
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

h. t',l)') \..tE"'(C._, ~ ' ------------------- -------r--------- -------- __ , . '

--- --- -....... ·
ACCESSION/COPY NO.

l cr/1'>-1 CJJ<'>-(

---.::.J. -· _.-.: 1 J U L a'...:;-(7

l-7 JAtt 1992

DESIGN AND IMPLEMENTATION

OF

FLEXIBLE MICROPROCESSOR CONTROL

FOR

RETROFITTING

TO

FIRST GENERATION ROBOTIC DEVICES

by

J Middleton

A Master's Thesis subm1tted in
partial fulfilment of the
requirements 'tor the award of '
Master of Science of the
Loughborough University of Technology

February 1982

l.l>;.lghborough Unlvero'ty

•f Tsd;.r1~1c.-a, L1
•· q -· ~~ ... t.. ,

CIUS

Ace. \":>?..Go~/o~ ~~.

I

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my Supervisor,

Dr. R,H. Weston, whose help and encouragement made this work a

success. Thanks are also due to Mr. G. Charles, Mr. N. Carpenter

and Mr. P.D. Hanlon for their advice,

J, MIDDLE TON

DESIGN AND I~WLE1ffiNTATION OF FLEXIBLE MICROPROCESSOR CONTROL FOR

RETROFITTING TO FIRST GENERATION ROBOTIC DEVICES

BY JANET MIDDLETON

::---

This Master of Science project concerns the design and development

of a flexible microprocessor-based controller for a Versatran

Industrial Robot. The software and hardware are designed in modules

to enhance the flexibility of the controller so that it can be used

as the control unit for other forms of workhandling equipment.

The hardware of the designed controller is based on the Texas

Instruments single board computer and interface printed circuit boards

although some specially designed interface hardware was required. The

software is developed in two major categories, which are "real-time"

modules and "operator communication" modules. The real-time modules

were for the control of the hydraulic servo-valves, pneumatic

actuators and interlock switches, whilst the operator communication

modules were used to assit the operator in programming "handling"

sequences". The main advantages of the controller in its present

form can be summarised thus:-

(i) The down-time between program changes is significantly

reduced;

(ii) There can be many more positions programmed in a "handling

sequence";

(iii)Greater control over axis dynamics can be achieved •

..:<-
The software and hardware structpr adopted has sufficient flexibility

to allow many future enhancements to be provided. For example, as

part of a subsequent research project additional facilities are

being implemented as follows: a teach hand held pendant is being

installed to improve still further the ease with which "handling

sequences" can be programmed; improved control algorithms are being

implemented and these will facilitate contouring; communication

software is being included so that the controller can access via a

node a commercially available local area network.

- ..

\ :

CHAPTER 1

CHAPTER 2

CHAPTER

2.1

2.2

2.3

2.3.1

2.3.1.1

2.3.1.2

2.3.1.3

2.3.2

2.3.3.1

2.3.3.2

2.3.3.3

2.4

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

2.4.6.1

2.4.7

2.4.8

2.4.9

3

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

LIST OF CONTENTS

INTRODUCTION

A LITERATURE SURVEY OF ROBOTIC
STRUCTURES

Reasons for Robots

Robot Components

Classification of Robot Components

Robot Anatomy

Arm Geometry

Wrist Assemblies

Three Fingered Hand

Drive Systems

Limited Sequence Robots

Playback Robots - with Point-to-Point
Control

Playback Robots - with Continuous Path
Control

Second Generation Robots

Proximity Sensor Technology !or
Manipulator End Effectors

Learning Systems in Manipulator Control

Classification of Robot Vision Systems

Existing First Generation Vision Systems

Current Second Generation Vision Systems

Tactile Sensing

A Compliant Device for Inserting a Peg
in a Hole

Man-Robot Voice Communication

Total Self-Diagnostic Fault Tracing

Inherent Safety

SOFTWARE SURVEY

Hierarchy of Software Structure

Special Robot Languages

MAL

WAVE

AL

Cincinnati Developments in Software

VAL

LAMA

-·---
PAGE

1

2

2

3

3

4

4

4

7

9

13

16

18

19

20

21

23

25

25

25

26

27

27

27

28

30

36

37

38

39

40

44

44

3.2.7

3.2.8

3.2.9

3.2.10

3.2.11

3.2.12

3.2.13

3.2.14

3.2.15

3.2 .16

CHAPTER 4

4.1

4.1.1

4.2

4.3

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

4.5

4.5.1

4.6

4.7

4.8

4.8.1

4.8.2

4.8.3

CHAPTER 5

5.1

5.2

5.3

AUTOPASS

EMILY

SIGLA

FREDDY

CAMAC

Adaptive Control System

SAMMIE

GRASP

HELP

RAPT

THE COMPUTER, MICROCOMPUTER, TMS 9900
MICROPROCESSOR AND SOFTWARE/HARDWARE
DEVELOPMENT SYSTEMS

{Historical Development of the Computer

tThe Impact of Transistors

Historical View of the Microcomputer

Properties of Hardware and Software for
the Implementation of Data Processing
Algorithms

Hardware/Software Tools for Microprocessors

Hardware Aids

Small Support Environments

Simple Software Support

Software Development Systems

In-circuit Emulation

Logic Analysers

Software

The Texas 9900 Family

The Hardware Family

The Software and Development System Support

The Microcomputer

Hardware

The Central Processing Unit

Memory Devices

Input/Output Devices

THE VERSATRAN ROBOT AND CONTROL SYSTEMS

Control of the Versatran

Hydraulic System

Servo System

46

46

47

47

47

48

48

48

49

49

52

52

54

52

57

57

57

58

58

59

59

60

60

63

63

67

67

70

70

72

72

74

77

77

79

......... -------------------
5,4

5,4,1.1

5,4.1.2

5.4.1.3

5.4.1.4

5.4.2

Design of the Hardware for the Micro­
processor Based Controller

Introduction to the Thm9900 Microprocessor

Programmable Systems Interface

User Accessible Registers on the CPU

Input/Output

Interface Printed Circuit Boards

5.5 Software and Hardware Development
Facilities for use with the Texas
Instruments 16 bit Microprocessor

CHAPTER 6

1
1

'

6.1

6.2

6.3.1

6.3.2

6.3.3

6.3.4

6.4

6.4.1

6.4.2

6.4.2.1

6.5

6.5.1

6.5.2

6.5.3

6.5.4

CHAPTER 7

7.1

7.2

7.3

7.4

'7,4.1

CHAPTER 8

8.1

8.2

CHAPTER 9

THE DEVELOPMENT OF REAL-TIME CONTROL
SOFTWARE

Introduction

Closed-Loop Control for the Robot

Control of One Axis

Program TRY 1

Program TRY 2

Program TRY 3

Program VERTHREE

Intruction Format

Description of VERTHREE

Robot Intructions - Real Time Control
Routines

Programs Using Continuous Closed-Loop
Control

Program INT 1

Program INT 2

Program INT 3 and DATA

Program INT4

TESTS OBSERVATIONS AND RESULTS

Robot Testing

Controller Output and System Response
Analysis

Positional Repeatability

Positional Repeatability

Volumetric Accuracy Mapping (VAM)

DEVELOPMENT OF A SOFTWARE LIBRARY

Real Time Control Modules

Task Programming Operator
Communcations Modules

FURTHER DEVELOP1mNT OF AN OPERATOR
COI.!MUNICATIONS MODULE

79

79

81

82

83

84

86

88

88

88

94

94

100

102

107

107

110

114

132

132

147

147

147

150

150

151

152

152

160

168

168

173

175

, I

'

9.1

CHAPTER 10

Appendix 1

2

3

4

5

6

7

8

9

Program DATA INPUT

PROJECT CONCLUSIONS AND FURTHER WORK

References

Robot Economics

Specifications for Industrial Robots

Mobile Robots

Vision Systems

Microprocessor Score Card

Analogue to Digital and
Digital to Analogue Converters

Program Listings

Texas Instruments TM990/101M Single
Board Computer

Versatran Specifications

175

188

190

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

LIST OF FIGURES

Robot Arm Configurations

Typical Wrist Articulations

Model of the Crosseley's Hand

Detail of Finger Turnbuckle Mechanism

Semi-Rotary Actuator (Rotary Vane)

Semi-Rotary Actuator (Rack and Pinion)

Schematic Arrangement of a Typical Limited
Sequence Robot

Analog Servo System

Hierarchy Feedback Loop Structure

3.1 Hierarchical Control System for Robot
Installation

3.2 Hierarchical Control System for Sensory
Information

3.3

3.4·

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

5.1

5.2

5.3

5.4

5.5

6.1

6.2

Hand Held Teach Pendant

CRT and Keyboard

Alignment Fixture

Joint, World and Tool Modes

Organisation of a Logic Analyser

The 9900 Family

9900 Family CPUs

Microcomputer Support Components

TM990 Board Module and Software Support

990 M1nicomputers

The 9900 Family Software and Development
Systems

Microcomputer General Arrangement

CPU Block Diagram

ALU

Action of an interrupt

Dimensions of Versatran Robot

Mechanical Unit and Console

Versatran Interfacing Scheme

Servo-Valve Configuration

Servo-Amplifier Module

Open-Loop System

Closed-Loop System

PAGE

5

6

8

8

11

12

14

17

22

31

35

41

42

43

45

62

64

64

65

66

66

68

69

71

71

73

75

76

78

80

85

89

89

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26 ,
6.27

6.28

7.1

7.2

7.3.1

7.3.1

7.4

7.5

7.6

8.1

8.2

9.1

9.2

9.3

Schematic Diagram of Closed-Loop Control

Output from DAC

Servo-Amplifier Module

Velocity Control

Overall Software for Program TRY 1

Detailed Flow Chart for Program TRY 1

Flow Chart for Program TRY 2 to input positions

Flow Chart for Program TRY 2

Flow Chart for Program TRY 3

Detailed Flow Chart for Program TRY 3

Controller Configuration - VERTHREE

Instruction Read and Decode

Select Axis to be Moved Routine

Initialise a Move in Swing

Initialise a Move in Vertical

Initialise a Move in Horizontal

Convert Analog Feedback and Calculate

Continue Cycle Routine

Stop Routine

Jump Routine

Move Wrist Movement

Open and Close Gripper Routine

Time Delay Routine

Overall Flow Chart for INTl

Detailed Flow Chart for INTl

Flow Chart to Open/Close Jaws

Trace Recording System

Description of Test Traces

Polar Coordinate Robot Work Volume

XYZ, Coordinate Robot Work Volume

Nodal Magnitudes and Machine Coordinates

Stand for Nodal Measurement

Accuracy Distribution Cirve

Software Structure for Versatran Robot

Op-codes for Versatran Robot

Flow Chart for Program DATA INPUT

Print Out from Program DATA INPUT

Flexible Operator Communications Module

- - --!11_

92

93

94

95

96

101

101

103

104

111

112

115

116

116

117

118

122

123

124

125

127

128

133

136

148

153

154

161

161

162

165

167

169

170

176

180

182

3.1

4.1

4.2

6.1

7.1

7.2

7.3

LIST OF TABLES

Summary o! Robot Languages

Comparison Between the Use o! Hardware and
Software !or Implementing Algorithms

Survey o! Available Microcomputer Development
Systems

Programmable Instruction !or Verthree

Output and Response Test Results

Test Results

Average Nodal X Readings

PAGE

51

57

61

109

155

158

164

CHAPTER 1

INTRODUCTION

The main objective of this Master of Science project is to design,

develop, and install a microprocessor-based controller for a Versatran

Industrial Robot which demonstrates enhanced facilities when compared

with the original control equipment. A high priority was attributed

to the flexibility demonstrated by the designed controller, to allow

the same hardware and software structure to be utilised for a wider

range of applications in the control of work-handling equipment.

The Versatran Industrial Robot, which represents a fairly complex

example of a first generation robot has six degrees of freedom. The

three major axes, horizontal, vertical and swing, are controlled by

closed-loop hydraulic serve-valves and the three wrist movements, yaw

swing and pneumatically controlled to end stops. The original

controller consisted of a rotating drum with pegs inserted to control

delays and the movements of the wrist and a bank of potentiometers to

control the positions of the major axes. The speed of the hydraulically

controlled axes could be selected as either fast or slow and no inter­

mediate speeds available. (The fast and slow speeds being related by a

factor of four).

The microprocessor controller used for retrofitting is based on a

Texas Instruments Single Board Computer and incorporates memory expansion

and interface printed circuit boards to complete the hardware structure.

The interface boards included digital to analogue and analogue to digital

converters, servo amplifiers and solenoid drivers. A number of software

modules were designed and implemented within two major categories -

"real time control n software and "operator communication,. software.

Software in the first category was configured to control the actual

movement of the robot and was written in Assembly Language whilst the

software in the second category was developed in both Pascal and

Assembly Languages and facilitates the ease of programming the robot

"handling" sequences.

A series of positional accuracy tests were conducted for the controller/

robot combination to evaluate the su1tability of the approach adopted

when programming robot handling sequences.

1

rHAPTER 2

A LITERATUI:l' SURVEY ON R030TIC STRUCTURES

Robotics entered the English voca~ulary with the translation of

Karel Capek's play Rossum's Universal Robots in 1923, robot when

translated means "worker".

Isaac Asimov(l) in 1940 had published a series of robotic stories.

Asimov postulated roboticists with the wisdom to design robots that

contained inviolable control circuitry to insure their always "keeping

their place". The Three Laws of Robotics remain worthy design

standards:

1 A robot must not harm a human being, nor through inaction allow one

to come to harm.

2 A robot must always obey human beings, unless that is a conflict

with the first law.

3 A robot must protect itself from harm, unless that is a conflict

with the first or second laws.

To most people, the word "robot" brings to mind the robots from motion

pictures such as "Star Wars". Thanks to the excellence of special

photography, these manually operated robots appeared to us as true

robots instead of as the hollow shells they were. Man has tried to

duplicate nature by fashioning mechanical replicas of himself, of

animals and even of birds. The development of these mechanical automatons

from the mechanical fortune tellers and musical devices of the early

1900's back to the mechanical and musical clocks of the 16th and 17th

centuries.

2.1 REASONS FOR ROBOTS

In a particular application the use of robots should be justified on

either economic or humanitarian grounds(S). Economic justification

can be made if a process can be carried out cheaper and more efficiently

than can be accomplished by humans<2>, (see Appendix 1 for the factors

to be considered). Robots should be employed on humanitarian grounds

for boring and repetitive jobs which are psychologically damaging to

humans and for dangerous or uncomfortable tasks in confined or

hazardous environments which may be physically damaging to humans(3).

2

It would be socially irresponsible and financially unsound to attempt

to replace all craftsmen with robots. The human hand-eye-brain

co-ordination will not be surpassed by machines this century, if at

all. In some cases a man-machine compound - the telechir could be

used. The work "telechir" means 'hands at a distance' which aptly

describes a system whereby a machine at one end of a cable slavishly

copies the movements of the human operator at the other end. These

machines could amplify human actions or diminutise them, as in the

case of micro-manipulators. Furthermore they could incorporate some

robotic elements where, for example, part of the task could be under

control of an in-machine microprocessor, with a human operator

overriding this for the more complex operations.

2.2 ROBOT COMPONENTS

All robots consist of the following components:-<6 •7>.

(i) there are the moving parts, chiefly comprising the arm, wrist

and hand elements. The moving system is often referred to as

the manipulator, -but this term can be misleading, because it

is easily confused with one of the robot's "near relations",

the telecheric device;

(ii) the drive system which can be either hydraulic, pneumatic,

electrical or a combination of these;

(iii) the control system, which at its simplest may consist of a
l

series of adjustable mechanical stops and limit switches. At

the other extreme are high technology computer based control

systems which give the robot a programmable memory and which

allows the robot drives to follow a path that is accurately

defined all along its length by a series of continuously

specified coordinates, and which can also be coupled with

another computer or machine control system to synchronize the

robot with its environment to increase efficiency and safety.

2.3 CLASSIFICATION OF ROBOT COMPONENTS

A description of the various robotic components are outlined in the

following sections.

3

2.3.1 Robot Anatomy

Appendix 2 highlights some of the major features of available

industrial robots. In observing the structure of industrial robots

various observations can be made.

2.3.1.1 Arm Geometry

The robot's sphere of influence is based upon the volume into which

the robot's arm can deliver the wrist subassembly. The robot arm

configurations can be classified into:-

(i) Cartesian coordinates

(ii) Cylindrical coordinates

(iii) Polar coordinates

(iv) Revolute coordinates

Sketches of the typcial embodiments are shown in figure 2.1. Evidently

each of these configurations offers a different shape to its sphere

of influence, the total volume of which depends upon arm link lengths.

For different applications the appropriate configuration can be used.

For example, a revolute arm might be best for reaching into a tub,

while a cylindrical arm might be best suited to a straight thrust

between the dies of a press. (See Appendix 3 for the examination of

mobile robots).

2.3.1.2 Wrist Assemblies

In every case the arm carries a wrist assembly to orient its end

effector as demanded by the workpiece placement. Commonly, the

wrist provides three articulations that offer motions labeled pitch,

yaw and roll (analogous with aircraft technology as illustrated in

figure 2.2).

As robot hands are less adaptable than human hands, they have to be

chosen or designed specially for a particular industrial application.

Whereas the robots themselves have earned the reputation of being

general purpose automation, the hands are not quite so flexible and

may have to be included along with special tooling requirements for

a specific task.

4

........ ------------------------~------------l

' I

CARTESIAN COORDINATES

POLAR COOKDINATES

CYLINDRICAL COORDINATES

REVOLUTE COORDINATES

FIGURE 2. 1. ROBOT AR~1 CONFIGURATIONS
5 .

YAW

BEND

SWIVEL

FIGURE 2.2 TYPICAL WRIST ARTICULATIONS

6

2.3.1.3 Three Fingered Hand

After considering the various functions that are performed by a hand

Crossley et al(2S) designed the following three-fingered hand.

The end effector had three digits, that is, a thumb and two fingers.

The third finger needs to be separately motorized for trigger action.

If the thumb and index finger are to work in opposition, one motor will

suffice for these. However, if the hand is to provide the "hook" or

"baggage lift" capability, the thumb needs to be left fully open while

the index finger closes. The hand followed the anthropomorphic model

as much as possible

the palm was chosen

(see figure 2.3).- The main transverse axis of
0 at 45 to the longitudinal axis of the fore-arm

and wrist. A method of bending the interphalangeal joints was used

which had two important advantages. The mechanical advantage is

upheld from the motor right to the joint, the velocity reduction and

force augmentation being at the last possible moment and secondly the

high forces to be encountered in the joint are combined with their

reactions into a small triangle at each pivot. Figure 2.4 shows the

scheme of these joints. The two phalanges, being of channel form, are

directly hinged. The two are connected by a turnbuckle, with right

and left-hand threaded eye-bolts. The buckle itself is a pinion, and

driven by another pinion through a flexible cable within the finger.

The other end of the cable can be driven directly by the motor through

a reduction gear. By this design the moment of any lateral force
:

imposed at the finger tip is carried by the structure of each phalanx

and the joints, but it is not felt by the finger drive mechanism,

except as a much reduced torque, and then only when the pinion turns,

for the pitch of the screw makes the drive irreversible.

The parallel-jaw end effector was utilised which consisted of a set

of parallelogram 4-bar linkages in cascade mounted in the side plates

of both thumb and index finger. Their effect is to maintain the

inside (gripping) surfaces of the ultimate phalanges of these two

digits parallel to one another and perpendicular to the surface of

the palm, even while the more proximal phalanges bend to form a

cylindrical grip.

The gripping surfaces of the fingertips of the hand require cushioning

(to accommodate themselves to various shapes to be grasped) and to have

7

........ --------------------~----------

Eye Bolt

Pinion Drive

Flexible Cable

8

Figure 2.3
Showing the setting of
the main transverse

0
axis of the palm 45 to
the longitudinal axis
of the fore-arm and

Figure 2.4
Detail of finger
turnbukle mechanism

2.3.2

a high coefficient of friction as possible. To achieve this the

inside gripping surfaces are covered with a layer about 3 mm thick of

soft silicone rubber, which is cast in place. This material does not

adhere to a metal surface, therefore before casting, the metal

pressure plate is drilled with many holes and the plastic cast as a

"sandwich" on both sides of the metal. Using this method the padding

is held firmly in place even when heavily strained.

Drive Systems

A drive system is required for each robot articulation. In addition

to driving the arm, hand and wrist, the grippers also need a drive

mechanism for the functions of holding and releasing. Robot drives

can be electrical, pneumatic or hydraulic or some combination.

Pneumatic systems are found in about 30% of robots; 'electromechanical

drives in about 20%, typical forms are servomotors, stepping motors,

pulse motors, linear solenoid and rotational solenoids; hydraulic

drives account for the remainder (7)

Hydraulic drives can be divided into the following categories;

cylinders (or jacks), hydraulic motors, and semi motors (or rotary

actuators) • (7l)

(i) Cylinders or Jacks

These may be either single or double rodded, the advantage

of the latter being that the characteristics are the same in

both directions and the flow through the valve is symetrical

in both directions.

(ii) Hydraulic Motors

A hydraulic motor is similar to a pump but it allows full

pressure to be applied to both parts. A motor, together with

its driving gear, rack and pinion, lead screw etc, will

normally be appreciably more expensive than a jack. Its

advantage lies in its small inertia and greater rigidity,

giving a more positive action and one less influended by any

disturbing force. Among the hydraulic motors there is a

choice of piston, gear, vane and ball configurations. The

choice is determined by several factors, such as application,

9

whether the motion required is linear or rotary, performance,

cost, reliability etc. The best choice is generally the

simplest device that will do the job satisfactorily.

(iii) Semi-Motors or Rotary Actuators

Figure 2.5 shows a rotary vane contained in a circular housing.

With the single vane shown, the maximum angle of rotation is
0

about 300 but by having a double vane, with two inlets and

outlets, the power for a given size can be doubled, whilst

reducing the angle of rotation to about 100°.
~

Another type of semi-rotary actuator embodies a rack and

pinion, the rack being actuated by one or more cylinders.

Whichever system is chose, an electro-hydraulic servo valve

is required, which is show in figure 2.6.

The present generation of robots which have electrical drives use

rotational motors. These motors also require gearing or ball screws

and a servo power amplifier to provide a complete actuation system.

The motor driven robot will have a much higher maintenance cost than

the simpler cylinder (or jack) driven robots, not only because

of the many more expensive components, but because of localized wear

in gears and ball screws by fretting corrosion during active

servoing.
I

In certain applications, such as paint spraying the environment may

present an explosion hazard and the robot must either be explosion

proof or intrinsically safe so as not to ignite the combustable

environment. Here the hydraulically driven robot has the advantage

over the electrical system as the electrical energy from the

feedback devices and the energy to drive servo valves can be small

enough not to ignite the explosive fuel-air mixture.

Another advantage for hydraulics is that this power method lends

itself to robot applications because energy can easily be stored in

an accumulator and released when a burst of robot activity is called

for. As there is no convenient means to store electric energy, the

electrically driven robots tend to underpower the drives.

10

' I.

....

' '

BARREL ROTARY VANE

FIGURE 2.5 SEMI-ROTARY ACTUATOR (ROTARY VANE)

~
PORTS FIXED VANE

·.

PISTON OUTER SPINDLE PISTON -,
I

1\ I '\

" I(; ~\\ \ -

~~V~\
.

.

fvVvv'>7

RA:CK s PINION

FIGURE 2.6. SEMI-ROTARY ACTUATOR (RACK AND PINION)

12

2.3.3 Control Systems

Introduction

The control system can be, broadly speaking, divided into the following

three categories. Comparison between any two robots that belong to

one of the categories could easily reveal that quite different drive

systems bad been employed to achieve roughly the same end. Control

systems are likely to correspond more closely between robots in the

same category.

2.3.3.1 Limited Sequence Robots

As its name implies, a limited sequence robot is at the least

sophisticated end of the robot scale. Typically, these robots use a

system of mechanical stops and limit switches to control the

movements of arm and hand (see figure 2.7). Operation sequences can

often be set up by means of adjustable plugboards, which are

themselves associated with electromechanical switching, (usually

this electromechnical switching is achieved by using a combination of

relays and rotary or stepping switches). As a result of this type of

control, only the end positions of robot limbs can be specified and

controlled. The arm, for example, can be taken from point A to B,

but the path between is not defined. The controls simply switch the

drives on and off at the end of travel. This mode of operation has

earned such machines the name of 'pick and place• robots.

The use of mechanical stops and limit switches gives good positional
+ accuracy, which is typically repeatable to better than 0.5 mm.

Limited sequence robots have been used successfully in a variety of

applications, including die-casting press loading, plastic moulding

and as part of special-purpose automation. This type of robot is

used in applications where low cost is of major significance. Thus,

historically their associated control equipment has been of

corresponding low cost and inherent limited capability. This situation

will be improved with many additional control features being

available through the use of large scale integrated (LSI) devices

without an appreciable-increase in cost.

The number of movements possible in a total production sequence must

be limited to the number of limit switches, stops and programmable

switches contained by the robot. Such robots are not "taught" to

13

.... ... Pegboard or
Microprocessor

Sequence of

operations

Figure 2.7

Power Source

Electric, hydraulic

or pneumatic supply

for drives

Sequencer Robot Drives

Step by step device Electric hydraulic

which switches f- or pneumatic drives rx
power to drives in for each robot

the correct limb

sequence

Schematic arrangement of a typical limited sequence robot

Interlocks

Switches or other

sensors mounted on

associated plant or

machines in order -
to ensure that the

robot keeps in step

and causes no damage

Robot Limb Limit Switches

Arm, wrist and hand Switches associated

mechanisms that ~ with end stops which

carry out the work signal "movement

completed" to the

. sequencer

perform their job, but have to be set up in the same way as an

automatic machine would be adjusted. There is no memory as such,

other than that embodied in the settings of the plug board and all

the mechanical stops.

Unlike robots in the other categories, the simple limited sequence

control system cannot exercise any·real control over the limbs while

they are actually in motion. It is possible to provide more than

one stopping point along each path, but the primitive nature of the

memory system restricts the number of these for practical purposes.

The sequence of events which occur when a typical.limited sequence

device performs an operating sequence or task can be described as

follows.

When an axis movement is required it is necessary for the controller

to switch power to the relevant drive element. ·If the drives are

electric, then the controller will probably close a relay to switch

the current through. Where the drives are hydraulic or pneumatic,

then appropriate solenoid valves are operated. The motion generated

by the drive element normally continues until the moving limb is

physically restrained by an end stop, the physical shock usually

being "cushioned" by some form of shock absorbing device. Thus

there are only two positions at which the moving part can come to

r~st, one at the beginning and the other at the end of a

programmed move. Obviously, the system is arranged so that a limit

switch cuts off the motive power as soon as the end stop is reached.

When the initial movement has been finished, the limit switch not

only cuts off the power, but it also signals to the controller that

the particular movement has been finished, so that the next movement

can start.

How does the controller ensure that the robot does not put its arm into

the closing jaw of a press, or try to load a workpiece into a

spinning chuck? The robot cannot see the machine it is trying

to operate, there are no robot senses equivalent to those of a human

operator. The method utilised to make the robot aware of the real

world around it is by providing additional limit switches or other

electrical sensing devices on the machine to be operated. These are

connected to the controller to provide additional signals to the

15

sequencer, complementary to those obtained from the switches mounted

on the robot itself. Robot limb movements are therefore carefully

interlocked with the machine being operated. This prevents the robot

from trying to commit •suicide', avoids collision damage to associated

plant, and enables the robot to carry out its operations not only in

the correct sequence, but also at the appropriate moment in time.

However, such interlocks can only act as a safeguard relating to

events which are predictable and unforseen events cannot be allowed

for.

A characteristic of limited sequence robots is that they are generally

difficult to reprogram. This is particularly true if hardwired

control equipment is employed where the nature of the control system

and memory, (which are all embodied in a complex and interdependent

set of limit switches, interlocks, and stops and electrical connections)

offers little flexibility. Not only does this kind of electromechanical

arrangement prove tedious to change, but it also limits the number of

different sequence steps that can be accommodated within a particular

handling task.

2.3.3.2 Playback Robots - with Point-to-Point Control

Another method for achieving positional control of each limb relies

on the use of some form of servo mechanism. Figure 2.8 illustrates

a schematic representation of such a closed loop control scheme.
I

Each movable robot limb is fitted with a device which produces an

electrical signal, the value of which is usually proportional to the

limb position. The system is arranged so that the direction of drive

travel is such as to reduce the positional error,(S) and as the limb

moves closer to the desired position this error signal automatically

reduces until it becomes zero, and the limb stops in the correct

position. This is analog control and in practice calls for a high

degree of engineering skill in design to achieve satisfactory

positional accuracy and freedom from oscillation.

If a time varying input is provided via a control panel to vary the

command signal for a particular limb, then the limb will move as the

knob is moved. Thus a form of remote control is achieved, and as

many time varying inputs as there are limbs can be provided via the

16

Robot limb command Hydraulic power

~
potentiometer source

'
Comparator (produces -
error signal which is Error signal

D C
directly proportional to I_,. amplifier and J Hydraulic valve

voltage source
limb displacement from recifier

desired position)
Hydraulic cylinder I

Potentiometer

~ sensor fitted to Drives feedback sensor
Robot limb I

robot limb

Figure 2.8 Analog servo system

control panel. Such a device so far is a manipulator and when a

memory unit is added it becomes a flexible robot. The position of

the limbs at each operational step and the total operational sequence

can be recorded in the memory unit. The stored locations can then be

recalled and used to stimulate all the serve systems. The procedure

for setting up such a robot is far easier than for a limited sequence

robot which can be achieved as follows:- either by inputting the

required digital values into memory (which have been obtained by

moving the robot to these positions) or to teach the robot i e to

drive the robot limbs to the required positions for each operational

step, and then record the exact condition of the robot in memory by

the simple act of pushing a button before proceeding to drive the

robot to the next step in the sequence or by pre-programming the

positions in memory. However, it is evident that the control

equipment for a "playback" robot will been to be more sophisticated

than that for a "limited sequence" robot.

When the robot is commanded to move from one position to another,

this could involve independent operation of two or more of its

articulations. The only information that the robot knows is the

attitude of all the limbs at the start and end of the move and will

generally perform the moves as quickly as possible, moving all limbs

simultaneously to fulfill the given command. In such an arrangement

there is no definition of the paths which the robot limbs will trace

between programmed points, hence the name point-to-point". Point-to­

point robots are capable of doing any job performed by a "limited

sequence" robot and presuming that their memory capacity is sufficient,

they are also capable of performing demanding tasks such a pallitizing,

stacking, spot welding etc.

2.3.3.3 Playback Robots - with Continuous Path Control

There are applications in manufacturing industry where it is necessary

to control not only the start and finish points of each robotized

step but also the path traced by the robot hand as it travels between

these two extremes. An example of this requirement is provided by

seam welding, where a robot is asked to control a welding gun, and

move it along some complex contour at the correct speed to produce

a strong and neat weld. One way of looking at this problem is to

regard continuous path control as a logical extension of point-to-point

18

control. It is feasible to provide a robot with a memory that is

sufficiently large to allow path control that is, to all intents and

purposes, continuous. Alternatively, the continuous path robot

may be taught in real time. The operator leads the robot through the

motions that it is required to perform at the correct speed. During

this teaching process, the robot has to record the movement and

hand attitudes continuously or approximately continuously, in its

memory. This can be achieved by giving the robot an internal timing

system, which for example, could be synchronized ~ith the main supply

frequency (50M3). Using this time reference, the robot's movements

can be sampled at the rate of 50 times each second, with the result

being committed to memory. Even at this sampling speed, a large

amount of data has to be accumulated in the memory, consequently

magnetic tape units are often used. To increase the operational

usefulness of continuous path robots provision is usually made for

the playback speed of operation to be different from the teaching

speed.

It is clear from the above description that a computer is required as

the central element of any control system used for point-to-point or

continuous path robots. The equation solving and storage

capabilities of the computer allow it to be used to monitor and

modify axis motions. Furthermore, providing that. time constraints

permit (see section 3.1. >'28), modern control algorithms can be

incorporated, to allow position and velocity loops to be closed

within the computer, thereby optimising the performance of the robot

in terms of positioning accuracy and dynamic characterisitcs. The

availability of low cost LSI devices will have particular impact

here although it must be stressed that the wide range of possible

axis configurations and servo-drive elements result in the need for

computer controls with a corresponding large variety of interface

hardware and controlling software.

2.4 SECOND GENERATION ROBOTS

High-precision assembly tasks by industrial robots require sensory

feedback and an increased autonomous intelligence, necessary to cope

with uncertainties caused by inaccuracies of the robot and by the

changing environment.

19

'2.4.1

An active adaptable compliant writ (AACW) has been designed by

Van Brussel et al(ll) enabling precision assembly with general

purpose industrial robots. It uses force feedback as sensory

information. A probabilistic learning algorithm, with minimal

memory requirements has been developed and used in automatic assembly

of closely fitting parts. The algorithm optimizes, by means of an

appropriate rewarding rule and a properly chosen evaluation criterion,

the probability relationship between the possible wrist actions.

Visual and tactile-force information and free programmability are two

key elements of the second generation of robots which allow

manipulators to service a broader field of application including the

more complex and high level tasks(12>.

A main problem in the near future will be the development of control

algorithms that translate the input and sensor signals into the

right control commands. Conventional preprogramming of all possibilities

in a real world environment soon becomes very tedious if not impossible,

while for higher level tasks the interpretation of the measured

process feedback signals can be of unsurmountable complexity. For

handling these and related problems, the future generations of

robots will need a degree for autonomous intelligence which makes

their behaviour human-like. Despite the recent evolutions, there is

still an enormous gap between artificial intelligence models and the

feasibility and usefulness of practical realisations.

r
Proximity Sensor Technology for Manipulator End Effectors

A proximity sensor denotes a small device, suitable for mounting on

a manipulator hand, which can detect the presence or approximate

position of a nearby object without actual contact. Sensors are

typically of the order of 1 cm in linear dimension but a separate

electronic module may be required. Their basic function is to

measure the effector-object position for use as an aid to manipulator

control during grasping. Proximity sensors can be used to measure the

position of either an effector as a whole, or the finger components

individually with respect to the object to be grasped, alternatively

they could be used as an obstacle detector to avoid hitting objects.

20

2.4.2 Learning Systems in Manipulator Control

Learning systems have a hierarchical'feedback loop structure.

The lowest level in such a learning system is a simple feedback

configuration with a fixed relation between input and output. The

mathematical description of the process under control has to be

completely known in order to able to design such a feedback controller

(figure 2. 9).

At the second level, the so-called adaptive loop, a system

identification is performed and the basic feedback controller

structure is adapted in accordance to the actual state of the process.

Although it is no longer necessary to know exactly the dynamic

characteristics of the process, it is still necessary to know how to

influence the basic control algorithm as a function of the measured

signals. The third level, the learning loop, teaches the adaptive

loop how to change the basic controller in order to achieve optimal

control. This learning loop is clearly distinguished from the two

lower levels by a supplementary "teacher-input" which is used to

evaluate the quality of the actual performance of the system with

respect to a certain goal. It is this information of the "teacher"

that the learning system accumulates as experience from the past and

gives it its ability to gradually improve its behaviour in time.

I

I
The ability of learning systems to cope with problems with only a

limited amount of prior information makes this kind of approach

interesting for automatic manipulator control. The exact position

of a robot arm, that takes into account all the dynamic parameters

and non-linearities of a joint articulated manipulator configuration

soon becomes too complex to be of any practical use. Similar problems

arise in describing a real world working environment due to the yast

amount of mostly unknown parameters. A more serious case of lack of

prior information is found in the interpretation of the measured

feedback signals in so called "higher level" tasks, as for example,

the insertion of a peg into a hole or the grasping of the fragile

object. The human reasoning in those situations is not fully

understood.

21

input out - ~ controller / process

r r-- si mple feedback loop

r--
_ .. pattern

classified
a daptive loop

---- --- -

learning le arning loop
program

evaluation external

criterion teacher

Figure 2.9 Hierarchy Feedback Loop Structure

22

2.4.3

Common artificial intelligence methods have little practical use in robot

control applications because of the non-availability of adequate

mathematical formulated optimization functionals. Pattern recognition

with trainable thresholds or decision surfaces seems to hold more

potential and base for their work. There is a high cost as large and

fast computers needing special array processors are required.

Classifications of Robot Vision Systems

About ten years ago the first robotic vision systems appeared in

research laboratories(21- 23>.

The first generation vision systems are capable of recognising

components and determining their orientation. The components must be

in strong contrast to their surroundings, must not touch or overlap

other components, must have a limited number of stable states.

Recognition of a part takes less than one second and the vision

system can be taught a number of different components at a given time.

The main targets for second generation robots should be to overcome

the following constraints:-

(i) that each object should be in strong contrast to its background

so that a silhouette image of the component can be easily

obtained.

(~i) that each component be separated from its neighbours.
!

The first constraint is a function of computation time available

for recognition in the industrial environment. Complex edge

detection algorithms based on grey level images are currently

capable of separating a component from realistic backgrounds but the

computational time (at least by serial computers) is too long. The

second constraint of non-touching components is a fundamental

requirement of the majority of recognition algorithms. The algorithms

are based around the centre of area which defines a unique position

on the component that is independent of the angle of orientation. For

this point to be found accurately it is essential that the component

be separate from its neighbours. Any system that can cope with

touching components must therefore dispense with the centre of area

and instead find some new constant on which to base second generation

algorithms.

23

...... ------------------------------------
At present there is no robot manufacturer which makes its own vision

system and similarly no vision system manufacturer makes its own

robot. The linking of a vision system with a robot therefore involves

an electronic interface between the two and a considerable amount of

cooperation and collaboration between the manufacturers.

Two stages of interface can exist between a vision system and a robot.

With the first, both robot and vision system function autonomously

with only ve;y simple 'Yes•, 'No' information being passed between the

two. An example of this might be a pick and place task where a vision

system constantly checks to see if a component has arrived at the pick

up position. If the component has arrived correctly the vision system

, sends a 'Yes• to the waiting robot, which will then move in and pick

up the part., If no component is in position, or, if the component is

damaged, or not in the correct orientation then the robot will be

told 'No' and will take no further action until signalled to continue

by the vision system.

The second stage of interface involves the communication of position

and orientation information to the robot which then uses this

information to control its movements. An example of this type of

system is a vision system looking at parts beneath it on a

conveyor belt. A number of different parts may be present on the belt

at a given time and the position and orientation of each part is

unknown. The robot tells the vision system which component (eg no 10)

it wishes to pick up next. The vision system will then look at the

conveyor belt until it recognises part number 10. When it does so it

will compute the position of the part and orientation and then

communicate this information to the robot. The robot then uses this

information to adjust arm position and gripper rotation, allow an

offset for the movement of the conveyor belt and then move in and

grasp the part. The robot must also know the coordinates of the plane

to which the vision system relates, and be able to work in world

coordinates relative to this plane (ie transferred plane mode). At

the present time only one commercially available combination of

robot/vision system exists that is capable of this level of

communication and that is the Unimation PUMA and the MIC vision

system.

24

2.4.4

2.4.5

2.4.6

Existing First Generation Vision Systems

At present there are five vision systems known to the author which are

available as commercial units. Their manufacturers are as follows:-

Machine Intelligence Corporation (MIC)

Automatix

Brown Beveri and Cie (BBC)

ITTB

Autoplace

USA

USA

W Germany

W Germany

USA

With the exception of the Autoplace Opto-Sense vision system, all are

very standard in their capabilities. The only significant variations

are the ease with which the system can be used, the speed of computation

and price. Only Autoplace and MIC systems have been designed in close

collaboration with a robot manufacturer. (In appendix 4 the features

of these vision systems are summarised)

Current Second Generation Systems

Up to the end of 1980 only two systems could be used to partially

satisfy the criteria for second generation vision systems with

industrially acceptable computation times. These have been developed

at the Lausanne Polytechnique in Switzerland and the General Motor

Research Laboratories in the United States. The essential elements

are common to both systems even though the software techniques differ

considerably. The GM 'Model Based Vision System' appeared to be faster

although the speed of computation for both systems is largely scene

dependent, showing considerable variation between different scenes

containing the same components. Both systems use the shape of the

components' outline as the basis for recognition. The complexity of

the system can be shown by the following example. General Motors use

an IBM 370/168 computer to analyse a 256x256, 32 grey level image.

The time taken to analyse different overlapping parts was 31.6 seconds(23).

The size of computer used and the computation speed are clearly not

acceptable for widespread application.

Tactile Sensing

Tactile sensing is by no means perfected(lg) and many reseachers

are endevouring to producecheapand efficient tactile sensors.

25

I

An interesting example of a compliant device for inseting a peg in a

hole is examined in the next section.

2.4.6.1 A Compliant Device for Inserting a Peg in a Hole

The insertion of a peg in a hole is the final phase in the assembly

of a peg and a block with a hole(11 •20). McCallion et al analyses the

physical interaction between these two components during insertion,

describes a simplefine-motiondevice which utilizes this interaction

to insert pegs into closely-fitting holes, and discusses possible

variations to the construction of the device.

The problem of placing a peg into a hole is a common problem in the

· , - assembly of mechanical components. It occurs when pistons are fitted

into cylinders, bolts passed through unthreaded holes, bearings

fitting into housings and so on.

In general, a peg-hole assembly involves four phases;

(i) pick-up phase: the two components to be assembled are picked

up from bins, magazines, pallets, etc by some assembly machine;

(ii) transport phase: they are taken to an assembly station and

brought into contact with each other.

(iii) fine-positioning phase: the initial misalignment between the

components is reduced and they are driven inside the

'insertion funnel', a spational region defined by the

geometry of the components.

(iv) insertion phase: the final misalignment is corrected and the

components placed into their designed positions.

Current industrial robots can readily implement the first two phases.

Where the robots are sufficiently accurate to transport the components

directly into the insertion funnel, the separate fine positioning

phase is eliminated. However,, the final phase, due to the high degree

of interaction between closely-fitting components during insertion,

remains difficult and outside the scope of most available machines.

26

2.4.7

2.4.8

2.4.9

Man-Robot Voice Communication

It may be attractive to allow the human operator to use English in

instructing a robot as to its ongoing work. Moreover, the robot which

is likely to be bigbly sophisticated could, with justification, respond

to the human voice with synthesized speech to explain its view of the

work situation. Its speech might be used to explain internal

ailments which need service attention. The technologies involved in

speech recognition and in speech synthesis are growing in sophistication

and decreasing in cost.

Total Self-Diagnostic Fault Tracing

Whatever.the level of robot sophistication, it is crucial that the

machine exhibit an on-the-job reliability competitive to that of

human worker. Thus, the robot user must have a long Mean Time

Between Failure and a short Mean Time To Repair. If the machine is,

indeed, an elegant one, then repair will be intellectually demanding.

What is needed and what will be provided is a self-diagnostic soft­

ware package that pinpoints a deficiency under any failure condition

and directs the human service staff in efficient methods for

recuperating performance,

Inherent Safety (Asimov•s Law of Robotics)

Asimov's Laws become more important as robots become more competent

and as robots are utilized in more intimate relationships with

other human workers. Safety must be inherent if robots and

humans work shoulder-to-shoulder with the robots doing the

drudgery and with the humans contributing the judgement. The

development task is not easy, but fortunately it is also not

impossible.

27

CHAPTER 3

SOFTWARE SURVEY

A computer controlled industrial robot provides significant
(27 62 67)

advantages over conventional hard wired robot controls ' ' •

Having software control provides the means for tailoring a robot to

meet the specifications of a particular application. Software

features for aiding in program generation and modification include

three coordinate systems for positioning the robot while teaching,

on-line editing, and copying a data point (or an entire sequence of

points).

Although programmable systems have emerged as an important class of

machines, the development of complete software system for controlling

and programming such machines has just started.

Computer control provides an industrial robot with a decision making

link to the outside world and gives the robot the capability of

logically deciding what to do basedonexternal signals and of

reacting immediately to interrupts activated by emergency conditions.

Using its computer the robot can issue status notification through

output signals and can even communicate over a serial line with another

computer to retrieve data. In addition, an on-line computer provides

the computational capability to solve coordinate transformations in

real time (ie software interpolatio~permitting a computed path

control system. A computer control also simplifies the teaching

task for an industrial robot.

Flexibility, generality, ease in reprogramming, documentability, are

the most important advantages produced by the introduction of a

software system. The certain shortcoming is that it is hard to

express by a formal language the human expertise of performing tasks.

Many researchers have been primarily directed to general and complex

problems, while relatively little attention has been paid to

questions about computational cost and programming difficulty,

questions of great importance for industrial applications.

28

The decreasing cost of computer components and the widespread

introduction of microcomputers in industrial equipment makes

possible a new era in programmable industrial manipulation.

In industrial applications, robots are commonly programmed by

guiding the mechanical device through a sequence of operations

required to perform the assembly process. A joystick or a button

box is used to insert in the control memory the positions that must

be remembered. The position sequence may be played back to cause

the arm to accomplish the task ie "teach" mode or "tape recorder"

mode. According to R Taylor (Stanford University) this method is

called "non-textural" to make it clear that programming a robot by

the teach mode does not require a program. Any user, without

specific training, may program the robot; this method does not

require the user to associate abstract symbols with manipulator

movements.

Nevertheless, many disadvantages cannot be avoided. The execution

of the task is obtained playing a fixed sequence of movements,

and the impossibility of expressing· conditional actions makes it

impossible to use force sensors or to introduce some adaptation,

while the lack of text produces the impossibility of maintaining,

documenting and modifying the program.

The direction of improving that method of robot programming was

investigated at Stanford Research Institute. More flexible systems

were developed, and joystick, teletype, or voice translaters were

employed for giving commands to the robot. This augmented teach mode

demonstrates that interaction with the robot by means of symbolic

commands allows more flexibility, although certain programming

expertise is required.

The major advantages of a textural language are that the text can be

read by people, can be saved in an understandable form, and can fit

different situations.

Control structures allow branching and conditional activity. Interface

with people allows editing, modifying and documenting program, and

supplies facilities in programming.

29

' The textual approach to robot programming introduces in robotics

the philosophy and the experience of software systems design. New

languages for robot programming are necessary, because general

purpose languages are generally not adequate.

Software design can be considered in two main categories. The first

is explicit-programming which makes the user responsible for

everything and requires explicit instructions for every action the

robot must take. The second philosophy, called world-modeling,

tries to make the robot responsible for taking some decision

according to its knowledge.

3.1 HEIRARCHY OF SOFTWARE STRUCTURE

To enable the software to he more easily understood, a possible

hierarchy which can be utilised is one which consists of five levels

(figure 3.1). The lowest three levels are directly concerned with

the robot, while the last two are concerned with the robot's immediate

and global environment.

The

are

lowest level in the hierarchy is where serve control functions

computed(2S). The input commands are joint positions which are

compared to the feedback from the joint position sensors. If these

values are different, a drive signal is generated to move each joint

until the position error is nulled. The commands to the second level

of the control system are calls to primitive function subroutines.

These low level primitives are the basic, general purpose, operations

that can be sequenced together to accomplish more complicated tasks.

They are called one at a time, by the different input commands such

as GRASP or RELEASE, or MOVE X,Y,Z etc. A command call like GRASP

will, together with whatever feedback is appropriate for this

primitive, cause the second level to generate the current sequence

of joint position outputs to the next lower level (servo level) to

accomplish this operation. Programming at this second level is

enhanced over the first level since coordinate transformations are

now possible with a computer. Thus, the arm can be commanded in

terms of X,Y,Z coordinate space through the use of a joystick. The

coordinate transformation routine calculates all of the joint

motions required to cause the robot's hand to move along the

30

.l-· ,.. SYSTEM
CONTROL

'

f-.+ WORK STATION
CONTROL

ELEMENTAL ,. MOVE
CONTROL

f-.+
PRIMITIVE
FUNCTION
CONTROL

~

f--+ SERVO
CONTROL

.J

WO~IPIECE

LEVEL 5 CONTROL
Funct1on
• Controls system of work stations
• Interfaces w1th h1gher data bases
Input
• Complex task command
• Feedback from work station
Output
• Ass1gn task to work stat1001

LEVEL 4 CONTROL
Funct•on
• Control single work station
• Momtor sensors and react locally
Input
• Work station task command
• Feedback from the work station
Output

Sequence of moves to accomplish task

LEVEL 3 CONTROL
Function
• Spec1fy trajectories
• Use sensory perceptaon for branchmg
Input
• Elemental move command
• Sensory data

Output I 'A h' 'D t' 'G ' Sequence of elementa moves, e g. pproac , etec , rasp

LEVEL 2 CONTROL
Function
• Generate traJectories
• Mod1fy trajectory on basis of sensory perceptions
Input
• Pnmitive command (e g. 'Balance')
• Sensory data (e g • Voltage levels)
Output

Sequence of coord•nated moves to reach 'Balance•

LEVEL 1 CONTROL ,
Function
• Control pos1t1on and veloc1ty of actuators
Input
• Joint position and velocaty commands
Output
• The proper drive signals to the actuators

Figure 3.1 Hierarchical control system for robot installation

31

commanded straight line. The operator is one level removed from the

servo system and, therefore, no longer has to worry about moving the

individual joints. This illustrates the power of an hierarchy as,

when higher levels are added, the input commands become simpler and

more procedure oriented. The sequences of detailed operations

required to accomplish the tasks are generated by the lower levels in

response to these commands.

The coordinate transformation routine makes it possible for the control

system to interact with sensory data. Most sensors provide information

that will require the robot to move along vectors in the sensor-based

coordinate system, not in the joint coordinate system of the robot.

·The sensor•generated commands for motions of the arm in terms of the

sensor's coordinate system are transformed into the proper joint

coordinate values thus causing real time dynamic interaction of the

robot with its environment through sensor controlled movement.

The third level in the control hierarchy receives its input commands

in the form of elemental move commands. The elemental move is a

basic unit building block in the description of a task. It is in the

form of a motion and an operation. Most, if not all, tasks can be

broken down into a sequence of these elemental move commands, where

the band of the robot executes some trajectory through space to a

destination point and performs some operation. An example of an

elemental move command would be "GO TO PALLET (04}, GRASP". This

command, along with any appropriate sensory data, would generate a

sequence of calls to the second level to execute the required

primitive operations. At this third level, the operator is progr~ing

in a much more task procedural language as opposed to the robot joint

position language of the first level. The joint positions of the

robot that define a specified location point still have to be

recorded in a table of points. However, these points can be entered

under joystick control or as X,Y,Z coordinates of the locations. Once

a location is stored under some arbitrary name (like PALLET (04}},

it can be used in any number of elemental move statements. Of course,

the stored locations can be programmed in any sequence, not just the

order in which they are entered.

32

The control system interfaces to the particular robot through that

robot's own coordinate transformation subroutine •. The coordinate

transformation routine can be used with a post processor to generate

the robot-specific location table from a robot-independent location

table. It is also used during execution of the program for real

time transformation between external or sensor-based coordinate

systems and the robot's joint coordinate system. This results in a

separation of the description of the task as much as possible from

the particular robot that may carry out its operation.

The input task command to the fourth level (work station control),

together with sensory feedback from the robot and the work station,

result in the fourth level sending out sequences of elemental move

commands to the third level. Different prerecorded sequences of

elemental moves can be decided upon as a result of the particular

input task and sensory feedback. A number of sequences of

elemental moves can be programmed and named to be used as subroutines.

These will be sent to the third level when certain conditions arise.

For example, suppose one of the cutters breaks while in the machine

tool. A sensor on the tool or on the robot can report this data back

to the fourth level. This condition will cause a branch to a

preprogrammed recovery sequence of elemental moves. This sequence

will command the robot to remove the broken cutter from the tool and

replace it with a new cutter. The program then returns control to

the proper point in the execution program.

The fifth level of control is the "system control" and has the

responsibility of accomplishing a project that might involve

assigning a number of tasks to a number of different work stations;

or scheduling a number of tasks to the same work station •. Its

feedback might consist of one of its fourth level control stations

reporting back that the task has been completed, or that a machine

tool is inoperative. This fifth level would respond by issuing a new

task to the particular work station or rerouting materials to another

work station and assigning it the task that the disabled station

could no longer accomplish.

33

One o! the advantages of hierarchical control is that complexity at

any level in the hierarchy can be held within manageable limits

irrespective of the complexity o! the entire structure. However,

such a hierarchical decomposition extends far beyond programming

convenience. The real-time use of sensory measurement information

for coping with uncertainty and recovering !rom errors requires

that sensory data be able to interact with the control system at

many different levels with many different constraints on speed and

timing. For example, joint position, velocity and sometimes

force measurements are required at the lowest level in the

hierarchy !or servo feedback. This data requires very little

processing, but must be supplied without time delays o! more than a

few milliseconds. Visual depth (proximity) and information related

to edges and surfaces are needed at the primitive function level o!

the hierarchy to compute offsets !or gripping points. This data

must be supplied within a few tenths of a second. Recognition of

part position and orientation requires more processing and is

needed at the elemental move level where the time constraints are o!

the order o! seconds. Recognition of parts and/or relationships

between parts which may take several seconds is required !or

conditional branching at the single work station level. Attempting

to deal with this full range o! sensory feedback in all of its

possible combinations at a single level would lead to extremely

complex programs. A sensory hierarchical can also be utilised as

illustrated in figure 3.2.

The sensory processing hierarchy receives the raw sensory data at

its lowest level. Each ascending level processes this feedback

further, relaying the appropriate processed data to the corresponding

level in the parallel control hierarchy. The sensory processing

hierarchy also receives input at various levels from the control

hierarchy. This input defines the type of sensory processing to be

performed and the expected results. There is, therefore, a

two way exchange of information between these two hierarchies at all

levels.

34

LEVEL 5

Recognition of Idle or

Broken Workstations

LEVEL 4

Recognition of Parts and

their Relationships

LEVEL 3

Part Position and

Orientation

LEVEL 2

Proximity

Edges and Surfaces

LEVEL 1

Joint Position Feedback

Velocity

Force Measurements

Figure 3,2 Hierarchical control system for sensory information

35

3.2 SPECIAL ROBOT LANGUAGES

Robot languages< 32) have been developed by various organisations !or'

the following reasons:- to facilitate the ease of programming !or

complex tasks; to minimise the "teaching" time especially !or small

batches and so increase flexibility; to link robots to CAD and CAM.

The robot languages include:-

1 Multipurpose Assembly Language (MAL)(33) which was designed and

implemented at Milan Polytechnic !or the Supersigma robot.

2 WAVE which was developed at Stanford Artificial Intelligence

Laboratory (SAIL) and was the first flexible system for

developing complex manipulation algorithms(34>.

3 AL which is a world-modeling robot language is being developed

by the Computer Integrated Assembly Systems project at SAIL(35>.

4 Cincinnati Milacron Inc utilise an explicit program to control

their robots(43 •44).

5 VAL which was designed for use with Unimation Inc industrial

robots

' i
6 LAMA is a world-modelling mechanical assembly language which is

being developed at MIT Artificial Intelligence Laboratory< 37 •17>,

7 AUTOPASS is a world-modelling programming language used by IBM<37 •38).

8 EMILY also used by IBM is an explicit language(39),

9 SIGLA is an explicit programming language used by the Olivetti

corporation of Italy for controlling the SIGMA robot(40).

10 In the Department of Artificial Intelligence at the University of

Edinburgh a mixture of explicit programming and world-modelling

philosophies have been used to control their robot (which is

called FREDDY)(4l).

36

11 The National Bureau of Standards (NBS) uses a Cerbellar Model

Articulation Controller (CAMAC)(42>.

12 Perceptronics Inc uses an Adaptive Control System to control a

silent anthropormorphic arm powered by 1000 psi.

