept disjunction: C ⊔

D

I IC D () () () ()I I IC D x C x D x ò

Concept negation: C \I IC ()IC x!

Atomic role: R I I IR   0 1: [,]I I IR   

Inverse Role: R  {(,) (,)I I Iy x x y R  

0 1

(,) (,)

 : [,]

I I I I I I

I I

R y x R x y 

  

Concept assertion: :a C I Ia C 0 1() [,]I IC a 

Concept Subsumption: C

⊑ D

IC ⊑
ID inf { () ()}

I

I I

x
C x D x





Role Assertion: (a,b):R (,)I I Ia b R 0 1(,) [,]I I IR a b 

Table 1: Comparison between DL and Fuzzy-DL

Wordnet:

Wordnet (wordnet API)33, created by Princeton university, is a dictionary of

semantically similar English words, arranged structurally. Words are characterized

based on the parts of speech- noun, verb, adjective etc. and linked together and

categorized as synonyms, hyponyms etc.

ONTOLOGY SIMILARITY:

 An ontology is the explicit specification of shared conceptualization34 (Gruber, 1993).

In simple words, an ontology is a domain specific knowledge representation specified in

terms of concepts and their relations. An ontology can be represented as : { , , }O C R A

where C is the set of concepts, R is the set of roles and A is the set of axioms. Similarly

a fuzzy ontology can be represented as : { , , }F F

F
O C R A where FR and FA additionally

associate fuzzy membership values between [0, 1].

 In this paper, an ontology O1 is defined as the existing knowledge and O2 as the new

knowledge. Let 1

i
C and 2

j
C be the ith and jth concepts of two ontologies O1 and O2

respectively such that 1

1i
C O and 2

2j
C O . All other notations used in this section are as

follows:

1

i
SynC : Synonym set of 1

i
C , 2

j
SynC : Synonym set of 2

j
C

1

i
HyperC : Hypernym set of 1

i
C , 2

j
HyperC : Hypernym set of 2

j
C

1

i
HypoC : Hyponym set of 1

i
C

, 2

j
HypoC : Hyponym set of 2

j
C

1

i
SC : Set of super concepts of 1

i
C , 1

i
sC : Set of sub concepts of 1

i
C ,

2

j
SC : Set of super concepts of 2

j
C ,

2

j
sC : Set of sub concepts of 2

j
C

 The methodology adopted in this paper for knowledge merging, i.e. ontology mapping

and ontology reconfiguration, is based on two steps. In the first step, a similarity matrix

or index is calculated. In the second step merging and reconfiguration are carried out

based on logical arguments to get a consistent final ontology.

 For calculating the similarity matrix, two parameters have been taken into account:

semantic similarity and structural similarity. Semantic similarity determines how

closely two concept names are linguistically associated, whereas structural similarity

determines the hierarchical relationship (equivalent, super and sub) between new

concepts and concepts of existing ontology. The next section illustrates the process of

calculating semantic similarity, structural similarity and hence the similarity matrix.

Semantic Similarity:

 The Semantic similarity between concepts is defined by the function 1 2 0 1:{ , } [,]
i j

C C  ,

where 1 2

1 2
&

i j
C O C O  . In language two words can be related to each other in various

ways e.g. same root, antonyms etc. However, the synonyms, hypernyms and hyponyms

of two words imitate the equivalent, super and sub relationship of ontological concepts,

and therefore only synonym, hypernym and hyponym relations have been taken into

account for calculating the semantic similarity. As concept names in general do not

contain any fuzziness, rather instances and relations are fuzzy, this paper does not take

fuzziness in the semantic similarity into account. The procedure for semantic similarity

calculation is as follows:

Synonym: 1 2

1
1(,)

i j
C C  , if 1 2

1 2 1 2 1 2
, & &

i j
t t t t t SynC t SynC   

 1 2

1
0(,)

i j
C C  , otherwise

Hypernym: 1 2

2 2
(,)

i j
C C  , {

2
0 1[,]  }, if 1 2

1 2 1 2 1 2
, & &

i j
t t t t t HyperC t HyperC   

 1 2

2
0(,)

i j
C C  , otherwise

Hyponym: 1 2

3 3
(,)

i j
C C  , {

3
0 1[,]  }, if 1 2

1 2 1 2 1 2
, & &

i j
t t t t t HypoC t HypoC   

 1 2

3
0(,)

i j
C C  , otherwise

 Here,
2

 and
3

 are weights given to Hypernym and Hyponym relation. The final

semantic similarity index will be the maximum of all, i.e. 1 2(,)
i j

C C 

1 2 1 2 1 2

1 2 3
max{ (,), (,), (,)}

i j i j i j
C C C C C C  

Structural Similarity:

 The structural similarity between the concepts of two ontologies is the measurement of

their association in terms of equivalence, super and sub relationships. The structural

similarity is measured at three levels (equivalence, super and sub relation). As

relationships between the concepts can be fuzzy, this paper considers both the concrete

domain (instance 1) and the fuzzy domain (instance 2) for structural similarity

calculation. The procedure is explained next.

