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ABSTRACT  

A precast concrete structural system offers many advantages over in-situ casting. For 

example, greater control over the quality of materials and workmanship, improved health and 

safety (with casting carried out at ground level rather than at height) and cost efficiency (with 

standard forms continually re-used) are all realised through the off-site production of 

structural elements. As a result, a large body of research has been conducted into 

their performance, with many national codes of practice also devoting specific sections to 

design and detailing. However, contemporary design practice has been shown to not always 

correctly reflect the findings of published experimental studies. 

 

Concrete technology is continually evolving, as is the industry’s knowledge of how to model 

and predict the behaviour of the resulting structural components. Using such understanding to 

design and justify the more efficient, cost-effective or flexible manufacture of 

precast components can offer a key commercial advantage to a precast manufacturer. In this 

context, the numerical and experimental investigations undertaken as part of this study 

have been specifically focussed on quantifying the advantages of utilising beneficial 

alternatives. Specifically the research has looked at improvements in concrete 

mixes, lightweight aggregates and reinforcing strategies, for precast structural elements 

required to transfer loads both vertically and horizontally. However, because of the non-

standard solutions considered, different approaches have been used to demonstrate 

their suitability. 

 

Towards this goal, an alternative assessment strategy was devised for slender precast concrete 

panels with central reinforcement. The procedure was found to lead to design capacities that 

are in good agreement with actual experimental findings and should thus result in future 

manufacturing efficiency. The method can also be used for alternative concrete types and 

reinforcement layouts. 

 

Fresh and early-age material characteristics of self-compacting concrete mixes with a partial 

or complete replacement of traditional gravel and sand constituents with lightweight 

alternatives were investigated. This was done to demonstrate the feasibility of their use for the 

manufacture of large scale structural components, with clear benefits in terms of lifting and 

transportation. 

 

A computational ‘push-down’ procedure was utilised to demonstrate the potential 

unsuitability of current tying regulations for avoiding a progressive collapse event in precast 

framed structures. The findings are considered to be of particular significance for these 

structures due to the segmental nature of the construction and the associated inherent lack of 

structural continuity. 
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PREFACE 

 

The research presented in this thesis was commenced in 2009 and completed in 2013 in 

partial fulfilment of the requirements of the Engineering Doctorate (EngD) at the Centre for 

Innovative and Collaborative Engineering (CICE), Loughborough University. The research 

was conducted in an industrial context and was sponsored by building product manufacturer 

Hanson, with the Research Engineer (RE) based in the Hanson-Structherm subsidiary. 

 

The EngD is examined on the basis of a discourse supported by a minimum of three peer 

reviewed publications and technical reports. Two published journal papers and two peer-

reviewed conference papers (authored by the candidate and the accredited supervisors) are 

included in Section 6 of this document.  

 

Because the research has both an industrial and academic focus the thesis has been written so 

that the discourse can be read as a stand-alone document in order to provide an overview of 

the key findings and implications of each research aspect. However, continual references are 

also made to each of the papers throughout the discourse (linking their contents into the 

overall theme of the project) to provide further data, analysis and comment to the general 

subject areas discussed. 
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USED ACRONYMS / ABBREVIATIONS  

DAT   Design Assisted by Testing 

D-Region  Discontinuity Region 

EngD   Engineering Doctorate 

FEM   Finite Element Method 

FoG   Floor over Garage (Precast Floor Slab Component) 

GSA   General Services Administration (US Regulatory Body) 

MIG   Metal Inert Gas 

PFA   Pulverised Fly Ash 

RC   Reinforced Concrete 

RE   Research Engineer 

SFR   Steel Fibre Reinforcement 

SPFA   Sintered Pulverised Fly Ash 

STM   Strut-and-Tie Model 
 
 

NOMENCLATURE  
 

b =  least-squares parameter accounting for variables omitted in theoretical mechanical 

model in DAT procedure. 

e = eccentricity of the load measured at right angles to plane of the wall 

e′ = ( ) ( )6
CR E

e t M P− + =  equivalent eccentricity parameter 

c
f =   compressive cylinder strength of concrete 

ct
f =   tensile strength of concrete 

sw
f =   flexural cracking strength of concrete 

,d nk =  design fractile factor 

m =  mean value of test samples 

n =  number of test samples 

s =  standard deviation of test samples 

te
r =  experimental capacity for the 

th
i test in DAT procedure 

ti
r =  theoretical resistance determined using the measured parameters X  for specimen i  

t =   thickness of precast structural element 

c
t =  standard t-distribution 

c
E =   modulus of elasticity of concrete 

H =  effective height of the RC wall panel 

L =  effective length of precast structural element 

N =   externally applied axial force 

CR
M =  flexural cracking moment of the wall section without any axial force 

0
M =  nominal out-of-plane member moment capacity 

xx
M =  Bending moment (kN/m) about major axis of precast component  

yyM =  Bending moment (kN/m) about minor axis of precast component 

E
P =  Euler buckling load 

'δ =  lateral deflection at critical section of wall panel 

H tλ = = panel element slenderness 

ρ =  reinforcement ratio in precast concrete element 

( )arctan bθ = = the angle that the least squares regression line forms with horizontal axis 
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1 INTRODUCTION 

This chapter provides a short introduction to the general subject area. The context of the 

research in the UK precast industry is described and the Industrial Sponsor (Hanson 

Structherm) is introduced. It is intended that this section places into context all subsequent 

chapters of the thesis highlighting the aim, objectives, justification, as well as the scope of the 

research. 

1.1 BACKGROUND TO THE RESEARCH 

Research and development in Hanson-Structherm is aimed at improving performance, efficiency 

and the effective evolution of pre-fabricated construction systems towards providing the 

company with a commercial advantage.  

It is recognised in the sponsoring organisation that improved performance in regards to each 

of these aspects can be achieved through an on-going review and questioning of existing 

design, manufacturing and construction practices. Thus, the work aims to highlight any 

potential for improved efficiency, identifying opportunities where it would be possible (and 

beneficial) to undertake or apply aspects of contemporary research, material science or other 

relevant best-practices to current design, manufacturing or installation processes. It remains 

necessary however to ensure that the appropriate regulatory approvals and satisfactory 

performance can always be demonstrated so that the structural products can be incorporated 

into construction projects. 

1.1.1 Novel or Non-Standard Design, Materials and Manufacturing Methods 

Despite continued progress in concrete technology and manufacturing techniques, it is debatable 

whether the UK precast concrete industry has effectively utilised and incorporated the resulting 

knowledge. Therefore the sponsoring company wanted to examine if contemporary research 

could be better used or augmented to develop structural elements or alternative products that are 

more efficient, cost-effective or flexible (in the sense of meeting a non-conventional/ aspirational 

performance or design requirement).  

The company believed that the non-standard concrete mixes, reinforcement bar layouts or design 

methods represented an opportunity to realise improved efficiencies relative to the existing design 
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techniques or manufacturing practice. The focus of this EngD research has therefore been on 

developing methods of enabling the design engineer to specify, quantify and justify any benefits 

relating to the  alternative concretes, aggregates, cements, additives or reinforcements (in a code 

compliant design). The research looked to develop analytical methods and design rules that would 

allow the engineer to use unconventional concrete mixes and reinforcement strategies to improve 

the performance or efficiency of existing designs. Adopting unconfined re-bar configurations and 

sustainable alternative aggregates, for precast beam, panel and solid slab components were 

identified (during the course of the research) as offering the company the opportunity to achieve 

this research aspiration.  

1.1.2 Critical Evaluation and Improvement of Existing Design Methods 

In aspiring to justify any such enhanced structural performance, it is equally important to 

ensure that available regulatory guidance allows engineers to take advantage of the latest 

analytical techniques, computational tools and experimental data. Otherwise the applicability 

or commercial ‘viability’ of the research becomes limited, as any improvements or 

efficiencies cannot be realised in actual structures. That is to say, it is important to ensure 

design codes are contemporary and flexible enough to allow for innovative and progressive 

design. 

A better understanding of the suitability of existing design codes and methodologies thus 

becomes important. The question of their applicability consequentially became a focus of this 

work, particularly when adopting non-standard materials, reinforcement or loading conditions 

in the detailing or manufacture of precast components.                                                                           

It was also found that this critical evaluation process turned out to be a mechanism in itself, 

which allowed the organisation to identify and exploit opportunities to improve structural 

efficiency. This research output was perhaps not anticipated at the outset of the project. 

Specifically, the research investigated slender RC wall panels and notched beams 

incorporating halving joints (see Section 1.3). 

As part of the review conducted into key regulatory design constraints pertaining to precast 

structures, it became apparent that the requirements associated with ensuring that the final 

building is ‘robust’ enough to resist a progressive collapse event presents an ongoing 
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technical and commercial challenge to the UK precast industry.  

The phenomenon of progressive collapse can be visualised as the failure of a house of cards, 

where structural damage propagates beyond the locality of the initial damage and to an extent 

disproportionate to the original cause. The need to consider and mitigate for the risk of such 

collapse is often seen to be a greater imperative in the design and detailing of pre-cast 

concrete structures, than in equivalent reinforced concrete (RC) or steel frames (IStructE 

2010). This is likely due to the segmental nature of precast construction and the 

associated inherent lack of structural continuity at joint locations. The structural collapse of 

Ronan Point in 1968 and a similar precast cross-wall panel structure (during demolition) in 

2000 starkly presents the potential risks of the construction type (Figure 1.1). 

 

 

 

 

 

Figure 1.1 Disproportionate Collapse of Precast Cross-wall Structures: Ronan Point (1968) and 

Large UK Panel Structure during Demolition (CROSS 2000) 
 

The early part of the research identified that if a suitable quantitative method to assess 

structural robustness could be adapted to suit the various structural elements, connections and 

forms of a precast frame, it would better allow the engineer to evaluate the suitability of the 

design to meet regulations. More significantly, it would do this in a way that was auditable 

and which would allow the designer to measure the performance of his/her precast building 

relative to alternative forms of construction. It would also allow them to change, improve and 

optimise the design accordingly. Whether such a method currently exists has been questioned 

(Starossek and Haberland 2008), with the applicability of any such method to precast 

structural systems being another key question. An investigation into a procedure that more 

definitively demonstrated the suitability of precast buildings to clients and checking 

engineers, was consequentially viewed (by Hanson-Structherm) to offer a clear commercial 

benefit and thus warrant a research effort. 
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1.2 THE INDUSTRIAL SPONSOR 

Hanson-Structherm has provided precast concrete solutions to the construction industry for over 

25 years (Structherm 2010). The company has technical expertise in the manufacture and supply 

of innovative building solutions, having established key technical ability developing their 

proprietary pre-cast concrete cross-wall building products (i.e. ‘Fast-build’). The company 

became part of the Hanson Heidelberg Cement group in 2008, with the integration offering the 

Structherm engineering team an additional range of manufacturing, testing and design resources.  

The current technical capability and market position of the Hanson-Structherm brand is 

recognised to be derivative of the company’s historical focus on ensuring the evolution of the 

precast components and systems that it sells. The company therefore remains committed to 

making sure that its precast structural solutions remain in line with industry best practice, in 

regards to their design, manufacture, transportation and installation. The organisation is also keen 

to better understand what opportunities exist for the future development of their products, with a 

specific focus on how the new production facilities, manufacturing techniques and other technical 

resources now (or becoming) available in the market can be utilised to achieve this.  

1.3 NEED FOR THE RESEARCH 

It could be seen prima facie that the scope for new research into the performance of precast 

concrete components may be limited due to the maturity of the precast concrete industry, 

particularly with regards to design and manufacturing methods. A wealth of research material also 

exists relating to concrete technology. However, this section aims to identify and justify the need 

for the specific investigations undertaken, particularly in an industrial context.  

Each facet of the work was associated with reviewing current practice against novel or non-

standard alternatives to identify commercial opportunities or efficiencies. This was in line with the 

applied nature and commercial focus indicative of the EngD qualification. Further, any analytical, 

computational or experimental work found to be necessary also had to be designed and conducted 

in a manner that meant the findings would be applicable and transferrable to contemporary 

processes in the UK precast industry. 

  



 Introduction  

 

 15 

One such opportunity was identified relating to low-rise precast cross-wall structures, where 

horizontal floor loading is often transferred by using precast T-beams or lintels around a 

penetration (or fenestration). Figure 1.2 illustrates the typical bearing details of the elements and 

how these relate to the wall panels as part of a precast cross-wall building typology. The end 

projection results in a reduction in the construction depth required, with this detail often referred 

to as a ‘dapped-end’ or ‘halving joint’. 

 

 

 

 

 

Figure 1.2 Precast ‘Dapped-End’ Beam and Lintel Elements in Cross-Wall Construction 

 

Welded mesh reinforcement (see Figure 1.3) offers the sponsoring organisation savings in the 

manufacture of the element over traditional shear links, because of the reduced complexity and 

timescales that may be possible. That is, welded mesh can be more cost-effectively manufactured 

using automated machinery (relative to a tied re-bar layout). However, the behaviour and 

performance of beams with this alternative re-bar layout needs to be quantified relative to other 

solutions that provide ‘confinement’. Any necessary variations then also need to be correctly 

identified and captured in an alternative design procedure. This research deliverable is also 

applicable to any change in behaviour that may be associated with the concrete types/mixes so 

that the alternative design can be realised. 

A second component where an unconfined re-bar configuration may be exploited is in 

vertical panels. For pre-cast ‘tilt-up’ or ‘cross-wall’ precast construction typologies, the 

reinforced concrete (RC) wall panels provide the fundamental vertical load-carrying system 

(Figure 1.2). However, minimum reinforcement requirements are frequently adopted for pre-cast 

concrete elements, with this steel often centrally placed for reasons associated with manufacture 

and durability.  Again, the ability to demonstrate the structural suitability of wall panels adopting 
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a welded-mesh configuration is of significant commercial significance because of the associated 

benefits to component manufacture. 

 

 

 

 

 

Figure 1.3 Automated Welded Mesh Manufacture at Hanson Manufacturing Facility, Hoveringham 

 

However, previous research (Crozier and Sanjayan 1997) has questioned (and this research has 

confirmed, Robinson et al 2011b), the applicability of certain current design methods in such 

instances. This is because the resulting structural response and failure mode of such wall elements 

is fundamentally different to those experienced by more heavily reinforced panels. Design 

methods are available to the American ACI 318-08 (2008), Australian AS 3600-09 (2010) and 

European EC2 (2004) design codes, which also allow the detailing of these elements using 

simplified and empirically (or semi-empirically) derived equations (Wight and MacGregor 2009). 

Such equations cannot, however, correctly account for the material and geometric non-linearity in 

the buckling failure of slender RC elements under eccentrically applied loads, because of their 

inherent simplicity (De Falco and Lucchesi 2002). Hence large safety factors have to be adopted 

by the codes to ensure these complexities do not affect the ‘reliability’ of the resulting designs, i.e. 

the probability of failure is below the acceptable design threshold. Numerous studies demonstrate 

that these equations, as a result, underestimate panel capacities significantly when compared to 

those achieved by experimentation (Doh and Fragomeni 2005; Fragomeni et al 1994).  

Part of the research focus therefore needed to establish whether it was possible to justify more 

structurally efficient slender precast RC walls, which would be more in line with existing 

published data, or whether an alternative design methodology is required. The ability of the 

existing methods (or any alternatives proposed) to assess wall elements taking into account the 

concrete mix design, reinforcement strategy or more onerous load cases (so as to improve the 
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‘performance’ of the element) is also important for the business case and aligns well with the 

research focus outlined in Section 1.1. 

Another key structural component in a precast cross-wall building is the solid slab flooring 

unit (Figure 1.4). Their fabrication, transportation and installation results in significant 

challenges and consequentially costs to a precast manufacturer because of the size and weight. 

The ability to design and manufacture lighter structural units therefore offers a commercial 

advantage. For example, a greater number of units could be transported per delivery vehicle, 

larger units could be lifted for a given crane capacity and this would also consequentially 

result in a reduction in the number and cost of the required structural joints. With these 

commercial advantages in mind therefore, aspects of the presented research were driven by an 

industrial focus in regards to the possibility of incorporating alternative lightweight aggregate 

materials in solid precast structural floor units.  

It is worth emphasising that, due to commercial pressures, structural precast components are 

often de-moulded, lifted and transported after only a short period of curing (12-24 hours). 

What this means in reality is that it is the concrete strength at this earlier stage of curing, 

rather than the anticipated in-situ loads that determine the concrete mix design for precast 

manufacture. Establishing and quantifying the likely effect that such alternative materials (and 

their respective mix designs) will have in terms of the fresh and early age concrete properties 

is therefore an important aspect of any feasibility assessment.  

 

 

 

 

Figure 1.4 Large Scale Precast Flooring Units and Significance of Transport and Craneage 

Considerations in Precast Buildings. 

As detailed in Section 1.1, the scope of the research and development programme requires 

any improved efficiencies or resulting products to meet regulatory and code requirements. 

Because of this, a complementary research study into the assessment of the robustness of 
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precast framed structures became apparent, in addition to those looking at improving the 

structural performance of specific components.  With an on-going drive towards ever greater 

structural optimisation in building components, the resulting structures will then tend to lack 

the inherent additional capacity (and subsequent robustness this provides) of structures 

designed using the more conservative techniques and design codes we are trying to supersede. 

Because of this, the structural response to abnormal loadings or damage will become of ever 

greater significance in a precast building’s design development.  Therefore the industry’s 

knowledge and ability to quantify and design for such requirements became part of this body 

of work. Further, the critical evaluation of how existing design and assessment methods are 

used has already been stated to provide a mechanism through which improved structural 

performance may be achieved (for the design of slender RC panel element, Section 1.1.2). By 

critically investigating current robustness design practices against the opportunities presented 

by alternative techniques, a similar deliverable was anticipated. 

Robustness can be defined as: ‘the structural ability to survive the event of local failure’ 

(Wibowo and Lau 2009) or as an: ‘insensitivity to local collapse’ Starossek (2007).  

Alternatively, Knoll and Vogel (2005) attempt to provide an overarching mathematical 

representation, suggesting a robust structure is one where:   

Residual Capacity ≥ Residual Demand 

However, Knoll and Vogel (2005) recognise that because there are many mechanisms by 

which local collapse in a given building construction may propagate, the robustness of a 

structural system becomes very much a matter of context. The appropriate consideration and 

application of the term ‘capacity’, in the equation above, is highly dependent on the abnormal 

event which has occurred, with the critical property preventing collapse potentially relating to 

a variety (and combination) of structural and material properties.   

Beeby (1999) was one of the earliest to highlight the need for a method to quantify a 

building’s robustness. He argued that many engineers have a qualitative appreciation of what 

robustness is, and awareness in regards to the engineering measures and practices that can be 

adopted to reduce risk of disproportionate failure. These include: selection of structural forms 

with a low sensitivity to disproportionate collapse; ensuring the structure is tied; and the need 
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to provide for sufficient ductility in the structural elements and joints. However, Beeby went 

on to discuss that, although many engineers inherently understand the need to prevent against 

disproportionate collapse, they lack the analytical tools, assessment methods, appropriate 

metrics and explicit design guidance to ensure the risk can be quantified and therefore 

mitigated during the design development.  

The industrial partner agreed with this view, identifying that very little guidance exists 

relating to how ‘robust’ a typical pre-cast concrete cross-wall structure is required to be and 

whether the current statutory requirements are met by contemporary design and detailing 

practices. There is also little evidence to support the widely held industry view that pre-cast 

concrete construction is in some way less robust than an in-situ or steel alternatives (IStructE 

2010). Disunity is also perceived in existing literature in regards to the most appropriate 

methods for assessing and ensuring a building’s resistance to a progressive collapse failure 

typology (Starossek and Haberland 2008). Whether current best practice or alternative 

methodologies offer any advantages in a modern structural design office was therefore 

deemed worthy of further research. 
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2 AIM AND OBJECTIVES 

2.1 BACKGROUND  

The overarching research aim (see Section 2.2), specifically focuses on improving the 

performance of precast concrete structural components and building systems. The term 

‘performance’ in the context of this research should be taken to be associated with improved 

structural capacity, design or manufacturing efficiency, more effective project delivery, 

component flexibility, the ease of installation, improved sustainability or any consequential 

growth in terms of sales or market share. It was also a requirement that any aspects of 

improved performance were to be realised in precast structures that will meet regulatory 

requirements and certification (Section 1.1). 

By critically reviewing existing processes, practices and their associated regulations or 

constraints, it was possible to identify and quantify opportunities where alternative materials, 

manufacturing techniques or ancillary components could provide the required improved 

performances. The process of then evaluating how these alternatives could be justified as part 

of existing regulatory guidance subsequently required the research team to assess whether the 

current analytical methods, computational techniques and design equations could be adapted 

to accommodate the novel or non-standard design aspect under consideration.  

The four research objectives, detailed in Section 2.3, evolved in response to this research 

position. Each is associated with a specific commercial risk or opportunity to the sponsoring 

organisation, with a potential for improved performance identified in all instances. The 

objectives were set to provide the practical and theoretical framework for the main research 

studies and were subsequently realised through associated research tasks (Section 4), with the 

findings and any associated deliverables/publications informing further research where 

applicable. All tasks, their relationships, resulting publications and how each relates to the 

specified objectives, are illustrated by the research process flow diagram (Figure 2.1). This 

also shows the dependencies, sequencing and any overlap between the research tasks and their 

outputs. 
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2.2 AIM 

“To improve the performance of pre-cast cross-wall structural systems, through the effective 

evolution of current design and manufacturing practice.”  

2.3 RESEARCH OBJECTIVES 

Objective 1: Design Methodologies for RC panels 

To assess the suitability of current design methods pertaining to precast concrete wall panels 

resisting eccentric axial loading and, if necessary, to identify and demonstrate the validity of 

alternative methods which may improve the structural efficiency of these elements.  

Objective 2: Design and Adoption of Un-Confined Reinforcement Configurations 

To evaluate the implications (in terms of structural performance and design) of adopting un-

confined reinforcement configurations in precast concrete components, particularly structural 

elements that resist failure in buckling or shear. 

Objective 3: Alternative Aggregate Materials in Precast Concrete Mix Design     

To assess the technical feasibility and implications of incorporating alternative aggregate and sand 

replacements in solid precast structural flooring elements, with respect to the structural design, 

manufacture or installation of the elements. 

Objective 4: Suitability and Improvement of Robustness Methods 

To evaluate current disproportionate collapse assessment and design methodologies as they relate 

to precast concrete building typologies and quantify any potential benefits or risks that may exist 

when adopting such methods. 
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2.4 JUSTIFICATION OF THE

This section aims to justify each of the objectives defined 

aspects of the existing literature,

studies, which led the research team to identify that an opportunity and research need jointly 

existed. The sections also highlight how the existing

caused changes to and any evolution of the res

2.4.1 Welded Mesh Reinforcement Configurations

As explained in Section 1.3, a centrally placed welded reinforcement configuration

Figure 2.2) will allow cost savings in regards to the precast manufacture

horizontal elements (Objective 2)

lack of design guidance for both panel and beam element

analytical studies by Crozier and Sanjayan

2011b), have raised concerns with respect to the applicability of the current widely

‘equivalent’ column design method for RC wall panels adopting minimal and centrally placed 

reinforcement. Additionally, Doh and Fragomeni (2005) showed the current simpli

equations to be excessively conservative in respect to panels with 

25λ =  (Objective 1). The term ‘slenderness’ refers 

the wall panel to its thickness, 

 

 

 

 

 

 

Figure 2.2 Unconfined Welded Mesh R

Components   

JUSTIFICATION OF THE OBJECTIVES 

This section aims to justify each of the objectives defined in Section 2.3. It will summarise the key 

ature, technical guidance and any preliminary desk or experimental 

which led the research team to identify that an opportunity and research need jointly 

existed. The sections also highlight how the existing publications and test data influenced an

evolution of the research and development.  

Welded Mesh Reinforcement Configurations (Objectives 1 and 2) 

Section 1.3, a centrally placed welded reinforcement configuration

will allow cost savings in regards to the precast manufacture of

(Objective 2). However, its use has been limited historically because of 

design guidance for both panel and beam elements. For example, e

lytical studies by Crozier and Sanjayan (1997), confirmed by this research (

have raised concerns with respect to the applicability of the current widely

‘equivalent’ column design method for RC wall panels adopting minimal and centrally placed 

reinforcement. Additionally, Doh and Fragomeni (2005) showed the current simpli

equations to be excessively conservative in respect to panels with slenderness

The term ‘slenderness’ refers here to the ratio of the effective length of 

, where = H tλ . 