13 System for Aiding Man Machine Interaction Evaluation (SAMMIE)

which has been developed by the Production Engineering and

Management Department at Nottingham University and is used as a

basic modelling system for the simulation of industrial robots<45 •46).

14 Graphical Representation Assessment and Simulation Package (GRASP)

is currently being developed at Nottingham University.

15 DEA of Torino in Italy has applied to assemble part-programming

a High-level Expansible Language for Programming (HELP)<47>
which is used for the control of the PRAGMA 3000 robots.

16 RAPT has been partially developed at Edinburgh University and it

is a geometrical expert.

17 PARAPIC which is also being developed at Edinburgh. It is a

high-level language for parallel picture processing.

In the following sections some of the more important robot languages

are considered in further detail with the emphasis on MAL, WAVE, AL

and Cincinnati Languages.

3.2.1 MAL

MAL is an interactive system, which allows the user to describe the

sequence of steps necessary to realize assembly tasks. It allows

the independent programming of different tasks and provides

semaphorsforsynchronization. A MAL system is completely

implemented in Fortran IV except for a small interface to the robot,

which is written in assembler, due to the demand for portability.

Moreover MAL is implemented in such a way that the change of the

controlled robot would not require a complete rewriting of the

system. For example, the conversion from a cartesian robot to a

37

3.2.2

polar one should require changes only to a given module.

The MAL system is made up by two different parts,. one devoted to the

compilation of the input language into an internal form, the other

one devoted to the execution.

The compilation part gives the user facilities to create, update and

maintain the source program. The execution part has the responsibility

of executing the sequence of operations described in the user program.

The debugging of the program is easy and the user can modify his

program and immediately check it again.

To develop a program the user has to express his assembly task as a

sequence of elementary operations. If the task requires some

parallel activities, the programmer writes the different parts as

they are independent and then synchronizes them. Then the MAL

compiler translates the program into an easily interpretable object

code.

WAVE

WAVE was developed at SAIL to show the feasibility of doing different

tasks with the same robot system and it has been used for assembling

a hinge, a water pump, a pencil sharpener, and other objects by

~sing two arms and simple power tools. The facility of scene

analysis programspermitsverification of successful completion of

individual actions. Interactive debugging facilities permit quick

development of programs to do new tasks, although execution times

are two to four times longer than a person would need. Although

WAVE is an explicit-programming system, it maintains a world model

of the arm for planning purposes. To write an arm-control program

one first defines macros that expand into sequences of arm-control

instructions to perform simple actions like screwing on a nut or

picking up a screwdriver. Planning dictates the use of macros rather

than subroutines because each call generates much information that

depends upon the arm position. Nesting and parameters are allowed,

and individual macros may be expanded, tested and revised with

essentially a very small elapse of time. Once the macros perform

as expected, the task program is written in the form of another

38

macro, that is a sequence of calls to the previously-defined macros.

WAVE lacks certain debugging facilities such as single-step execution,

breakpoints and hot editing. So, although WAVE is convenient to

program in and is interactive, it behaves like a system with a

compiled user program.

3.2.3 AL

AL is a high level language programming system for specification of

manipulatory tasks such as assembly of an object from parts. AL

includes an·ALGOL-like source language, a translator for converting

programs into runable code, and a runtime system for controlling

manipulators and other devices. The system includes advanced

features for describing the motions of manipulators, for using

sensory information, and for describing assembly algorithms in

terms of common domain-specific primitives. The principal aim of

the work carriedoutat SAIL is not to provide a factory floor

programming system but rather to design a language which will be a

tool for investigating the difficulty, necessary programming time

and feasibility of writing programs to control assembly operations.

The supervisory software is the top level of AL. It runs on the

timesharing computer and provides an interface between the user and

the other parts of the system

i) listening to the user's console and interpreting simple

command language input

ii) controlling the compiler, starting it and relaying its error

messages back to the user

iii) signalling the loader when it is necessary to place compiled

code into the mini.

iv) handling the runtime interface to the mini.

AL is important for several reasons which are :-

i) It shows what sort of considerations are necessary for the

flexible control of mechanical manipulation.

ii) It demonstrates the feasibility of programmable assembly.

iii) It provides a research tool for investigation of new modes of

39

I

I

'

3.2.4

software servoing, assembly primitives, arm-control primitives

and interactive real-time world systems.

AL is currently limited by the lack of certain features which would

make it more useful. These features will now be described. Fine

control of the arm could be enhanced by more sensitive force-sensing

elements on the hand. Visual feedback should be implemented to

provide better positioning capability, error detection, and error

recovery. Moving assembly lines imply that AL should be able to

understand motions which it does not cause directly through

manipulation; objects should have a dynamic capability. Collision

detection and avoidance remain difficult issues. AL would be more

error-free if the trajectory calculator could ensure that the arms

never interfere with each other or with objects in the current

world.

Cincinnati Developments of Software

Cincinnati have developed software features to increase the

flexibility of their robots which exploit the use of an on-line

computer. These features are:-

i) Teach Coordinates

Using either a band held Teach Pendant (figure 3.3) or a CRT

and keyboard unit (figure 3.4). When in the teach mode the

computer does not care how the tool centre point (TCP) is

manipulated in getting from point to point in space. The only

information to be retained is; the location, hand orientation

and function data pertaining to each data point.

ii) Alignment Method in Software

The conveyor alignment (figure 3.5) method enables the user to

adjust the X,Y,Z coordinate system so that it is parallel to

X,Y,Z coordinate system of its working environment. This is

especially useful when programming a tracking application since

the tracking axis (the axis of conveyor motion) must be aligned

to one of the major axes of the robot X,Y or Z. This method

eliminates the precise positioning of the robot during

installation by allowing the computer to adjust the robot to

the conveyor. Another advantage of the alignment method is in

40

·~

FIGURE 3.3 HAND HELD TEACH PENDANT

41

.
•

.PUSHBUTTON PANEL

a a
.. ..

• KEYBOARD ---J

- _.- ---·--- - --- - - -----·- --

FIGURE 3.4 CRT AND KEYBOARD

42

FIGUP~ 3.5 ALIGNMENT FIXTURE

43

multiple robot systems because it allows one robot to be used

to create programs for all other robots. Whatever differences

in alignment which might occur between robots is eliminated

by this alignment method.

iii) Programmable System Generation

The programmable system is generated in the following way:-

a) The Programmable System Tape is loaded into the robot

controller.

b) The user responds to messages on the CRT using the keyboard

to define the parameters.

c) When all the parameters have been defined, the robot control

will produce a final System Load Tape.

iv) Index Function

This is utilised, for example, to pick components off a pallet

one at a time.

3.2.5 VAL

3.2.6

VAL runs on a LSI-11 and is used to control.Unimation's Puma series

of robots. On-line program generation and modification can be

performed as the real time control and operator communication

modules reside in the same computer. The language uses clear,

concise and easily understood word and number sequences. It

includes facilities such as subroutines, program branching and
" integer calculations, together with interrogation of and signalling

to external devices via an input/output module. There are three

coordinate systems which are available with the VAL operating system,

which are available with the VAL operating system, which are joint,

world and tool modes (figure 3.6). The difficult modes are selected

by the operator as the robot is taught a task. VAL automatically

takes.these modes into account so that the task can be

accomplished 'as taught'.

LAMA

LAMA will allow the user to describe an assembly procedure in the

kind of English statements that may be used as captions under
I
illustrations in a shop assembly manual. The system requires the

user to decide the sequence in which the parts are brought together

44

•

.
I

Joint Mode

FIGURE 3.6. JOINT,TOOL AND WORLD MODES

45

-- -

" ·"' y
/. . \

/ .
/. '.

i \
I +Z

+X

3.2.7

•

3.2.8

then LAMA generates an appropriate sequence of pick-and-place motions

and chooses grasp points on objects by itself. If also uses

uncertainty and tolerance information in its world model to generate

appropriate test procedures for every fabrication step, LAMA keeps

geometric information in its world model and simulates the effect

of candidate strategies by making temporary modifications to it.

AUTOPASS

The AUTOPASS user plans the part-attachment sequence, tool usage, and

general object positions. AUTOPASS is designed for finding user

errors at compile time rather than during execution. Graphic

simulation substitutes for interactive debugging in trial runs.

The AUTOPASS world model represents assemblies as a graph structure

of object part, subcomponent, attachment, and constraint

relationships. Basic entities on the grap~ are points, lines, and

surfaces, and the user sets up the world model with a separate

geometric design program. The statements deal with parts, tools,

fasteners, and instructions for placement and attachment, and they

are translated one at a time in a single pass. The compiler chooses

optimal grasps for the user and plans hand trajectories to avoid

collisions and to obey constraints on part motion, It originates

some kinds of simple actions by itself, if necessary, to achieve

preconditions needed to carry out a user statement. AUTOPASS
' statements translate into MAPLE-language statements containing the
I

explicit planning decisions made by the AUTOPASS compiler. AUTOPASS

and MAPLE are PL/I-like languages with extensions for manipulator­

related language constructs.

EMILY

EMILY has control structures similar to FORTRAN, which can call

upon more powerful user-written routines in the IBM 370/145, A

program called Manipulator Operating System (MOS) moves the arm (or

can operate two arms simultaneously) by interpreting the contents of

tables, which have been produced by EMILY. Entries in one table

describe the assembly algorithm in terms of pointers to MOS library

routines and to other table entries to be passed as arguments to

those routines. Debugging involves rewriting the individual library

routine calls by using a metal language called ML and by

changing the values of entries in the data tables.

46

3.2.9

3.2.10

3.2.11

SIGLA

SIGLA (SIGma LAnguage) controls SIGMA robots by symbolic commands,

which are later interpreted as calls on library routines. The user

moves the hands with a rate joystick during training. Routines for

computation and sensing wrist displacement permit a variety of

programmed search, patterning and accommodation behaviour.

FREDDY

FREDDY is a sophisticated vision-controlled robot,, .Using overhead and

oblique cameras, Freddy looks at three-dimensional wooden parts poured

onto his worktable in a heap. -It-breaks up the heap to see individual

parts, then sorts out the good parts, discarding any it does not

recognise. FREDDY uses a world model containing information about

part images and object locations to recognise the objects placed

under his camera and to find space in which to work. The

recognition and sorting-out phase is programmed by showing the robot

examples of every part in each of its stable postures on the table

and by leading it through a pick-and-place sequence. During

execution. Freddy generalises these motions to deal with parts in

the same posture but with different positions and orientations. It

assembles the parts under the control of an explicit, compiled

POP-2 program written and debugged interactively for each

particular assembly task. Freddy's library contains routines for
i
constrained moves and insertions. The system software has a main

loop that repeatedly classifies the current situation into one of

eight distinct categories and takes the appropriate action for that

category. For example, if it finds a complete kit of parts, it

assembles them, if the kit is incomplete, it looks for more parts.

CAMAC
~

CAMAC is an algorithm and data structure that can learn to compute

extremely complicated functions of many variables which run on PDP 11.

It has been tried as a fast servo computation mechanism to determine,

for example, the required joint motor drive current from the desired

joint velocity and the actual position and velocity of all joints.

47

3.2.12

3.2.13

3.2.14

Adaptive Control System (ACS)

Perceptronics' Adaptive Control System (ACS) learns a manipulation

task by monitoring a person operating a teleoperator master arm. It

takes control of the slave arm when it has enough confidence in its

ability to predict what the man will do next. ACS uses statistical

decision theory'to adapt a set of Bayesian arm-action probabilities.

Perceptronics have also developed several kinds of three dimensional

graphic displays and have used them for simulation.

System for Aiding Man Machine Interaction Evaluation

SAMMIE which is written in Fortran, simulates various industrial

robots and provides an aid to robot selection, and a quick evaluation

of robot/machine/robot interactions. The simulation is in two parts:

firstly it is a planning phase where the workplace layout and robot

manipulator articulations are examined - this can be considered as

static analysis. The second phase is an execution phase, or a

dynamical analysis: here robot times are produced and compared. The

planning or programming phase is usually first, unless a programmed

sequence already exists, and then information satisfying a static

analysis is then used for a dynamic analysis. In the event of certain

criteria not being satisfied in the dynamic analysis then perhaps it

may be necessary to reprogramme the sequence and modify the layout.

The ability to communicate with the computer with a light pen and a

simple instruction set displayed together with computer generated

pictures on the graphics terminal allows a number of iterations to be

carried out quickly to obtain optimum results.

GRASP (Graphical Robot Assessment and Simulation Package)

This is currently in the early stages of research and development. The

system will ease the introduction and application of present day robot

technology into the manufacturing environment. The completed system

will enable the engineer to produce three-dimensional models of

robots and workplace similar to that used by SAMMIE. The actions of

the robot are then specified by a means analogous to those

programming real robots, although a high-level task specification

language is planned as an additional aid. The simulation, used in

conjunction with models of the workplace, equipment and machines,

48

3.2.15

will enable assessments to be made of the suitability of particular

industrial robots for the proposed task. Finally it is intended
' / that the knowledge gained from the simulation will be used to

program the robot itself in the same way as tapes are produced

for Numerically Controlled machines.

HELP

The HELP language has been implemented on computers of the DEC 11

family. HELP language has two phases, one in which the translator

acts as a pure compiler which alternates with the other in which the

translated program is executed •. Such phase alternate inside each

single program element, it means that each single element is

translated and then executed which results in a high interactivity

level. Due to the compiler structure of HELP, the execution of the

program can be postponed or the translated program can be stored for

as long as desired for further recalling. The translation structure

allows dialogue with the system during·program set-up; it also

yields reasonable execution efficiency as the programs which are

available in memory are close-to-the-machine internal langauge.

Externally the language is much like the ones of the Algol family,

its elements are sentences or sentence blocks. ·The language has

some macro-definition and macro-calling devices that make programming

more intuitive and easier for the end user.
<

i
3.2.16 RAPT

RAPT at present uses a textural input with an APT like syntax. There

are various descriptions utilised which are; objects - named features,

for example plane faces; situations - described in terms of spatial

relationships between features of objects; actions - descriptions in

terms of movements of bodies relative to features, action statements

are used like situation statements to form equations; ties - between

bodies; subassemblies of bodies - partially assembled objects,

residual degrees of freedom and mechanisms, for example vices.

All the languages which have been described are only applicable to

either one robot and/or one computer system.

49

/

Robot software can be divided into two basic categories, on-line and

off-line. The on-line software system controls the robot at run

time (real-time control) whereas the off-line software generates the

instructions required by the on-line software (operator communicator).

The linking of the off-line and on-line systems varies for each

language, at present there is no standard interface between the

on-line and off-line systems.

Most of the languages are designed for assembly work and the only ones

in use commercially are at the manipulation level. The high world

model level languages are still under development in academic

establishments. With the manipulation languages,. the on-line and
' off-line components of the system are run on the same computer,

which is the robot-controller. The higher world model languages,

the off-line processing is carried out on a larger more powerful

computer, which generates an intermediate language which can be

input to the on-line system of the robot controller.

There is an immediate requirement for standards to be defined

especially for this intermediate language so that one off-line

system can interface with a wide variety of robot controllers and

vice versa.

50

Interactive Language O~erations Ex~lici t World Uses Calculates
Sensory Trajectories
Information

MAL yes FORTRAN IV assembly yes
interface in
assembler

VAL yes ALGOL manipulation yes maintains world yes yes

based model of arm for
planning purposes

WAVE yes ALGOL assembly yes maintains world
textural model of arm for

planning purposes

AL yes ALGOL assembly yes yes

textural

LAMA yes English pick & place yes
statements

EMILY yes Fortran assembly yes

SIGLA yes symbolic yes yes yes

commands

ACS man1pulation by
learning from a
teleoperator arm~

AUTOPASS yes PL/I finds user errors yes yes yes
at compile time
translates into
MAPLE

' /

CINCINATI yes ALGOL welding assembly yes yes yes

HELP yes ALGOL assembly yes

RAPT yes APT assembly yes yes yes

Table 3.1 Summary of Robot Languages •

51

4.1.1

CHAPTER 4

THE COMPUTER, MICROCOMPUTER, TMS 9900 MICROPROCESSOR AND SOFTWARE/

HARDWARE DEVELOPMENT SYSTE1ffi

In this chapter the evolution of the computer and the microcomputer

is outlined. The hardware/software development aids are then

considered which is followed by a description of the processing

element of the controller, the TMS 9900 microprocessor.

Historical Development of the Computer

The abacus, a frame with wires along which beads can be slid, is well

known in the West as a child's toy and an educational aid. In the

East it, is still extensively used for arithmetical calculations.

Since each digit is separately represented (in this case by a bead)

it is a digital machine(4S).

An early analogue machine, and, until about 1970 the machine most

widely used for multiplication and division, was the slide-rule. In

analogue machines, numbers are expressed by the measure of some

physical quantity (in a slide-rule the physical quantity is length

which is made proportional to the logarithm of the number). As

microprocessors and microcomputers operate digitally, analogue

machines will not be considered further< 49 •50>.

From the middle of the nineteenth century onwards various manually

operated adding machines, including cash registers, became commercially

available. These were followed in the first half of the twentieth

century by desk-top machines that could divide and multiply. At

first these were manually operated but as electricity became '

generally available some were powered, as were adding machines, by

electric motors or actuators. Although such machines were able to

store their results and often to print them out, each new entry had

to be entered digit-by-digit by pressing the appropriate key or by

adjusting the appropriate pointer.

The advent of punched cards at the turn of the century made it

possible for the same data to be entered automatically for different

calculations, for entries to be sorted into any required order and

52

for the results of one calculation to be stored on new cards ready

for later calculations.

Sensing of the holes in the punched cards was at first mechanical and

calculation was undprtaken by a system of mechanical linkages, cranks,

rotating wheels and sliding bars. Later, electrical sensing of the

cards was introduced and many of the mechanical links were replaced

with electromechanical elements. In the main, operations were limited

to addition, subtraction, sorting and tabulation. Multiplication and

division were either impracticable or much slower than the normal

operating speed of the rest of the equipment which usually handled two

cards per second. In the 1930's however, multipliers consisting of

banks of 'telephone type' relays were developed that enabled

multiplication and division to be carried out within the cycle time

of the rest of the equipment(Sl).

Probably the first digital electronic computer was built at the

British Post Office Research Station during the Second World War.

It was a special purpose machine dedicated to speeding up the

deciphering of intercepted German signals (for security reasons, the

existence of this machine was not announced for. over 30 years and very

few details have been published).

The war also produced ENIAC(Sl), probably the first true electronic
'

dlgital calculating machine, built at the University of Pennsylvania,

which was designed specifically for ballistic calculations which can

be described in the following manner.

(i) it occupied a room approximately 12m x 6m

(ii) it contained nearly 18,000 thermionic valves

(iii) its power consumption was 150kW

(iv) it operated on numbers with ten decimal digits

(v) addition could be carried out at the rate of 5,000 calcaulations

per second, multiplication at 350 per second and division at

166 per second.

(vi) it was able to store up to 20 different numbers and recall

them immediately when required.

53

4.1.1

ENIAC was shortly followed by EDVAC, the first electronic machine to

use binary arithmetic. It operated on binary numbers of 43 digits

(equivalent to about 13 decimal digits) and could store over 1000

numbers for immediate recall.' It was also the first machine to use

an external store (using magnetic recording) to which it had automatic,

but comparativelt slow access.

The success and publicity attached to these two US machines led to

worldwide activity, at first in universities and military

establishments where cost was not usually the prime consideration,

and later in commerce and industry where the machines were expected

to pay their way but probably seldom did. The machines of the

mid 1950's cost about £100,000 for the computer and probably about

half as much again for the air-conditioned room that was necessary to

dissipate the heat from the electronic valves.

The Impact of Transistors

Transistors were invented in 1948 and 10 years later began to replace

valves. Simultaneous developments in the design of immediate access

memory stores enabled general purpose computers to be produced at a

price which gave a reasonable chance of a satisfactory return on

investment. By 1960 they were also of a reasonable physical size,
3

2 or 3m for the heart of the machine, the central processing unit

(~U) and the immediate access memory store, with a power consumption

of 1 or 2kW (thereby much reducing heat dissipation problems).

Despite inflation, prices had halved in 5 years for machines of

similar computing power and were to do so twice more in the next

decade.

To understand what happened in the 1960's which led directly to the

advent of microprocessors, it is necessary to look briefly at the

technology of the transistor. The actual diameter and height of the

body are each about 5mm, anything smaller would be difficult to handle

in an electronics assembly factory. The same size would protect a

silicon chip probably smaller than 0.5mm square and 0.15mm thick

(much smaller than a pinhead) so that the package is 2500 times as

large as the contents. In turn the chip is much larger than is

technically necessary because an assembly worker cannot handle chips

54

much smaller than 0.5mm square. The active part of the transistor

occupies less than 10% of this area so it is quite feasible to form two

or more transistors on the same chip. In fact the chips are actually

manufactured by forming many hundreds of them on a slice of silica

(nowadays 60mm or more in diameter) and then cutting the slice into

chips of the desired size. When it was realised that other circuit

elements, (resistors, capacitors and interconnecting 'wiring') could

also be built on the chip, the door was open for manufacturing more

and more complex circuits on the chips.

Integrated circuits (ICs), were produced and the period from 1961 to

1972 saw the development of small scale integration (SSI) through

medium scale integration (MSI) to large scale integration (LSI).

These terms are not precisely defined but in general an SSI chip has

tens of transistors with their associated circuit components, an

MSI chip has hundreds and an LSI chip thousands. Vary large scale

integration (VLSI) techniques which have tens of thousands of

transistors have been developed which has significantly decreased the

cost of the hardware so enabling a wide range of machines and

processes to be controlled due to the low cost of the hardware.

However, at this time only limited memory and Input/Output (I/O)

facilities can be configured on a single chip and "controller chips"

are therefore used mainly in high volume applications which are

generally o~ low complexity. For the majority of applications today

the CPU will be a VLSI or LSI chip with powerful computing facilities

and support VLSI (or LSI) memory, I/0, buffer, decode etc chips will

be used to constructure a controller with memory and I/0 facilities

which meet the required specification.

4.2 HISTORICAL VIEW OF THE MICROCOMPUTER

The term micro in this connection first appeared in 1972 when the

Intel Corporation produced the 4004 microcomputer. The heart of

this system was an LSI package that included, on a single chip, all

the features normally encountered in the central processing unit (CPU) of

a mainframe or minicomputer. This IC was therefore given the name of

a microprocessor or microprocessing unit (MPU)(G9). The principal

elements of any digital computing system are the CPU and the immediate

accessmemory. In terms of operating speed and other performance

55

....... ---------------------------
citeria, the 4004 fell far short of available minicomputers.

There are however, applicationsforwhich large numbers and high

speeds are unnecessary and for which low cost makes the Intel 4004

and other MPUs with restricted 'computing power' eminently suitable.

The race for larger capacity and increased speed was on and during

the next three years, half-a-dozen manufacturers developed single

chip MPUs with capacities and speeds approaching those of the CPUs

of some minicomputers. If present trends continue, the distinction

between microcomputers and minicomputers, which is already becoming

blurred, may eventually disappear.

The chip for a modern MPU is approximately 5mm square and contains

many thousands of transistors and their associated wiring. It can

perform all the functions of the CPU of a typical machine of the

early 1960's often at comparable or faster speeds, with a power

consumption of less than 150mW, (one-ten-thousandth that of the 1960

machines). The 5mm square chip has to be packaged in such a way that

it can be handled and connected to the other system components.

Since 40 separate lead-cuts are required it is necessary to have a

package several times larger than the chip itself. This dual-in-line

package,.a reference of the two rows of connecting pins that can be

inserted and soldered into a printed circuit board, is of the general

configuration used in most ICs. It is also referred to as a 'DIL'.

l
f

In its package an MPU occupies about one-five-thousandth of the space

occupied by the comparable CPU of a 1960 machine. Price, too, has

come down by a factor which, allowing for inflation, is of the same

order as the reduction in size and power requirements.

56

4.3 PROPERTIES OF HARDWARE AND SOFTWARE FOR THE IMPLEMENTATION OF DATA

PROCESSING ALGORITHMS

4.4

4.4.1

In table 4.1 there is a comparison between the use of hardware and

software for the implementation of algorithms

HARDWARE

Designed by an engineer, who

must know the physical

limitations (fan-out,

propagation delay, heat

dissipation etc) of the

components in use

Capable of fast operation

if necessary

Design methods uses finite

state machines and logic

diagrams

SOFTWARE

Designed by a programme~ who must

understand his machine as an abstract

mathematical object with formal

properties, but needs no detailed

knowledge of the hardware

Speed limited by

(a) algorithm

(b) design of computer

Design methods use flow charts,

mnemonic codes etc

Table 4.1 Comparison between the use of hardware and software for

implementing algorithms

In comparing the two methods of implementing algorithms, software is

relatively slow in performing operations when compared with hardware,

but it is very much faster to design and write, and it can handle

more complex algorithms. This seems to make it preferable in most

circumstances.

HARDWARE/SOFTWARE TOOLS FOR MICROPROCESSORS

Hardware Aids

Development of microcomputer-based products usually requires a support

computer system. Products are seldom developed in the computer

environment that will surround the eventual software. More often,

a separate computer system is used to support software development

efforts and augment hardware testing. This is in sharp contrast with

57

4.4.2

4.4.3

most minicomputer applications in which the mini is used for both

development and production. Similarly, digital design engineers will

find that checking out a microcomputer prototype requires more support

than traditional TTL or CMOS design efforts.

Small Support Environments

The most primitive kind of support system is based on the actual

microcomputer being developed, or on another small system. Often,

this small configuration is actually nothing but an evaluation kit

from the semiconductor maker. The kit provides a micro, a small

amount of data storage space and a debugging monitor in ROM or

EPROM. The devices supported for I/0 may be on-board or outboard.

The on-board peripherals usually include a keyboard and some

seven-segment LED displays used for hexadecimal data and address bus

contents. Outboard devices are usually assumed to be teletypewriter

terminals.

These small systems are inexpensive but the features they provide are

very limited. The limited program and data storage sizes of many

evaluation kits prevent the use of an assembler. Programming must

therefore be done in machine-code, although usually hexadecimal or

octal code representations are used as determined by the features of

a debugging monitor which acts as a limited function operating system.

The interactive ability of most debug monitors may consist of little

more than loading, executing, modifying and dumping a small program

from memory. The small read-write memory sizes included are

typically less than 1024 bytes which only permits the smallest of

programs to be entered and tested without appreciably increasing

memory size. Memory expansion may be complicated by the lack of

space on the evaluation kit's printed circuit card and the lack of

external bus-buffering necessary to communicate with an outboard

memory card. These products were designed for'small evaluation

exercises, not wholesale program development(4B).

Simple Software Support

Even the evaluation kits have some software for aiding the

debugging process. However, they nearly all require recourse to

some computer terminal unless the kit's own hexadecimal keyboard and

58

4.4.&

displays are used. If the internal "terminal" is used, operations are

usually very limited and error-prone. If the computer's debug monitor

permits the reading of programs from cassette tape (usually from an

audio recorder), the lack of an external terminal may be mollified.

The debug monitor consists of some simple input/output (I/O) software,

plus a command interpreter to allow loading, modifying, executing and

dumping memory contents. The more sophisticated monitors include

the ability to perform hex-to-decimal conversions, insert software

breakpoints which, when reached, cause control to return to the monitor,

and the ability to display CPU register contents of programs that are

being debugged.

Software Development Systems

Traditionally, microcomputer software design has been supported on

large-scale computers, either through time-sharing or under the aegis

of an operating system on an available computer, or on a microcomputer

development system.

The simplest development systems are made up of a microprocessor,

some limited input/output capability to a terminal, and a large

amount of memory. Microcomputer development systems typically provide

from 16K to 64K bytes of read-write storage, plus a small monitor.

A,high-speed printer and floppy disc can be added.

In-Circuit Emulation

In-circuit emulation is a concept pioneered by Intel, and is a

circuit, that plugs into a socket replacing the CPU chip.

An in-circuit emulator allows the host computer, with all of its

'additional memory and monitor software and peripherals, to become

a resource to support the operation of the system under test. In

the emulation mode, the operator can remove control from the

executing program by using monitor commands. The suspended program's

register and memory contents can be examined, modified and execution

resumed. As there are no changes in the system under test except

microprocessor replacement, all of this testing capability is

transparent to the design. This means that the system under test

59

4.4.6

4.4.7

can be a nearly completely finished system. The in-circuit emulator

can be utilised to exorcise the last residual design "blunders".

Until 1977, virtually all microcomputer development systems were

dedicated to supporting one particular vendor's microprocessors.

However, Tektronix have designed a development system which supports

the Z-80, 6800 80808 8085. In Table 4.2 there is a survey of the

available microcomputer development systems.

Logic Analyzers

The basic principle behind Logic Analyzers is illustrated in figure 4.1.

The probes bring in signals from the equipment under development. The

signals,are matched with switches on the front panel so that some

combinations of them can be used to enable the memory to record all

the inputs.. The front-panel controls are usually toggle switches that

can be set to recognize each input at 1 or 0, or to ignore that

particular input. When the input conditions match the conditions

specified in the switches, the memory is enabled. The inputs are

collected in memory, one for each clock pulse •. As each new word is

written, the oldest work is purged from memory and produces the

information on an internal (or, sometimes, external) oscilloscope.

The input probes are usually connected to bits of the address bus,

and some of the control bus signals. (It is often useful to have

come record of the data bus contents too). The number of input

signals that can be sensed and recorded in parallel which range

from 8-40 bit memories is an important parameter of these devices.

Software

Programming languages can be divided into three categories, high leve~

low level and machine code.

High level languages (HLLs) offer two important advantages over machine

and assembly codes. In the first place, the programmer is freed from

having to remember the precise arbitrary details of the target machine

which is being utilised, and so can concentrate on the problem which

is to be solved. This makes programming easier and up to 10 times

faster. HLLs are therefore called 'Problem-Orientated Languages•.

60

\

I

Table 4.2

Systems and support

System

• > >

Advanced ~-
M1cro Computer
AmSYS 8/8 -.. -

Amenan
M1crosystems
Inc. MDC 1000

FucMd
M•croflame
development system

GenRad/ • ~
Futuredata r

Advanced -
development syst!ITI

Hughes
Sem•conductor
Product~ HMDS<
20

lntel Corp -
lntellec
Senes 11
Model 240

. -

MJ!Ienmum
Systems lnc
M1crosystems I*
s•gner Senes 1000

Mostek Corp
AID BOF

Motorolil
Sem•conduclor
Products, Inc.
fXORCISOf 11

Nahonal
Semiconductor
Star pie•

>

' -'
-.

Rock well
lntemat•onal
System 65

'

Sor.d State
Sc•ent1ht 11 MOS
development
system

Tektrom1
B002A
Microprocessor
Development lab

Texas
Instruments
FS 990AMPl
Microprocessor
Prototyp1ng
laboratory

ldog
POS BOOO

CPUs
supported

~ • • I
180,8080 - ..
B085, 18000 • \

S2000, 6800

9400 M•croflame I,
9445 M1croflame 11
16 bit CPUs

808x, 280 :
6BO•. 1802, 387X.
8048 ~..-~.;-.'?~ --

;,- ~-~-· ~
1802. 180 • - -
BOBO, 8085 - -'-~

- - ,.. - J t..: -.. :···- -:·
BOB~ 802<. ' • -
B04•, B03S • • --... ~' - ~.

1BO B08B
BOB6,l8000

Support
hardware

28000 prorotypnJ
bolrd Wllh lfto ,
ttrcv•t tmulabon _
CIPibillty ·: ••

DEV 2000 emulator
68000 prototypm1
boards, EPROM
programmer, MOC-
140 logiC analyzer

PROM/fl'lA
proRrammer

H•gh-lewel
la~uages

P..:~ (on a'Us)
and 81:~. Fortran
C:.bol "' B bit _

. .
Base, Fortran

""~
Emulators loflt - BasiC: (compiler
analyzer, PROM - and 1nter·
programmer ., preter ' ..
--~ ~ ___ ,.., .. ve~ons) Pa~l ~
ln'Circu•t ~ : " ; BaSIC comp.ler
emulalmn for ... • • 'I fy 1802 _ •
alii CPUs, •nd : _ -~ <' .. ~
PROM programmer, ~- ~j ~:: .::.. ·~:
l•ghtpen, ---.-J ;-... ~ ~-
In-circuit -
emulabon for all
CPUs except 8088,
mulh ICE (two CPUs
emulated stmultan-
eously) and PROM
programmer

MICroprocessor per­
sonality modules

BaSIC. rortran.
Cobol (for all
8-b•t protfssors)

Momtor software
for program
development, debug
and system control

Z80 (but can be PROM programmer, Fortran, BaSIC.
set for 3870 CPU) ~ •n-c•rcurt PVlS, Cobol

6800 fam•ly and
68000 (all CPt.ls of
comJ»nw supported)
: ·- --"", :

• • • I • .•

BOBO, BOBS, ,,
B048, BC49,
1BO . -- --
- ... •- ."- r

6500, 6500/1
slflgle-ch•p .
computer

1B02

B080/BS, 6800.
180, TMS 9900,
3870172, 1802,
8048 family

An 9900 family
CPUs

18, 1BO, 1BOOO

emutat1on

PROM programmer,'
68000 prolotypiRf
board w1th
em•Jiat•on capaiJII
rty, ICE for all
CPUs mclud•na:
6809, system
analyzer (for added
hardware-debug
capablhty)

PROM programmer,
ln-c•rcurt
emulation for-
all CPUs ••

ln-c~tcmt emulahon
for 6500 and per- \
sonahty opt1on lor
6500/1, PROM pro­
grammer

ln~•rttlll
emulation EPROM
programmer

ln-t1rcurt
emulabon, real-
t•me trace, and
PROM programmer

ln-tlrtUit emu-
at1on for all CPUs.
lo~•c- state trace,
P OM programmer

28000 development
module, PROM/EPROM
programmer, 111-
orcurt emutahon
and to~1t analyzl'f
capabl1ty

61

Cobol, BasiC
Fortran. MPL for
an CPUs except
68~ anc. 68000
wh•ch have Pascal

- -
' ' .

- -
~SIC. Fortran

'· ..
Pl/65

p Forth

. .

Bas.e and
Fortran for 8080,
8085, and 180

MPL Panguage)
Pascal, Fortran

PWASM. 1BOOO
translator

Signal high speed /'
circular B FORMATTER CRT

memory '-.)
/

A CLOCK

f
TRIGGER

- \ 1 Front Panel 1.- -~ _,
LOGIC _,· \Controls

-
CLOCK·~~--.Jt

)

Figure 4.1 Organization of a Logic Analyser

62

Secondly, the algorithm is not related to any particular design of

machine and can therefore run on any computer or microcomputer for

which a suitable compiler exists. Such programs are called

'portable'. To offset these advantages, HLLs do have certain

drawbacks. In general, the translation process is not perfectly

efficient, and a HLL source usually runs slower and needs more

storage space than a low level language (LLL). Once the source code,

either HLL or LLL, has been produced, it is then assembled into machine

code. This is the pattern of ones and zeros that.actually drives the

microprocessor. It is possible to write programs in machine code by

hand assembling, but if there are more than a few lines, it is too

time consuming.

4.5 THE TEXAS 9900 FAMILY

4.5.1

.
The 9900 family is a compatible set of LSI components including

microprocessors, microcomputers, microcomputer modules and

minicomputers. It is supported with peripheral devices development

systems and software. The family features true software

compatibility, I/0 bus

which encompass a wide

The Hardware Family

compatibility and price/performance
(51-54) range of applications •

ratios

F~gure 4.2 is a diagram of the 9900 family members. The spectrum of

microprocessors and microcomputer products available in a variety of

formats as in figures 4.3 and 4.4. In the first part of figure 4.2

the microprocessors or microcomputers are combined with microcomputer

support components (figure 4.4) to form systems. These systems also

include I/0 interface, read only and random access memory and

additional support components such as timing circuits and expanded

memory decode.

The family also includes microcomputer board modules containing the

9900 microprocessor and peripheral components (figure 4.5). As

shown in the second part of figure 4.2, these modules can he used for

product evaluation, combined for system development or applied

directly as end equipment components.

63

LSI& VLSI
INTEGRATED CIRCUrTS

Figure 4.2

16-BIT
SINGLE-CHIP

MICROCOMPUTER

TMS9940EtM
(EPROM/

MASKED ROM)

Figure 4.3

MOOUUS

The 9900 Family

8-BIT MTA BUS
1 - 16-BIT 110 BUS
40PINS

9900 Family CPUs

64

MULTIPLE·CHIP SYSTEMS

8-BIT OATA BUS
1 - 16-BIT 110 BUS
40PINS

16-BIT [l6.TA BUS
1 - 16-811 110 BUS
64PINS

.,

. -·
CPU'a !

'
TMS9900 NMOS 1 6-Brt Mtcroprocessor, 64 Prns
TMS9900-40 Higher Frequency Versron 9900
SBP9900A PL Extended Temperature Range 9900
TMS9980A/ 40-Pon, NMOS 16-Brt Mocroprocessor wrth 8-Brt Data Bus 9981 has

9981 XTAL Oscollator

I TMS9985 40-Prn, NMOS 16-Brt Mrcroprocessor wrth Smgle 5VSupply and
256-Bots of RAM

TMS9940E 40-Pm, NMOS Stngle Chtp Mrcrocomputer, EPROM Verston I TMS9940M 40-Ptn, NMOS Stngle Chtp Mtcrocomputer, Mask Verston

' PERIPHERAL DEVICES I
'

TMS9901 Programmable Systems Interface TMS9914 GPIB Adapter !
' TMS9901-40 Higher Frequency Versron of 9901 TMS9915 Dynamoc RAM Controller Chop Set I

TMS9902 Asynchronous Communrcatrons Controller TMS9916 92K Magnetoc Bubble Memory Controller I
I

TMS9902-40 Higher Frequency Versron of 9902 TMS9922 250K Magnet•c Bubble Controller I

TMS9903 Synchronous Commumcatrons Controller TMS9923 250K Magnet1c Bubble Controller I

TMS9904 4-Phase Clock Drwer TMS9927 Video Trmer/Controller I
TMS9905 8 to 1 Multtplexer TMS9932 Combrnatron ROM/RAM Memory

.
TMS9906 B-B1t Latch SBP9960 110 Expander I
TMS9907 8 to 3 Pnorrty Encoder SBP9961 Interrupt-Controller /Timer
TMS9908 8 to 3 Pnorrty Encoder w/Tn-State Outputs SBP9964 SBP9900A T1m1ng Generator '
TMS9909 Aoppy D1sk Controller SBP9965 Penpherallnterface Adapter
TMS9911 D1rect Memory Access Controller

!

ADD-ON MEMORY

ROMS EPROMS DYNAMIC RAMS

TMS4700-1024 X 8 TMS2508 -1024 X 8 TMS4027-4096 X 1 :
"TMS4710-1024 X 8 TMS2708 -1024 X 8 TMS4050-4096 X 1
TMS4732-4096 X 8 TMS27LOB -1024X8 TMS4051-4096 X 1
SBPB316-2048 X 8 TMS2516 -2048XB TMS4060-4096 X 1 :
SBP9818-2048 X 8 TMS2716 -2048X8 TMS4116-16,384 X 1

I
TMS2532 -4096XB TMS4164- 65,536 X 1 '

•character Generator-ASCI I :
• \
I ••PROMS STATIC RAMS

SN7 45287- 256 X 4 TMS4008 -1024 X 8 TMS4043-2 - 256X4
SN74S471- 256 X 8 TMS4016 -204BX8 TMS4044 -4096 X 1
SN74S472- 512 X 8 TMS4033 -1024X1 TMS40L44 -4096X 1
SN74S474- 512 X 8 TMS4034 -1024X1 TMS4045 -1024 X 4
SN74S476-1024 X4 TMS4035 -1024X1 TMS40L45 -1024 X 4
SN74S478-1024 X sA TMS4036-2 - 64XB TMS4046 -4096X 1

TMS4039-2 - 256X4 TMS40L46 -4096X 1
A EqUivalent to TMS4042-2 - 256X4 TMS4047 -1024 X 4

SN74S2708 TMS40L47 -1024 X 4

• • Also available
1n 54 senes

Figure 4.4 Microcomputer Support Components

65

MICROCOMPUTER MODULES

TM990/100M
TM990/101M
TM990/101M-10
TM9901180
TM9901189

Microcomputer, 1-4K EPAOM
M1crocompu1er, 1-4K ROM, 1K-2K RAM
Mlcrocompu1er, 1-4K ROM, 1K-2K RAM, Evaluat1on POWER BASICS
MICrocomputer, (8-Brt Data Bus), 1-2K ROM, 256-lK RAM
MICrocomputer, Umvers1ty Microcomputer Module

TM990/201
TM9901206

Memory Expans1on Module, 4K-16K ROM, 2K-8K RAM
Memory ExpansiOn Module, 4K-8K RAM

TM990/301 M1croterm1nal
TM990/302 Software Development Module
TM990/31 0 110 Expans1on Module

TM990/401" TIBUGS Monrtor In EPROM
TM990/402" lme-by-Line Assembler In EPROM
TM990/450" Evalua!lon POWER BASICS -BK Bytes 1n EPROM
TM990/451" Development POWER BASIC-12K Bytes 1n EPROM
TM990/452" Development POWER BASIC Software Enhancement-4K Bytes In EPROM

TM990/501-521 ChaSSIS, Cable and Power Supply Accessones

Figure 4.5 TM990 Board Module and Software Support

CS990/4 • A 990/4 Minicomputer With 4K words of RAM
• Expanded memory controller w1th 4K words of RAM
• 733 ASR ROM loader
• 733 ASR Data Term1nal
• Necessary chassiS, power supply, and packag1ng

FS990/4 • Model990/4 M1mcomputer wrth 4BK bytes of panty memory 1n a 13-slot chasSIS w1th
programmer panel and floppy d1sk loader /self-test ROM

• Model911 Video 01splay Term1nal (1920 character) w1th dual port controller
• Dual FDBOO floppy d1sk dnves
• Attractive, off1ce-style s1ngle-bay desk enclosure
• licensed TX990/TXOS Termmal Execut1ve Development System Software With one-year

software subscnpt1on seMce

F$990/1 0 • Model990/1 0 M1mcomputer w1th 64K bytes of error-correcting memory and mapp1ng 1n a
13-slot chaSSIS w1th programmer panel and floppy d•sk loader /self-test ROM

• Model911 Video Display Termmal (1920 character) w1th dual port controller
• Dual FDBOO floppy d1sk dnves
• AttractiVe, off•ce-style s1ngle-bay desk enclosure
• L1censed TX990/TXDS Term1nal Execut1ve Development System Software wrth one-year

software subscnpt1on serv1ce

D$990/10 • Model990/10 M1n1computer w1th mapp1ng, 128K bytes of error-correct1ng memory 1n a

Figure 4.6

13-slot chaSSIS wrth programmer panel and d•sk loader ROM
• Model911 Video D1splay Termmal (1920 character) With dual-port controller
• Licensed copy of DX1 0 Operatmg System on Compat•ble d1sk med1a, wrth one-year software

subscnpt1on serv1ce
• OSlO d1sk drNe featunng 9 4M bytes of formatted mass storage, part1t1oned into one

4 7M-byte f1xed d•sc and a 5440-type removable 4 7M-byte top-loadmg d1sk cartndge

Opt1ons
One addrt1onal DS1 0 d•sk dnve wrth 9 4M bytes of formatted mass storage, 1n deskmount,
rackmount. or QU1e1•zed pedestal vers1on

990 Minicomputers

66

When applications require minicomputers, completely assembled units

can be utilised. An overview of minicomputers is given in

figure 4.6. The software is fully compatible with any associated

micorprocessor and microcomputer system.

These three levels of hardware - the TMS 9900 family parts, the

TM 990 microcomputer modules and the 990 minicomputers - constitute

the hardware family.

4.6 THE SOFTWARE AND DEVELOPMENT SYSTEMS SUPPORT

New products cannot be made without design, development, test and

debug. Development support for all levels is shown in figure 4.2

including

A Products documentation

B Software

C Software development systems

D Prototyping systems

Figure 4.7 outlines the above.

4.7 THE MICROCOMPUTER

The microcomputer is a computer with a microprocessor as the central

processing unit and various peripheral devices that complete the
' various requirements. (See Appendix 5 for details of various

microprocessors). Microcomputers are often classified by the number

of chips required to make up the computer, namely single chip,

twin chip, single board, etc. The microcomputer can be placed in

three broad categories :-

(i) Central Processing Unit (CPU)

(ii) Input/Output Facilities (I/0)

(iii) Data StoragejMemory

The general system configuration is shown in figure 4.8. The

intelligence of the machine is provided by the software capacity. It

is this software that provides the required outputs in response to

given inputs.

67

......... ----------------------

TM990/401
TM990/402
TMSW101MT

TM990/450
TM990/451
TM990/452

TMSW201F/D
TMSW301F/D

- PRODUCT DOCUMENTATION

9900 Fam1ly Systems Des1gn and
Data Book

9900 Software Des1gn Handbook
TM990 System Des1gn Handbook
990 Computer Fam1ly Systems Handbook
Product Data Manuals
Product User's Gu1des
Product Brochures
ApplicatiOn Notes
Appl•cat10n Sheets

SOFTWARE AND FIRMWARE

TIBUG Monrtor 1n EPROM
Lme~by-L1ne Assembler rn EPROM
ANSI-Fortran Cross-Support Assembler, S1mulator and
ROM Ut1lrty
EvaluatiOn POWER BASIC -8K Bytes m EPROM
Development POWER BASIC - 12K Bytes m EPROM
Development POWER BASIC Software Enhancement
Package- 4K Bytes In EPROM
Configurable POWER BASIC 1n FS990 D1skette
TIPMX - Tl PASCAL Execut1ve Components L1brary

SOFTWARE DEVELOPMENT SUPPORT SOFTWARE

TM990/302
TM990/40DS

CS990/4

FS990/4

FS990/10

05990/10

Software Development Module
Software Development system for
TMS9940 M•crocomputer
S1ngle User Software Development
System (Cassette Based), uses
PX990 software
Software Development system
(Floppy D1sk)
Software Development System
(Floppy D1sk)
01sk Based 990/10 w1th Macro
Assembler

Ed1t, Assembler, load, Debug, PROM Programm.ng
Assembler, Debug Momtor, Tnal-1n-System Emulator, PROM
Programmer
Text Edttor, Assembler, Lmkmg Loader, Debug Monrtor,
PROM Programmer

Source Edttor, Assembler, Ltnk Edttor, PROM Programmer

Same as 99014, expandable to OS System

Source Edttor, Lmk Edttor, Debug, Ltbranan, and High-Level
Language such as FORTRAN, BASIC, PASCAL, and COBOL

MICROPROCESSOR PROTOTYPING LAB FOR DESIGN AND DEVELOPMENT

AMPL FS990 wtth vtdeo dtsplay and dual floppy dtskettes mcludes TX990/TXOS system software- Text Edrtor,
Assembler, and Lmk Uhl1ty- and has an tn-ctrcurt Emulator Module and a Logtc-State Trace Module for
proposed system emulat1on and analysts

TIMESHARE SYSTEMS
GE, NCSS, Assembler, S1mulator, ROM Uttlrt1es
Tymeshare

Figure 4.7 The 9900 Family Software and Development Systems

68

"l --·
" ...
ID

... ADDRESS BUS
CO

....
..:
" ...
0

" 0 0 El

"' u
" ... T ID ... s
C'l I mm

co=> D m ... E I/O C,P .. U MEMURY ID
> w 0 ID
=> R
"" ID L El
ID D => ...

DATA BUS

The hardware of microcomputers is complex and varies according to

the manufacturer, as does the software required to drive the

various hardware.

4.8 HARDWARE

4.8.1

The hardware of a microcomputer essentially consists of three parts,

as described earlier; the CPU, I/0 facilities and data storage. It

is now not uncommon for all these facilities to be available on a

single chip microcomputer, but we shall concentrate on the single

chip processing unit. The single chip processors can be put together

in a variety of ways with other standard support chips, the

configuration dependant on the application requirements and

availability. The processing power of some microcomputers can

approach that of the minicomputer.

The Central Processing Unit

The CPU has the capability of arithmetic and logic functions to

process the information and data with which it is supplied.

Dependent upon the design of the microprocessor, there is a set of

instructions which the devices will recognise and respond to. It

is the sequencing of these instructions that give the

microprocessor the ability to carry out given tasks. The

sequencing of these instructions is the 'software' of the processor.

It is the software that makes the microprocessor flexible when
' compared to hardwired electronic devices. The software can be

changed, modified and improved quite easily, the hardwired device

being a more permanent and less flexible solution in many cases.

The software or program is stored in memory, with each instruction

achieving a predetermined address. The exclusive addresses allow

the CPU to communicate with any instruction held in memory by

examining the address.

The interrogation of these instructions is performed within the CPU,

and to achieve this it requires the following constituents shown in

figure 4.9.

70

--
' INSTRUCTION REGISTERS

DECODE PROGRAM DATA B..!!_:s_
AND COUNTER
SEQUENCE STATUS

ADDRESS BUS

i./0 BUS

CONTROL ALU C_QNIROL_l;l_tm_

Figure 4.9 CPU Block Diagram

The Arithmetic Logic Unit (ALU) has two sets of data inputs and one

set of outputs. It performs the logic and arithmetic functions on

the input words and presents the results at the output. The 'control

input determines what function the ALU performs at any given

instance. The ALU is shown in figure 4.10.

r-----~.---INPUT 'A'

OUTPUT -----1 ALU

6~--_..J----INPUT 'B'
CONTROL/

~igure 4.10

l
The functions of the ALU are listed as follows:-

AND

NAND

OR

NOR

EXCLUSIVE OR

ADD

SUBTRACT

INVERT A ORB

SHIFT L

SHIFT R

For any instruction supplied to the microprocessor there must be a

facility to decode it and supply the relevant information to tbe

ALU. This is done with the Instruction Decode and Sequencer.

The CPU has working storage registers. These are small amounts of

dedicated memory with the CPU for immediate data storage. The

71

4.8.2

4.8.3

' status register primarily is set according to the results of the prior

operation of the ALU. The program counter records the current

location of the instruction sequence in memory.

The processor must communicate with memory, I/0 devices etc. This

is achieved via the data bus, address bus, control bus and I/0 bus.

These are multiwire 'highways' to the environment external to the

CPU.

Memory Devices

There are two basic types of memory chips that are normally used in

microprocessor systems, namely:-

RAM - Random Access Memory

ROM - Read Only Memory

RAM devices allow data to be entered (WRITE) altered and retrieved

(READ) at any time. They are volatile and hence if power is

removed, the contents of the memory are lost. The RAM memory is

normally assigned to user memory area.

ROM memory devices are non-volatile. Once the contents of the

memory have been burnt into place, the contents as such are fixed.

These devices can only be read from as the name implies. The

inflexibility of these devices has led to the development of

PROM (Programmable Read Only Memory) and EPROM (Erasable

Programmable Read Only Memory) devices. The devices are used to

store the operating system programs such as MONITORS, ASSEMBLERS, etc.

In EPROM devices, the contents can be erased by exposure to ultra

violet light and then reprogrammed as required, making the devices

more versatile but relatively more expensive.

Input/Output Devices

The input/output section provides the communication between the

microprocessor and the outside world. This can be achieved either

by parallel data transfer, where more than one 'bit' of information

if passed via the I/0 bus in parallel, or by serial data transfer

where one 'bit' at a time is passed. Each microprocessor family

72

usually contains LSI devices designed to handle parallel and serial

data transfer and to provide interrupt and timing controls. Interrupt

controllers are used to signal the microprocessor at the instance of

an external event which requires the microprocessor to perform a set

of different instructions after completing the instruction which is

currently being executed, this is diagramatically represented below

in figure 4.11.

Background task
processing

interrupt I \
Task required by
interrupt

Background task
processing

Branch back

T1mers and Event Controllers are devices which count clock pulses

usually by decrementing a register. They can produce set delays or

measure actual events and activate an interrupt to the

microprocessor. Other LSI I/0 devices include memory controllers,

keyboard decoders analogue devices, display controllers etc.

73

....... ----------------------~----------
CHAPTER 5

THE VERSATRAN ROBOT AND CONTROL SYSTEMS

The Versatran Robot was designed and made by Hawker Sidely Dynamics

Limited. It derives its name from the Versatile Transfer operations

which it performs.< 5B) The robot is capable of lifting, rotating and

setting down components weighing up to 220 kg (1001 lb) anywhere

within its sector of operation.

The mechanical unit consists of a rotatable column through which an

arm passes. The arm has a wrist/gripper mechanism at its end. The

arm is moved hydraulically, either by motor or ram in three major

axes:-

(i) Horizontal (H)

(ii) Vertical (V)

(iii) Rotary/Swing (S)

In addition three other degrees of freedom are available: the wrist

can be rotated and swept about the end of the arm, whilst the

gripper can be opened or closed. There are various types of gripper

that can be used, dependant upon the nature of the work being

undertaken.

Each major axis of the arm forms part of an electro-hydraulic closed

loop servo-system for which the command signals can be supplied by

a microprocessor.

Each hydraulic circuit within these servo loops consists essentially

of a reservoir, radiator, pump and accumulator, together with the

arm swing servo-control valve, and all hydraulic components are

positioned within the base of the unit except the hydraulic servo

valves controlling the horizontal and vertical axes which are located

at the top of the column.

The dimensional details of the Versatran Robot are shown if figure

5.1 and the locations of various components are shown in figure 5.2.

For more comprehensive data on the robot, see Appendix 9.

74

MAJOR AXES
(All hydraulically driven
with potentiometer feedback)

L~ c
I

•
f

HORIZONTAL
ke 0.76m Stro

(Hydraulic M otor Drive)

GRIPPER MOVEMENTS

,

.

.

·-- -.-

.
-

WRIST SWEEP WRIST ROTATE

SWING
240° Max.

(Hydraulic RAM
Drive)

1 [I

VERTICAL St roke 0.76m
c RAM Drive)

--

(Hydrauli

c.;- .::::::0 r_r-..,.. _ _J -.....

GRIPPER
OPEN

.

GRIPPER
CLOSED

FIGURE 5.1. DWENSIONS OF VERSATrlAN ROBOT /

75

-
'

!

WRIST I GRIPPER
NEEDLE VALVES

ROTATE/SWEEP /GRIP

WRIST ARM

SWING AXIS RAMS

HYDRAULIC

DRUM LIGHT SWITCH

PROGRAMME---
DRUM

CO M MAN
POTENTIOMETER

FIELD AND LAMPS

CONSOLE

MECHANICAL UNIT

~-71 WAY C.ABLE
(20FT LONG I

FIGURE 5,2 MECHANICAL UNIT AND CONSOLE

76

ROTATING
COLUMN

COVER OVER
WRIST RAMS

/
HYDRAULIC

FLUID TANK

pp 20919

• I

5.1 CONTROL OF THE VERSATRAN

At the beginning of this research project the Versatran was

presented to the Department of Engineering Production and was

controlled by a dedicated console. This console is drum operated

and provides programme selection and control equipment including all

electronic components associated with the axis servo systems.

A field of ninety command potentiometers, arranged in groups of

three, allowed. up to thirty discreet arm positions to be set up for

an operational cycle. It was possible to select each position more

than once, the total number of movements in any one cycle being one

hundred. The group of potentiometers in use at any one time was

selected by a 100 step, rotary program drum, this also operated the

wrist and gripper mechanisms. The drum stepped from one command to

the next when the arm reached its command position.

This method of programming worked successfully, but was difficult to

carry out, (programming a new sequence of tasks could take many days),

and placed many limitations on the robot.
'

Thus a decision was made to design a microprocessor base control

system for the Versatran to act as a controller to replace the

existing console, and so achieve 'state of the art• performance from

the robot. This required the configuration of computer hardware and
I

interface circuitry. Some of this hardware was purchased as off the

shelf printed circuit boards although various interface circuitry

was designed and constructed "in haste". The complete hardware was

configured within a standard 19 inch racking system and backwired

with associated power supply equipment.