Equivalence relation Similarity (ER):

Instance 1(Concrete domain): In the concrete domain, an equivalence relation between

two concepts is closely associated with the equivalence between their super and sub

concepts respectively. Mathematically, the equivalence relation between concept 1

i
C

and 2

j
C can be given as:

2 2
1 2 1 2

1 2

1 2 1 2

(,) (,)
(,) 0.5 0.5

i j i j

i j

i j i j

Sim SC SC Sim sC sC
ER C C

SC SC sC sC

      
    

       

Here, function (.,.)Sim determines the number of similar elements in the two sets and

A is the cardinality of the set A. The first part of the equation calculates the similarity

in terms of super concepts and the second part calculates the similarity in terms of sub

concepts. Squaring the function gives more weightage to the structurally equivalent

concepts as the ratio will never exceed the value 1. Equal weightage has been given to

both the parts as two concepts are equivalent if their super and sub concepts are

equivalent respectively.

Case 2(Fuzzy domain): In the fuzzy domain the equivalence concept relation can be

given as:

1 2(,)
i j

ER C C 
2 2 2 2

1 2 2 1 2 2

1 2 1 2
0 5 0 5

{ (,)} { (,)}

. .
{ } { }

i j i j

i j i j
SC SC sC sC

i j i j

Sim SC SC Sim sC sC

SC SC sC sC

 


 

 

Where, (.,.)Sim determines the fuzzy value or truth value of the equivalence relation of

the two input concepts. Unlike concrete domain square root of the function has been

taken in the fuzzy case as the fuzzy value will not exceed the value 1 which will give

more weightage to the structurally similar concepts.

Super Relation Similarity (SR):

 A concept is said to be in a super concept relationship with another concept when its

sub concepts match with the super concepts of the other. In this paper super relation

similarity between the two concepts has been identified for both the cases as follows:

Instance 1 (Concrete domain): In the concrete domain, super relation similarity

between two concepts is the similarity of their super and sub concepts. Mathematically

this can be stated as:

2
1 1 2 2

1 2

1 2 1 2

({ },{ })
(,)

i i j j

i j

i j i j

Sim sC C SC C
SupR C C

sC SC C C

   
  

    

 The super relation function (SupR) includes both concepts (1

i
C and 2

j
C) in the

denominator to get a closer evaluation.

Instance 2 (Fuzzy Domain): For the fuzzy case super relation similarity is

1 1 2 2 2

1 2

1 2 1 2

{ ({ },{)}

(,)
{ }

i i j j

i j

i j i j

Sim sC C SC C

SupR C C
sC SC C C

  


  



 and is a measurement of the equivalent fuzzy value or truth value for the super relation

between the two input concepts.

Sub Relation Similarity (sR):

 In contrast with super relation similarity, a concept is in a sub relationship similarity

with another concept if its super concepts match with the sub concepts of the other. For

both cases this can be calculated as follows:

Instance 1(Concrete domain): In line with the argument given in the super relation, a

concrete domain sub relation can be given as:

2
1 1 2 2

1 2

1 2 1 2

({ },{ })
(,)

i i j j

i j

i j i j

Sim SC C sC C
subR C C

SC sC C C

   
  

    

Instance 2 (Fuzzy Domain): For fuzzy domain it will be:

1 1 2 2 2

1 2

1 2 1 2

{ ({ },{ })}

(,)
{ }

i i j j

i j

i j i j

Sim SC C sC C

SubR C C
SC sC C C

  


  



Now the overall mapping relation based on semantic and structural similarity can be

given as:

1. Equivalence relation:

ℇℜ 1 2(,)
i j

C C = 1 2 1 21(,) () (,)
i j i j

k C C k ER C C  

2. Super relation:

𝓢ℜ 1 2(,)
i j

C C = 1 2 1 21(,) () (,)
i j i j

k C C k Sup C C  

3. Sub relation:

𝐬ℜ 1 2(,)
i j

C C = 1 2 1 21(,) () (,)
i j i j

k C C k Sub C C  

The constant 0 1[,]k  is the weight given to the semantic relation. The relational matrix

obtained here is used for ontology merging and reconfiguration (explained in the next

section). The relational matrix serves two purposes as it not only relates the closeness

of two concepts from different ontologies but also explores the kind of relation i.e.

equivalence, super and sub. The next section describes the process of ontology merging

and reconfiguration.