Welded Mesh Reinforcement Configurations for Precast Panel and Lintel 

Introduction  

23 

Section 2.3. It will summarise the key 

and any preliminary desk or experimental 

which led the research team to identify that an opportunity and research need jointly 

test data influenced and 

Section 1.3, a centrally placed welded reinforcement configuration (see 

of both vertical and 

. However, its use has been limited historically because of a 

. For example, experimental and 

this research (Robinson et al, 

have raised concerns with respect to the applicability of the current widely-adopted 

‘equivalent’ column design method for RC wall panels adopting minimal and centrally placed 

reinforcement. Additionally, Doh and Fragomeni (2005) showed the current simplified design 

slenderness in excess of

to the ratio of the effective length of 

einforcement Configurations for Precast Panel and Lintel 
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One potential alternative design strategy, identified through specific provisions in EC0 (CEN 

2002), enables the engineer to achieve a (code compliant) design for non-standard structural 

components and/or to overcome the limitations of existing design rules. The Design Assisted 

by Testing (DAT) procedure is based on a combination of testing and calculation and exploits 

probabilistic considerations to ensure that appropriate factors of safety are applied to 

predictions of structural capacity (Objective 1). These factors can be determined directly from 

experimental work, as long as the number of tests is sufficient for a meaningful statistical 

interpretation (Gulvanessian et al 2002). In the case of slender RC panels with 

minimum/central reinforcement, however, the preliminary testing undertaken (Robinson et al 

2011b) found that, because a large and systematic conservatism existed between 

experimentally observed capacities and the current design procedures, these methods cannot 

provide a design, or ‘resistance’ function for the DAT procedure. Consequently, an alternative 

theoretical model or design method, which more appropriately reflects actual buckling 

capacity, is required (Objective 1).  

 

 

 

Figure 2.3 Brittle Failure Modes Observed Experimentally for Precast Panel and Lintel Samples 

Additionally, there is the potential for a brittle failure mode (Figure 2.3) to result with precast 

elements adopting the welded mesh reinforcement proposed (Lu et al 2003; Robinson et al 

2011a). Initial investigations suggested however, that alternative concrete mixes and 

reinforcing strategies could induce a more ductile response. As a result, it should then be 

possible to justify the adoption of the unconfined layouts as part of future design and 

manufacturing practice. However, the existing design expressions (for wall panel elements) 

currently take no account of either the quantity or the distribution of longitudinal 

reinforcement, with any modification to the concrete material model also not accommodated. 

Because of this, the ability of the design engineer to investigate improving structural 

performance (to mitigate a brittle failure mechanism or otherwise) through alternative 

concrete types or reinforcement strategies is restricted (Objective 2).  
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The inclusion of steel fibre reinforcement (SFR) in the concrete matrix was identified as one 

potential strategy for ameliorating the failure mode in centrally and minimally reinforced RC 

panels. This is because SFR (Figure 2.4) concrete mixes have been shown to result in a 

number of improvements in the mechanical performance of concrete, relating to aspects such 

as: a delay in micro-crack propagation to a macroscopic scale, the hindrance of macroscopic 

crack development and an improved structural ductility (Abrishami and Mitchell 1997).  It 

was found that few resources or research studies aid in the design of slender panel elements, 

where there is a combination of SFR and longitudinal reinforcement (Figure 2.2). 

Furthermore, no coverage was found in existing regulatory codes. The need for an alternative 

design methodology again became apparent, with the ability to allow for non-standard 

concrete mixes and reinforcement layouts again relevant. To incorporate this extension to the 

original scope however, further experimental and computational works were necessary to aid 

the verification and calibration of the alternative technique (Objective 2).  

The investigations of alternative mesh layouts in precast beam elements were focussed on 

better understanding the effect such configurations would have on the behaviour and capacity 

of the resulting discontinuity regions or ‘D-regions’ in the halving joints. The abrupt change 

in the cross section (see Figure 2.2) of the reinforced concrete member at the dapped end 

causes discontinuities in the flow of the internal forces. These D-regions cannot be analysed 

through beam theory and classical sectional analysis, with the inadequate (and inconsistent) 

treatment of such details using ‘past experience’ or ‘good practice’ design methods being 

cited as the cause for the historical poor performance and even failure of some structural 

components (Schlaich et al 1987). The design of D-regions can however (for confined 

reinforcement configurations) be accommodated using a strut and tie model (STM), as 

proposed by the work of Schlaich et al (1987) and Schlaich and Schafer (1991) (Objective 2). 

A distinct research strand thus became necessary because (to the best of our knowledge) the 

appropriateness of adopting STM methods to design structural elements using unconfined 

reinforcement layouts has not previously been investigated. Research was required to 

understand: the appropriateness of this analytical method to this design situation, the way in 

which the procedure needs be modified to allow for the incorporation of the alternative design 

aspects and the need for an additional safety factor as part of the design procedure.  Further, 
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the nature of STM is such that it is sensitive to changes in dimensions and loading conditions 

(Schlaich and Schafer 1991). As a result it is important to verify (and to a certain extent 

calibrate) any analytical models developed through experimentation. 

2.4.2 Alternative Aggregate Materials in Precast Slab Components (Objective 3) 

The testing and development associated with the 3
rd

 objective was focussed on improving 

efficiency in the manufacture and installation of structural precast components. The 

sponsoring organisation highlighted that the weight and perceived environmental impact of 

precast construction systems are often reasons for clients and their design teams to use 

alternative structural solutions (Mays and Barnes 1991). The development of more sustainable 

lightweight components therefore had a strong business case. 

The incorporation of sintered pulverised fuel ash (SPFA) in solid slab precast flooring units 

was identified as a potential technical solution, because it is an industrial waste product 

(Figure 2.4) and can significantly reduced density (Kockal and Ozturan 2011). For a complete 

replacement of the coarse material, the resulting lightweight concrete has a dried density in 

the range of 1700-1900
3

kg m . By incorporating SPFA as a fine/sand replacement, a further 

reduction in concrete density to 1500-1600
3

kg m  is achievable. Kockal and Ozturan (2011) 

showed that despite the replacement it remains possible to obtain similarly high strength 

grades (60
2

N mm ). These high strength but lightweight concretes therefore offer clear 

benefits to the precast industry, where an improved strength to weight ratio is advantageous 

for the lifting and transportation of the manufactured units (Al-Khaiat and Haque 1998). 

Other advantages are also associated with sustainability, reduced thermal conductivity and 

improved acoustic performance for the resulting density (Mays and Barnes 1991).  

 

 

 

 

Figure 2.4 Sintered Pulverised Fly Ash (SPFA) Aggregate and Maccaferri FF3 Wirand Steel Fibres  
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A review of technical literature revealed that, although the effects of using lightweight 

aggregate and sand products have been the subject of numerous studies (Kayali 2008) in 

relation to the 28 day (and later) stages of strength development, a better understanding is 

needed of the fresh and early-age properties of such concretes (Wu et al 2009). The term 

‘fresh concrete’ refers to the material state where all components are fully mixed but the 

strength has not yet developed. That is, the concrete is still workable and plastic. ‘Early age’ 

properties are those (within this research) following 15-24 hours of curing. 

In this context, an experimental study was required of alternative mix designs, considering 

both the partial and complete replacement of the existing natural, normal-weight sand and 

aggregate materials. As precast elements are stripped and transported within a day of casting, 

it leads to a requirement for a relatively (to site cast) high strength at 12-24 hours. In turn, this 

is inevitably associated with an excess of concrete strength after a full period of strength 

development, which is then effectively not utilised over the element’s design life. Further, 

achieving a high early-age concrete strength is also often a key design parameter in precast 

design in order to mitigate possible damage or failure to the resulting components occurring 

during their handling (e.g. cracking or failure of lifting anchors). Whether existing design 

methods and equations were suitable (or could be appropriately modified) for concrete 

following a shorter period of curing was therefore an important question. 

2.4.3 Ensuring Robustness of Precast Buildings (Objective 4) 

The UK, US and European design regulations (ODPM 2004, ACI 2008, CEN 2006) all 

contain specific provisions addressing the need to design against disproportionate collapse. 

These have similar procedures by which the buildings are classified based upon their intended 

use, size and the level of risk that any potential structural collapse may present to the public. 

This process of building classification defines the appropriate level of structural robustness 

that must be achieved following the design, detailing and construction processes. However, 

the subsequent definition of the required structural performance tends to be highly qualitative, 

aspirational and subjective in nature in all of these regulatory guidance documents. They 

require the design engineer to achieve approval by demonstrating that their design and 

detailing philosophy is in line with one of their ‘approved’ design strategies. By doing this 

however, there is no requirement for the engineer to explicitly assess measure or justify the 
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resulting structural performance of the construction. There is only a need to demonstrate a 

compliance with the adopted strategy. 

Perhaps the most commonly adopted method is where the engineer ensures that the structural 

elements and any resulting joints detailed are in line with the prescriptive 'tying force' 

provisions provided by the codes. The philosophy is based on the assumption that such details 

will improve the redundancy of the structure, avoiding propagation by providing alternative 

load paths. This is deemed acceptable however, without a subsequent need to demonstrate or 

justify these mechanisms by explicit calculation or computational assessment. Izzudin et al 

(2008) questioned the approach, querying whether the tying provisions defined allow for the 

true structural actions that such elements and joints will be required to resist following a 

partial building collapse. Given the period during which they were developed (following the 

Ronan point collapse in 1968) and the simplicity of the resulting equations, it is unlikely the 

expressions developed were intended to account for the complex dynamic and non-linear 

effects induced in reality. The lack of any compulsory regulation requiring the engineer to 

demonstrate that the adopted construction details are ductile enough to allow for the resulting 

large deformations induced, is perhaps the starkest indication that current design expressions 

do not rigorously consider realistic performance requirements for buildings exposed to 

accidental load conditions. 

Alexander (2004) also questioned current approaches, arguing that for certain structural 

typologies the philosophy of ensuring structural redundancy via the provision of joint 

continuity may contribute to, rather than prevent a progressive collapse event. His work 

argues that in the event of the loss of structural stability, excessive tying may have the effect 

of 'dragging' out or down elements above or below the region in which the member has been 

removed or destroyed, questioning the blanket insistence on continuous vertical ties. This 'pull 

down' phenomenon was observed on an experimental concrete panel high rise block 

constructed and tested by the Building Research Establishment (HMSO 1968). However, no 

further detailed experimentation, modelling or quantification of this effect appears to have 

been subsequently conducted.  Additionally, there is little understanding of which building 

types, layouts or details might be most susceptible to its realisation.  
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This research therefore asserts that stipulating tying provisions should be questioned. 

However, Starossek (2007) questions whether alternative assessment and design procedure 

currently exist and are acceptable. Where such methodologies have been presented (Izzuddin 

et al 2008; Kim et al 2009), currently they appear to lack the appropriate detailed information, 

data, experimental verification and necessary calibration, which would allow them to be 

applied in the design development process (Starossek and Haberland 2008). The sponsoring 

company considered this lack of current industry knowledge to be even more acute in relation 

to precast structures. 

The procedure devised for the design of the slender precast RC panels involves a ‘push-down’ 

computational assessment, adopting a lumped plasticity idealisation (Section 4.1.4). This is a 

widely adopted model, particularly in earthquake engineering (push-over in this case) but also 

more recently as part of robustness assessment (Kim et al 2009). It allows the determination 

of the ultimate performance of a structural system by increasing step-by-step the load 

multiplier until failure. It was hypothesised that if the technique could predict the plastic 

behaviour (N-Mxx-Myy) of the RC panel elements, it should also be possible to apply the 

techniques to precast frames, their elements and connections to demonstrate a structure’s 

ability to meet international building regulations. Such work builds on previous investigations 

by Lee et al (2011) and Choi and Kim (2011) in relation to steel and RC frame respectively. 
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3 METHODOLOGY 

The purpose of this chapter is to examine the research methods available for this study. A 

review of research methodology is followed by a statement of the adopted methods, their 

applicability and benefits. The research strategy is presented to explain how the methods 

selected are suited to achieving the research aim. The specific methods adopted are then 

described and justified with reference to how they meet the research objectives (Section 2.3). 

These relationships are also illustrated in Figure 2.1.  

3.1 METHODOLOGICAL CONSIDERATIONS 

Research can be classified using a scale, which at one end is ‘pure’ and at the other is ‘applied’ 

(Fellows and Liu 2005). Pure research is concerned with the discovery of theories or laws of 

nature and the development of knowledge (inductive) whereas applied research concentrates on 

the end uses of knowledge and its subsequent practical application (deductive in nature). As is 

clear from the objectives, the research work was of a predominantly applied nature. That is, little 

emphasis has been placed on solving abstract problems, with the research aiming to have a direct 

influence on the UK precast industry through the investigation of how modern materials, 

manufacturing technologies and computational or design techniques can be more widely and 

efficiently utilised as part of industry ‘best practice’.  

Two modes of enquiry are typically reflected in research, these are the ‘Quantitative’ and 

‘Qualitative’ approaches. This research is entirely of a quantitative type, driven by the nature and 

objectives of the investigative work and deliverables anticipated by the industrial partner. This 

approach, often modelled on the positivist paradigm, seeks the gathering of factual data through 

quantifiable means, in order to address research problems, such that the amount of variations in 

phenomena can be tested and measured (Fellows and Liu  2005; Kumar  2005). The quantitative 

methodology focuses on testing hypothesis or theories by using statistically measurable variables, 

to obtain results that clearly determine the validity or otherwise of a hypothesis (Naoum 2006). 

This approach has thus been devised to better understand how non-standard strategies can be 

successfully incorporated in precast structures and their components. 

Because of the intended end application of the research, the work (and test data associated) was 

designed with a view toward obtaining regulatory compliance. Therefore it was implicit that the 
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methods, materials and details of an ‘experimental’ research approach had to be validated through 

physical testing. This in turn, provided an opportunity for the design methods and products 

developed to be calibrated and optimised.  

Due to the maturity of the research topic, the resulting investigative work is predominantly 

deductive in nature. This is especially the case for the research and testing work pertaining to the 

structural performance of the precast wall, beam and slab elements. Essentially, the research team 

sought to prove the appropriateness of design, analytical and computational techniques to enable 

novel or non standard materials or manufacturing processes. This was done by establishing, 

evaluating and verifying the structural and material properties, as well as the ability of analytical 

and computational procedures to capture the observed behaviour of the proposed non-standard 

application or design variation. The quantitative research type also defines both the 

epistemological and ontological orientation of the research set, as highlighted by Table 3.1 

(Bryman 2008). 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3.1 Quantitative vs. Qualitative Research Strategies (Bryman, 2008) 

It could be argued however, that the investigation in regards to the computational robustness 

assessment (Section 4.4) was partially inductive in nature. That is, a small sample of structural 

typologies and possible precast connections were considered, with the findings subsequently used 

to comment upon the suitability of ‘tied’ precast structures and the associated joint details in 

general. 

 

Quantitative Qualitative

Principal orientation to the 

role of theory in relation to 

research

Deductive; testing of 

theory

Inductive; 

generation of 

theory

Epistemological orientation Natural science 

model, in particular 

positivism

Interpretivism

Ontological orientation Objectivism Constructionism
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3.2 METHODOLOGY DEVELOPMENT 

3.2.1 Objective 1: Design Methods for RC panels 

The need for a more accurate prediction of panel buckling capacity was identified when an 

attempt was made to use existing design methods in conjunction with experimental evidences, 

as a way to justify higher design values of panels using the European DAT method, and it was 

found that such methods were unsuitable. An alternative computational strategy was therefore 

proposed in order to achieve a truer representation of the system’s non-linearity and therefore 

provide an improved quantification of the panel’s capacity.  

A lumped plasticity idealisation was identified as a viable computational tool. This is a non-

linear fibre hinge used as part of a ‘push-down’ loading iteration to determine the behaviour 

of the component up to (and also beyond failure). This approach differed from those in 

previous studies. Doh (2002), adopted a finite difference approach to validate a full FEM 

model of the walls. However utilising a higher level FEM package (ANSYS) required more 

processing power, with only a quarter of the panel modelled so that the analysis could be run 

in a reasonable amount of time. Further, a large degree of specialist knowledge and 

experience is required with such software. This research sought a method applicable in a 

standard design office. The lumped-plasticity approach, which can be run on a consumer-

grade laptop, was deemed a more appropriate tool.  

A ‘lumped-plasticity’ idealisation was appropriate for predicting the failure capacity of the 

panel elements, because of the known and localised position of element failure consistently 

identified and observed in the literature, as well as in preliminary experimental tests 

conducted as part of this study. By using a non-linear ‘fibre-hinge’ element at the known 

location of maximum moment, (i.e. at the critical section of the RC panel), the entire 

inelasticity of the element is concentrated at this location. The length of the fibre hinge (the 

plastic region in the precast element) was based on experimentally validated data provided by 

Pangiotakos and Fardis (2001). 

It is argued that the computational method presented will be more effective in simulating the 

buckling response of the slender walls relative to the existing design methods, because it will 

account for non-linear material and geometric effects (Section 2.4.1). This hypothesis and the 
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resulting predictions of structural performance are therefore validated against experimentally 

measured parameters, with predictions of panel capacity using this computational assessment 

then compared against equivalent capacities derived from current (code compliant) design 

methods, as well as the actual experimental data. 

As detailed, the European (CEN 2002) code allows alternative design methods to be used, in 

conjunction with actual experimental observations. For the DAT method to be used though, 

the proposed design technique must be capable of closely predicting capacities relative to 

available empirical data.  If this is the case, the alternative design practice should then achieve 

a more efficient design of similar RC wall members.  

The DAT method (CEN 2002) defines the resulting design strength ( )dr� as a value that 

represents the 1% fractal for an infinite number of tests. In more traditional studies, where the 

population variance is unknown, the confidence interval is determined by a statistical 

mechanism such as the Student t-distribution ( )ct , i.e.
.

c
t s

m
n

± , where m  is the mean capacity, 

s the standard deviation and n the sample size. This provides a useful analogy in fact, where 

the n
k fractile adopted (see Paper J1, Section 6.1) should be considered the equivalent of c

t

n
. 

In the study undertaken, the coefficient of variation ( )x
V is unknown, with previous test data 

(Doh and Fragomeni 2005; Pillai and Parthasarathy 1977) also incorporated in the analysis 

(where similar properties can be demonstrated to exist) to provide 22 data points. 

 

 

 

 

 

Potential computational sensitivity of the adopted material model was also investigated, 

specifically the tension softening branch of the unconfined concrete material response 

(Mander 1988) and the influence of longer term creep effects. A study was also necessary to 

Table 3.2 Design Fractile Factors for Vx Unknown (CEN, 2002) 
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demonstrate that no statistically significant relationship existed between design variables in 

the lumped plasticity representation and the model error (Paper J1, Figure 10). 

 

3.2.2 Objective 2: Design of Un-Confined Reinforcement Configurations 

Two structural elements have been considered as part of this research objective (Figure 1.2). 

Namely, simply spanning RC panels subjected to an eccentric axial load (buckling failure) 

and short spanning lintel elements adopting a halving-joint detail (shear failure). 

Provisional testing of slender RC wall panels, as part of this research (Section 4.1.2), 

demonstrated that the adoption of single, centrally placed or minimum reinforcement 

configurations in RC wall elements (subject to an eccentric axial load), results in a sudden 

brittle failure mechanism. The research also showed the ‘flexural cracking’ response of the 

slender RC wall elements to be critical in determining the resulting buckling behaviour and 

ultimate failure load of the panel. This is opposed to the more conventional assumption that 

the element’s capacity and response can be found by consideration of the component’s 

ultimate flexural capacity (Sanjayan et al 1997).  

The term flexural cracking is used here to describe the situation where the concrete section at 

the critical location cracks in flexure and the resulting concentrated loss of stiffness, 

(combined with the lack of influential tension steel) controls the resulting structural behaviour 

and ultimate stability of the panel much more than would occur with doubly reinforced 

panels, where 1%
s

A ltρ = ≥ (Kripanarayanan 1977). Hence, the axial capacity of the RC wall 

element becomes dependent on the element’s flexural stiffness up to and post cracking. 

Consequently, appropriate account needs to be taken of the contribution of the concrete acting 

in both the tension and compression stress block as part of the design of the element. 

Furthermore, this flexural cracking response has been shown to control the behaviour and 

capacity of centrally reinforced panel elements adopting unconfined rebar configurations, up 

to a steel ratio of 3%
s

A ltρ = = (Pillai and Parthasarathy 1977). 

The controlling failure mechanism of the identified RC wall elements will therefore, in part, 

be influenced by the formation and subsequent progression of flexural cracks in the concrete 

at the panel’s critical section. It follows that if the behaviour of such cracks is significant 
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when determining the structural response, the incorporation of steel fibre reinforcement 

should influence the resulting behaviour and hence ultimate capacity (see Section 2.4.1). The 

experimental testing therefore aimed to quantify the anticipated increase in structural capacity 

and ductility of wall panels made from an SFR concrete. 

The second part of the experimental investigations focused on the design of precast 

lintels/beams with dapped ends. The European code prescribes two alternate STMs and 

reinforcement provisions for the detailing of halving joints (Figure 3.1). Theoretically, either 

of these models can be used depending on the reinforcement provision. They can also be 

combined, as suggested by Schlaich and Schafer (1991). The model on the left is similar to 

the example provided by ACI Subcommittee 445-1 (2002) with the diagonal strut from top of 

the main vertical tie back down into the beam. However, disagreement currently exists in 

respect to whether this model provides an accurate reflection of the crack propagation from 

the re-entrant corner, as the compressive strut should prevent this occurring. The experimental 

program of this research was devised to establish whether this model would accurately reflect 

the behaviour of samples from the crack propagation observations, and hence its suitability 

for the design of dapped end members to EC2. In addition, the experimental results were also 

used to evaluate the applicability of the models currently prescribed in the codes for the 

design of precast samples adopting welded mesh reinforcement, with or without the inclusion 

of SFR. 
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Figure 3.1 Indicative Models for Reinforcement in Half Joint (CEN 2004) 
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3.2.3 Objective 3: Alternative Aggregate Materials in Precast Concrete Mix Design     

European standard design guidance (CEN 2004) explains how the material properties of 

lightweight concretes should be modified when designing structural elements. However, there 

is a lack of experimental evidence supporting the suitability of these generic expressions to 

correctly capture the behaviour of SPFA mixes, and more specifically the validity of using 

values of concrete cylinder strength ( )c
f  to predict the tensile splitting ( )ct

f  or for predicting 

the pull-out capacity of an anchor. It was also of interest to establish whether published 

empirical relationships reflect the behaviour of lightweight concretes made with SPFA, with 

the Elastic Modulus ( )c
E  the characteristic most significantly affected in this instance. 

The experimental campaign focussed on the high-strength, high-flow concrete mixes 

commonly adopted in the precast industry, examining the mechanical properties directly 

relevant to the manufacture of structural units, namely: concrete flow, compressive strength, 

modulus of rupture, Young’s modulus and pull-out shear capacity. Historical research 

identified that the inclusion of SPFA leads to a reduced structural capacity and stiffness 

(Shimazaki et al 1994). These studies considered SPFA concretes relative to normal weight 

control samples following 28 days of strength development. Because of the reduced 

performance suggested, relative to the control sample, this study also aimed to establish if 

steel fibre reinforcement (SFR) potentially offered a solution through which any loss of 

performance may be corrected for. This is a strategy suggested in the literature for other 

concrete mixes and applications (Hsu and Hsu 1994; Kayali and Haque 2003) and fitted in 

well as part of the research project as a whole, alongside the incorporation of SFR in precast 

panel and lintel components (see Section 2.4.1). 

3.2.4 Objective 4: Suitability and Improvement of Robustness Methods 

The major international design codes demonstrate the robustness of buildings through any one 

of four potential design approaches. These include meeting prescriptive 'tying force' or 

alternative 'anchorage' provisions (Section 2.4.3). It should be noted, that clauses pertaining to 

anchored connections are only relevant to the UK and European regulations for class 2A and 

2Lower buildings respectively. Alternatively the engineer may achieve compliance by 
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ensuring that either the 'Notional Member Removal' or 'Key Element' provisions have instead 

been met. 

Most pertinent to this study are the assessment methods that can be adopted as part of a 

notional member design. This requires the engineer to demonstrate that following the loss of 

any vertical load bearing member, the remaining structural components will have sufficient 

'capacity' to transfer any resulting actions, through the establishment of alternative load paths. 

The term capacity is taken to refer to the critical property preventing structural collapse and 

may therefore relate to element strength, deformability, ductility, stability or stiffness. The 

provision however, is applied using conventional design checks despite authors such as 

Izzudin et al (2008) having questioned this approach. That is, this too simplistic a 

representation fails to correctly account for the nonlinear geometric and material effects 

induced.  