A schematic representation of this hardware is shown in figure 5.3.

5.2 HYDRAULIC SYSTEM

The hydraulic power supply for the Versatran produces a pressurised

fluid which, via servo valves, is directed to the various rams, jacks

and motors that power the robot. The hydraulic fluid is

pressurised to approximately 2840 kg/cm
2

(2001 lb/in2) during

operation. Included in the circuitry are three master solenoid

77

TERMINAL

TMS 9900 -

101M
C.P.U.
MODULE

MEMORY
EXPANSION

'
MODULE

(RAM + EPROM)

DIGITAL TO ANALOG
CONVERTER MODULE

12 BIT DAC

12 BIT DAC

12 BIT DAC

ANALOG TO DIGITAL
CONVERTER MODULE

12
·BIT S/H

16 CHANNEL DIGITAL
OUTPUT MODULE

Vv SERVO-

VH AMPLIFIER

Vs MODULE

r,1~6~C;:::H;:A:NN:E:L-:DI::G:-:I:TA:-:L:--!--e--.r.--l:
INPUT MODULE IO I~.

I1 '
..... i2 I~

FIGURE 5·.3. VERSATRAN INTERFACING SCHEME

SERVO
VALVE

-

f TO
HOTIZONTAL AND
SWING AXIS
SERVO-VALVES

GRIPPER ~. I
I
I

SOLENOIDS I

I
I

I
INTERLOCKS

VERTICAL AXIS
' RAM

POTENTIOMET
POSITION
FEEDBACK

operated lock valves that prevent any movement when they are closed.

The hydraulic system will not operate successfully until it has

reached a stabilised working temperature, which takes approximately

fifteen minutes to attain once the robot is powered up.

5.3 SERVO-SYSTEM

Solenoid actuated servo valves control the three major axes and thus

provide controlled fluid power to the robot via hydraulic rams on the

swing and vertical axes and via a hydraulic motor on the horizontal

axis. A schematic of the servo-valve system is shown in figure 5.4.

The solenoids act against the reference springs to provide a valve

displacement proportional to the input signaL Adisplacement of the

valve from the null position causes fluid to flow to the piston, the

amount by which the valves open is proportional to the current

flowing through them. The rate at which the arm moves can be varied

by altering the input signal in any one sense (positive or negative).

A reverse voltage signal will create a movement in the opposite

direction in the same way.

The Versatran feedback signal is obtained from three potentiomenters;

one mounted on each axis of motion. Through these potentiometers the

coordinates of any desired location can be described. With the

console controller, the position to which each axis of the robot arm

was driven, was proportional to the voltage of a pre-set command

' potentiometer. With the microprocessor control unit, the feedback
'

signal is the three voltages which are dependent upon the arm position.

5.4 DESIGN OF THE HARDWARE FOR THE MICROPROCESSOR BASED CONTROLLER

The controller is based on the Texas Instruments TM 990/101 M

self-contained microcomputer which is contained on a single

printed-circuit board. A description of the board is given in

Appendix 8. Interface printed circuit boards are also required,

which include digital to analogue and analogue to digital converters,

amplifiers to drive the servo valves and solenoid drivers using relays

to control the wrist and grippers.

5.4.1.1 Introduction to the TMS9900 Microprocessor

Tbe T~ffi9900 microprocessor is a single chip 16 bit central processing

79

PISTON

INPUT
SIGNAL

FIGURE 5.4. SERVO-VALVE CONFIGURATION

so

SOLENOID

SPOOL

RETURN

CONSTANT
PRESSURE

unit utilising n-channel silicon gate MOS (metal oxide semi-conductor)

technology. The CPU communicates with memory devices, namely ROM,

RAM, PROM, EPROM, etc, via a 16 bit bi-directional data highway. lt

also uses this data bus to communicate with external-peripherals

that are treated as memory locations.

Addressing is through the 15 bit address bus which gives the capacity

to address 32K (32,768) words each being 16 bits wide, or a total of

64K (65,536) memory locations, each location being 16 bits wide.

This allows either word or byte arithmetic and logic operations to be

performed dependant upon the instruction used.

The TMS9900 Microprocessor does not have any on chip register file for

handling working data storage. It utilises memory locations to store

this data. Specific blocks of words are designated for this task.

There are three user accessible registers in the CPU, namely the

workspace register, program counter, and status register.

This context switch architecture of the TMS9900 is not common in microproces­

sors in that it uses an on chip workspace pointer, pointing to a set of

workspace registers in memory rather than use on chip registers and a

stack pointer. It utilises a system where the workspace pointer can

be saved in any new workspace memory when a sub-routine is called. A

current workspace is simply the 16-consecutive memory locations

beginning at the address contained in the workspace pointer. The

· unique memory to memory architecture allows faster response to

interrupts and increased flexibility in programming.

5.4.1.2 Programmable Systems Interface

The TMS9901 Programmable Systems Interface is a multifunctional

chip designed to provide low cost interrupts and I/0 ports in a

9900/9980 microprocessor system. It is fabricated with n-channel

silicon gate technology and is completely TTL.compatible on all

inputs and outputs including the power supply (+5v) and single

phase clock. The programmable systems interface provides a

9900/9980 system with interrupt control, I/0 ports and a real time

clock.

81

The TMS9901 interfaces with the CPU through the Communications

Register Unit (CRU). It can perform interrupts and 1/0, interface

functions via 6 dedicated interrupt input lines, 7 dedicated 1/0

ports and 9 ports programmable as either interrupts or 1/0 ports.

The programmable real time clock consists of a 14 bit counter that

decrements at a rate of F(~)/64 (at 3 Mhz this results in a maximum

interval of 349ms with a resolution of 21.3us) and can be used either

as an interval or as an event timer,

5.4.1.3 User Accessible Registers on the CPU

There are three user accessible registers in the T~~9900 CPU, the

workspace pointer, the program counter, and the status register.

These are 16 bit registers with word organisation (ie each being

2 bytes).

Workspace Pointer - The workspace pointer indicates the block of

memory to.be used as the workspace registers. There are 16

workspace registers, designated RO to RF. All these registers may

be used for general operations except RC, RD, RE, and RF. They

will be used in the following way:-

(i)

(ii)
\

RC - used for the CRU base address

RD, RE and RF - used to store the workspace pointer, program

counter and status register respectively during a software

context switch or interrupt.

Program Counter - The program counter points to the instruction to be

executed next by the CPU. The program counter will automatically

be incremented to point at the next instruction prior to the

execution of that instruction. The program counter can be set at

the beginning of the program using an absolute origin instruction

(AORG). For example, if a program begins with AORG 100, followed by

an LWPI 100 instruction. The program counter will start at)120

(namely immediately following 32 bytes of memory designated for

workspace). Subsequent instructions wilY be based on)120 as the

start point. Thus it is obviously essential that the program counter

is set at the correct memory location before execution of a program.

Both the workspace pointer and the program counter can be altered

82

if they are not assigned in the program software.

Status Register - the status register contains the interrupt mask level

and information pertaining to the prior operations. The bits of the

status register are used as follows:-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L A = C 0 P X •• not used •••••• interrupt mask

BIT 0 L) - logical greater than

BIT 1 A) - arithmetic greater than

BIT 2 EQ - equal

BIT 3 c - carry

BIT 4 0 - overflow

BIT 5 p - odd parity

BIT 6 X - extended operation

Bits 0 to 6 are set to either 1 or 0 dependant upon the result of the

prior instruction.

eg C Rl, R2

If the contents of Rl are the same as the contents of R2, resulting

from the composition instruction, bit 2 of the status register is set
~

to 1. Similarly other bits are set dependant upon the function of

the instructions performed.

Bit 12 through 15 set the level of the interrupt that the

microprocessor will accept. The interrupt will then be processed

if of sufficient high priority after the completion of the current

instruction.

5.4.1.4 Input/Output

The 9900 has a special I/0 device called the communications register

unit (CRU). This is a one bit wide data bus for I/O having its own

control signals which use the address on the main address bus as a

bit address of an input/output line. From 1 to 16 bits can be

read of written with a single instruction.

83

5.4.2

Interrupts are one method of controlling I/0. Interrupt level 0 is

the highest priority, and level 15 is the lowest. An interrupt mask in

the status register loaded with a LIMI instruction determines which

level of interrupt can be accepted, Only interrupt of equal or

higher priority than the level set in the mask will he accepted by

the CPU.

When the microprocessor is in the interrupt service routine the old,

workspace pointer, program counter and status~register are stored in

RD, RE and RF respectively, of the new workspace. Status register is

also decremented by one, so that only interrupts of a higher priority

can interrupt the processor until the service routine has been

executed. On reaching an RTWP (return to workspace pointer)

instruction, the CPU returns to the old·workspace pointer, program

counter and status register.

There are five dedicated software instructions associated with I/0

from the microprocessor via the I/O bus. For output, they are LDCR

(load communications register), SBO (set bit one) and SBZ (set bit

zero), For input, the STCR (store in communications register) and

TB (test bit) instructions are used, These instructions allow both

single bit and multi-bit (up to 16 bits maximum) to be handled,

Interface Printed Circuit Boards

Analogue to digital converters are required to convert the

potentiometer readings of the robot into digital signals which can

be processed by the microprocessor~ Digital to analogue converters

are required so a digital velocity word can be converted to an

analogue voltage output. Standard Texas Instruments printed circuit

boards, the RTI-1241 and RTI-1242, are utilised, the details of

which are given in Appendix 6,

This analogue voltage is then amplified through an operational

amplifier and additional circuitry, which is illustrated in

figure 5.5. This amplified voltage is then used to drive the

servo-valves. Relays are used to operate the solenoids for the

wrist and gripper movements.

84

"' "'

+15V

lOV lK
ZENER

OV

220K
+HlV

INPUT
220K

Xl

-.

+lOV

ov

FIGURE 5.5. SERVO-AMPLIFIER MODULE

-.

50K NULL
LIN

lOOK

lOOK

lOV

-

+lOV
X3

lOOK

lOV

TO SERVO VALVES

5.5 SOFTWARE AND HARDWARE DEVELOPMENT FACILITIES FOR USE WITH THE TEXAS

INSTRUMENTS 16 BIT MICROPROCESSOR

The Tibug Interactive Debug Monitor provides an interface between the

user and the TM 990/101 M microcomputer. through a teletype (TTY) or

any RS 232 compatible terminal<52). It provides commands for loading,

debugging and executing a program and also seven software routines

which can be called up in user programs by the XOP machine

instructions to perform special tasks such as writing characters to

a terminal. Loading a program manually into the Tibug debug monitor

requires the tedious task of first writing the machine language

instructions and keeping track of binary machine addresses within the

program. "The Terminal Executive Development System" (TXDS) provides

an extensive software capability to assist in developing, improving,

changing or maintaining the user's customised operating system and

the user's applications programs, or any other type of user produced

programs. It gives users the chance to write programs in assembly

language and then edit, assemble and debug them. It does this by

means of the following nine utility programs:-

(i) TXDS Text Editor

(ii) TXDS Assembler

(iii) TXDS Copy/Concatenate

(iv) . TXDS Linker

(V) TXDS Cross Reference

(vi) TXDS Standalone Debug monitor

(vii) TXDS PROM Programmer

(viiQ TXDS BNDF/High Low Dump

(ix) TXDSLWO

The TXDS Terminal Executive Development System programmer's guide<75)

gives a detailed description of the utility programs.

An in-circuit emulator and a logic-state trace data module are

included in hardware configuration in the Al~L Microprocessor

Prototyping Laboratory. This laboratory is structured around the

FS 990 system, which includes a video display terminal, a dual

floppy disc unit and the TX 990/TXDS system. It provides a

dedicated design centre where both the software and hardware of any

86

9900 - based system can be designed and debugged. Additional

information can be found in various manuals <
74

•
52

) and reports<
72

•
73>.

87

CHAPTER 6

THE DEVELOPMENT OF REAL-Tilre CONTROL SOFTWARE

6.1 INTRODUCTION

As discussed earlier, to achieve the required positioning accuracy

on the three major axes, the closed-loop control concept is utilsed.

In a simple closed-loop system the controller is no longer actuated

by the input (as

'error•. (S9 ; 6o)
is the case for an open-loop system), but by the

The error is defined as the difference between the

system input and output. Such a system contains the same basic

elements as the open-loop system (see figure 6.1), plus two extra

features - and 'error detector• and a feedback loop. The error

detector is a device which produces a signal proportional to the

difference between input and output (figure 6.2). Tbus there are

three basic components which are required for a closed-loop system.

i) The Error Detector

This is a device which receives the low-power input signal and

the output signal which may be of different physical natures,

converts them to a common physical quantity for the purposes of

subtraction, performs the subtraction, and gives out a low­

power error signal of the correct physical nature to actuate

the controller.

ii) The Controller

This is an amplifier which receives the low-power error signal,

together with power from an external source. A controlled

amount of power (of the correct physical nature) is then supplied

to the output element.

iii) The Output Element

This provides the load with power of the correct physical

nature in accordance with the signal received from the

controller.

6.2 CLOSED-LOOP CONTROL FOR THE ROBOT

The control is achieved by outputting a velocity error signal, the

control loop is closed within the microprocessor to permit software

88

Low Power J High
power ·I controller l Output power Load
input element output
signal response
9t 9o

Figure 6,1 Open-Loop System

'
' -

' - error
detector

Power

Input error 1 ~ Output output Load 9t + f. -a _
9

controller Element l 0 -
eo eo

. '
Feedback

Figure 6.2 Closed-Loop System

.

'

'

'

89
'

'

control of the velocity error signal. Figure 6.3 shows a schematic

diagram of the closed-loop scheme utilised.

The actual position (ACT) of the robot is converted to a digital

word via an ADC and fed back into the software "comparator". The

actual position is produced by the potentiometers which are on

each major axis of the robot. The voltage range is from 0 to lOV

which is dependant upon the position, see figure 6.4 which illustrates

a trace on the output voltage. This voltage is then converted to a

digital word by an analog to digital convertor and the associated

input channel of the muliplexer. The ACT position is then compared

to the commanded position (CMD) which are both stored in the memory.

The numerical value of this error-and its sign determines the

numerical value and sign of the output velocity word. The velocity

word is then converted to an analogue voltage by the digital to

analogue converter associated with the axis in question. This output

analogue voltage is then amplified through an operational amplifier

and additional circuitry which is shown in figure 6.5. This

amplified voltage is used to drive the appropriate servo-valve,

which in turn controls the actuator. The actuator is a motor or

hydraulic ram which is dependent upon this axis which is being

controlled.

In the early stages of this project it was considered necessary to

limit the maximum velocity of each major axis of the robot, thereby

providing a measure of protection during the design and evaluation

of the controls. The limiting of velocity is achieved within the

microprocessor by limiting the maximum value of the velocity output

work for both the negative and positive values. The initial digital

value corresponding to this limit was set at the hexadecimal number

(>)180, which converts to 1.86 volts before amplification. This

amplified voltage produces a controlled motion for all the axes on the

robot. If the difference between the ACT and CMD positions is less

than>l80, then the velocity output word is proportional to this

error value. Using this method the velocity of the robot is reduced

as it approaches the commanded position so to eliminate overshoot,

see figure 6.6.

90

<0

Command
Position
(Digital)

Figure 6.3

MICROPROCESSOR

COMPARATOR
(IN SOFTWARE)

VELOCITY
CONTROL

..-----, r----,ANALOG

·i ~~~-----1·1 DACIOUTPUT

DIGITAL FEEDBACK

Schematic Diagram of Closed Loop Control

~
·~r----------------~~ ROBOT

ADC
ANALOG
FEEDBACK OF
POSITION

D.A.C.
OUTPUT
VOLTAGE/
VELOCITY
SIGNAL

SCALE
0.784V/cm

POSITIONAL
ANALOG
FEEDBACK
VOLTAGE
TO A.D.C.

ll:!I'UAJL
POSITION

FIGURE «.4, DESCRIPTION OF TEST TRACES

_QY---

NEW POSITION

-DE REASING _ ~ IN POSITION
V LOCITY-- • "ZERO' VELOCITY

VOLTAGE RISE
TIME

+1,86V

- - - - --... ~----.J. ~ -------TIME

-l,86V

VELOCITY I

TIME

«<
.en

+15V
Xl

lOV lK
ZENER

+lOV

2 F

OV ov

220K
+liDVo-------c:==~--r----------------,

INPUT

,

220K

-•

FIGURE 6,5, SERVO-AMPLIFIER MODULE

+lOV
X3

50K NULL
LIN

lOOK lOOK

lOOK 741

lOV

--.
lOV ·.

--:

TO SERVO VALVES

6.3.1

6.3.2

-ve

Figure

command
position

I
I
I

velocity
+ve

--- -I-

CAPTURE RANGE-

-ve

6.6 Velocity Control

Control of One Axis

LIMITING VALUE

+ve DISTANCE

Initially it was decided that software should be developed to

control just one axis. Before this software was tried out on the

robot a potentiometer and bench power supply were used to generate

an analogue signal to check that the connections were correct for

the servo valves (that is to ensure that a reducing error signal

should be obtained). When this had been done for all three

connections (ie all the axes) the microprocessor was connected to

the robot and the program executed. In early development, a decision

was also taken to run all programs using interactive programming that

is, each command position required was input into memory via a VDU

or teletype. This gave greater flexibility when testing for

accuracy etc. The various approaches to the software will now be

described.

Program TRYl

The details of the program structure can be seen in figure 6.7 and

6.8. (A full program listing is shown in Appendix 7).

94

/

Figure 6.7 Overall Requirement of Software

STA-~T

INITIALISE

SYSTEM

FIND

ERROR

OUTPUT

REQUIRED

VELOCITY

95

Figure 6,8 Flow Chart for Program TRY 1

LOAD OUTPUT

CONSTANTS

SET ADC

FEEDBACK

CHANNEL

INPUT

COMMAND

POSITION

IN Rl

CONVERT

ANALOGUE

FEEDBACK

ACTUAL

POS

PLACE

ACTUAL POS

IN R2

CALCULATE

ERROR

ACT-CMD

STORE

ERROR

96

Figure 6.8 (continued)

y

y

OUTPUT

VELOCITY

TO THE
' ' ' ERROR IN THE

+VE DIRECTION

97

N

N
OUTPUT

MAXIMUM

)---~o.! VELOCITY TO

y

OUTPUT

VELOCITY

TO THE

ERROR IN THE

-VE DIRECTION

OUTPUT

MAXIMUM

VELOCITY

TO ROBOT

IN +VE

DIRECTION

ROBOT IN -VE

DIRECTION

The directive instruction EQU is used in the program to equate

various memory locations to symbols to allow software updates to be
(61)

achieved easily and to simplify interpretation of the software.

For example

ADCDAT

I
ADC DATA
SYMBOL

CONV

EQU > EFFE

" MEMORY LOCATION

EQU >EFFA

Particular use of these directive instructions has been made in

connection with the ADC and DAC control software as the ADC/DAC

is a block of words in memory, now each of these words has been

designated with an appropriate label.

The output constants are then loaded into registers.

LI R5,>FE81!J

FE81!J is equivalent to ->180 and so this is the maximum negative value

which is permitted. Similarly a maximum positive value is in

register 4.

The channel on the ADC is set using CLR@MUXADR which selects channel I!J.

An ADC gain of unity is selected as any of the other possible gains,

which are 2,4 or 8 will result in the reduction of the size of the

output voltage before amplification. A larger amplification could be

used to increase the output voltage however, additional circuitry

would have to be designed.

CLR E-GAIN

In this program only one axis position is specified and the value in

this case is >3FF (this can be any value between 1!J and >7FF) which is

stored in register 1.

LI Rl,>3FF

The conversion of the analogue feedback signal is intiated using the

following instructions:-

98

SAM SETO @CONV

CHK INV @STATUS

JLT CHK

This method is termed 'Polled Status Control'(SG). Using this method

a specific command is required to start the conversion process. The

command can be achieved using either an external signal or by a signal

from the CPU, in this case using the SETO (set to one) command,

this is the quickest method in terms of instruction speed. The loop

following the start of the conversion process continues until the

EOC (end of conversion bit) in the •status' is a 'one'. The EOC is

the le!tmost bit in the word at STATUS. The most efficient method

of checking !or a one or a nought, in terms of execution time is shown

above. The INV (logical complement) does not change the STATUS word

(read only at STATUS), but it sets the appropriate bits in the status

register acceding to the result of the INV operation. The JLT

instruction tests these bits in the status register and only branches

if the operand of the preceeding INV operation had a ~ in its MSB

(the EOC bit). Once the conversion is complete the CPU is then

allowed to read the value at ADCDAT, which is the result of the

conversion just' described. This value can'be read into a register

using only a single instruction

MOV @ADCDAT,R2

i

In a similar way it is possible to carry out an arithmetic operation·

using @ADCDAT as the source operand. For example, if it is necessary

to add the feedback value to the contents of another register

eg A @ADCDAT,F.4

The next operation after the actual position is in R2 to calculate the

error between the commanded position and the actual position.

S Rl,R2 calculates ACT-CMD

The answer for this calculation is in R2, that is the error is in R2.

This value is then subjected to a series of compare immediate

instructions and the conditional jumps which follow determine the

value output to the DAC. The positional error is compared to 180,

if it is less than>lBO the JLT LABl comes into operation otherwise

the maximum positive velocity is output ot DAC 2 by the instruction

99

6.3.3

MOV R41 @DAC2

followed by an unconditional jump (JA~ SAM) to sample once more the

actual position of the robot arm. Conversley if the error is less

than >180 then it is compared to> FE81il (which is ->181il) using the

instruction

LABl Cl R2,>FE81il

If the error is greater than FE81il, that is it lies between+~l80 and

->180 then the statement JGT LAB2 comes into operation and the

output velocity word is directly proportional to the p~sitional

error value calculated. This is achieved using the instruction

LAB2 MOV R2,@DAC2

again the unconditional jump operation JA!P SAM is executed. If the

error is not greater than >FE80, that is a higher negative number

then the maximum negative velocity word is output to DAC 2 by

MOV R5fiDAC2

again the unconditional jump operation JMP SAM is executed.

This program showed how the robot could be programmed but it has

severe limitations which include,

a) Only one position is used for one axis

b) The microprocessor is sampling at a faster rate than is necessary.

These limitations are overcome in the following programs.

Program TRY2

This program will allow a single axis to move to more than one

position (a full program listing is shown in Appendix 7).

The subroutine illustrated by the flow chart in f1gure 6.9 is added

to TRYl after the ADC channel has been selected. Furthermore the

error signal is compared with zero after it has been stored (figure 6.10).

The subroutine beginning at 'NEXT' asks the user, via a VDU prompt,

'What is the command position?' using the following instructions.

lOO

Figure 6.9 Flow Chart for Program TRY 2

output

error

message

Figure 6.10

ZERO

VELOCITY TO

ROBOT

STOP

ROBOT

GO FOR

NEXT

COMMAND

POSITION

ASK FOR THE

OUTPUT MESSAGE

READ THE

INPUT

WHAT IS THE
f-------1

COMMAND POSITION

convert as TRY 1

N-- CONTINUE AS TRY 1

101

6.3.4

XOP@ MESS,l4

This command writes the message out to the terminal asking for the

position,

NULL XOP Rl, 9

This reads the value from the terminal into Rl and the following code

- DATA NULL is included to ensure that only a hexadecminal number

is read in. The value in Rl is then checked to see if it lies

between 0 and ::>7FF by two "compare immediate" statements - if it is

between these limits execution will commence, otherwise an error

message is printed out using an XOP and then the value is asked for

again.

After. the error has been stored if it equals zero the program jumps

to LAB 3 and outputs a zero velocity word at DAC 2 which stops the

robot and then proceeds to ask for the next command position via

XOP instructions as previously described. If the error is not

equal to zero execution continues as in TRYl until it does equal

zero.

Program TRY3

This program will input a table of data before execution commences

for one axis and is illustrated by the flow charts in figures 6.11,6.12.

The first message asks how many positions there are going to be, this

value is stored in R9 using the XOP to read 4 hexadecimal characters

from the terminal, the value is then copied in Rll by the statement

MOV R9, Rll.

Then RS is loaded with a memory location for the start of the table

of positions.

LI RS ,";>FA5!a.

Another XOP writes out the message asking for the position. The

hexadecimal value is read into the memory location which is in RS and

then RS is increased by two, so when the next value is read in it

goes into the next memory location, this is achieved by one statement

XOP *R8+,9

The number of positions left is decrement, that is

DEC R9

102

Figure 6.11 ·FLOW CHART FOR TRY3

(START

I
INITIALISE

SYSTEM

L
INPUT

POSITIONS

INTO TABLE

I
FIND ERROR

FOR CMD

POSITION

I
OUTPUT REQUIRED

VELOCITY

I
CONTINUE UNTIL

IN POSITION

I
LOAD NEXT CMD

POSITION

I
CONTINUE UNTIL

FINISHED ALL

POSITIONS

_j
(END

103

Figure 6,12 DETAILED FLOW CHART FOR TRY3

START)
I -

LOAD OUTPUT

CONSTANTS

I
SET ADC FEEDBACK

CHANNEL

I
HOW MANY\ ASK FOR OUTPUT

MESSAGE POSITIONS?

I
READ THE INPUT

INTO R9

I
SAVE NO OF

POSITIONS IN

Rll

I
LOAD RB

WITH MEMORY FOR

START OF TABLE

J
ASK FOR OUTPUT

MESSAGE

OUTPUT READ THE POSITION /

ERROR INTO THE MEMORY

MESSAGE LOCATION IN R8,

INCREASE BY TWO

y

104

N

y

DECREMENT R9,

lE CHECK TO

SEE IF LAST

POSITION

y

LOAD Rl WITH

MEMORY LOCATION

WHICH STARTS TABLE

OF POSITIONS

CONVERT ANALOGUE

FEEDBACK IE FIND

ACTUAL POSITION

ACTUAL POSITION IN

R2

CALCULATE ERROR

ACT-CMD

COPY ERROR IN

R7

OUTPUT

ZERO VELOCITY Y

TO ROBOT

INCREASE BY

TWO RI lE

EXT CMD

DECREMENT Rll

lE NO OF

OSITIONS

N

y

END

I

OUTPUT

VEL<><.
y

TO ERROR

+YE

DIRECTIO

106

N

OUTPUT MAX

VEL +YE

DIRECTION

A

N

OUTPUT

MAX VEL

-VE

-VE DIRECTION DIRECTION

The value in R9 is then compared to zero, if it is equal execution

of the program to move the axis will commence, otherwise the next

position will be read in. Register one is loaded with the base

address for the table of positions. The conversion of the actual

position takes place as previously described and is stored in R2.

The error is calculated as ACT-CMD but this time indirect

addressing is used for the CMD

S *Rl,R2

and the error is then saved in R7 and its modulus is obtained using

the ABS instruction.

MOV R2,R7

ABS R7

If the modulus of the error is within an acceptable toleranceJwhich

is five,the program outputs zero at DAC2 which stops the robot.

The next position is then obtained by incrementing Rl by two, this

points to the next value in the table of positions. Decrementing Rll,

to see how many positions are remaining, the value of Rll is then

compared to zero, if it is equal then the program has been executed

otherwise the robot will be moved to this next position in the

manner just described. If the modulus of the contents in R7 is

greater than 5 then the corresponding velocity is output on DAC2

as described in the previous programs.

6.4 PROGRAM VERTHREE

6.4.1

The ideas developed in these programs were subsequently utilised to

produce more structured software which could find application in the

control of various types of robot. The structure adopted will now be

considered.

Instruction Format

It was decided that the control software would be produced along

similar lines to that with other microprocessor controllers within

the department (72 ' 73). I th t h i n ese sys ems eac operat on consituted

an instruction. Each instruction to be programmed is represented by

a 16 bit word in memory. This 16 bit word has a pre-determined

format depending upon instruction type. For other robot controls

developed (72 ' 73) hi t ti h eac ns rue on as an op-code, which is

designated by the six most significant bits of the word and which

defines the operation which is to be peformed. The remaining ten

107

bits of the word form the modifier, which was used, eg to denote the

required position of an arm or the length of a time delay etc. The

choice of a six bit op-code was somewhat arbitrary. This ~pproach is

maintained which means that the flexibility of the language is

extended to a robot of complex form. However, the op-code used is

only five bits. This alteration was made as I thought that thirty-one

different operations was sufficient and also to allow the maximum

traverse on an axis to be input without any modification 1ie the

maximum travserse on each axis is represented by digital values

between zero and 2047 (>7FF) which can be specified be eleven digits.

108

Table 6.1 shows the set of instruction considered to be necessary in

defining point to point tasks for the Versatran together with their

associated op-codes and modifiers.

INSTRUCTION OP-CODE MODIFIER COMMENT

MOVE VERTICAL 1 0· 204 7 (> 7FF) POSITION REQ'D

MOVE HORIZONTAL 2 0-2047 POSITION REQ'D

MOVE IN SWING 3 0-2047 POSITION REQ'D

TIME DELAY 4 0•2047 NO OF !SECS

JUMP 5 0·512(>200) NO OF INSTRUCTIONS

TURN WRIST VERTICAL 6 XXX NO MODIFIER

TURN WRIST HORIZONTAL 7 XXX NO MODIFIER

STOP 8 XXX NO MODIFIER
~

CONTINUE 9 0-2047 NO OF REPEATS

CLAMP OPEN A XXX NO MODIFIER

CLAMP CLOSED B XXX NO MODIFIER

X = DON'T CARES

Table 6.1 Programmable Instructions

A more detailed description of this
(76) given by Charles and Weston and

type of instruction format is

Mason (73) and Sahili (72) . A

brief description of the functions of this Versatran Instruction

~et is given below

MOVE INSTRUCTION

STOP INSTRUCTION

For positioning one of the third major axes by

using an absolute address method the modifier

contains a digital number (0-2047) which is

equivalent to the required position.

Always the last instruction in a program placed in

'user memory' to terminate the program and bring

control back to the operator.

DELAY INSTRUCTION

For producing a 'real' time delay in increments of

'quarter' seconds.

109

6.4.2

JUMP INSTRUCTION

To jump blocks of instructions, that are to be used

later.

CONTINUE INSTRUCTION

TURN WRIST

CLAMP OPEN/CLOSE

To produce the desired number of repeats of a

program, a 9000
16

command will continue cycling

the robot until stopped eventually.

The wrist can be either in a vertical or

horizontal posture.

The gripper can be opened or closed.

Description of 'VERTHREE' Versatran Control Program

This is the full controller program. In this program the instructions,

as described in 6.4.1 located in memory in sequence, are interpreted

and the appropriate output to the robot results, once the program is

executed. The program again has a modular design, with a separate

sub-routine for each function. The general software configuration is

shown in figure 6.13 the detailed software is shown in flowchart

form in figures 6.14. to 6.25

in appendix 7.

A full program listing is included

The program allows up to 512 instructions to be loaded in sequence,

beginning at memory location)'FBOO. This section of memory is

referred to as 'user memory', The instructions are decoded by the

program in sequence, one word of memory at a time. The jump

instruction permitting sections of user memory to be jumped over if

so desired. The complete program format is shown in flowchart form

see end of this section.

Instruction Read and Decode Sub-Routine (IRD)

The IRD sub-routine sets up a pointer in memory that indicates the

location of the next robot instruction (see fig 6.14). This

program assumes that a sequence describing the robot task to be

110

(:') • I • •

~
MOVE IN I

HORIZONTAL .
\j CONVERT --· ANALOO F/B

l!-\ ~ r-e> -t> AND CALCULATE
MOVE IN POSITIONAL INSTRUCTION VERTICAL SEQUENTIAL READ AND ERROR

1\rrV DECODE V INSTRUCTIONS

IN USER re> MOVE IN
SWING

MEMORY

.

~ CONTINUE
r- .

...
I"\ ... _/

_I \ RESET ... ,. .__

1-t> INSTRUCT!{)N JUMP
• POINTER

J

I \ V TIME ADJUST

~I TIME DELM .r -7_--"'
COUNTER

INSTRUCTION t SECONilS
~'"'"" ROUTINE

- - - . --

Figure 6.13
Controller Configuration - 'VETHREE' ~ MOVE -t> REAL TIME

WRIST/GRIPS DELAY

-···--·----- --------

.
~-

~rl>
ROBOT IN
POSITIO!l

4> OUTPUT
VELOCITY

WORD
PROPORTIONAL

TO ERROR

•

'

'
I

-

.

-/
....,

I

pc:>/ ROBOT
\

I

I
I

f..__..

").
I
I

I
I
I
I
I

I
I
1
I

J--- -
_____ __J

• I

I

Figure 6.14

START

SPECIFY
WORK SPACE
LOAD
CONSTANTS

POINTER
FOR

'USER
MEMORY'

READ
INSTRUCTIONS
& INCREMENT
POINTER

SEPERATE
OP-CODE

FROM
MODIFIER

Instruction Read & Decode 112

i '
I

\

~ - . . "

/

113

.,

1 • I
I
j

performed comprises a number of robot instructions residing in

memory in the format described earlier. The current instruction is

collected and placed in a register and the op-code separated from

the modifier (this achieved using the logic ANDI instruction in a

mask of any of the 16 bits in a word can be obtained with this

instruction). Once the op-code has been separated, it is then used

in a sequence of compare instructions which provides software decoding

of the instruction. The IRD sub-routine then supervises a branch to

the real-time control sub-routine associated with that instruction

and the robot instruction pointer is automatically incremented to

point to the next instruction in memory although this pointer can

be modified by some other sub-routines. The modifier is separated

and is available wben the subroutine branch is made.

6.4.2.1 Robot Instructions - Real Time Control Routines

To Initialise a Move

If an op-code for a move instruction is recognised the program jumps

to this routine and the appropriate analog feedback channel is

selected by placing the correct multiplex code on the ADC (see figs

6.15-6.18). Register 10 is loaded with a displacement value which

determines at which DAC the velocity word is output in the next

sub-routine. The program then jumps to the convert routine.

I/0 Analog-Digital Handling Routines

These routines are used to process the analog feedback signal,

calculate the positional error and output the appropriate output

velocity word (see fig 6.19). When a value is to be output to a

DAC the following instruction is used:-

(LABEL) MOV R6, @DAC2 (RlO)

With this instruction, the value in register 6 is copied at memory

location (DAC2) plus the displacement value in register 10. In this

way, using DAC2 as the base address memory location, the appropriate

memory location receives the contents of Register 6. It should be

noted that the three DAC's used reside at the memory locations

7EFF0,7EFF2 and 7DEFE.

114

N

Figure 6,15
Select Axis to be moved routine

115

,-

·- '

I ' . 'I

-·-I

Figure 6.16 Initialise a move in swing

Figure 6.17

SELECT GAIN
SELECT
CHANNEL 3

LOAD
DISPLACEMENT

VALUE IN R1
(R10=4)

JUMP TO
CONVERT
ROUTINE

Initialise a move
in vertical

SELECT GAIN
SELECT
CHANNEL 1

LOAD
DISPLACEMENT
VALUE IN R10

(R10=0)

116

'
'

---!

~.

1
\

Figure 6,18

JUMP TO
CONVERT
ROUTINE

Initialise a move in horizontal

SELECT
GAIN
SELECT
CHANNEL 2

LOAD
DISPLACE!·:ENT
VALUE IN R10

(R10=2)

~UMP TO
CONVERT
ROUTINE

117

Figure 6.19
Convert Analog Feedback &
Calculate Positional Error

JUMP TO
INPOSITION
ROUTINE

I

N

START
CONVERSION

y

READ
CONVERTED

DIGITAL
VALUE

CALCULATE
POSITIONAL
ERROR
(ACT - CMD)

IS
ROBOT IN
POSITION

?

118

JUMP TO
CONTINUE

OUTPUT
MODE

.... I t>

~·

OUTPUT
MAXIHUM
VELOCITY IN
POSITIVE
DIRECTION

RECALCULAT
NE~I POSITIO

I

Figure 6.19

y

OUTPUT
VELOCITY
WORD oe TO
THE ERROR
IN POSITIVE
DIRECTION

RECALCULATE
1£\1 POSITION

N

OUTPUT THE
HAXIMUM
VELOCITY
WORD IN A
NBGATIVE
DIRECTION

RECALCULATE
NEW POSITIO

OUTPUT
VELOCITY
WORD oC TO
THE ERROR
IN NEGATIVE
DIRECTION

RECALCULATE
NEW POSITION

I/0 Analog - Digital Routine - Continue Mode

119

''

--' I
I

' -
I
I

Figure 6.19

0/P ZERO TO
DAC TO STOP

THE ROBOT

GO FOR NEXT
INSTRUCTION

Robot Inposition Routine

120

• I
i

Continue Routine

In this routine, the modifier of the instruction, contained in

Register 3, determines the'route taken by the program (see fig 6.20).

If the modifier contains 0000, the instruction is interpreted as a

'continue cycling until stopped'. If it contains 0001, this

indicates that the last cycle has been reached and the program

branches to the stop routine.

Each time the sub-routine is entered the modifier is decremented by

'one•, the new instruction is then formed by adding the 'continue•

op-code to the new modifier. The instruction pointer is placed one

memory location back (as it automatically increments to the next

instruction in sequence) and the new instruction is loaded into

user memory.

Stop Routine

When the program enters the stop routine, a prompt is issued to

the operator via the VDU/Teletype 'YOUR PROGRAM IS COMPLETE'

(see fig 6.21). Control is then returned to TIBUG MONITOR, either

for the program to be re-executed, or to permit changes to the

program.

·Jump Routine
\

'Here the modifier of the instruction is changed as the value input

is the number of robot instructions to be omitted produce the jump in

the number of bytes (see fig 6.22). This is achieved using SLA R3, 1,

which shifts left by one position the contents of Register 3, which

effectively doubles the value. The instruction pointer is then

modified and the number of bytes to be jumped is added. The program

then goes for the next instruction.

Wrist Move Routine

This is a routine that sets the base of address of the 9901 chip.

A one or zero is then written to bit 2 of the I/0 pins (see fig 6.23).

A nought turns the wrist vertical, a 'one' turns the wrist to a

horizontal position. The program then jumps to the real time delay

routine.

121

IS IT
r----'y'----{ CON?)~~~~

STOPPED
1

RESET
INSTRUCTION

POINTER
(FROG START)

BRANCH
TO

BEGINNING

I

Figure 6.20 Continue Cycle Routine
122

N

IS IT
THE LAST

CYCLE
1

DECREHENT
CYCLE
COUNT

PRODUCE
HODIFIED

INSTRUCTION

REPLACE OLD
INSTRUCTION
IN USER
HEMORY

BRANCH

TO
BEGINNING

' I
'

\
\
I
' \

\

\

\

' ---1

Figure 6.21

OUTPUT
PR0!1PT TO
OPERATOR

RETURN
CONTROL TO

TIBUG
V.ONITOR

I
I
I

' -1
I
I
I
I
I c TIBUG)

Stop Routine

--I,

123

' i
I

\

---1
!

.3

pRODUCE
JUHP IN
TERMS OF

BYTES
I
I

I
SET

INSTRUCTION
POINTER TO

JUMP
INSTRUCTION

I
I

·/

SET
INSTRUCTION
POINTER +

JUMP
DISPLACEHENT

GO FOR

NEXT
INSTRUCTION

s

Figure 6.22 Jump Routine

124

•

4

IS IT
WRIST

V:E.RTICAL
?

N

IS IT
y WRIST

HORIZONTAL
?

SET 9901
BASE

ADDRESS .

SEND SIGNAL .
TO ~/RIST

(1=HORIZONT)

.

c R.T.D.

I

Figure 6.23 Move Wrist Routine

125

y

-

SET 9901
BASE

ADDRESS

SEND SIGNAL
TO ~/RIST

(O:VERTICAL)

' '

.,

I _,

. .

Gripper Open/Close Routine

This routine again loads the base address of the 9901 chip, it then

writes either a one or a nought to bit 4 of the I/0 pins one to

open the gripper, nought to close the gripper_(see figure 6.24).

The program then branches to the real time delay routine. This real

time delay is routine only enterable after a move wrist or gripper

instruction. It produces a delay loop in the program to allow the

robot to respond to the signal before the next instruction is read and

implemented.

Time Delay Routine

In this instruction, the modifier contains the number of quarter

seconds time delay required. The base address is set up in

Register 12 of the main program workspace.(figure 6.25). Register 0

of the timer service routine (which is entered when an interrupt 3

occurs) workspace is cleared and an ~nterrupt 3 is enabled. The

number of quarter seconds are then copied into Register 1 of the

timer service routine. The timer is then started for a single

count and the program idles until interrupted by an interrupt 3.

Once an interrupt 3 is received by the microprocessor, the program

jumps to pick up the interrupt 3 vectors. These vectors are located

at memory address>OOOC (workspace pointer) and>OOOE (program

counter). The program then jumps to the location indicated by the

program counter, namely memory address >FFAA. At memory location

>FFAA the program reads a branch instruction, and branches to the

timer service routine.

Timer Service Routine

In this routine, each time it is entered a check is made to see if

the delay is finished (see fig 6.25). A count of each quarter

second is also incremented. The time is then loaded with the value

to produce a quarter second count and the program jumps back to the

time delay routine, where it idles until another interrupt is

received.

If the time delay is completed when the routine is entered, the

program then clears the cycle· counter and also clears Register 15

126

5

IS IT
OPEN

GRIPPER
'1

IS IT
y CLOSE

GRIPPER
?

SET 9901
BASE

ADDRESS

SEND
SIGNAL -

(O = CLOSE)

(R.T.D.

I

Figure 6.24 Open & Close Gripper Routine

127

V

-

SET 9901
BASE

ADDRESS
.

SEND
SIGNAL

(1 = OPEN)

' ,

' I • •I

Figure 6,25

1

\

.
-

I

I

Time Delay Routine

2

SET BASE
ADDRESS
9901

CLEAR R.O
?F TSR

COUNTER FOR
No OF 'l!-SECS)

ENABLE
INTERRUPT 3

ON 9901

ENABLE
INTERRUPT 3

ON 9900

READ No OF
-tSECS REQD,
PLACE IN RI
OF TSR

-

COUNT FOR
ONE PULSE

bN TIMER

IDLE ..:
WAIT FOR
INTERRUPT

GO FOR
NEXT

INSTRUCTION

ON INTERRUPT

-
~- ,...

- \ 1..-:...':.. --

128

PICK UP
VECTORS
FOR INT.3

I
I _,_

'•'

~

- '

-.

Reserve Memory Space for TSR

/ ENTER "\
(ON INT.3. } ' ./

DEFINE NEW
ORIGIN

DEFINE NE~/

WORKSF-ACE
FOR T.S.R.

JUHP TO
T.S.R.

(T.S.R.)

129

Timer Service Routine (TSR)

RESET t SEC

COUNTER TO
ZERO

DISABLE
INT.3

SET PC IN
R14 TO
POINT TO -
LAST
INSTRUCTION

IN T/D RTINE

RETURN TO
TIME DELAY

ROUTINE

E

I

y

T.S.R.)

IS
DELAY

- FINISHED

130

N

INCREMENT
t SECOND
COUNTER

SET BASE
ADDRESS
9901

LOAD VALUE
FOR t SEC IN
R2 (UNITS
21.33 ms)

LOAD TIME

ENABLE
INT 3 ON
QQ00/1

RETURN TO
IDLE IN
TIME DELAY
ROUTINE

I

• I

'

~ ~ "'

Real Time Delay Routine

I

R.T.D.

LOAD VALUE
IN R.6
(FOR 0.2
SEC DELAY)

DECREMENT
R.6

IS
DELAY

COMPLETE

y

GO FOR
NEXT

INSTRUCTION

131

so that on returning to main program, the interrupt mask is cleared.

The program then adjusts the program counter so that a jump for a new

instruction is initiated.

6.5 PROGRAMS USING CONTINUOUS CLOSED-LOOP CONTROL

6.5.1

During the operation of programVERTHREEas the axes are moved one

at a time, when the first was in position and the second was being

moved the first one may drift unless closed-loop control can be

accomplished irrespective of a programmedmoveon each axis. To

overcome this and also to give a constant sampling rate all the

axes were moved simultaneously and were sampled at a controlled~

rate using the program detailed in the next section.
-.

Program INTl

The flow charts which illustrate the operation of this program are

shown in figures 6.26 and 6.27. The values for the positions are

stored as shown below.

memory location

FB~~ AXIS 1

l FB~2 AXIS 2

FB~4 AXIS 3

FIRST POSITION

FB~6 AXIS

:l 1

\FB~ AXIS

FB~A AXIS

SECOND POSITION

etc

The delay times at the end of each position are also stored in another

table commencing at>FD2~. Register 9 in the main workspace is

used to store the 'time' of the current delay.

The CMD positions are moved to the memory locations>F~6,>F~S.~F~A

by repeating the following statement three times

MOV *R4+,*R5+

The interrupt 3 is then initialised and the count is 1 and so the

interrupt occurs after one count. The new PC and WP are picked up

by the following procedure, the interrupt vectors are blown in EPROM

132

~
I

Figure 6.26 Overall !low chart !or INT 1

(START)

INITIALIZE SYSTEM I
I

INPUT POSITIONS I
I

INPUT TIME DELAYS

AFTER EACH POSITION

I
LOAD FIRST CMD INTO

MEMORY LOCATIONS

I
ALLOW INTERRUPT I

RETURN FROM INTERRUPT

1--_....,.jiNITIALIZE INTERRUPT

EVERY 38 ms

FIND POSITIONAL ERRORS

FOR ALL AXES

N

y

1

133

AWAIT INTERRUPT

'
i

1

~------N Disable Interrupt

TIME

DELAY

RETURN FROM INTERRUPT

INITIALISE

t:::___ INTERRUPT EVERY

~38ms

y

LOAD NEXT CMD

INTO MEMORY

134

-,

N AWAIT INTERRUPT

INTERRUPT SERVICE ROUTINE

OR ALL AXES

OUTPUT REQUIRED

VELOCITY FOR ALL

AXES

135

DECREMENT

DELAY

Figure 6.27

DECREMENT Rl

BY TWO

OUTPUT

ERROR

MESSAGE

Detailed Flow Chart for INT 1

ASK FOR OUTPUT MESSAGE

LOAD Rl WITH BASE

ADDRESS FOR TABLE OF

POSITIONS

SAVE NUMBER OF POSITIONS

IN MEMORY LOCATION

ASK FOR OUTPUT

MESSAGE

READ INPUT INTO

MEMORY LOCATION IN Rl

136

ow
MANY POSITIONS

ARE THERE

DECREMENT Rl

BY TWO

OUTPUT

ERROR

MESSAGE

DECREMENT Rl

BY TWO

OUTPUT

ERROR

MESSAGE

N

ASK FOR OUTPUT
'---~

MESSAGE

READ INPUT INTO

MEMORY LOCATION

IN Rl

INCREMENT Rl

BY TWO

N

ASK FOR OUTPUT

MESSAGE
1----{

READ INPUT INTO

MEMORY LOCATION IN

Rl

INCREMENT Rl

BY TWO

137

ASK FOR OUTPUT
1-----{

MESSAGE

READ INPUT INTO

MEMORY LOCATION IN

RS, INCREMENT RS BY

TWO

DECREMENT R2 lE R2

CONTAINS THE NUMBER

OF POSITIONS

REMAINING

y

CLEAR REGISTER FOR

DELAYS R9

LOAD RS WITH BASE ADDRESS

FOR DELAYS

LOAD R4 WITH BASE ADDRESS

FOR CMD

LOAD R5 WITH BASE ADDRESS

FOR O.ID FOR OPERATION

MOVE CMD FOR ONE POSITIONS

FROM FB~~ etc TO F~6,

FD~A

LOAD BASE ADDRESS FOR

138

PUT IN INTERRUPT

9901 AND 9900

PUT IN CLOCK MODE

WITH COUNT EQUAL

TO ONE

SET UP INTERRUPT

AS BEFORE BUT LOAD

R~ WITH 3~~F SO THE

INTERRUPT WILL OCCUR

EVERY 38 ms

FIND ERROR ACT-CMD FOR

THAT AXIS

I
I I c.,._?c.,C.::.

'

\

N

AWAIT INTERRUPT

/

' ' '

/

ALL ERRORS ARE

LESS THAN > 28

DECREMENT NO

OF POSITIONS

·-

'·

y

N

ASK FOR OUTPUT
~----<

MESSAGE

RETURN FROM INTERRUPT

SET UP INTERRUPT AS BEFORE

BUT LOAD Rill WITH >311J11JF SO

THAT THE INTERRu~T WILL

OCCUR EVERY 38 ms

OVE NEXT DELAY

INTO R9

'>-.:.:N_.,-;1 AWAIT INTERRUPT I

y

LOAD R5 WITH FD11J6, VALUE

FOR C~ID DURING CALCULATIONS

140

Q
GET NEXT POSITION IN

FD~6,>FD~S,>F~A

-- - -[AWAIT INTERRUPT 1 -
-- • -'

GO TO INTERRUPT VECTORS
AT >FFAA

GO TO FAOO TO PICK ..
UP PC AND l\'P •• , . ~.. ~ . . .-'

WHICH ARE
' ·-

NEW WP >FACO
(NEW PC)o F A04

!DISENABLE ALL INTERRUPTS

LOAD NO OF AXES INTO

R~, THAT IS 3

I
LOAD RB AND R9 WITH 1 r. 2

RESPECTIVELY TO SELECT

CHANNELS ON ADC

SET GAIN EQUAL TO ONE I

AXIS 1 SET CHANNEL ON

ACD AND DAC DISPLACEMENT

LOAD R3 WITH MEMORY

LOCATION FOR ACT

LOAD R5 WITH MEMOR1

LOCATION FOR CMD

lA I
I

CONVERT ANALOGUE

FEEDBACK

(:) 141

PLACE ACTUAL POSITION

IN Rl

SAVE Rl IN MEMORY

LOCATION IN R3,

INCREMENT R3 BY

TWO

FIND ERROR

ACT - CMD

STORE ERROR IN

Rl

SAVE ERROR IN

R2

OUTPUT ZERO

VELOCITY TO ROBOT

FOR THAT AXIS

DECREMENT RJ;J 1

HOW MANY AXES ARE

LEFT

142

N

AXIS 2 SET

CHANNEL ON

ADC AND DAC

DISPLACEMENT

N

AXIS 3 SET

CHANNEL ON

ADC AND DAC

DISPLACEMENT

MOVE DELA

INTO R6

LOAD WP OF

MAIN IN Rl3

LOAD PC INTO

Rl4

143

DEC R9 OF r •

MAIN

LOAD WP OF

MAIN IN R3

LOAD PC INTO

Rl4

N OUTPUT MAXIMUM

y

I',

OUTPUT VELOCITY

TO THE

ERROR IN THE

N

VELOCITY IN

POSITIVE DIRECTION

OUTPUT MAXIMUM

VELOCITY IN THE

NEGATIVE DIRECTION

144

and at these vectors there is a branch statement which goes to

another part of the program to pick up the WP and PC. The execution

of the interrupt service routine then commences. First the interrupts

are all disenabled by using LIMI p. The number of axes is loaded

into RP which in this case is three •. The gain is set to unity and

RS and R9 contain the numbers 1 and 2 respectively which are used to

select the required channel on the ADC. The ADC channel is selected

anddisplacement forthe DAC is loaded into RlO for the first axis.

The memory location for the ACT, this is>FDPP is stored in R3 and

the memory location for the CMD which is~FD96 is stored in RS. The

conversion of the analogue voltage then takes place and the value

is stored in Rl. It is then copied into the memory location in R3,

R3 is then increased by 2 using the instruction

MOV Rl, *R3+

the error is calculated using the command,

S *R5+, Rl

autoincrement addressing is utilised. The error is then saved in R2

where the modulus is found. This time the acceptable tolerance of

the error is allowed to be within>28 of the CMD. (This is

equivalent to a positional error. of 1.37%). This value was chosen
I

' as it was a long time for all the axes to be exactly in their

correct positions. The correct voltage is output via the DAC as

described earlier. The TEST subroutine is then entered where the

number of axes still to be 'serviced' is deduced. Wben all the

axes have been serviced the delay is examined. The instruction

MOV @>F812,R6

moves R9 (which stores the time of the delay) into R6, Register 6

is compared to zero and if it is equal, that is, the first delay has

not beenreached or the delay has finished then the WP from the

main program is loaded into Rl3 which is >FSpp, the PC of the

subroutine START is loaded into Rl4 and the status is cleared. Control

then returns to the main program commencing with START. If register 6

is non zero then register 9 from the main program is decremented by

145

DEC @>F812

and then the WP from the main program is loaded into Rl3, the PC of

the subroutine CONT is loaded into Rl4 and the status is cleared.

Control then returns to the main program commencing with CONT.

When START is the return PC the following sequence of events

occur. Interrupt 3 is enabled and such an interrupt will occur

after 38ms as the number loaded into R~ is>3~~F. The following

then occurs for each axis in turn. The CMD value is moved from its

memory location into a register, the error is then calcuhated and

stored in the same register, the modulus of the contents of this

register is found and then compared with the value or')' 28. If the

value is greater then the statement

JMP SELF

is executed which awaits the interrupt, if it is smaller then the

error of the next axis is examined in the same way. If all three

errors are less than 28 then one required position has been

reached. The number of positions remaining is decremented, if it is

zero then the STOP subroutine is executed. All.interrupts are

disenabled and a message is printed out to say that the program

has finished and the control is returned to the monitor and the

bydraulics then should be de-activated. If there are more positions

remaining the next delay is moved into R9

MOV *R8+,R9

and then the interrupt is·awaited.

When CONT is the return PC the following sequence occurs. The

interrupt 3 is enabled and will occur after 38ms. The value of

the time delay in R9 is compared to zero, if it is not equal, that

is the delay has not yet finished the interrupt will be waited for.

If the delay has finished the next position required is stored in

memory locations >FW6, >FW8, >FW8 and then the interrupt will be

awaited.

146

6.5.2

6.5.3

6.5.4

Program INT2

This program is an extension of INTl which moves the jaws during the

time delay (see fig 6.28). The value of 1 is input if the jaws are

to be opened and 2 for closed. These values are entered in a

table in memory commencing at memory location >FDA!IJ, The jaws are

' opened in the initial sequence just before the interrupt is

enabled for the first time by using the instructions

Ll Rl2,:;>120

SBZ 12

Selects port area

open jaws

After the time delay has been moved to R9 by the instruction

MOV *R8+,R9

the subroutine to open or close the jaws is executed (a flowchart of

this subroutine is shown in.figure 6.28). The value at the memory

address stored in RlO is compared to the contents Rl, (where 1 is

stored), if it is equal the jaws are opened if not the jaws are

closed and in both cases the interrupt is awaited,

Program INT3 and Data

Every time the previous program is run the data has to be entered

which is time consuming when the same sequence of operations is to

be repeated. This problem can be overcome by dividing the software

into two modules, one which is the operator communications module

which enters the data and the other a real-time control module

which controls the movement of the robot. The program listings are

given in Appendix 7,

Program INT4

This program will move the wrist in the swing and jaw motion as well

as open or close it during the time delay. The method utilised is

the same as in INT2. The listing is given in Appendix 7.

For any of these programs the maximum positive and negative velocity

can be chosed just before the program is executed by using an XOP to

ask for the values and then reading them into registers and moving

147

Figure 6,28

-i

Flow Chart to Open/Close Jaws
'

N

">--,-------pNCREASE BY
I'

y

INCREASE BY

TWO RlO

SELECT PORT

AREA

SBZ 12

OPEN JAWS

SELECT INTERRUPT

AREA

148

TWO RlO

SELECT PORT

AREA

INCREASE BY

TWO RlO

SBO 12

CLOSE JAWS

SELECT INTERRUPT

I

'I

them to memory locations to be saved.