 ONTOLOGY MERGING AND RECONFIGURATION:

The relational matrix obtained in the previous section is used for ontology merging and,

if necessary, for ontology reconfiguration. This approach first determines the greatest

similarity in terms of equivalence, super and sub relations between the concepts of the

ontologies. The next step involves establishing logical consistency, i.e. the formation of a

logically consistent merged and reconfigured ontology. This process is different for both

the concrete and fuzzy domains. This section begins by explaining the process for the

concrete domain and later deals with the fuzzy domain.

Concrete Domain: In the consistency checking part, two concepts of two different

ontologies are compared. This process first finds the maximum of {ℇℜ 1 2(,)
i j

C C , 𝓢ℜ

1 2(,)
i j

C C , 𝐬ℜ 1 2(,)
i j

C C } (see figure 20). In case two or more concepts have the maximum

value arbitrary selection is carried out. Separate reasoning is carried out for each

equivalence, super and sub relation (as explained next). In case, no consistent relation is

derived for the maximum value, then the process selects the next best value and so on

until a solution is reached or no relation is found. In case no relation is found it is added

as a new concept. The detailed explanation is given next.

Equivalence relation: The easiest case is when the equivalence relation matrix is one

(case 1) and the new concept 2()
j

C can be established in the existing ontology as shown

in fig (1).

 Case 2 (fig. 2) is where the equivalence relation matrix is less than one and a possible

position for the new concept (2

j
C) is as a sibling of concept (1

i
C). This case arises when

2

j
C is the sub- concept of 1

i
SC but 1

i
C and 2

j
C do not have any common sub-concepts. In

this case the equivalence relational matrix will have a greater value than the sub and

super relational matrix.

Sub relation: This is where the existing concept is in a sub-concept relation according to

relational matrix i.e. 1 2

i j
C C . In this case, three positions are possible where the new

concept can be merged in the ontology, as shown in the figures 3 to 5.

The first condition (case 3) arises when the new concept (2

j
C) is equivalent to the super

concept (1

i
SC) of the compared concept (1

i
C). The second condition (case 4) arises

when the new concept (2

j
C) is a super-concept of the compared concept (1

i
C) and is also

Figure 1: Case 1 Figure 2: Case 2

a sub-concept of the super concept (1

i
SC). This situation arises when a concept in an

ontology is further subdivided or refined. The third condition (case 5) arises when the

new concept (2

j
C) is super concept of (1

i
SC), as shown in the figure (5).

 Figure 3: Case 3 Figure 4: Case 4

In this case, the position of 2

j
C is above 1

i
SC , but to get the exact place 2

j
C must be

compared with 1

i
SC and then the conditions (3) and (4) should be checked again.

 Figure 5: Case

Super Relation: This is where the existing concept is in a super-concept relation

according to the relational matrix i.e. 2 1
j i

C C . In this case, possible positions where the

new concept can be merged in the ontology are shown in figures 6 to 9.

The first condition (case 6) arises when 2

j
C is a sub concept of 1

i
C and a super concept of

1

i
sC . The second condition (case 7) is when 2

j
C is a sub concept of 1

i
C and is equivalent to

1

i
sC . The third condition (case 8) arises when 2

j
C is a sub concept of 1

i
C and is disjoint

with 1

i
sC . This scenario describes the condition when a concept is redefined with the

addition of new concepts (or new characteristics).

 Figure 6: Case 6 Figure 7: Case 7

The last condition (case 9) describes the situation when 2

j
C is a subclass of 1

i
sC (fig 9).

In this condition, to get the exact position of 2

j
C , it must be compared with 1

i
sC and

further evaluated for conditions 6-8.

Although this approach has considered all possible conditions for equivalence, sub and

super relations, it may also be possible that the new concept has no defined position or

possibly has no relation with existing concepts (including case 5 and 9). In this scenario

merging and reconfiguration is carried out using the super concept of the new concept.