However, if such complexities could be appropriately incorporated, the notional column 

procedure does provide the required performance based assessment. That is, studies such as 

those by Kim et al (2009) and Lee et al (2011), demonstrate the procedure allows for a more 

appropriate consideration of the progressive collapse phenomenon by assessing the plastic 

response of the structure to pseudo-dynamic loading. The engineer therefore becomes able to 

better assess the actual capacity of the structural system.  The study undertaken as part of this 

research programme asserts that, because no robustness performance metric is currently 

defined in the design regulations, and because a building designed using any of the available 

design approaches can be considered to be robust, it must therefore be the case that a building 

designed using any one of the possible design strategies will achieve a minimum ‘adequate’ 

robustness or level of performance. That is, a building designed using the prescriptive tie or 

anchorage rules should be able to sustain the actions imposed on it under an assessment 

conducted to meet the notional column removal provisions. This therefore presents an 

opportunity to assess the adequacy of current tying and effective anchorage rules for ensuring 

the insensitivity of typical precast concrete building to a progressive collapse.  

This was done through a non-linear push down computational study, with such assessments 

having historically been shown to be suitable for robustness assessment and design against 

disproportional collapse (Kim et al 2009, Lee et al 2011). The study by Marjanishvili and 
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Agnew (2006) compared the various available analytical procedures (linear-elastic static, 

nonlinear static, linear elastic dynamic and non-linear dynamic). They concluded that the 

‘push-down’ procedure (nonlinear static) provided an effective simulation of building 

collapse, if appropriate pseudo-dynamic load factors are adopted, and for buildings where 

dynamic behaviour patterns can be intuitively identified.  

It was deemed that a non-linear static approach was the most suitable for use and application 

in a structural design office and consequently was considered to be most in line with the 

objectives of this EngD research project. Less specialist knowledge and software is required 

when considered against a non-linear dynamic assessment. The improvements in modelling 

efficiency, which Marjanishvili and Agnew (2006) showed to result when adopting a non-

linear dynamic compared to a non-linear push-down, were therefore considered not to be 

significant enough when compared to the other advantages offered by the chosen procedure.  

The non-linear push-down analysis was also found to be capable of investigating both the 

joint details and the building's susceptibility to any secondary effects that may compound the 

advancement of a progressive collapse. For example, the computational model would allow 

an engineer to see if the collapsing portion of the building had the effect of pulling down, or 

imparting an otherwise detrimental load case to, the majority of the structure. In this way the 

procedure allowed us to investigate and evaluate the key concerns (Section 2.4.3) associated 

with tied and anchored precast buildings in a quantifiable and auditable manner.  

3.3 METHODS 

A research method is considered a technique for collecting data (Bryman and Bell 2007).The 

primary research methods employed in this study are discussed in detail below.  

 

3.3.1 Literature Review 

Literature review plays a significant role in research, as it provides the basis for justifying the 

research questions and developing research designs. In addition, it informs how data is 

collected and analysed (Bryman and Bell 2007). The literature review stage of this study 

enabled the RE to place the project in the context of the current views and debates on the 

subject matter. This study involved an initial general review of literature and further review at 
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the start of each phase throughout the project (see Figure 2.1). The initial literature review 

involved an examination of current challenges, restrictions, best practice and innovations in 

the precast industry to highlight areas (e.g. products, practice, and manufacturing techniques) 

where an improved performance may be realised. Subsequent review allowed the RE to better 

understand any limitations associated with the assessment and design of precast structures to 

the major international design codes. Work intended to highlight and quantify the potential for 

any structural efficiency and optimisation that may exist from previous analytical and 

experimental studies, as well as to inform any necessary future programme of testing and 

analytical investigation. Findings from the literature review have been detailed in Section 2.4, 

as well as in the published papers (Section 6), with the key references cited in them. 

 

3.3.2 Experimentation 

A logical structure for the quantitative research process has been outlined by Bryman (2008) 

as: Theory, Hypothesis, Observations, Data Analysis and Findings. This process has been 

used as a basis for this research, with guidance on the design of the experiments from Lewis–

Beck (1993). The methodology used has taken into account: variables, measurement errors, 

reliability, validity, control and generalisability, which have been highlighted as key failings 

of past experimental quantitative research (Lewis-Beck 1993).  

Section 4 details the experimental programmes conducted as part of this study. It was 

necessary to carry out both small-scale testing, to better understand material characteristics 

and behaviours, as well as trials on full scale structural components. Preliminary testing was 

also used extensively in order to establish if further investigation was warranted. That is, 

whether the potential improved performance or efficiency suggested by the desk study could 

be realised. These tests were also used to inform the experimental practice going forward. 

Ease of experimental set-up, methods of data capture and issues associated with safe working 

could for example be established, reviewed and improved upon if necessary. 

Some experimental methods employed were in accordance with UK or European codes of 

practice. These methods were often associated with establishing material characteristics, 

behaviours and properties (e.g. concrete cube or cylinder strength). Further, certain aspects of 

structural performance (e.g. the pull-out capacity of cast in lifting anchors) were established 

through the application of standard testing equipment and procedures. In contrast, bespoke 
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procedures and set-ups had to be considered, for the testing associated with establishing the 

behaviour of the full scale precast components. Towards this, the literature reviews and 

preliminary testing conducted were used to inform the ways in which the test methods could 

be used to provide the necessary information. Novel data collection methods were also 

developed to improve the experimental data collection in certain circumstances (Section 5.4). 

In conjunction with physical experimental work, a number of numerical investigations were 

also necessary. The work consisted of developing computational and analytical 

representations of the experimental set-up.  The research team were then able to use the test 

data to validate the numerical procedures trialled. This in turn should allow such methods to 

be used in the design development of precast components and structures in the future. 

 

3.3.3 Statistical Analysis 

Statistical analysis involves the interpretation of data, normally in numerical form aimed at 

summarising and describing the data collected (descriptive statistics). Techniques can also be 

used to investigate patterns in the data in order to draw conclusions about the population 

under study with due consideration to the uncertainty and randomness in observations referred 

to as inferential statistics (Fellow and Liu 2003). Statistical analyses conducted as part of this 

study are detailed in Section 4.  

 

3.3.4 Sensitivity Analysis 

A number of investigations to assess the sensitivity of the experimental data and the 

computational and analytical representations were also important. This involved the 

introduction of appropriate variation to the adopted testing arrangements, analytical models, 

material properties, structural geometry or loading conditions. Work was aimed at evaluating 

the resulting effect on a final design consideration and thus provides information in regards to 

its suitability.  
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4 RESEARCH UNDERTAKEN 

4.1 OBJECTIVE 1: DESIGN METHODOLOGIES FOR RC 

PANELS 

4.1.1 Task 1(1) Investigation into the Suitability of Existing Methods for Minimally or 

Centrally Reinforced Panel Elements 

A literature review investigated the existing experimental, analytical and computational research 

into slender RC panels subjected to an eccentric axial load, and the principles associated with the 

development of the current design equations and methodologies. Additionally a desk study 

focussed on the implications of the European design codes, as they apply to the design and 

manufacture of the same panels, with the work considering the pertinent differences in design 

aspects between EC2 and the other major international codes. 

The evidences collected demonstrated that EC2, ACI-318 and AS-3600 do not provide a suitable 

method for predicting the buckling capacity of minimally or centrally reinforced concrete panels 

(Robinson et al 2011b). For example, Figure 4.1 illustrates that to each of the major design codes 

(and for the two distinct design methods available) an RC wall panel will have zero capacity when

30λ = . This is despite Fragomeni et al (1994), Crozier and Sanjayan (1997) and Doh and 

Fragomeni (2005) demonstrating this is not true. In addition, evidence collected as part of the desk 

study questioned the applicability of the equivalent column methodology due to the dominant 

tension-softening response of the wall types considered (Robinson et al 2011a).  
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Figure 4.1 Comparison of Code Methods for Design Axial Strength   
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4.1.2 Task 1(2) Preliminary Experimental Works to Establish Buckling Behaviour 

Six =L 500 mm wide and =t 100 mm thick pre-cast concrete panels of varying height and 

slenderness ( λ  between 25 and 30) were axially loaded, with a range of eccentricities also 

adopted to reflect common construction and design cases. An overview of the experimental 

arrangement is illustrated in Figure 4.2, with the reinforcement layout adopted also illustrated 

within Figure 4.4 (b). As another research task was to assess the sensitivity of a panel’s 

buckling capacity to the element becoming cracked at its critical section, six of the panels 

were axially loaded in a pre-cracked condition, with the fissure induced in flexure, prior to 

loading. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Experimental Set-up for RC Panels: (a) Test Rig Elevation; (b) Section; (c) Pin Joint Detail 

(Robinson et al 2013-Paper J1) 

4.1.3 Task 1(3) Investigations into the Potential Application of the Design Assisted by 

Testing (DAT) Methodology 

 

This initial experimental testing conducted demonstrated that the ultimate capacity of the 

panels (as expected) far exceeded the predictions of both simplified code equations and 

equivalent column methodology as enabled in EC2 (Robinson et al 2011a). 
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Experimental findings thus supported past research, and confirmed that simplified design 

equations provide overly conservative estimates of slender RC panel capacity. The term 

‘capacity’ is used here to describe the load at which the panel fails in buckling due to the 

application of an eccentrically applied axial load. More importantly, the testing campaign also 

demonstrated that the axial capacity of centrally reinforced elements is effectively 

independent of the flexural tensile strength of the concrete, as similar capacities were 

experimentally observed for panels in the cracked and un-cracked initial condition. That is, 

six panels were cracked in a three-point bending arrangement through the entire section of the 

panel element prior to loading the element axially. In this way the tensile contribution of these 

panels can be negated. This is one of the key findings of this testing, as it allows us to 

conclude that the contribution due to the concrete’s post-cracked behaviour (specifically the 

response of the compressive stress block) is crucial in determining the element’s capacity. 

That is the ‘flexural cracking’ response can be considered as dominant (Section 3.2.2). The 

observed failure typology also supports this finding, with a compressive spalling seen, along 

with extensive flexural cracking for both the cracked and un-cracked initial conditions (Figure 

4.3).  

 

 

 

 

Figure 4.3 Panel Buckling Failure: (a) Unconfined Central Welded Mesh; (b) Welded Mesh with a 

50kg/m
3
 SFRC Content  

Moving from the above considerations, the investigation then examined whether the 

experimental results obtained from the testing programme could be used to derive a more 

representative design curve by application of the DAT method. Findings (Section 5.1) 

suggested that because a large and systematic conservatism appears to exist between 

experimentally observed capacities and the current design procedures, the existing methods 

may not be able to provide a design, or ‘resistance’ function for the DAT procedure. An 

alternative approach would therefore be required to predict ultimate capacity of the elements. 
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4.1.4 Task 1(4) Development of an Alternative Computational Method 

In addition to addressing the need for RC panel design to account for the ‘flexural cracking’ 

buckling response of centrally or minimally reinforced panels, any alternative methodology 

adopted/ developed also had to enable the design engineer to quantify the effect of adopting non-

standard concrete mixes and reinforcements on the buckling behaviour and capacity of the panels. 

An alternative, non-linear, computational representation of the buckling response of a one way 

spanning slender RC panel was identified as a possible solution. The work aimed to evaluate 

whether such a model could better assess and more correctly account for the geometrical and 

material non-linearity associated with the failure typology.  

For the structural problem in hand, the entire inelasticity of the element can be concentrated at 

a single position through a non-linear fibre ‘hinge’ (Paper J1 Section 6.1). This is considered 

valid since the location of maximum moment (and thus the critical section for the span) is 

known (see Figure 4.4(a)). In this representation, the element’s cross-section is subdivided 

into a number of elementary layers or fibres (SAP2000 2010), to which the appropriate 

material properties are then assigned (see Figure 4.4(c)).  

 

 

 

 

 

 

 

Figure 4.4  Key Aspects of the Lumped Plasticity Analysis: (a) Computational Idealisation of 

Experimental Set-Up; (b) Reinforcement Layout and Fibre Hinge Idealisation of Wall Panel 

Cross Section; (c) Resulting Compressive Stress Block; (d) Resulting Moment Rotation Response 

of Fibre Hinge (Robinson et al 2013-Paper J1) 

(a) 
(b) 
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The non-linear moment-curvature relationship of the fibre hinge can then be determined 

(Figure 4.4(d)) for a range of axial loads assuming plane cross sections. Importantly, the 

concrete material model can be easily modified if the performance of other concrete types, 

such as high-strength concrete or fibre reinforced mixes, has to be accounted for. Because a 

displacement-controlled non-linear push-down analysis is adopted, it is also possible to assess 

the resulting deformations and strains induced in the fibre hinge incrementally up until (and 

also beyond) the ultimate failure load. 

To validate the proposed method a greater degree of experimental data was required, with the 

extent of the further testing (16 panels) detailed as part of journal Paper J1 (Section 6.1). The 

numerical outputs from the computational idealisation (in terms of deflection and strain 

relating to the ‘tensile’ face of the buckling panel) were then compared against the actual 

experimental data to investigate whether the adopted computational strategy was capable of 

accurately capturing the true structural behaviour of the RC wall elements. It was also 

possible to quantify any improved correlation between experimental data,
,e ir , and the 

theoretical prediction of buckling capacity
,t ir , in order to assess the appropriateness of the 

alternative method to be used in conjunction with the DAT procedure. This assessment is 

conducted through consideration of the angular coefficient b  of the regression line for the 

proposed approach. The check is done by considering the least-squares best fit to the slope b  

between t
r  and e

r  (see Journal Paper J1, Section 6.1). If the corresponding angle with the 

horizontal axis ( arctan( ))bθ =  was shown to have an acceptable fit to the ideal value ( =θ  

0.785)  the test data could thus be used to develop a design capacity curve. 

4.2 OBJECTIVE 2: DESIGN AND ADOPTION OF UN-CONFINED 

REINFORCEMENT CONFIGURATIONS 

4.2.1 Task 2(1) Investigation into Achieving More Suitable Ductile Failure in Panels 

As discussed in Section 4.1, it can be demonstrated that the capacity of wall panels adopting 

centrally placed welded mesh re-bar in an unconfined configuration, is dominated by the post-

cracked behaviour of the panel and in particular the response of the compressive stress block. 

However, the failure mode observed (within preliminary testing) when this unconfined re-bar 

configuration is adopted is of a sudden and brittle nature (Robinson et al 2011a), with the concrete 
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within the compressive zone locally spalling  (Figure 4.3). The spalled region however, emanates 

distinctly from the flexural cracking progressing from the tension zone of the concrete section.   

The zone  Pilot testing, investigating the use of unconfined configurations in precast lintels 

(Argyle et al 2011) demonstrated another sudden and catastrophic failure of the concrete. 

The potential utilisation of SFR as a means of inducing a more ductile failure mechanism in the 

precast element (see Section 2.4.1) became apparent as part of the literature review conducted. 

However, experimental testing was deemed necessary due to a lack of existing data and published 

design guidance relating to precast elements adopting a hybrid of welded mesh reinforcement and 

an SFR content.   

4.2.2 Task 2(2) Investigation into Achieving More Suitable Ductile Failure in Panels 

The testing relating to precast wall panels was designed to investigate whether and how the 

application of an SFR concrete mix influences the resulting structural response and capacity of 

such panels. If any benefit could be derived however, the development, justification and 

validation of a possible design procedure would also be necessary for the alternative precast wall 

components to be considered to be code compliant and adopted as part of an actual precast 

building. Because of this, the potential application of the computational procedure developed as 

part of Task 1(2) for this alternative panel design case was also investigated. This was done as it 

was believed that the computational procedure developed would be able to account for the non-

linear material response of the fibre concrete. The experimental data was also used to evaluate the 

appropriateness of assumptions made in the computational idealisation, such as the length of the 

plastic hinge adopted (Paper C1, Section 6.3).   

Eight 500mm wide, 100mm thick and 3000mm tall panel elements were cast adopting C40/50 

grade concrete mix (500kg/m
3
 CEMI, 840kg/m

3
 Gravel<20mm, 900kg/m

3
 Sand<4mm, 0.8% 

Super-plasticizer, w/c=0.36, Flow=650-700mm). Four of the samples were reinforced solely 

using a single, centrally placed layer of mesh reinforcement to form the unconfined reinforcement 

configuration illustrated in Figure 4.4(b). The four additional panels tested adopted an identical 

reinforcement configuration to that illustrated although, in these cases, additional steel fibre 

content (50kg/m
3
) was also incorporated. In this way, the potential for any improved performance 

through such a hybrid reinforcing strategy could be quantified. The double hooked end fibres used 
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were 50mm long, 0.75mm in diameter, had an aspect ratio of 67 and a tensile strength greater than 

1100N/mm
2
 (Figure 2.4). 

The eight panel elements were then axially tested using the experimental setup illustrated in 

Figure 4.2. The testing rig used for the experiments was capable of applying a load of 

4000kN, with the loading beam designed to ensure the transmission of a uniformly distributed 

load across the top of each panel at eccentricities of 17mm ( )6t  and 33mm ( )3t . The smaller 

of the adopted eccentricities was chosen to reflect the maximum load off-set allowed for in 

the major international design regulations ( )6t  investigated (CEN 2004; ACI 2008). The 

larger eccentricity ( )3t  was also incorporated to investigate if using SFR in conjunction with 

un-confined longitudinal reinforcing steel could potentially offer an engineer the opportunity 

to justify such panel elements for resisting a more demanding load case. 

4.2.3 Task 2(3) Investigations into Un-confined Reinforcement Configurations in Shear  

Additional experimental work focused on beam samples in which a centrally placed, 

unconfined and welded reinforcement mesh was used. The testing was aimed at increasing the 

understanding of the shear behaviour and capacity of the D-regions (Section 1.3). Further 

samples used a percentage of steel fibre content, in conjunction with the welded re-bar 

configuration, to establish any improved performance possible through adopting a hybrid 

reinforcing strategy. The structural testing also aided in the development and verification of 

an analytical STM, capable of accounting for such a non-traditional reinforcement strategy.   

The geometry of the specimens tested and the welded mesh reinforcement layout adopted are 

illustrated in Figure 2.2 with greater detail also provided in Paper C1 (Section 6.3). 

Specimens adopting a confined shear ‘cage’ reinforcement were also manufactured and tested 

(see Figure 4.5), to provide a control sample and so that the performance of the welded mesh 

can be directly compared to an industry standard reinforcement design. Because the objective 

of the experimental program was to study the behaviour of the D-Region of the precast lintel 

component, a member length of 1415mm was adopted so as to ensure that the region 

controlling the element’s capacity was that under investigation. All reinforcing bars used in 

the manufacture of the samples were 16mm in diameter, with a cover of 25mm maintained 

throughout. The bars were MIG welded, with all anchorage forces and requirements 
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appropriate to the resulting welds calculated in line with the relevant EC2 (CEN 2004) 

provisions. 

Four samples were cast and tested for each variation of reinforcement configuration. Strains 

were measured using LVDT gauges, with demec pips used to check the readings (up to first 

cracking). Strain progression was also measured using photogrammetric techniques, which 

provided a further validation to the readings (Section 5.4). The data collected allowed the 

research team to establish how altering certain variables, to do with the concrete mix and 

reinforcement strategies, affected the behaviour and ultimate shear capacity of the dapped end 

relative to the confined control. How such behaviour could be captured and predicted in the 

analytical models and design procedures developed was also investigated.  

 

 

 

 

 

 

 

 

 

 

 

4.3 OBJECTIVE 3: ALTERNATIVE AGGREGATE MATERIALS 

4.3.1 Task 3(1) Lightweight Floor Slab Element 
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Figure 4.5 Confined ‘Cage’ Reinforcement Configuration for Precast Beam Samples. 
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A structural design was developed for the proposed lightweight slab element, with a technical 

feasibility assessment also conducted to identify any necessary modifications required to the 

manufacturing process to account for the SPFA aggregate and sand materials. It was found 

that the effects of using lightweight aggregate and sand products have been the subject of 

numerous previous studies and can therefore be considered to be well known in relation to the 

28 day (and later) stages of strength development. However, despite such properties being 

particularly significant in the manufacture of precast units (see Section 2.4.2), it was also 

found that there appears to be a lack of data available in relation to the behaviour of 

lightweight concretes both in the fresh concrete state and the early-age stages of the hardened 

concrete’s strength development. Therefore the sponsoring organisation lacked the necessary 

data to properly assess the impacts that adopting such alternative materials will have on the 

existing manufacturing, lifting, transportation and installation processes, as well as the 

structural performance of the element. 

4.3.2 Task 3(2) Material Testing 

An experimental study (see Journal Paper J2, Section 6.2) was therefore deemed necessary, with a 

specific focus given to the high-strength, high-flow concrete mixes commonly adopted in the 

precast industry. The study allowed the effects of wholly or partly incorporating such alternative 

aggregate and sand types (in relation to early age properties) to be quantified, with the application 

of material and small scale structural testing allowing properties such as concrete flow, 

compressive strength, modulus of rupture, Young’s modulus and pull-out shear capacity to be 

determined. Such information subsequently enabled the feasibility of these mixes to be assessed 

and optimised, towards incorporation in the larger scale slab element.   

The early age pull-out strength of commonly utilised lifting anchors in the SPFA concretes was 

also tested. This was because it was felt important to understand (from an operational stand-point) 

whether the capacities of the chosen anchor type will be similar in the new concretes relative to 

those currently adopted (i.e. the control mix in the testing programme). Therefore standard 

industry testing was carried out so that a design value for the pull-out load of the adopted lifting 

anchor could be determined, in line with regulatory requirements. Journal Paper J2 (Section 6.2), 

details the testing undertaken and the values determined for the required design variables.  

Research Undertaken 



Design and Performance of Precast Concrete Structures 

50 

Six 100mm cube samples were cast for each period of curing (i.e. at 24 hours, 7 and 28 days) 

and for each of the eight mixes, giving a total of 144 (6x3x8)
 
cubes. Further, six 150x500mm 

cylinder samples were cast per mix, so as to determine the early age Young’s modulus of the 

relevant concretes as part of a non-destructive test, with these same samples then 

subsequently used to derive values of the indirect tensile strength ( )ct
f   from a split cylinder 

test. Forty-eight (6x8) 100x100x500mm beam samples were also cast to determine the 

flexural indirect tensile strength ( )sw
f . That is 6 beam samples were tested in a four point 

bending arrangement for each of the eight postulated mixes. Three further 500x600x100mm 

slab elements were additionally manufactured for mix types A, E and F (see Paper J2-Section 

6.2), to investigate the pull-out behaviour of the selected anchor type. The testing sample 

sizes, concerning the determination of material properties and anchor pull out performance, 

were chosen to comply with the relevant regulatory guidance. That is, as advised in BS EN 

12390 (BSI 2009) and TR 15728 (CEN 2008) respectively. 

4.3.3 Task 3(3) Concrete Mix Design to Establish Comparable Performance to Control  

The experimental study progressed to also consider the practicalities and benefits of adopting a 

quantity of steel fibre reinforcement in conjunction with the self-compacting SPFA concrete mix. 

This was done when it was established that the introduction of lightweight materials led to a 

reduction in performance, with respect to any of the chosen structural performance metrics. The 

additional testing aimed to determine whether this secondary reinforcement was able to improve 

the early age material properties of the concrete (specifically the pull-out shear capacity of lifting 

anchors) such that the engineer was able to obtain a comparable material performance. Because 

steel fibre reinforcement is commonly employed in the manufacture of precast structural units, 

and because existing literature suggests that this reinforcement type provides a measure through 

which the loss of the observed performance may be corrected for, a material testing programme 

was undertaken to quantify its effects. Findings of these experimental works were also 

incorporated as part of Journal Paper J2 (Section 6.2). 
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4.4 OBJECTIVE 4: SUITABILITY AND IMPROVEMENT OF ROBUSTNESS 

METHODS 

4.4.1 Task 4(1) Investigation into the Suitability of Existing Disproportionate Collapse 

Tying Provisions  

As detailed in Section 2.4.3, the existing literature identified that an industry need exists for an 

assessment methodology, which allows for the performance of a precast structure subject to a 

structural damage event to be quantified. One potential method identified (Section 3.2.4) was 

through a non-linear 'push-down' computational assessment, with the method also having 

previously been successfully adapted for the robustness assessment of both steel and RC building 

typologies (Kim et al 2009; Choi and Kim 2011). Although the computational technique can 

therefore be considered to be a suitable tool for performance-based design, no such similar 

analysis appears to have yet been conducted for common precast building types. 

The exact computational procedure used was that defined by the General Services 

Administration (GSA 2010) regulations. That is, a stepwise increase in the amplitude of 

applied vertical loads is applied until the maximum specified load is reached or a collapse is 

observed (Marjanishvili and Agnew 2006). Although the 'push-down' method cannot capture 

the instantaneous dynamic effects associated with aspects such as column loss events or 

debris loading for example, studies (Izzuddin et al 2008; Marjanishvili and Agnew 2006) have 

shown that the application of factored ‘equivalent’ pseudo-static load cases can acceptably 

allow for these actions and effects. 