XOP @VELP,l4

NULL XOP R3, 9

DATA NULLP

DATA NULLP

MOV R3 @>FD!<lC

XOP @VELN ,14

NULLN XOP R3,9

DATA NULLN

DATA NULLN

MOV R3, @ >FiljJE

VELP DATA >OOOA

TEXT 'WHAT IS THE biAX +VE VELOCITY'

BYTE !;!

VELN DATA > f;!DjJA

TEXT 'WHAT IS THE MAX -VE VELOCITY'

BYTE !;!

149

CHAPTER 7

TESTS OBSERVATIONS AND RESULTS

The idea of testing presupposes the presence of standards against
/

which products are to be tested. An important constituent of a

standard is a unit of measurement or framework of measurement

universally agreed. It 1s precisely the absence of these yardsticks

that may cause problems for the potential buyer. Unfamiliarity with

robots as a product, the difficulties of making realistic comparisons

between robots all cause confusion and doubt.< 63- 66)

7.1 ROBOT TESTING

Robots are purchases for very specific purposes. Some are bought

because the purchaser is concerned that their employees are exposed

to specifically dangerous or harmful situations eg handling chemicals,

welding and for&ing. Other robots are bought for economic reasons

when productivity needs to be increased. Here the purchaser will be

concerned that the robot increases flexibility, speed, accuracy or

repeatability of the particular process.

When new products of any description are marketed the instinct of

the potential buyer will be to try a sample. Although robots are not

by any means new, the market is still in the "try-a-sample" stage.

There are many unknowns for the purchaser, eg Will the robot be

accepted by ~he labour force? What changes are needed to jigs and

fixtures? Will the payback period be short enough? However

confident the robot manufacturer is that these problems can be

overcome and their particular robot is exactly what the customer

requires, the customer has a confidence hurdle to overcome. Much

doubt will.be concerned with the application. In the majority of

cases existing product or process knowledge will be high.

Consequently the data gathering will be concerned with judging the

effect of the robot on product or process. Occasionally the robot

will be the only way to complete the process or product. Whichever

the case, the starting point for most buyers is robot manufacturer's

data. This is the beginning of a filtering process that may

eventually lead to the purchase of a robot. The greater the

understanding of the robot imparted by this information and the

more empirically valid the data, the more efficient the f1ltering process

will become.
150

Much of the information about a robot presents no real problem in

conceptual terms. A robot will bave a certain size and weight. Its

working volume can be measured and related to the work to be done.

The articulation will make the robot more or less suitable for

certain tasks. Its ability to lift a certain load, the way it

is motivated, its power requirements, its speeds, and the

availability of ancillary equipment are all easily measured using

well understood and commonly applied engineering techniques and

judgements. Other features pose problems not so easily solved.

In a five axis robot working in 3-D space what does an accuracy of
+ - 0.5 mm mean? How is repeatability related to accuracy and how is

it measured? Does accuracy vary with the load applied or not?

How reliable is the software? Here, to a person unfamiliar with

robots, there are few common sense measures to be applied. Even to

the robot manufacturer there are still some areas that lack

definition. All of these problems relate to the sheer

complexity of the machine as a series of levers and pivots, bearings

and motor sources, measuring and storage systems, programming and

operating systems.

Clearly the solution to some of these problems will be overcome during

the process of developing a commercial robot. This is particularly

true of operational factors. Other problems require deeper thought

and are in themselves much more definitive of a system. In

particular the very basic measurement of robot accuracy is worth

greater consideration.

7.2 CONTROLLER OUTPUT AND SYSTEM RESPONSE ANALYSIS

One method to obtain a measure of the controller output and system

response is to utilise facilities already available within the

system, ie to use the positional feedback signal of the robot in

its analogue voltage form, (the position on any axis being directly

proportional to the wiper voltage generated on the specified axis).

This system response signal can then be compared directly to output

signal from the controller; which can be measured as an analogue

voltage by measuring the output from the relevant digital to

analogue converter. This signal is amplified before it reaches

the servo-valve, however, the ampl1fied signal contains the same

characteristics. These signals were recorded using a digital

151

storage oscilloscope (see figure 7.1) and subsequently on an x-y

graph plotter. In this way the output signals could both be shown

on the same trace. The start and finish position voltages were also

recorded for each test carried out. The tests were carried out on

the three major axes of the robot for various distances of arm

traverse. The results obtained are recorded in Table 7.1.

A description of a typical trace is shown in figure 7.2. The traces

are actually plots of voltage versus time, but in the case of the

feedback signal, the voltage represents position on the axis and in

the case of the output signal from the controller, the voltage is

proportional to the velocity of traverse of the robot.

7.3 POSITIONAL REPEATABILITY TESTS

The aim of these tests was to attempt to assess the practical

performance of the robot under control of the microprocessor.

Obviously to carry out a comprehensive analysis would involve

sufficient work for a project within itself, so only one aspect of

robot performance was chosen for analysis. Positional repeatabili.ty

tests were carried out on vertical, swing and horizontal axes of the

robot individually. Tests were then carried out with the

horizontal and vertical axes combined. A three inch traverse dial

indicator gauge and support frame was the only ancillary equipment

necessary for these tests.

Four series of tests were carried out on each axis separately,

and two series of tests on combined axial motion. The tests on a

single axis included the following series of motions of the arm of

the robot:-

(i) Extremity to mid-point

(ii) Large distance arm traverse

(iii) Short distance arm traverse

(iv) Arm in central position mid-point to extremity

(V) Arm in central position - short traverse

(vi) Arm at extremity - mid-point to extremity

(vii) Arm at extremity - short traverse

152

/ "\

>
I

-
v __,

. I

OSCILLOSCOPE . X--Y PLOITER

......... M
ROBOT A.D.C I

c
R
0
p
R
0
c -"' s n.A.c s
g

Figure 7.1 Trace Recording System

153

D.A.C.
OUTPUT
VOLTAGE/
VELOCITY
SIGNAL

SCALE
0.784V/cm

POSITIONAL
ANALOG
FEEDBACK
VOLTAGE
TO A.D.C.

INl'UAJL
POSITION

FIGURE 7.2. DESCRIPTION OF TEST TRACES

_Ql!--- -

VOLTAGE RISE
-;TIME

::-------1

•
DECREASINcr
VELOCITY

NEW POSITION

IN POSITION
ZERO VELOCITY

MAX
VELOCITY

+1.86V r----

- -----TIME

-1.86V

I

TIME

...
"'

Table 7.1 Output and Response Test Results

AXIS· START FINISH INITIAL FINAL TEST
LOCATION LOCATION VOLTAGE (v) VOLTAGE (V) No

HORIZONTAL '>'50 >700 0.5 8.51 1

HORIZONTAL >lOO >650 1.246 7.67 2

HORIZONTAL >150 >700 1. 74 8.5 3

HORIZONTAL >150 >600 1. 74 7.32 4

HORIZONTAL >200 ~600 2.51 7.32 5

HORIZONTAL >300 >600 3.79 7.32 6

VERTICAL HOO >600 5.13 7.53 7

VERTICAL ,,300 >600 3.90 7.53 8

VERTICAL ;.200 }600 2.67 7.53 9

VERTICAL >.150 ?600 1. 78 7.53 10

VERTICAL • ?150 ~700 1. 78 8.61 11

VERTICAL).100 >650 1.4 7.88 12

VERTICAL ;-so >700 0.54 8.61 13

SWING >50)'700 0.52 8.55 14

SWING >lOO ->650 1.31 7.65 15

SWING >150 >700 1.76 8.54 16

SWING >150)600 1.76 7.42 17

SWING)200 >600 2.50 7.42 18

SWING >300 >600 3.82 7.42 19

155

Each test involved the test cycle being repeated approximately

ten times, a delay being included in each of the small programs

written, to enable the DTI to be read after each cycle. In this

way, the deviation in positional repeatability could be obtained

with the robot working a series of different locations within its

working area.

The maximum deviation in positional repeatability in all the tests

was found to be 11.5 thousandths of an inch (approx 0.3 mm). The

average value for deviations in position on the horizontal axes

were:- 0.0016", swing 0.0018" and vertical axis 0.0037". The

average value for deviation with combined axial movement was found

to be 0.0023". On the horizontal axis, the distance of traverse of

the arm does not greatly affect the positional repeatability of the

robot. This can be seen by looking at the spread of results shown

in table 7.2. Positional repeatability is always

within 0.004" deviation. On the vertical axis of the robot the

spread of positional deviation is increased - most cycles fall

within 0.010" deviation, the maximum being 0.0115", and on the

swing axis the positional repeatability is within 0.0076" deviation.

On both these axes the distance of traverse and the position of

traverse of the arm does not greatly affect the positional

repeatability of the robot. The position of traverse would

probably have a greater effect on positional repeatability when the

robot is heavily loaded. With combined axial motion of the robot,

the maximum deviation in postional repeatability is 0.008". The

combined axial motion did not adversely affect the repeatability of

the Versatran Robot.

All measurements are in imperial units as the dial gauge used was

calibrated in these units.

The tests described assess repeatability within a single axis of

motion, but more realistically the robot will normally operate in

more than one axis. So the last two tests assess repeatability

after a combined axial movement. In these tests a program for

the controller was written to produce an 'L' shaped motion relative

to the robot gripper, so that movement in two of the axes takes

place. The two programs were as follows:-

TEST No M

1 1600
2 2100
3 2650
4 1300
5 4008 (2 second delay)
6 900A (10 repeats)

TEST No N

1 2100
2 1600
3 1300
4 2650
5 4008 (2 second delay)
6 900A (10 repeats)

ACTUAL POSITION (mm)
FROM DATUM

525.0
87.5

528.0
262.5

ACTUAL POSITION (mm)

87.5
525.0
262.5
528.0

The test results obtained are shown in Table 7.2.

For th~se tests to-be statistically analysed many more tests•­

need to be perform~d ~i thin the working volume of· th'e robot.

Within the time scale of the project there· was insufficient

time to perform any more testin~ of.the robot/controller

comb1nation. -The.resu1ts obtained so far have-shown favourable

repeatabilit~

7.4 AN ACCURACY MEASUREMENT TECHNIQUE

In this section there is an explanation of an accuracy measurement

technique which could be used to evaluate the performance of the

Versatran.

Open-loop-measurement of positional accuracy is critical, It is of

the utmost importance that the robot returns to the point in 3-D

space that it has been taught, and having arrived at the point the

workpiece is in the expected position. In certain applications it

may be equally important that the 3-D route to the prescribed point

is also accurate and predictable, A good example of this would be

w1th arc welding robots where linear interpolation techniques are

used to generate a requ1red contour.

157

Table 7.2

HORIZONTAL AXIS

TEST No A TEST No B TEST No c TEST No D
2100 - 2300 2100 -2500 2100- 2650 2200 - 2300
CYCLE DEV'N CYCLE DEV'N CYCLE DEV'N CYCLE DEV'N

1 3.75 1 1.5 1 1.25 1 2.75

2 1. 75 2 2.25 2 1.25 2 3.75

3 3.75 3 2 3 0.25 3 4

4 0 4 0 4 1.25 4 2.25

5 0 5 1.75 5 0.75 5 0.75

6 3.5 6 2.25 6 0 6 0.75

7 0 7 2.25 7 1.25 7 2.75

8 2 8 1 8 0

9 3.5 9 0.5 9 0.25

VERTICAL AXIS

TEST No E TEST No F TEST No G TEST No H
HORZ @2300 HORZ @2300 HORZ @2650 HORZ @2650
1300 - 1600 1300 - 1400 1300 - 1600 . 1300 - 1400

CYCLE DEV'N CYCLE DEV'N CYCLE DEV'N CYCLE DEV'N

1 5 1 0 1 6.75 1 0

2 1 2 1 2 3.5 2 3.5

3 1 3 8 3 3.5 3 0

4 0 4 3 4 6.5 4 2

5 3 5 5 5 0 5 0

6 4 6 3.5 6 11.5 6 3

7 1 7 4 7 1 7 4

8 3.5 8 7 8 1.5 8 6.5

9 8.5 9 6.5 9 1

10 2.5 10 9 10 8.5

•... cont'd

158

SWING AXIS

TEST No J TEST No K TEST No L
HORZ @ 2300 HORZ @ 2600 HORZ @ 2300
VERT@ 1300 VERT @•1600 VERT@ 1300
1300 - 1600 1300 - 1600 1300 - 1400

CYCLE DEV'N CYCLE DEV'N CYCLE DEV'N

1 3.25 1 6.15 1 0

2 3.05 2 5.25 2 0

3 2.15 3 6.05 3 2.10

4 0 4 2.55 4 0.15

5 0 5 0 5 0

6 1.50 6 7.65 6 0.75

7 2.00 7 2.15 7 2.15

8 0 8 1.15 8 1. 75

9 0 9 0.75 9 0.25

10 1.00 10 1.25 10 1.65

COMBINED AXLE MOTION

TEST No M TEST No N
CYCLE DEV'N CYCLE DEV'N

1 7 1 8

2 0 2 0

3 0.5 3 1

4 3 4 1

'5 3 5 2

6 2 6 1 -

7 4 7 1

8 1 8 2

9 3

10 2

11 3

159

7.4.1

Measurement of accuracy must be related to the working volume and

articulation of the robot if it is to have any meaning at all.

Accuracy of different robots suggests that no machine maintains

constant accuracy over its working volume. Inevitably there are

many reasons for these variations in accuracy, Bearings need to

have some play to allow for rotation. Beams bend and twist under

different loading conditions and when connected, as in a robot arm,

they can display quite remarkable positional variations under the

influence of unbalanced loads. Internal control systems often have

ADC and DAC conversion devices that use approximation techniques.

Here the dropping of one bit of information could be interpreted over

the two or three metres of a robot arm to a positional accuracy

of many millimetres.

Similarly data compression technique used in robot software storage

algorithms can contribute to the bit-dropping paradigm already

described,

Many potential sources of error - some may be catered for because they

can be anticipated, measured and the information fed back into the

robot system.

Others such as bending and twisting are more complicated. It is true

that they could be measured but the error correction required would be

inordinately expensive and commercially inviable to implement,

Nevertheless, robot systems are produced which can maintain high

levels of accuracy. However, it is necessary to find a measuring

system that can confirm the accuracies claimed by robot

manufacturers.

Volumetric Accuracy Mapping (VAM)

To be pedantically correct, one ought to measure the accuracy of the ,

robot approach to the node from six directions(GS) as in figure 7.4.4.

This is practically dependent upon the position of the node within

the working volume, different nodes will have a smaller number of

practical articulation approaches which are illustrated in

figure 7.4.1, 7.4.2 and 7.4.3 which are the nodes in figure 7.3.

160

Figure 7.3.1 Polar Coordinate Robot Work Volume

Figure 7.3.2 XYZ, Coordinate Robot Work Volume

161

A .

3

7. 4. 1. NODE A- THREE
POINT NODE

7.4.3. NODE C - FOUR
POINT NODE

3

7.4.2. NODE B - FOUR
POINT NODE

+Y

7 .4.4. 11ACHINE COORDINATES

FIGURE 7.4. NODAL MAGNITUDE$ AND MACHINE COORDINATES
162

However, quite adequate results can be obtained with only three

approaches to the node. Typical results are given in table 7.3

Having divided the working area into nodes, the next task is to

devise a system for measuring the XYZ accuracies at the individual

nodes.

The basic equipment is a pair of vernier calipers, a clock gauge

and a method of attaching it to the robot arm. Consider node C.

To begin with the objective will be to check the Z axis accuracy

with the clock gauge. The stand (see figure 7.5) is adjusted

until point 0 on the plate is facing the robot and in the vertical

plane. The clock gauge is attached to the robot arm at its

furthest point (this may be at the end of the gripper assembly for

instance) and the maximum working load of the robot may be

simulated with lead packing (again at its normal point of action).

These two measures will simulate· 'worst case' conditions. The plate

is placed at the position such that position 0 corresponds to the

position of node C with respect to the robot. Then the robot is

taught to approach point 0 at right angles to the plate. The clock

gauge must, suffer a deflection that is greater than

accuracy of the robot (eg if the quoted accuracy is

the quoted
+ -l.Omm the clock

gauge depression should be at least 2.0 mm), a note should be made

of this value. The robot should then withdraw from this position.

Care must be taken to ensure adequate time is allowed for

measurement. Now this is replayed and the value indicated on the

clock gauge measured and the position of the finger with respect to

point A is measured with the vernier calipers. The clock gauge
+ readings will give a - Z figure, and the vernier readings the values

+ + of - X or - Y depending upon the quadrant in which they fall.

(eg quadrant LOT gives +X, +Y values). This process should be

repeated enough times for the results to be adjusted so that the

plate remains in the vertical plane but faces either to the left

or right of the robot. Point 0 must still coincide with node C

measurements with respect to the robot. The robot must be taught

to bring the clock gauge in at right angles to the plate with

constraints similar to the Z axis procedure. The measurements again

163

Plane 1 Average nodal X Readings (mm)

+0.19 +0.23 +0.15 +0.15 +0.33 +0.4 +0.40

+0.1 +0.21 +0.16 +0.1 +0.17 +0.21 +0.26

+0.21 +0.16 +0.15 +0.05 +0.12 +0.17 +0.20

+0.37 +0.22 +0.15 +0.13 +0.13 +0.10 -0.05

+0.52 +0.41 +0.30 +0.25 +0.1 -0.05 -0.10

Table 7.3

164

FIGURE 7.5 ADJUSTABLE STAND FOR NODE MEASUREMENT

165

must be taken except that the measurement on the clock gauge

corresponds to the X axis accuracy, the line PT becomes Z axis and

the line LM the Y axis. This whole procedure must be repeated with

the adjustable plate in the horizontal plane with the clock gauge

approaching from above or below depending upon the position of the

face of the plate. Finishing one node the complete process is

repeated at each node in the working volume.

By averagin~all the values of X,Y and Z at each of the nodes,

collected by both clock gauge and vernier, account is taken of

variations that occur due to different·robot articulation.

Additionally if the number of repetitions is large enough it will be

possible to observe drift in the system.

When the node XYZ accuracies have been obtained the VAM diagram

for the robot can be completed. Figure 7.3 shows a set of results

for the X readings. Similarly X,Y and Z sets for each of the five

planes (see table 7.3),may be constructed.

The overall accuracies may be processed and the results

presented in the form of accuracy distribution curves for the

robot, which is illustrated in figure 7.6. This technique is

long and tedious, however, once it has been repeated enough times

with robots of the same design the results may.be normalised and

a sampling/comparison technique used for production testing. Also

much of the measurement may be automated.

166

Accuracy Distribution Curve

' .

Figure 7.6

167

CHAPTER 8

DEVELOPMENT OF A SOFTWARE LIBRARY

In this chapter the development o! modular microprocessor-based

equipment is considered which is designed to serve the need to

retrofit early generations o! industrial robots o! different types

and the need to control a wide range of special purpose handling

systems(70>.

Software algorithms should be developed in modular form to provide

a library o! software modules from which appropriate modules could

. be chosen for a particular application. Figure 8.1 shows such a

software library and the function o! the modules are explained in

the following sections. Modules can be classified into two groups,

"real-time control" modules and "operator communication" modules.

8.1 REAL TIME CONTROL MODULES

As considered in Section 6.4 each module is chosen using an

operation code and modifier addressing method forming an

"instruction" which corresponds to a particular operation. The

op-codes are listed in figure 8.2.Thus a handling sequence for the

robot is determined by the corresponding "instruction sequence"

which is a series of instructions stored in read/write (RAM)

memory. The modules considered here could be used to form the

basic framework of real-time control software !or a wide range o!

robot structures with various servo-drive systems. For each robot

or handling structu_re, "customised" software can be generated by

including the appropriate modules.

A Activate an Output Module

The output port is set to one. This will result in the activation

o! a two state drive eg activate solenoid.

Instruction Format

Op-Code
5 bits

1 00001

Modifier
11 bits

168

Figure 8. 1 Software Structure for Versatran Robot

REAL TIME CONTROL MODULES

A System Initialisation and Test

B Activate an Output

C Deactivate an Output

D Test for Input High

E Test for Input Low

F Time Delay

G Jump Unconditional

H Jump Conditional on Input Condition

I Sequence Repeat

J Stop and Re-initialise

K Closed-loop Position Control

L Control Parameter Handling

OPERATOR CO~~ICATIONS MODULES

A Terminal Driver

B User Instruction Prompts and Sequence Encoder

C User Instruction/Robot Sequence Cross Reference

D Communications Parameter Handling

E Sequence Edit

F Teach Prompt and Sequence Encoder

G Instruction Sequence Selection and Network Protocol

169

(TD)

(IP)

(CR)

(CPH)

(SE)

(TP)

(NP)

Figure 8. 2

INSTRUCTION

Activate an
Output Module

Deactivate an
Output Module

Wait for Input
High Module

Wait for Input
Low Module

Time delay

Jump Unconditional
Module

Jump Conditional on
Input Condition Module

Sequence Repeat
Module

Stop and Re-initialise
Module

Closed-Loop Position
Control Module

OP CODE

1

3

4

5

6

7

8

9

A
B
c
D
E
F

170

MODIFIER

0-2047(>7FF}

0-2047

0-2047

0-2047

0-2047

0-2047

0-2047

0-2047

0-2047
0-2047
0-2047
0-2047
0-2047
0-2047

COMMENT

Activate a Two
State Drive

Deactivate a Two
State Drive

See if switch
opened or closed

See if switch
opened or closed

No of instructions
not to be executed

Increment for new
PC

No of times
sequence repeated

No modifier

Up to 6 axes can be
controlled

The modifier gives the two state drive which is to be activated.

and can lie between 0 and 2047.

' B Deactivate an Output Module

Here an output port is reset low thereby deactivating a two state

drive. The op-code is 2.

C Wait for Input High Module

This module tests the state of a CRU input port and waits until

that port becomes high ie it waits until a switch closes or opens.

The modifier contains the value of the CRU port which is to be

high.

D Wait for Input Low Module

Here an input port is tested and the robot forced to wait until

that port is low.

E Time Delay Module

This module allows a programmed delay so that operations to be

carried out, for example, pick up or put down a part when there is

no feedback on the drives. The modifier contains the value of the

delay.

F Jump Unconditional'Module

This is used when part of the programmed movement is not to be

executed. The modifier contains the number of instructions which

are not to be performed.

G Jump Conditional on Input Condition Module

This module is used to modify the robot sequence which is

dependent on some external event, for example, the arrival of a part

could be sensed and could cause a current operation to cease and the

robot to pick up the part and perform some operation on it.

H Sequence Repeat Module

This module allows any sequence to be repeated without re-entering

the data.

171

I Stop and Re-initialise Module

This module will stop the robot in a safe condition, ie will not

drop a part if there is one in its jaws.

J Closed-Loop Position Control Module

This module will service a number (n) of point-to-point position

control servomechanisms of the type described in section 6.4.1. The

feedback loop is continuously closed by using an in~errupt

service subroutine which is entered once per sampling interval. In

this way, even if axis movements are not programmed, the drift on

each axis can be overcome. The modifier contains the digital value

of the required position.

The above modules are independant of robot type and have been

designed in this way to allow the same modules to be used

irrespective of axis configuration etc. However, it is necessary

to "customise" some of these modules to suit a particular control

task, to allow system initialisation and testing of a particular

robot type to be achieved. To achieve this customising and

system initialisation two other modules are required. It should be

stressed that it is only these two modules which are robot

dependant.

K Control Parameter Handling Module

This module will store data which is relevant to a particular robot,

for example, to achieve closed-loop position control information

such as the sampling interval, the compensated velocity command,

the limits of the velocity, number of axes, types of axes, limits

of position for the axes, is stored in a data table so that is

available to the other real-time control modules.

L System Initialisation and Test Module

This will, for example switch on the hydraulics and allow it-to

reach the required operating temperature and pressure. It will

keep testing these conditions and until they are within acceptable

limits not allow the robot to move.

172

When the required 'instruction sequence' has been loaded into RAM,

it first has to be de-coded. An instruction pointer points to the

first operation, the op-code is separated from the modifier which

are stored in separate tables. The instruction pointer is

automatically incremented to point to the next instruction which

is de-coded, this process is repeated until all the instructions have

been de-coded. The instruction sequence is then executed.

8.2 TASK PROGRAMMING OPERATOR COMMUNICATIONS MODULES

The operator communications modules were developed to aid an

operator in producing "instruction sequences" to allow robot tasks

to be programmed without the need for a skilled operator. To

achieve this, prompts are given to the operator concerning the

programming options available and the operator responses result in

"instruction sequences" being stored in RAM. This operator

communications software was also developed in modular form to

attempt to provide a base software development •. The reader is

referred to figure 8.1 which gives a list of the modules.

The communications parameter handling (CPH) module customises the

software to a particular robot. This module was used to access and

transfer parameters from a number of text and data files. The

various axis parameters include axis indentification, axis I/0

addressing, axis limits and permissable velocities, position and

velocity loop gains, ADC channel addresses and sampling periods,

gripper identification, gripper actuation sequences, interlock

sequences and indicators, and string text concerning operator

prompts and error messages. The "user instruction prompts and

sequence encoder" module asks the relevant questions so that the

parameters can be loaded into the CPH and also the "instruction

sequence" of operations can be obtained and stored in the robot

sequence cross reference module. The "sequence edit" module will

allow the "instruction sequence to be altered when required.

The "teach prompt and sequence encoder" module (TP) will depend on

the mechanical structure of the robot. For the Versatran only

limited teach facilities can be incorporated as the only method

of moving the robot is using its controller so a teach pendant may

be used to move it in small predetermined steps. Other robots can

173

"walked" through a sequence and so are easier to teach.

The "instruction sequence selection and network protocol" (NP} will

allow the control of more than one robot. This will enable the

robots to "work together" to perform operations.

174

CHAPTER 9

FURTHER DEVELOP~mNT OF AN OPERATOR CO~D[UNICATIONS MODULE ---
The previous chapter gives an outline of the various modules that are

required for flexible software programming. This chapter describes '

an operator communications module which describes the axes eg

are they linear or rotary, what is the maximum permissable velocity

on each axis etc and th~n input a sequence of operations. An edit

facility is available so that this sequence can be altered if

required.

The program is written in Pascal as it is a highly structured

language and it requires only a small amount of documentation.

9.1 PROGRAM (DATA_INPUT)

A flow chart showing the outline of this program is shown in figure 9.1

and a program listing is shown in Appendix 7.

The constants are declared first and MAX NO refers to the number of

axes and MAX POSITIONS to the possible number of positions. The

types are declared and REC 1 is a record which contains various

elements which are

NAME AXIS

AXIS TYPE

MAX TRAVEL

MAX VEL

FEEDBACK

POSIT

The name of the axis eg vertical

Is the axis linear or rotary?

Limit of digital number for position ie >7FF for the

Versatran

The maximum +ve velocity allowed

Is the feedback analogue or digital

Is the axis point-to-point ie 2 pos1tions or are

there many positions

REC 2 is a record which will contain the positions for one axis in

an array called STORE. TOT is an array which contains elements of

type REC 1 and TOT 2 is an array which contains elements of type

REC 2.

The variables are then declared. POINT is an array which will

contain the next instruction number. TOTAL AND TOTAL 2 are variables

of type TOT and TOT 2 respectively. The integers are then declared

175

Figure 9.1 Flow Chart for DATA INPUT program -

START

I
DEFINE ALL CONSTRAINTS
TYPES AND VARIABLES

INPUT HOW MANY AXES

INPUT. NAMES OF AXES

INPUT TYPE OF EACH
AXIS I E LINEAR OR
ROTARY

INPUT MAX
PERM IS SIBLE VELOCITY
FOR EA CH AXIS

INPUT TYPE OF
FEEDBA CK FOR EACH
AXIS

INPUT NO OF
POSIT! ONS ON EACH
AXIS I E POINT-TO-
POINT OR MANY
POSIT I ONS

INPUT THE SEQUENCE OF
POSIT! ONS

---- -----
PRINT A
ON THE
SEQUENC

LL INFORMATION
AXES AND THE
E OF POSITIONS

0
176

I

. ..
I
I
• I
• •

I
.
I
•
I

I

-
•

'

-

Figure 9.1 cont'd _Q"
THE ' .r:::::-\

SEQUENCE ""->---'-N--~
REQUIRE /
DITING ',/'

y

!~~
POSIT;ONS~ N

TO BE
LTERED?

y

'!REMOVE INSTRUCTIONS
AND ALTER POINTERS

ARE
ANY

INSTRUCTIONS
TO BE

NSERTED?

?1/y
~STR-U-CT_I_O_Ns'11 ~~~.,~~T~; POINTERS
'

I
'PRINT LIST OF
l SEQUENCE OF
POSITIONS

177

N

N

which are ·-

NO OF EDITS

NO OF INSERTS

NO OF REMOVES

NO OF AXES

NO OF POS

NUM

COUNT

LINS

INSTS

NOS

LNOS

INST

The number of instructions to be altered

The number of lines to be inserted

The number of lines to be removed

The number of axes on the robot

The number of positions

This permits the value to be stored in the correct

place in the STORE and POINT arrays

This permits numbers to be stored in the correct

place in an array

This is equal to the new number of instructions

after inserts

This increases the number of positions when

inserting instructions

This permits numbers to be stored in the correct

place in an array

This is the LAST NOS and is used to find out when

something is finished eg all the instruction numbers

of the alterations are in the array

This allows the pointer to be altered when removing

the next instruction

The variables are type CHAR are:-

REMOVE)

ALT)

·.INSERT)

EDIT)

These all contain Y or N depend1ng on the editing that is

required

There are then three arrays, ALTER, REM, and INS which respectively

contain the instruction numbers of the instructions which require

altering, the instruction numbers of the instructions which are to

be removed and the instruction numbers of the instructions before

an instruction is to be inserted, that is instruction no

3

4

insert new instruction

178

the value in the array will be 4 to insert this new instruction.

The actual program then starts at line 1 when the details of the

axes are recorded.

The writeln statement will write to the terminal what is in the

inverted commas, this value is then read into the variable

NO OF AXES. Line 6 starts a loop using COUNT from 0 to

NO OF AXES, in this loop all the names of the axes are inserted

into the array TOTAL in the part of the record NAME. AXIS, COUNT

decides where the values are placed. Each name is, on a separate

line due to the READLN being used.

When COUNT equals NO_ OF_ AXES statement 10 is executed, which is

END; COUNT is then reset to zero and more details about each axis

are recorded which continues up to line 35.

BEGIN (*INPUT POSITIONS*) on line 35 starts the insertion df the

positions into the correct array. The number of positions is first

selected and read into NO_ OF_ POS, this is then used to terminate

the loop when NUM is equal to it. Another loop commences on line 39

concerned with the number of axes, line 41 is a writeln statement

and the following is an example of what may be written on the VDU.

POSITION FOR VERTICAL

The readln statement then reads the value which is input into the

correct part of TOTAL 2 eg the first time around COUNT and NUM will

be equal to one as so the value will be stored in the first place in

an array of TOTAL 2.in the first place in an array STORE. This

inner loop continues until the first position for all the axes has

been read in. The pointer to the next instruction is then read into

the array POINT. This sequence is repeated until all the positions

have been read in.

A list of what has been entered is then printed out which is shown

in the debug routine in figure 9.2. this finishes on line 76.

From line 76 to line 149 is an edit which can make changes to the

positions which have been entered into the record TOTAL 2.

179

Figure 9.2.Typical Print-Out from the Program DATA_INPUT

VERTICAL

THE TYPE OF AXIS IS LINEAR
THE MAX VALUE FOR POSITION IS 7FF
THE MAX VELOCITY IS l.BV
THE METHOD OF FEEDBACK IS DIGITAL
NO OF POSITIONS ON THE AXIS MANY

VERTICAL POINTER

1
2
3

lOO
250
150

180

2
3
0

The first question asks if the sequence requires editing and either

Y for YES or N for NO is read into EDIT, a case system is then used

so the correct portion of the program is executed. If N is input

the statement Your program is correct will appear on the VDU and the

same list as previously will appear on the VDU, if Y is input the

next question asks if any alterations are to be made if yes tbe

number of alterations is read into NO OF_ EDITS, which is then used

to control how many times the loop to input the instruction numbers

into the array ALTER-is executed. These instructions are then

altered, by inserting the positions for all axes for each instruction.

If there are no alterations the case 'N' is executed and the

statement No alterations to values required will be written out on

the VDU. The next case statement concerns with removing of

instructions if the case is 'N' then the statement NO LINES TO BE

REMOVED appears on the VDU. If the case is 'Y' then the number of

instructions, and instruction numbers to be removed are entered.

The pointers of the previous instructions before the ones which are

to be removed are then changed

INSTRUCTION NO

l VALUES OF POSITIONS

2

remove 3

POINTER

2

3

the pointer of instruction 2 will be changed to 4 (lines 115-120).

The final case statement is to insert any instructions. If the 'Y'

case is to be executed, the number of instructions to be inserted

and the instruction numbers which are to have new instructions

following them are entered. The pointer of one of the instructions

which is to be followed by new instructions is altered then the new

instruction is entered, this sequence is repeated until all the

instructions have been entered. Then the list of all the positions

is re-printed.

This program is by no means entirely finished figure 9.3 shows a

flow chart of a flexible operator communications module which can be

utilised for a wider range of robots.

181

Figure 9.3 A Flexible Operator Communications Module

ACTUATOR TYPE
FOR EACH AXIS (Hydraulic-Servo, pneumatic-cylinder etc)

FEEDBACK TYPE
FOR EACH AXIS (Potentiometer, digitiser etc)

,GO TO 1-4 DEPENDING 0~
iFEEDBACK AND ACTUATOR I

I ,
\-~ .. GRIPPER ACTUATION

~mTHOD (Solenoid,Step-Motor)

GO TO 5-6 DEPENDING ON ,
' ACTUATION '

IL ----,------------__j

~l«l-)iNTiRLOcis i
\..:__) : ~--

1

PORT ADDRESSES OF INTERLOCKS
(0 •• IFFE)

i INTERLOCKS
ACTIVE HIGH OR

I LOW
~-

182

1

Port ! 901

ACTUATOR BASE
PORT ADDRESS?
o .. 1FF5

I

'

Port 9901

FEEDBACK BASE
PORT ADDRESS
0 •• 1FF5

I

r ---- ---- ---------1

I
INTERLOCK INDICAT~R
PORT ADDRESS (if any

I 0 •• IFFE)

1-
(-~D OF GENERATION
\OF DATA BASE
~~~~~----/ 

HYDRAULIC-SERVO 
POTENTIOMETER FEEDBACK 

I SIZE OF DAC AND ADC ,-

ACTUATOR 1/0 TECHNIQUE? 
9901, MEMORY MAPPED 

' 

I 

--
' 

FEEDBACK 1/0 TECHNIQUE? ----
(9901, MEMORY MAPPED) 
' 

I 
' 

IADC CHANNEL NO ? (0 •• 15) 

I 

,_ 

IS AXIS LINEAR OR ROTARY? 

183 

' 

Mem-Mapp d 

ACTUATOR MEM-MAPPED 
PORT ADDRESS 0 •• FFFE) 

--- - -

Mem-Mappe 

FEEDBACK MEM-MAPPED 
PORT ADDRESS 
0 .• FFFE 

'---. 



Rotary Linear 
r---
! MAX ANGULAR MOVEMENT MAX LINEAR MOVEMENT I (THETA DEGREES) (L - mm) 

I I 
INCREMENT IN MEASURED INCREMENT IN MEASURED 
ANGULAR POSITION LINEAR POSITION 
REFLECTED THROUGH ANY REFLECTED THROUGH ANY 
GEARING? (ln-THETA DEGS) GEARING (ln-L-mm) 

. I I 
MAX ANGULAR VELOCITY? MAX LINEAR VELOCITY? 
(OHMEGA-RADS-PER-SEC (V-mm-PER SEC) 

I I 
AXIS HOME POSITION? AXIS HOME POSITION 
(THETA-RESET-DEGREES) L-RESET mm 

I 

VELOCITY-LOOP GAIN 
(VLP-GAIN) 

A ADC SAMPLING INTERVAL 
(T) 

I 
2 PN-CYL/SWITCHES I 

I 
IS AXIS LINEAR OR ROTARY? 
(L OR R) 

I 
Linear I Rotary I 

NAME OF POSITIVE NAME OF POSITIVE 
MOVEMENT (LEFT/RIGHT, MOVEMENT (CW/ACW) 
IN/OUT ETC) 

I 
NAME OF NEGATIVE NAME OF NEGATIVE 
MOVEMENT MOVEMENT 

184 



r---· 

OF SOLENOID? i PORT ADDRESS 
(1 •• IFFE) I 

I -

SOLENOID HIGH OR LOW FOR 
POSITIVE MOVEMENT? (H OR L) 

I 
PORT ADDRESS OF LIMIT SWITCH 
CLOSED FOR POSITIVE MOVE? 
(1. >IFFE) 

I 
PORT ADDRESS OF LIMIT SWITCH 
CLOSED FOR NEGATIVE MOVE? 
(1 •• IFFE) 

I 
TIME DELAY FOR AXIS MOVEMENT 

A IF REQUIRED 

I 

3 
ACTUATOR - PNEUMATIC CYLINDER 
NO FEEDBACK 

I 
. IS AXIS LINEAR OF ROTARY? 

(L OR R) 

' I , 

Linear I Rotary 1 

NA~m OF POSITIVE NAME OF POSITIVE 
MOVEMENT? (LEFT/RIGHT, MOVEMENT? (CW/ACW) 
IN/OUT ETC) 

I I 
NAME OF NEGATIVE NAME OF NEGATIVE 
MOVEMENT? MOVEMENT? 

I 

PORT ADDRESS OF SOLENOID? 
(1 •• IFFE) 

I 

A SOLENOID HIGH OR LOW FOR 
POSITIVE MOVEMENT? (H/L) 

185 



' o- ACTUATOR-HYDRO-PNEUMATIC 
FEEDBACK-DIGITALISER 

. 
IS AXIS LINEAR OR ROTARY 
(L OR R) 

Linear I Rotary I 

MAX LINEAR MOVEMENT? MAX ANGULAR MOVE~mNT? 
(L-mm) (THETA-DEGREES) 

1 I 
INCRE~NT IN ~ASURED INCRE~NT IN ~ASURED 
LINEAR POSITION (1n-L-mm) ANGULAR POSITION (1n-

THETA-DEGREES) 

l I 

MIN MOVE~NT AT SLOW SPEED MIN MOVE~MT AT SLOW 
(SLOW-L-mm) SPEED (SLOW-THETA-DEGREES) 

I_ I 

PORT ADDRESS OF DIRECTION 
SOLENOID (0 •• IFFE) 

- I 
PORT ADDRESS OF FAST 
SOLENOID (0 ••• IFFE) 

1 . 
I 

PORT ADDRESS OF SLOW 
SOLENOID (0 •• IFFE) 

I 
INTERRUPT LEVEL FOR 
POSITIVE GOING PULSES 
(1 •• 15) 

I 

0-
INTERRUPT LEVEL FOR 
NEGATIVE GOING PULSES 
(1 •• 15) 

186 



GRIPPER 
\--I ACTUATOR SOLENOID 

PORT ADDRESSES OF 
SOLENOIDS? (O •• >IFFE) 

SOLENOIDS ACTIVE HIGH OR 
LOW? (H or L) 

TIME 'ON' OR 'OFF' FOR 
~--+.EACH SOLENOID (in 0.1 secs) 

GRIPPER 
~~ACTUATOR -STEP MOTOR 

PORT ADDRESS OF 
(0. • • • • IFFE) 

FAST OR SLOW 
FOR EACH STEP MOTOR 
(F OR S) 

NO OF STEPS FOR 
EACH STEP MOTOR 

187 

-----------------------



CHAPTER 10 

PROJECT CONCLUSIONS AND FURTHER WORK 

CONCLUSIONS 

The objectives of this project were to develop a microprocessor based 

controller for robotic devices which could demonstrate considerable 

flexibility with regard to operator facilities when sequence programming 

and which could be structured to allow the future inclusion of various 

enhanced features as demonstrated by "state of the art" industrial 

robots. A Versatran Industrial Robot was used as a "test bed" to 

evaluatethe features of the controller developed. From a literature 

survey undertaken it was evident that there is a need for the 

development of a controller which could be used to control a wide 

range of robotic forms both for retrofitting to conventional pedestal 

industrial robots which presently are served by outdated control 

systems and for the control of other forms of handling structure 

not necessarily demonstrating conventional co-ordinate orientation. 

At present the Texas Instruments TMS 9900 family of microprocessors ·. 
is favoured within the Department as comprehensive support for 

software development coupled with hardware and software "debugging" 

aids is available. The hardware for the controller comprised:- a 

Texas Instruments single board computer; standard analogue interface 

printed circuit boards; specially designed interface drivers for the 

axis servo-valves,gripper solenoids and hydraulic supply interlocks. 

Power supplies completed the hardware structure which was all 

held in a racking system. The completed hardware was constructed and 

tested as part of the project, however, the majority of the project 

concered the implementation of software to control the robot. Initially 

this related to the positioning of a single axis to a pre-programmed 

position and developed through the control of one axis to many 

pre-programmed positions to the control of all the major axes in 

point-to-point mode with additional features such as open/close jaws 

being incorporated. The final version of the real time software 

provided flexibility by using "OP codes" to specify robot sequences 

in a "textural manner". 

The real time control strategy for each axi~~~~ound a 

.. 

188 



loop closure within the microprocessor controller. Each axis position 

was sampled every 38ms within an interrupt service routine which was 

controlled by an interval timer. Control is obtained by evaluating a 

velocity command for each axis every sampling interval and updating 

the output voltage to each serve-valve. This approach was adopted to 

allow maximum flexibility in future control algorithms. As the loops 

were closed internally digital compensation algorithms can be 

introduced to improve the response of each of the axes for both 

point-to-point and contouring applications. Another approach is to 

close each loop external to the microprocessor controller and this 

method would make the interfacing simplier. However, in providing 

future enhancements to a system utilising external loop closure 

problems could be experienced due to an inherent inability to 

modify system response particularly if contouring capability is 

required. All the real time control modules were written in 

Assembly Language as the only available Texas Instruments . 

implementation of Pascal, through the project duration, was an 

interpretive (p-code) version which imposed a significant time 

overhead and made its use impractical for axis control. Subsequently, 

Texas Instruments have released a native code Pascal compiler which 

could now be used to derive equivalent real time control software. 

However, a memory overhead of 15-20K is required to provide a Pascal 

environment for native code derived software, although such a 

memory overhead is becoming less significant with fast reducing 

cost of memory devices. The operator communications modules were 

written both in Pascal and Assembly languages. However, the Pascal 

programs were debugged and run on a microprocessor development 

system but not run on the target system due to insufficient memory. 

Using a high level language such as Pascal improves sign1ficantly 

the transportability and inherent documentation of the software 

and only slight modifications would be required to run the programs 

on another computer. The operator communications software 

developed to aid sequence programming provides considerable 

flex1bilitybut there are inherent disadvantages in some applications 

as the spacial co-ordinates of each axis position must be known and 

programmed for any handling sequence. These positions are input via 

a VDU and even if a teach program was implemented using a VDU as a 

terminal it would be d1fficult to ach1eve the required position as 

189 



the VDU is remote from the robot. To overcome these difficulties a 

teach pendant is being designed in subsequent work which has 

followed the developments described here and this will offer the 

opportunity of utilising the advantages of both teach and textural 

programming facilities. However,it was not possible to provide 

teach facilities within the project duration. 

After the control software had been developed and fully debugged 

a limited amount of testing was undertaken which included the 

monitoring of feedback and repeatability. Feedback was monitored to 

investigate dynamic response and a measure of repeatability 

evaluated by measuring errors for a series of moves by using a dial 

guage. For the results of these tests to be statistically complete 

many test need to be performed at various positions within the 

working volume of the robot. However, fo~ the Versatran robot/ 

controller combination favourable repeatability test results have 

been achieved within the duration of the project. It is necessary 

that any measurement of accuracy must be related to the working 

volume and articulation of the robot if it is to have any meaning 

at all. No machine maintains constant accuracy over its working 

volume due to various reasons which include:- bearings need to have 

some play to allow for rotation; beams bend and twist under different 

loading conditions and when connected can display positional 

variations under the influence of unbalanced loads. Volumetric 

accuracy mapping is atechniquewhich could be utilised to test the 

accuracy throughout the entire working volume, this method would 

be enhanced if it could be automatically performed as it is a long 

and tedious method of assessing repeatability. 

The performance·ofthe robot/controller combination could also be 

assessed for various manufacturing applications such as spot welding, 

loading of presses, component feeding and inspection of machine 

tools and if continous path algorithms were incorporated within 

the controller structure, arc welding and paint spraying 

190 



RECOMMENDATIONS FOR FURTHER WORK 

An extremely wide range of enhancements could be incorporated 

within the overall hardware and software adopted for the controller. 

Furthermore the performance of existing and enhanced controls 

should be studied, particularly with regard to manufacturing 

applications. Possible enhancements and studies are listed below. 

i)Implement software as described in Chapter 9 so that an 

extensive library of.'ll!odules could be made available. 

ii)Implement software algorithms for continuous path movement to 

enable the robot to Be used for operations such as painting 

and ~re welding. 

iii)Develop a hand held teach pendant as an alternative sequence 

programming method. 

iv)Design and construct additional interface circuitry, in modular 

form, so that a library of software modules can he utilised 

with other robotic systems. 

v)The performance of the robot should be evaluated using Volumetric 

-- Accuracy Mapp~ng as described in Chapter 7. 

vi)Perform a number of application studies to evaluate the facilities 

incorporated within the control system. 

vii)Consider the use of various sensing devices in relation to 

such application studies. 

viii)Implement network software to allow the controller via a node 

to access a commercially available "open" local area network 

to allow the integration of the robot functions with those of 

the manufacturing environment in which it is to be used. 

191 



REFERENCES 

1 MW Tl!RING 
Theory of Robots 
3rd Symposium on Theory of Robots and Manipulators 1978 ~P Sar-Sgb 

2 J F ENGELBERGER 
Robots Make Economic and Social Sense 
Atlanta Economic Review, pp 4-8, July, Aug 1977 

3 J F ENGELBERGER 
Robots Thrive in Hot, Hazardous and Boring Jobs 
Presented at Westinghouse Machine Tool Forum, 1976 

4 MW THRING 
Robotics and Telechirics 
Industrial and Commerical Training, June- 1980, f>1> (,o_l.3 

5 W B HEGINBOTHAM 
Reasons for Robots 
1st Conference on Industrial Robot Technology, 1973 I'P R.i{:J.- fU.fJt... 

6 J McCOOL 
Microprocessors in Control of Robots 
Electronics and Power Nov/Dec 1979 ~f>· "791.-'79' 

7 J F ENGELBERGER 
Robots in Pract1ce 

"·~ ...... 
8 R H MASKREY 

Microprocessor role in closed loop systems 
Design Eng1neering December 1978 pp 27-34 

9 M CORWIN 
Benefits of Computer-Controlled Robots 
'tlk '""· s""'~ .... 1...1. eo~oo-~s ,,_.~7~ , ~~- '+ S3- o~~-l.r 

10 J A GUPTON 
Microcomputers for External Control Devices 
:;t>j(,il.u,.. I U.S. 

11 H McCALLION et al 
A Compliant Device for Inserting a Peg in a Hole 
The Industrial Robot, June 1979, pp 81-87 

12 H VAN BRUSSEL AND J SIMONS 
A Self-Learning Robot for Automatic Assembly 
1st Conference on Automatic Assembly 1980 ,.,. :z.,s -3o8 

13 A R JOHNSTON 
Proximity Sensor Technology for Manipulator End Effectors 
Mechanism and Machine Theory, Vol 12, 1977, pp 95-109 

14 E D TANNER 
Basics of Robotics 
s~ -new 2-HI c...( O" fobh I J>e.ho"il:, Mic'-. Oc.+-31 l'f77, 1'1' ~$17-1'2'1-

192 



15 A COOKE 
Running Robots 
Systems International, November 1980, pp 27-28 

16 The,new promise of the power of vision 
Computing, June 12, 1980 1 !>!> 1..-to 

17 A N ANNUSHVILI et al 

---------------------------

Simple real-time visual system for industrial robots 
7th International Symposium on Industrial Robots 19-21 Oct 1977, 
Tokyo, Japan , l'f> So7 _ St'l-

18 G BELFORTE et al 
Some New Systems for Recognition and Positioning of Mechanical Parts 
lOth International Symposium on Industrial Robots March 5-7, 1980, 
Milan , 1>1' zo:S~'-13 

19 R BOLLES & R PAUL 
The Use of Sensory Feedback in a Programmable Assembly System 
Stanford Artificial Intelligence Lab, Stanford University, 
Stanford, Calif, Memo AIM 220 Oct 1973 

20 S H DRAKE et al 
High Speed Robot Assembly of Precision Parts UsingCompliance Instead 
of Sensory Feedback 
7th International Symposium on Industrial Robots, 19-21 Oct, 1977 
Tokyo, Japan,~· g7-~3 

21 W B HEGINBOTHAM et al 
A Practical Visual Interactive Robot Handling System 
The Industrial Robot, June 1975, pp 61-66 

22 L C DRISCOLL 
Steps Toward Blue-Collar Robot Vision 
3rd International Symposium on Industrial Robots, 1973 

23 G J AGIN 
An Experimental Vision System for Industrial Application 
9th International Symposium on Industrial Robots, 1979 

24 A N ANUASHVILI AND V D ZOTOV 
A Simple Real-Time Visual System for an Industrial Robot 
7th International Symposium on Industrial Robots, 19-21 Oct, 
1977, Tokyo, Japan 

1 
fSC17- ~·'t 

25 Y SHIRAI 
On Application of 3-Dimensional Computer Vision 
Bulletin of the Electrotechnical Laboratory Vol 43, No 6, 1979

1 
~~.3Sl1_ 37' 

26 E R ERSKINE CROSSLEY 
Design for a Three-Fingered Hand 
Mechanism and Machine Theory, 1977, Vol 12, pp 85-93 

27 B SEGER 
Control Systems for Industr1al Robots 
2nd Conference on Industrial Robot Technology, 1974

1 
l'f' U/2- Bi{lk 

193 



28 A J BARBERA, J S ALBUS and M L FITZGERALD 
Hierarchical Control of Robots Using Microcomputers 
9th International Symposium on Industrial Robots 1979 pp 405-422 

29 R COIFFET 
Real-Time Problems in Computer Control of Robots 
7th International Symposium on Industrial Robots, 1977

1 
~f> l'f-S- l5"2. 

30 R A NORBEDO 
Structured Software System for Industrial Automation 
7th International'Syposium on Industrial Robots, 1977

1 
~ 139-1~ 

31 W E SNYDER et al 
Microcomputer control of Manipulators 
9th International Symposium on Industrial Robots 

1 
1979

1 
ftln.3- ~b 

32 W T PARK 
Minicomputer Software Organisation for Control of Industrial Robots 
Stanford Research Institute, California I r ... ...: ~ACG I s.... "-<c:tSco C4,71 

1'1'· lwt-17/ 
33 G GIN! et al 

Introducing Software Systems in Industrial Robots 
9th International Symposium on Industrial Robots, 1979, ~~- 3ol-32-1 

34 R PAUL 
WAVE: A Model-Based Language for Manipulator Control 
Technical Paper MR76-615, Society of Manufacturing Engineers 
Dearbon 

35 R FINKEL et al 
AL, A Programming System for Automation 
Memo AIM-243, Stanford University Artificial Intelligence 
Laboratory, Stanford, November 1974 

36 T LOZANO-PEREZ 
The Design of a Mechanical Assembly System 
Memo AI-TR-397, MIT Artificial Intelligence Laboratory, Dec 1976 

37 L LIEBERMAN 
AUTOPASS, A Very High Level Programming Language for Mechanical 
Assembler Systems 
IBM Research Report RC 5599, No 24205 (1975) 

38 D GROSSMAN 
Procedural Representation of three Dimensional Objects 
IBM Research Report RC-5314 

39 P WILL and D GROSSMAN 
An Experimental System for Computer Controlled Mechanical Assembly 
IEEE Transactions on Computers, Vol C-24, No 9 September 1975, 
pp 879-888 

40 A D'AURIA and M SALMON 
Examples of Applications of the SIG~~ Assembly Robot 
3rd Conference on Industr1al Robot Technology, University of 
Nottingham, 1976 pp G5-37-G5-48 

194 



41 A AMBLER et al 
A Versatile System for Computer-Controlled Assembly 
Artificial Intelligence, Vol 6, No 2, Summer 1975, pp 129-156 

42 J ALBUS and J EVANS 
Robot Systems 
Scientific American, Vol 234, No 2 February 1976 pp 83-84 

43 R HOLN 
Application Flexibility of a Computer-Controlled Industrial 
Robot 
Technical Paper MR76-616 Society of Manufacturing Engineers, 
Dearbon, Michigan 1976 

44 C S CUNNINGHAM 
Robot Flexibility through Software 
9th International Symposium on Industrial Robots, 1979 

1 
~~ 2.'7 _ 307 

45 W B HEGINBOTHAM et al 
Robot Application Simulation 
Industrial Robot, June, 1979, ~~. 7'-- 'lO 

46 W B HEGINBOTHAM et al 
Assessing Robot Performance with Interactive Computer Graphics 
Robotics Today, Winter 1979-1980, tf· ~3- 35 

47 G DONATO and A CAMERA 
A High Level Programming Language for a New Multi-Arm Assembly 
Robot 
lOth International Symposium on Industrial Robots, 1980 , ~· "7-~~ 

48 J ASPINALL • 
The Microprocessor and its Applications 
C..,..l>, u..i .1' dU 

49 D H SWAIN 
Microprocessors and Microcomputer Systems 
i>d"'...-.k A-okt 

50 L RICH 
Understanding Microprocessors 
!tu~ 

51 J D LANE 
Introduction to Microprocessors 
c....&. u.t. ~f 

52 TMS 9900 Family System Development Manual 
A Texas Instruments Application Report 

53 TM 990/lOlm Microcomputer User's Guide 
Texas Instruments 

54 TM 990 Introduction to Microprocessors, Hardware and Software 
Texas Instruments 

55 J RAGAZZINI and G F FRANKLIN 
Sampled-Data Control Systems 

t\c ~-../ • U ill 
195 



56 RTI-1240/1241 User's Reference Manual 1 Te.l'o.S: t .. s'-'-~r.is 

57 RTI-1242/1243 User's Reference Manual, -r~~s:l~ 

58 Operations Handbook for Versatran Point-to-Point Machine 
Hawker Siddeley Dynamics Limited 

59 C DORF 
Modern Control Theory 
A-W 

60 J SCHWARZENBACH and K F GILL 
System Modeliing-and Control 
Edward Arnold 

61 Assembly Language Programmer's Guide 
Model 990 Computer 
T~~ 9900 Microprocessor 

62 Y HASEGAWA et al 
Programming and Teaching Methods for Industrial Robots 
4th International Symposium on Industrial Robots, 1974 1 ~~ 3ol-310 

63 H J WARNECKE 
Comparative Evaluation of Industrial Robot Accuracy 
Precision Engineering l"'~o ~·· 9'9_ <fz.. I t .. 

64 S INAKAKI 
A Discussion on Positioning Accuracy on Industrial Robots 
9th International Symposium on Industrial Robots, 1979, t~· '-79-"'1o 

65 C MORGAN 
The Rationalisation of Robot Testing 
lOth International Symposium on Industrial Robots, 1980 pp 399-405 

66 J F ENGELBERGER 
Performance Evaluation of Industrial Robots 
Performance Evaluation of Programmable Robots and Manipulator 
Conference 1976 1 f'l>· Cll-1'2.0 

67 I MASUDA et al 
Development of Basic Control Programs for Industrial Robots 
with Artificial Intelligence 
7th International Symposium on Industrial Robots, 1977, ~!>.1'17-'2.'3'/-

68 K W NIELSEN and A G MAKHLIN 
Task Selection for - and Development of a Vision Control System 
for Industrial Robot Use 
lOlk, loJ:, S:'/"'t• OM loo,:l. fo~.,ls I l"j\JO ;f>l>• 't9!)- S .. b 

69 J A PEPERSTRAETE 
Survey on Microcomputer Architecture 
lOth International Symposium on Industrial Robots, 1980, r~ 31-~ 

70 J MIDDLETON and R H WESTON 
Structured Hardware and Software for Robots 
To be publlshed 

196 

-------------



71 H E MERRIT 
Hydraulic Control Systems 
John Wiley & Sons Inc 

72 A SALIHI 
A Microprocessor Based Controller for a Point-to-Point Robot Arm 
MSc Thesis 1980 Loughborough University of Technology 

73 W V MASON 
The Development of a Programmable Controller for Application to 
Materials Handling Equipment 
BSc Project 1980 Loughborough University of Technology 

74 The Engineering Staff of Texas Instruments 
TX 990 Operating Systems 

75 The Engineering Staff of Texas Instruments 
Assembly Language Programmers Guide 

76 G.P. CHARLES & R.H. WESTON 
Microprocessor Controls for Limited-Function Robots 
The Radio and Electronic Engineer, Vol 52, No.l, pp41-45 

197 



APPENDIX ONE 

ROBOT ECONOMICS 

The success of any commercial industrial undertaking has to be 

measured in terms of financial performance. The most brilliant 

technical innovation is a failure if it results in money lost by the 

entrepreneur or its shareholders or at divisional or operating level. 

Robots are no exception ot this rule. No matter what the social 

benefits are, no matter how advanced the technology, every proposed 

investment in robotics has to pass the test of critical financial 

appraisal. 

The following headings provide a framework for management analysis of 

the costs and benefits of the robotics installation. 

1 Robot Costs: 

a) Purchase price of the robot 

b) Special tooling 

c) Installation 

d) Maintenance and periodic overhaul 

e) Operating power 

f) Finance 

g) Depreciation 

2 Robot savings: 

a) Labour displaced 

b) Quality improvement 

c) Increase in throughput 

Al.l 



APPENDIX TWO 

SPECIFICATIONS FOR INDUSTRIAL ROBOTS 

' This appendix contains specifications for various industrial robots. 

Section one contains the simpler point-to-point robots and section two 

the continuous path robots suitable for welding and painting. 

A2.1 



SECTION ONE 

• 

i 
' 

.: - 't-.-

A2.2 

ZF Handling Technology 
Handling Robot T Ill 

__ __f~r loac!s upJo_ 40_l<g 

- I. 

. 
·" .. ~--\. 

,-­. 

... . 
! :r·'····-- ~ •; ____ ., __ ..... 

.. __ ... 
1 

' .... ·--. 

' 

--

--. --

--



I 

rechnical data 

~F Handling Robot TIll, Type CXZ-A 1060 and type CXZ-A 1260 

pplication: 

esign: 

oads: 

an all-purpose unit, particularly suitable for plants where considerable heat is generated, e.g. 
forges, hardening shops, injection molding shops etc. 

3 main axes IC, X, Z) I protected against dort and heat 
1 gripper axe (AJ r 
Standard gripper hydraulically actu~ted, with 4rfl clamping range 
Special gripper available on request, with pneumatic, magnetic or vacuum actuation 

component weight up to 40 kg. 

~a in and gripper movement axis characteristics: 

~ 
c X 

(stewing) - (horizontal stroke) 

z A 

(vertical stroke) (stewing) 

Working type CXZ-A 1060 200° or 28rfl 1 OOOmm 600mm 360° 
range type CXZ-A 1260 200° or 280° 1200mm 600mm 360° 

Mean speed* 110°/s 1 200mm/s 800mm/s 120°/s 

Position setting 
reproducibility • • ~ 2mm ~ 2mm ~ 2mm ~ 0.1mm 

Load weight can be increased by operating at lower speeds 

J. Reproduc1b1hty can be rendered more accurate by heating the hydraulic flUid before operat10n commences. 

lectrical connection rating 11 kW 

ontrol system: 

asses: 

Optimum suitability for various types of work is assured by provision being made for various 
forms of control: 

Positioning 
(alternatives) 

Program sequence 
and programming 
(alternatives) 

Handling robot 
Hydraulic unit 
Control cabinet 

- with adjustable fixed stops (2 positions/axis) 

-with cam shutdown (up to 6 positions/axis) 

-with servo-hydrauhc PTP control (up to 8 positions/axis), adjustable 
via digital-display set-value potentiometers 

- PC system (free programming). 
The program sequence can be programmed via a crossbar distributor 
with diode matrix store or a d~rect PC program with EPROM memory. 

- by NC microprocessor control with teach~in programming 
(PTP positioning control, 200 points/axis) 

a pp. 1 200 kg 
app. 370 kg (including !50 dm3 of hydraulic fluid) 
app. 100 kg 

A2.3 

·- ~ 



2000 

Control 
cabinet 

600 

I 

I 

l--1650-
( 1850) 

r·l-·"!1 

~~: 
. 

2180 I 

f.-
- -

=\ -
I 

' 
I 

5,5 
T I ~ 

900 

~-..., ! --
~-~· 

. 

(-

Working ranges and dimensions 
!In millimetres) 

- ---- ·---

--x--
1000 

(1200) 
f--·-- --.-·····.· 
' • 0 z 

t - . 

• 670 
5,0 

Hydraulic '- :: -. 940 -..;· f :> :: ·: :· increased -~·. 
unit .- ~ .~;- ~f~; :=g.=··;:::):}:_:;.:. A 

Q:':r:f:U-J:tjfl~:=:~( :~·-.. ~~~-=··~~l~·.:·.·~··.::.:~ ;~~I @ ~, 
:- . . .· .· . -: ·. :ft. ===:: 

825 

::. :: 

. : .·. . . ·: . :· :. -:: .. 

•. i •• -- -.' . .,~,)_. <Y 
A2.4 



This pick and placement robot is pneumatically 
operated and provides an ideal solution to 
many component handling problems such as 
automatic assembly and machine loading. 
lt is designed and constructed to offer very 
high repeatable accuracy. Both the horizontal 
and vertical movements are carried out 
through precision linear bearings. There are a 
range of horizontal and vertical stroke lengths. 
The standard pick-up heads can be either 
pneumatically operated jaws, electro-magnetic 
or vacuum heads. The pick-up head units are 
designed to suit the specific applications 
required. 
The units can be either controlled by a cyclic 

A2.5 

Valley Automation Ltd_ 
Valley Road, Lye, 

Stourbridge, West Midlands DY9 8JH, Englan 
Telephone lye (038-482) 2324/2419 Telegrams Lye 

Telex 338212 CHAMCOM G Code VALLEY 

cam timer which in turn operates a series of 
solonoid air valves or alternatively it can be 
controlled via a programmeable sequential 
controller. Whichever method is utilised, the 
unit is supplied complete with all necessary 
control equipment. 
As this robot is adaptable to many applications, 
a complete technical advisory service is always 
available and it augments the already wide 
range of component handling and orientation 
equipment manufactured by Valley 
Automation. 



' 

General dimensions of the 
Precision Pick and Placement Robot. 

A 

I 

I 

• 

I . 
I 

Horizontal 
Stroke A 

ins ins. 
mm mm 

2 14 
50 355 

4 16 
100 406 

6 18 
150 457 

01mensions are subJect to change 

~-

108 M•n• 
(4%") 

t 
i 

-- -· I I + -- - V ertical 
s 

' 
Horizontal 1 

r· 
Stroke T 

Vertical 
Stroke 

ins. 
mm 

1 
25 

2 
50 

. 

~&f/1 -~w .,..~,.. 

" R;'~:Ji 
\!Tf.l IH!. 

Valley Automation Ltd. 
Valley Road, Lye, 

Stourbridge, West M1dlands DY9 BJH, England 
Telephone Lye (038-482) 2324/2419 Telegram s Lye 2324 

LEY Telex· 338212 CHAMCOM G Code VAL 
A2.6 

152 
(6"1 

6350 
(211") 

508 
(20") 



1!000 
The low cost Senes 1000 UNIMATE~ offers supenor 
performance for jobs that reqUire only limited handling. it's the 
ideal tool for operat1ons where lift1ng reqUirements are less 
than 22 kgs. The 1000 Senes robots have !1ve axes, three of 
them hydraulically powered. Gnpper and wnst movements are 
pneumatically operated working between adjustable end 
stops. Fully extended the Series 1000 UNIMATE• robots 
have a reach of 2250mm. Programm1ng is done through a plug 
-1n teach control offering "lead-by-the-hand" Simplicity. 

Typical Applications 
I 

Materials handling, plastic injection moulding, machine loading, ' 
die casting, press loadmg and load!unload machine tools. 

A2.7 

-. ""-~ -



MODEL SPECIFICATION FOR UNIMATE 1000 

Manipulator Wt 

Hydraulic Supply Wt 
(with fluid) 

Control Cabinet Wt 

Mounting Position 

No of Degrees of Freedom 

Positioning Repeatability 

Power Requirements 

Point-to-point 

WRIST TORQUE 

Bend 

Yaw 

Swivel 

A2.8 

1200Kg 

Integral 

Integral 

Floor 

3-5 

l.27mm 

380/415/525, 313 

50H
3

,10KVA 

Up to 256 Points 

-1 
5. 7Kgm 

-1 
1. 7Kgm 

N/A 

-- -------



l 
1150 

SECTION TWO 

SPECIFICATION: IRb 6 ASEA 

ARM MOTIONS, STROKES AND SPEEDS: 

Right- left 
Up -down 
Out -in 
Traverse 

3400 
800mm 
560mm 

95°/sec 
750mm/sec 
llOOmm/sec 

WRIST MOTIONS, STROKES AND SPEEDS: 

Revolution ±180° 1950/sec 
Swing (right-left) 
Bend (up-down) ±900 

CONTROL FUNCTION: 

Motion control 
Memory systems 
Memory capacity 

CP by PTP teaching 
Semi-conductor type plus magnetic tape 
250 points (basic) 

POSITIONING ACCURACY: +0. 2mm 

CONDITIONS FOR INSTALLATION: 

Dimensions (length x width x height) 
Weight 
Power requirements 
Temperature 
Source of driving power 

~289-

1620 

t 
414 
J 

A2.9 

720 x 720 x 1620mm 
300kg 
2kVA 
4o0 c 
Electric 

1160 



SPECIFICATION: BOC/HAL BOC -

ARM MOTIONS, STROKES AND SPEEDS: 

Right -left 
Up -down 
Out -In 
Traverse 

85° 
700 
914mm 

30°/sec 
30°/sec 
150mm/sec 

WRIST MOTIONS, STROKES AND SPEEDS: 

Revolution 
Swing (right-left) 
Bend (up-down) 

180° 
180° 

CONTROL FUNCTION: 

CP Motion control 
Memory systems 
Memory capacity 

Solid state non-volatile 
10mln/module (max 15 modules) 

POSITIONING ACCURACY: ±1. 5mm 

CONDITIONS FOR INSTALLATION: 

Dimensions (length x width x height) 
Weight 
Power requirements 
Temperature 
Source of driving power 

914mm 

610 x 610 x 2032mm 
527kg 
220/440V 

Hydraulic 

--- .,._- --~-

c res 

914mm 1T94mm 

A2.10 



SPECIFICATION: T3 CINCINNA TI MILACRON 
-- --- --

ARM MOTIONS, STROKES AND SPEEDS: 

Right - left 2400 
Up - down 3962mm 
Out - In 1424mm 
Traverse 

WRIST MOTIONS, STROKES AND SPEEDS: 

Revolution 
Swing (right-left) 
Bend (up-down) 

240° 
180° 
1900 

CONTROL FUNCTION: 

1270mm/sec 
For tool 
Centre point 

CP by PTP teaching Motion control 
Memory systems 
1femory capacity 

Acromatic computer plus magnetic tape 
700 points 

POSITIONING ACCURACY: ± 1. 27mm 

CONDITIONS FOR INSTALLATION 

Dimensions (Length x width x height) 
Weight 

990 x 990 x 2000mm 
2267kg 

Power requirements 
Temperature 
Source of driving power 

22kVA 
50°C 
Hydraulic 

$65x330mm 
el ectnr:al 
power unit 

"-.i-----i1J 
rs9o ., 

1040 --1 
2 Hl4 --l 

A2.11 

765 x330rrm 
ACRAHAT/C 
Control console Umt: mm 

.... 



.·f3 C(lt··~l-'U[n·-Cr;;-,irol1&cJ [nc:w: it it-'! F:t~! •i)l (Sic-~~-,;;,-! ci Li,:<;~:!} 
I 

Offers the durability, reach, freedom of motion and strength to do the most 
grueling job around the clock no matter how hazardous the working conditions. 

[]
:EL. 

D o 
e•!l• a 

• =- B 

T' Computer-Controlled tndustnat Robot THE TOMORROW TOOL Today (Inset) 
C1nC1nnat1 M1lacron ACRAMATIC Robot Control 

he "f3 IS a simple, solidly built 6-ax1s 
omputer-controlled mdustnal robot it 
ombines a heavy base castmg w1th strong 
houlder, upper arm, and forearm 
abricat1ons for total structure ruggedness 
nd stability 

nique Jointed-Arm Construction 
xclus1ve w1th P, th1s unique 6-ax1s 

ointed-arm construct1on prov1des the added 
lex1b11ity the robot needs m order to perform 
n difficult-to-reach places Duplicallng the 
exterrty of the human arm/hand, "fl's 

01nted-arm 1s tougher by far, well able to 
1thstand the most host1le 1ndustnal 
nvironment to get the JOb done .. , day in, 
ay out ••• w1th aston1s~mg reliability 
ealed-for-lile lubncat1on and rotary jomts 
1th large ant1fnct•on beanngs result •n 
inimal wear and wtually ma1ntenance-free 

perallon. 

owerful Direct Drives 
ach of the s1x j01nted-arm axes of the T' 1s 
!feet driven by 1ts own powerful and 
dependent electro-hydrauhc servo 

ystem. F1ve of the axes use compact rotary 
ctuators bU1It-1nto each JOint and one ax1s 1s 
nven by a p1voted cylinder This 
onstruct1on g1ves the robot a backlash-free 
ystem capable of the h1gh torque, speed 

and flexibility needed to handle hefty 
payloads w1th up to 240• of movement 
Tests prove that P can eas•ly lift 100-lb. 
loads three sh1fts a day at speeds up to 50 
ips 

Precise Position Feedback 
Each axis also has 1ts own pos111on 
feedback dev1ce cons1sllng of a resolver and 
tachometer to assure repeatable and 
prec1se arm pos1110n1ng Accuracy to any 
programmed point IS :tO 050". 

Cost-Effective Straight-Line Motion 
The powerful logic of the robot's reliable 
ACRAMATIC mm•computer-based control 
prov1des mf•mtely vanable 6-axis pos•t•oning 
and controlled path (stra1ght-line) mot1on 
between programmed pomts All of T''s 
JOinted-arm motion IS referenced to the Tool 
Center Pomt (TCP) a d1screte po1nt at a 
selectable d1stance from the arm where the 
tool meets the work All TCP moves are 
made 1n a cost-effective straight-hne 

"Teaching" PIs Fast and Easy 
No computer expenence IS needed, no 
calculations are mvolved-JUSt knowledge 
of the phys1cal JOb to be performed. A 
l1ghtwe,ght, hand-held unit lets the operator 
program the T' from the best vantage pomt 
Opt1onal offset branching further S1mplif1es 

A2.12 

Portable, hght-we,ght:hand-held teac 
un1t prov1des conven1ent means of 
programm1ng the robot 

the teaching funct1on 1n that a senes of 
repet111ve moves can be "taught" as a 
subroutine just once Jobs requiring le 
teachmg sess1ons or recurnng JObs ea 
eas1ly comm1tted to the robot's 
semiconductor memory and stored on 
opt1onal tape cassette for future use 

Wide Application Flexibility 
Easy to program ... to tool ... to usew1 
pallet-onented work .• the P can smo 
track moving hnes, and wh1le trackmg, 
welds •n prec1sely the nght spots, or piu 
assembly out of a movmg weld1ng J'g a 
hang 11 h1gh overhead on a mov1ng 
conveyor, trackmg the two continuous! 
movmg l1nes Independently of one anot 
P can reach w1th ease mto t1ght places 
mult1ple levels, w1th one hand or two, at 
virtually any angle, anywhere w1th1n 10 
cu ft of volume- ms1de an auto chas 
under a hood, down deep mto boxes, o 
stra1ght out 97" to load parts onto one o 
more metalcutt1ng or metalformmg 
mach1nes. 

lndustflal Robot Dtvision, 
Cmcmnatt Milacron Ltd, 
Caxton Road 
Bedford MK 41 OHT, England. 
Phone 0234-45221 



©DINll©DIRWJ~I 
MllACROI 

l{t 3 Col(tputr.t-Conirofk:d fmJur,~ric.i r.o!J~/l ([·:ssvy llil~)' t.bc!c I) 
I . - - -

"lffo<>rc: the durability, reach, freedom of motion and extra strength to do heavy-duty 
around the clock no matter how hazardous the working conditions 

1] •"1. ,oc--o 
liilill. 8 
.-1-e 

·-:. .. -
-~-!::.. ·-;.;;o;::.,._r)._ .... , 

HP Computer-Controlled lndustnal Robot . THE TOMORROW TOOL Today (Inset) 
C1ncinnat1 M1lacron ACRAMATIC Robot Control 

lddltlonaiPayload Capability 
HP is a heavy duty model 

IJrrlputer-co,ntroiiE!d industrial robot capable 
addlllonalload-carry1ng beyond the hm1ts 
the standard model T' robot Rat1ngs for 
HT' indicate a load capac1ty of 225 lbs 

10" from the tool mount1ng plate and a 
laxiimu1m velocity of 35 ips at full load 

"'"""m' Direct Drives- Double the 

goo motion from near honzontalto 
ln~'llvnw•rver!lcal poSition 

ax1s also has its own pos1hon 