Let 2

j
SC be the super concept of 2

j
C and the relational matrix is obtained in the same

manner as in the case of 1

i
C and 2

j
C . The following conditions can be obtained in line

with the previous explanations (Prefix ‘Super’ (Ṡ) has been used to emphasise that

super concept of a new concept is compared to get the relational matrix):

 Figure 8: Case 8 Figure 9: Case 9

Super equivalence relation: In a super-equivalence relation, the mapping of a new

concept (2

j
C) in terms of its super-concept (2

j
SC) with respect to 1

i
C follows the same

procedure as the mapping between 1

i
C and 2

j
C . The simplest condition is when 2

j
SC is

equivalent to 1

i
C (Condition Ṡ1). This is depicted in figure (10). As no relation is found

between 2

j
C and the existing ontology, this is simply added as a sub concept of 2

j
SC in the

merged ontology.

Similar to condition 2, condition Ṡ2 arises (fig 11) when a new concept 2

j
SC is added in

the ontology as a sub-concept of 1

i
SC and 2

j
C is added in the ontology accordingly.

 Figure 10 : Case Ṡ1 Figure 11: Case Ṡ2

Super-Sub-relation: Super-Sub-relation mapping is carried out when the relational

matrix entails that 2

j
SC is closer to the sub concept of the 1

i
C . Condition Ṡ3 (fig 12) and

Ṡ4 (fig 13) have same logical base as cases 3 and 4 respectively. Similar to condition 5,

in the case of condition Ṡ5 (fig. 14), the super concept of 2

j
SC is checked with 1

i
C for

conditions Ṡ3 and Ṡ4.

 Figure 12: Case Ṡ3 Figure 13: Case Ṡ4

 Figure 14: Case Ṡ5

Super-super relation: Super-super relation mapping occurs when the relational matrix

intimates that 1

i
C is the super class of 2

j
SC . All possible places where 2

j
SC and 2

j
C can fit

have been shown in the figures 15-18. Conditions Ṡ6, Ṡ7 and Ṡ8 have similar logical

explanations as conditions 6, 7 and 8 respectively.

Similar to condition 9, in condition Ṡ9 the exact position of 2

j
SC cannot be determined. It

is compared with 1

i
sC and condition 6,7 and 8 are checked with respect to 1

i
sC and 2

j
SC .

If none of the conditions (Case 1 to Case 9 and Case Ṡ1 to Case Ṡ9) are satisfied in this

process then it is clear that a new concept needs to be added in the ontology. For this,

the process finds the super most concepts, unrelated to the existing ontology, as a new

concept and adds its sub-concepts accordingly.

 Figure 15: Case Ṡ6 Figure 16: Case Ṡ7

 Figure 17: Case Ṡ 8 Figure 18: Case Ṡ9

Fuzzy domain:

In fuzzy-DL two concrete concepts or even an assertion of individual in concrete

concepts and roles are related with the fuzzy value or truth value as described in the

section 3. Unlike the concrete domain, as explained earlier, a fuzzy domain ontology not

only requires mapping and reconfiguration of the ontology but also requires a fuzzy

value or truth value to be calculated for the merged or reconfigured concept with the

concepts of the existing ontology. The first step for fuzzy domain ontology mapping and

reconfiguration is similar to the concrete domain (i.e. finding the maximum). The

second step is implemented in two stages: the first stage determines the position of the

new ontology within the existing one (similar to case 1 to case Ṡ 9) and the second stage

recalculates the fuzzy value or truth value for different relations among the concepts.

Considering the case (4) as shown in figure (4), following fuzzy values are available:

 SubR 1 2(,)
i j

C C  1

i
C ⊑ 2

j
C =  …………………………………………… (A.1)

 SupR 1 1(,)
i i

SC C  2

j
C ⊑ 1

i
SC =  ………………………………………… (A.2)

 From A.1 and A.2, it is clear that 1

i
C ⊑ 2

j
C ⊑ 1

i
SC . This step merges or reconfigures the

ontologies and introduces the intermediate concept 2

j
C . This reconfiguration or

introduction of the new concept needs to identify the fuzzy sub-concept value between

2

j
C and 1

i
SC . Assuming,

 2

j
C ⊑ 1

i
SC =  ……………………………………………….. (A.3)

Now the sub-concept relation 1

i
C ⊑ 1

i
SC is the implication of two sub-concept relations

1

i
C ⊑ 2

j
C and 2

j
C ⊑ 1

i
SC , i.e.