The assessment was used as part of this research to establish the suitability (or otherwise) of 

existing code specified ‘tying’ and ‘anchorage’ force provisions (Section 2.4.3). The adopted 

analysis models have been designed to represent a precast framed structure with a 7.5 7.5× m 

structural grid and a floor to floor height of 3.8m. Models representing a ‘tied’ frame design 

for buildings of two, four and ten storeys were analysed. Alternative models adopting 

effectively anchored connections were also considered for the two and four storey frames, 

with the elevations for the analysed buildings detailed in conference Paper C2 (Section 6.4).   

Research Undertaken 



Design and Performance of Precast Concrete Structures 

52 

The proposed non-linear, static robustness assessment procedure is of course highly 

dependent on the adopted representation of the plastic properties of each component, as well 

as their connections (Inel and Ozmen 2006). That is, our understanding of the ultimate 

inelastic deformation capacities of the components detailed in terms of their geometric and 

mechanical characteristics should be captured. The required non-linear load-deformation 

relationships have previously (Kim et al 2009; Lee et al 2011) been based, on those values 

published in seismic design guidance, such as ASCE 41-06 (2007). However, these values do 

not account for the effect of significant variations in the axial forces applied to the 

components. Such forces and variation, will though be much more critical in a progressive 

collapse simulation, as they will significantly affect (in potentially both a beneficial and 

detrimental manner) the rotational behaviours (and thus capacities) of the elements and 

connections. 

Therefore, a much more effective method of capturing the structural behaviour of the RC 

elements was considered to be through ‘fibre-hinge’ elements (Figure 4.4), in a manner 

similar to that adopted when modelling the buckling failure of minimally reinforced precast 

simply wall panels (Section 4.1.4). In this way it is possible to determine an effective 

representation of the non-linear moment-curvature relationship for the structural component, 

also accounting for the proportion of axial load applied. The non-linear load deformation 

characteristics derived were also validated against relevant experimentally derived values 

(Panagiotakos and Fardis 2001). The associated structural behaviour was then incorporated in 

the computational models as non-linear ‘hinge’ elements that are specified at the locations 

where the applied lateral and gravity loads are considered to produce maximum effects. That 

is the plasticity of the structural components (modelled as an N-M hinge) is assumed to be 

lumped at the centre and ends of the beam and column elements (Paper C2, Section 6.4). Such 

an analytical element allows the interaction and combined effects of the axial load and 

moment to be captured within the 2D frame.   

The adequacy of current tying and effective anchorage rules could thus be assessed in a 

quantifiable manner (in line with the methodology detailed in Section 3.2.4). The 

computational study forms the major basis for conference Paper C2 (Section 6.4). As can be 

seen from this paper the work highlights the need for current design and detailing practice to 
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take more appropriate account of the nonlinear response of the components and joints 

incorporated in multi-storey buildings 

 

 

 

 

 

 

 

Figure 4.6 Structural Sections, Connection Designs and Computational Equivalents (Robinson et al 2013- 

Paper C2) 
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5 FINDINGS AND IMPLICATIONS 

This chapter presents the key conclusions from the research, along with its impact on the 

research sponsor and the wider construction industry. The research process and its outcome 

are then critically evaluated following which recommendations are put forth for areas of 

future research. 

5.1 THE KEY FINDINGS OF THE RESEARCH 

5.1.1 Objective 1: Design Methodologies for RC Panels 
 

The experimental findings were found to confirm that simplified design equations provide 

overly conservative estimates of slender RC panel capacity (see Table 2, Paper J1). The 

testing campaign also demonstrated that the axial capacity of centrally reinforced elements is 

effectively independent of the flexural tensile strength of the concrete, as similar capacities 

were experimentally observed for panels in the cracked or un-cracked initial condition. This 

result therefore questions the validity of the expression presented by Sanjayan et al (1997), 

who proposed to evaluate the axial load capacity N
U

 of a slender RC wall as: 

N
U

=
1

′e
M

CR
− M

0( )  

where ′e = e − t 6( ) + M
CR

P
E( )  provides an equivalent eccentricity in order to account for 

the variation in panel’s flexural stiffness up to and post cracking, while 2 6CR ctM f L t=  is the 

flexural moment required to cause the panel to crack. 

The investigation then examined whether the experimental results obtained from the testing 

programme could be used to derive a more representative design curve by application of the 

DAT method. It was shown that the proposed lumped-plasticity computational modelling, 

with a single fibre hinge at the critical mid-span location, is able to capture the buckling 

failure of slender RC panels, much more than the existing design procedures (see Paper J1, 

Section 6.1), with the method also seen to consistently slightly underestimate the actual panel 

buckling capacity within a range of 3-13%. 
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Figure 5.1 Comparison between Theoretical and Experimental Results: Alternative Computational Design 

Approach (Robinson et al 2013-Paper J1)  

Figure 5.1 illustrates the improvement in design methodology in predicting the buckling 

capacity of the RC wall panel. The corresponding angle with the horizontal axis is θ =  

arctan( )b =  0.82  (see Figure 5.1), which has a much better fit to the ideal value ( =θ  0.785)  

compared to the correlation achieved with the EC2 empirical design equation (dotted line) or 

equivalent column methodology (dash-dot line). The condition 1b >  also confirms that the 

proposed computational model is conservative (i.e. the theoretical resistances tend, on 

average, to be slightly less than the corresponding experimental capacities).  It could be 

concluded therefore that the lumped plasticity representation can be used in the DAT 

procedure to develop a possible alternative design capacity curve (see Section 5.2.1). 

5.1.2 Objective 2: Design and Adoption of Unconfined Reinforcement Configurations 
 

The lumped plasticity idealisation and fibre-hinge elements was also shown to provide a good 

correlation with the experimental data relating to the singly and centrally reinforced panels 

adopting SFR concrete mix alternatives (see Paper C1, Section 6.3). This was an important 

finding, as it demonstrated the ability of the method to account for variation of the concrete 

material model adopted.  
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The introduction of the 50kg/m
3
 SFR content was also shown to increase the axial buckling 

capacity of precast RC wall panels adopting an unconfined welded mesh re-bar configuration. 

In addition, the ductility up to structural failure was demonstrated for load eccentricities of 

e=t/6 and e=t/3 (Figure 5.2). Moreover, an improved (and more acceptable) failure 

mechanism was observed, when compared to the sudden, brittle failure seen in the control 

samples (Figure 4.3). 

 

 

 

 

 

 

 

Figure 5.2 Experimental Load-Deflection Curves for Panels with Varying Eccentric Load and Use of SFR 

(Robinson et al 2012-Paper C1) 

With respect to the lintels with dapped ends, it was again demonstrated that the introduction of 

SFR leads to increased capacity and ductility (Figure 5.4). This is believed to be because the 

fibres act to control cracking at the re-entrant corner, inducing a greater degree of flexural action 

prior to failure. During testing of the lintel elements, which only adopted the centrally placed 

welded mesh (i.e. no SFR content), the first crack occurred at the re-entrant corner of the dapped 

end. This was quickly followed by flexural cracking at the mid-span. As loading was increased 

the mid-span flexural cracking was seen to propagate at a greater rate than that at the re-entrant 

corners in a similar behaviour to that also observed when the confined control samples were 

loaded (i.e. those adopting a more traditional ‘cage’ reinforcement). Unlike the more traditional 

cage elements however, the mesh-only exhibited a greater propagation of tensile cracking along 

the diagonal compressive strut. This propagated upwards towards and subsequently along the 

beams top face as shown in Figure 5.3 (c). 
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The mesh-only samples failed when the cracking from the re

of the beam. This caused a shear failure with the concrete forming the dap spalling away post 

failure, leaving the reinforcement exposed. It was observed tha

longitudinal steel of the mesh, adjacent to the 

indicated the potential failure mechanism for the beam. The more

the steel, that is the steel yielding and deforming plastically in an ‘under

suggested that a more promising mode of failure 

achieved for similar sections using a confined concrete.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 5.4  Cube and Span Normalised Load

Figure 5.3  Crack Patterns and Failure: (a) Cage; (b) Fibre Mesh; (c) Mesh Only

only samples failed when the cracking from the re-entrant corner reached the top face 

of the beam. This caused a shear failure with the concrete forming the dap spalling away post 

failure, leaving the reinforcement exposed. It was observed that plastic hinges had formed 

longitudinal steel of the mesh, adjacent to the welded vertical bars (Figure 5.3

the potential failure mechanism for the beam. The more ductile behaviour observed 

elding and deforming plastically in an ‘under-

a more promising mode of failure could be justified than has been previously 

achieved for similar sections using a confined concrete. 

(a) 

(c) 

Cube and Span Normalised Load-Displacement Curves 
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entrant corner reached the top face 

of the beam. This caused a shear failure with the concrete forming the dap spalling away post 

astic hinges had formed in the 

igure 5.3(c)) and therefore 

ductile behaviour observed in 

-reinforced’ manner, 

than has been previously 
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5.1.3 Objective 3: Alternative Aggregate Materials in Precast Concrete Design 
 

The inclusion of hook-ended steel fibres (50 kg/m
3
) was again found to significantly enhance 

the mechanical and structural performance in precast elements. The pull-out shear capacity of 

the anchors in the SPFA concrete type was shown to increase by 63% on average (Paper J2-

Section 6.2), with the failure mechanism changing in nature from a pull-out cone to a more 

flexural failure. This manifested in a “two-way” slab failure in the small scale slabs tested. It 

was shown therefore that the SFRC content improves the 24 hour pull-out capacity of SPFA 

concretes to a similar extent as that observed in normal weight concretes (Ding and Kusterle 

1999). It is unlikely that such a failure mechanism would occur however, in a large scale slab 

element. It is important therefore that further study establishes whether the same scale of 

improvement is seen for the same fixings cast within larger scale structural elements. 

Investigations of SPFA aggregate and sand material in precast slab elements additionally 

indicated that the design equations for calculating compressive and tensile strengths in the 

European standard may underestimate the behaviours of these concretes at early ages (Paper 

J2, Section 6.2). It was found that, whilst the introduction of this aggregate replacement led to 

a reduction of up to 15% in concrete strength at 28 days, the 24 hour strength only reduced by 

up to 4.2% for concretes with an equivalent cement content. This is because the earlier age 

strength is less significantly dominated by the failure of the SPFA aggregate, which is 

responsible for the reduced concrete strengths following longer periods of curing.  

It was therefore seen that the trends currently proposed by UK concrete research organisations 

for predicting the compressive strength of SPFA concrete mixes, relative to the resulting 

concrete density are probably not applicable for concretes following shorter periods of curing. 

It was also demonstrated that the strength variation following 1 day of curing, for the SPFA 

aggregate investigated were less pronounced than those suggested in historical research 

(Wasserman and Bentur 1996). 

5.1.4 Objective 4: Suitability and Improvement of Robustness Methods 

The response of the chosen precast building typologies to the nonlinear static push-down 

analyses conducted is presented in Figures 5.5 (a) and (b) for the column loss event at the 

centre and corner of the building’s end bay respectively. The plots show the load factor 



 Introduction  

 

 59 

against the imposed deflection at the location at which the column has been removed. In this 

study, the load factor refers to a measure of performance utilised as part of similar 

investigations considering the non-linear push-down assessment of multi-storey buildings 

(Kim et al 2009; Lee et al 2011; Marjanishvili and Agnew 2006). The metric essentially 

quantifies what proportion of the load case the ‘collapse-arrested’ structure can transmit to the 

foundations through the alternative load path, defined as:  

Equivalent Applied Load
Load Factor= 

Total 'Linear Static' Load
 

Because the maximum strength of the structures in each case does not exceed a load factor of 

1.0 none of the structural typologies considered would satisfy the recommendations of the 

GSA (2010) guidelines. 

 

Figure 5.5 Push-Down Load-Displacement Relationships of Model Structures (Robinson et al 2013- Paper 

C2) 

5.2 CONTRIBUTION TO EXISTING THEORY AND PRACTICE 

5.2.1 Objective 1: Design Methodologies for RC Panels 

The research has demonstrated the potential of a semi-empirical semi-probabilistic DAT 

(Design Assisted by Testing) methodology, enabled in the European design code, to derive 

more representative design values. In order to use this procedure, an alternative resistance 
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function has been devised, utilising a lumped-plasticity computational model with a non-

linear fibre hinge at the position of the panel’s critical section. This approach was shown to 

represent effectively the structural response of slender RC panels, with a very good 

correlation between numerical and experimental values of the structural resistance (see Paper 

J1, Section 6.1). Further, this agreement was achieved using a relatively simple computational 

model, with all analysis run on a standard, consumer-grade laptop.  

The design curve so obtained (see Figure 5.6) shows an increased structural capacity for 

slender elements, which better reflects the experimental data and can therefore result in more 

structurally efficient RC panels.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Alternative Panel Capacity Curve Developed from the Lumped Plasticity Idealisation with the 

DAT Procedure (e=t/6) (Robinson et al 2013- Paper J1) 

5.2.2 Objective 2: Design and Adoption of Unconfined Reinforcement Configurations 

Moreover, the fibre-hinge modelling procedure therefore also potentially provides practising 

engineers with an effective design tool, which is also easily adaptable to situations with non-

standard concrete mixes. Paper C1 (Section 6.3) further demonstrates the suitability of the 

computational technique to enable the design of panels adopting a hybrid reinforcing strategy. 

The lumped plasticity model is also shown to allow the panels to be assessed with regards to 

resisting eccentric loads beyond that currently permitted in the existing design codes ( )3e t= .  

U
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The investigations conducted have also developed and validated a Strut-and-Tie Model 

(STM) for the design of halving joint details in the precast beam elements, where an 

unconfined steel reinforcement layout is adopted. The analytical model was found (see Paper 

C1, Section 6.3) to overestimate the actual capacity. That is, the findings suggest that a 

modification (or safety) factor should additionally be applied to the analytical ‘strut’ element 

to account for the brittle nature of the unconfined concrete. In contrast however, when a 

50kg/m
3
 dosage of double-end hook SFR was introduced in the mix, the STM design method 

could be justified, with the experimental values this time indicating that a beneficial 

modification factor is warranted.  

Further, it is concluded that the crack pattern observed (Figure 5.3) for all of the samples tested, 

i.e. the resulting propagation of tensile cracking from the re-entrant corner, is in conflict with the 

STM proposed by EC2 Section 10.9.4.6, as the diagonal compressive strut crosses this cracked 

region. In particular, it should be noted that the mesh-only and fibre-mesh samples exhibited 

extensive crack propagation in this region leading directly to the failure. This confirms the 

arguments of Wight and MacGregor (2009), the ACI Subcommittee 445-1 (2002) and FIP 

Recommendations (1999) highlighted in Section 3.2.2, which have all questioned the validity of 

this published model.   

5.2.3 Objective 3: Alternative Aggregate Materials in Precast Concrete Design 
 

Establishing the early age properties of SPFA concrete mixes, has a direct implication in the 

design of precast structural elements. That is, the specification of a normal weight concrete 

mix is often determined through the need to achieve high early age strength (Section 2.4.2). 

This additionally leads to an excess capacity in the component at full concrete strength. 

Because the testing has shown similar 1 day strengths to have been achieved in lightweight 

SCC concrete mixes, and because the strength will be reduced following a full period of 

curing (because of aggregate shearing failure), the SPFA concretes appear to provide the 

precast industry with a means to achieve a suitable early-age concrete strength, but also have 

a resulting capacity closer to that required in the design. 

It was also concluded that because the observed deviation in SPFA samples relating to 

indirect concrete tensile strength ( )ct
f   at 24 hours was less pronounced than that seen after a 
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full period of curing, the introduction of a beneficial modification factor may be applicable in 

current European design regulations (CEN 2004) for design cases where a shorter period of 

strength development has occurred. Such a factor would consequentially allow for the 

improved design of elements against early age cracking and deflection.   

5.2.4 Objective 4: Suitability and Improvement of Robustness Methods 

Precast frames, whose joints were designed according to regulations for fully tied or anchored 

connections, were evaluated according to the notional column procedure using a non-linear 

push-down technique (Section 3.2.4). For the precast framed structures considered, none were 

found to meet the GSA (2010) robustness performance regulations. All of the two and four 

storey structures investigated could also be classified as 'susceptible' to progressive collapse, 

according to the performance metric proposed by Marjanishvili and Agnew (2006). However, 

none of the buildings considered showed any indication that a secondary, detrimental 'pull 

down' effect due to the ties would induce or hasten the collapse sequence. 

The study demonstrated that the computational push-down methodology previously adopted 

for steel (Kim et al 2009) and RC framed buildings (Choi and Kim 2011) can also be applied 

to precast framed structures. The analysis allowed the performance of the precast frames to be 

quantified, relative to an industry standard metric, with commonly adopted tied and anchored 

details shown to be unsuitable to prevent the collapse of the structures following a column 

loss to the centre or corner of the building.  The work adds further support to previous studies, 

which question the use of prescriptive tying details to meet robustness requirements (Izzudin 

et al 2008). 
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5.3 IMPLICATIONS/IMPACT ON THE SPONSOR 

The EngD research has had a direct impact on Hanson Structherm in terms of changes to the 

design and manufacturing processes adopted. It has also influenced the development of new 

precast products/components and the means by which such innovation can be demonstrated to 

meet design and building code regulations. These implications are summarised below: 

� The feasibility of adopting a centrally placed welded mesh reinforcement 

configuration was demonstrated for both precast panel and lintel elements. Design 

methods and capacity equations to the European design codes (CEN 2004) were 

established and can be included in any future submissions towards regulatory approval 

for the components. 

� The use of the Design Assisted by Testing methodology, in conjunction with structural 

testing, to develop design methods and gain regulatory approval for new products, 

materials or ancillary components has been established. The procedure will therefore 

form part of new development and product innovation projects in the future. 

� The effects of SPFA aggregate and sand materials (as well as their use in conjunction 

with a quantity of SFRC) on the workability, early age material properties and 28 day 

characteristic strengths have been quantified. The applicability and potential 

modifications to existing design equations has also been assessed. The test data has 

fed directly into the development of a lightweight direct decoration precast slab 

component and an alternative Floor over Garage (FoG) slab unit. For the span 

required, because of the reduced self weight of the FoG unit, a comparable structural 

thickness can be achieved in an SPFA reinforced slab and a non-SPFA pre-stressed 

component. This is of commercial significance to Hanson-Structherm. 

� An SFRC content was shown to improve significantly the pull-out shear capacity of 

industry standard lifting anchors in precast slab components. This had a direct impact 

on the health and safety  procedures at the Hanson precast facilities as it was necessary 

to identify any risk associated with the alternative SPFA materials in the casting, 

lifting and transportation process (under UK Construction Design Management 

(CDM) regulations). It was shown though, by using SFR concrete (as well as the 

reduced dead-weight) any health and safety risks have been mitigated.  
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� Further, because of the testing undertaken a higher safe working load of lifting 

anchors could be justified in precast elements. This means that potentially larger 

components could be lifted without the need for a more costly cast-in anchor. 

� The research work associated with the design of RC wall panel elements will mean 

that higher design capacities can be justified and demonstrated to the European design 

regulations (CEN 2004). In addition, more extreme load eccentricities can also be 

assessed (see Paper C1, Section 6.3). The increased flexibility of the lumped plasticity 

computational approach will also mean that the wall panel elements can be utilised for 

a greater variety of design situations and as part of for more architecturally 

challenging structures. This should therefore lead to improved sales of precast panel 

elements. 

5.4 IMPLICATIONS/IMPACT ON WIDER INDUSTRY 

The majority of the aspects of the research project, which will influence both the wider 

precast concrete industry, have already been effectively captured in Sections 5.1-5.3. 

However, the testing undertaken, the experimental procedures developed and the 

computational techniques employed have also influenced numerous other research projects, 

which in their own right have the potential to lead to improved structural performance. 

Specifically, Argyle et al (2011) looked at developing FEM models that would improve the 

accuracy and efficiency with which the design engineer could establish STM models for 

halving joints adopting both confined and un-confined reinforcement configurations.  The 

experimental data could be used to validate the principal stress directions, crack propagations 

and capacities outputted from the computational model. The non-linear FEM in this way 

would be very beneficial to design engineers because establishing a suitable STM is often a 

difficult and (because of the iteration and validation required) time consuming process. 
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Martin and Godfrey (2012) also used the experimental design, testing procedures and 

analytical models developed (as part of this EngD project) to investigate the structural 

behaviour of rubberised concrete mixes in shear. They adopted a similar methodological 

approach to that detailed in Paper C1 (Section 6.1) when attempting to derive a modification 

factor to apply to the compressive strut (in the resulting STM) to account for the alternative 

material behaviour of the rubberised concrete. They also investigated varying SFR contents in 

an attempt to counteract the brittle failure mechanism.  

The test samples and experimental procedure was also used to trial an imagery-based data 

collection and analysis procedure. Having recorded, and subsequently, calculated the 

displacements of a number of placed targets (Figure 5.8), the strain in each ‘subset’ of four 

targets could be calculated using the shape function method described by Chandrupatla and 

Belegundu (2002). Strain components in two directions and shear could also be calculated for 

each subset, with the principal direction of strain then found. Because the results from the 

high number of measurement points can be considered comparable to full-field measurement 

(Schmidt et al 2003), the information produced, such as strain gradients, aids research and 

product development. This is because the method will be able to reduce the number of 

samples and prototypes tested in a laboratory. Specific to this application, the techniques 

should enable the STM to be postulated and validated more expediently. 

 

 

Findings and Implications 
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The research and testing data associated with the pull-out capacity of lifting anchors in early 

age concrete (both SPFA and normal weight) is to be used by the aggregate manufacturer 

Lytag as part of future technical guidance, with the Precast Flooring Association (PFA) to use 

the findings in future design literature. The Structural Precast Association (SPA) technical 

committee also used the findings of Paper C2 (see Section 6.4) as part of a technical review 

into robustness design and detailing practice. 

5.5 RECOMMENDATIONS FOR INDUSTRY/FURTHER 

RESEARCH 

5.5.1 Objective 1: Design Methodologies for RC Panels 
 

Lumped plasticity idealisation and fibre-hinge elements were shown to provide a good 

correlation with the experimental data relating to the singly and centrally reinforced panels 

adopting both traditional and SFR concrete mix alternatives. However, the computational 

method was found to be less effective in the presence of steel fibres as secondary 

reinforcement (see Paper C1, Section 6.3), suggesting that further testing is required in order 

to calibrate the ‘length’ of the fibre hinge that should be adopted in the analysis. It is likely 

therefore that similar experimental calibration would also be required if the method is to be 

used for the design of panels adopting other alternative concrete mixes (e.g. High Strength 

(HSC), SPFA or rubberised concrete).  

The nature of the DAT procedure also means that the larger the amount of test data that exists, 

the more appropriate the resulting design curve becomes. It is recommended therefore that 

more similar testing is therefore conducted towards achieving further structural efficiency in 

precast RC wall components 

Figure 5.8  Full Scale Rubberised Concrete Lintel and Evolution of Strain Captured by Imagery Analysis  

(Martin and Godfrey  2013) 
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5.5.2 Objective 2: Design and Adoption of Unconfined Reinforcement Configurations 
 

The research and testing conducted has worked towards demonstrating the validity of 

adopting STM analytical models for the design of halving joints. Specifically it has provided 

data and evaluated the suitability of potential analytical models for precast lintels adopting 

unconfined reinforcement configurations. The work also established that a beneficial 

modification factor may be valid in such analytical representations where the specific SFR 

concrete mixes are adopted. However, a greater degree of further testing would be required in 

order to demonstrate and quantify what the value of such a beneficial factor should be. 

Further, how and if the coefficient should change if the geometry of the element and quantity 

of steel fibre reinforcement is varied should also be investigated.  

It should also be possible to justify the design of these elements using the DAT procedure, 

with the STM analytical representation providing the theoretical prediction of the element 

capacity ( )t
r . Such an exercise would require a greater amount of experimental data to 

appropriately meet the requirements and be incorporated in the statistical procedures.  

5.5.3 Objective 3: Alternative Aggregate Materials in Precast Concrete Design 
 

A degree of further testing and research, specifically focussed on the pull-out resistances of 

lifting anchors in SPFA concretes (following a short period of curing), would be a great 

benefit to the precast industry. From the testing undertaken as part of this research 

programme, reduced pull-out capacities were observed in SPFA concrete mixes, relative to 

the control concrete. The data suggests that a reduction factor in the region of 20-30% would 

be appropriate when specifying fixings or anchors of this nature into the lightweight concretes 

(Paper J2-Section 6.2). The current European standards however, require modification factors 

that reduce the design capacity by up to 70%. These regulations therefore appear to be very 

conservative when designing for the pull-out shear failure of lifting anchors in these 

concretes. It is recommended therefore that more extensive testing should be undertaken to 

justify a more appropriate modification factor.  