~~~:~~~e~;d~;ev1ce consistmg of a resolver and 
le to assure repeatable and

precise arm posrtioning Accuracy to any
programmed po1nt is ±0 050".

Unique Jointed-Arm Construction
Duplicat1ng the dexterrty of the human arm,
HT''s unique JOinted-arm construct1on rs
tougher by far, well able to w1thstand the '
most host1le 1ndustnal environment to get
the job done ... day in, day out... w1th
aston1sh1ng rehab1hty Sealed-for-hie
lubncation and rotary JOints w1th large
antJfnct1on beanngs result 1n mimmal wear
and v~rtually maintenance-free operat1on.

Cost-Effective Straight-Line Motion
The powerful logic of the robot's reliable
ACRAMATIC minicomputer-based control
prov1des 1nfinrtely varrable 6-ax1s pos1t1oning
and controlled path (stra1ght-11ne) matron
between programmed po1nts All of HP's
JOinted-arm motion rs referenced to the Tool
Center Pornt (TCP).. a d1screte po1nt at a
selectable d1stance from the arm where the
tool meets the work All TCP moves are
made 1n a cost-effective stra1ght·hne.

"Teaching" HT' Is Fast and Easy
No computer experience 1s needed, no
calculahons are Involved-JUS! knowledge
of the phys1cal job to be performed A
hghtwe1ght, hand-held unrt connected to the
control console by a 33'iong flex1ble cord

A2.13

~~~~h~a~nd~-~held tea7il ~-;,11 prov1des 
conven1ent means for the operator to 
program the robot 

lets the opeator program the HP from the' 
best vantage po1nt Jobs requiring lengthy 
teaching sessions or recurrrng jobs can be 
easily committed to the robot's I 

semiconductor memory and stored on the 
ophonal tape cassette for future use. 

Wide Application Fiexiblhty 
Easy to program ••• to tool ••• to use w1th 
pallet-onented heavy worl< . • the HP can 
for example, smoothly track mov1ng lines, I 
and wh1le tracking, pluck an assembly : 
we1gh1ng as much as 225lbs. out of a mov 
1ng weldrng j1g and hang rt h1gh overhead c 
a moving conveyor, track1ng the two con- I 

t1nuously mov1ng lines Independently of or 
another HP can reach w1th sk1llful accura 
rnto confined locations at mu1t1ple levels, 
w1th one hand or two, at virtually any anglE 
1ns1de an auto chass1s, under a hood, dow 
deep rnto boxes, or stra1ght out 97" to load 
large, heavy parts onto one or more metal 
cutt1ng or metalform1ng mach1nes. 

lndustnal Robot DiviSion, 
Cmcinnat1 M1facron Ltd , 
CaJ<ton Road j 

Bedford MK 41 OHT, England 
Phone 0234-45221 



l , I 
•• · r ' t \ I 1 

',, .~'r\;•I',J·'l~. '~' •. 3\r ,-,,,. .... (-.,l),_..."f[ ..... ;;r~I,.''Jc·..l;,·:r.,:,~:_,· 
• .... \~ t l ) \,. .... l•t' ,!~-·· .~-.~ !ttL~ i._..\,J. ~- '-t .. ""''''"' l. L -· 

ctra strong ... smart .•• swift ••• spacesaving ••• reliable 
offers wide application flexibility 

J::( ~; f,). 1 :-1 3 H'::-fl ~"'Y u~J~Y r~'tociel 
ad capacity 
ad 10" (254 mm) from tool mountong plate ••••• 225 lb. (102 kg)" 
' ,gJtlonlng accuracy, axis drive 
euracy to any programmed point ••••••••••••• ±0 050 in (±1 27 mm) 
ve for each of 6 axes • • • • • • • • • • • • • • • • • • • • • • d~recl, electrohydrauhc 

nted arm motions, range, velocity 
ximum honzontal sweep • • • • • • • • • . • • • • • . . . . 240° 
ximum horizontal reach ••••••••••••••••••••. 102" (2591 mm) to tool mounting plate 

to max reach, noor to ce•hng ••••••••••••• : o• to 154" (0 to 3911 mm) 
ximum veloc•ty of TCP • • • • • • • ••••••••••••• 35 ips (890 mmps) 
h ........................................ 180" 

11 • • • • • • • • .. • • • • • .. • • ..................... 240° 
......................................... 180° 

or space and approximate net weight 
bot ....................................... 9 sq 11 (O 8 sqm); 5,000 lb (2267 kg) 
drauhc power supply. .. .................... 17 sq 11 (1 5 sqm), 1,200 lb (544 kg) 
ctrical power un•t .......................... 3.4 sq 11 (0 3 sqm). 700 lb. (317 kg) 
RAMATIC computer control • • • • • • • • • • • • • • • • 8 3 sq 11. (0 8 sqm). 800 lb (365 kg) 

wer requirments •••••.•••••••••.•••••••• 230/460 volts. 3 phase. 60 Hz. 32 KVA 

vlronmentaltemperature •••••••••••••••••• 40 to 120"F (5 to 50"C) 

!COMPUTER memory capacity •••••••••••• 700 po1nts std 

nsult factory for spec1al apphcat1ons 

--~ --XIfl.l6•1---.. -. Basic range and floor space drawings 

AMATIC CINCINNATI MILACRON, THE TOMORROW 
L •nd HP •re trademarlts of C1nc.nna11 M11acron. 

hcation No. A-276 

© D [F(!]© D IN:ffi!l~"il'D 
MILACRON 

---

Maneuverab1i1ty of the 6-ax1s JOinted-arm 
' 1ncreases product1v1ty of all stallonary·basE 

hne track~ng operat•ons I 

I 

All 1llustrat1ons and specifications contaonec 
on th•s l1terature are based on the latest 
product information available at the tome of 
publication The right is reserved to make 
changes at any lime w•thout not1ce'" price! 
materials, equopment. spec1ficat1ons. and 
models. and to doscont•nue models In 
add1tlons. all nominal domens•ons are 
subject to an allowable variat•on of 
±0 25-ln. (6 mm). unless otherwise 
spec1f1ed 

WARNING. In order to clearly show details 
of th•s machine. some covers. sh1elds. 
doors, and guards have e1ther been 
removed or shown 1n an "open• pos1t1on 
Furthermore. operators are shown ONLY tc 
1nd1cate relatove product size.they may be 1 
pos1t1ons which are NOT the normal or safE 
operating pos1t1ons Be sure that all 
protect1ve dev1ces are prope~y onstalled 
before operat•ng this equ1pment 

Pr1nted 10 U S ~ 
5M 1079 OZ 



~~~) ,..., 

SPECIFICATION: Mr Aros HITACHI LID

ARM MOTIONS, STROKES AND SPEEDS:

Right -left
Up -down
Out - ln
Traverse

+900
1300mm
llOOmm
2000mm

70-700mm/mln
70-700mm/min
70-700mm/min
70-700mm/min

WRIST MOTIONS, STROKES AND SPEEDS:

Revolution
Swing (right-left)
Bend (up-down) -50° -500 70-700mm/min

CONTROL FUNCTION:

Motion control
Memory systems
Memory capacity

CP based on PTP teaching system
Computer plus sensing system
512 steps

POSITIONING ACCURACY: ±1.0mm

CONDITIONS FOR INSTALLATION:

Dimensions (length x width x height)
Weight
Power requirements
Temperature
Source of driving power

1380 x 4690 x 3135mm
1500kg
2.5kVA
0-5ooc
Electric/ oil-hydraulic

FunctJOntn g

Funcftontng range

Untt. rrm

A2.15

v
SPECIFICATION: UNIMAN 4000 KUKA NACHI

ARM MOTIONS, STROKE~ AND SPEEDS:

Right- left 1200mm 250mm/sec
Up - down 760mm 250mm/sec
Out - in 760mm 250mm/sec
Traverse

WRIST MOTIONS, STROKES AND SPEEDS:

Revolution
Swing (right-left)
Bend (up-down)

CONTROL FUNCTION:

PTP Motion control
Memory systems
Memory capacity

Magnetic disc
3199 points

POSITIONING ACCURACY: ±0.5mm

CONDITIONS FOR INSTALLATION:

Dimensions (length x width x height)
Weight
Power requirements
Temperature
Source of driving power

f
1700

l

1
1900

A2.16

1700 x 2800 x 1900mm
1350kg
5kVA
45°C
Hydraulic

--- --

SPECIFICATION: R50 LANGUEPIN

ARM MOTIONS, STROKES AND SPEEDS:

Right -left
Up -down
Out -in
Traverse

1200,1600,2000
800
1200

500mm/sec
500mm/sec
500mm/sec

WRIST MOTIONS, STROKES AND SPEEDS:

Revolution
Swing (right-left)
Bend (up-down)

4000
210°
4000

CONTROL FUNCTION:

150°/sec
150°/sec
150°/sec

Motion control CP based on PTP teaching
Memory systems Ferrite core
Memory capacity

POSITIONING ACCURACY: + 0. 5mm

CONDITIONS FOR INSTALLATION:

Dimensions (length x width x height)
Weight
Power requirements
Temperature
Source of driving power

A2.17

2830 X 1800 X 2820mm
2000kg
12kVA
45°C
Electric

_ ... ~-,.-- ---

.

~c - '

SPECIFICATION: PW 751 SHIN MEIWA - - --- - - -----

ARM MOTIONS, STROKES AND SPEEDS:

Right -left
Up -down
Out -In
Traverse

750mm
750mm
750mm

75mm/sec
In 16 Increments

WRIST MOTIONS, STROKES AND SPEEDS:

Revolution 5600
Swing (right-left)
Bend (up-down) 4000

CONTROL FUNCTION:

Motion control
Memory systems
Memory capacity

PTP interpolation
Core memory plus recorder
470 steps

POSITIONING ACCURACY: ± 0. 5mm

CONDITIONS FOR INSTALLATION

Dimensions (length x width x height)
Weight

3810 x 1790 x 2440mm
2000kg

Power requirements
Temperature
Source of driving power

-

~ I

~ r'l

; 750
I

i 2810
I

3060~3810

l.OkW
40°C
Electric servo motors

350

-,J

_lj l.--,;;; ;,.,,,.,. ;$ ' Nax toadmg
150 kg (mcludmg

(33'Jfb) weJghfotpgl

J r-- ~

I t ~

A2.18

c
"'

--'--

-·
'

SPECIFICATION: TOSMAN TOKYO SHIDAURA ELECTRIC CO LTD

ARM MOTIONS, STROKES AND SPEEDS:

Right- left
Up -down
Out -in
Traverse

220°
600
700mm

90°/sec
300/sec
700mm/sec

WRIST MOTIONS, STROKES AND SPEEDS:

Revolution
Swing (right-left)
Bend (up-down)

2200

CONTROL FUNCTION:

Motion control
Memocy systems
Memocy capacity

PTP
Wire memocy
512 steps

POSITIONING ACCURACY: ±1. Omm

CONDITIONS FOR INSTALLATION

Dimensions (length x width x height)
Weight
Power requirements
Temperature
Source of driving power

A2.19

900/sec

900/sec

1020 X 1020 X 1410
600kg
200V
4o0 c
Hydraulic

1020

1---1681 --i

SPECIFICATION: TRALLFA TRALLFA

ARM MOTIONS, STROKES AND SPEEDS:

Right -left
Up -down
Out -in
Traverse •

(3150mm)
(2040mm)
(975mm)

WRIST MOTIONS, STROKES AI\'D SPEEDS:

Revolution
Swing (right-left) 210°
Bend (up-down) 2100

CONTROL FUNCTION:

Motion control
Memory systems
Memory capacity

CP and PTP
Magnetic tape and Trallfa CRC
up to 2hr

POSITIONING ACCURACY: +2. Omm

CONDITIONS FOR INSTALLATION:

Dimensions Qength x width x height)
Weight

1750 x 750 x 1600mm
450kg

Power requirements
Temperature 40
Source of driving power

375

A2.20

7kVA
40°C
Hydraulic

375 m

{ ~

SPECIFICATION: 2040 UNIMATE

ARM MOTIONS, STROKES AND SPEEDS:

Right -left
Up -down
Out -In
Traverse

220°
570
1041mm

110°/sec
300/sec
762mm/sec

WRIST MOTIONS, STROKES AND SPEEDS:

Revolution
Swing (right-left)
Bend (up-down)

1100/sec

uoo;sec

CONTROL FUNCTION:

CP by PTP teaching Motion control
Memory systems
Memory capacity

Wire memoxy plus magnetic tape storage
512 steps

POSITIONING ACCURACY: ± 1. Omm

CONDITIONS FOR INSTALLATION:

Dimensions (length x width x height)
Weight
Power requirements
Temperature
Source of driving power

Q; ,.
"i
~

0
lil

mgerat
maximum
eKfension

CO

"" V)

:!

A2.21

1260 X 1230 X 1435
1500kg
440V
50°C
Hydraulic

2012

- ------

"' ~

~
::::

187

'

' I •

SPECIFICATION: UNIMATE APPRENTICE --· UNIMATE

ARM MOTIONS, STROKES AND SPEEDS:

Right- left
Up -down
Out -In
Traverse

890mm
90° 1

500

500mm/sec

WRIST MOTIONS, STROKES AND SPEEDS:

Revolution 180o
Swing (right-left)
Bend (up-down) 1750

CONTROL FUNCTION:

Motion control CP
Memory systems
Memo:ry capacity

POSITIONING ACCURACY: ±1. Omm

CO?-.'DITIONS FOR INSTALLATION:

880 x 500 x 2300mm

- -~- ---

. "

Dimensions (length x width x height)
Weight
Power requirements
Temperature

34kg + controller at 80kg
l.OkVA

Source of driving power Electric stepping motor

3smm 16 HTG holes

A2.22

~
G1mba/
roll
90'

SPECIFICATION: Kl.5 VOLKSWAGEN

ARM MOTIONS, STROKES AND SPEEDS:

Right -left
Up -down
Out -In
Traverse

3200
65°
1000

SOD/sec
300/sec
500/sec

WRIST MOTIONS, STROKES AND SPEEDS:

Revolution 350°
Swing (right-left)
Bend (up-down) 2700 120°/sec

CONTROL FUNCTION:

Motion control CP by PTP teaching
Memory systems

- --

Memory capacity 100 points plus magnetic or punched tape storage

POSITIONING ACCURACY: +1. Omm

COI\"'DITIONS FOR INSTALLATION:

Dimensions (length x width x height)
Weight
Power requirements
Temperature
Source of driving power

A2.23

1

1000 x 1000 x 1200mm
760kg
SOkW
50°C
DC servo motors

/-.....

'"'
3m

.\\ 2

\ \
. \ \ . . I 1

l I I .
/ I

/ 0 ' . 1 2_ __ _..... 2.20m

SPECIFICATION: MOTORMAN- LINCMAN YASKAWA

ARM MOTIONS, STROKES AND SPEEDS:

Right -left 240° 90°/sec
Up -down ±40° 800mm/sec
Out -In +20°-40° llOOmm/sec
Traverse

WRIST MOTIONS, STROKES AND SPEEDS:

Revolution 360°
Swing (right-left)
Bend (up-down) 1soo

CONTROL FUNCTION:

PTP Motion control
Memory systems
Memory capacity

Microcomputer plus magnetic tape storage
250 (basic)

POSITIONING ACCURACY: ±0. 3mm

CONDITIONS FOR INSTALLATION:

Dlmepslons (length x width x height)
Weight
Power requirements
Temperature
Source of driving power

700 X 650 X 1600
350kg
200VAC
45°C
DC motor drives

\

- -- _,

I
21,0

~
I

I

A2.24

_,

_j

PAM ROBOT

"

A2.25

Technical specification
laximum loadmg on manipulator arm:
Kg (111b).

laximum stroke/travel of X & Y axes:
10mm (24m).

taxlmum stroke/travel of Z axis:
05mm (12m). (610mm is ava1lable as an
lternat1ve opt1on)

bsHional accuracy (resolution) on all axes:
~ 0 052mm (± 0 0025m) (repeatab1hty·
%of resolut1on).

ored posHions:
aximum of1000 stored pos1t1ons are
ailable- only 200 are normally of pract1cal
e, but this can be increased by addmg
rther memory capac1ty

sHional speed of manipulator arm:
mimum 0.3 metre/sec (1 0 fps).

int-to-point transfer time:
seconds max1mum.

ree-axis transfer speed:
inimum 0.52 metre/sec (1.7fps).

aximum Z-axis downward force:
lN (70 lbf).

vironmental requirements:
rm work-table mountmg

ectrical supply:
0/240 VAC Smgle Phase m put and
tput signals 24V AC and DC (other
qwrements can be met).

r supply:
ar (73 psi). Approx 56 litre/m in

ft3/mm).

menslons:
xis-1168mm (3ft 10m) collapsed,
07mm (6ft 7m) extended.
XIS -1041mm (3ft Sm) telescoped,

53mm (511 9m) extended.
x1s- 978mm (311 2V,m) collapsed,

83mm (4ft 2V.m) extended.

X

~ -REMEI(.//j
Remek Automat1on L1m1ted

Expanded work area using
optional exlra rotary axis.

~=·::::~:;;_ ____ -------- ·---.
-~--

------~--- -- ·------ -- __ ,..;

Work area using
standard equipment.

Barton Road, Water Eaton lndustnal Estate, Bletchley, M11ton Keynes MK2 3H
Telephone Milton Keynes (0908) 71828

A2.26

TG11e QJflj)ffmtarP:®® A
Apprentice@
The Apprent1ce'> Is an arc weld1ng robot that ensures top
quality work and consistency even under hazardous or
monotonous cond1t1ons. The portab1hly of the robot makes
it part1cularly useful when the workpiece to be welded can
not be moved.

'folW360'

--­•••

Performance
WELDING SPEED

NO OF WELDING
SPEEDS

(" ~~·, ·m· ... · c
• ' c - --"

F

@
•

£89rnmSTK

10to200mm
permmute

4
NO OF PRESELECT
WELDING CURRENTS 4
TRANSFER SPEED 500 mm

WEAVE CHANNELS
WEAVING
FREQUENCY

per second
2
0 1 per sec to
1 per sec

~
WIDTH 1626mm

WEAVING 2 to 20 mm pea~ to
AMPUTUOE peak± 1 mm max
ACCURACY dev1at•on between

ARM
WEIGHT
CABINET
WEIGHT

taught weld1ng path
and the repeated
path 10 automatiC
weldtng mode
34 Kg

79 Kg

Working Envelope Cable Length: 10 mm
ARM STROKE 890 mm
GIMBAL. ROLL 90 degrees Power Requirement:
GIMBAL, PITCH 50 degrees 240/480 V,+ 1 0%·15%
YAW 180degrees S•nglephase 50Hz,1 KVA
WRIST MOTION 175 degrees (other options ava•lable)

~-----~--~------------

A2.27

L_ __ _

P©JHnb·Difilg
IR{ob@t

A2.28

The Nordson Robot Provides Six AXis Movemen
'

for those "Hard-to-Reach" Areas

Horizontal
circumferential mciiOn-
132 6 hches (3368 mm)

ManlpulalorWrlsl

.....

Rotallonol mct,on-
240 degrees.

Manlpulalor Arm

Manucl pivotal adjuslmenl-
15 degree 1ncrements
(Up wo al 15°, 30". 45°, and «1'.
[')Oy,n wo et 15°. 30". 45°.
and t/1').

(Work Envelope dimensions can be Increased
depending on spray gun used)

Manipulator Arm

~ .. --~ (tOOO mm)

Forward and reverse mohon-
39 37 1nches (1000 mm)

ManlpulalorWrllf

Ver!ICOI (perpendiCUlar) ma1101l-
240degree~

Manlpulalor Arm

Verl1cal
(perpend,cutar) mc1101l­
i07 8 hches (2738 mm).

Manlpulalor Wrist

Honzontol. ctrcumfarenhal moflon-
240 degrees.

The six axis movement. illustrated above. is an important feature of
the Nordson Robot. lt means that the manipulator arm has complete
flexibility in the most diversified applicat1ons. The Nordson Robot can
duplicate and maintain the movements of the most skilled pointer.

;

A2.29

SPECIFICATIONS

U.SA. Metric
Manlpulalar
01mens10ns

(Base) 00 0000 00 0000 •• 38 61n. dia. 980 mm d1
We1ghl. 00 00 •••• 00 ••• 00 1300 lbs. 590 kg
Speed a!

movement 00. 00 ••• oo82 In./ sec. 2 m/sec.- :
Electronic
Control
He1ghl 00 00 00 00 00 00 00 00 76 5 1n.
Width • 00 • 00 00 • 00 •• 00 0022 '"
Depth •••••••••••••••• 33 In.
We1ghl. 00 • • • • • • • • • 350 lbs.

Hydraulic
Power Pack

1943mm
559mm
838mm
159kg

He1ghl 00 ••• 00 ••• 00. 00.78 1n. 1981 mm
Width oooooo. oooo ••• oo.281n. 711 mm
Depth 00 00. 00. 00 00 00 oo43 "' 1092 mm
We1ght 00 00 00. • • 00 00 001380 lb~ 625 kg
Electncal • • • • • • •••••• • 4/J:N, 60 Hz. 3 Phase
Power oo oo. oo •••••••• oo10 HP, 6 W1

on board
revolvmg transformer

cable runnmg
through head

weldmg gun
or grrppmg tool

•

hollow tuax•al head

FATA-BISIACH &CARRU
JOLLY 80 ROBOT

sh1ft1ng column

A2.30

l electromechanocal

:;>''-------J dnves

sw•vehng
boom

ball-screw Jack
for boom elevat1on

'
CHARACTERISTICS

Electromechanical drive on all axes, with
three 6-N.m and three 10-N.m. d.c. motors

' Ball-screw drives on main axes
I Air braking of boom descent
I Semi-absolute position sensing by magnetic

resolvers
Speed sensing by tachometers
Welding control with two or four programmes
Kinematically Integrated head with three
degrees of freedom
Safety stop through shock sensor on the
gunholder
On board revolving transformer with 70 kVA
rating
Coaxial supply cable between transformer
and gun running through head; cross-section
300 mm2, length 800 mm.
Payload on the head 70 kg (100 kg at reduced
speed)
Overall weight 1000 kg
Repeat accuracy 0.3 mm

r

;-'" ,;-,·----------
• - .

•
I
I.

A2.31

Ranges.and speeds:

Axis Range Max. Spee

I 2000mm 0.5-m/s
11 70" 25"/se
Ill 1100mm 0.4m/se
IV 400" 60"/se
V 400" 60"/se
VI 400" 100"/se

Linar Interpolation between points
Handheld keypad for field teaching
Programme with 512 steps extendible to 204
steps ·
ON/OFF signals available for driving externa
devices
Alphanumeric keyboard and display.

Ill

~-~~6::. ___ .:--:-:._ I

1m

i
i

l I
I
i

. i
L ____ --- __;

SPECIFICAIIUNS
Robot

GKN Line-Man Model L10

Number of Axes 5

s Base rotat1on 240" 90"/sec

L Lower arm ± 400 800mm/sec

!/! U Upper arm + 200- 40" 1100mm/sec

~ T WnstTum3600 150"/sec

B Wnst Bend 1 BOO 100"/sec

A s1xth external axis 1s
available as an opt1on.

Accuracy (wrist centre) ±02mm

Load capacity 10kg

Weight 405kg

Welding Set
DYNA-AUTO CPM SERIES

Power Current Voltage
'Source (A) (V)

CPM300M 300 15-32

CPM350M 350 i5-36

CPM500M 500 15-42

Wire Feed Unit TypeCM231

Wire Speed 1.5 - 15m/min

Wire size (sol1d) 06-16mm

Wire size (I c w) 16-20mm

Weld Standard type is CWG300
Gun (300A at 100% duty cycle,

400A at 60% duty cycle).

Duty
Cycle

50%

50%

60%

Op!Jons Seam following, air-blast nozzle cleaner,

Controller
D1mensions 6000RG/10

S1ze Height 1600mm

·- -
Width 650mm

Depth 700mm

Weight 350kg

Amb1ent temperature 0-45"C

Power required 5kVA

Enclosure Totally enclosed, dust-proof

Control Functions
Teadung Method Direct by control box lndud•ng step forward and step

back function
Path Control Method PTP (po<,.Jo point) wrth mole< onle'!)OiaiK>n (Also

linear •nterpolatoo see below)
Linear InterpolatiOn, Weld gun or tool pornt traces true stra1ght line

wrth S axiS movement
Posruon Sensor. bcremental rotary enooder.
Memory Details: Type-1 C memory for sequence control and

.. system prograrrme
Capac:rty-4programmes

-99 JObS
-1000 points

600 1nstrucbons
Interface SectJOO -161nputchannels,

-16 oulpul dlannels,
-4 analogue dlannels for welder control.

plus welder on/off control functiOnS

Speed Select>on Bteactung speeds Play back speed set by 'TRr
funct1011 or by dired entry of absolll'le torch/loci
potnlspeed .

Edrt•ng Taught data may be a:tered as follows.
(a) S•ngle pomt add, erase, shift.
~~ :nstructtOn insert, delete
(c Speed of operatiOil.

D1splay- Used for taught data rev~ew and on-hne d1agnostJCS
Current status tS shown dunng playback.

lime Delay- 0. 25 5 seconds 10 0 1 second 1ncrements.
Branches and Control mputs and mtemal counters can be used
Sub-routines lo can anematrve JObs, par1-pbs, sub-routines

and other control furdiOI"'S

D1agnosbe FunctiOflS. Error and alarm codes aocJK:ate 1ncorrect data
entry/operatiOil and results of seH-diagnosbc
checks

water cooling, fume extract1on and weld-chock Tape Record1ng- A b1.11H-1n tape mter1ace permrts off-l•ne data
systems are available as opt1onal extras. storage

~7 -4~;~~ .. r: GKN LINCOLN ELECTRIC LIMITED
'(:J ··~s__: Black Fan Road, Welwyn Garden City, Herts.AL71QA, England

-._._ ~- ~ Telephone: Welwyn Garden 24581. Telex: 268412

A2.32

APPENDIX THREE

MOBILE ROBOTS

It is neither necessary nor desirable to create mobile robots in the

image of man. Mobile robots need not be so flexible overall but could

have senses that humans do not possess, such as infra-red vision, a

much greater depth of vision field and immunity to extremes of

temperatures.

In most industrial applications static robots serving manufacturing

machines of different types and being connected via conveyors would be

better than mo~ile robots with their attendant limitations. The most

important of these are the need for some type of self-adaptive

steering mechanism under control of image recognition units, sonar or

radar, and a reliable low-loss tractor mechanism. A mobile robot by

its very nature, must contain its own power source and must

therefore be capable of checking its own "energy state" at intervals

and then guiding itself to some central location or 'plugging in' to

the nearest power source should its energy capacity fall below some

pre-programmed level. For example before beginning a particular

task it must compute if it has enough motive power left in its

batteries to complete the task or whether it has to be recharged first.

However, are mobile robots really necessary? Given its limitations

there could be important roles for mobile robots in areas such as

plant security, firefighting, warehousing and the monitoring of

hazardous environments.

The domestic robot is many years away and although single task

machines could be available for some domestic duties within a few

years, their high cost would make them prohibitive.

The near disaster at the Three Mile Island nuclear power plant in

early 1979 has pointed out the need for mobile robots which could

enter a radiation-contaminated area, observe the damage through

optical sensors, monitor the radiation level and have the manual

dexterity to manipulate control valves, or to be able to remove

wreckage which is posing a melt down threat. Nuclear radiation is

not the only hazardous environment where emergencies take place. All

too frequently we hear of nine disasters where deadly gases prevent

A3.1

I

rescuers from entering the area where survivors may be trapped. Fire

earthquakes and tornados also impose obstacles to human efforts towards

rescue.

The technology is now available to develop a disaster control robot

which would venture into high radiation areas, into intense fires or,

in times of natural disaster, could go into the area and not only

observe but overcome debris and the dangers of downed high voltage

wires to safely effect rescues.

An observing mobile robot(lS) (operated by a battery) could be

equipped with "eyes" in the form of a television camera, (supplemented

by a powerful lighting system), "ears" in the form of directional

microphones, and special senses tuned to atomic radiation levels and

the temperature of the robot's position. The robot would have an

on-board microcomputer to control its movement, eyes, ears and senses.

There must be a human element to analyze the visual, audio and sensor

data transmitted to the control area. Transmission could be achieved

with a fibre optic tether cable which employs light instead of an

electric current to transmit video, audio and digital data so to

overcome the problems of radioaction and underwater operations. A

damage control robot (DCR) would have "hands" which could, for example,

operate valves and could be operated pneumatically, hydraulically,

magnetic, gaseous or electrical.

Modern day robots range from the tiny microcomputer-controlled

"Turtle" to the giant mechanical workhorses of industry.

The Turtle which is manufactured by Terrapin Inc is capable of

guided movement, forward or reverse, at a speed of approximately

20 feet per minute. Its range is limited by the length of umbilical

cord which connects the Turtle to the microcomputer.

This type of robot could also be utilised in the exploration of Space.

A3.2

APPENDIX FOUR

VISION SYSTEMS

~~CHINE INTELLIGENCE CORPORATION

VS-100 ~~CHINE VISION SYSTEM

A commercial development of the SRI •eye'

Binary threshold picture at variable resolution

Accepts inputs from a variety of cameras

Operator interacts with light pen on text/graphic display

AUTO~TIX

AUTOVISION I

New company with large financial backing

Similar to SRI eye

Not fully developed

AUTOVISION 11 will be grey scale based

Programs written in PASCAL

Accepts different cameras

BROWN BOVERI and CIE

O~ffi (Optical Measurement System)

Systems sold working with ASEA, PU~~. VW, and KUKA robots

Hardware Orientated

Fast recognition (200ms)

I ITB

SAM (Sensor System for Automation and Measurement)

Now being sold by BOSCH

Hardware orientated IR Strobe and Vidicon camera

Fast recognition (150ms)

AUTOPLACE

OPTOSENSE

Very simple grey level bit matching techniques but useful and easy

to apply

Cannot check for orientation

Not fully developed

Hardware overkill

A4.1

----Microprocessor Scorecard®

I PA'RTS FAMILY I FEATURES
i I STATUS I ~ ~

!:: fi1 ~ li' ~ .. fh#iJ£, ;ffJ.fjjf{ 'I ~~
.. "' ;::

!! .. l: "' ~ 1:1
J 1!:::t 1: Jl <11' NI ~.i:

I : Qq NUMBER Of ~~ ~ ff !1 ll 'I ;;: 1!1

j!:
1

/J l1 lllllli' IJ /l t:l /:: ,t tPU AEGISTERS ~; l:l ..
Q ~ ~~ "' .. "'' J I ~~ t:~ /! /it :}!>

{;j I .. E <o.!? l l a .. I ., ~"" '"' ,.. .. ~ ~ :! REMARKS

AMD 1900 4~1tSIIct TTL • • • • • • <NIO
I

""" " I 17 ' • IUOlUO 3Q15 <Q15

' I '··~ ... DATA GUIEIIAL mN&DI 16·fUI Cf'U NMOS • • • • 16/16 ,. ,. I • !RAMI on
ELECTRONIC ARRAYS 900Z l.flll CPU - I ESSEX SXlOO 4-bn CPU PMOS • • • .,, IK 500/o- " I .. "" 10-18 " 28 o ROM"""'
FAIRCHILD fl 8.-h CPU NMOS • • • • • • • • • • • '" ... ~,0010 I " lRAM) ''·"' ' .. 1015 2015 """'
FAIRttULD MACROLOGIC 4-bn Shc:e TTL • • • • '"" """ ., • ' 14.1W ,.,,- -1076

'
liUIERAL INSTRUMUTS CP.1600 16-blt CPU NMO$ • • • • • • • • • 1/1 oon lA ' lRAM)

•3 ''·"' ' .. 3015 -3015

INTU 3000 Z-blt SIICI TTL • • • • • • 2N/18+ "' - MG111 '" ' 10 '"'"' ' • "·" !an ::g 1S.••• '""""
INTEL 4004 4.011 CPU PMOS • • • • • • • • 4/1 4K 740n 108 1 " 3•12 I 11" ~10.+!1 .. " IOl """' """"" IIITfL 4040 Hut CPU PMOS • • • • • • • • 4/1 8K -,ion -10 R 1 " ''" I 11" 1·10.+51 1. "" 4ni< - .. ,.
IIITU 80081 1-t.itCPU PMOS • • • • • • • • • 8/1 ... eoon 1!1 I '

~,,,. ••••• .. " 4071 1072

I

INTEL 8080A I l·lll1CPU NMO$ • • • • • • • • • • • • 818 ... 300012 133 I ' lRAM) -····"' u " 4073 2074 """' AMD." I
UITfRSIL &100 12.011 CPU cuos • • • • • • 12/12 4K 4000/D • I I ~~~~~ • Dl 28,40 2071 3071 .. ~ ..

~ UONOLITHIC MUIORIES 6101 4.ti11SilU TTL • • • • 4M "''11 ' 18 INoMI ' ID .. 1074 2074
~ • MDS TECHNOLOGY 6SD2A l.tllt CPU NMOS • • • • • • • • • '" .. . 2000/0 I I 2 lRAM I • 21 " 3071 4QJ5

' '"'"''
MOSTEI(5065 1.011 CPU PMOS • • • • • • BIB ,. l<oo13 lo 3 lRAM I _,_ 7 " '""

-,.,. .
MOTOROLA 6800 l.ti11CPU NMOS • • • • • • • • • 8/1 .. . '"0017 2 2 I lRAM I ' " 24.40 2074 4074 'AMI "' <
UOTOROLA 10800 4.ti11SilCI ECl • • • • • • 4N/16 051 I •12.-2 " .. 3076 3Q16

UTIOIIIAL SC/MP 1-ttlt CPU • • • • • • • • 818 ... '""'" " I 3 I '"'"I "" "'·'" • .. '""
~ .. ,

NATIONAL GPCIP 4-llltShu PMOS • • • 4NI23 100 "'" " lio4N •ll.tl 1 2124 1073 3073 1 < N_< 6

NATIONAL IMN 4-1111 CPU PMOS • • • • • • 4~ 4006 .,014 " 4 ,,, .,,., u , .. , '"" '""
UTIONAL IMP ... 1-1111 CPU PMOS • • • • • • 8/1 ... -71514 " 3 I _,_ .. ID "" '"" ""
UTIOUL IMP..16 IS-liLt CPU PMOS • • • • • • 16/16 ... "'" " ' 2 ""'

_, .. , 2224 1073 3073 -
UTIOUL PACE 16.flll CPU PMOS • • • • • • • • • • 16/16 ... 200012 • 2 2 "'" .,• 7

NATIOUL TCS H11CPU PMOS • • • • • • 411 I 1161 ''" -.u: ~eau 1-1111 CPU NMOS • • • • • • • • • • 818 ... >OODn 2 I ' lRAM I -l.tl.•l2 J " 4074 2oi5
RCA COSMAC l.tlh CPU CMOS • • • • • • • "' ... I p ""

,_,
.I " 1071 - 2Q7S

ROCJCWEll Pf'S.4 4-llrt CPU PMDS • • • • • • • • 4/1 .. 20012 ' I I ,,, 17 221- ., -1~,,, -,.,
ROCKWEll PPS-411 4-lltt CPU

RDCKWELL PPS.J 1-1111 CPU PMOS • • • • • • • • • • '" ... 71612 4 I I 2 I RAMI 17 3 42 Ciii4 1iii5
SICN'fTICS 1650 B-1111 CPU NhtOS • • • • • • 8/1 ,. 120011 u 7 "" • • --;;;;< ..,.-
TEUS lliSTRUMUTS SBP0400 4-1111 SIICI Ill • • • • 4NI9+ l000/1~ -1 10 >SI " .. '"" '""
TEXAS 1-.STRUMUTS TMSIDOO 4~ut CPU PMOS • • • 418 2K ,0011 " I I "' 15 1 "·" 1075 2071 , RAM,ROM" ""'
Tl:US UISTRUMfliTS TMS9900 16.fl•tCPU NMOS • • • • • • • • • 16116 ,. IRAMI .. '""

~,.,.~

TOSHIIA TLCS 1l 12.tlll CPU NMOS • • • • • • 12111 4K lo0013 13 4 _!_ lRAM) ••••• • ,.,.,..,
'"" 3074

TRAiiSITRDIII 1601 4 .. 11 SIIC• TTl • • • • 16/16 ,. A ' • lRAM) " 2076 3071 "'"' WESTERN DIGITAL 1600 11-llltCPU NMOS • • • • • • • 16/16 ... • • lRAM I u .. 3075 ~ 3075 I•• yl~ 16

ZILOG Z IQ l .. tt CPU NMOS • • • • • • • Ill ... 210011 ,. I 2 11 lA AMI ' .. " 1071 2071

Copynghf by M1crocompufer Techruque, Inc. Microprocessor Scorecard is a ~cgtslercd
tro~.dcmark oC Microcomputer Techn1que, Inc.

' " ,
,'

"

"

APPENDIX SIX

STANDARD DAC & DAC AND SAMPLED DATA THEORY

The RTI-1241(56) is shipped from the factory with jumpers installed

as required to produce the configuration shown in Table A6.1. The

only tailoring required to get the hoard fully operational is the

selection of a base address, which can be selected by installing

a wire jumper across the relevant pins.

The relationship between analog voltage and digital value is given

in table A6.2.

The RTI;l241 appears to the controlling microcomputer as a block of

eight continuous memory locations in the microcomputer's address

space. On the RTI-1241(
57

) board and 8 DAC's one of which is used for

the control of this robot, again this is memory mapped.

All control and data transfer operations are accomplished by writing

into, or reading from, one or another of the eight words for the

RTI-1241 exactly as would be done with read/write memory. Each word

has a pre-assigned function as in Table A6.3. In the tabulation below

the functions of all the bits in each word of the memory map are

described.