 (1

i
C ⊑ 1

i
SC) (1

i
C ⊑ 2

j
C)(2

j
C ⊑ 1

i
SC)…………………………… (A.4)

Using the Lukasiewicz implication function and A.1 – A.4 ,

11    min(,)

The method shown above for truth value recalculation has considered only truth values

equal to some constant, but a similar approach can be used in cases where the truth

value is greater than () or less than () some constant value. The rest of the ontology

mapping and reconfiguration in fuzzy case can be obtained for all cases (case 1 to case

Ṡ9) in a similar way.

IMPLEMENTATION METHOD:

The proposed methodology for ontology merging and reconfiguration for both concrete

and fuzzy domains can be created in an OWL API such as Protege35 and its plugin

fuzzyDL36. Merging and reconfiguration is carried out in Java. The overall

implementation method is summarized in figure (19). Jena parser, a Java API is used as

the Ontology API to get the concept names without the namespace. Wordnet API33

(Wordnet) is used to get the synonym, hyponym and hypernym of the concepts for

carrying out the word similarity and finally calculating the Lexicon similarity matrix. A

Structural similarity matrix is calculated as previously described. Pellet-reasoner37 is

used to find the relationship between concepts (i.e. equivalence, super, sub etc.). As the

two ontologies considered here are from the same domain, the assumption that they are

built on same base ontology is valid. This assumption has been used for building the

Tbox and Abox for reasoners.

 Figure 19. Merged/Reconfigured Ontology

 The Semantic similarity matrix and Structural similarity matrix are used to calculate

the relational similarity matrix. The next steps, merging, reconfiguration and

consistency checks are illustrated in figure (20).

Consistency

Check and

Restructure

Reasoners

Wordnet

Similarity

Matrix

Lexicon Similarity

Matrix
Structural

Similarity Matrix

O1: C1 , C2….

O1: R1 ,R2……

O2: C1,C2…

O2: R1,R2….

Ontology

API

Existing

Ontology

New

Ontology

Figure 20. Procedure for Ontology merging and Reconfiguration

Example:

Concrete domain

 In order to illustrate the overall procedure, two ontologies in the concrete domain of

car manufacturing have been developed from different car parts website available on

// Start

{

Step 1: Input two ontologies

Step 2: Get Concept name

Step 3: Get synonyms, hypernyms, hyponyms

Step 4: Calculate Semantic, structural and relational matrix

Step: 5 for int j = 1 to J (j Є O2) s

 {

 k = argmaxi
2(),
j

ERM C 2(),
j

SRM C
2()
j

sRM C }

 check case 1 to case Ṡ9 for
1 2(,)
k j

C C

 if ! satisfied with all super-concept

 add as new concept

 }

end //

}

the internet. As shown in figure (21), The Car ontology describes the current knowledge

of the field, whereas the New Car ontology represents new knowledge in the field of car

manufacturing. In order to merge the two ontologies, reconfigure an existing ontology

(Car Ontology), or incorporate the new knowledge (New Car ontology) the process as

described in the previous section is carried out.

Figure 21. Input Ontologies

Car

New Car

 With the help of the Jena parser, concept names are identified. The next step involves

calculating the similarity matrix. This step comprises of calculating the Lexicon

similarity matrix and Structural similarity. Consider the two concepts: Water from the

Car ontology (C: Water) and Oil from the New Car ontology (NC: Oil). As there is no

similarity between the two concepts in terms of synonyms, hypernyms and hyponyms,

their lexicon similarity:

(: , :)C Water NC Oil = 0.

For calculating the structural similarity, super and sub concepts need to be identified.

(:)S C Water = {Cooling, Engine, Car}

(:)s C Water = 

(:)S NC Oil = {Cooling, Engine, Car}

(:)s NC Oil = 

As both child concepts are empty sets,

2 2
1 2 1 2

1 2 1 2

(,) (,)
(: , :) 0.5 0.5

i j i j

i j i j

Sim SC SC Sim sC sC
ER C Water NC Oil

SC SC sC sC

      
    

       

 =

2

3

3

 
 
 

 =1

As both child concepts are empty sets it follows that:

(: , :)Sup C Water NC Oil = 0 and

(: , :)Sub C Water NC Oil =0

Now, considering equal weightage for semantic and structural similarity

ℇℜ(: , :)C Water NC Oil = 0.5 (: , :)C Water NC Oil + 0.5 (: , :)ER C Water NC Oil

 = 0.5

Similarly,

𝓢ℜ(: , :)C Water NC Oil =0 and 𝐬ℜ (: , :)C Water NC Oil = 0.