The current experimental programme demonstrated that an SFR dosage (50kg/m
3
) 

significantly influenced the shear capacity of concrete in the early stages of strength 

development for both normal and lightweight (SPFA) concrete variations.  However, the 
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derivation of a modification factor, which could then be applied in the design process, to 

allow an engineer to benefit from the SFR content in SPFA concrete mixes, would require 

further research due to the variable nature of this hybrid concrete. A greater amount of data 

associated with potential variations in anchor size, anchor type, base reinforcement mesh, 

SFRC dosage and concrete strength would additionally be of great use to a specifying 

engineer. 

5.5.4 Objective 4: Suitability and Improvement of Robustness Methods 
 

It was concluded that the resulting behaviour observed and ‘performance’ of the tied 

structures considered as part of Paper C4 (see Section 6.4) is directly related to and 

significantly affected by the chosen tying detail. However, a larger amount of investigation 

would be required into how significantly the nature of the precast tied connection affects the 

resulting building performance before any firm conclusions in regards to the suitability of the 

current design methodologies and detailing rules can be drawn. Therefore further 

computational assessment needs to be conducted, in which connection and element designs 

are varied so as to assess the effect of adopting various tying details and the resulting 

sensitivity of the building’s performance to a column loss event. 

In addition, the study (as part of this research) also provides no indication of the manner in 

which the measured robustness of the structure will change in response to variations in the 

building’s span length, storey height or plan shape. The effect of utilising and modelling for 

segmental and flexible floor diaphragms (e.g. pre-stressed hollow-core floor units) is also 

currently unknown. In addition, analogous investigation of the performance of alternative 

precast cross wall construction typologies would also be of great significance to ensuring the 

suitable design of robust precast building typologies in the future. 

5.6 CRITICAL EVALUATION OF THE RESEARCH 

With regard to the methodology, physical experimentation could not be avoided. It was 

essential that the computational and analytical models developed were validated and justified 

by direct comparison with test data. The sample size adopted in the investigations relating to 

the buckling failure of minimally and centrally reinforced precast wall panels was in line with 
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the requirements of the DAT procedure (see Section 3.2.1). The sensitivity and statistical 

analyses conducted further demonstrated the appropriateness of the adopted sample size.  

Such rigorous statistical consideration and analysis, with regards to any sensitivity of the 

proposed computational and analytical models, was perhaps not applied to the research 

relating to the effect of SFR content on the buckling and shear capacities of the precast 

components. Specifically only the material model proposed by Al-Taan and Ezzadeen (1995) 

was considered.  

No large scale testing of the SPFA concrete mixes developed and investigated was 

undertaken. Such testing is however, specifically appropriate (and necessary going forward) 

because the findings of this research are intended to be directly applied to the design and 

manufacture of full scale slab elements. Additionally, no physical experimentation or complex 

FEM analyses were utilised as part of the research to validate the joint behaviours or 

capacities suggested by the non-linear push-down computational assessment.  

Findings and Implications Findings and Implications 
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1 INTRODUCTION 

Reinforced concrete (RC) panels serve as key structural members for many common 

building forms. Within pre-cast ‘tilt-up’ or ‘cross-wall’ construction typologies for example, 

such panels provide the fundamental vertical load-carrying system. As a result, many codes 

of practice devote specific sections to the design and detailing of these elements. The 

American ACI 318-05 [1], Australian AS 3600-09 [2] and European EC2 [3] design codes all 

allow using simplified and empirically (or semi-empirically) derived equations [4]. However, 

because of their inherent simplicity, such equations cannot correctly account for the material 

and geometric non-linearity in the buckling failure of slender RC elements under eccentrically 

applied loads [5]. Therefore, large safety factors are adopted, and numerous studies have 

subsequently demonstrated that these equations significantly underestimate panel capacities 

when compared to those achieved by experimentation [6,7]. 

A possible alternative design methodology, also enabled within all of the structural design 

codes referenced, is to consider the RC panel element as an ‘equivalent column’, with the 

appropriate axial-moment interaction equations. However, minimum reinforcement 

requirements are frequently adopted for pre-cast concrete elements within cross-wall 

construction, and this steel is also often centrally placed for factors associated with 

manufacture and durability. Previous studies [8, 9] have suggested, that because the resulting 

structural response and failure mode of such elements is fundamentally different to those 

experienced by more heavily reinforced panels, the applicability of the equivalent column 

method in such instances is questionable.  

In order to provide a way to design non-standard structural components and/or to overcome 

the limitations of existing design rules, the Eurocodes (through specific provisions within 

EC0 [10]) enable an alternative strategy based on a combination of testing and calculation. 

This Design Assisted by Testing (DAT) procedure exploits probabilistic considerations to 

ensure that appropriate factors of safety are applied to predictions of structural capacity. 

These factors can be directly determined from experimental work conducted as long as the 

number of tests available is sufficient for a meaningful statistical interpretation [11]. In the 

case of slender RC panels with minimum/central reinforcement, however, recent research [12] 

has found that, because a large and systematic conservatism exists between experimentally 

Paper J1 



Design and Performance of Precast Concrete Structures 

72 

observed capacities and the current design procedures, these methods cannot provide a design, 

or ‘resistance’ function for the DAT procedure. Consequently, an alternative theoretical 

model, which more appropriately reflects actual buckling capacity, is required.  

In this paper, the use of a ‘lumped plasticity’ model is proposed in order to achieve a truer 

representation of the system’s non-linearity, and therefore deliver more accurate predictions 

of the failure capacity of the wall elements. By using a non-linear ‘fibre-hinge’ element at the 

known location of maximum moment, the entire inelasticity of the element can be 

concentrated at this location. It is shown that because this computational method accounts for 

non-linear material and geometric effects, it is in fact more effective in simulating the 

buckling response of the slender walls relative to the existing design methods. This has been 

validated (and the resulting improvement quantified) by comparing the predictions of panel 

capacity against actual experimental data (partly collected through full-scale tests carried out 

as part of this study and partly using those available within existing literature). Given the 

improved agreement with the empirical evidences, the paper demonstrates the suitability of 

adopting such a design procedure for the problem in hand, also presenting the resulting design 

curve and providing conclusions regarding its application in practice. 

 

 

2 CURRENT DESIGN METHODS 

The aim of this section is to briefly review the design procedures suggested in the existing 

regulatory guidance, which in turn will allow (in the second part of the paper) the 

quantification of the improved effectiveness of the proposed design strategy for slender, 

centrally reinforced precast concrete panels.  

 

2.1 Simplified Design Capacity Expressions 

In order to enable direct comparison between the American (ACI 318-05), Australian 

(AS 3600-09) and European (EC2) building codes, the relevant design expressions have been 

rearranged, as part of Table 1, in the form of the dimensionless design axial strength ratio 

[7,8,13]. In these expressions, c c c
F f A=  is the compressive force within the stress block, and 

N
U

 is the ultimate value of the axial force applied with eccentricity 6=e t .  
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The design capacities from each of the specified equations are plotted in Figure 1 as a 

function of the slenderness ratio = H tλ . It is apparent that the European code (thick solid 

line) deals with the slenderness of axially loaded members in a manner different to the 

American (dashed line) and Australian (dot-dashed line) codes, which incorporate parabolic 

expressions to account for the curvature of the section and the modified line of action of the 

eccentric load. In contrast, EC2 accounts for the secondary moments by applying a 

concentrated, notional, horizontal load F
NH( )  at the point of maximum moment in the panel. 

In this way, the European code adopts a triangular curvature distribution, which leads to a 

second linear (rather than parabolic) term, and reduces significantly the design capacities for 

slender elements.  

For comparison purposes, Figure 1 also shows the design capacities for both doubly (filled 

circles) and centrally reinforced (empty squares) panel elements using the equivalent column 

methodology. Specifically the method of ‘Nominal Curvature’ is utilised as suggested by the 

European code (more details are provided in Section 2.3), adopting the minimum 

reinforcement ratio specified, such that:  

 0.3%sA L

t
ρ = ≤  , (1) 

in which s
A L  is the cross-sectional area of reinforcement per unit length of the panel. 

What Figure 1 reveals is that by adopting the equivalent column design methodology for 

doubly, yet minimally reinforced, panel elements one can obtain enhanced capacities for 

structural elements up to a slenderness of 27λ ≤ . However, a much steeper falling branch is 

seen for centrally reinforced panel elements, due to the small effective depth of the 

reinforcement within the panel.  

 

2.2 Limitations of Existing Simplified Design Equations 

The current, code-compliant, simplified equations allow no account to be taken of either the 

quantity or distribution of longitudinal reinforcement, nor modifications of the concrete stress 

block if needed (e.g. for non-standard concretes such as, steel fibre reinforced or alternative 

sustainable concrete mixes). Moreover, these methods cannot account for the inherent non-
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linearity associated with the buckling failure of slender RC panels, or design situations where 

the axial load may be applied outside the section’s middle third. 

Further, as can be seen from Figure 1, the major international design codes currently restrict 

slenderness ratios of RC panels to 30λ <  despite numerous studies having presented and 

demonstrated the applicability of design equations associated with the capacity of very 

slender ( )30 50λ≤ ≤  one way spanning RC panels [13]. 

 

2.3 Suitability of Equivalent Column Design 

 

Prima facie, the equivalent column methodology would seem to address the main limitations 

identified above, by allowing consideration of material non-linearity and strain compatibility. 

However, in the case of the minimally or centrally reinforced panels, contemporary research 

[13,14,15] challenges the applicability of this design procedure. 

The failure of an equivalent column is considered to occur when the moment induced at the 

critical section of the panel element exceeds the ‘flexural capacity’ of the element at this 

location. Kripanarayanan [15] however, has demonstrated that reinforcement amounts of 

0.75%=ρ  to 1.0% are needed for the reinforcement to affect the failure loads of slender 

walls. Subsequent test data, investigating singly reinforced RC panels adopting reinforcement 

ratios up to 3%  [16] have also shown that the effect of increasing the amount of centrally 

placed reinforcement on the panel’s capacity is negligible, even above the 1%=ρ  level 

determined for doubly reinforced panels.  

What these findings prove is that the structural performance of such panels depends mainly on 

the ‘flexural cracking’ response of the element, i.e. when the concrete section at the critical 

location cracks in flexure the resulting concentrated loss of stiffness, combined with the lack 

of influential tension steel, controls the ultimate stability of the panel much more than would 

occur with doubly reinforced panels where 1%ρ ≥ . As a consequence, the ultimate axial 

capacity of the RC wall element becomes dependent on the post-cracked flexural stiffness of 

the cross-section, and appropriate account must be taken of the contribution of the concrete 

acting within both the tension and compression zone. It follows that the code-compliant 

equivalent column procedure should not be used for the design of centrally and/or minimally 

reinforced panels, as their resulting axial capacity would primarily depend on the stiffness of 
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the un-cracked panel section and the tensile strength of the concrete in flexure. Further, a 

moment magnifier should also be applied, depending on the ratio of applied axial load to the 

theoretical buckling resistance of the panel, in a manner identical to that considered by 

Sanjayan [16]. He proposed to evaluate the axial load capacity N
U

 of a slender RC wall as: 

 N
U

=
1

′e
M

CR
− M

0( )  , (2) 

where ′e = e − t 6( ) + M
CR

P
E( )  provides an equivalent eccentricity in order to account for 

the variation in panel’s flexural stiffness up to and post cracking, while 2 6CR ctM f L t=  is the 

flexural moment required to cause the panel to crack. 

The important question arising from Eq. (2) is whether it is in fact the flexural strength of the 

concrete acting within the tension zone of the RC panel that dominates the resulting capacity 

of the panel; or is it instead the true response of the concrete’s compression block. In this 

regard, a certain degree of conjecture has been identified within existing literature ([9], [10]). 

 

3 DESIGN ASSISTED BY TESTING (DAT) 

The evidence thus far presented allows us to conclude that current, commonly adopted design 

procedures for the load capacity of centrally and/or minimally reinforced concrete walls 

appear over-conservative, restrictive and limited in regards to their design application. 

However, the European code [4] offers a potential alternative design procedure based on a 

combination of testing and calculation. This design methodology, which has been explored in 

recent studies [17,18], potentially allows experimental data to be utilised to enable a more 

realistic code-compliant estimation of the ultimate axial capacity of slender RC panels.  

In an attempt to assess the applicability of this Design Assisted by Testing (DAT) method to 

the problem under consideration, a programme of experimental investigation was conducted. 

 

3.1 Test Panels and Experimental Setup 

 

Sixteen =L 500 mm wide and =t 100 mm thick pre-cast concrete panels of varying height 

and slenderness ( λ  between 25 and 30), were axially loaded, with a range of eccentricities 

also adopted to reflect common construction and design cases. Table 2 provides a summary of 

the test samples prepared, with an overview of the experimental arrangement utilised also 
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illustrated within Figure 2. The centrally placed, welded mesh, reinforcement layout adopted 

for all of the panels is also presented in Figure 5. The testing rig had a capacity of 4,000 kN 

with the loading beam designed to ensure the transmission of a uniformly distributed load 

across the top of each panel at eccentricities of 0, 5 mm ( )20t , 17 mm ( )6t  and 33 mm 

( )3t . The top and bottom hinged support condition, illustrated within Figure 2(c), was 

simulated by placing a 25 mm high-strength steel rod on a 50 mm thick steel bearing plate. 

Displacement transducers recorded out-of-plane displacements ( )'δ  
 
at the centre of the panel 

and strain readings, with respect to the tension face of the buckling panel, were also taken 

with a digital portal gauge at the known critical section (Figure 2(b)).  

Because another experimental objective was to assess the sensitivity of a panel’s buckling 

capacity to the element becoming cracked at its critical section, six of the panels were axially 

loaded in a pre-cracked condition, with the fissure induced in flexure, prior to loading.  

 

3.2 Experimental Findings and Use in DAT 

 

Table 2 summarises the load capacities obtained for each of the tests undertaken. As can be 

seen, the ultimate capacity of the panels (sixth column) far exceeded the predictions of both 

simplified code equations (seventh column) and equivalent column methodology (eighth 

column) as enabled within EC2. This is not surprising, as Figure 1 shows that for a panel 

slenderness of 30λ =  all the commonly adopted methodologies would predict a load carrying 

capacity approaching (or equal to) zero 

Our experimental findings thus support past research, and confirm that simplified design 

equations provide overly conservative estimates of slender RC panel capacity. More 

importantly, this testing campaign also demonstrates that the axial capacity of centrally 

reinforced elements is effectively independent of the flexural tensile strength of the concrete, 

as similar capacities have been experimentally observed for panels in the cracked (C) or un-

cracked (U) initial condition. This is one of the key findings of this testing, as it allows us to 

conclude that the contribution due to the concrete’s post-cracked behaviour (specifically the 

response of the compressive stress block) is crucial in determining the element’s capacity. 

The observed failure typology also supports this finding, with a compressive spalling (Figure 
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3(a)) observed, along with extensive flexural cracking for both cracked and un-cracked initial 

conditions (Figure 3(b)).  

Moving from the above considerations, the investigation then examined whether the 

experimental results obtained from the testing programme could be used to derive a more 

representative design curve by application of the DAT method. The procedure consists of 

seven distinct steps [11]: 

�  Firstly, a suitable theoretical resistance model is required to predict the capacity of the 

element (step (i)).  

� The theoretical model has to be validated against experimental data, through 

measurements of the relevant variables within the tests (step (ii)).  

� Statistical techniques are then used to ‘fine-tune’ the prediction capability of the 

theoretical model [18] (step (iii)).  

� The definition of a semi-probabilistic capacity curve can then be progressed as long as 

the residual model error ( )δ  is correctly quantified and incorporated (step (iv)).  

� The design value of the capacity model (Figure 11) is consequentially obtainable (step 

vi) following the estimation of its mean and variance (step v), based upon the 

assumption of a normal or log-normal distribution, the validity of which has to be 

checked (step vii).  

 

3.3 Theoretical Resistance Model for the DAT Procedure 

 

The DAT procedure method, as detailed above, relies on the availability of a satisfactory 

theoretical capacity model able to represent the most significant aspects of the structural 

behaviour relating to the component under consideration (step (i)). The resistance function 

can be mathematically expressed as: 

 ( )t rt
r g= X  , (3)

  

where rt
g  is the theoretical model, which depends on the array X  collecting all the basic 

variables influencing the structural capacity. In the present study, such variables may include 
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the compressive ( )c
f  and tensile capacities ( )ct

f  of the concrete, the geometrical parameters 

(λ , L  and )H  as well as the reinforcement ratio ( )ρ  and its arrangement. All of these 

variables were, of course, captured by the experimental programme undertaken (step (ii)). 

One must also ensure, however that the adopted theoretical resistance function, t
r , provides 

an acceptable correlation with the experimental resistance data, e
r , so as to be considered 

suitable for use within the derivation of the sought design capacity (step (iii)). This check can 

be done by considering the least-squares best fit to the slope b  between t
r  and e

r , i.e. by 

minimising the following quadratic expression: 

 ( )( )
2

,

1

( )
n

e i rt i

i

S b r b g
=

= −∑ X  , (4)

  

where 
,e ir  and ( ),t i rt i

r g= X  constitute the i th pair of an experimental value and theoretical 

prediction. The condition d d 0S b =  allows computing the optimal value of the angular 

coefficient b : 

 
, ,

1

2

,

1

tan( )

n

e i t i

i

n

t i

i

r r

b

r

θ=

=

= =
∑

∑
 , (5) 

arctan( )bθ =  being the angle that the regression line forms with the horizontal axis (Figure 

4). 

In a first stage, we considered the case in which the theoretical model of Eq. (3) is provided 

by the empirical design equation (Table 1, last row) and the equivalent column method (Eq. 

(2)) within EC2. Figures 4(a) and (b) illustrate that such procedures provide a poor correlation 

when compared to our experimental results, as well as other published test capacities 

[9,13,15]. Indeed, both theoretical models result in a least-squares best fit which is 

significantly divergent from the recommended of θ =  4 ≅π  0.785  (i.e. one-to-one slope), 

being 1.23θ =  for the simplified/empirical design equation (dashed line, top-left graph) and 

1.15θ =  for the equivalent column design (dot-dashed line, top-right graph). It can also be 

seen that the discrepancy of results can be greater than 40%, which has been suggested as an 

acceptable limit within the technical literature [18].  
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4 COMPUTATIONAL AND EXPERIMENTAL 

VERIFICATION 

4.1 Lumped Plasticity Modelling 

 

The results presented in the previous section highlight the need for a new and more efficient 

design procedure (for inclusion as part of step (i)) if minimally and/or centrally reinforced 

panels are to be designed using the DAT method.  

One such potential procedure has been devised as part of this study through the application of 

the lumped plasticity idealisation. This is a widely adopted model, particularly utilised in 

earthquake engineering and robustness assessment, to determine the ultimate performance of 

a structural system by increasing step by step the load multiplier until failure (push-over or 

push-down analysis). For the structural problem in hand, the entire inelasticity of the element 

has been concentrated at a single position by the use of a non-linear fibre ‘hinge’, since the 

location of maximum moment (and thus the critical section for the span) is known (see Figure 

5(a)). In this representation, the element’s cross-section is subdivided into a number of 

elementary layers or fibres [19], to which the appropriate material properties are then assigned 

(see Figure 5(b)). The non-linear moment-curvature relationship of the fibre hinge can then be 

determined for a range of axial loads assuming plane cross sections. Figure 5(d) illustrates the 

moment-rotation behaviour computed for an un-cracked panel section loaded at an 

eccentricity of 6=e t , while Figure 5(c) shows a typical distribution of the compressive 

stress σ  along the panel’s depth at the critical location. 

In the proposed computational model, the rotation ω  experienced by the fibre hinge is 

evaluated under the assumption of a uniform curvature κ  over the adopted length 
pL of the 

plastic element, i.e. . pLω κ= . In this study, because of the mesh reinforcement layouts 

commonly detailed for minimally as well as centrally reinforced panels (Figure 5(b)), the 

length of the plastic hinge and the material model were selected to reflect the lack of ductility 

observed experimentally for the unconfined concrete at the critical cross section [20,21]. 

Accordingly, the hinge lengths adopted were computed from the expression proposed (and 

experimentally validated) by Panagiotakos and Fardis [22] for unconfined RC panels and 

column elements subjected to monotonic loading: 

 L
P

= 0.18 L
S

+ 0.021d
b

f
y
 , (6) 
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where L
S

= H 2  is the shear span of the member, 2
b

d t=  (for the panels considered as part 

of this study) is the effective depth of the longitudinal reinforcement and 
yf  is the yield 

strength of that reinforcement.  

For validation purposes, simple equilibrium equations are used within Appendix A to check 

the results of the numerical analysis. 

 

4.2 Experimental Validation of the Computational Model 

 

As can be seen from Table 2, the ultimate load capacities predicted by the proposed 

computational method with lumped plasticity (last column) compare very well to those 

experimentally observed (sixth column), with the method also seen to consistently slightly 

underestimate the actual panel buckling capacity within a range of 3-13%. 

 In our analyses, the three-parameter concrete material model initially proposed by Mander 

[23] and illustrated within Figure 6(a) was adopted for the stress-strain constitutive law 

( )
c c

σ ε  of the unconfined concrete, where: 

 

( )1

c

co

c c v

c

co

v

f

v

ε

ε
σ

ε

ε

 
 
 =
 

− +  
 

 , (6) 

where 1v >  is a dimensionless shape parameter to be evaluated through the empirical 

relationship [25,26]: 

 31 0.4 10 cv f
−= + ×  . (6) 

Importantly, the concrete material model can be easily modified if the performance of other 

concrete types, such as high-strength concrete and fibre reinforced mixes, has to be accounted 

for. 

Because a displacement-controlled non-linear push-down analysis is adopted, it is possible to 

assess the resulting deformations and strains induced within the fibre hinge incrementally up 

until (and also beyond) the ultimate failure load. These numerical outputs in terms of 

deflection and strain, relating to the ‘tensile’ face of the buckling panel (Figure 2(b)), have 

been plotted (thick lines) against the actual experimental data (symbols) in order to investigate 

whether the adopted computational strategy accurately captures the true structural behaviour 



 Introduction  

 

 81 

of the RC wall elements. The computationally predicted behaviour appears to closely 

represent that observed within testing, although the lumped plasticity computational model 

tends to underestimate the deformation of the element at failure (Figures 7 and 8). The almost 

linear elastic nature of the load-strain plots also correctly captures of the relatively brittle 

failure mechanism observed (Figure 3).  

 

4.3 Sensitivity Analyses 

 

The sensitivity of the proposed method to variations in the constitutive law (see Eqs. (7) and 

(8)) adopted for the unconfined concrete was also investigated. Specifically, the study 

focussed on the effect of the softening branch and long-term deformations. 

In a first stage, two alternative representations of the stress-strain relationship for unconfined 

concrete, illustrated within Figures 6(b) and (c), were adopted to re-analyse the wall panels. 

The behaviour illustrated within Figure 6(b) is based on the modified Kent-Park [24] model 

proposed by Scott et al. [25], in which pre-peak and post-peak behaviour are given by: 

 

( )

2

2
, 0.002 ;

0.002 0.002

1 0.002 , 0.002 ,

c c
c

c c

m c c

K
K KK f

Z K K

ε ε
ε

σ

ε ε

  
− ≤  

= ×  


− − ≥

 (7) 

where 1K =  for the unconfined case under consideration, and the dimensionless parameter 

m
Z  controlling the post-peak slope can be evaluated as: 

 
0.5

3 0.29
0.002

145 1,000

m
c

c

Z
f

K
f

=
+

−
−

 (8) 

in which the compressive strength of the concrete c
f  must be expressed in MPa. 

The second alternative considered, illustrated within Figure 6(c), was to discount the tension-

softening branch completely from the adopted Mander’s representation of the material 

behaviour. The predicted panel capacities varied between 2 and 5%, which demonstrates that 

the proposed fibre-hinge modelling for the centrally reinforced concrete section is largely 

insensitive to such variations in the unconfined stress-strain model. 