DAC 2 DATA(BASE + 0): Data written into this word is converted into an

analog signal output by one of the analog output channels

(DAC 2). The 12-bit DAC data is right-justified in the

16-bit microcomputer word; the four most significant bits of

the computer are ignored, and can therefore have any value.

This is a write-only address.

DAC 1 DATA(BASE + 2): This word functions in exactly the same way as

DAC 2 DATA, but produces analog output on the DAC 1 output

channel.

SETUP (BASE+ 4): The-three active.bits in the SETUP word enable and

disable control functions which may be used during data

acquisition opertions.

EOC INT: 1-Enables End-of-Conversion Interrupts

0-Disables End-of-Conversion Interrupts

AUTO SCAN: 1-Causes Muse Address to be automatically

A6.1

Table A6.1 Shipped Configuration of the RTI-1241 Board

Function Factory Wiring

Analog Inputs

Mux logic

Instrumentation Amplifier Inputs

Ground Sensing

IA Gain

ADC Input Range

ADC Output Code

Analog Outputs

DAC Input Code

DAC Output Range

Reference

Interface

Base Address

Operating Mode

Interrupt Line

System Reset

Analog Common Digital Ground

A6.2

Single Ended

Single Ended

On Board Analog Common

IV/V

:!;lOV Biploar

Two's Complement

Two's Complement

:!;lOV Bipolar

Internal +lOV

FFF!1J (HEX)

Polled ADC Status

Name Selected

Both DAC's and Digital
Output Drivers

Connected

Table A6.2

Relation of Analog Voltage to Digital Value

Analog Voltage Hex Data

9.995 07FF

7.500 0600

5.000 0400

2.500 0200

1.250 0100

0.625 0080

0 0000

-0.625 FFSO

-1.250 FFOO

-2.500 FEOO

-5.000 FCOO

-7.500 FAOO

-10.000 FSOO

A6.3

Addr .)

+2)

+4)

+6)

+8)

+A)

+C)

+E)

\.l'ord Address

0 0

0

0

I
0

1

1

1

1

0

1

1

0

0

1

1

0

1

1

0

1

1

Mr'i:JRY mP
JlQ.ll....:lord Format

Data Bit

Page 14

A Yord ~ame & Operation

.---------------~~--------------, fo 1 2 3 ' s ~ 1 , 9 10 11 12 t3 t' n \
~ .___ y H 02 '3 n, ~S D6 °7 °8 °9 °10 Dll D

IEOC AUTO Exr p 4"----­
I~T SCAN CC

~-======== 0

• Jl

'1""-C-U/_R_.l;--J-----------~;-=======~ .""""' _ 'P r OPHO~\L - SEE NOTE

s s

DAC 2 DATA YRITE

DAC 1 D.\TA \.!RIT~

SETUP 'tEAD, WRITE

CAIN - READ, \I RITE

tiDX ADDRESS READ, WRITE

CONV. COH:i. tlRITE

STATUS

ADC DATA READ

1. The symbol " indicates a bit that is ignored during a "rrite and has an arbitn ry value when red.
2. The three active bits i~ the setup word enable or disa~le control functions or the RTI-1240/1241.

EOC INT: 1 - Enables end-of-conversion interrupts.
0 - Disables end-of conversion interrupts.

AUTO SC~~: 1 - Causes MUX address to increment autom~tically as each convertion is performed.
Incrementation takes place just after the sample-hold circuit holds the input
value for the current conversion.

0 - Disahles the Auto SC~~ feature.
EXT CC: 1 -Enables external convert commands (frjm P2-18).

0 - Disables external convert co~~nds.
3. Cain co3es (units with software-programmable gain only):

00 - Cain • 1
01 - Cain • 2
10 - Cain • 4
11-Cain•B

4. Convert coRmand will occur on any write to Base +A. The d~ta vritten is ignoJed.
S. Two bits in the status word are control f~nctions:

EOC: ' 1 Indicates end of conversion (Data Ready).
0- Conversion not complete. ~~en interrupts are used, EOC indicates the presence of an

interrupt. Reading the status word clears EOC (if set) and the associated interrupt, if

U/R:
any.

1 - Indicates an underrange condition, that 1~;
a) the signal just converted is small enough to use a higher gain, and
h) a higher gain is available.

0 - Indicates no further gain ranging can be done. (The U/R bit is present only on ~odels with
software-programmable gain.)

Option Status Word Formats (Jumper Option - See Chart)

~U-/_R __ O-,---p---O---O---C-

1

--c-
0

__ A_

7

___ A_

6

__ A_

5

___ A_

4

___ A_J ____ A_

2

___ A_

1

___ A_O __

EOC U/R 0

Gain & MUX Setting
in Status \1ord.

ADC Data In Status
Word.

6. In the ADC D3ta Hord, S indicates a sign fill bit equal to 0 /or unipolar codjng and M~E for 2's
co~plement coding.

7. Bus reset clears the control b1ts in the setup word and the ~o= bit in the St1tus Word.

Table A6.3 Memory Map of RTI-1241 Board

A6.4

EXT CC:

incremented as each conversion is performed in

channel-scanning applications

0-Disables automatic scanning

1-Enables external convert commands

0-Disables external convert commands

MUXADDRESS(BASE + 8): The eight least significant bits of this word

STATUS

select the analog input channel during data acquisition

operations. The MUX ADDRESS word is read/write, so that

unrestricted use may be made of the full microcomputer

instruction set for selecting and modifying channel

addresses. The read function is also useful, particularly

during Auto Scan operation, for determining the current

input channel

(BASE+ t): The STATUS word contains information about the

conversion currently in progress or just completed. The two

most significant bits have the following significance.

EOC: 1-Indicates End of Conversion (data ready)

0-Conversion not complete

U/R

When interrupts are used, EOC indicates the

presence of an interrupt. Reading the STATUS

word clears EOC (if set) and the associated inter­

rupt (if any).

1-Indicates an underrange condition, that is;

a) The signal JUSt converted is small enough to

use a higher gain, and

b) A higher gain is available

The STATUS word is read-only. The EOC bit in this word is

cleared by a system reset.

ADC DATA (BASE+ E): Tbe results of A to D convers1ons are available

in this word. Data will be valid until a new conversion

is begun. The 12-bit ADC output is right-justified in the

16 bit microcomputer word. The four highest-order bits

(0-3) in the computer word are filled with zeros when

unipolar or offset binary coding is used, and have a value

equal to the MSB of the ADC data when two's complement

code is selected. This sign fill is necessary for correct

operation of the microcomputer's arithmetic instruction.

The ACD DATA word is read-only.

A6.5

GAIN (BASE+ 6): The two least significant bits of this word set

the gain of the instrumentation amplifier. The GAIN word is

read/write.

CONV CO~W (BASE+ A): This triggers the A to D converter. The data

sent by the write operation is not used, and therefore can

have any value. A MOV instruction could be used, but SETO

or CLR is preferable, since these instructions take

considerably less time than a MOV. The CONV COMM word is

write-only.

A6.6

Analogue signal input-output

Analogue signals are continuously variable in amplitude. This

contrasts with the digital representation of quantities inside a

computer where a finite number of bits to a word means that only

discrete values of amplitude can be represented. Hence, ~f

analogue signals are to be passed to or from a digital computer,

some kind of signal converter is required, as shown conceptually in

figure A6.1 (55).

Analogue

input

voltage

Analogue to

digital

converter

ADC

Computer

Digital

input

word

Figure A6.1

Digital to

~=D=i=g=i=t=a=l~Analogue
output converter

word DAC

The terms data acquisition or data conversion are applied to the

process on the analogue input side and data distribution on the

Analogue

output

voltage

output side. Digital processing of analogue signals by a computer

offers several advantages including accuracy, flexibility, repeatability

and the ability to perform complex operations. One consequence of

using a computer is that data can be input at discrete points in time.

Hence only sampled values of an anlogue signal can be taken, as shown

in figure A6. 2, and not the true signal itself. An obvious

1
amplitude

-sample interval

Figure A6.3

-sampling interval

A6.7

Figure A6.2

Analogue signal

sample
amplitude

Time-

requirement is that the signal should not change significantly between

samples otherwise information is lost, and a high enough sample rate

must be used, The upper limit of sampling rate is of the order of
5

10 samples per second, However, it should be kept in mind that the

higher the sampling rate, the less time there is available between

samples for the computer to do useful processing of the data. The

computer likewise, can only output data at discrete points in time

which will be of the same form as in figureA6.3. The horizontal

portions of this waveform occur while the next update of output

amplitude is awaited. In many cases the 'staircase• effect is not

noticeable because the analogue signal is slowly varying. A second

consequence of the computer is that the data is represented by words

having a finite number of bits. For example, a three-bit data word
3 can assume any of 2 (that is 8) different codes: 000, 001, 010

-110, 111. Each code is made to correspond to a fixed level of

analogue signal and consequently the signal may not be resolved into

a sufficient number of discrete elements ot maintain the required

accuracy.

Apart from the sampling circuit in the analogue to digital converter,

it requires a temporary storage or 'holding' device to maintain the

value of the sampled input until the conversion process is complete.

Analogue to digital converters use comparators to compare the input

signal to the required digital output. The comparison takes a

finite time, so the input voltage has to be maintained otherwise

erroneous digital output can result. To do this, holding circuitry

is required which is often achieved by using capacitors, however,

leakage from these capacitors can cause problems by producing a

slight droop in the voltage.

The conversion process involves the quantitising of the sampled input.

The continuous input signal is converted into a set of discrete levels

and any sample with a value between the discrete levels possible is

converted to the level nearest to the actual value. This process is

known as amplitude quantitisation and is illustrated in figure A6.4.

The difference between the analogue signal and the digital

representation is dependent on the quatitising step as well as the

sampling rate.

A6.8

level

Figure A6.4 Amplitude Quantisation

time

control
sample/hold

V in a-~ --c.,._, 1 '""'

A twelve bit analogue to digital converter, which gives a snall

quantitising step compared to an eight bit ADC, will give a closer

representation of the analogue signal. The performance of an

actual S/H differs from the ideal shown in figure AG .5 ,• However, these

differences

Figure A6.5

i Ideal S/H

\j
contribute to the overall accuracy of the system and can be significant.

The most important effects are shown in figureAG.s~and are listed

below.

......... """' T-

\ .-
Figure A6.6

Actual S/H

\
~
~

' •

i) Acquistion time (typically 1-10 s). This is the time taken from

the start of the SAMPLE condition for the output voltage to

equal the input voltage to within a specified band of error. A

large component of acquisition time is due to the charging time

A6.9

of the capacitor. A low capacitor value should therefore be used.

ii) Aperture time (typically 0.01-0.2 s). This is the time between

the HOLD instruction being given and the actual time the

switch is opened.

iii) Aperture uncertainty or jitter (typically 2% to 10% of

aperture time)

iv) Droop (typically 0.1-lOOmV/s). Ideally the output voltage of

the S/H in the HOLD condition should stay constant. However,

in practice Vout drifts from this value with time. This is

called droop and is caused by discharge of the S/H capacitor

due to (a) leakage current of the open switch, (b) self­

discharge of the capacitor through its own dielectric. Droop is

specified.as the maximum rate of change of output voltage and is

undesirable since the reason for using the S/H is to obtain a

constant sample amplitude. Droop can be reduced by using a

large capacitor value. However, this conflicts with the

requirements to minimize acquisition time and so an adequate

compromise must be obtained.

v) Feedthrough and charge transfer. Feedthrough occurs during the

HOLD condition when a change in input voltage causes a small

unwanted change in output voltage even though the S/H switch is

open. Charge transfer can take place when the switch is

opened and a small charge is dumped in the storage capacitor

which results in an offset in the output hold voltage. Both

these effects contribute small errors and are only significant

in high-accuracy analogue-input channels.

Consider the problem of inputting 64 analogue channels to a computer

using the circuit which has been described. A separate chain

ADC and S/H would be required for each channel, consequently the

solution would be expensive. A multiplexer (MUX) allows a single

S/H and ADC to be 'time-shared' over several analogue channels. The

operat1on of the MUX can be understood from the system shown in

figure A6. 7.

A6.10

--,

MUX -

channel
select

- ---------------------------------

S/H

control
signals.

ADC

MSB

--~ -
LSB

Figure . A6. 7 Operation of a Multiplexer

A6.ll

'

The complete analogue to digital conversion process is illustrated by

a flow chart in figure A6.8

Figure A6.8

N

MULTIPLEXER UNIT

CHANNEL SELECT

SAMPLE ANALOG

SIGNAL

ONVERSION

Analog to Digital Conversion Process

A6.12

H\Yl IYMlf..A :!. J,l::l 78. ~'14 l'JI!I: ~16: 5~ l11/IH/t1\3 P?!I•L l:JIJIJl

hlJUl !01 'lhYl'

bl1l12 ('){1()(1 f..tJhG

l.1l-JUj •
0~0-1 H1NE r,xrs ONC I OSil IUN
01:H:J::, •
I:Jr.ti-J6 11f11!Hi m ALE L SS 3:!

l!lf11:17 El FE ADCDf'IT EUU >cF.-E MEM. FOR DIGITAL lNF'UT
r-mfJB EFrc 51 r~ ru~ t::l,U >rFf-c

fH:IUY EFrti DAC2 EHU >lflld MEM. FOR DIGITAL OUlfUT

1111111 EFF6 G~IN EQIJ >CrF6
em11 Erru MIJXftOR El~U)CfFO MlM, FOR SELECT CHA,NEL ON ADC
l-ll:J12 EFFA corw mu >E"FFA MEM.lO START CONV

0l:J13 *
01114 l11!l:::!l:J ~:·E~ LWPI Sf'ACE

lJil~:! BHIJW

(jl-!15 ldtl~li l::l'llH CLR I!IMUX/\DF< CHANNEL B ON ADC
111!1~6 [f FO

l::l~l{o ldt~~~a B"H:.0 cu~ tnGAIN GAIN = 1

BI12A EFF6
UIJ17 *
lt~18 tM:J:!C e!20'1 li R4,)lOB MAX +VE VAL. FOr\ OUTPUT OrJ DAC

l:IH..!E Ult:IU

fll~tY l'!83(t 1::1:.085 li F\'5, >FE£J0 MAX -VE Vt1L FOR OUTPUI ON ooc
I:J{j3:! FCtll:l

ljf1:!1:) 01::134 0201 LI hl, >3l-F COMMMWED POSITION < CMD)

8336 l13FF

''lel21 *STAI\T MOVING f\OfOr

liJlj~2 fl0.30 117..!0 Sft,..\ CJErO (liCONV START CONVEfiSION

0133/'t EFF~

eJ(:J:!J 0~3C 11~61::1 CHK INV ~~TAl US CHECK TO ~l-E IF DATA f..CADY

~!;JF. EFFC

ldt124 1::11-141::1 1lFD JLT CHK

H025 1111lL! CUAI'I MOV I!IAULDAT, F.2 ACTUAL POS

~~44 Ff-11::.

H026 11046 6{:!81 s J..l, R:! Er,ROF. AtT-C,..lD

liJe!:?7 01:140 O~U2 er f<2,) 1 EIB SH IF Al-OVE MAX +VE VEL

I1(:)4A 1::11811

fl0:!8 ~Jl14C 111::13 JLT LA8l

Hi-1:!9 08q(C804 MOV 1<4,@0AC2 OAC 2 OUlPUT MAX +VE VEL

£.111~13 ~:.n-a

003B 01::)'5:! 10F:! JMP bAI1 GO AND STA~T CON'J.AGAlN

0!-!Jl IH-J~'I 1::1203 LAI>l ti R3, >FE00 SEE IF ABOVE MAX -VE VEL
(1{:1'!:16 f"Uil1 -·· ~~32 l-11:158 1'503 JGT LAE:!

ld\1)3 liHd~A CEH:1'5 MOV R'5, tWAC2 DAC 2 OUTPUT MAX -VE VEL

ou~c Ef"FI:I

l1EJ3'1 EltJ'IE lH[C JMP SAM UU I1IW b TAF. T CONV.AGAIN

Ul:l3~ UOMJ CUU3 LA(:! ,..,uv 1-<J, @OAC ... • OAC 2 OUII-'UT l'lCTUf1L Vt1LUE

~ll~b:! En a
1:11::136 (:1(16'1 HIL9 Jl'lf SMI GO ANO Slt"lhT CUNV.AGi\lN

lJlt.57 l:NU

A7.1

------------------- ---

ThY! lXMihA 2. 3. (1 /8.:?14 f11d:tl6:~5 IH/~1/{<11:1 1-'f'IGC l'IU0:"!

r,ucnA 1 (I~E Clit((J11.SC CONV EFFI\ OAC2 LFro
r,AlN £f F6 LAll I::JI':J54 LAb:! fll-160 MUXADR UFB

~0 0~£J(1 R1 ()001 "10 000A Rll 0008

HI:! A00C R13 0U00 rn4 naeE R15 €100F

R2 lU:lc:12 R3 I::JEIH3 ~4 (')004 R5 00t15

f<6 ~~06 r,7 fl"07 R8 fl00B ~9 8009

SAM l1U.58 SPliCE 00~0 STATUS EFFC

01dt:ll~ Ef\kOf,!i

o.xr,LF 2,3.tl 7U.244 ~JH: 117. 14 01/l:tl/1::}0 PIIGE 8"01

ADCDftT 0E:H37 00:?'5

CltK U02J 0l124

CUNV {:JAl::! ~Hi:!:?

DAC:? 000? fl029 D033 ll03::.

GAIN I::JFll0 0016

LAk<l U031 00:!8

LAf:2 0f~35 0B3::?

MUXADR lH111 0(115

RI 0(1~0 (1~:?6

t<::! 0025 0026 l1027

RJ 0031 0035

1<4 01118 8029

R5 "019 08)3

Sf1M l1li:•2 l-1030 0(j34 0036

hi-' ACE bU06 est.q

STATUS BOI:JO 0023

THll<E A hE 0016 5YM£0LS

A7.2

1 RY.? lXMihA 01/lH/110 pf,[j("lfJ01

lOT 'TF.Y:!'

• l't()eJ::!

00(:)3

i:j~(j.q

r1l11;~

._f f..OGf\AM TO IN/ Ul MWi.E THAN ONE POS

*f'OS ASI<ED FOR W~lt;.N kl:ACHED Pf<lVIOUS

~u:~u6 roue
t11107 nw11

~Htf:IB

Ell!IH9

0010

0011

&.J0l2

BB13

fll314

0~15

EFFE
EFFC

[FF2

E.FF0

EFF6
EFFB

HFA

0016 Hl:!~ 04E0

FB:!::? EFF6

H0l7 FB24 ld4E0

FB:'6 EFFB

0(118

l:H11 'I FO~!U 0204

re2A 0100

00:!~ FEI2C ~2&5

FO:?E FEBB

0021

•
f10hG >FBCll!t

SPACE LSS 32

ADCDAT ElW)fFfE

STAlU~ E~U >EFFC

OACl EGU >EFf 2
OAC2 EfW)Ef F0

GAIN LUU >EFF6
MUXADR EUU >EFF8

CONV EUU)EFFA
* (-

CUi. l!'GAIN

LLF. ~MUXADR

*
LI F\4,)]8111

LI f\5, >FES~

*
00:!2 t830 2FA0 NEXT XOP ~MESS!, 14

r03::! FU9::?

00::?3 f834 2E41 NULL

00::?t'J FB36 F83'4

~H1::?5 F83H FOlf1

H0:•6 rot.A 021:11

Fli3C ~7ff

I-Jl121 FB.SC lJ:.!r

8f1:!8 FBt'Jf1 0201

F8il:! 0000

~Hd29 FB44 ll:!C

t1030 *
li031 FB.ll6 0720 SAM

FB4B EFFA

0032 FU4A 0560 CHI<

F84C EFrC
ldB33 fUq[10FD

l!lld3'1 F8~0 CBAB

F05:! EH E

01'135 F854 6001

01!)36 F056 l12B2

F05U "'H~0

H037 t-O~A 1.3EA

t~HBB F!l~C 11:'02

f05£ H1£J(j

11t139 F"Hfl'l 1U:13

~l'"HA Ft:ff.2 C£U34

f U.S4 [f- F0

(jl14l F866 1 El Er

YOP R1,9

DATA NULL

DAl A EF..r,OR

Cl

JGT ERR
Cl kl, HI

SETO ~CONV

INV f!ISTATUS

JMP CHK

NOV IMI>COAT, R2

5

Cl

rn, r..2

JEC~ NCX f

Cl f\2, >100

Jl T LAl1
MOV h4,~0AC;>

JMf' SAM

GAIN= I

CHANNEL 0 ON ADC

MAX +VE VAL,FOR OUT.U~ DAC

MAX -VE VAL,FOR OUT. ON OAC

lNF UT F OSITION

READ F\EG'D POS INTO f\1

SEE IF VALUE WITHIN LIMI15

filART CONVEhSIUN

CHECK TO SEE IF m POS

GET ACTUAL POS

Ef,RDR, ACT-CMO, Ar~S IN F\2

ClflCt' TO SCC IF IN P05,

IF IN ~OS.ASK FOF\ NEXT POS,

CIJMFAF\E WllH MI'\X VALUE

OUlfUT +1. BV

CO AND STfthT CONV,f\GAJN

A7 .3

TF. y:.• T>.Mihft 2 3, 0 7U.::!i11 311.0:2:01 01/01/<1~ } AloE. lJl1U..!

l1€Jll2 FB6U fl:!03 LA['l CI F.3,)F EO El LOMFAhE WITH MAX -VC VALUE

ro6A fE80
l-H:1'13 FU6C !503 JuT LA£:!

00"1'1 F H6E CBl:IS MOV F.:J,C!'UAC:! CJUTFUT -J. BV
F07~ lff0

08'15 F87:! 1~E9 JM~ SAM GO AND STA"T CONV AGAIN
{1kJ.q6 F07.q C003 LAE2 MOV R3, I!'Ot.C:! OUTFUT ACTUAL VALUE

FB76 EFF0
.. 047 F878 l~E6 JMP &AM START CONVEhSION AGAIN

11048 F87A ~9 E~ROR TEXT 'YOU f1AVE MADE A MISTAKE'
FB7B 4F

F07C 5~

F870 20

FB7E 48

F~7F 41
rea a 56
FOBl 45
rea:? 20

FB83 40

FR84 41

FOBS 44

F086 45

Fli97 20

FH8U 01

FBBY 20
rea A 40

FBBB 49

fBOC ~3

FOBO 54

reoc 41

F8Bf 48

F89B 45

A0'19 F891 00 BYTE " £10'58 F892 000A MESS! DATA >0D0A

11'='51 FB9'1 4E TEXT 'NEXT Pas~

Ft195 4~

FBY6 58

f897 54
fU'YB 00

FUY9 .,,
FB9A 4F

FO'IB 53

11052 ru?c ~"' E:YTE "
00~3 Ff:ICJE 00011 Ef,F< DATA >0D0A

lJB~'l FOfiB 5:! TEXT ~ f,[PEAT POSITION'

FOAl 4!:1
FBA2 50

f0A3 45

FUA4 41
FBft'S ~·
f'HHb ~"
F :JA7 ~·tJ

r£JrtB 4F
FHh9 53

A7.4

1 hY::? TXMJF.A 2 . .5 e /0.:!44 1.10:0::?:01 'Hl/131/0~ PAGE ~JI1!13

lBAA 49

FOAD 54

FBAC 49
F"BAD 4F
F8AE 4E

0055 FBC'B l~PF JMP NEXT
ee::.6 END

TfiY2 TXMI~A 2.3.0 711.:!'14 00:13::?:131 Bl/01/00 f-'AUE (H-ll34

l'tOCDAT EFFE Ctlt< F84A CONV EFFA DACl EFF2
OAC:" FFF0 EfiR ra9E Eld\OR F87A GAIN EFF6
l..AE-1 F060 LAE:! F874 MESS! F89:! MUXADR EFFB
NEXT F83B NULL F834 R0 0!1l-J0 fil 0001
RlB ""BA Rll 0~FJ8 f\12 fJEHJC R13 0000
R14 fmm: R15 lii~H!IF f2 0~H12 R3 (1~{13

1<4 l:Hdl1ll R5 ~H1~~ R6 ld006 fi7 001d7
r a ,IIBBB' '..'\- R9 1:101d9 SAM FB-16 ~FACE FB00 ""'*"
STATUS er Fe

0~€.10 EF.ROh.S

A7.5

1 YXh[f" :!. 3.eJ 78.24"1 00.11~:25 01/01/00 PAGE 1!1~111

ADCOAT fJU09 0B3"1

CHK l::H1.52 ~(j33

CONV ""1q 0031

OAC1 01::110

OAC2 0011 004{:1 004"1 00q6

ERR 0tl::i3 0027 0029

Ef\F.OH f!C48 00:?5

GI'IIN b012 ~016

LAE1 U0"12 0039

LAt·2 EH146 0043

MES!il 0050 0022

MUXADR 0013 0017

NCXT l1!:122 flfl37 el055

NULL ~023 l1B24

k1 ~1::1:?3 f.l026 1:1028 01::135

R2 0034'1 U035 0036 0038

R3 <111lJ2 (10"16

R'l [-1019 a0qe

R~ 01:120 eeqq

SAM 0031 00"11 0045 0fdll7

SPACE 0007

S'TAlUa BOI19 U032

TUff\E ftJ..E 0012 bYME'OLS

A7 .6

TkY3 TXMJkA 01/lH/Ul::l PAr~L 11\'IH 1

lOT 'TRY3'

*
f10!31

Uli(':!

B(!JEJ3

BB04

em1s

fPf..OGF.r1M TO INPUT MOF:.E THAN ONE: POS

*PUS ASKED FOR WHEN r,EACHCD Pf'EVIOUS

0fH36 F000

0007 Ffi00

0008. LFFI:
0009 EFFC
0{:113 EFF2

0011 EFFB

iJ012 EFF6

0013 EFFB

0014 EFFA

l101~

ld016 FB20 04[0

F8:!2 EFF6

0H17 F824 04E0

F8:!6 EFFB

EJBIB

H019 F828 (1204

FB~A BlOB

0020 FB2C 0205

FB2E FEB0

*
AO~G lF80B

SPACE E:SS 32

ADCDAT EQU >EFFE

STATUS ERU lEFFC
DAC1 EQU >EFF2

OAC2 EGU >EFF0

GAIN EQU >EFF6
MUXAOR EQU >EFFS

CONV EQU lEFFA

*
CLR ~GAIN

CLR ~MUXfiDR

*
LI R4,)100

LI R5, >FEBii:l

0{:121 *
~022 F830 2FA0 NEXT

F832 FB92

6023 F834 :!E41 NULL

0024 FBJ6 F83.tJ

GM:!S F838 FB7A

B1::12li ro3A e2at

FB3C B7FF

0li27 FB3E 152F

~028 FB'IB 0281

F042 001'111

l?J~29 FB"'"' 112C

0030 *
0031 FB46 0720 SAM

FB48 EFFA

0832 FB4A 0560 CHK

F04C !:FFC

0~33 FOliE 10FD

liB34 rosa caAa

FU!.:i2 EFf'"E

0035 F0~4 6081

0036 FU56 11:?02

F058 l1000

0A37 FBLJA 13EA

fJ038 F05C U21l2

FB:5C fl1U0

~[139 trJ611 1183

~JU41d nu.2 caa4

Fn64 lrn1
IIH-11 f 066 H1l r

XOP I!'MESS1,14

XOP fi1,9

DATA NULL

DATA EfiROk

Cl RI, l7FF

.JGT ERR

Cl Rl, H1

JLT E~R

SETO I!'CONV

INV ~STATUS

JMP CHK

MOV I!'ADCOAT,f\2

S f..l, R2
Cl R2,0

J[C>~ NrxT
(,1 R::!, >18[1

JLT LAPl

MOV R4, l11 0AC::!

JMP Sf1M

GAIN=1

CHANNEL 0 ON ADC

MAX +VE VALU(TO [.E UUH UT ON

MAX -VE VALUE TO BE OUTFUT ON

INf'UT FOSITIDN

fi[AO hEQ•O POS INTO ~1

CHECK TO SEE IF VALU(WITHIN L

START CONVERSION

CHECK TO SEE IF IN ~OSITION

GET ACTUAL POS

EF\f..Of..,ACT-CMO,ANS IN R2

CHECK TO SEE IF IN POSll!ON

IF IN POSillON ,ASK FOR NC~T P
COMf-'AhE tJll H 11AX vr.LUE

OUTPUT + 1. BV

GO ANO !.1 Af\ T C{JNVLRSIIII~ AGAIN

ThY3 fXMI~A 2.3.~ 78. :!'Ill 00•06 59 01/01/119 f-'iiGE I-J00..!

0tlil2 f86B 11283 LAB1 er ~3. >F rea COMP/mE WITH MAX -VC VALUC
F06A FCOB

HI!Ji13 F£J6C lSHJ JGT LAE:.2
a~qq ret.E CBH5 MOV F.~1 ~DAC2 OUTPUT -1. ev

FU70 lrFE!

00ll5 Ffl72 WE9 JMP SAM GO AND START COtNERSION AGAIN
0~46 F074 C003 l.A£.2 MOV F.3, f!IDAC::! OUlf'UT ACTUAL VALUE

FB76 EIT0

0047 FU78 HJE6 JMP SAM GO AND START CONVEF\SION AGAIN
1:!048 F87A 59 E~WR TEXT I YOU HAVE MADE A MISTAKE'

F87B 4F

F67C '55

FB70 ~0

F07E 48

F87F 41

FBBB 56

FOBl 45

F882 ~0

FB03 40

'F684 41

FUB5 44

FOB6 45

n1a7 20

FBBB 41

F089 23

FBBA 40

FBUB 49

FBBC 53

FBBO 54

F3BE 41

FBBF! 48

F890 ~5

H049 F691 eo &YTE 0

i::JI!J:::ii!J f892 0DI!JA MESS1 l>ATA >BD0A

Bid 51 FB94 4E TEXT 'NEXT POS'

F895 45

Fl:l'/6 58

F897 ~·
FBYO 2~

F899 50

F09A 4F

F99D 53

01d~i2 FBYC ~B &YTE 0

0B'i3 F89E B00A ERR DAlA)000A

C11d5il ~ BAI!J 52 fEXT 'hEr EI'\T POSITION'
FOAl 4'•

t-BA2 ~·
F8A3 45

FUA4 41

FUA!j 54

FOA6 '" FOr17 5b

HliHJ 4F

FrU\9 ~3

A7.8

1 r, Y3 1 XMl r<A 2.3 0 70.2'1'1 Bld:U6:59 IH/Ul/l:JB PAGE ¥1f103

·rOAA 49

rnr.E sq

fB/\C •9
rBAD 4F
Forjr 4E

00~::; f"rJlB WBF JMP NEXT
0056 EUO

TRY3 TXMH,A 2. 3,0 70.244 00.86.59 Ul/01/UB PAGE 0BU4

ADCD~T EFFE CHK F84A CONV EFFA DAC1 EFF2
OAC~ EFFB EfiR FBYE Em.:. or, F87A GAIN EFF6
LAlll FB68 LAE::2 FB74 MESS! FB92 MUXADF. EFFB
NCXT FB3A NULL F034 F<\'1 U~ld0 Rl 0UU1
k10 li00A Rll ~U0B R12 eeac R13 eaau
ll14 Mll£:1£ R15 BUUF fi~ ~02 ~J 0U133

R4 0~04 R~ 0005 R6 0006 fi7 0007
k!l e~aa R9 1:;}009 bM FB'I6 SPACE F880
!..lATUS EFFC

Wld0FI Ef<F\fJr<G

A7.9

TXYr,Er 2. 3.e 70, ::!44 0~:07.23 f:H/01/~H::I PAGE [1~01

~DCDAT 0f11':1B {'11?.134

CIIK l111.5:? 0~J3

CONV 0ltl4 0031

OAC1 0010

l>AL~ H~11 0111J[1 0044 0~46

crm 011~3 F1027 01?.129

EhRUR 0t::JIJ8 0025

GAIN - 0fl12 0016

lAB! 0l:i"12 1?.1039

lAE:2 0046 0043

MESS! 0050 0022

MUXI,DK BlH3 U017

NEXT B022 0~37 BBSS

NULL 01123 131324

Rl 0\:123 0026 00::!8 1:11?.135

H2 0034 0035 0036 0030

R3 00"12 B046

R4 01119 0040

RS 03213 0044

&AM 0031 ~041 I'IIHS 0047

SPACE 00~7

STATUS 0009 1!11332

TIIEkf ARE ~0~2 SYMf,QLS

A7.10

VrF.THFlC

I"H!H36

~A07

fiJOilO

tH:1~9

1'010 F800

0~11

fli'J12

13fl13

Af314 FB013

lXMlF.A Al/01/f'IA

lOT 'VCRl URCE'

•
tPFOGPAM TO READ COMMANDS LOAl>EO INTO

*MEMORY IN THE FORM OF OP CODES

H POGRAMS E EGIN AT)FE'AB ~ END AT)FCFE

ti .. I\OG!i:flM INSTRUCTIONS INCLUDE CODES FOR

tMOVC,STOP,CONTINUE,JUMP OR DELAY

•
"

EFF6 GAIN

*

AORG >FB00

EQU >EFF6

0015 EFFE

SFACE E:SS

ADCDAT ElW

STATUS EGU

32

>EFFE

>EFFC 0016 EFFC

0017
0018

0019

At"120

01321

Pl022

EFF2

EFF0

DEFE

EFFB

F.FFA

DAC1
DAC2

MC3

EAU >EFF2

EQU >EFFB

EGU >DEFE
MUX~DR EQU >EFFB

CONV

*
EAU >EFFA

fJ023

0024
Ff00 MEMEQU EGU)FF00

*
START OF USER MEMORY

FA hE fi0A1

~025 FB20 0~01 BEGIN LI

FB22 Fr 00

R1,MEMEGU LOAD FIRST INSTRUCTION

AA26

1':1Pl27 FB2il 0289

FB26 01301

l?lA28 FB:!Et 02RE:

F82A I!IPI02

*

Al1t29 *
00'1jl1 f-82C ~:'08

~FB2E F£913

0:A.31 FB30 Pl207

F032 01813

0832 FB3<1 02£.lt6

F"A:!6 0"'~lfl

0(333 *

LI R9, 1

LI Rll, >2

LI RB,)FEB0

LI R7,)100

LI R6,)0000

003<1 FB3B C0Rl STARr MOV *Rl+,R2

0B35 F83A C£'1C~

em36 FB~C £:.124:!

F83E FBOE!

0037 F84A 0:!43

F842 t:tFFF

A!33B

tm:.w r BI.J4 1!1282

rn46 HI0!3

fHi4f'J FBI18 J 340

Dl:t'll rfl•1A 0:!P2

FBI1C 2AI?Pl

~'~'~ll2 n:l!E 1351

l-lft-.13 F(l::;e {i:'P::?

F0'52 "1:~PIA

r-JA4<'1 FR":;'l J 355

MOV R2,R3

ANDI R2,)F000

ANOI R3,)FFF

Cl R2, >1800

JEQ MOVtVT
Cl R2,)200R

JER MDVEHZ

Cl R::!,)3B0H

JE& Movrsw

A7.11

NQS.TO SELECT ADC CHANNEL

CON~TANTS FOR OUTfUT ON OAC

f..Ef'lll INSTF.UCTIClN

SAVE

SEPARATE OP CODE

SH AF..ATE INSTfWCTJON

IS IT MOVE VEf-i:TICAL '?

IS IT MllVE HORIZONTAL?

IS IT MOVI":. IN SWING?

~--.---------------------------

Vl h nu,n: lYMlf...A :!.3. l1 78 ~qq '~(1. ~ll:l, 43 l'l/l11/UI1 I f1Uf l!l!1:1.1

vcr,~A 1 r,r.N COinhOL f'kOGhAH

B0liS FB~6 028:! CI F\2,)lJI3CIB

FElt.B 41300

1'1046 FB:.-A 1602 JNE NDCLAY
U~47 re~.c 01160 E: ~DELAY IS IT A DELAY?

FO!..E F9AA
1:11:148 FB60 0:'8:? NOEL AY CI 1\2,)5l1l:10

f862 5000

B049 FBM 1602 JNE NJUMP
e~~a ra66 ~460 B ~JUMP IS IT A JUMP?

FU68 F932

0051 FB6A El282 NJUMP CI R2,)6fi:H::J0

F86C 601:10
0l:t52 FB6E 1602 JNE NWH
(:1053 F870 0460 B @U~ISTH IS IT TU~N W~IST HOh?

FB72 F95U

0054 FB74 0282 NWH CI R2,)7000
FB76 7880

0£:155 FB78 1602 JNE NWV
0056 FB7A 8460 B @W~ISTV IS IT TU~N WRIST VER?

F87C F946
(1057 FB7E f:l282 NWV CI F\2,)8000

FBB0 aee0
0058 FBB2 1602 JNE NSlOP

BB:i9 FBB4 0460 B ~STOP IS IT A STOP?
FBB6 F92A

1'1068 FBBB 0282 NSTOP Cl R2,)90GB

FBBA 9000

0061 FHBC 16112 JNE NCON
1:1062 FHBE 0460 B @CONTIN IS IT CONTINUE?

~890 F9BE-

l-:1063 FB92 11282 NCON Cl ~2. >A000

FD94 A001:1

1:11:164 F896'J602 JNE NO PEN
0~65 FB98 0460 B ~OPEN IS IT GRIP OPEN?

FB9A F95A

0066 FB9C ~282 NO PEN CI R2,)~000

FH9E 8000

1:1067 FBAI:I 16CB JNE START

8860 F8A2 8460 B !!CLOSE IS IT GRIP CLOSE?
FBAlJ F964

01169 *
"1:170 *
0071 *·.,,,.CONVERT ROUTINE,,,,,,,*

81:172 *
807J *
li074 FBA6 8720 CDNVRT &ETO ~CONV STA~T CONVE~SION

FBAB EFFA

0075 FBAA 0560 CHK INV !!STATUS SEE IF DATA ~EADY
FSAC EFFC

~B76 F~AE llFD 1LT CHK
0077 FUE'B C120 MOV l!'AOCOAT,R4 ACTUAL f'OSITION IN "-4

fBl'2 EFFE

11078 f8B4 (.103 s ~3. fi.4 EF\.F<Or,, ACT-CMD

"979 FBD6 CJ~4 MOV fi.4, R5 SAVE EF.F.Of..

A7.l2

,.

TXMI~A

VCk'~AlhAN CONTROL f'f..OGI\AM
j

fl"'ao rsr~e "7.q5 ABS n5
l1{i81 F"Bl~A 0285 C I 1"<5, HH!I:!0

FA~C ~0~0

0082 reec 110F

eaa3 roce e2B4
FBC2 0180

008~ F8C~ 111:13

0005 FOC6 CAB7

FBCEI EFFB

0086 F8CA !BED

0087 FBCC 028~ LAB!

FBCE FEBB

01388 FBDB 1503

0089 FBD2 CABS

FBD~ EFF0

0090 FBD6 IBE7

0091 FSDB CA84 LAB2

FODA EFFB

0092 FBDC 10E4

0093 F80E CA06 LAB3

f8E0 EFF0

009~ F8E2 1 BAA

0095 *

JI.T LA63

CI F.tl, >180

1LT LAB!

MUV R7, (DOAC2(RI H)

JMP CONVRT

Cl R4, >FEBB

JGT LA~2

MOV n8,~0AC2CR10)

IMP CONVRT

MOV fi4,@DAC2(R10)

JMP CONVRT

MOV F.6,~DAC2CR1B)

JMP START

01/01/~0 f r~ur l:HH:I3

riND MODULUS OF ERhOR

SEE If NEA~LY IN POSITION

IF NEnRLY THERE JUMP

SEE IF ERR. > MAX •VE VALUE

OUTPUT MAX +VE VEL.

START CONVERSION AGAIN

SEE If ERR,(MAX -VE VALUE

OUTPUT MAX -VE VEL,

START CONVERSION AGAIN

OUTPUT ACTUAL VELOCITY

START CONVERSION AGAIN

OUTPUT ZERO VELOCITY

NEXT INSTRUCTION

1:1096 *·,,,,.,MOVE VERTICAL hOUTINE,,,,,,, *
1:1897 FBE~ 0~E0 MOVEVT CLR •GAIN

FBE6 EFF6

1<!098 FBEB 0qE0

FBEA EFF8

13099 FOEC 020A

CLR ~MUXAOR

LI RU3, 0

JMP CONVRT

CHANNEL ONE

LOAD DISPLACEMENT VECTOR

GO TO CONVE~T

F8EE 0000

0100 FBFB 10DA

01BI *•••••••MOVE HORIZONTAL ROUTINE, ••••••*
13102 FBF2 04EB

FBF4 EFF6

01133 FBF6 CB09

FBFB EFFB

0104 FBFA 02k!A

FBFC 0002

010~ FBFE 1003

MOVEHZ CLR ~GAIN

MOV f\9,C!MUXADR

Ll RHI,2

JMP CONVRT

01B6 *
13107 *

CHANNEL TWO

LOAD DISPLACEMENT VECTOR

JUMP TO CONVERT

~!BB *••••• ,,MOVE IN SWING ROUTINE •• , ••••*

0109 f900 04E0 MOVESW CLR @GAIN

F902 EFF6

!!IlB F9Bq C808

F906 EFFB

lH 11 F908 ~20A

F90A EF0E

13112 F9"C 10CC

13113 *
0114 *

MOV Rll,~MUXADR

LI R10,)EF0E

JMP CONVRT JUMP TO CONVERT

0115 -*·,,?, .. CONTINUE ~OUTINE.,,,,,,*

0116 F90E 0::?03 CONTIN Cl f\3,)00£:10 IF SO CONT. UNTIL SlOf'f'ED

FYt e r:H.,~B

A7 .13 .
·I
'

1 XMI~A

Vlf<~Alf..AN CONTF\Ol f'hOGf..AM

~117 f912 1602

euo r914 0'160

F916 FB20

~119 F91B 0283 N~8

F91A D001

0120 F91C 1306

0121 F91E g603

B122 F9:'0 A0C2

0123 F922 06~1

0124 F92ll C-143

0125 F926 0ll60

F928 FB2B

*

JNE IWB

I!' PEG IN

Cl f"<3,)0lili1

JEG STOP

DlC R3

A R2, R3

OECT R1

MOV R3,*Rl
B N<EGIN

l11/0l/~11

CONTINUE UNTIL SlOPFlD

IS IT LAST CYCLE?

IF SO STOP

COUNY DOWN NO OF CYCLES

fiESET INST.POINTER

kEPLACE MODIFIED INST.

0126

"127 *•••••• ,,,,STOP fiOUTINE.,,,,,.,*

0128 F92A 2FA0

f92C F97A

0129 F92E e.q60

F930 0080

STOP

*

XOP I!ST, 14 YOUR PROGRAM IS COMPLETE

- B 0)80

0130

0131 *· I •••• JUMP ROUTINE ••••••••••• *
0132 F932 0243 JUMP

F934 0FFF

0133 F936 1602

1!134 F93B 0223

F93A F000

0135 F93C 0A13 JMPF

0136 F93E 0641

0137 F940 A0C1

0138 f94:! 0ll60

F944 F838

0139 *

ANDI R3, >FFF

JNE JMPF

AI R3, >FI300 MAKE -VE FOR JUMP BACK

SLA R3, 1

DECT R1

A F..l,R3 POINT TO JMP INST.~ ADD JMP

E< OSTART

0140 *•••• •••.•••• WRIST VERTICAL l HORIZONTAL ROUTINE,,,, •••• *
• 0141 F946 020C WRISTV LI R12,)100 E'ASE ADD CRU

F94B 0100

0142 F94A 1E02 SBZ 2

0143 F94C 0460 B ORTD

F94E F96E

0144 *
0145 F9:i0 020C WRISTH LI R12,)100

F9S2 01£10

~1.q6 F954 1082 SDO 2

0147 F956 eq6a

F95E:I F96E

*

ORTO

SEND SIGNAL

E'ASE ADD CkU

•••••••••G~IPPER OPEN l CLOSE ~OUTINE,,,,,,,,,,

0150 *
0151 F9SA 020C OPEN

F9~C 01~0

LI R12, >HIB

e152 F95E 1oeq S80 4

~15J F96B aq6a a
F962 F96E

0154 *
~155 F964 02BC CLOSE LI

F966 etea

~fiTD

R12, >100

SEND SIGNAL

A7.14

I
I
I

11

'I i I

11

! i

I
I '

- i
i

'' . '
i:
I

I

VEFo:THh[E TXMIRA I:U/01/0B

VEFo:SAH\AN CONTROL f'r\OG~AM

B156 F'lbB lE!;~

01S7 f96A B'I6B

f96C F96E

at sa
B1~9

0160

~161 F96E 0206

F970 7000

0162 FY72 0606

0163 F97'l 16FE

01M F976 M60

F978 F838

0165

0166

0167 F97A 0D0A

&r.z ~ SEND SIGNAL

B @RTD

* *·,,,,,,,, ~EAL TIME DELAY(0, 2 SlC" S), , • , , , , , , • *
*
RTD Ll R6,)7000

DEC DEC R6

11'/E DEC

B ~START

*

AFROX EQU 0.2 SEC'S

*• , , • , , , , , , , , , , , , , MESSAGES, , , • , , , , , , • , •• , , , , *
ST DATA)0D0A

f"AGE bi::H::i'S

0168 F97C ::;9 TEXT "YOUR PROGRAM IS COMPLETE,RETURN TO MONITOR"

f97D 'IF

F97E 55

F97F ::;2

F980 20

F981 50

F982 52

F9B3 'IF

F98'l '17

F985 ::;2

F986 '11

F987 'ID

F98B 20

F989 '19

F9SA :53

F9BB I 20

F9BC .._ 43

f9SD 'IF

F9SE 'ID

F'i'OF :50

F990 'IC

F991 '15

F992 5'1

F993 q:;

F99'l 2C

F995 52

F996 q:;

F997 :;q

F99S 55

F999 5::!

F99A 'lE

f99B 20

F99C :;q

f99D 'IF

F99E 20

F99F 4D

F9AB 'IF

F9A1 'lE

f9A2 49
A7 .15

VHTIIhEE TXMnA

VLhb~H.Arl CONTROL f'hOGRAM

f9A3 ~4

F9A4 4F

F9A5 ~2

1!1169 F9A6 0D0A

F9AB seae

01/01/00 f 11GE lH:H:l6

DATA)0DBA,)0000

0179 *••••• ,,T1ME DELAY ROUTINE,,,,,,,*

0171 F9AA El2l.1C DELAY LI RI;!,)HlB

F9AC 9100

0172 F9AE 04E0

F9B0 FFBA

0173 F9B2 1£00

9174 F9~4 1D03

017'5 f9B6 0300

F9~B 0003

0176 F9PA CB03

F9BC FF8C

0177 F9BE 0202

F9C0 0003

0178 F9C2 JJC2

0179 F9C4 10FF SELF

0180 F9C6 0460

F9C8 F8JB

11181 *

CLR ~ >FFBA

SBZ 0

SBO 3

LIMI 3

MOV RJ,@)FF8C

LI R2, 3

LDCR R2,15

JMP SELF
B ~START

~

CLEAR REG 0 OF T,S,R,

INT MODE

ENABLE 9901 INT3

ENAeLE 9900 INTJ

PUT NO OF URT SEC'S IN FF8C

COUNT ONE

LOAD TIMER

WAIT FOR INTJ

0182

11183 FA40

••••••••TIMER SEhVICE fiOUTINE!T.S.R),,,,,,,

AORG >FA40 ,UP=FF6a;PC•FA49 ----.- . ~ '
0104 FA40 8949

9185 FA42 1308

11186 FA44 0589

0187 FM6 020C

FA48 0100

01SB fA.qA 0202

FA4C FB9F
' 0189 FA4E 33C2

9199 FAS0 1E00

B191 FA~2 1003

0192 FAS4 0300

FA'56 0003

TSR c
JE~

INC

Ll

LI

RB,Rl

NOD LAY

h9

R12,)100

1'2, >FE 9F

LOCR R2, 1'5
SBZ 0
SBD 3'

LIMI 3

0193 FASB 0380 RTWP

0194 FA5A 04C0 NOOLAY CLR R0

019'5 FA!IC 04CF

0196 FASE 0'5CE

11197 FA60 0300

0198 *

CLR R15

INCT R14

RTWP

IS THE DELAY FINISHED?

DELAY IS FINISHED

COUNT FOR NO, a~T SEC'S hEUD

1/4 SEC'S IN UNITS OF 21,33~ic

LOAD TIMER

RESET REG 0

CLEAR STATUS IN OLD Wf'

RESET PC TO NEXT PLACE

0199 *·. 0. I • I ••••••••••• T. s. R MEMORY SPACE •• ••••• 0. 0 0 ••• 0.
02013 FFAA AORG >FFAA WP=FF8A,PC=FFAA

0:!01 FFAA 0460

FFAC FA40

0202 *

B ~TSR

(3~03 *· ... *
0204 FFAE 0340 IDLE

~:!BS END

A7.16

t \:;; \:>\,,)

"" 6"

I~

r]~l

VE~THE;EE TXMIRA 2. 3.·0 78, 2,qq ee: ee: .t~3 01/01/00 PAGE 0007
VERSATRAN CONTROL PROGRAM

ADCDAT EFFE PEG IN FB20 CHK FBAA CLOSE F964
CONTIN F90E CON \I EFFA CONVRT FBA6 OAC1 EFF2
DAC2 EFFB DACJ .DEFE DEC F972 DELAY F9AA
GAIN EFF6 J'MPF F93C JUHP F932 LAB1 FBCC
LAE'2 FBOB LABJ FBOE MEMEQU n~ae MOVEHZ FBF2
MOVESW F909 MOVE \IT FBE4 MUXADR EFFB NEB F91B
NCOtl F892 tlDELAY FB60 NJUMP FB6A NODLAY FASA
NO PEN F89C NSTOP FBBB- NWH FB74 NWV FB7E---
OPEN F95A !;0 eee0 Rl 0001 R10 000A

' R11 0008 R12 eeec R13 0000 R14 eaeE .I
I R15 BBBF R2 0002 RJ 0003 R4 0004
I RS eee:; R6 0006 R7 0007 E;S 0eae
I R9 0009 HO F96E SELF F9C4 SPACE FBBB I

EFFC STOP I ST F97A START FB3B STATUS F92A
i TSR FA40 IJRISTH F950 IJRISTV F946 I

0000 ERE;ORS I

I

A7 .17

TXX~CF 2.3,0 78.:?'14 0l1J01J~9 ~1/01100 f AOE 00B1

AD COAT 0l11S 0077

• £COIN erns 0118 0125

CHI(E:IE:I7S 0076

CLOSE Bl::i:S 0068

CONTIN 11116 0062

CONI/ 0021 0074

CONVRT !1074 0086 0090 0092 0100 0U:lS 0112

OAC1 0017

OAC2 0018 0085 0089 0091 0£:193

DAC3, 0[:119

DCC 0162 0163

DELAY 0171 0047

GAIN 0012 0097 0102 0109

JMI'F 0135 0133

JUMP 0132 0050

LAB! 0087 0084

LAE<2 0091 0088

LAE<3 0093 0082

MEMEaU 0023 002::i -.-
MDVEHZ 0102 El042

MOVE SW 0109 0Bil4

MOVE \IT 0097 00q0

MUYADR 00:?0 0098 0103 0110

NE·B 0119 0117

NCON 0063 0061

NOEL AY 0eqe 0046

NJUMP 0051 0049

NODLAY 0194 IHB::i

NOF'EN 0~66 0064

NSTOP 0069 0058

NWH ee:,.q 0052

NW\/ 0057 0055

OPEN 0151 006::i

Re 0184 0186 0194

kl 00:?S 0034 0123 0124 0136 0137 01eq

~19 008:i 0089 0091 0093 0099 0104 0111

"11 0028 0110

R12 0141 0145 0151 015S 0171 0187

RH IH96

RIS 0195

R2 0034 0035 0036 0039 0041 0043 0045 B04B El051

0054 0057 006tl 0063 0066 0122 0177 0178 0188

0189

R3 0035 0937 0078 0116 0119 0121 0122 0124 0132

0134 0135 0137 0176

R4 0977 ~l17B fHi79 1:1083 0087 0091

R~ 0079 11080 0~81

R6 b~32 C~93 0161 E:l162

R7 0EI31 E:lBB'5

fiB 0B30 0009

R9 8027 El103

HO 0161 0143 0147 01'53 01'57 .

SELF 0179 0179

bPACE 0014 A7 .18

ST ~167 0120

TXXREF

START 0034

STATUS 0016

STOP 0128

TSR 0184

~RISTH 0145

WRISTV 0141

THERE ARE 0058

2.3.0 79.2~4 l30J 01: 4')'

0067 0094 0138 0164

0075

0059 0120

02B1

0053

0{356

SYMBOLS

01/01/00

0180

0 0

' , 0

'

PAGE 0002

'
j

I
I
I

I ,,
I
I

0 0---- ---- 0- 0
o-

0 0--00- 0 - ---------

A7.19

INT1 TXMIRA 2,3,0 78.244 00:03141 01/01/00 PAGE 0001

0001 IDT 'INTl'

0002 *PROGRAM TO MOVE 3 AXES

0003 *USING INTERfiUPTS

0004 *TIME DELAY

0005 *
0006 * 0007 F800 AORG >FB00

0008 ree0 · SPACE BSS 32

0009 *
0010 EFFE ADCDAT EQU >EFFE

0011 EFFC STATUS EGU >EFFC

0012 ' EFF2 DAC1 EQU >EFF2

0013 EFFB DAC2 EQU >EFF0

0014 DEFE DAC3 EQU >DEFE

001:5 EFFS MUXADR EGU >EFFS

eet6 EFFA CONV EGU >EFFA

0017 EFF6 GAIN EGU >EFF6

0018 *
0019 FS20 02E0 LWPI SPACE

F822 F800

0020 *CONSTANTS FOR VELOCITIES

0021 FB24 0203 LI RJ,)180 MAX +VE VALUE

FB26 0180

0022 FB28 CB03 MOV R3,~>FD0C

F82A FD0C

0023 F82C 0283 LI RJ,)F£80 MAX -VE VALUE

FB2E FE80

80::!4 F830 C803 MOV RJ,l!)FOBE

F832 FOBE

002~·FB34 0203 LI RJ,B

FB36 0000

0026 F838 CB03 MOV RJ,I!)FD10 ZERO VEOCITY

F83A FDIB

0027 *
0028 *INPUT POSITIONS

00:!9 FB3C 2FA0 XOP @MESS1,14 HOW MANY POS' S?