In a similar manner the similarity matrix is calculated between ‘ :NC Oil ‘and all the

concepts of Car Ontology. The non-zero values obtained are:

ℇℜ (: , :C water NC Oil) = 0.5 and ℇℜ (: , :C air NC Oil) =0.5.

 The next step involves the merging of the new concept into the existing concept. As

both the similarity matrix indexes have the same value i.e. 0.5, the algorithm arbitrarily

selects one of them and tries to merge it logically into the existing concept as explained

in section 5. Taking ‘C: water’ the logical relations obtained are:

: :C Cooling NC Cooling (From TBox similarity) ………………………. (a)

: { : : }NC Oil NC Cooling C Cooling  …………………………………………. (b)

: : NC Oil C Water   ……………………………………………………………… (c)

 Clearly, conditions (a), (b) and (c) lead to the case (2) and ‘ : :NC Oil C Cooling ’ is

established as shown in the figure 22. Table 2 depicts the overall result obtained in this

process. In the case of the same similarity index occurring between more than one

concept, random selection process has been adopted.

Figure 22. Merged / Reconfigured Ontology

New Concept Max similarity with
Existing Concept

Type of
similarity

Logical
Case

Final relation

NC : Car C: Car TBox - Equivalent
NC: Brake C: Brake TBox - Equivalent
NC: Drum_Brake C: Drum_Brake TBox - Equivalent
NC: Double_Edge C:Single_Leading_edge Equivalent Case 2 ô C:Drum_Brake

NC: Power_Brake C: Power_Brake TBox - Equivalent
NC: Electro_Hydraulic C: Air_Suspended Equivalent Case 2 ô C: Power_Brake

NC: Hydraulic C: Vaccumm_Suspended Equivalent Case 2 ô C: Power_Brake

NC: Engine C: Engine TBox - Equivalent
NC: Cooling C: Cooling TBox - Equivalent
NC: Oil C: air Equivalent Case 2 ô C: Cooling

NC: Fuel_Injector C: Fuel_Injector TBox - Equivalent
NC: Multi_Point_Injector C: Direct_Injection Equivalent Case 2 ô C: Fuel_Injector

NC: Valve C: Valve TBox - Equivalent
NC: Tapped_Valve C: Spring_valve Equivalent Case 2 ô C: Valve

NC: Safety C: Safety TBox - Equivalent
NC: Anti_Skid_Brake C: Seat_belt Equivalent Case 2 ô C: Safety

NC: Back_Camera C: Air_bags Equivalent Case 2 ô C: Safety

NC: Fog_Light C: Seat_belt Equivalent Case 2 ô C: Safety

NC:
Reverse_Backup_Camera

C: Automated_Braking Equivalent Case 2 ô C: Safety

NC:
Steering_Wheel_Control

C:Air_bags Equivalent Case 2 ô C: Safety

NC: Steering C: Steering TBox - Equivalent
NC: Power_Steering C: steering Sub-class Case Ṡ1 ô C: Steering

NC: Pump C: steering Sub-class Case Ṡ1 ô C: Power_Steering

NC: Reservoir C: steering Sub-class Case Ṡ1 ô C: Power_Steering

NC: Rotary_Valve C: steering Sub-class Case Ṡ1 ô C: Power_Steering

NC: Steering_System C: Steering_System TBox - Equivalent
NC: Cam_and_Lever C: Rack_and_pinion Equivalent Case 2 ô C:Steering_System

NC: Worm_and_Roller C:Worm_and_Nut Equivalent Case 2 ô C:Steering_System

Table 2: Merging process outcome

Although, example presented here describes the knowledge merging process within an

enterprise but this process can be extended in case of merging of two different

enterprises with different ontology based data bases built on same domain.

Fuzzy Domain:

 In the case of a fuzzy ontology, the process of finding the similarity index and

determining the position of merging of a new concept with the existing ontology has

been explained in sections 4 and 5. In this process Fuzzy domain ontologies differ from

concrete domain ontologies only in the step comparing the fuzzy values of the new

concept with the existing ones.