A second stage assessed the effects of the creep on the long-term response of the RC wall 

panel by appropriately modifying the material model adopted for the unconfined concrete. 
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Creep in concrete is a complex phenomenon, which may depend on ambient humidity, size of 

the element, the mix of constituents, the strength of the material when stressed as well as the 

magnitude and duration of the applied loads [26]. Despite this inherent complexity, the 

ultimate creep strain can be effectively computed by factoring the observed elastic strain by a 

creep coefficient such that: 

 
0, ( , ) ,c

c T

cE

σ
ε ϕ∞ ∞

 
=  

 
 (9) 

In our investigations, creep effects were evaluated according to the procedure detailed within 

EC2, assuming: i) relative humidity of 50% (consistent with an indoor environment); ii) class 

R, rapid strength gain mix design, containing a negligible amount of GGBS (Ground 

Granulated Blast Slag), for the C40/50 concrete utilised for the test panels; iii) thickness of 

the walls t =  100 mm; and iv) age of the concrete when loaded 0T =  28 days. The creep 

coefficient so computed is 
0( , ) 2.1Tϕ ∞ = , which is in line with observed strains stated within 

literary guidance [27]. Figure 6(d) shows the modified constitutive law for the unconfined 

concrete, in which for the same value of the stress c
σ , the strain 

,c cε ε ∞=  has been increased 

by the creep coefficient. However, the original value for acceptable strain deformation has 

been maintained, and this results in the failure of the panel occurring within the rising linear 

branch of the stress-strain relationship. By allowing for the effects of creep in this way, a 

reduction in the predicted panel capacities of 20% is observed. Because of the significance of 

these time-dependent affects, the proposed modified-material model should be adopted within 

the lumped plasticity representation (or a further factor should be applied retrospectively to 

the panel capacities derived) before the method is used in the determination of actual design 

predictions. 
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5 STRUCTURAL CAPACITY VIA DAT 

5.1 Probabilistic Model for the Structural Resistance 

 

It has already been shown (see Table 2) that the proposed lumped-plasticity computationally 

modelling, with a single fibre hinge at the critical mid-span location, is able to capture 

effectively the buckling failure of slender RC panels, much more than the existing design 

procedures. To quantify the improved correlation between experimental data, 
,e ir , and 

theoretical prediction, ( ),t i i
r g= X , Eq. (5) was used to evaluate the angular coefficient b  of 

the regression line for the proposed approach (see step (iii) of the procedure, as summarised in 

Section 3.2). A value 1.07b =  was found using the whole set of 22n =  data points (16 points 

from our experimental work, shown in Table 2, and 6 points from previously published 

studies). The corresponding angle with the horizontal axis is θ =  arctan( )b =  0.82  (see 

Figure 4(c)), which has a much better fit to the ideal value ( =θ  0.785)  compared to the 

correlation achieved with the EC2 empirical design equation (Figure 4(a)) or equivalent 

column methodology (Figure 4(b)). The condition 1b >  confirms that the proposed 

computational model is conservative (i.e. the theoretical resistances tend, on average, to be 

slightly less than the corresponding experimental capacities).  

However, the fact that the resulting least-squares best fit does not equal the 4 0.785π =  ideal 

means that the proposed theoretical function does not provide an exact and complete 

representation of the failure mechanism of the structural members under investigation. Within 

the DAT context, therefore, the angular coefficient b  can be interpreted as a statistically-

based correction parameter which fine-tunes the theoretical predictions to match, on average, 

the experimental data. This correction, whose effectiveness increases with the number of data 

points, eliminates the systematic sources of inaccuracy, due for instance to secondary 

phenomena not captured and/or included within the chosen theoretical model. Once the least-

squares regression coefficient b  has been applied to the theoretical predictions, working now 

within a probabilistic framework, the residual discrepancy still remaining for the i th data 

point can be modelled as the generic realisation i
δ  of a random variable δ  with unitary mean 

value 1δ =  and standard deviation δσ (step (iv) of the procedure). Therefore, the probabilistic 

model of the structural resistance becomes: 
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 t
r b r δ=  , (10) 

while the i th sample of the model error δ  is given by: 

 
,

,

e i

i

t i

r

b r
δ =  . (11) 

Either a Gaussian [28] or Log-Normal distribution can be adopted to describe the random 

variable δ . Theoretically speaking, the latter seems more appropriate, as δ  cannot be 

negative (see Eq. (11)). However, in practice, the Gaussian model could be a viable 

alternative, particularly if the standard deviation δσ  is small. The data points relating to the 

residual errors between the theoretical and experimental values have been used to assess the 

goodness-of-fit for both potential probabilistic distributions. Figure 9 compares the empirical 

Cumulative Distribution Function (CDF) ( )δ∆Φ  obtained from the experimental data points 

(filled diamonds) with the ideal CDF ( )F δ∆  of both Gaussian (solid line) and Log-Normal 

(dashed line) random variables having the same mean value and standard deviation of the 

available experiments, that is: 

 ( )
2

1 1

1 1
1.0053 ; 0.0346

1

n n

i i

i in n
µ δ σ δ µ∆ ∆ ∆

= =

= = = − =
−

∑ ∑  . (12) 

It can be seen that both theoretical models can be used to describe the model error δ . The 

one-sample Kolmogorov-Smirnov test [28] was used to confirm the goodness-of-fit for both 

probabilistic distributions (in line with step (vii) of the DAT procedure, as detailed in section 

6.2) and very similar values of the test statistic for the 22n =  data points were obtained, 

meaning that more samples would therefore be needed in order to select the most appropriate 

distribution.  

An implicit assumption made while introducing Eq. (10) is that the model error δ  is 

independent of the theoretical prediction ( )t rt
r g= X . Among the j  basic design variables 

collected by the array { }1 2, , , jX X X=X � , the compressive strength of the concrete, 1 c
X f= , 

and the relative eccentricity of the load, 2X e t= , are deemed to play the most important 

roles within our set of data. It is necessary therefore to prove that these quantities are actually 

uncorrelated to the observed model error. In order to do this, the corresponding scatter plots 
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for the available data points have been reported within Figure 10, which does not show any 

significant statistical pattern and therefore confirms our assumption.  

This is an important finding, as it means that however the engineer chooses to account for the 

effects of possible deviations in material properties, geometry of the structural element and 

position of the load, the resistance function provided by the proposed computational model 

remains valid.  

 

5.2 Effects of the Basic Design Variables 

 

In order to be applicable in practice, the final resistance function developed through the 

application of the DAT method must account for any scatter directly associated with the basic 

design variables identified within Eq. (3), e.g. those relating to material strength. Because of 

the limited number of tests, our sample may not be fully representative of the behaviour of the 

population in relation to the basic variables that control the structural response of the element. 

The DAT method, as formulated within the European code EC0 [11], allows for incorporating 

such additional sources of uncertainty through the use of a Coefficient of Variation (CoV) 

,X iV
 

for each of the j  basic design variables, whose statistical description must be 

preliminarily pursued. According to EC0, the CoV of the resistance, R
V , can be estimated by 

combining the CoVs of all the random/uncertain variables contributing to the structural 

response, that is: 

 ( ) ( )2 2

,

1

1 1 1
j

R X i

i

V V V∆
=

 
≅ + + − 

 
∏  , (13) 

where V σ µ∆ ∆ ∆=  is the CoV of the model error δ . From the expression above, one can 

demonstrate that the CoV of the theoretical resistance, 
,R tV , is given by: 

 
2 2

, 2
1

∆

∆

−
≅

+
R

R t

V V
V

V
 , (14) 

which, for moderate level of uncertainty pertaining to the basic design variables in the 

problem in hand, can be approximated as: 

 
2

, ,

1

j

R t X i

i

V V
=

≅ ∑  . (15) 
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Assuming implicitly a Log-Normal model for the distribution of the structural resistance, the 

European EC0 allows evaluating the design value of such quantity through the expression 

(step (vi) of the procedure): 

 ( ) ( )2

, , , ,exp 0.5d rt d R t R t d n Rr b g k Q k Q Qα α∞ ∆ ∆= − − −X , (16) 

where 
  
r

t
= g

rt
X( )  is the deterministic value of the resistance when the basic design variables 

1,X  2,X  ,�  
jX  take their respective mean values ; ( )2

, ,ln 1R t R tQ V= + , ( )2
ln 1Q V∆ ∆= +  

and ( )2
ln 1R RQ V= +  are dimensionless measures of the statistical dispersion affecting the 

random variables t
r , δ  and r ; 

, ,R t R t RQ Qα =  and R
Q Qα∆ ∆=  are dimensionless weight 

factors, while 
,d nk  is the pertinent design fractile factor for n  samples and 

,dk ∞  is its limit as 

n  tends to +∞ . To be consistent with the EC0 provisions, it can be assumed 
, 3.64d nk =  for 

22n =  [11] and 
, 3.04dk ∞ =  (which in turn is very close to the fractile factor 3.09pk =  for a 

Gaussian random variable and a probability of non-exceedance 0.001p = ).  

 

5.3 Use within Structural Design 

 

Eq. (16) was applied for different values of the structural slenderness H tλ = , that is λ =  2, 

5, 7, 10, 15, 20, 25, 30, 35 and assuming 6e t=  as design value of the load eccentricity and 

,1 0.127XV =  and 
,2 0.135XV =  as CoVs for the basic design variables 1 c

X f=  (material 

randomness) and 2X e t=  (geometrical uncertainty), respectively. The nine data points 

λ
i
, �r

d ,i{ }  so obtained (Figure 11, Crosses) have been approximated with the following best-fit 

quadratic expression: 

 �r
d

=
1

2

10

e
−

λ

100e
− 4 ×10−4 λ 2







 , (17) 

where �r
d ,i

= r
d ,i

f
c
Lt( ) is the normalised structural capacity of the panel. 

Figure 11 illustrates the resulting curve (thick dashed line), which clearly gives a more 

representative and less conservative prediction of actual panel capacity for slender panels 

when compared to those derived using existing design techniques,  still provides an adequate 
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margin of safety. By way of example, for a panel of slenderness 30λ =  one can derive a 

normalised design value of N
u

b f
c
t = 0.141(Figure 11). Taking 1φ =  and substituting the 

appropriate values for panels tested as part of this study, a design axial capacity of 254kN is 

obtained. While this figure is still much lower than those observed in testing (Table 2), it is 

more suitable than the alternative code-compliant designs, all of which would predict a design 

capacity of zero. Importantly, partial safety for both materials and actions should be applied in 

a practical design situation. 

A sensitivity study was also undertaken to investigate the influence of reducing the number of 

experimental data points available to the design engineer.  further analyses were performed 

using the top or bottom 50% of panel test capacities at each value of slenderness (best and 

worst cases). The resulting boundaries (thin solid lines) are also illustrated on Figure 11, and 

appear to be very close to the proposed resistance curve. This therefore demonstrates the 

robustness of the proposed approach against the number of samples available for the 

application of the DAT procedure. 

 

6 CONCLUSIONS AND RECOMMENDATIONS 

The appropriateness of existing design methods for pre-cast slender RC panels has been 

assessed. The experimental investigations demonstrate a significant conservatism when 

designing slender pre-cast RC wall panels to current design codes. This results from the 

inability of the simplified analytical models to account for the true non-linear behaviour when 

such an element is subjected to an eccentric axial load.  

The research has demonstrated the potential of a semi-empirical semi-probabilistic DAT 

(Design Assisted by Testing) methodology, enabled within the European design code, to 

derive more representative design values. In order to use this procedure, an alternative 

resistance function has been devised, utilising a lumped-plasticity computational model with a 

non-linear fibre hinge at the position of the panel’s critical section. This approach was shown 

to effectively represent the structural response of slender RC panels, with a very good 

correlation between numerical and experimental values of the structural resistance. Further, 

this agreement was achieved using a relatively simple computational model, with all analysis 
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run on a standard, consumer-grade laptop. The proposed design method is therefore suitable, 

provided that it incorporates the statistical analysis required by the DAT procedure.  

The design curve so obtained shows an increased structural capacity for slender elements, 

which better reflects the experimental data and can therefore result in more structurally 

efficient RC panels. Moreover, the fibre-hinge modelling potentially provides practicing 

engineers with an effective design tool, which is also easily adaptable to situations with non-

standard concrete mixes. 

 

Appendix A. Static Equilibrium and Free Body Analysis at Panel Failure  

 

By way of example, let us consider the simply-supported RC panel with H = 3,000 mm and 

6e t= = 16.7 mm, corresponding to the thick dashed curve in Figure 7, where the ultimate 

values of axial force and transverse displacement are N
U

= 531 kN (resistance value at failure) 

and ′δ = 9.0 mm , respectively. Looking now at the stress distribution along the depth of the 

critical section, depicted within Figure 5(c), one can observe that the central steel 

reinforcement is in tension at failure, being F
steel

= 17 kN . It follows that the resultant 

concrete force at failure is 
  
F

c
= N

U
− −F

steel( ) = 548 kN , which is proportional to the area of 

the concrete stress diagram shown in Figure 5(c), that is:  

 F
c

= σ
c,i

A
c,i

= 548 kN,
i∑  (A.18) 

where 
,c iA  is the area of the th

i  concrete fibre considered in the model, 
,c iσ  is the 

corresponding stress given by the non-linear static analysis and the summation involves all 

the fibres in compression. The centroid of the stress diagram also allows the determination of 

the exact position where the resultant concrete force is applied: 

 
, ,

1
24.78 mm,c i c i ii

c

y A y
F

σ= =∑  (A.19) 

as illustrated in Figure 5(c), and since the steel reinforcement is centrally placed, the internal 

moment at failure is given by: 

 13.58 kNm.
int c

M F y= =  (A.20) 
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To take into account the effects of any accidental eccentricity that may affect the stability of 

the panel, a notional horizontal force NH
F

 
has been also applied at mid-span (see Figure 5(a)), 

whose magnitude is assumed to be proportional to the sought ultimate axial capacity: 

 NH U
F Nψ=  , (A.20) 

where:  

 ψ = max
1

100
,
t 3

H









= 0.0111. (A.21) 

If we now consider the global equilibrium of the panel, the horizontal reactions forces 1R  (at 

top support) and 2R
 
(at the base) must be 0.03 kN  and 5.87 kN  respectively. 

Finally, if we examine the free body diagram of the top part of the panel, also included as part 

of Figure 5(a), the externally applied moment at the point of buckling failure ( )M  can be 

evaluated as (taking moments about the central steel fibre at mid-span position, i.e. point A 

within Figure 5(c)): 

 ( ) ( ) ( )1
531 0.0167 0.0090 0.03 1.5 13.58 kNm

2
U

H
M N e Rδ ′= + + = × + − × =  (A.22) 

This is (as expected) equal to the corresponding value derived as part of Eq. (A.20), which is 

dictated by the moment rotation plot included as part of Figure 5(d), and which was generated 

by consideration of the structural cross section and appropriate material models. 
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Figure 6.3 Brittle failure observed in both pre-cracked and un-cracked RC panel elements 
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6.2 PAPER J2 
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Robinson, G.P., Austin, S.A., Palmeri, A., 2013. Adoption of Artificial Lightweight 

Aggregate in Precast Manufacture. Magazine of Concrete Research, 65(19): 1-13, 

http://dx.doi.org/10.1680/macr.13.00112 

 

Abstract – 

 

This study investigates the incorporation of lightweight SPFA (sintered pulverised fuel ash) as 

a partial/complete replacement for natural sand and aggregates within full-scale precast 

elements. It focuses on SCC (self-compacting concrete) mixes after short periods of strength 

development, because of the lack of published experimental data for these concrete types and 

their significance in offsite manufacture. Aggregate failure means the use of SPFA reduces 

concrete capacity, particularly in shear and pull-out, and such reductions may be more 

prominent at an earlier stage of curing. These were investigated alongside the incorporation of 

steel fibres that may provide some compensation.  

The variation in the compressive strength obtained was less significant (3-5%), following 24 

hours of curing, than at 28 days (15%). A similar trend was observed across the range of 

densities and in the tensile and flexural strength tests, with a slightly increased workability 

also observed in the lightweight mixes. Similar testing of SFRC samples, with a 350kg m

fibre content, challenges the appropriateness of current code design equations.  More efficient 

element design may thus be possible for precast components where such design cases are 

prevalent. A 63% average increase in pull-out shear capacity also suggests an improved lifting 

capacity could be justified within precast elements. 

 

 

Keywords – Concrete Technology and Manufacture, Research and Development, 

Strength and Testing of Materials 
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1 INTRODUCTION 

An established by-product of coal-fired power generation, sintered pulverised fuel ash (SPFA) 

lightweight aggregate is formed by heating the previously pelletised PFA material to a 

temperature of around 1100 o C . This process results in a hard, honeycombed and spherically 

shaped aggregate, suitable for inclusion within normal and high strength concretes (Mays, 

2010). The size of such commercially available aggregate varies from a maximum dimension 

of 14mm to an equivalent fine aggregate (< 4mm).  

For a complete replacement of the coarse material, the resulting lightweight concrete has a 

dried density in the range of 1700-1900 3
kg m . By also incorporating SPFA as a fine/sand 

replacement, a further reduction in concrete density to 1500-1600 3
kg m  is achievable, though 

it remains possible to obtain similarly high strength grades (60 2
N mm ) (Kockal and Ozturan, 

2011). Such high strength, lightweight concretes potentially offer benefits to the precast 

industry, where an improved strength to weight ratio is advantageous for the lifting and 

transportation of the manufactured units (Al-Khaiat and Haque, 1998). Other advantages are 

also associated with: sustainability, reduced thermal conductivity and improved acoustic 

performance for the resulting density (Mays and Barnes, 2010).  

 

1.1 Research Significance and Objectives 

 

The study was part of an assessment into the feasibility of incorporating SPFA lightweight 

aggregate materials within the manufacture of larger scale structural components, such as 

precast slab and panel elements. The review of technical literature (carried out in conjunction 

with an appraisal of the needs of contemporary precast manufacturers) revealed that, although 

the effects of using lightweight aggregate and sand products have been the subject of 

numerous studies (Kockal and Ozturan, 2011; Tomosawa, 1996; Kayali, 2008) in relation to 

the 28 day (and later) stages of strength development, a better understanding is needed of the 

fresh and early-age properties of such concretes (Wu et al., 2009). In this context, 

experimental data is required for alternative mix designs, considering both the partial and 

complete replacement of the existing heavy-weight sand and aggregate materials.  
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More specifically, it was found that, although European standard design guidance exists (EN-

1992-1, 2004) with regards to how the material properties of generic lightweight concretes 

should be modified within the design of structural elements, it is still necessary to establish 

whether the concretes with SPFA replacement materials follow the trends and behaviours 

suggested by the existing design equations. This is because, to the best of our knowledge, an 

experimental verification has not yet been undertaken to demonstrate the suitability of the 

existing EN1992 (2004) equations when using values of 
c

f  (for example) to predict the 

tensile splitting ( )ct
f  or pull-out capacity of an anchor in the resulting concrete for the 

specific artificial SPFA aggregates considered, following only a 24 hour curing period.  

Further, establishing whether the currently suggested trends, for concretes of varying density, 

account for the behaviour of lightweight concretes formed through the partial replacement of 

traditional aggregate with SPFA is also of interest, with the Elastic Modulus ( )c
E  perhaps the 

characteristic most significantly affected in this instance. 

Consequentially, an experimental campaign was undertaken, focussing on the high-strength, 

high-flow concrete mixes commonly adopted within the precast industry, looking at the 

mechanical properties that are directly relevant to the manufacture of structural units such as: 

concrete flow, compressive strength, modulus of rupture, Young’s modulus and pull-out shear 

capacity. 

It is worth emphasising that, due to commercial pressures, structural precast components are 

often de-moulded, lifted and transported after only a short period of curing (12-24 hours). 

What this means in reality is that it is the concrete strength at this earlier stage of curing, 

rather than the anticipated in-situ loads that determine the concrete mix design for precast 

manufacture. This leads to a higher requirement for strength at 12-24 hours that is inevitably 

associated with a resulting excess of concrete strength after a full period of strength 

development, which is then effectively wasted over the element’s design life. Further, 

achieving a high early-age concrete strength is also often a key design parameter in precast 

design in order to mitigate possible damage to the resulting components occurring during 

their handling. 

One example of such early-age damage is the potential failure of the concrete occurring 

around any cast-in lifting bolts or fixing elements. Such a failure can happen in the unit 

during its transportation through the formation of a pull-out cone or other shearing 
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mechanism, and becomes a critical design consideration in terms of safety. Achieving high 

concrete strengths mitigates against such failure occurring, as well as against the risk of 

excessive deflection and the resultant cracking of certain precast elements. Because of such 

design issues, coupled with the fact that the inclusion of SPFA aggregate has been found to 

lead to a reduced concrete performance (Shimazaki et al., 1994), this study has also 

investigated the possibility of using steel fibre reinforcement (SFR) as a solution through 

which the loss of performance may be corrected for. This is a strategy suggested within the 

existing literature for other concrete mixes and applications (Hsu and Hsu,1994; Kayali and 

Haque, 2003; Balaguru and Ramakrishnan, 1987). In the following, the technical background 

of the study is detailed, so to highlight current gaps in the field and justify the adopted 

experimental methodology.    

 

1.2 Effect of Lightweight Aggregate Replacements on Early Age Concrete Strength 
 

Studies focussing on fully cured concretes have shown that the strength of lightweight 

aggregate (LWA) concretes is highly dependent upon the strength of the aggregate type 

incorporated. This is essentially because the shear strength of the LWA controls the failure of 

the concrete matrix, and therefore becomes the weak link in the system (Sarkar et al., 1992). 

However, a lack of data exists on the effects of the inclusion of the SPFA replacement 

materials after shorter curing periods. Further, Wasserman and Bentur (1996) demonstrated 

that observed differences in concrete strength capacity following shorter periods of strength 

development cannot always be quantified by consideration of the differences in the aggregate 

strength. Their study showed that these variations can also be attributable to physical and 

chemical processes which occur at the interfacial transition zone (ITZ) of the lightweight 

aggregates and the cement paste, with the physical process of ‘densification’ pertinently being 

demonstrated to have a significant (around 20%) influence on the measured early-age (1 day) 

concrete strength. In spite of this key finding no other published studies have attempted to 

quantify the significance of these effects, as they are dictated by the mix constituents selected.  
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1.3 Effect of SPFA Materials on Fresh Properties 
 

Numerous studies have been published in recent years on the use of lightweight aggregates in 

the production of SCC (Wu et al., 2009; Lo et al., 2007; Choi et al., 2006), with the majority 

focussing on the observed workability and rheological properties of the concretes (Topcu and 

Uygunoglu, 2010). It has been shown that the self-consolidating action acts to prevent the 

upward movement of the lightweight aggregates (LWA) and therefore the associated 

segregation (Topcu and Uygunoglu, 2010). 

Khalai and Haque (2003) proved that both coarse and fine lightweight replacement materials 

can lead to a 32% reduction in fresh unit weight, with a slight increase in workability also 

observed for the SPFA concretes. Moreover, in studies focused on SCC constitutions (Wu et 

al. 2009; Wasserman and Bentur, 1996), slightly increased workabilities have been revealed 

for instances in which the 28-day concrete strength rather than the total water content is kept 

constant. That is, those in which the higher absorption of the SPFA aggregate type is correctly 

allowed for. However, the number and variations within the chosen mixes investigated by 

these studies is limited, with the partial replacement of normal with SPFA aggregate not 

considered. 

  

1.4 Effect of SPFA Materials on Anchor Pull-out Strength 

 

The second part of our study specifically focuses on the pull-out failure of a 2.5 tonne 

capacity shear head lifting anchor (Figure 1(a)), as this fixing is representative of the current 

practices and needs within the precast industry. Due to the absence of any studies of these 

anchor types in SPFA concretes, it has been necessary to consider studies of analogous break-

out cone failure modes, such as the pull-out of reinforcement bars of a similar size/diameter to 

the lifting bolts under consideration (Hassan et al., 2010; Sancak e al., 2011). Sancak et al 

(2011) demonstrated that a reduction in pull-out capacity of up to 20% can be observed when 

lightweight aggregate replacement materials are used as a complete substitute within an SCC 

concrete mix. In addition the variation in aggregate type adopted was also proven to change 

the failure type observed (Sancak et al., 2011), with a splitting mode, rather than the 

anticipated shear cone, recorded in the samples where the weaker aggregate type was 

incorporated. However, this reduced capacity and change in failure mode were observed in 
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concretes using a natural rather than artificial aggregate type, with the testing also undertaken 

once the concrete had achieved full strength. It was deemed important therefore to establish 

whether similar phenomenon would be observed in SPFA concretes following only a 24 hour 

curing period, as well as whether design equations suggested within available regulatory 

guidance are appropriate. 

 

1.5 The Effect of Introducing SFR within SPFA Concrete Mixes  

 

As discussed in Section 1.1, establishing the ability of a steel fibre dosage to sufficiently 

correct for the reduction in material characteristic strengths, often observed in SPFA 

aggregate concretes, is a key objective of the investigation. Although a number of studies 

(Gau et al., 1997; Libre et al., 2011) have found the effect of steel fibre inclusion to have a 

beneficial effect on the mechanical properties of lightweight concretes at a later stage of 

strength development, data with respect to its effect on concretes cured for periods of less 

than three days is extremely limited.  