FB3E F969

0030 FB40 2E42 NULL! XOP R2,9 NO OF POSITIONS IN R2

0031 FB42 FB40 DATA NULL!

0032 FB44 FB40 DATA NULL!

0033 FD46 0208 LI RB, >FD20 BASE ADD FOR TAB.OF DELAYS

F848 FD20

0034 F84A 0:::!01 LI Rl,)FB00 BASE ADD FOR POS TABLE

F84C FB00

BBJ:i f84E CB02 MOV R2,l!>FD12 SAVE NO OF POSITIONS

FSSB FD12

0036 FB:i2 2FA0 MES XOP ~MESS2, 14 f'OSITION OF AXIS ONE

FBS4 f978

0037 FB:=i6 2E71 NULL2 XOP *R1+,9 F\EAD f'OS INTO ADDRESS IN Rl,

0038 FB!iB FB~6 DATA NULL2 INCREMENT Rl BY TWO

0039 FBSA FOS6 DATA NULL2

0U40 FB:5C 2FA0 XOP ~MESSJ, 14 POSITION OF AXIS TWO

FB~E F991

00•11 FU6B :!E71 NULLJ XOP *Rl +, 9

A7.20

l t-n 1 lXM)F-'A

01111:! F062 f060

0l!l-43 FU64 F860

0"ll4 FB66 2FA0

FEJ60 F9A7

DATA Nllll3

DAlA NULL3

XOP l!'MESS4,14

0~4~ F06A 2£71 NULL4 XOP *~1+,9

10e46 FB6C FB6A DATA NULL4

DATA NULL4

0048 FB70 ~FA0 NULL'S XOP @MESS~,14

FB72 F9E<D

9049 FB74 2E7B

00~0 F876 FB70

0051 F878 F870

0052 f87A 0602

01353 F87C ~282

F87E 0000

ee:;,q rase t6EB

0055 FSB2 04C9

00::i6 FB84 0o4EB

F886 FDBB

00~7 FSBB 04EB

FBBA FD02

0059 FBBC B4E0

FBBE FD04

0059 F890 04E0

FB92 FDB6

0060 F894 B4EB

FB96 FOBS

0061 F898 04EB

F89~ FDBA

0062

0063 F89C 0208

F89E FD20

0064 FBAB 0:!04

FBA:! FP00

0065 FSA4 020'5

FBA6,FD06

0066 FBAB !cD74

0067 FBAA CD74

0068 FBAC CD74

0069 FSAE 020C •

FBEB 0100

0070 F882 1E00

0071 FBB4 1003

0072 ·fSE<6 0300

FSBB 0003

0073 FSE.A 0:!00

FBBC 0003

0074 FB~E 33C0

*

XO? *~8+,9

DATA NULL:l

DATA NULL'S

OEC R2

Cl Fc2, 0

.1NE MES

CLR R9

CLR elFDBB

CLR e>FD02

CLR elFD06

CLR e>FD0B

CLR elFDM

LI KB, >FO:!B

LI f\4,)FE00

LI RS,)f006

MOV tR4+, *r\S+

MOV *f'.4+,*R5+

MOV *R4+, *RS+

LI R12,)100

SBZ 0

SE'O 3

LIMI 3

LI RB,J

LDCR f<0,15

["1 /lH/U(j

~OSITION OP AXIS THkEE

TIMES GO ROUND DELAY LOOP

OEC NO OF fOS'S LEFT

REG.FOR MEM FOR DELAYS

MEM.FOR ACTUAL FOS'S

MEM. FOR fiEQ'D ~OS'S

MEM.FOR START OF DELAYS

MEM.FOR START OF POSITIONS

MEM.FOR oEG'D fOSITIONS

MOVE REQ'O POS FfiOM F~0B

ONWARDS TO FD06,FD08,FD0A

BASE ADDRESS

INTERRUPT MODE

ENABLE INTEkRUPT ON 9901

ENA~LE INTEoRUPT ON 9900

' COUNT=l CLOCK MODE

START COUNT

0075 *fiETURN TO START IF NO DELAY

01!!76 *
0077 FBCB 1E0B START S~Z 0

0078 FBC2 1003

0079 FBC4 0300

FBC6 0E::I03

SBD 3

LIMl 3

INTEofiUPT EVERY 38 MS

A7 • .21

lNTl TXMli<A

0000 race azee
FOCA 3~0F

~~81 recc 3Jce
1'1002 FSCE CIA0

F8D0 FD08

1'1083 FB02 61A0

FBD4 FD02

0084 FSD6 0746

0085 FBDB 0:!86

FODA 91328

0086 FOOC 1101

0~97 FOOE 1011

0088 FOE0 C0A0 NEX

F8E2 F006

0089 FOE4 60A0

F8E6 ro00

E1090 FBEB 07"12

LI ~0,)J00F

LOCR RB, IS

MOV l!>FDBB,R6

5 @)f002,R6

AI'S R6

Cl J\6,)28

JLT NEX

JMP SELF

MOV e>FD06,R2

5 t!>FD00,R2

ABS 1<2

i1091 FBEA (:1282 - ---· Cl

\ FBEC 0028

~092 FBEE 1101

0093 f8f0 1008

0094 F8F2 CIE0 NEX2

FBF4 f00A

009~ FOF6 61E0

FBF8 f004

0096 F8FA 0747

0~97 fBFC 0287

FSFE 0028

0C:I9B f900 1101

0099 F902 10FF SELF

JLT NEX2

JMP SELF

MOV t!)f00A,R7

s e>FD04,R7

ABS R7

Cl R7, >2B

JLT DEL

JMP SELF

01/~1/0~

SAVE hEG'D POS

CHECK 10 SEE IF IN fOS

AhSOLUlE Ehi\OR

ALLOW FOR SLIGHT ERROR

IF NEAI\LY THE~£ NEXT AXIS

OTHEI\WISE AWAIT INTERI\UPT

~EPEAT FOR ALL OTHER AXES

IF NEARLY THERE NEXT INST.

ELSE AWAIT INTE~I\UPT

1!11!0 *CHECK TO SEE IF LAST POSITION

0101 F904 0620 DEL DEC e>FOI2

F906 _F012

0102 F900 C1Ail

f90A FD12

0103 F90C 0286

F9~E 0000

1!11!4 F910 1312

0105 F912 C27B

MOV C! >FD12, R6

Cl R6, ll

JEG STOP

MOV *RB+,R9

DEC NO OF f•OS' S LEFT

SAVE

SEE IF LAST POSITION

IF LAST THEN STOP ROUTINE

OTHERWISE NEXT DELAY

01e6 F914 10FF SELF2 JMP SELF2 AWAIT INTERRUPT

0107 *fiETURN TO CONT FROM INTERI\UPT IF THEI\E IS A DELAY

0108 F916 1£00 COIIT

0109 F91B 1003

0110 F91A 0300

F91C 0003

0111 F91E 0200

F920 30~F

0112 F922 33C0

0113 F92~ 0289

F926 mme
0114 f9:!8 1605

~115 F92A 0205

F92C FD06

0116 F92E CD74

SBZ 0 INTERRUPT EVERY 38MS

SBO 3

LIMI 3

LI R0,)300F

lDCR fiB, 15
Cl R9, B

.JNE SELF3

Ll RS, >FD36

MOV tR4+,tRS+

SEE IF DELAY FIN.

IF NOT AWAIT INTE~~UPT
LOCATlotl FOR CMD

MOVE CMD TO >FDH6, >FDCS, >FDCA

A7.22

IIH1 lX~If..A 2 3.0 70. :'L'4 ~H11 03 11:11 et/011(H3 fAG(fl[:;(j4

lell17 f930 C074 MDV llf\4•, »f...S+

0118 F932 CD74 MOV Jtf..,q+, U\!i+

11119 f934 Wff SELF3 JMP SCLF3 AWAIT INTEhkUPT

012'1 *STOP f<UUTINE

01~1 f936 0300 STOP LIMI B OISENA~LE ALL INTER~UPlS

,..938 0000

0122 F93A 2fA0 XOP t!'MESS,14 FROGRAM FINISHED

F93C r9.q4

0123 F93E 0460 B 1!'>80 ~ETUkN 10 MONITOR

f940 C080

0124 f942 0349 IDLE

l112S f944 ~9 MESS TEXT 'PkOGRAM FINISHED hETURN TO MONITOR'

F94S !i:!

F946 4f

F947 47

f94B ~2

F949 41

F94A 40

F94B 29

r11.qc 46

f940 49

F94E 4E

F94f 49

F950 ~3

F9S1 48

F952 45

F9S3 44

F954 20

F9S5 52

F956 45

F957 54

F9::iB 55

F9S9 52

F95A 4E

F958 • 20

F95C. 54

F95D 4f

F95E 20

F95F 40

• f960 4f .

F961 4E

F962 49

F963 54

f964 4f

F965 52

0126 f966 000A DATA)000A

0127 F96B 09 BYTE 0

0128 .F969 4E MESS I TEXT 'NO OF POSITIONS'

f96A 4F

f96B 20 -•.
F96C 4f

F960 46

F96E 20

F96F 50

A7 .23

1NT1 TXM1f<A 2.3.0 78.::!o1.1J l:l0.03.41 01/01/00 f rtGE i::ll-J~5

F97B 4F

FY71 S3

F97~ 49

F973 S4

F974 49

F97:S 4F

·F976 4E

F977 S3

e129 F97B 0D0A DATA)0D0A

1<130 H7A 00 E-YTE 0

0131 F97B ~0 MESS2 TEXT 'POSITION OF AXIS 1'

F97C 4F

F97D S3

f97E 49

F97F ~4

F9BB 49

F981 4F

· F982 4E

F983 20

F984 4F

F9BS 46

F986 20

HB7 41

F9BB se
f989 49

F98A S3

F98B 20

n:ec 31

0132 F9BE 0DBA DATA)0D0A

0133 F99B BB BYlE 0

0134 F991 SB MESS3 TEXT 'POSITION OF AXIS 2'

F992 4F

F993 ~ :13

F994 49

F995 S4

F996 49

f997 4f

f998 4E

f999 20

f99A 4f

f99B 46

F99C 20

f990 41

F99E sa
FY9f 49

F9A0 S3

f9A1 20

F9A2 32

0135 F9A.tl BD0A DATA)130111A

lH36 F9A6 ee BYTE a
C:J137 F9A7 ::;a MCSS4 lEXT ~POSITION OF AXIS 3'

F9AB 4f

f9A9 S3

F9AA 49

A7.24

Hill 1 XI•(Ikft :!.3.0 70. :.·4"1 (J~.l:l3 41 (11/Ul/l~" f (.(il l•11l:llo

F9AB ~q

r YAt: 49

F9r,o 4F

F9AE 4E

F9AF 20

rnB 4F

F9B1 46

F9£2 2B

F9B3 41

F9El4 ~8

f9(s 49

FYB6 53

F9£<7 20

F9EB 33

0138 F9~A BOBA DATA)BOBA

10139 F9BC BB BYTE B

014B -F9PO 44 ME555 TEXT • DELAY'

F9EE 45

F9PF 4C

F9C0 41

F9C1 59

0141 F9C2 000A DATA >~00A

01"12 F9C4 BB BYTE B

10143 ~INTERfiUPT fiOUTINE

0144 *
014S FABB AORG)fABB ORIGIN

B146 FABB FACB DATA)FAC0 NEW WP

0147 FAB2 FAB4 DATA)FA04 NEW PC

01"18 FM3"1 0300 LIMI 0 DISABLE ALL INTEfifiUPTS

'FAB6 0000

0149 FAB8 0200 LI f<B. 3 NO OF AXES

FA0A 0003

0150 FABC 0209 LI RB, 1 NO. TO S£LECT ADC CHANNEL

FABE 0001

0151 FA1B 0209 LI' R9, 2 NO .TO SELECT ADC CHANNEL

FA12 B0B2
' 0152 FA14 B4EB CLR ~GAIN GAIN = 1

FA16 EFH

015'3 *
~154 FA18 04E0 AXIS! CLR rnMUXAOR CHANNEL 0 ON ADC

FA1A EFF8

015S FA1C B20A LI f<lB, 0 DISPLACEMENT FOR OAC

FA1E 00B0

01:i6 FA20 100A JMP CON

01::i7 fA22 C808 AXIS2 MOV RB,~MUXAOR CHANNEL 1 ON ADC

FA2"1 EFF9

Bl:iB FA26 B2BA LI R1B,2 DISPLACEMENT FOR OAC

FA28 0002

B1'!:i9 FA2A 1009 JMP CONVRT

B160 FA2C C809 AXJS3 MOV R9,~MUXAOR CHANNEL :? ON ADC

FA2E EFFB

0161 FA30 020A LI RHl, >EFBE OISf'LACr..MENT FOR OAC

FA32 EFBE

El162 FA34 111Bll JMP CONVRT

A7.25

lNll TXMI~A

0163 F~36 0~03 CON

Ff13U FOI10

A164 FA3A 11213!.1

FA3C F006

0165 *

~.3.0 70,244 ~0;03:41 01/i:H/00 !-'AGE {.1UI!I7

LI MEM.FOk ACTUAL POS'S

LI f..5, >F006 MEM.FOR RlQ'D POS'S

0166 FA3E 0720 CotNr<T SCTO I!ICONV

rA4H l:Fff,

START CONVERSION

0167 FA4~ 0560 CHK

.f"Mq EFFC

11160 FA46 llFD

9169 FMB C~60

fAqA EFFE

0170 FMC CCC1

0171 FA4E 6H7S

0172 FA'S0 C081

0173 FAS::! 0742

0174 FA!i4 0282

FAS6 0028

0175 FA58 1111

I:U76 fA5A 0281

FA!iC 01l:l0

11177 F A5E 110q

8178 FA60 CAAB

FA62 roec
FhM EFF8

0179 FA66 1080

0180 FA60 0281 LA81

FA6A FE80

IH81 FA6C 1504

0182 FA6E CAA0

FA70 FD0E

FA7::! EFFB

8183 FA7q 1006

B184 FA76 CA81 LAB2

FA78 EFF0

0105 FA7A 1003

0186 FA7C CnA0 LA~3

FA7E FD10

FAH~ EFFH

~187 FAB::! 06(d0 TEST

(d 1 fiB f" (';811 f1200

FAB6 0002

0189 FAB8 13CC

~190 FhBA 0280

fhBC 0001

0191 FABC 13CE

0192 FA90 C1A0

FA92 F812

0193 rA94 a286

FA96 11~H:ll1

IH94 fA9l:J 16H6

019~ Ft'\9A 0::?00

FAYC Ffl00

Bt96 FA?C a~m:

INV ~STATUS

JLT CHK

MOV QIAOCDAT,Rl

MOV Rl,*R3+

S *R5+, Rl

MOV Rl,F.:!

ABS F\2

Cl R2,)::!8

.TLT LAE'3

Cl f<l, >180

JLT LAB1

CH£CK DATA hEADY

ACTUAL POS IN R1

MOVE 10 MEMLDC
ACTUAL-CMD

SAVE

ABSOLUlE ERF;OR

SEE IF NEARLY IN POS.

SEE IF ERR,) MAX + VALUE

MOV ~>FD0C,~DAC2(R10) OUTPUT +l.BV

JMP TEST SEE IF ANY MORE AXES

CI Rl, >FEBB SEE IF E~R.< MAX -VE VALUE

JGT LAB2
MOV ~>FD0E,@DAC~(R10) OUTPUT-l,SV

JMP TEST

MOV Rl,~DAC2<R10) OUTPUT ACTUAL VELOCITY

JMP TEST
MOV @)F01B,eDAC2<~10) OUTPUT BV

DEC RB

Cl R0,2

JEll AXIS:!

Cl f<B, 1

J£Q AXIS3

MOV @)F812,f;.6

Cl R6,0

JNE CONTU

LI R13, >FB~I:i

LI 1<14, STAh T

DEC. COUNT FOR NO OF AXES

SERVICE AXIS lWO

SERVICE AXIS lHhEE

SAVE OEL.COUNT FROM OLD f<9

IF (>0 &0 TO CONTO ~OUT}NC

WP FO.< MAIN F f\OGF:AM

PC FO~ "ETURN

A7.26

1>-ri'If<A ~. 3. [1 7U. ~'1'4 Cl.1:03:'11 ~1/(H/~0 - f r,r;L [J0UU Jrn 1

FM0 race

~197 FAA2 ~~CF CLR k15 CLEf,R 51 Al US
~198 FAM 0380 ~TWP I<ETUkN TO MAIN f~OGRAM
U199 *
0:?"0 FAA6 eu .. ~a CONTD DEC l! >FB12 DEC. COUNT IN OLD k9,0ELAY

FAAB FB12
0201 Ff,AA 0200 li RlJ, >FB00 WP OF MAIN PfiOGfiAH.

FAAC FB~0
0202 FAAE B2ElE LI nt.q,coNr PC FOR fiETU~N

FA~~ F916
0203 FAB2 e~cr CLR R15 CLEAR STATUS
0~04 FAB~ 031l0 RTWP RETLifiN TO MAIN Pf\OGFcAH

02~:5 *
0206 *
l!l:!07 *
0208 *
0209 nsR MEM SPACE
0210 *
0211 FFAA ADRG >FFAA
0:?12 FFAA 0~20 E'LWP m>FA00 GO TO)FA00 FOR NEW PC~WP

FFAC FA00
0213 FFAE 03S0 RTWP
0:!14 END

INTI TXMIRA 2. 3, e 78.2~4 00103141 ~1/01/00 PAGE 0009

AD COAT EFFE AXIS! FA18 AXIS2 FA22 AXIS3 FA2C
CHK FA42 CON FA36 CONT Fl'l6 CONTO FAA6
CONI/ EFFA CONVRT FA3E OACI EFF2 OAC2 EFFB

DAC3 DEFE DEL Fl'04 GAIN EFF6 LAB! FA6B
LAB2 FA76 LAB3 FA7C MES FB52 MESS F9~4

MESS! F969 MESS2 F97B MESS3 F91'1 MESS4 F9A7
MESS5 F91'D MUXI\DR· EFI B NEX ·- ·FSEB -- NEX2 FBF2·

NUll! FB40 NULL2 FB56 NULL3 FS60 NULL4 FS6A
NULL5 FS70 RB eeee RI 0001 RIB eecA
Rll ~00l< R12 000C R13 0000 R14 easE
f<15 00CF R2 0002 R3 0003 R4 0004
R5 lii0B5 R6 0006 R7 0007 RB 0008
R9 0009 SELF F902 SELF2 F914 SELFJ F934
SPACE FB00 START FBCC STATUS EFFC STOP Fl'36
TEST FAB2

0000 Ef'<r<ORS

A7.27

TXXF\EF' 2.3.~ 78.2~~ fl0s0Q:52 ~1/~1/00 f-'AGE 0001

AD~ OAT 0010 0169

AXI~l rn::..q
AXIS:? lH!i7 0189

AXJS3 0160 0191

CHK 0167 0168

CON 0163 0156

corn 0108 0202

CONTD 0:!00 019~

CONV 0016 0166

CONVF<T 0166 0159 0162

DAC1 0012

DAC2 0013 0178 0182 018~ 0186

DAC3 001~

DEL BlE:Il 0098

GAIN 0017 0152

LAB1 0180 1!177

LAB2 018~ 0181

LAB3 0186 0175

MES El036 ee:;q

MESS 8125 0122

MESS1 0128 0"::!9

MESS2 0131 0036

HESS3 0134 0040

MESS4 0137 00~~

MESS~ 01~0 00~8

MUXADR 0015 0154 0157 0160

NEX 0088 0086

NEX2 0~9~ 0092

NULL1 0030 0031 0032

NULL2 0037 0038 0039

NULL3 00~1 0842 110~3

NULL4 0l:14!i 00~6 00~7

NULL5 00~8 0050 0£::51

r;:e 0073 0074 0080 0001 0111 0112 01~9 0187 0188

0190

R1 003~ 17:1037 0041 0045 0169 0170 0171 0172 0176

0180 ~l18~

R10 0155 01'S8 0161 0178 0182 018~ 0186

1"<12 0069

k13 0195 0201

R14 0196 0202

R15 0197 0203

1<2 0030 0035 l30'S2 0053 0088 0089 0090 0091 0172

0173 017~

R3 {:1021 0022 0023 002~ 00Z5 0026 0163 0170

f<4 006~ 0066 0067 ~068 0116 0117 0116

1"<5 0(!16:'.i 0066 0067 0068 0115 0116 0117 0118 016~

0171

R6 eeez ei::l83 0084 0085 0102 01e3 0192 0193

R7 009'1 009:5 0096 0097

1"<8 0l!f33 fH:I49 0063 0105 ~150 0157

1<9 0055 0105 0113 U151 0160

SELF 0899 0087 0~93 0099

SE.LF2 0106 0106

!:.ELF3 0119 lH14 0119

A7 ,28

-
;•

TXXREF"

START 0034

STATUS 0016

STOP 0128

TSR 0184

WRISTH 0145

WRISTV 0141

2.3.0 78.244 00:01:49 01/01/00

0067 0094 0138 0164 0180

0075

00:19 8120

0201

0053

130'56 ' L

THERE ARE 0058 SYMBOLS

-- -~~=----

A7.29

. -·· --···----

PAGE 0002

..
-'···---"- ·~ . . . • ' ~

.
'

lNT3 lXMnA 2.3.0 78. :'44 U~: 1~129 01/~1/~0 PAGE CUB!

e(mt JOT 'INT3'

~002 Wf'ROGfiAM TO MOVE 3 AXES

~liBJ :t:UBING INTE:Rf\UF'TS

0~~4 *liME DFLAY

0C:I0S lt.MOVE WRIST

0006 *DATA PROGRAM SEPAhATE

t'lt:!B7 FB00 AOh.G >FB00

~008 FB00 SPACE ~ss 32

0809 •
0010 EFFE AOCDAT EQU)EFFE

0011 EFFC STATUS EGU >EFFC

0012 EFF2 DACl EGU >EFF2

0013 EFF0 DAC2 EGU)EFF0

0814 DEFE DAC3 EGU >DEFE

0015 EFFB MUXADR EGU >EFFB

0816 EFFA CONV EGU >EFFA

0017 EFF6 GAIN EGU >EFF6

-eats - * ~

0019 FB20 02£0 LWPI SPACE

FB22 FB00

0020 *CONSTANTS FOR VELOCITIES

0021 FB24 0203 LI fi:J,)180 MAX +VE VALUE

f826 0180

0022 FB2B CBB3 MOV R3, ~)fDBC

FB2A FD0C

0023 F82C 0203 LI R3,)f£80 MAX -VE VALUE

FB2E FE80

0024 FB30 CB03 MOV RJ,(!)FDBE

FB32 FDBE

0025 FB34 €1203 LI R3,0

FB36 e0e0

0026 FB3B C803 MOV RJ,I!)f010 ZERO VEOCITY

FBJA rote
0027 '
~028 F83C 04C9 CLR R9 REG FOR MEM FOR DELAYS

0029 F83C 04E0 CLR ~ >FD00 MEMLOC FOR ACTUAL POS

F840 F000

0eJe FB42 04E0 CLR (!)f002

F844 F002

0031 F846 E:14E0 CLR I!')FD04

FB48 F004

0032 FB4A 04[0 CLR ~>F006 MEMLOC, FOR fiEGUifiEO POS

FB4C F006

0833 F84E 04E0 CLR ~)FOBS

FB!i0 ro0a

0034 F052 04E0 CLR ~)FOBA

FB~4 FOBA

0035' *
l:IE!36 FOS6 020A LI RIB, >FDAB MEMLOC FOR CLOSE/Of'EN JAWS

FOSS FOA0

0037 FB~A 0208 Ll hB,)FD20 MEMLOC.FDR STAH OF DELAYS

ru::.c FD20

0U38 FB5E B204 LI R4, >FE ea MEMLOC.FOR STAF\.T OF FOSlTIONS

FG60 FBBB
A7 .30

11113 TXMihA

[1~39 f06:! 020~

FBM FD06

6040 F066 02~C

FB6B 0120

!'1041 FB6A IE0C

11042 FB6C CD74

0043 F86E CD74

0044 F870 C074

~045 F872 020C

FB74 0100

0046 F876 !E00

0047 re7e 1o03

0048 F87A 0300

F87C 0003

0049 FB7E 0~00

F880 0003

li r...s, >FD\16

Sl'Z 12

MDV lH\4i I *RS+

MOV ltf\4+, i.RS+

MOV lt1'.4+,1'F\5i

Ll R12, HEIB

s~z 0

SE.O 3

LIHI 3

LI R0,3

01/Ul/tl~

MEMLUC FOk f..EQ'D f'OSlTlONS

PORI AhEA ON CRU

OPEN JAWS

MOVE HEG'O POS FfiOH FB00

ON\JAf,D& TO f006, FOf:!l:f, FOBA

BASE AODhESS

INTEfifiUPT MOO£

ENAblE INTEhhUPT ON 9901

ENABLE INTERRUPT ON 9Y00

COUNT•I CLOCK MODE

0050 F882 33C0 LDCR R0, 15 START COUNT

0051 *RETURN TO START IF NO DELAY

~052 *
e053 FBB4 JEBB START S~Z 0

ee:;.q ree6 toeJ
ld0S:i FBBB 0300

FBBA 0003

00S6 FSBC 0200

FBBE 300F

0057 FB90 33C0

00~8 F092 CIA0

F894 FD08

0059 F896 61A0

F898 FD02

0U6B FB9A 0746

0061 FB9C 0286

F89E 0028

0062 F8A0 1101

0063 FBA2 1011

0064 F8A4 C0A0 NEX

l'BA6 FD06

0065 FBAB 60A0

F8AA FD00

0066- FBAC 0742-

0067 FBAE 0282

FBBB 0028

0369 FBB2 1101

0069 F864 1008

0070 FBB6 C1E0 NEX2

FBEB FD0A

0071 FS~A 61EB

FBEC FD04

0072 FB~E 0747

0073 FUCH U287

FSC:! EIB28

IH374 FBC4 1101

SELF

SBO 3

LIHI 3

Ll F.B,)300F

LOCR f\0,15

MOV @)F008,R6

s

ABS R6

Cl R6,)28

JLT NEX

JMP SELF

MOV m>FD06,R2

S t! >FD00, R2

ABS R2

Cl R2,)28

JLT NEX2

JMP SELF

HOV m>F00A,R7

S @)F004,R7

APS R7

Cl R7,):!8

JLT DEL

JMP SELF

INTEF\RUPT EVERY 38 MS

SAVE ~EG'D POS

CHECK TO SEE IF IN f'OS

APSOLUTE ERROR

ALLOW FOR SLIGHT E~~OR

IF NEARLY THEhE NEXT AXIS

OTHERWISE AWAIT liHEfihUPT

fiEPEAT THIS SEG, FOR All AXES

IF NEARLY THERE NEXT INSlRUCTI

OTHCRUISE AUAIT INTEhkUPT Bl175 FBC6 lBFF

8076 ~CHECK TO SEE IF LAST POSITION

A7.31

INT3 TXMI~A

0077 FBCS 06~0 DEL

FBCA FD12

0~78 FOCC C1A0

FBCE FD12

81379 FB00 0286

FB02 00"0

ore ~>FD12

MOV C!l)f012,R6

CI R6, 0

0080 FBOII 2321 JEO STOP

6001 FB06 C27B HOV .RB+, R9

0082 *OPEN/CLOSE .JAWS

0BB3 FBDB 80SA

0084 FBDA 1307

l10BS FBOC 0~CA
0006 FBDE 020C

F8E0 0120

0087 FBE2 100C

0008 FBE4 020c
FBE6 0100

11099 FBEB 1006

0090 FSEA 05CA OPEN

0091 FSEC B:!BC

FBEE 0120

0092 F8F0 1E0C

01393 FBF2 020C

F8F4 0100

c ·~10.~1

JEQ OPEN

INCT Rl0

Ll R12,)1:::!0

SPO 12

LI R12,)100

JMP SELF2

INCT ~10

LI R12, >120

SBZ 12

LI R12,)100

~1/01/~0

DECREn~E NO OF POSITIONS LEFT

SAVE

SEE IF LAST POSITION

IF LAST THEN SlOP ~DUTINE

OTHE~WISE NEXT DELAY

COMPA~E JAW INST WITH 1

IF EAUALS ONE THEN OPEN

INCREASE R10 ~y TWO

PORT AREA ON C~U

CLOSE JAWS

INTERRUPT A•EA ON CRU

AWAIT INTEf<RUPT

INCREASE BY TWO R10

FORT AhEA ON CRU

OPEN JAWS

0094.FBF6 10FF SELF2 JMP SELF2 AWAIT INTE~RUPT

0095 tRETURN TO CONT FROM INTE~~UPT IF THERE IS A DELAY

0096 FBF8 1E00 CONT SBZ 0

0097 FBFA 1003 SBO 3

0098 FBFC 0300

FBFE 0003

0099 F900 0200

F902 3110F

IH 00 F904 ,33C0

0101 F906 0289

F908 0000

0102 F90A 1605

0103 F9BC 0205

F90E FU06

0104 F910 CD74

Blf~S F912 C07tl

0106 F914 CD74

LIMI 3

LI

LDCR F<B, 15
Cl R9, 0

JNE SELF3

LI R'S, >F006

MOV *R~+, *R5+

MOV *R~+, lf:f\5+
MOV)!::Rq+,i:R'S+

0107 F916 10FF SELF3 JMP SCLF3

0108 *STOP ROUTINE

0109 F918 0300 STOP

F91A 0000

0110 F91C 2FA0

F91E F926

0111 F92£:1 0o!l60

F922 0080

0112 F924 03o10

LIMI 0

XOP l!IMESS,1~

a ~>B0

IDLE

INTER.UPT EVERY 38M5

CHECK TO SEE IF DELAY FIN

IF NOT AWAIT INTERRUPT

LOCATION FOR CMD

MOVE CMD TO)F006, >FD08, >F00A

AWAIT INTE~RUPT

DISENABLE ALL INTERRUPTS

PROGRAM FINISHED

~ETURN TO MONITOR

0113 F926 ~0 MESS TEXT 'fkOG~AM FINISHED RETURN TO ~ONITOR'

F927 52

A7 .32
'
I
I __________

------,

lNTJ TXMl~A 2.3.0 78 :!4tl 0l1:12:29 ~1/81/01! PttGE l10f:lq

F9:!A 52

F92B 41

PI:!C 40

FY:!D 28

F"9:!E ~6

F9:!F 49

F938 4C

F931 49

F932 ~3

F933 48

F934 45

F935 44

F936 28

F937 52

F938 45

F939 54

F93A S5

F93B 52

F93C 4E

F93D 28

F93E 54

F93F 4F

F94B 28

F941 4D

F942 4F

F943 4E

F944 49

F94S 54

F946 4F

F947 52

0114 F9~B 0D0A DATA)0D0A

0115 F94A 08 ~YTE 8

0116 *liHEf..RUPT ROUTINE

0117 *
0118 FA88 • AORG)FA00 Oh I GIN

0119 FA00 Ff,CB DATA)fAC0 NEW WP

01:!0 FA0:! FA04 DATA >rA04 NEW PC

0121 FA04 8300 LIMI 0 DISENAPLE ALL INTER~UPTS

FA06 0000

012:! FABB B::!eJB Ll h0, 3 NO UF AXES

FA0A 8003

01::!3 FABC eJ:!0B LI hB, 1 NO. TO SELECT ADC CHANNfL

FABC £1001

0124 FAtS 021::19 Ll R9,2 NO , 10 &ELECT ADC CHANNEL

FA12 0~1112

0125 FA14 l14El1 CLR ~GAIN GAIN z:::

FA16 EFF6

0126 *
0127 FA18 04L8 AXIS1 CLR ~MUXADR CflANNEL 0 ON ADC

Fl'.lA EFF8

0128 FA1C 1120A LI R1B,0 OISFLACEMLNT FOr\ DAC

FA lE 01tl0{')

0129 FA2B 100A JMP CON

0130 FA22 CUl'lB AXIS2 MOV R8,l!'MUXADR CHAimEL 1 ON ADC

A7.33

JN13 1 XMlkA

0131 f'f,26 0:"l::IA

f'H:!O ~l:J~2

LI

0132 f-A:!A Jlj09 JMP CONVRT

0133 FA2C C~09 AXIS3 MOV ~9.~MUXADR

FA2E LFFB

013q FAJB 020A

FA32 EFBE

0135 FA34 1004

0136 FA36 0203 CON

FA38 FDBB

0137 FA3A lj:!05

FI\JC FDB6

0139 *

LI

JMP CDNVRT

LI R3,)FllBB

LI f\'5, >FD06

0139 FAJE 0720 CONVRT SETO ~CONV

FMB EFFA

01q0 FAq2 0560 CHK

• FMq EFFc-- ----

01ql FM6 IIFD

01t12 fAtiB C060

FMA EFFE

01 q3 FMC CCC1

B1tl4 FAqE 607:1

e1.qs FA~a cea.t
01.q6 FAS2 07.q2

011!7 FA54 0282

f/\:';6 0028

01q9 FA:;e 1111

01q9 FA5A 0291

FA5C 0180

INV ~STATUS

J'LT CHK

MOV ~ADCDAT,Rl

MOV Rl,*R3+

S *~S+,Rl

MOV R1,R2

AE.S R2

Cl R2,)28

JLT LAB3

Cl R1, >180

3LT LAB!

H1/01/00

DISPLACEMENT FOR' DAC

CHAIINEL 2 ON ADC

DISPLAC~MENT FOR DAC

MEMLOC FUR ACTUAL POSITIONS

MEMLDC FOR REQ'O PDSITIOS

START CONVE~SION

CHECK DATA ~EAOY

ACTUAL PDS.IN Rl

MOVE TO MEMLOC

ACTUAL-CMD

SAVE

AE'SOLUTE ERROR

SEE IF NEA~LY IN POS

SEE IF E~~OR) MAX + VAL

01'50 FA5E 1104

1!151 FA61! CAAI! MOV ~>FD0C,~OAC2CR10) OUTPUT +t.BV

FA62 FD0C

FA64 .EFF0

01'52 FA66 1000

0153 FA6B 0281 LAB!

FA6A FEBB

01'54 FA6C 1504

0155 FA6E CAAB

FA70 FDBE

FA72 EFFB

0156 FA7q 10~6

1!157 FA76 CAS! LAB2

F/\79 EFFB

0158 FA7A 1003

0159 FA7C CAAB LABJ

FA7E FD10

FA9U EFFB

JMP TEST SEE IF ANY MORE AXES

Cl Rl,)FESB SEE IF EfiROR < MAX -VE VAL

JGT LAB2

MOV ~)F00E,~DAC2(R10) OUTPUT-1.8V

JMP TEST

MOV R1,~0AC2<R10) OUTPUT ACTUAL VELOCITY

JMP TEST

MOV ~>FD10,~DAC2<R10) OUTPUT ev

0160 FA82 0600 TEST DEC ~0 DEC COUNT FOR NO Of AXES

0161 FA84 0280 CI RB, 2

fAB6 0~02

0162 FABB 13CC

0163 FAOA 0280

f't.BC 0~01

J'El~ AXIS2

er f<B, 1

SE~VJCE AXIS TWO

A7.34

ltH3 l>MlhA

Ill M FAO(13CE

~165 FA9U CIA0

FA9:! F~l2

0166 FA9~ tl~86

rA9£ "~""
0167 Ff19B 1606

0168 FA9A 0200

FA9C F000

0169 FA9E 0:!~E

FAA0 F804

0170 FAA2 0~CF

0171 FAM 0380

0172 *
'0173 FAA6 0620 CON TO

FAAB F812

0174 FAAA 0200

FAAC F800

0175 FAAE 020E

FAB0 F8F8

0176 FAB2 B4CF

0177 FAB4 0380

0178 *
0179 *
1!1180 *
1!181 *

JEQ AXIS3

MOV C!)F812, R6

Cl f<6,0

JNE CONTO

LI Rt3, >FBC0

LI Rt4,STAI\T

CLR R15

RTWP

OEC ~>F812

LI R13, >FBI10

LI R14,CONT

CLR Rl:i

RTWP

1:11/01/~l1 f AGC fH:m6

&[hVICE AXIS THhCE

SAVE DtL COUNT FhOM OLD ~9

If C)0 GO TO CONTD ~OUTINE

WP FOR MAIN F~OGRAM

PC FOR RETURN

CLEAR STATUS

~ETU~N TO MAIN P~OG~AM

OEC COUNT IN R9 FOR DELAY

WP OF MAIN PROGRAM

PC FOR RETURN

CLEAR STATUS

~ETURN TO MAIN PROG~AM

0!182 *TSR MEM SPACE

0183 *
01134 FfAA AORG >FfAA

0185 FfAA 0420 BLWP ~>FA00 GO TO)fA00 TO PICK UP NEW PC&

FFAC FA00

0186 FFAE 0380 RTWP

1:1187 END

·-~- ·- - ----- -----

INT3 TXMIRA 2.3.0 78.244 em·t2:29 01/01/00 PAGE 0007

AOCDAT EFFE AXIS! FAIB AXIS2 FA22 AXIS3 FA:!C

CHI< FA~2 CON FA36 CONT FBFB CON TO FAA6

CONV EFFA CON\.'RT FA3E DACI EFF:! DAC:! EFF0

OAC3 OEFE DEL F8C8 GAIN EFF6 LAB! FA68

LAE'2 FA76 LAB3 FA7C MESS F926 MUXADR EFF8

NEX F8A4 NEX2 F8~6 OPEN FBEA R0 0000

RI 0001 RIB 000A Rll 0008 R12 eeec
Rl3 0000 RI~ 000E R15 000F R2 0~02

R3 0003 R~ 0004 RS 0005 R6 0006

R7 0007 FB 8008 R9 0009 SELF FBC6

SELF2 F8F"6 SELF3 F916 SF ACE F803 START FB84

STATUS EFFC STOP F918 TEST FA82

l' -'JB ERPORS

A7.35

'•

l XX~EF 2.3.0 78.244 001 13115 ~l/01/0~ ~AGE 0~01

AUCDAT ~01(1 0142

AXJtil 0127

AX1~2 0130 ~162

ftXIS3 0133 ~164

CHK H140 0141

CON 0136 0129

CDNT £:1096 017'5

CONTD 0173 0167

CONV 0016 0139

rONVRT 0139 0132 0135

DACI 0012

DAC2 0013 Bl:il 0155 0157 0159

DAC3 0014

DEL 0077 0074

GAIN 0017 0125

LAB I IH53 0150

LAB2 01S7 0154

LAB3 'fU59 ~148

MESS 0113 0110

MUXADR 0015 0127 0130 0133

NEX 0064 0062

NEX2 0070 0068

OPEN 0090 0084

RB 0049 0050 0056 0057 0099 ~100 0122 0160 0161

0163

RI 0083 0142 0143 0144 £:1145 0149 0153 0157

RIB 0036 0083 0085 £:1090 0128 0131 0134 0151 0155

0157 0159

R12 t:J0'10 ~045 0086 lil188 £:1091 0093

Rl3 0168 ~174

hl4 0169 0175

1.15 ~170 IH76

R2 01!!64 0065 0066 0067 BlliS 0146 0147

~3 0021 0022 0023 0024 0025 0026 0136 0143

R4 0038 0042 t1043 0044 0104 0105 0106

RS el039 El1::.142 0043 0044 01B3 0104 0105 0106 0137

0144

f\6 U059 0059 11060 0061 0078 0079 016S 0166

R7 0070 0071 (::1072 ~073

R8 fl037 0081 01:!3 0130

R9 0020 0081 0101 0124 0133

!iELF 0075 0063 0069 0875

SCLF2 ~094 01::1B9 0094

f:ELF3 0107 &102 ~107

SPACE 0088 0019

!::TART 08~3 (!1169

5TATUS 0011 0140

STOP 0109 1;::11180

lEST 0161::1 0152 8156 tll58

THE hE ARE 1::1(146 SYME'OLS

A7,36

•

DATA TXMikA

01:!01

"002

0003

01:!04 0000

000:1

0006 0000 02E0

eee2 rsee
0007 0004 2FAB

0006 011C'

lOT 'DATA'

*PROGfiAM TO INPUT DATA

•CALLED DATA ON JANJ DISC

RORG

LWPI)FB00

XDF' l'MESS9, 14

0008 0008 2E41 NULL9 XDP Rl,9

0009 0~0A El008'

0010 E:I00C 1:1008'

8011 000E 2FA0

0010 0092"

DATA NULL9

DATA NULL9

XOP (!IME'SS1, 14

0012 0012 2E42 NULL! XOP R2,9

0013 0014 0012' DATA NULL!

0014 0016 0012' DATA NULL!

001:! 0018 CB01

00IA FDI6

0016 001C 0208

BBIE FD20

0017 1:!0~0 020A

0022 FDAB

0018 0024 0201

0026 FC20

0019 0028 C802

002A FD12

0020 002C 2FA0 MES

002E 00AB'

MOV RI,~ >FD16

LI RB,)FD20

LI Rl0, >FDA0

LI Rl,)FC20

MOV R2, I!>F012

XOP ~M£552,14

0021 ~030 2E71 NULL2 XOP *R1+,9

"022 ~032 0030' DATA NULL2

I:S023 0034 BE:I30'

0024 0036 2FAB

B03B .eece'

DATA NULL2

002~ BBJA 2E71 NULL3 XDP *R1+,9

0026 003C 003A'

0021 00JE 003A'

0028 0040 2FAB

0042 0BD8'

DATA NULL3

DATA NULL3

XOP ~MESS4,14

0029 0044 2£71 NULL4 XOP *R1+,9

0030 0046 0044'

C:t031 0048 00441

DATA NULL4

DATA NULL4

~032 004A 2FAB NULL5 XOP mM£555,14

004C 1:10Ef#

"033 B&q£ 2E7B

0034 ea~a eeqA1

aa35 ees:? eeqA'

XOP *"-8+1 9

DATA NULL5

DATA NULL~

0036 00~q 2FAB NULL6 XOP ~MESS6,14

0056 00fB'

0037 ease 2E7A

eeJa EJesA t~esq'

aaJ9 ease BB!iil'
ee.qa BBSE 0602

BeJqt 3060 028:?

XOP *R10+, 9

DATA NULL6

DATA NULL6

DEC R2

Cl R2, e

t:lt/01/00 PAGE 0~01

UP

NO OF TIMES CONT SEQUENCE

INPUT VALUE INTO RI

NO OF PDS IN SEAUENCE / ..
-·- -·-...

NO OF TIMES CONT SEAUENCE

BASE ADD FOR TABLE OF DELAYS

PASE ADD FOR WRIST OPEN/CLOSE

EASE ADD FOR TABLE OF POS

SAVE NO OF POSITIONS

FOSITION OF AXIS ONE

-- ------- ---- -POSITION OF AXIS TWO

POSITION OF AXIS THREE

TIMES GO ROUND DELAY LOOP

VALUES TO OPEN/CLOSE WfilST

DEC.NO OF POS REMAINING

A7 .37

DATA TXMH<A 01/01/~0

~062 ~000

0042 0064 16E3 JNE MES IF NOT FIN, INPUT DATA

~043 0066 0460 e &)BB ELSE ~ETU~N TO THE MONITOR
~&,:,68 0080

1>~44 006A 0340 IDLE

0045 006C 50 MESS TEXT "PROGRAM FINISHED RETURN TO MONITOR'

1>060 52

~06E 4F

006F 47

0070 52

0071 41

0072 40

0073 20 , ..
• 0074 46 -·· -·-~ . 0075 49 '

...
0076 4E ' ' "

,.
0077 49 - ' . -- .. -

..... ..,. .
0078 53 ., ; -- ' .

" 0079 48 :
007A 45 ! •

1 0078. 44 "
007C 20

0070 52

007E 45

. 007F 54

0080 :;:;

0081 S2
0082 4E

0083 20

0084 54

0085 'IF

0086 20

0087 4D

0088 4F

0089 4E

00BA 49

0088 54

00BC 4F

00BD 52

0046 00BE 0D0A DATA)0D0A

01>47 0090 00 BYTE 0

1<1048 0092 000A MESSl DATA)000A

0049 0094 4E TEXT 'NO OF POSITIONS'

0095 4F

0096 20

0097 'IF

0098 46

0099 ::'0

009A 50

009B 'IF

009C 53

m:l90 49

0~9E 54

~B9F 49
-- --- - - - --- -

A7.38

DATA TXMIRA 2,3.0 7B.24,q 001161:i7 ~1/01/00 PAGE tll103

BBAB ~F

CC AI ~E

00A2 53

ee:;e 00A4 COCA DATA I CD BA
'. 00~1 0BA6 00 BYTE B

00:i2 00AB 000A MESS2 DATA)0DBA

00S3 0BAA 50 TEXT 'POSITION OF AXIS 1'

00AB qr

BCAC 53

BBAD ~9

00AE 54
-· BBAF

,. ..
~9

I 0080 ~F
-·· ,_

I '
.....

I .
0081 ~E

' ;
~) 0082 20 -

' .
0083 ~F

-..
' ' . . ; . 0084 ~6. . .

: 0085 20

0B86 ~1
~

0087 58

BB8B q9

0089 53

'llBBA 20 ..
BBBB 31

0054 CBBC COCA DATA)000A

0t:IS5 00BE BB BYTE 0

00:t6 00CB 0DBA MESS3 DATA)COCA . -
00:i7 00C2 50 TEXT • POSITION OF AXIS 2'

00C3 ~F . • ..
. 00C4 53

.. ~

00C5 ~9

00C6 5q

,'00C7 ~ ~9 - .
' 00CB I ~F

00C9 ~E

00CA 20

0BCB ~F

00cc ~6

00CD 20

00CE ~I

0BCF :;a
BBDB q9

0001 53

0002 2B

0003 32

0059 0004 000A DATA I BD BA

011:i9 0006 00 ~YTE B

0tl60 0008 BDBA MESS~ DATA 10DBA

0061 000A 50 TEXT • POSITION OF AXIS 3'
•

eaos qr

00DC 53

0000 ~9

eeoE 54

000F q9

A7.39

DATA TXHlkA 2. 3. B 78,2.q4 1::10116157 Bl/~1/00 PAGE 1::1~04

00EB qF

00EI qE

00E2 20

0BE3 qf

eeEq q6

0BE5 20

B0E6 q1

00E7 :;a

0BES q9

00E9 53

00EA 2B

B0EB 33 , -. .
BB62 BBEC BDBA DATA lBDBA -·· ' ---... . '•" .. . --
0063 BBEE BB BYTE l!l .. ,..

0B6q 0BEF qq MESS:! TEXT I DELAY" -~" .. ; ... '"~ c , .
! -·

0BF0 q:; t:-
1- .,. ' . -~

00F1 -qc -- ' .::o .
00F2 41 ' - '.

• B0F3 59

01!16:1 00F4 000A DATA l0D0A

0066 00F6 00 BYTE 0

01!167 00F8 000A MESS6 DATA l000A

01!168 00FA 49 TEXT "INPUT 1 FOR OF-EN 1: 2 FOR CLOSE"

00FB qE

00FC :;I!)

; 00FD :;:;
~-

ll0FE :l4

00FF 20

-· 011l0 31
,-

0101 2B

0102 46

ll11lJ '4F

0104 52
·,

BlB:i :• 2B

1!1106 4F

011!17 :;0

B1BB 45

0109 4E

010A 20

010B 26

010C 20

ll10D 32

010E 21!1

010F 46

0111!1 4F

0111 52

0112 20

0113 43

0114 qc

0115 4F

0116 53

0117 45

0069 0118 000A DATA)B00A

fll17B BllA 0B BYTE B

A7,40

DATA TXMif,A 01/01/00 f'AGE l:1005

0071 011C 0DBA MESS9 DATA lBDBA

0072 011E 4B TEXT 'HOW MANY TIMES IS THE SEOUENCE r.EPEATED?'

011F 4F

0120 ~7

, 0121 20
, .

0122 40 ·.
' .

0123 41

" 0124 4E

0125 ~9

0126 ~ 20

0127. S4
< •

0128 49

0129 40

012A 45
;• 012Et 53 ,,

012C 20

53:.- ... ' ... -

20 ' ':·: . ~. . ~ ..
.. .:-, ~

- • 0131- 4B • ._,._ - 1' . '
··-.-

.·

0132. 4~

0133 20

:- 0134

f 0135 45

0136 :a
0137 55

- . - ..

. , ·45

4E .. '
,_ 013A 43

... _ -~ :0: 0138 .q:; ..
013C

,. 0130
... 013E ~, . .

013F i

0148

8141

8142

0143

20 - -.

52

45
:50 :~

4~ c •• -
41

::14

45
0144

014~

44

JF
8073 0146 000A

0074 0148 0000

007:5

DATA l000A

DATA l0000

END

-·

....:; ___ ,

A7.41

, ..
.·- .- .. - . . -.. '-

DATA TXMIRA

• HES 002C • MESS

• MESS3 00C0 , HESS4

• HES59 011C • NULL!

' NULL4 00qq • NULLS

R0 0000 Rl

R12 000C R13

R2 0002 R3

R6 0006 R7

0000 ~RJ;DRS

TXXREF' 2.3,0 78.244

MES •• 0020 00q2 -
MESS 00q5

HESS1: 0048 0011

MESS2 ~ · 0052 0020

HESS3 0056. 0024

. HESS4 0060 0028-

HESS:S 00M 0032

'MESS6 0067 0036.

HESS9 0071 0007

NULL1 0012 0013 0014

NULL2 0021 0022 0023

NULLJ 0025 0026 0027

NULL4 I 0029 0030 0031

NULL:S 0032 003q 0035

NULL6 0036 0038 0039

NULL 'I 0008 000'1 0010

R1
'

eEme 0015

R1B' ". '. 0017 0037

R2 ,. i 0012 0019

RB 0016 0033

1HERE ARE 0020 SYMBOLS
.~ -·------ ------- ~

2.3.0 79.244 00J16J:57

006C • HESS1 0092

0008 • HESS:S 00EF

0012 • NULL2 0030
00qA • NULL6 0054

0001 R10 010BA

0000 R14 0B0E

0003 Rq 000q

0007 RB 0008

00117126 01/01/EIB

• • .. w ~-

-~' ~ • •r ,.~~ ~ • ·. ~ • I ° C ~ -. . ~. . " .

0018 0021 0025 0029

00q0 00q1

A7.42

01/01/00 PAGE 0006

• MESS2 00AB

' HESS6 00FB -
• NULL3 003A . " .
• NULL9 ea ea

R11 0009

R15 000F

R:O 0005

r.9 0009

--·
f'AGE 0~01

- - -....------ ~

-.- ·-~- . ;

~ .-_ - .. ""
-:-. . :-

1NT4 TXMihA :!, 3.11 78, 244 t:/{111111 :!1 01/11\/l1{:J f A&E ~001

BHBl lOT 'INT4'

mH1:! *PhOGHAM TO MUVE 3 AXES

Hl-103 *US INU INTERF.UPTS

"0H4 '*TIME DC LAY

il\:lt05 •
li~~6 *
0007 FB00 AOF.G >FB00

0008 FB00 SPACE BSS 32

0009 *
0010 EFFE AD COAT (QU lEFFE

0011 EFFC SHoTUS EQU lEFFC

001::? EFF.:::!: DAC1 El~U >EFF2

aldt3 · EFFB DAC:? EQU lEFF0

0014 DEFE DAC3 ECW)DEFE

0{'115 EFFB MUXADR EQU lEFFB

0016. EFFA CONV ECW >EFFA

0017. EFF6 GAIN CQU lEFF6

0018' *
I 0019 FB2B 02E0 LWPI SPACE

FB22 F800

0020 *CONSTANTS FOR VELOCITIES

fl0:!1 FB24 021!13 LI R3, >180 MAX +VE VALUE

F026 0100

0022 FU28 C803 MOV R3,1!>FD0C

F92A FD0C

0023 F82C 0203 LI R3, lFEB" MAX -VE VALUE

F02E FEBB

0024 F030 CB03 MOV R3,@ >F00E

FB32 f"DBE

11025 F834 0203 LI R3,0

F836 BB00

0026 F83B CBB3 MOV R3,@)F010 ZERO VEOCITY

FBJA FD10

00.:::!:7 *
~028 FBJC 04C9 CLR R9 REGISTER FOR MEM FOR DELAYS

8029 FOJE 04E0 CLR @)F000 MEMLOC FOR ACTUAL POS

FB40 FD00

0030 FB"':! e.qEe CLR ~>FD02

F844 FDI!I:!

0031 FU46 04E0 CLR I!>F00.q

F84B FD04

0832 fB.qA 04£0 CLR @)f006 MEMLOC, FOR ~EQUIREO POS

P84C FD06

100J3 ra.qE B4E0 CLR ~>FD08

F850 FD08

0034 F852 04E0 CLR l!)fOBA

F8~4 FDBA

0035 *
b036 F856 02Pl8 LI R8, >FD20 MEM.FOR START OF DELAYS

FB58 F020

8037 F05A l:J204 LI R.q,)fC20 MEM,FUf.. STArn OF POSITlONS

FO~C FC20

(1038 IO'!:i£ 0~03 LI f..3. >FD08 MEM FOF. STAr<T OF WhiST YAIJ

ro6a FDOI!t

A7.43

k
I
I ,

INT4 TXMIRA

0039 f862 02EIA

FB64 FOA0

0040 FB66 0208

FB6B HB0

! 0041_ FB6A 0201 •

F86C 0001

0042 FB£E 0205

FB70 F006

0043 FB72 C074

0044 FB74 CD74

004:5 FB76 CD74

, 0046 FB7B 02BC

FB7A 0100

0047 FB7C !EBB

I ll04B FB7E 1D03
I' ,

0049 FBB0

• '' • ,• FBB2 ..
0300 '

0003

' eesa FBS4 e2ee
FBB6 0003

,· 00:51 FBBB 33C0

2,3,0 76,244 00101127 01/01/00 PAGE 0002

LJ RIB, >FDAB

LI Rl1, IH00

LI Rl, 1

LJ F\S,)FOB6

MOV Jt'R4+,$R:i+

MOV *R4+,*RS+
MOV *R4+, .. f<S+

LI R12,)100

SBZ B
SBO 3-

LIHI 3 ·

; .. -

--'

HEM FOR START OF G~IPPER

HEM FOR START OF WRIST SWING

VAL FOR USE IN CDHP FOR WRIST

MEMLOC FOR REQ'O POS

MOVE REQ'D POS F~DH FB00

ONWARDS TO FD06,FD0B,F00A

BASE ADDRESS

INTERRUPT MODE

,•.ENA~LE INTERRUPT ON 9901

~ :-. ENABLE INTERRUPT ON 9900 ~

' ... "' ~.. ~

COUNT=l CLOCK MODE .

LDCR RB, 1:5 START COUNT

*RETURN TO START IF NO DELAY
---e0:iJ-- --.----- * ~ ---------

00:54 FBBA !EBB START

0055 FB8C 1DB3

0056 FSBE 030B

F890 0003

0057 FB92 0200

F894 30BF

00:58 FS96 J3CB

00:59 FB98 C1A0

FB9A FOBS

0060 FB9C 61A0

I. 'I" - F89E ~002
0061 F8A0 0746

0062 FBA2 0286

F8A4 0028

0063 FBA6 1101

0064 FBA8 1011

006:5 FBAA CBAB NEX

FBAC FD06

0066 FBAE 60A0

FBBB FD00

0067 FBB2 0742

0068 FBB4 0282

F8B6 0028

0069 FBB8 1101

0070 F8BA 1008

0071 F8BC C1E0 NEX2

FaBE FDBA

0012 race 61EB

FBC2 FD04

0073 F8C4 B747

0B74 FBC6 0287

FBCB 0029

SBZ B

SBO 3

LIMI 3

LJ R0,)300F

LDCR R0,1':;

MOV ~>FOBS, R6

s I!>FD02,R6

ABS R6

Cl R6,)28

3LT NEX

3MP SELF

IIOV ~>F006,R2

S I! >FOB0, R2

ABS R2

Cl R2,)28

3LT NEX2

3HP SELF

MOV I!)FOBA,R7

5

ABS f\7

Cl R7, >28

lNTE~RUPT EVERY 38 MS

SAVE REG'D POS

CHECK TO SEE IF IN POS

ABSOLUTE ERROR

ALLOW FOR SLIGHT E~ROR

IF NEARLY THERE NEXT AXIS

OTHERWISE AWAIT INTERRUPT

REPEAT FOR ALL OTHER AXES

A7.44

,., ~~
,~ ~ .. ~

!.. • • • ~

.. __ : -
'

·-·

' .

- '

,. ..

.•

1NT4 TXMIRA 2.3,B 78.244 0BI01127 BI/01/0B PAGE B0B3

·. JLT DEL IF NEARLY THERE NEXT INST

l
B07:i FBI:A 1101

BB76 race IBFf

BB77

SELf JMP SELf OTI!ERWISE AWAIT INTERRUPT

*CHECK TO SEE If LAST POSITION

0B78 FBCE B620 DEL... DEC I! >FDI2 ..