Figure 23: Fuzzy existing knowledge

Figure 24: Fuzzy new knowledge

Taking an example as shown in figure 23, a concept ‘Engine failure‘ has different sub-

concepts with different fuzzy values e.g. ‘Low Fuel 0.3ô Engine Failure’, and in the new

knowledge as shown in figure 24, ‘Low air pressure 0.9ô Clogged air filter’. These two

ontologies are first compared for similarity and then to determine the position of the

new concept within the new merged ontology, the same process is followed as

described earlier. The results obtained identify ‘Low air pressure ô Clogged air filter ô

Engine Failure’. Regarding the fuzzy values the following information is available:

 Low air pressure 0.8ô Engine Failure ………………………………………………..(x)

Low air pressure 0.9ô Clogged air filter …………………………………………… (y)

The unified ontology needs to find the fuzzy value of ‘Clogged air filter ?ô Engine failure’

(assume β). As explained in section 5,

Low air pressure 0.8ô Engine failure = (Low air Pressure 0.9ô Clogged air filter) ⟶

(Clogged air filter ô Engine failure).

0.5

Low Battery

Low air pressure

Impurity in the fuel

Low Fuel

Engine Failure

0.3

0.7

0.8

Clogged air Filter Low air pressure Engine Failure
? 0.9

Using the Luasiewicz implication function: 0.8 = min (1, 1-0.9 +β) = min (1, 0.1+β),

clearly, β = 0.7 as shown in the 25. Using this process all other fuzzy values for the

fuzzy relation can be defined.

Figure 25: Fuzzy merged knowledge

CONCLUSION:

 This paper addresses issues related to combining new and existing knowledge in the

form of an ontology. The advantage of the proposed method is that enterprises need not

reconstruct their existing ontology to accommodate newly acquired knowledge. This

methodology merges the new knowledge into an existing ontology using ontology

merging and reconfiguration. It also checks for any inconsistencies. The process of

merging and reconfiguration first identifies the similarity between the concepts of two

ontologies and then, with the help of reasoning, identifies the positions where the new

concepts will fit in to the existing ontology without any inconsistencies. This approach

not only considers the concrete domain but also the fuzzy domain. The proposed

approach can also be used in any ontology based knowledge base with different

application domains such as product data management (PDM), product lifecycle

management (PLM)12 and product development10. OWL representation of knowledge

0.7

Low air pressure Engine Failure

Low Fuel

Low Battery

Clogged air Filter

Impurity in the fuel

0.8

0.3

0.5

0.7 0.9

has been shown by many researchers10,38-39 and in all such cases new knowledge can be

merged in the existing database in the form of an ontology, build in the same domain,

using this approach.

REFERENCES:

1. Kim TY, Lee S, Kim K, Kim CH. A modeling framework for agile and interoperable
virtual enterprises. Comput Ind. 2006 Apr;57(3):204–217.

2. Singh J. Collaborative Networks as Determinants of Knowledge Diffusion Patterns.
Manage Sci. 2005 May;51(5):756–770.

3. Gold-Bernstein B, Ruh W. Enterprise integration: The essential guide to
integration solutions. Boston, MA: Addison–Wesley; 2005.

4. Pollalis YA, Dimitriou NK. Knowledge management in virtual enterprises: A
systemic multi-methodology towards the strategic use of information. Int J Inf
Manage. 2008 Aug;28(4):305–321.

5. Kumar SK, Harding JA. Ontology mapping using description logic and bridging
axioms. Comput Ind. 2013 Jan;64(1):19–28.

6. Mo JPT, Zhou M. Tools and methods for managing intangible assets of virtual
enterprise. Comput Ind. 2003 Jun;51(2):197–210.

7. Ku K, Wensley A, Kao H. Ontology-based knowledge management for joint
venture projects. Expert Syst Appl. 2008 Jul;35(1-2):187–197.

8. Das A, Wu W, Mcguinness DL. Industrial Strength Ontology Management. In: In
Proceedings of the First Semantic Semantic Web Working Symposium, SWWS-01.
IOS Press; 2001.

9. Zhang ZN, Liu ZL, Chen Y, Xie YB. Knowledge flow in engineering design: An
ontological framework. Proc Inst Mech Eng Part C J Mech Eng Sci. 2012 Jul
31;227(4):760–770.

10. Sun H, Fan W, Shen W, Xiao T. Ontology-based interoperation model of
collaborative product development. J Netw Comput Appl. 2012 Jan;35(1):132–
144.

11. Ivanović M, Budimac Z. An overview of ontologies and data resources in medical
domains. Expert Syst Appl. 2014 Sep;41(11):5158–5166.

12. Raza MB, Kirkham T, Harrison R, Reul Q. Knowledge Based Flexible and
Integrated PLM System at Ford. 2011;1(1):8–16.

13. Gunasekaran A, Ngai EWT. Knowledge management in 21st century
manufacturing. Int J Prod Res. 2007 Jun;45(11):2391–2418.