However, the ability of this reinforcement type to significantly improve the early age 

characteristics of more standard, normal-weight high-strength concretes, has already been 

identified and demonstrated by studies, such as that by Ding and Kusterle (1999). Their work 

investigated the effect of using various steel fibre dosages (20-60 3
kg m ) on the concrete’s 

resulting compressive strength and punching resistance at the early age time intervals of 10, 

18, 30 and 48 hours. This study is of particular interest, with a shear failure directly relevant 

(although inverted) to the expected anchor failure type. The work demonstrated that the 

inclusion of SFR had the ability to greatly increase the observed shear capacity of the 

resulting concrete elements investigated, following only short curing periods, with the steel 

fibre content working effectively as shear reinforcement. Because of these findings, testing to 

establish whether a similar effect could be observed in SPFA lightweight concretes was 

undertaken.  
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2 MATERIAL AND METHODS 

2.1 Material Used  
 

The binder was Portland Cement (CEM IIA/A-LL 42.5N), in compliance with the 

requirements of BS EN 197-1, having a fineness of 505 2
m kg and a density of 3.15 3

g cm . The 

super-plasticiser was a polycarboxylate ether, with a specific gravity of 1.1% and a solids 

content of 20%. If specified within the mix, the natural river sand had a specific gravity, 

fineness modulus and water absorption by weight of 2.62%, 2.15% and 3.79% respectively. 

The normal weight coarse aggregate had an oven dried particle density of 2.6 3
Mg m , a water 

absorption percentage of 0.8 and a drying shrinkage of 0.026% in accordance with BS EN 

1097-6.  

The chemical composition of the SPFA fine and coarse materials are defined within Table 1, 

along with a number of key physical characteristics of these constituents, all of which 

conform to the requirements of BS EN 13055-1. The coarse aggregate (4/14mm) replacement 

material had a declared oven dry loose density of 710 3
kg m , a particle density of 1.31 3

Mg m  

and an aggregate crushing strength of 6.5 2
N mm . An oven dried loose density of 900 3

kg m  is 

declared for the sand replacement SPFA (0/4mm) , with the particle density again 1.31 3
Mg m .    

The hooked end steel fibres incorporated as part of the relevant mixes were: 50mm long, 

0.75mm in diameter, with an aspect ratio of 67mm and a tensile strength greater than 1100

2
N mm . The traditional reinforcing bars incorporated as part of the slab elements (see Figure 

1(d)) had a yield stress of 500 2
N mm and a grade B ductility to appropriate European standard 

(BS EN 10080).  

 

2.1 Mix Proportions  
 

Eight SCC mix designs (based upon those currently adopted by a leading UK precast 

manufacturer for wall, slab and culvert elements) were developed and prepared in order to 

determine the effects of incorporating various proportions of SPFA replacement lightweight 

aggregate and fine materials on the resulting one day properties of the concrete. The 

constituents and proportions relevant to each of these eight mixes are shown in Table 2. 

Relatively high cement contents (500 3
kg m )

 
were included within the SCC mixes as a way to 
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minimise the segregation potential of the flowing concrete. As can be seen, the SPFA coarse 

aggregate is varied from 0-100% within mixes A (control mix) to D when used in conjunction 

with a standard sand material. Further, the implications of utilising a complete SPFA 

replacement concrete mix was also investigated within test mixes E and G, with the cement 

content also varied between the two compositions in this instance.    

Mixes F and H are those in which a 3
50kg m content of steel fibre reinforcement is additionally 

incorporated, so as to quantify their effects on lightweight mixes using both coarse and fine 

SPFA replacements. The steel fibre dosage level was chosen based upon the findings and 

recommendations of previous studies. Gau et al (1997) identified a content of 2% by volume 

to represent a limit, in relation to the effectiveness of the steel fibre reinforcement in 

improving the compressive strength of high strength concrete mixes, with minimal 

improvements observed beyond this volume fraction. In addition, the ability to ensure the 

effective compaction of the mix, as well as a suitable dispersion of fibres, was also stated to 

become difficult above this limit. A SFRC dosage level of 50 3
kg m  was therefore selected, 

with this quantity thus also allowing for a direct comparison with previous studies conducted 

in normal weight concretes (Ding and Kusterle, 1999). 

 

2.2 Production and Testing Procedures  
 

All normal and artificial lightweight aggregates were oven dried before mixing, so as to allow 

for the water proportion within the mix to be more closely controlled. Batch sizes varied from 

0.01-0.09 3m depending on the type and number of samples to be cast. Initially, the 

cementitious material and sand fines were premixed for a period of five minutes, with the 

coarse aggregate and relevant steel fibre content then added prior to a subsequent mixing 

period. Finally, the correct water and superplastizer contents were added during 3-5 minutes 

of further mixing before the test specimens were cast within the steel moulds. 

Because of the high fluidity of the SCC mixes designed, a slump flow (in accordance with BS 

EN 12350) was adopted by spreading horizontally the collapsed slump concrete in two 

orthogonal directions 
1 2

D D× . Figure 2(a) illustrates the testing apparatus, consisting of a 

normal slump cone and a plastic plate (or flow board) of dimension 1000 1000× mm that is 
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marked with a circle of diameter 500mm so that the 
500

t  parameter (i.e. the time required for 

the concrete mix to reach a diameter of 500mm) could be determined.  

In addition, a series of L-box tests were also conducted in order to further quantify the fluidity 

of the lightweight self-compacting mixes, as well as assess their ability to flow around steel 

bars. The test apparatus consisted of a vertical chimney section and a horizontal channel, into 

which the concrete mix is allowed to flow as shown within Figure 2(b). The ratio of the level 

of the self-compacting concrete in the chimney and channel sections ( )2 1h h  
 
as well as the 

time it takes for the concrete to reach 400mm from the steel bars ( )400t , were additionally 

measured to provide a metric relating to concrete workability. Again this testing was 

undertaken in line with BS EN 12350.  

Six 100mm cube samples were cast for each period of curing (i.e. at 24 hours, 7 and 28 days) 

and for each of the eight mixes, giving a total of 144 (6x3x8)
 
cubes. Further, six 150x500mm 

cylinder samples were cast per mix, so as to determine the early age Young’s modulus of the 

relevant concretes as part of a non-destructive test, with these same samples then 

subsequently used to derive values of the indirect tensile strength 
ct

f   from a split cylinder 

test. Forty-eight  (6x8) 100x100x500mm flexural beam samples were also cast to determine 

the flexural indirect tensile strength ( )sw
f , with three further 500x600x100mm slab elements 

manufactured for (mix types A, E and F), to investigate the pull-out behaviour of the selected 

anchor type (see Figure 1).  

After casting, all the specimens were covered and stored in the laboratory environment, with 

each of the specimens de-moulded after 15 hours of casting. The samples tested within 24 

hours of casting were cured in the laboratory environment (typically 15 2o C± ) after de-

moulding but those tested for their 7 and 28-day properties were stored in a water tank 

maintained at 21 2o C± .   

The density of each of the samples was determined prior to any further testing using 

procedures in agreement with BS EN 12390-7. The compressive strength ( )c
f of the samples 

was determined from100mm cube samples in accordance with BS EN 12390 part 3.  The 

indirect tensile strength from the cylindrical samples was tested in accordance with BS EN 

12390 part 6 whilst the flexural strength was determined in accordance with BS EN 12390 

part 5. Prior to carrying out the destructive split cylinder testing, the same samples were used 
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to establish the modulus of elasticity ( )c
E  of each concrete mix following 24 hours of curing. 

This was achieved by axially loading each test specimen within a compression rig. The secant 

modulus was calculated based on the value of stress corresponding to 40% of the previously 

determined ultimate concrete strength and the corresponding longitudinal strains observed at 

this load in accordance with available UK technical guidance (Bamforth et al., 2008).  

Additional experimentation was also carried out to establish the pull-out shear capacity 

achieved by a spherical-head lifting anchor (Figure 1(a)), which has an admissible lifting 

force of 25kN. Pull out trials, in accordance with CEN TR 15728 (2008), were then conducted 

on 600x600x150mm test slabs that were reinforced with grade 500B, 12mm high-yield bars at 

100mm centres in two orthogonal directions (see Figure 2(d)).  These slab specimens were 

then simply supported on their four edges by a rigid metallic frame, with a 100mm effective 

bearing (Figure 2(d)). The load could then be applied axially through the lifting anchor and 

the connection shackle (see Figure 2(c)), with the rate of deformation at midpoint controlled 

by the load cell to be 1.5 mm/min to comply with the testing regulation (TR15728, 2008).   

 

3 RESULTS 

3.1 Fresh Properties  
 

Table 3 details the resulting fresh properties of the SPFA SCC mixes investigated, whose 

inspection suggests that a slight increase in workability occurs for each increase of coarse 

lightweight percentage. These findings are in line with those of previous studies (Wu et al., 

2009; Wasserman and Bentur,1996; Lo et al., 2007; Choi et al., 2006), where such behaviour 

is explained by the fact that the lighter weight particles within the suspended matrix may be 

more greatly affected by the super-plasticising agent. The results of this study also appear to 

demonstrate that a similar effect is still realised in mixes using a combination of normal and 

light weight aggregates, which (based upon the literature review undertaken) had not 

previously been established. 

The observed behaviour may also partly be attributed to the increased roundness of the 

industrially manufactured SPFA aggregate, compared to the traditionally adopted gravel 

types, with the variation between the assumed and actual rate of water absorption in the SPFA 

aggregate also being another potential cause. That is, any difference or error between these 
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two values would mean that more water is present in the system that is not absorbed by 

aggregate. While resulting in an increased workability, such variation in water content may 

also contribute towards the reduced strengths seen in this and previous studies for SPFA 

lightweight mix designs (EUROLIGHTCON, 2004; Lydon, 2001).  

Table 3 also shows a more significant increase in mix workability when the fine lightweight 

replacement material is included. These results validate the experimental findings of previous 

studies, such as that by Lo et al (2007) who hypothesised that the rounded shape of such 

industrially-manufactured fine PFA particles improves the flowing and passing ability of the 

concrete relative to the more angular particles occurring within natural sand.    

Further, whilst an increased workability was also observed for mix G, significant decreases 

were seen for the concrete mixes F and H (Table 2). For mix G, where the cement content is 

reduced, the resultant fresh concrete is acting as would be expected according to the 

appropriate fluid model, as demonstrated by Banfill (1994). In this model, a larger cement 

content acts to increase the yield stress and plastic viscosity of the resulting Bingham fluid. 

By contrast, the reduction of flow and passing ability observed within mixes F and H is 

attributable to the presence of the SFR content. The quantity of fibre was observed to impede 

the flow of the SCC, particularly within the L-Box test, with the reduced passing ability of 

such mixes also evident from Figure 3, where a good linear correlation exists between the 

observed values of 
400

t  and
 500

t  workability parameters, with only mixes F and H significantly 

diverging from the observed trend. 

 

3.2 Density and Compressive Strength  
 

From Table 4 it is evident that a maximum 31% reduction in air-dried concrete density (1,568

3
kg m  compared to 2,196 3

kg m  of the control mix) can be achieved with a complete 

replacement of coarse and fine constituents. Other aggregate blends had densities between 

these values depending on the percentage of lightweight aggregate and cement contents 

included  (Table 2). Such densities compare well with those found within previous studies and 

technical literature. For example, Bungey and Madandoust (1994) achieved an average 

density of 1789 3
kg m with a mix design that replaced both aggregate and fines with SPFA 

equivalents and 1971 3
kg m  with one that only replaced the aggregate, with research more 
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directly applicable to SCC mixes (Kockal and Ozturan, 2011)  also documenting density 

ranges of 1560-1960 3
kg m  for industrially applicable SPFA concrete mixes.  

The values of compressive strength 
c

f  in Table 4 are the mean values of the six cube samples. 

The coefficients of variation of the plain concretes were in the range of 3.3-5.2%, with the 

larger variations (7.1-8.9%) observed for the FRC mixes F and H, as expected given the 

higher variability of this type of material. It can be seen from Figure 4(a) that the variation of 

concrete strength with density, which in this case is associated with the percentage of 

replacement material incorporated, is more significant following 7 and 28 days ( )15%≈  of 

strength development, with a much smaller increase (4-5%) apparent after 24 hours. 

The results, with respect to earlier age strength therefore do not follow the trend presented by 

UK concrete research organisations (Concrete Centre, 2006; Daly, 1999) that suggest that for 

a C40/50 grade mix, the concrete strength varies with density in accordance with the 

expression: 

  (23) 

This expression is represented by the dashed curves plotted as part of Figure 4(a), with the 

constant adjusted to allow for the expected reduction in concrete grade/strength associated 

with normal weight concretes following the stated periods of curing.   

These findings also appear, prima facie, to contradict those of Wasserman and Bentur (1996), 

who reported a reduction in the compressive strength of SPFA mixes (prepared with an 

aggregate blend of 51% lightweight aggregate and 49% graded normal weight fines, at an 

effective w/c ratio of 0.4) by up to 20% after 24 hours of curing, relative to a control mix. 

This variation was deemed to occur because the strength development of the paste was 

thought to be more critical for early-age samples than those which have gained full strength, 

in which case aggregate shear failure dominates. However, and as previously identified 

(Section 1.2), additional physical and chemical processes were also investigated and believed 

to contribute to the more significant variation in early age concrete strength observed by 

Wasserman and Bentur (1996).  

For example, their study did not focus on the pelletised SPFA aggregates but on replacement 

PFA materials which had been modified through non-standard chemical, physical or heat 

treatment processes. It appears therefore that it was because of these aggregate manufacturing 

5 20.06 1 10 15cf ρ ρ−= − × −
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processes that the interfacial reactions between the cement matrix and artificial aggregate 

were seen to have a more significant influence on the early-age properties of the concretes. It 

can also be hypothesised that the additional pozzolanic reactions observed previously 

(Wasserman and Bentur, 1996) did not occur within the 28 day timescale considered, (or at 

least not to an extent that is sufficient to influence the strength). The reason could be that the 

PFA material is not sufficiently fine to act as an additional cementitious binder and/or more 

time is necessary for the reactions to occur.  

Figures 4(a) and 4(b)) reveal a more prominent divergence in concrete strength relative to the 

SPFA content occurs at the latter ages of 7 and 28 days. This can be quantified of course if we 

consider the coefficient of variation for the samples across mixes A-E at the chosen time 

intervals. By way of example, the CoV increases from 4.1% to 8.1% between 1 and 7 days of 

curing.   This is because early-age concrete strength is significantly dependent on the rate of 

strength development in the cement paste (Wasserman and Bentur, 1996), which is primarily 

a function of the cement content and water-cement ratio. Because a similar water to binder 

proportion was purposefully maintained for each of the SCC mixes investigated, the limited 

variations observed would be expected. This is opposed however, to the 7 and 28 day samples 

in which the shearing capacity of the aggregate becomes more critical, with a roughly linear 

relationship now observed between 
c

f   and the percentage of SPFA replacement material 

incorporated. It is also apparent from Table 4 that, while the high cement contents of the 

SPFA concrete mixes still provide the early stage strengths necessary to avoid issues during 

stripping, lifting and transportation procedures, it does not result in excessive concrete 

strengths being realised and underutilised in service, as is typical of concrete mixes used in 

the precast industry.     

If we now consider those mixes incorporating an additional 50 3
kg m steel fibre content (F and 

H) in comparison to their non-SFRC equivalents (E and G), only a very small increase in 24 

hour compressive strength occurred (1.6-2.8%). These findings are in line with those of Ding 

and Kusterle (1999), which did not show any significant trend relating to the ability of the 

steel fibres (using contents in the range of 40-60 3
kg m ) to improve the compressive strength 

of normal weight concretes with curing periods of less than 24 hours. This is perhaps owing 

to the fact that although the failure of the compressive sample essentially results from tensile 

and tensile-shear effects, which the SFR content should abate, it is likely that the failure of the 
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cube samples is actually initiated by tensile strains and micro-crack formation within the 

lightweight aggregate itself. The subsequent bond-cracking will then occur at the aggregate 

paste interface, with the macro-scale cleavage cracking thus being able to initiate and 

propagate in a manner that is largely independent of the need for the cracks to propagate 

through the cement matrix. It is therefore less likely to be influenced by the ability of the SFR 

to control cracking within this region. Table 4 also shows the mixes with SFR to have a larger 

variation than the non-SFR equivalent mixes, as expected given the obvious variability of the 

resulting composite. Table 4 also highlights the significant impact of the reduced cement 

content incorporated as part of mix G. 

  

3.3 Splitting Tensile and Flexural Strength  
 

The inclusion of steel fibres was found to increase the 24 hour average flexural and split 

cylinder capacities significantly (19.5% and 21.2% for 
ct

f  and 
sw

f , respectively). This trend is 

in agreement with previous studies (Gau et al., 1997), in which the inclusion of the steel fibres 

is shown to improve these mechanical properties in lightweight concretes, albeit at a later 

stage of strength development. No experimental data was found as part of the literature review 

that could demonstrate whether a similar scale of improved capacity is seen after shorter 

periods of curing in SPFA mixes.   

Gau et al (1997) considered a lightweight aggregate mix with similar cement (515-520 3
kg m ) 

and fibre contents (47 3
kg m ) to those reported.  However, a much more prominent 

improvement in the flexural and split cylinder strengths was demonstrated once the concrete 

had developed a full strength, with increases of 34% and 38% observed for the split cylinder 

and flexural strengths respectively. The less prominent improvement in concrete capacity 

(relative to historical data (Gau et al., 1997)) is believed to be related to the shorter curing 

period, resulting in a reduced bond between fibres and cement matrix. Importantly, the nature 

of the stress development for split cylinder and flexural samples means that the initial micro-

cracking within the lightweight aggregate does not control the resultant failure in the same 

way (or to a similar extent) that it does within compressive cube samples, since the cleavage 

cracking in these samples initiates and progresses within the cement paste matrix. Because of 

this, the presence of the steel fibres becomes more influential, and therefore more 
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significantly impacts the flexural and split cylinder capacities. On the other hand, very little 

variation was seen within the early-age tensile splitting and flexural values for the non-SFR 

LWA concrete alternatives (B-E) relative to the control mix (A), with the exception being the 

15% reduction observed within samples cast using mix G. This reduction however, is more 

likely associated with the reduced cement content rather than the presence of the SPFA 

materials. 

It is worth emphasising here that the tensile strength of a concrete mix is important within the 

design procedure for precast elements as it is a necessary variable for the calculation of the 

minimum reinforcement areas to control cracking and also re-bar anchorage lengths. The 

European design standard (EN 1992-1, 2004) recognises that the tensile strength of LWA 

concrete ( )lctm
f  needs to be modified in comparison with a normal weight concrete ( )ctm

f  of 

the same strength class, and the following equation is suggested: 

  (24) 

Where ρ  is the oven dried density ( )3
kg m  of the resulting concrete.  

However, this equation has been developed for concretes following full periods of curing and 

where the reduction in density is achieved through a 100% replacement of a homogeneous 

aggregate type.  Despite this, Figure 4(c) shows Eq.(2) (dotted lines) to provide a suitable 

conservative prediction of tensile strength for both the 1 day and 28 day curing times, in 

relation to both this and previous experimental campaigns (EUROLIGHTCON, 2004; Clarke, 

1987; Walraven and Stroband, 1995). The observed variation at 1 day is again much smaller 

in relation to the control sample, suggesting that a beneficial modification factor may be 

appropriate within the design of precast concrete elements when deriving the value of 
lctm

f  to 

be used in design, following shorter periods of strength development.  

The inclusion of the SPFA aggregate however, does appear to influence the failure type 

observed within the test samples. As can be seen (Figure 5(c)), instead of a clean and distinct 

fracture surface being observed between the two parts of the cylinder, a less conventional 

shear failure through the artificial sintered aggregate occurred and this mode of failure 

became more prominent as the SPFA aggregate and fine content was increased. Table 4 also 

reveals an increasing coefficient of variation within the tested samples as the SPFA content 

was increased. 

0.4 0.6
2200

lctm ctm
f f

ρ 
= + 

 
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3.4 Modulus of Elasticity  
 

The elastic modulus of the LWA samples was observed to reduce by up to 26.3% of the 

control sample, in a manner that appears to be proportional to the percentage of normal 

weight aggregate replaced. The European design standard (EN 1992-1, 2004) allows for the 

incorporation of light weight aggregate by modifying the design value for the elastic modulus 

( )lctm
E relative to that of a normal weight aggregate according to the equation: 

  (25) 

As can be seen from Figure 4(d), Eq.(3) (dotted lines) appears to provide a conservative 

estimate of the elastic modulus achieved with SPFA LWA concretes. However, the results 

obtained following only 24 hours of curing do appear to more significantly deviate from the 

proposed trend than that seen from previous studies (EUROLIGHTCON, 2004; Lydon, 2001), 

which considered a full curing period. It should be noted however, that the trend will vary 

depending on the nature of the control aggregate incorporated, and as such comparison 

between different studies is difficult. It is likely therefore that the lack of correlation in the 

data captured as part of this study with the suggested theoretical trend is due to the differences 

between the aggregates in each of the studies represented, rather than to the hybrid nature of 

the concretes considered.    
 

Further, while the incorporation of the SPFA fine material has been observed to bring about a 

reduction in the derived values of ultimate material strength (Section 3.2), the 100% 

replacement of both aggregate and sand products seems to have a much more limited 

influence on the resulting stiffness of the concrete (Neville, 2008). The coefficient of variation 

for the six samples considered as part of this non-destructive test (Figure 4(d)) was also less 

pronounced than that observed within the same samples undergoing testing to derive their 

ultimate splitting capacity (Table 4). This is because the modulus of elasticity ( )c
E  is 

dependent on the aggregation of the SPFA material characteristics as a whole, as opposed to 

the failure of the weakest aggregates. The effects of fibre reinforcement on the resulting 

elastic ‘secant’ modulus of the concrete sample were also observed to be limited (3-5%) at an 

early 24-hour age, which is consistent with the results of similar testing conducted on concrete 

2

2200
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E E
ρ 
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samples that had achieved full strength after a curing period of 28 days (Kayali and Haque, 

2003). 

3.5 Pull-Out Failure of Lifting Anchors  
 

Three 600x600x150mmtest slab elements (Figure 1(b)) were cast for each of the type A, E 

and F concrete mix variations, as detailed within Section 4.3. The type E mix was selected to 

provide an indication of the worst-case anchorage strength that would be seen, for concretes 

incorporating a proportion of SPFA content relative to the control. It is asserted that this mix 

also represents the worst-case performance for a lifting anchor’s pull out capacity in the SPFA 

concretes investigated and thus provides an indication of the modification factor that should 

be applied to the safe working loads already experimentally determined and verified for the 

same lifting anchors in standard concretes. Through manufacturing samples using the same 

complete replacement SPFA concrete mix, but which also included a content of SFR (Mix F), 

it was thought possible to quantify the ability of the fibre content ( )3
50kg m to correct for the 

reduced pull-out capacity. 

Although the European design standard (EN-1992, 2004) does not currently provide guidance 

with regards to the pull-out cone failure of lifting anchors in concrete elements, they do 

specify rules associated with the modification of allowable punching shear resistance in 

reinforced and unreinforced lightweight concrete elements according to the equation: 

  (26) 

where ( )1 0.4 0.6 2200η ρ= + is a correction factor based on the reduced density of the 

lightweight concrete utilised and ,lRd c
c  and k  are further design constants also modified due to 

the use of a lightweight concrete mix. A value of 1.0k = is imposed for concretes 

incorporating SPFA materials as replacements for both coarse and fine materials, as opposed 

to normal weight concretes where 2.0k = . Further, according to the Eurocodes, for Mix E 

,
0.15

lRd c
c =  compared to ,

0.18
lRd c

c =  for mix A. Thus, for the SPFA concrete mix a reduction 

factor of 0.03 ( ), 1 0.15 1.0 0.18lRd cc kη = × ×  is applicable, compared to 0.09 which would be 

applied for mix A. Essentially therefore a safety factor of 3 is applied to allow for the reduced 

shear capacity of SPFA aggregate types. No account is currently taken within the design 

codes for such concretes incorporating steel fibres. 

( )
1 3

, , 1
. . 100. .

lRd c lRd c lck
V c k fη ρ=
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Nine pull-out tests were conducted in all, with each slab sample loaded through the lifting 

anchor, fixing and shackle arrangement (see Figure 1(c)). An average pull-out capacity of 

28.3kN was obtained for the control mix samples, with a typical pull-out shear cone forming 

around the anchor fixing. Lower pull-out capacities of 24.2kN, 20.0kN and 21.2kN were 

recorded in samples cast from mix type E, averaging 21.8kN. A pull-out cone was again 

observed to form, although the diameter and depth of the section of concrete detached from 

the sample was less than that observed within the control sample, with extensive aggregate 

shear failure obvious. The reduced pull-out capacities suggest that a reduction factor in the 

region of 20-30% should be adopted by the design engineer when specifying fixings or 

anchors of this nature into SPFA concretes. The current European standard therefore appears 

to be very conservative when designing for these failures in SPFA concretes at an early age, 

as relevant in precasting, and more extensive testing should be undertaken to obtain a more 

appropriate modification factor.  