~ FBDB f012

0079 FBD2 CIAB HOV I!)f012, R6

•• f8D4 FDI2

B08B f806 0286

FBD8 0~00

008l FBDA. 132F

Cl R6,0

JEO STOP

8082 FBOC C278 ; MOV *RS+, R9

BBBJ ' *OPEN/CLOSE GRIPPER

0BB4 fBDE 80:-lA;,. ' C *RIB, RI
-

"085 FBE0 13BS ..

• 0B86 FBE2 0SCA ·~

0BB7 f8E4 B2BC

., . , F0£6 0120

,• : ,-BBB8 FBE8 IOBC .. .
IBB4 ·· '. 0B89 FBEA

I ·,
0090,f8EC 05CA ' OPEN

0091 FSEE 020C

F8FB BI2B

0B92 FBF2 1E0C

0B93 F8F4 8053 YAW

·BB94 f8F6 13B3

' BB95 f8F8 05C3

• B096 FSFA IDBO

9097 FBFC 1002

0"98 FSFE 05C3 UP

0099 f9BB 1E00

JEO OPEN

INCT RIB •

LI Rl2, >12B
' .

SBO 12

JHP YAW ·­

lNCT RIB

LI Rl2, H2B

SBZ 12

C tR3, Rl

JEO UP

INCT R3

SBO 13

JH,P SWING

lNCT R3

SBZ 13

etee F9B2 sese SWING C *Rll,Rl

•. , ' ~IBI F9B4 1305

1!102 F9B6 !OBE

01B3 F9BB B5CB

1!104 F9BA 02BC

F9BC 01BB

01B:'l F9BE IB04

8106 F91B 1E0E ANTI

1!107 F912 B5CB

BIB8 F'll4 B2BC

f916 Bl00

010'1 F918 10FF SELF2

JEO • ANTI

SBO 14

INCT Rll

Ll · Rl2, >10B

JHP SELF2

SBZ 14

INCT Rll

Ll R12,)10B

JHP SELF2

;

DECREASE NO OF POS LEFT . ' . '

SAVE

SEE IF LAST POSITION

IF LAST THEN STOP ROUTINE

OTHERWISE NEXT DELAY

' SEE IF OPEN OR CLOSE

IF EQUAL TO ONE JMP TO OPEN

INCREASE RIB BY TWO

· CRU ~ASE ADDRESS-
~ .. ~ ,:. ~ . ·, "'

-~ '- - - -­
' - . -·

CLOSE JAWS .

OPEN JAWS

SEE WHICH YAW MOVEMENT

INCREASE BY TWO R3

HOVE YAW DOWN

YAW UP

SWING MOVEMENT OF URIST

CLOCKWISE HOVE OF WRIST

INCREASE Rll BY TWO

CRU A~EA FOR INTE~RUPTS

AWAIT INTER~UPT

ANTI-CLOCKWISE MOVEMENT OF WRI

AWAIT INTE~RUPT

011B *RETURN TO CONT FROM INTERRUPT IF THERE IS A DELAY

0111 F91A IE0B CONT

0112 F91C 1003

0113 F91E 03BB

f92B 0003

8114 F922 020B
F92.q 300F'

011~ F926 33C0

0116 F928 0289

f92A 0000

0117 F92C 1685

0118 F9::!E 020:i

SBZ B
SBO 3

LIMI 3

Ll Re, >300F

LDCR F<B, 15
Cl R9, e

JNE SELF3

LI R5, >F006

JNTE~RUPT EVERY 38MS

CHECK TO SEE IF DELAY FIN,

IF NOT AWAIT lNTEfi~UPT

LOCATION FOR CMO

A7.45

. ...- ..
_....

•
. . .

INH TXMl~A

F930 FD06

11119 F932 C074

01Z0 F934 CD74

,. 0121 F936 CD74

0122 F938 111FF

0123

0124 F93A 11300

F93C 0000

, 0125 F93E 2FA0

·' F940 F94B
11126 F942 0460

F944 11080

0127 F946 11340 ••

5ELF3

*STOP
STOP

01/01/00 PAGE 0£104

MOll rR4+, *R5+ MOI/E CMO TO >FD06, >FOBS, >FDBA

MOll *R4+, J:R':i+

MOll rR4+, »:11.:5+ .. _

JMP SELF3 ·. AWAI! INTERRUPT
~OUTINE'

LIMI " DISENABLE ALL INTERRUPTS

PRDG~AM FINISHED

B @)80 RETURN TO MONITOR

IDLE

0128 F94B ~0 MESS TEXT 'PROG~AM FINISHED ~ETURN TO MONITOR'

- . "
\

I,.,~.:' '

..
F949, 52

' F94A 4F
' . F94B 47_ ..
': F94C ~2

F940 41

,F94E 40

F94F' 20
--F9:i0 -- ---·

'.

0129

11130

0131

1!132

0133

F9:51

F952

F953

f954

F9~5

F9:56

F957

F95B

f959

F95A

F9:SB

F95C

F95D

F95E

F95F

F960

F961

F962

F963

F964

F965

F966

F967 •

F96B

F969

F96A

F96C

013.11 FE'2B

46

49

4E

49

53

48

45

44

20

:S2

45

4E

20

:54

4F

20

40

4F

4E

49

:54

'IF

:52

BDBA

BB

013:5 F82B FCBB

DATA)0011A

BYTE 0

*INTERRUPT ROUTINE

* AORG)F820

DATA)FCIIB

,.·
• ... r

. -

ORIGIN

NEW WP

A7.46

, ..
-·· -·-......

- •.

~

.•

INT4 TXMJRA 2.3.0 78.244 00101127 01/01/00 PAGE 0005

f • '

..

0136 FB22 FB24

· 0137 FB24 0300

FB26 0000

BI3B FB2B 0200

FB2A 0003

0139 FE'2C 0::?09

FB::?E 0001

0140 FB30 0209,

• I F832 0002

0141 FB34 04E0

FB36 EFF6

1!142

0143 FB38 04E0

• •• FB3A EFF8

*
AXIS I

' - .

DATA lFB.24

LJHI 0

LI RB, 3

LI f\8, 1

LI R9, 2

CLR ~GAIN

CLR ~MUXADR

• 0144 FB3C 020A . • ·., LI Rte, e · · ..
, • ' • , -.. FBJ£ 0000 ~ . ; . '· j

• >' ' ~I •

1!14~ FB40 100A ·• ';: IMP
' • 0146. FB42 C8e8"' .AXIS2 :, MOll

FB44 EFF8

CON .. r _:, .. . ' ..
RB, eMuX'AoR .. · -·'

0147 FB46 020A

· 'Fll48 0002

0148 FB4A 1009

LI RlB, 2 ~

IMP CONI/RT'

0149 FB4C CB09 AXIS3 MOll R9,~MUXAOR

FB4E EFF8

Eu:~e re:;e e2eA
FB52 EF0E

01~1 FB54 1004

' 81:52 FB:56 0203 CON

FBSB FD00

• 01:53 F85A 020:5

• FB~C FD06

01:54 . *.

LI R10,)Ef0E

IMP CONI/RT

LI f'<3,)f0fd0

LI RS,)f"006

0t'!i:t FE:SE 0720 CONVRT SETO ~CONI/ . . .
FB6B EFFA

'
01~6 FB62 1!560

Fll64 EFFC

0157 FB66 11FD

0158 FB68 C060

FB6A EFFE

0159 FE6C CCC1

0161! FB6E 6~7~

0161 FB70 C0B1

0162 FB72 0742

1!163 FB74 0282

CHK IN\/ @STATUS

ILT CHK

MOll @ADCDAT,Rl

MOV R1,*R3+

S *RS+, Rl

MOV Rl,R2

ABS R2

Cl R2,)28

ILT LABJ

Cl Rl,)180

ILT LAB1

NEW PC

DISENABLE ALL INTERRUPTS

NO Of AXES

NO. TO SELECT ADC CHANNEL- " ~.--

NO .TO SELECT ADC CHANNEL

GAIN -= 1

CHANNEL 0 ON ADC
. . .

DISPLACEMENT FOR OAC

' ' . -- .. " . -

DISPLACEMENT FOR DAC

. . . '

CHANNEL 2 ON ADC

DISPLAC~MENT FOR OAC

MEMLOC FOR ACTUAL POS

MEMLOC FOR ~EG'O POS

START CONVERSION

CHECK DATA READY

ACTUAL POS IN Rl

MOVE TO MEMLOC

ACTUAL-CMD

SAVE

ABSOLUTE ERROR

SEE If NEA~LY IN POS

. '

SEE If ERROR) MAX + VALUE

FB76 0028

0164 FB78 1111

0165 fB7A 0281

FB7C 0180

0166 Fl'7E 1104

0167 FBB0 CAA0

FPB2 Foec

MOV ~)F00C,@OAC2(RJe) OUTPUT +l.BV

FBB4 EFF0

0168 FB86 1000

8169 FBBB 0281 LAB1

IMP TEST

Cl Rl. >FEBB

SEE IF ANY MO~E AXES

SEE IF E~fiOR (KAX -VE VALUE

A7.47

' ' ' '

' . ' j

'-

,. ..
.- .

•
.•.

INT4 TXMIRA

''

f~BA FEB0

0170 FIJBC 1~04

0171 FBBE CAA0

FB90 f00E

JOT

MOll

01/01/00 f'AGE l::t006

LAB2
Q)f00E,~DAC~CR10) OUTPUT-1,6\1

: ',. ' ' FB92 Eff0

0172 FB94 1006
'017:1 FB96 CAB1

_. -
; ' : ' -. :

. , FB9B Eff0

--
0174 FB9A 1003

017:1'f&9C CAA0

• , FB9E FD10

.

' .. -
LA82

..
LAB3

'
'

: FBA0 EFFB , .. , •. -.

JMP
MOll

JMP

MOll

! .. - ... ' • TEST . , ~~ .
RI, ~OAC2C R10) OUTPUT ACTUAL VELOCITY

TEST ';
~)f010,~DAC2CR10) OUTPUT Ill/

;.; '1!1176 FBA2

.: . 1!1177 FBA4 ~
0600

0280

TEST
:

OEC R0 DEC COUNT FOR NO Of AXES

Cl R0, 2. . .
FBA6

,0176 FBA8

·.1!1179 FBAA
19 ' ' '

"t.'' ' ; FBAC
•• \' 'J

0180 FBAE ..
11181 F'BBB

0002 - - --
13CC - JEQ AXIS2 SERVICE AXIS TWO

~ - - ;.· .· 't::. ;_ .
0280"' ~ - CI . F.0, 1. -- ., . ..- - ' -- .. ~· ,. -

< t • .. , •"" - •A • oo ... • l •_,.< •• ~ .f • • • r o

0001::..-:--- .. ~3- ·_: .. ~-:. -~-:--- .. : .. :.:_;.:~'":.::-: ~:<.:".. ' _,-. -~· -
13C_E ...•• ~·-· ·:·. 3!'0. AXIS3"_.: ~:. SERVICE AXIS THREE -" -·
C1A0·• '• MOV ~ lfB12, R6- SAVE. DELAY COUNT HOH OLD R9. •

-' FBB2 FB12 .. ' 0182 FBB4 0286 ·.·--·-·
,· FB~6 0000

'. 0183 FBBB 1606

0184 FPBA 0200
- .: ' FBBC F8ee

IUS:. FBBE 020£

F~C0 F88A

0186 FBC2 04CF

0187 F&C4 0380,'.

11188 "' _ 0189 FBC6 0620 CON TO
·'. .. - FBCS F812

• 0190 FBCA 0200
' recc r8ee

1!1191 F8CE 020E

FBDB F91A

0192 FBD2 04CF

0193 FBD4 0380

11194 "'
019:; *
0196 *
0197 *
11198 USR

0199 *
0200 FFAA
0201 FFAA 0420

FFAC FB20 ·

0202 FFAE 0380

li203

JNE CONTD

Ll R13, lFB00

LI Rlti,START

CLR R1:S

RTWP

OEC @)f812

LI R!J,)f800

LI R14,CONT

CLR R1:1

RTWP

MEM SPACE

AORG >FFAA

BLWP @)f~20

RTWP

END

IF'< >,0 GO TO CONTD ROUTINE
WP FOR MAIN PROGRAM

PC FOR ~ETURN

CLEAR STATUS

~ETU~N TO MAIN PROGRAM

DEC COUNT IN OLD 1'<9, DELAY -··

WP OF MAIN PROGRAM

PC FOR RETURN

CLEAR STATUS
RETURN TO MAIN P~OGRAK

GO TO)f'B20 FOR NEW PC&WP

A7 ,48

. ' '
-.

, ..
• ---. -- ..

1NT4 TXMIRA 2.3.0 78.244 CBs01r27

•

ADCDAT EFFE

AXISJ Fll4C

CONTO

DAC2

LAB!

Ff!C6

EFFB

I'll BB
MUXADR , EFI'S .: • '

Re -·
Rl2

R2

R6

SELF

START

TEST
'·

0000

000C

0002

0006

FBCC

FBBA
FBA2

0000 ERRORS
'•

... , .
·'

, . -
-- ------:r--r . -··' ::;-_·.- ~ '

··-;.··=.._.-~ _ .. -
•; :~---·::·~~;._:.:;r: "

- ·- ,•'7'9" or' -··-

- '., .·
l .. , I

~:-

·- . -.

ANTI

CHK
CONV

DAC3

LAB2

NEX
RI

RIJ

F910

FB62

EFFA

DEFE

1'896

FBAA
0001

0000
RJ 0003

R7 0007

SELF2 F918

STATUS EFFC

UP FBFE

--------~

'-... -
•. -... r

'_-::

~, --

AXIS!

CON

CONVRT

DEL

LABJ

NEX2

Rl0-

Rl4

FB38

FE. 56
Ff'"E.

FBCE

FB9C
Feac·
000A

000E·
R4 0004

RB 0008

SELFJ ·-F93B

STOP F93A

YAW FBF4

• w" •

::~- .

.,

-.

'·

-.·-

- ..

A7.49

01/fll/00

·. ·-

AXIS2

CONT

0AC1

GAIN

MESS

OPEN

Rll
Rl5

R5

R9

SPACE

SWING

- .''

·- . . . '

f•AGE BB87

1'842

F91A

EFF2

EFF6

1'948

FBEC
0008

eaaF
eees
8009

FBB0

F902

·,

.. - . '

,. ..
' --·
• . ..

" -.~ ... - -- -" . . - --.. :; - -- ._ ~·- ~-.'.-:_·_:_~-~--.~ .:.~--

~ .. -.' ;

. , --- ' -- ... ·. ,. - . -­. __ , ..
. - -... - ·- "' --.-

... _., :>.: :·_)

·- . , ·-"' - -- .. -
-.. -.--· . ..

-.

--
•: .. " ',

. '

-''

\.--

I , • I I I < " /U '.o I ' '
,.,

~·t/~11/(J{J r ,"'f t (1fill1

(,,}r!Jtll 1JUIU •. t··d

... ~ II 1-11116 t•Hll

r.xr~ 1 IJl•J \

AXI ~.:! !iLJ lj{j IJtJn

r.xrL.;·~ 111 t~'l 1'1111'1

Ult< 111 • .c. !l l ~"

CUN "11~2 ~I] •1~

CONT ~1111 ltl91

CUNTD Ul8'1 c:u o:5
CONV 1:)[:116 01~~

LON'Jf\T 01~5 01'10 l-11:;1

DACl (1012

DAC2 H£:113 0167 0171 lit 7 .s l-11/~,

OACJ 001"1

DCL &078 [1('17~

G~IN UIJ17 U141

LAE-1 0169 !H66

LAE2 0173 !1170

LAE:3 ell]~ IH6tl

M[SS Hl2() 01::!5

MUXADR mns 0143 0146 1::1149

NEX Bel6S ~063

NEX2 0071 ~069

OPEN ~1090 UOO:J

F.0 "-l050 ~1051 l11::l57 0058 IH1q 0115 1::1138 0176 1::117/
0179

f<1 110·11 fll:10ll 011Y3 0100 IH58 01~9 0ltol3 0!61 fll65
0169 0173

R10 M039 l::lOUlJ fiGB6 0090 0144 0147 1:'1150 0167 0171
"173 0175

1<11 0040 0H.I0 0H13 0107
R12 00"16 !iJ087 0091 0104 0108
k13 0104 0190

R14 11105 £:1191

''15 0106 019.:!

R2 0065 0066 0067 0@68 0161 016.:! 91o3
R3 BD-21 00::!.:! l-l0::!3 01::l2ll 0025 00:26 A038 11093 0095

l::lCWB 015~ 01~9

h4 E:HH7 f\043 0044 1:1045 911Y 0120 0121
R5 {d04:! ~1043 1:111'14 00LJS 0118 U119 1:1120 0121 0153

0160

R6 !::H159 0060 0061 0062 0079 1:109{3 B181 0182
R7 1:1071 0U72 01:173 007"1
RB 1:1036 tl0U2 0139 0!46
R9 0020 I:~H:'l82 0116 0140 0149
tiELF 0076 0~64 00/~ kl076

SELF2 0Ht9 ~I HIS IH09
'.;(LF3 0122 0117 0122

h~ACE 0008 • 8019

!..TART 00~4 l'll8S

STATUS 0811 l::ll56

STOP l1124 0001

SWING lHl!JU 0~97

rE-ST 0176 ~168 H17:! fll7<1

u~ H\::198 £::1094

YAW 11(j9.5 l1~10Y

1 HEF\E foF\E 1:1051 UYMlULS

A7 .50

A
1:1

" " e
11
e
1:1
e
e
e
e
e
e
e
e
B
11
B
e
e

40
261!
460
474

'498
496
:i86
:i16

1
1
2
3
4
:;
6
7
7
8
9

10
10
11
12
12
13
14
15
15
16
17

., 17 .
18
19
21!
2B
21
22
22
23
24
:!:i
~r
~J

26
27
27
28
29
30
30
31
32

' - -

CONST
• Y.AX_No~:, 1

r.~X ~OSITIONS•21ll
TY~E -

hECI•ki:CDhD
1-lt.M(_F,Xl SI f'ACKEO ttr,f<AY[1. , 18 JOF CHAf<J
AXIS_TY~Eif'ACKEO ~~hAY tJ •• l~JOF CHA~J
MAX_ lfdtVEL: Hll EGERJ
HAX VELilf.lTEGEFU
F£fiil:::ACK1 f'ACKED "ARF<AY tt. ,lBl Of' CHARJ
POSIT1PACKED AhRAY [1,.10] Or CHARI
ENDJ
F<EC~ ... f..ECORD

STOf\E1 fth.FdtYC 1.". :!0 JOF lNTEGERJ
ENDJ
TOT•AkhAY[J,,MAX_NO)Of REC11
TOT2~Af\RAYt1 •• MAX_NDJOF kEC2J

liAR
POINTIARRAYtt •• ~BJOF JNTEGERJ
TOTAL I TOT I
TOTAL21TOT2J
NO_Of_EDITS,X,NO_Of_POS,NUH,AXIS,COUNT,NO_Of_AXES:INTEGERJ
LINS,INSTS, JNST,NO_OF_lNSEf\TS,NO_OF_REMOVES,NOS,LNOS:JNTEGERJ
f\EMOVE,ALT, INSERT,EOIT:CHARJ
ALT£R1ARRAYtl •• SJOF lNTEGERJ
hEH:AnRAY[1,,5)0F INTEGERJ
INSJiiRF\AYt1,. 5JOF INTEGER;

~EGINC•DETAILS Of AXES*)
COUNTI~0J

RESET! JIIPUT)J
n(~RITECOUTPUT)I
URJTELN(OUTPUT, 1 HOU MANY AXES ARE THERE?')J
H~OLNC lllf UT, NO_OF _AXES)J

WHILE COUNT (NO_ OF _AXES 00
E'EGIN

COUNTa=COUNT+lJ
~~lTELNC OUTPUT,' IJHAT IS THE NAME OF THE AXIS?')J
hEAOLN(INPUT, TOTALCCOUNT J, UAME_AXIS)J

ENDJ
COUNTs-=BJ
~HILE COUNT (NO_OF_AXES DO

LEGIN (OTY~E OF AXIS*l
COUNT I cCOUNT+1J

, ~~ITELNCOUTPUT,' TYPE OF AXIS FOR ',TOTALCCOUNTJ.NAME_AXIS)J
~EADLNCINPUT,TOTAL[COUNTJ.AXIS_TYPE)J

END I•
COU~TI•BJ
IJHILE COUNT (NO_OF_AXES DO
f<EGIN

COUNT1•COUNT+lJ
~RITELNC'~HAT IS THE MAX VELOCIT¥ FOR ',TOTAL[COUNTJ,NAME_AXISll

nEADLNC INPUT, TOTALCCDUNTJ, HAX_VEL)J -- - --
END;

COUNT 1 K-l'l;
IJHILE CDUNT (NO_OF _AXES DO

l EGirH 1tFECDE ACKt)
COUtH1=-COUfH•lJ
LJhl TE'LtlC' IJHAT IS THE FEE DE ACK FOR ' 1 TOTAL[COUNTJ. NAME 11XlS)J
F..EADLN< l Nf'UT, TOTAL(COUNT J. FEEDBACK)J -

ENOJ(~tfECOEACK*)
COUNTa="J
1..'HILE COUHT (NO_OF _AXES 00

nGIIH •a >
COUNTa:COUtH+1;
WRllELtU' HOW MANY f'OSITlOJ.lS HAS ',TOTAL[COUIHJ. NAME_AXJS)J
hCADLN< INPUT, TOTAL[COUtHJ. POSIT);

EN0l('"1*>
COUNT 1 c:0J
WHILE COUNT (NO_DF_AXES 00

£ EGlNC ».2*)

A7.51

33
34

cuurn: ~tl·J·H •t;
l.'hl1£LNC'L..'!th1 IS THE M:..X VALUE:. roh 1-'0S ',10111L[CUUfHJ.NM;E_A).lS)J
~E~DLIH I II~UT, 101 ~L[COUIH J MX_ TRAVEL 11

ENOJ C ·~·)
f<EGIIIC •IIWUT POSIT lOllS• I

UhJTELI·H' ltOU' MAI-lY PUSJTJOUS Ak(THEF.E?')J
~EAOUH INPUT, NO_OF _f'OS)J
fOR NUM.=1 TO NO_OF_~OS 00

lEGIIH *~* l
COUNTa ... 0J
LJHILE COUNT (IlD_ OF _AXES DO

E<EGINI *2~ l
COUNTI""'COUNT+1J
U~ITEUH' POSITION FOR ', TOTALCCOUNTJ, NAME_AXIS lr
f<EADLNI INPUT, TDTAL:![COUNTJ, STORErNUMllr

ENDJ (»:2*)
IJT<Il ELtH' NEXT INSTRUCTION NUMBER')J

~EAOLNCPOlNl[NUHJ)J
END;twl*)

ENOr< *INPUT ~DSITIOIIS* l

3:; I
3:0
3:i
36
37
38
38'
39
41!
40
41
42
43
43
44
4:0
4:;
4:;
4:0
46
47-
48
48
49
:;11
:;1
:02
:03
:04
~:;

:06

EEGJNC~PRJNT LIST*)
LJRITELNr

:07
:;a
:;9
611
61
t.1
t.2
t.3
64
64
6:0
66
{.6
67
68
69
69
70
71
72
72
73
74
74
7:0
7:0
76
76
76
76
77
78
79
79
80
Bl
82
B3
83
04
a:;

LJRITELNr
FOR COUNTr~1 TO NO_OF_AXES DO

E<EOINC *I* I
IJh!TfUH TOTAUCOUNT J, NAME_AXIS lr

.- U~ITELNr ',TDTAL[COUNTJ.AXIS_TYPEll URITELNC'THE TYPE OF AXIS IS
URITELNr
IJRITELNI'THE MAX VALUE FOR POSITION IS',TOTALCCOUNTJ.KAX_T~AVELll
URITELN1
WRJTELN('1HE MAX VELOCITY IS
URITELNr
URJTELN('THE METHOD OF FEEDBACK IS

URITELNI

',TOTAL[COUNTJ.MAX_VEL)J

., , TOTAL[COUNTJ, FEEOBACt<)J

WRJTELNC'NO OF POSITIONS ON THE AXIS ",TOTAL[COUNTJ,POSll)J
URITELNJ
IJRITEI.NI

£NDJ(If.1Jt.)
L:F..lTLC'JtlSlhUCllON UO ")J
COUNTac:C;
WHILE C~UNT (NO OF AXES DO

£EGINC.HEADlUGSi>-
COUNT= ..-coUNT+lJ
URJTfCT01ALtCOUNTJ,NAME_AXlS)J

ENDJCtliEADlNGB*)
111<11[1 'I OllllCk')J
L:RlTELN;

FOR NUMr~1 TO ND_OF_PDS DO
f<EGINC ~2* I
COUNT1c:SJ
UF\11 £(NUM)J
UHJLE COUNT (NO OF AXES DO

LEGINI *3* l - -
COUNT: o:COUNT+lJ
\Jf\1 TEC" ', TOTAL2[COUNTJ. STOf..E(NUM J)J

END; (~3*)
\JR'lTEC" ',f'OINT[NUMJ)J
URITELN

ENDJ (*2*)

ENO;C.PRINT LIST*)
&JRilELNC" DOES THE SEQUENCE f<EGUlf<E EDITING INPUT Y FOR YES le N FOR NO')J
READLNClNf'UT,EDlT)J

CASE EDIT OF
'Y' J EIEGJN(;rEDIT*)

URITELNC 'DOES THE VALUES FOR THE POSITIONS REAUI~E AL TE~ING' ll
IJfUTELNC" ItWUT Y FOR YES lc N FOR NO')J

~EADLNI ALT ll
CASE ALT OF
'Y': BEGIN(1.1NST*)

NOSJ =BJ
Ufi.ITELNC "HOU MANY INSTRUCTIONS F..EGUIRE ALTERING?')J
f'..EADLN< ND_OF _EDITS)J

A7 .52

. .

I --
llt
U7
BB
es
89
YB
90
91
92
93
9'3
9.
95
96
97
98
98
99
1C~

101
W1
181
11l1
1~2
11!2
11<3
IM
ses
105
1~6
1 1>7
ICB
109
110
11B
111
112
112
113
11•
115
115
116
117
ltB
119
l~B
1~0

:120
1:!1
121
1:!2
123
12.
1:!4
l:?:i
1:?6
127
1:!0
1~9
129
130
131
131
132
133
13.
JJq
13:;
136
137
138
139

Jqe , . .,

'-"llllt.('"~HlCH u.:..lhUClJON::, hf:IUlhl nLHt-.li·L·l')J

UHJLt: t~os (UO_OF_£0115 DO
lEGlf~(»1*)

uoz I ~NOS+ 11
hE.r1Dl UC AL 1 tfl.[NOS)) J

[NDJ !*U)
UWSJ c:HOSJ
NOS1•01
~HILE NOS < LNOS DD

LEG IN($2*)
t10S1 rtiOC+t J
&JRITELNCALT[f..[NOSl," INPUT THE CORf..ECT VALUES')J

NUM I ~NOSJ
COUNT 1 c:0J
~HILE COUNT (NO_OF_AXES DO

EEG IN< t3*l
COUNT1=COUNT+IJ
URJTELNC"POSITION FOR ",TOTALCCDLNTJ.NAME_AXIS)J

f,.Ef.OLNC TOTAL:![COUNT J, STOF..EUJUM l)J

CND;< JJ3Jf >
I:.NDJ(If'2t)

[fW;<•JU~T*>
'W: IJF<l TELIH' NO AL TEhATIONS TO VALUtS fi.(GUJhFD')J

[NO; (ltCA~Et)
\JkJTELU(' At.E ,NY lNSTf<UCTlONS TO l-!E f.<[MOVED?")J

f<Ef1DU~C f..EMOVE)J
CASE f'EMOVE OF
'Y' 1 f'!E"GHH ll klMOVE*)

U~l1ELNC 1 HOW MANY INSTnUCTIONS TO ~E ~EMOV£071
)J

READLIIC NO_OF" _r-EMOVES)J
NOSI"'BJ
WF-.ITELN("\JHJ CH lNSl RUCTIONS nEGUIRE F.EMOVJNG?")J
~HILE NOS< NO_OF_~EMOVES DO

I<WINC *f'EMOVEWl
UOS1 ~HOS+lJ
f'CADLNC ~EMCNOSJ)J
END I I *REMOVE*)
UWS1 ~NOSJ
NOS: c.B;
~HJLE NOS < LNOS DO)

f'EGINC ,.-CH*) ~~ Qp\Nl'~ <f"
NOS I '"'NOS+1J
I NST: c:f<[f':[NOSlJ
WSTl•INST-11
IJI<ITELNC • CO~~ECT POINTER FOR ltlST NO • • INSTl1
READLNCPDINTCINSTlll

END: I *CH* l
END: I li-~EMOVE* l

1 N"au,;t1ELNC"NO LINES TO BE REMOVED")J
ENDJ(-.CASE 2*)

tJRITELN("ANY INSTRUCTIONS TO BE INSERTE01
)J

READLN(INSEF<Tll
CASE INSERT OF
I Y" I f<EGJN'(*INSERT*)
N05J""0J
t.JRI TEL.NC 1 HOW MANY lNSTf\.UCTIONS TO BE INSEfi TE071

)J

REhDLNCNO_DF_INSERTS>:
U~ITELNC "\JHICH INST ARE TO HAVE VALUES AFTER THEM7

1
)J

&.JIIJL L uon (NO_Of" _Jr~SEr<TS 00
EEG IN< UtiS* l
UOSJ~UOS+1J
READLNC JNSCNOSl)J

END; I ll-lllS* l
LNOS:=NOS;
NOSJ =0;

IJHILE NOS < LNDS DO
BEGINCHNSEh*l

NOSJ ~NOS+ I;
NUMr =INSCNOS]J
URITELNC" NEW f'OINTEfi FOR ", IHSCNOSJ)f
READLNC POINT[NUM])J

tJRITELNC 1 INSERT INSTR tJHICW, POINTC NUM],•
1 NSTS: -=NO_Of" _POS;

E--EGJrH lf'l*" >
cour.n 1 """'I

A7 .53

POINTS TO' 11

-·

:. •ol
14~
1~3

1~3

144
J.q~

146
1•16

.. J.q6
1~7
1~7
1~7
148

IIIGn.·•lN~lrtll
L 'lll C(tUNl (N:J (If lt>lS [)0

tCGHh•lN•) - -
COUrH 1 ... ((1UtHof1 J
t.:f<JlEUJCrf-'OS fOF< 1 ,TOTALfCOtJNTJ.NAMt_~XlSh
~EADLNC101Al~lCOUNTJ,GTO,,[[JNS16J)J

(NP 1 (1flN1)

[IlD I (uo
LlNS1a:INSlSJ

[NOJ (lflt~SCfl.*)
£1JO; C 1lNSU,T*)
'W zWr\ITE'LN("NO lNSEF..TS")J

EIIDl (•CASEJ*)
-148

148
1~9

1~9
1~0

C.NDJ (If fOil#)
"' ... _ "N' Jt.IF.ITELNC'YOUn. FF<OGf.AH IS COF<f<ECT")J

"" END, (ltCASE*)

1:i1
1S2
1!1~
1!13
1::.4
154
1SS
1~6
157
1S7
l::i8
1S9
169

'"'" 161
162
162
163
163

...

164 END,
164

IJ~ITEC '11/Sl~UCT!ON NO
COUNT I -=0;
UHJLE COUNT (NO_Or_AXES 00

•)j

E<fGINC •HEADINGS•)
COUNT1""COUNT+lJ
UF<llECTOTALCCOUNTJ NAME_AXIS)J

END; C »HE/-.OIUGS*)
UF;JlEC • ~OJNTER' ll
U~ITELNl

FOR NUMac.1 TO LINS DO
fEGINC•FRINT NEW LIST*l

COUNTJ=0J
lJF<ITEC NUM)J
UHILE COUNT (NO_Or_AXES DO

IEGINC.l*) . ;
COUin 1 •COUNT +'1 J
&Jr<ITEC' ', TOTAL2[COUNT]. STOF-.Et NUMJ)J

EHD;C lt'l*)
Uf\ITEC, I. f"OJNTCNUMJ)J

URITELN
ENDJ C t'f"RINT NEW Ll ST*)

A7.54

~--- -

APPENDIX 8

SECTION 1

INTRODUCTION

I 1. 1 GENERAL
The Texas Instruments TM 990/10111 is a self-contained microcomputer on a singl'
printed-circuit board. The board's component side is shown in Figure 1-1, which al~'
highlights major features and components. Figure 1-2 shows bo>rd dimensions. Thi:
microcomputer board contains features found on computer systems of much larger size
including a central processing unit (CPU) with hardware multiply and divide.

, programmable serial and parallel I/0 lines, external interrupts, and a debug-monitol
. to assist the programmer in program development and execution. Other features include:

.
• TMS 9900 microprocessor based system: the microprocessor with the minicom;

puter instruction set - software compatible with other members of the 99!
family.

' • 1K x 16 bits of TMS lJOlJ5 random-access memory (RAM) expandable on-board t<
2K X 16 bits.

• 1K x 16 bits of TMS 2708 erasable programmable read-only memory (EPROM), ex-

•

•
•
•

•

•
•

•

•

,
'

pand>ble on-board to 2K x 16 bits. Simple ju1nper modifications enable sub­
stitution of the larger TMS 2716 EPRot1's (16K bits each) for the smaller

TMS 2708's (8K bits each). Four TMS 2716's permit EPROM expansion to 4K x 1(
bits.

NOTE
Three board configurations are available. The characteristics
of each configuration are explained in paragraph 1.3.

Buffered address, data, and control lines for off-board memory and I/0 ex­
pansion; full DMA capabilities are provided by the buffer controllers.

3 MHz crystal-controlled clock •

'One 16-bit parallel I/0 port, each bit is individually programmable •

Modified EIA RS-232-C serial I/0 interface, capable of communication to both
ErA-compatible terminals and popular modems (data sets).

A local serial I/0 port, with interfaces for an EIA terminal and either a
Teletype (TTY) or a twisted-pair balanced-line multidrop system (interface
choices are detailed in paragraph 1.3).

Three programmable interval timers •

17 prioritized interrupts, including RESET and LOAD functions. Interrupt 6
is level triggered (active LOW) and edge-triggered (either polarity) and
latched on-board.

A directly addressable five-position DIP switch and
emitting diode (LED) for custom system applications.

an addressable lightl

PROM memory decoder permits easy reassignment of memory map configuration;
see Figure 1-3 for memory map of the standard board.

AB.l

TMS 9902 FOR MAIN PORT -----"-7
5 SWITCH 1.0. DIP'--, TMS 9902 FOR AUXILIARY PORT ---7

AUXILIARY PORT (P31

PARALLEL 1/0 PORT1P41

E.D.

"'
~

" '1
(I)

~

I
~

> 3!
(10

"' "' "' 0
~

0
~

:;::
:;::
Ill

0
'1

n
0 s
'0
0

I!

RAM SOCKETS
,.

EPROM SOCKETS

'---745287 MEMORY DECODE PROM

·~ ...
"" c ..,
~

~

' I

'"' .. • •

> I~
CO 10
w ·' .~

.o
·~ :::;:: ...
:o "'
'>-'• z
8 0
Cl) :t

" m

'"
(/)

.... ,o

" '" Ill

" 0.

n
0
8
'0
0

" ~ " "' 'd
Ill
0
~
8
Cl)

" "'

-•zv
30 40 P4 10 ,...!ls~ow El A

:o oO~: ~ o·b~
G 0

m ~o p
I U12 nw N •'

U21 U>T
•« 0: i ~ •

0·~ I Ull I U18 U2& U48 N 0-N
2 ~--

UIO u 0~ u cz:ct:a::

I? I::{))§ I Qa ~o= « -~e::::::; 50Jm f"L NO wT;1 .--§--..,
VI OJ I U17 2716~2708 I U25 U!l I U47 l oa > I US:S

ASSV9 •• 72. "! CIION-N DIAG 'Oi'i~POAT ,,::n ~.,en"
~:o, ~ ,__c:p-""---.1 {]]IPc:_·~-~-~_·_•_•

7

_
27

-'~~e::::::::::::::::J:- :L;J .;:U ~~=::::::::::::::::::::; ~ ~ ~giUI9 IU24 U32 I U30 1 I U ..

U04

p § p 10e

~ ~-... ~ U46p~RT

~~ ~ : I "'" ~·-· ~ 1 (:;t;;:::::, ==::Ji ~~=I.= U37 ~~~
c:J- r 1 ot==rF--===~:;;:j1 o

2

~~

p

>
n
•

eO t=....e __jl~

-=-
:; .. , "
• -

MADE IN USA
TM990/101

I us

..,.,
+"' Eo4~T4 p. ,,

20 30 P1
40

All I U:SO r--- Ul6

SUBASSY 1941'21-~r=====l U '"=====1 ~
Pt:._____JI[f::.____.loi w 1 or 1 o

U14 : 1 un ~~ ==u:;;,.==:J ~~ :;;u;,,.;:::==:J

""
I

ult' !! &
• un ~====t u '"==::"'::•:::=1-----,10'~--§ -----. sOr I OPF-~I 0
I .. 12 V'-. ~CI!!'~11 ;=~+~U~28;=:::l l"'i=

•o ··~~ "~ ?.o 100 +:et_ ... _j

Ul3

p
6
00

-

•
1:>

p
U42

uoo

aD r= (l: T-1 ,, n

~r,r an 0 o~ ar·
+

e<O
+OV •

1 2 MAIIUAL ORGANIZATION
s~ctlon 1 covers board specifications and characteristics. A glossary in paragraph 1.
explains terms used throughout the manual.

section 2 explains how to install, power-up, and operate the TM 990/101 microcompute
with the addition of a data terminal, power supplies, and appropriate connectors.

section 3 explains how to communicate with the TM 990/101M using the TIBUG m~nitor
This versatile monitor, complete with supervisor calls and operator communicatio
commands, facilitates the development and execution of software.

Section 4 describes the instruction set of the TM 990/101M, giving examples of eac
class of instructions and providing some explanation of the TMS 9900 architecture.

Section 5 explains basic programming procedures for the microcomputer, giving a
explanation of the programming environment and hardware-dependent features. Numerou
program examples are included for utilizing the various facilities of the TM 990/101M

Section 6 is a basic theory of operation, explaining the hardware design configuratio
and circuitry. This section provides explanations of the bus structure, the contra
logic, and the various subsystems which make up the microcomputer.

Section 7 describes various options available for the microcomputer, both thos
supplied on-board and those which Texas !nstruments offers for off-board expansion o
the system.

Section 8 features various hardware applications which can be built using the T1
990/101M.

1.3 PRODUCT INDEX
The TM 990/101M microcomputer is available in three different configurations, whic:
are specified by a "dash number" appended to the product name; e.g., TM 990/101M-1
These configurations are listed in Table 1-1. A memory map is shown in Figure 1-3.

Table 1-1. TM 990/101M Configurations

l1ain Serial Pori
Option (EIA

TM 990/101M EPROM Terminal
Dash No. Socketed Program RAM I/F Stand)

-1 2 TMS 2708 TIBUG Monitor 4 TMS 4045 TTY
(1K X 16) (1K X 16)

-2 2 TMS 2716 Blank 4 TMS 4045 Multi drop
(2K x 16) (1K X 16)

-3 4 TMS 2716 Blank 8 TMS 4045 TTY
(4K x 16) (2K X 16)

A8.4

MAIN EPROM•

EXPANSION
EPROM

EXPANSION
RAM

MAIN RAM

07FF

OFFF

1-------------1 F7FF

}--"-"-----------' FFFF
TM 990/101M

•EPROM's programmed w1th TIBUG mon1tor

;;.F.:;i£<g;:ur:..e::-1:..-..=3:.:.·__:M:.::a;:;i::n:..:.:A;:;n;:,d...;E::;xyansion EPROM and RAM

I 1.4 BOARD CHARACTERISTICS
Figure 1-1 shows the major portions and components of the microcomputer. The syster

, bus connector is P1, which is a 100-pin (50 each side) PC board edge connector spacec
on 0.125 inch centers. Connector P2 is the main serial port and P3 is the RS-232-<
auxiliary serial port. Both connectors are standard 25-position female jacks used i1
RS-232-C communications. The parallel I/0 port is PC board edge connector P4, whicl
has 40 pins (20 each side) spaced on 0.1-inch centers.

Figure 1-2 shows the PC board silkscreen markings which detail the various component:
on the board; also included are the board dimensions and tolerances.

1.5 GENERAL SPECIFICATIONS

Power Consumption
TH 990/101M-1
Tl1 990/101M-2

Clock Rate: 3 MHz

+5 V
TYP MAX
1.8 2.6
1.8 2.6

+12 V
TYP MAX
0.30 0.50
0.30 0.50

-12 V
TYP "MAif"

0.25 o.4o
0.25 0.40

Eaua ~ates (set by TIBUG): 110, 300, 600, 1200, 2400, 4800, 9600, 19200

A8.5

Memory Size: The microcomputer is shipped with:
RAM: Four TMS 4045 (1K x 4 bits each)
EPROM: Two TMS 2708 (1K x 8 bits each), preprogrammed with TIBUG.

Total capacity is:
RAM: Eight TMS 4045's (1K x 4 bits each)
EPROM: Four TMS 2708's (1K x 8 bits each)

or
Four TMS 2716's (2K x 8 bits each)

Board Dimensions: See Figure 1-2

Parallel I/0 Port (P4): One 16-bit port, uses TMS 9901 programmable systems interface

Serial I/0 Port (P2 and P3): Two asynchronous ports:
Main port (P2) has two interfaces: RS-232-C answer mode and either a TTY or a
balanced-line differential multidrop interface.

Auxiliary port (P3) meets RS-232-C specification interface, capable
of either originate or answer mode.

Both serial ports use TMS 9902 asynchronous communication controllers, but th
AuxUiary Port wi 11 readily acc:ept the TM.'3 3903 synchrono.ls COLJI:JUnicat~on
controller. Simply plug in the TMS 9903 for synchronous systems.

1.6 REFERENCE DOCUMENTS
The following documents provide supplementary information for the TM 990/101M user'
manual.

• •
•
•
•

•
• l

- ..
• •
• •
• • •
•
•

TMS 9900 Microprocessor Data Manual
TMS 9901 Programmable Systems Interface Data Manual
TMS 9902 Asynchronous Communication Controller Data Manual
TMS 9903 Synchronous Communication Controller Data Manual
TMS 990 Computer, TMS 9900 Microprocessor Assembly Language Programmer'
Guide (PIN 943441-9701)
TM 990/301 Microterminal
TM 990/401 TIBUG Monitor Listing
TM 990/402 Line-by-Line Assembler User's Guide
TM 990/402L Line-by-Line Assembler Listing
TM 990/502 Cable Assembly (RS-232-C)
TM 990/503 Cable Assembly (TI Terminal 743 or 745)
TM 990/504 Cable Assembly (Teletype)
TM 990/506 Cable Assembly (Modem cable for /101 board)
TM 990/510 Card Chassis
TM 990/511 Extender Board User's Guide
TM 990/512 Prototyping Board User's Guide

1 • 7 GLOSSARY
The following are definitions of terms used with the TM 990/101M. Applicable areas i
this manual are in parentheses.

Absolute Address: The actual memory address in quantity of bytes. Memory addressing i
usually represented in hexadecimal from 000016 to FFFF16 for the TM 990/101M.

Alphanumeric Character: Letters, numbers, and associated symbols.

ASCII Code: A seven-bit code used to represent alphanumeric characters and contra
(Appendix C).

A8.6"

t

Assembler: Program that translates,assembly language source statements into object
code.

Assembly Language: Mnemonics which can be interpreted by an assembler and translated
into an object program (paragraph 4.6).

Bit: The smallest part of a word; it has a value of either a 1 or 0. -
Breakpoint: Memory address where a program is intentionally halted. This is a program
debuggJ.ng tool.

Byte: Eight.bits or half a word.

carry: A carry occurs when the most-significant bit is carried out in an arithmetic
operation (i.e., result cannot be contained in only 16 bits), (paragraph 4.3.3.4).

Central Processing Unit (CPU): The "heart" of the computer: responsibilities include
instruction access and J.nterpretation, arithmetic functions, I/0 memory access. The
~$ 9900 is the CPU of the TM 990/101M.

~: Dot-like paper particles resulting from the punching of paper tape.

Command Scanner: A given set of instructions in the TIBUG monitor which takes the
user's input from the terminal and searches a table for the proper code to execute.

Conte~t Swit~h: Change in program execution environment, includes new program counter
(PC) value and new workspace area.

CRU (Communications Register Unit): The TMS 9900's general purpose, command-driven
input/output interface. The CRU provJ.des up to 4096 directly addressable input and
output bits (paragraph 4.8).

Effective Address: Memory address value resulting from interpretation of an
instruction operand, required for execution of that instruction.

'
~: See Read Only Memory.

Hexadecimal: Numerical notation in the base 16 (Appendix D).

!~mediate Addressing: An immediate or absolute value (16-bits) is part of the
1nstruction (second word of instruction).

Indexed Addressing: The effective address is the sum of the contents of an index
resister and an absolute (or symbolic) address (paragraph 4.5.3.5).

Indirect Addressing: The effective address is the contents of a register (paragraph
4.S.3.2).

!nt•,rrupt: Context switch in which new workspace pointer (WP) and program counter (PC)
Yalues are obtained from one of 16 interrupt traps in memory addresses 0000 16 to
OOj£16 (paragraph 4.9).

!!£: .The input/output lines are the signals which connect an external device to the
ea~, lines of the TMS 9990.

A8.7

Least Significant Bit (LSB): Bit having the smallest value (samllest power of base 2);
represented by the right-most bit.

Link: The process by which two or more object code modules are combined into one, wit
cross-referenced label address locations being resolved.

Load: Transfer control to operating system using the equivalent of a BLWP instruct!
~ectors in upper memory (FFFC 16 and FFFE15l· See Reset.

-Loader: Program that places one or more absolute or relocatable object programs int
memory (Appendix G).

Machine Language: Binary code that can be interpreted by the CPU (Table ~-q).

Monitor: A program that assists in the real-time aspects of program execution such a
operator command interpretation and supervisor call execution. Sometimes calle
supervise~ (Section 3).

Most Significant Bit (MSB): Bit having the most value; the left-most bit representin
the highest powEir of base 2. This bit is often used to show sign with a 1 indicatin

, negative and a 0 indicating positive.

.QEject Program:
program. This is

The hexad~cimal int~r,retations of source cod~ outp~~ by an
the code executed when loaded into memory.

assem!:ler

I

One's Complement: Binary representation of a number in which the negative of thi
number is the complement or inverse of the positive number (all ones become zeroes,
vice versa). The MSB is one for negative numbers and zero for positive. Twc
representations exist for zero: all ones or all zeroes. · I

Op Code: Binary bperation code interpreted by the CPU to execute the instructior
(paragraph q.5.1). • .

Overflow: An overflow occurs when the result of an arithmetic operation cannot b
represented in two's complement (i.e., in 15 bits plus sign bit), {paragraph q.3.3.5) . .

I

Parity: Means for checking validity of a series of bits, usually a by~e. Odd parit
means an odd number of one bits; even parity means an even number of one bits.
parity bit is set to make all bytes conform to the selected parity. If the parity i
not as anticipated, an error flag can be set by software. The parity jump instructio
can be used to determine parity (paragraph 4.3.3.6).

PC Board: (Printed Circuit Board) a copper-coated fiberglass or phenolic board o
which areas of copper are selectively etched away, leaving conductor paths forming
circuit. Various other processes such as soldermasking and silkscreen markings ar
added to higher quality PC boards. '

Pl"ogram Cou11ter {?::): Hardware registe.~ that points to the next instruction to b
executed or next word to be interpreted (paragraph q,3.1).

PROM: See Read Only Memory. -
Random Access Memory (RAM): Memory that can be written to as well as read from (vs
ROM).

Read Only Memory (ROM): Memory that can only be read fro~ (can't change contents)
Some can be programmed (PROM) using a PR0!1 burner. Some PROM's can be erased (EPROM's
by exposure to ultraviolet light.

AS.S

~--·---

Reset: Transfer control to operating system using the equivalent of a BLWP instructio
~ctors in lower memory (000016 and 000216>· See Load. :

, Source Program: Programs written in mnemonics that can be translated into machinj
, language (by an assembler).

,Status Register (ST): Hardware register that reflects the outcome of a previou
instruction and the current interrupt mask (paragraph 4.3.3).

'
:Supervisor: See Monitor

:Utilities: A, unique set of instructions used by differnt parts of the program t
, perform the same function. In the case of TIBUG, the utilities are the I/0 XOP'

1

(paragraph 3.3). '

~: Sixteen bits or two bytes.

Workspace Register Area: Sixteen words, designated registers 0 to 15, located in RA!
for use by the executing program (paragraph 4.4).

) Worksp'ice Po:t.nter (WP): Hardware register that contains the memory address cf th
1 beginning (register 0) of. the workspace area (paragraph 4.3.2).

!
;

" I

'1'

,,

A8.9

........................ ------------JUAPPENDIX 9

:'

I

I··
'

STANDARD EQUIPMENT

POI\'E R SUPPL V

SIZE
Mechanical Unit
Con\<ol Console

WEIGHT
' '

Mechanical Un•t
Control Console

ARM MOVEMENT
Vertical Travel
Horizontal Tnvel
Swing Arc

WRIST MOVEMENT
Rotation
Sweep

GRIPPER

ARM SPEED
Vert•cal axis
Horizontal axis

SPECIFICATION -MODEL 500 P

415V ~ 10%, 3ph, woth Earth and Neutral wire•.
SOH z, 6 SkV A.

LENGTH
1188mm 147 inl

750mm 129 1n)

740kg I 1630 lbl
1 OOkg I 220 lb)

760mm 130 1nl
"760mm 130 in)

240°

WIDTH
711mm 128 in)
532mm (21 in)

1

HEIGHT
1854mm 173 1n)
1170mm (46 in)

Up to 180°, 2 position at 90° /sec maximum
"Up to 180°, 2 position at 90°/sec maximum

·None as part of standard equipment

, :.:. Swing axis

910mm 136 in)/sec
910mm (36 m)/sec
90° /sec

' .

REPEAT ABILITY (Approach from one direct1on only)
At maximum reach Better than .:t 3mm (.:!: 0.125 in) in Swing axis

Better than:!: 2mm (:!: 0,080 in) in Vertical and
Horizontal axes

LOAD CAP ABI UTV !Typical f1gures only; these will vary with
details of each application. Figures are for

. . '
gripper plus component Is) being handled)

PROGRAMME
Number of arm positions

Number of steps in sequence.

INTERLOCKS
Number of incoming
and outgoing circuits

GRIPPER & WRIST CONTROLS

COOLING

TEMPERATURE
Ambient temperature range

HYDRAULIC FLUID

"ALTERNATIVES AVAILABLE
Power Supply

Horizontal travel of arm

\'.'t1st lweep movement

Gupper

Coolmg

Hydraulic: pOwer unit

I

L~ttral movement of mechan•cal un1t

. Ml.l

• At rated speed 23kg ISO lb)
• At reduced speed SSkg (120 I b)

30 (Positions may be visited more than once per
programme)

100 (A short sequence may be repeated several times
around programme drum)

12 total

Two circuits (one -on. one -off) are available
as standard

•Air

0° to 45° c for mechonical unit

Mobll DTE lightiMineral Oil)

220V, 380V, SOOV± 10%, 3ph,,
wnh Earth and Neutral wires, 50 or 60Hz,
6.5kVA

1060mm 142 in) with reduction in load capability to:
At rated speed 16kg 135 lbl
At reduced speed 36kg (80 lbsl

Serve control sweep ax1s (in l1eu of one
standard serve axn) with up to 290° arc

Standard hydraulic mechanism with special
jaws; vacuum. mechanical. electro-magnetic
or other gr•pper type to spec1al design

Water

Separate from column

2 posouon system, or serve system I in lieu
of one standard serve axis)

• .
Data . ,_

1 '
' A. Dimensions '

11et'hanical unit Console

Height 73 in (186 err.) }j6 in (117 cm)
Depth (uith arm extended) 80 in (202 Cli') 20 in (51 cm)

. ' { Width 27 in (69 cm) 29.5 in (75 cnj
\-/eight 1;oo lb (59:> ks) ;oo lb (135 kg) ,.

. '
I

1. i D. Polier requirEmtnts

I

' .1 .

(into mecha."':d~al uni ~)

' ' , ' ··-

' : ''

' '

. .'hl5V•±l0%3
range 220 to

phase and neutral 5:liz at 111,.
500V are available.

Oth.:r volta~;es jn th2

•

C. ~lOVC<;JCntS

--.

Arm Horizontal):) in (77 cm)
(A 42 in (107 en) reach arm can be

supplied to order)

t,rrn VE'locity ~11th 20 lb (9.1 ro:} load (See Note)
Horizontal and vertical 36 in/sec (92 cm/sec)
S>~inr; 9':> 0 /sec
Verticc,l
S<ling

~lri::t l'otatc
SHeep

GrlJ:;>r'r close
•

):) i:'l (77 cm)
21:0•
0 up to 180•)..,
0 up to 180•)
Dc;pe~:dent upon type

:r.r;:-:: J.o~ds up to lOO lb car. l:c h<>..:1cled at reduced speedo; by the a!"r• n."1d
c;rj ;.rcr ntt~c!'vient, but :-ot by ~he ':: .. ic:;t, al "thou:;h this as~ er bl:;
C~tn be loc1:cd by it!:: ~.!lils~ he~vy loads are being Jl'ia.n:ipt.:l~tcd.

- :. ':: t::.-: posi ti en::; on each, 2 i '70: '..ed by c.:!j~tablf. rrccr.?.nic&l steps.
I

A9.2

100, r.;adc up frm:1 n ccn•''~n::.·.ion of:

' '
Arm
Wrizt
Gripper
Interlock

YJ discrete points 1
2 (in both rotate anci !n·:eep)
2

12

(ON-OFF)
(o::-OFF)

. E. RepcatabilUy of arm co:r::;:..."ld po:; it ions

'.

J • ... 0_. • ·~

Better tha.'l 0.125 in (0.32 cr.1) in sl:ing
Better than o.o8o in (0.2 cm) in horizont~l end vertical

F. Operating te"'perature rc.nRe

o•c (32"F) to 45"C (ll:;"F) .er.1biem.

G. F:-ee eir flat: requi:-ed

1000 rt3/min (28m3jmin)

H. Hydraulic fluid

Type Horr'ially:
But can use:

Reservoir capacity
Operating pressure

,Pump capacity
\ ..

tlineral oil ~lobil D'n::],ight -
Phosphate ester f~obil pyrogr!!.U :?lj

(fireproof)
44 pints (25 litres)
JOOO lb/ir,2 (70 kycr.2)
8 imp sal/min (,36. 4 1i tre/:·.in)

Safety cut out operates if prezsure drops belo1-1 Boo lb/in2
Normal oil operating terperature 55"C (130"F)

(Hydraulics locked until this tewperature is reached, this ta'l:es about
6 minutes "from Sl-:1 tch-on. Safe.ty cut ou-'l, ope!"ates ·if' flu id ternpc!'a~ur-e
exceeds eo•c).

I. JnterloC'l: eouipmcnt

8 rela~·s, 24V coil double pole chan!'e-over contacts (24V, 0. 5A supply
available for energisation).

Ccntact rating; lOA at 4l.()Ve.c or 250Vdc. :t.axi'1U'fo po:~er Srli":.chint: cap:.'d:!.l·.
(non-inductive load) 2. 5~:Vll, 15(•!! at ;.c·':dc c:- 70~! =>t lOOVdc.

I
I

A9.3