14. Kebede G. Knowledge management: An information science perspective. Int J Inf
Manage. 2010 Oct;30(5):416–424.

15. Liao S. Knowledge management technologies and applications—literature review
from 1995 to 2002. Expert Syst Appl. 2003 Aug;25(2):155–164.

16. Brockman BK, Morgan RM. The Role of Existing Knowledge in New Product
Innovativeness and Performance. Decis Sci. 2003 May;34(2):385–419.

17. Sun C, Xu X, Li X, Deng S. Notice of Violation of IEEE Publication Principles,
Knowledge Discovery from Virtual Enterprise Model Based on Semantic
Annotation. 2008 Fifth Int Conf Fuzzy Syst Knowl Discov. 2008 Oct;:546–551.

18. Korposh D, Lee YC, Wei CC. Modeling the Effects of Existing Knowledge on the
Creation of New Knowledges. Concurr Eng. 2011 Oct 9;19(3):225–234.

19. Huang N, Diao S. Ontology-based enterprise knowledge integration. Robot Comput
Integr Manuf. 2008 Aug;24(4):562–571.

20. Ling L, Hu Y, Wang X, Li C. An ontology-based method for knowledge integration
in a collaborative design environment. Int J Adv Manuf Technol. 2007 Aug
31;34(9-10):843–856.

21. Rajsiri V, Lorré J-P, Bénaben F, Pingaud H. Knowledge-based system for
collaborative process specification. Comput Ind. 2010 Feb;61(2):161–175.

22. Ho CT, Chen YM, Chen YJ, Wang CB. Developing a distributed knowledge model
for knowledge management in collaborative development and implementation of
an enterprise system. Robot Comput Integr Manuf. 2004 Oct;20(5):439–456.

23. Pirró G, Mastroianni C, Talia D. A framework for distributed knowledge
management: Design and implementation. Futur Gener Comput Syst. 2010
Jan;26(1):38–49.

24. Chen RC, Bau CT, Yeh CJ. Merging domain ontologies based on the WordNet
system and Fuzzy Formal Concept Analysis techniques. Appl Soft Comput. 2011
Mar;11(2):1908–1923.

25. Raunich S, Rahm E. ATOM: Automatic target-driven ontology merging. 2011 IEEE
27th Int Conf Data Eng. 2011 Apr;:1276–1279.

26. Noy NF, Musen MA. PROMPT : Algorithm and Tool for Automated Ontology
Merging and Alignment. In: Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence. AAAI Press; 2000. p. 450–455.

27. Dou D, Mcdermott D, Qi P. Ontology Translation by Ontology Merging and
Automated Reasoning. In: EKAW2002 Workshop on Ontologies for Multi-Agent
Systems (OMAS 2002). 2002. p. 3–18.

28. Stoilos G, Stamou G, Pan JZ. Fuzzy extensions of OWL: Logical properties and
reduction to fuzzy description logics. Int J Approx Reason. 2010 Jul;51(6):656–
679.

29. Bobillo F, Straccia U. Reasoning with the finitely many-valued Łukasiewicz fuzzy
Description Logic SROIQ. Inf Sci (Ny). 2011 Feb 15;181(4):758–778.

30. Lu J, Li Y, Zhou B, Kang D. Reasoning within extended fuzzy description logic.
Knowledge-Based Syst. 2009 Jan;22(1):28–37.

31. Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P, editors. The
Description Logic Handbook. Cambridge University Press; 2003.

32. Zadeh LA. Fuzzy Sets. Inf Control. 1965;8(3):338–353.

33. Wordnet. : http://wordnet.princeton.edu/ .

34. Gruber TR. A translation approach to portable ontology specifications. Knowl
Acquis. 1993;5(2):199–220.

35. Protege. : http://protege.stanford.edu/ .

36. FuzzyDL Systems. : http://gaia.isti.cnr.it/~straccia/software/fuzzyDL .

37. Pellet:OWL 2 Reasoner for Java. : http://clarkparsia.com/pellet/ .

38. Sarigecili MI, Roy U, Rachuri S. Interpreting the semantics of GD&T specifications
of a product for tolerance analysis. Comput Des. 2014 Feb;47:72–84.

39. Borsato M. Bridging the gap between product lifecycle management and
sustainability in manufacturing through ontology building. Comput Ind. 2014
Feb;65(2):258–269.

http://wordnet.princeton.edu/
http://protege.stanford.edu/
http://gaia.isti.cnr.it/~straccia/software/fuzzyDL
http://clarkparsia.com/pellet/