A significant increase in the pull-out capacity was observed in the samples tested in which 

steel fibre reinforcement was included. Values of 37.8kN, 35.2kN and 33.6kN were achieved 

in these instances, averaging 35.6 kN which represents a 62.5% increase in the average pull-

out capacity. Furthermore, the failure type was much more akin to that of a two way-spanning 

slab than the ‘pull-out’ cone observed for the previous samples (Figure 5(d)). The amount by 

which the pull-out capacity of the anchor was improved by the addition of the 50 3
kg m  steel 

fibre content is similar in magnitude to the improvement observed by Ding and Kusterle 

(1999) for the punching shear capacity of normal weight concrete slab elements, although 

these elements did incorporate a slightly higher fibre content ( )3
60kg m . It can therefore be 

concluded that the ability of steel fibre reinforcement to significantly influence the shear 

capacity of concrete within the early stages of strength development is similar for both normal 

and lightweight SPFA concrete variations.  However, the derivation of a suitable modification 

factor, which could then be applied within the design process, in order to allow an engineer to 

benefit from the use of SFR content within SPFA concrete mixes, would require further 

research due to the variable nature of this hybrid concrete.  
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4 CONCLUSIONS 

Making precast elements with lower concrete densities offers potential benefits to 

manufacturers in terms of lifting and transportation. An experimental investigation was 

therefore conducted to establish relevant fresh and early age material characteristics of SCC 

mixes with a partial or complete replacement of traditional gravel and sand constituents with 

sintered pulverised fly ash (SPFA) lightweight alternatives.  Little published information is 

available on the early age performance of such materials, or the suitability of current design 

equations in relevant European standards. The following conclusions can be drawn. 

 

1. The workability of the mix variations improved as the ratio of lightweight to normal 

weight aggregate was increased, with the influence of the super-plasticising agent 

being more significant on the lighter aggregate material. The more spherical, 

industrially manufactured, SPFA fine particles were also demonstrated to increase the 

workability of the mixes adopting a complete replacement of the heavyweight 

materials. However, the inclusion of a 50 3
kg m  content of steel fibre reinforcement 

(SFR) was found to be detrimental to the rheological characteristics of the high-flow 

mixes investigated, with specific fibres and dosage levels adopted impeding both the 

ability of the SCC mix to flow under its own self weight and also around steel 

reinforcement. 

2. A maximum reduction of 25% in air-dried concrete density was found to be feasible 

through the replacement of normal weight with SPFA aggregate types, with a roughly 

linear relationship observed in the partial replacement mixes developed. A further 

11% reduction in density was achieved through the incorporation of the SPFA fine 

material.    

3. It was found that, whilst the introduction of this aggregate replacement led to a 

reduction of up to 15% in concrete strength at 28 days, the 24 hour strength only 

reduced by up to 4.2% for concretes with an equivalent cement content. This is 

because the earlier age strength is less significantly dominated by the failure of the 

SPFA aggregate, which is responsible for the reduced concrete strengths (relative to 

normal weight control mixes) following longer periods of curing.  
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4. Because of this, it was seen that the trends currently proposed by UK concrete 

research organisations for predicting the compressive strength of SPFA concrete 

mixes, relative to the resulting concrete density are probably not applicable for 

concretes following shorter periods of curing. It was also demonstrated that strength 

variation following 1 day of curing, for the SPFA aggregate investigated were less 

pronounced than those suggested in historical research (Wasserman and Bentur, 

1996), with the physical and chemical treatment of the SPFA aggregates within this 

study therefore significant. 

5. Relating to the design of precast structural elements, it was shown that the design of 

the normal weight concrete mix is often determined through the need to achieve high 

early age strength. However, this leads to an excess capacity in full concrete strength. 

Because similar 1 day strengths can be achieved in lightweight SCC concrete mixes, 

these concretes provide the precast industry with a suitable alternative mix that would 

have resulting strength closer to that required within the design.   

6. It is also concluded that because the observed deviation within SPFA samples relating 

to indirect concrete tensile strength ( )ct
f   at 24 hours was less pronounced than that 

seen after a full period of curing, the introduction of a beneficial modification factor 

may be applicable within current European design regulations (EN 1992-1, 2004) for 

design cases where shorter periods of strength development has occurred. Such a 

factor would consequentially allow for the more suitable design of precast elements 

against excessive early age cracking and deflection.   

7. The pull-out capacities obtained for shear-head lifting anchors, cast within small scale 

slab samples, indicate that a 20-30% reduction factor is appropriate when designing 

fixings within SPFA lightweight aggregate concretes and indicates therefore that the 

existing European design guidance may be overly restrictive when considering cast-in 

anchor capacities for precast elements following short periods of curing.  The 

inclusion of hooked steel fibres ( )3
50kg m significantly enhanced the pull-out shear 

capacity of the anchors within the SPFA concrete type, with the failure mechanism 

changing in nature from a pull-out cone to a more two-way spanning slab element 

failure. It was seen that SFRC improves the 24 hour pull-out capacity of SPFA 

concretes to a similar extent as that observed in normal weight concretes (Ding and 
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Kusterle, 1999).   Because of this a higher safe working load of lifting anchors could 

be justified in precast elements, meaning that potentially larger components could be 

lifted without the need for a more costly cast-in anchor.  

In summary, SPFA lightweight aggregate may offer several advantages to the design and 

manufacture of precast structural components. The research suggests, however, that the 

design equations for calculating compressive and tensile strengths in the European standard 

may underestimate the behaviours of these concretes at early ages. 
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Conjunction with Unconfined Rebar Configurations, on the Structural Performance of 
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Reinforced Concrete-Challenges and Opportunities, 19-21 September, Guimaraes, Portugal 

 

 

Abstract –  

 

A joint experimental and computational research program has been carried out to demonstrate 

the potential benefits of using Steel Fibre Reinforcement (SFR) within the design and 

manufacture of two key structural elements, namely slender walls and thin lintels with dapped 

ends, often adopted within the pre-cast concrete industry. The investigations specifically focus 

on the advantages of utilising SFR in conjunction with traditional bar reinforcement in an 

unconfined layout. This configuration allows cost savings in regards to precast manufacture 

and enjoys good performance in terms of durability and fire resistance, though its use is 

currently limited by the brittle mode of failure. The paper sets out to prove that the inclusion 

of SFR within the concrete matrix is capable of inducing a more ductile response in the 

structural members under consideration, therefore potentially making it possible to justify the 

adoption of such unconfined layouts in the design practice. 

 

Keywords – Steel Fibres, Pre-cast Concrete, Unconfined, Buckling, Fibre Hinge, Strut and 
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1 INTRODUCTION 

Historical testing and research studies [1],[2] [3]  have demonstrated that the adoption of 

single, centrally placed or minimum reinforcement configurations in RC wall elements, which 

are subjected to an eccentric axial load, results in a sudden and brittle failure mechanism. In 

addition, research undertaken to date [1] has also shown the ‘flexural cracking’ response of 

the slender RC wall elements to be critical in determining the resulting buckling behaviour 

and ultimate failure load of the panel. This is opposed to the more conventional assumption 

that the element’s capacity and response can be found by consideration of the component’s 

ultimate flexural capacity. This method however, has been shown to be suitable only for 

sections using a double layer of confined longitudinal reinforcement, where the longitudinal 

reinforcement ratio of this section ( )s
A ltρ =  is greater than 1% [3], where 

s
A l  is the cross-

sectional area of reinforcement per unit length of the panel and t
 
is the thickness of the panel. 

The term flexural cracking is used here to describe the situation where the concrete section at 

the critical location cracks in flexure (and the resulting concentrated loss of stiffness, 

combined with the lack of influential tension steel) controls the resulting structural behaviour 

and ultimate stability of the panel much more than would occur with doubly reinforced 

panels, where 1%
s

A ltρ = ≥ [4]. Hence, the axial capacity of the RC wall element becomes 

dependent on the element’s flexural stiffness up to and post cracking. Consequently, 

appropriate account now needs to be taken of the contribution of the concrete acting within 

both the tension and compression stress block as part of the design of the element. Further, 

this flexural cracking response has been shown to control the response and capacity of 

centrally reinforced panel elements adopting unconfined rebar configurations, up to a steel 

ratio of 3%
s

A ltρ = = [5].  

Thus the controlling failure mechanism of the identified RC wall elements will, in part, be 

influenced by the formation and subsequent progression of flexural cracks in the concrete at 

the panel’s critical section. It follows therefore that if, as argued, the initiation and behaviour 

of such cracks in the concrete section can be considered to be significant when determining 

the structural response of such panels, the incorporation of steel fibre reinforcement should 

therefore be seen to influence substantially the resulting behaviour and ultimate capacity of 

the panel elements under consideration. This is because the use of SFR concrete mixes has 

Paper C1 



Design and Performance of Precast Concrete Structures 

136 

been shown to bring about a number of improvements in the mechanical performance of 

concrete, relating to aspects such as: a delay in micro-crack propagation to a macroscopic 

scale, the hindrance of macroscopic crack development and an improved structural ductility 

[6]. Aimed at demonstrating, as well as better understanding and designing for this predicted 

influence, the paper summarises the results of experimental and computational analyses for 

the relevant panel types and SFR concrete mixes.  

From the literature reviewed as part of this investigation, few resources or research studies 

appear to currently exist, which aid in the design of slender panel elements, using a 

combination of both SFR and the traditional longitudinal reinforcement configurations 

proposed. Aimed at improving this current situation, the paper proposes and evaluates the 

possible use of a computational procedure, in which ‘lumped plasticity’ is used to predict the 

behaviour and buckling capacity of the resulting structural members. The method has 

previously been shown to provide a good correlation for slender precast panel elements, albeit 

for test samples adopting only a traditional unconfined reinforcement configuration and a 

standard (C40/50 grade) concrete mix design [3]. It is believed however, that if this design 

method is suitably modified to account for the SFRC material behaviour, the proposed 

technique could also be used to derive a design capacity for the panel elements adopting the 

hybrid of reinforcement types considered. The method utilises a non-linear fibre hinge at the 

known critical cross section of the panel, in order to simulate the buckling response of the 

slender walls. 

The second aspect of the paper considers pre-cast lintels, supported on end projections that 

have been reduced in height. Such ‘dapped end’ or ‘halving joint’ details are common in 

precast construction because they beneficially lead to a reduction in the construction depth 

required. The experimental investigation undertaken therefore aims to increase the 

understanding of the shear behaviour and capacity of these resulting discontinuity shear or ‘D-

regions’, for situations in which: a centrally placed, unconfined and welded reinforcement 

mesh is to be used in conjunction with varying percentages of additional steel fibre content. 

Additionally, the structural testing undertaken will also aid in the development and 

verification of an analytical Strut-and-Tie Model (STM), capable of accounting for the use of 

such a non-traditional reinforcement strategy.  
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2 CURRENT LIMITATIONS OF EXISTING DESIGN 

METHODS IN RELATION TO UNCONFINED AND 

STEEL FIBRE REINFORCING STRATEGIES 

 

2.1 Design of Eccentrically Loaded Precast RC Panels  

 

Both the major national codes of structural design practice reviewed (ACI-318 [7], EC2 [8]) 

currently devote specific sections to the design and detailing of simply supported RC wall 

panels, subjected to an eccentric axial load. Each of the specified design standards allows for 

the design of such elements through the adoption of one of two possible design methods. The 

first of these alternatives involves the use of simplified design equations that have been 

empirically (or semi-empirically) derived from a limited amount of experimental data [9]. 

These expressions however, allow no account to be taken in regards to either the quantity or 

the distribution of longitudinal reinforcement. Also, the simple design equations do not 

currently allow for or enable the modification of the concrete material model, required in this 

instance to account for, and potentially take advantage of, the modified concrete behaviour 

due to the presence of the steel fibres within the concrete mix. In addition, the existing 

empirical design equations do not currently allow for design situations in which the eccentric 

load application is required to fall beyond the ‘kern point’ of the section. That is, the largest 

off-set at which a load can be applied to a section without it developing tensile stresses. One 

such load case is however, investigated as part of this study in order to assess the ability of, 

and therefore the potential for using the proposed hybrid reinforcement configurations to 

resist a larger, non-standard value of load eccentricity.  

One potential alternative design method however, currently available within each of the 

regulatory guides considered [7-8], is the consideration of the wall component as a column of 

an ‘equivalent’ structural width. This method, prima facie, appears to potentially offer a 

suitable design method, for the hybrid panels under consideration. This is because, it would 

enable the engineer to account for the necessary modification to the concrete material model, 

as well as being able to include for the longitudinal reinforcement quantity and its 

distribution. By using this method, one could also allow for a load applied at the larger 

eccentricity. However, the use of this method requires the buckling failure load of the panel 

element to be dependent upon, and thus determined through consideration of, the flexural 
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capacity of the component’s cross section [3]. As defined within section 1, this is not true for 

the minimally and centrally reinforced panels that are the focus of this study. Therefore, 

neither of the existing design procedures currently available, appear suitable for the design of 

panels reinforced through a combination of minimum, centrally placed and unconfined 

longitudinal re-bar, with secondary reinforcement also provided by using a quantity of SFR. 

 

2.1 Strut and Tie Design for D-Regions  

 

The strut-and-tie analytical model is an extension of the Ritter-Mörsch truss analogy, with 

particular application to the shear design of discontinuity regions (D-Regions) in cracked 

reinforced elements [10]. The model assumes that structural loads are carried through a set of 

compressive stress fields and interconnected tensile ties. Previous studies ([11],[12]) have 

demonstrated that the use of steel fibre reinforcement, in conjunction with traditional 

longitudinal reinforcement, significantly improves the capacity of the D-regions considered 

within the precast structural elements. However, the past investigations do not consider the 

validity of adopting an STM in their design. Hence, of particular interest as part of this study 

is; how a traditional STM analytical model should be modified or augmented to suitably 

account for the behaviour and failures observed, when adopting the hybrid reinforcement 

proposed, within the critical structural regions?  

Another important consideration in adopting the STM methodology, as part of the 

development of an acceptable design for the proposed precast lintel elements, is that due to 

the lower-bound nature of the method, a number of potential (or compliant) models are 

possible. However, a poorly selected and detailed strut-and-tie model may potentially result in 

severe damage and cracking to the element, even under service loading [13]. Because of this, 

the experimental investigation and validation of any potential STM analytical model is 

therefore considered as an essential component in the development of a design procedure for 

the precast dapped end beams.     
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3 EXPERIMENTAL INVESTIGATION 

 

3.1 Test Samples and Experimental Arrangements  

 

Eight 450mm wide, 100mm thick and 3000mm tall panel elements were cast adopting C40/50 

grade concrete mix (500kg/m
3
 CEMI, 840kg/m

3
 Gravel<20mm, 900kg/m

3
 Sand<4mm, 0.8% 

Super-plasticizer, w/c=0.36, Flow=650-700mm). Four of the samples were reinforced solely 

using a single, centrally placed layer of mesh reinforcement to form the unconfined 

reinforcement configuration illustrated in Figure 1(d). The four additional panels tested 

adopted an identical reinforcement configuration to that illustrated although, in these cases, an 

additional steel fibre content (1% by volume) was also incorporated within the specified mix 

design. In this way, the potential for any improved performance through the use of such a 

hybrid reinforcing strategy will be quantified, relative to the conventionally reinforced panels. 

The double hooked end type fibres used were: 50mm long, 0.75mm in diameter, had an aspect 

ratio of 67mm and a tensile strength greater than 1100N/mm
2
.     

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1: Experimental arrangement (a); Test Rig Elevation (b); Test Rig Section (c); Pin 

Joint Loading (d); Reinforcement Cross Section 
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The eight panel elements were then axially tested, using the experimental setup illustrated 

within Figures 1(a) and (b). The testing rig used for the experiments was capable of applying 

a load of 4000kN, with the loading beam designed in order to ensure the transmission of a 

uniformly distributed load across the top of each panel at eccentricities of 17mm ( )6t  and 

33mm ( )3t . The smaller of the adopted eccentricities was chosen to reflect the maximum load 

off-set allowed for within the major international design regulations ( )6t  investigated [7-8]. 

This limit on load eccentricity is commonly referred to as the ‘kern point’ and has been 

widely adopted as part of a number of experimental studies into the axial capacity of one-way 

spanning panel elements [2-5]. Additionally, a load case involving a larger eccentricity ( )3t  

has also been incorporated as part of this study, in order to investigate whether the use of 

SFRC in conjunction with un-confined longitudinal reinforcing steel could potentially offer 

an engineer the opportunity to justify the use of such panel elements for resisting such a 

demanding loading condition 

The top and bottom hinged support conditions were each simulated by placing a 25mm high 

strength steel rod on a 50mm thick bearing plate (Figure 1(c)). Displacement transducers were 

utilised at the locations illustrated within Figure 1(b) in order to record out-of-plane 

displacements at the centre and top of the panel, as well as providing a means of determining 

the rotation at the top of the wall. Strain readings were also taken utilising a digital portal 

gauge at the known critical section (i.e. the mid-span of the RC wall element). This allowed 

the strains induced at this section to be recorded as the axial load was incrementally increased. 

As part of the secondary focus of the experimental study, four precast lintel elements were 

additionally cast and tested to failure. The geometry of the specimens tested and the weld 

mesh reinforcement layout adopted are illustrated within Figure 2. Because the objective of 

the experimental program is to study the behaviour of the D-Region of the precast lintel 

component, a member length of 1415mm was adopted so as to ensure that the region 

controlling the element’s capacity was that under investigation. All reinforcing bars used in 

the manufacture of the samples were 16mm in diameter, with a cover of 25mm maintained 

throughout. The bars were MIG welded, with all anchorage forces and requirements 

appropriate to the resulting welds calculated in line with the relevant EC2 provisions [8]. 
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Figure 2: Welded Mesh Reinforcement Configuration 

The testing of the beam samples in shear was undertaken using the experimental setup 

detailed within Figure 3, with a loading rate of 1 kN s  adopted. Bearing plates with sizes of 

100x100x12.5mm were used at both the support and loading positions in order to suitably 

spread the applied load and thus ensure the appropriate strut propagation within the sample. 

Digital strain gauges were used to collect data in regards to the strains at the surface of the 

sample continuously during testing. The positioning of the gauges was designed so as to 

collect results both for the tensile region at the re-entrant corner and over the primary 

compression strut that will form the dap. The rosette pattern adopted allowed the angle of 

principal stress in the half-joint detail to be calculated and recorded throughout the loading of 

the specimen. Consequentially this will allow the collected data, through the application of 

Mohr’s circle, to be used to validate the geometry of the adopted Strut-and-Tie model (STM). 

The digital strain gauges used were 60mm in length, with Figure 3 identifying the end 

locations of this instrumentation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Lintel Testing Schematic and Demec Rosette Detail (box) 
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3.2 Experimental Findings  

 

Table 1 summarises the experimental failure loads observed for each of the panel elements 

tested. In addition Figure 4(d) details the measured relationship between the applied load and 

the deflection of the panel at its critical section, up until buckling failure occurred. It should 

be noted that the loads have been normalised (in order to allow an effective comparison of 

panel performance), according to the expression:   

 

c

c

N
N

f Lt
=  

(1) 

 

Where N  is the axial load applied to the panel at the set eccentricity ( )kN , 
c

f  is the average 

measured concrete cylinder strength for the samples ( )2
N mm , with L  and t  the width and 

thickness of the concrete wall elements respectively ( )mm .  

As can be seen, the inclusion of the 1% volume fraction of steel fibre reinforcement in 

addition to the unconfined reinforcement mesh traditionally adopted, leads to an increase in 

both axial load and deformation capacity of the panel. Both effects appear to be more 

significant within the panels, to which the load was applied at an increased eccentricity. An 

average increase of 12% in normalised buckling capacity was seen for panels loaded at an 

eccentricity of 33mm ( )3t , with the lateral deflection prior to failure increasing from a 

minimum of 10.5mm in the traditionally reinforced panel to a maximum of 20.55mm for a 

panel adopting the hybrid reinforcement option considered. This increased lateral deflection 

could also be clearly observed for the SFRC panel elements, with a distinct bowing evident 

prior to the failure of the wall (Figure 4(c)). For panels loaded at an eccentricity of 17mm ( )6t

, a lesser average increase in normalised buckling capacity was recorded (9.8%). Lateral 

deflections of 17.51mm and 19.61mm were measured for panels SFR1 and SFR2 respectively 

compared to the minimum value of 11.02mm observed for Panel RC1.  

The most significant difference in the behaviour of the two panel types investigated however, 

was perhaps associated with the buckling failure typologies observed for the hybrid and 

traditionally reinforced elements. In the instances where a centrally placed, unconfined 

reinforcement layout was solely adopted the observed failure was of a sudden, brittle and 

explosive nature Figure 4(a). In contrast for the cases when a 1% volume fraction of the 
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double hooked end steel fibres was incorporated, a much more acceptable (from a structural 

design perspective) ductile failure resulted.  

Similarly, Table 2 details the failure capacities recorded for each of the six dapped-end lintel 

samples fabricated. For the control samples (RCL1 and RCL2) first cracking was seen to 

occur at the re-entrant corner, quickly followed by flexural cracking at the mid-span. As the 

loading was increased however, the mid-span flexural cracking was seen to propagate at a rate 

greater than that which was observed at the re-entrant corners. It was then observed that both 

the samples exhibited a significant propagation of tensile cracking along the diagonal 

compressive strut. This cracking next propagated upwards towards and subsequently along 

the beam’s top face. The progression of this cracking was then observed to cause the brittle 

shear failure captured within Figure 5(a), with the concrete material forming the dap of the 

lintel, spalling away post failure to expose the welded mesh reinforcement. Interestingly, it 

was also observed that plastic hinges had formed within the longitudinal steel of the mesh, 

adjacent to the welded vertical bars. This perhaps indicates the potential failure mechanism 

for the sample.  
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Figure 4: Eccentrically loaded panels (a); Brittle failure of traditional RC panels (b); SFRC 

panel section failure (c); Increased lateral deflection of SFRC panel prior to failure (d); 

Experimental load-deflection curves for panels with varying eccentric load and use of SFR 
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Similar cracking patterns and propagation sequences were also then observed for the samples 

cast using a combination of a welded mesh and an additional content of steel fibre 

reinforcement (samples SFRL1-2). The first crack again occurred at the sample’s re-entrant 

corner and this was again followed by more extensive flexural cracking at the mid-span. 

However, a noticeably slower and less extensive crack propagation was observed for all 

samples adopting a percentage content of steel fibres relative those using the more traditional 

mix. This provides evidence therefore that the content of steel fibres within the mix were 

acting as expected to provide a means of crack control. In addition to slowing crack formation 

the fibres also significantly reduced the level of the resulting spalling observed at failure 

(Figure 5(b)). Also worthy of note was that the extent of flexural cracking away from the daps 

appeared to significantly multiply as the fibre content in the samples was increased.    
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Figure 5: Brittle failure of traditional RC lintel (a); SFRC Lintel Failure (b); Experimental 

load-deflection curves for traditional and hybrid lintel samples (c)  
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     Table 1: Panel buckling capacities                                   Table 2: Lintel shear 

capacities 

  
Element 

Ref 
( )2

c
f N mm  

( )e mm

 

( )u
N kN  

 
Element 

Ref 
( )2

cf N mm  
( )

u
N kN  

Test Comp  Test STM 

RCW1 37.28 17 597 531  RCL1 61.28 190 194 

RCW2 37.28 17 572 531  RCL2 32.96 100 124 

RCW3 38.48 33 336 302  SFRL1 42.16 175 158 

RCW4 38.48 33 322 302  SFRL2 32.96 140 124 

SFRW1 40.21 17 713 623      

SFRW2 40.21 17 689 623      

SFRW3 41.11 33 407 345      

SFRW4 41.11 33 394 345      

 
 

 

Figure 5(c) illustrates the load deflection behaviour recorded for each of the beam elements 

tested. Normalisation of loading values was undertaken in order to enable a comparison 

between each of the samples in relation to how efficiently the steel weight incorporated is 

being used within each of the designs considered, as well as to allow for the variations in 

concrete strength seen for the samples cast. The values were corrected according to the 

expression:  

 

2

1

=
×

c

c

F
F

f L
 

(2) 

 

where L1 is the span of the test lintel (Figure 3). 

As would be expected, the plots of load displacement relationship for the beam elements 

tested (Figure 5(c)) show that all samples had a similar elastic range. However, both samples 

incorporating the 1% volume of steel fibre content exhibited a much greater ductility, with the 

maximum deflection at the point of failure almost double that of the non-fibre samples. Such 

a response is indicative of the successful application of steel fibre reinforcement causing a 

more plastic/ductile response under loading and controlling the cracking, which would have 

otherwise resulted in failure. An average increase of 32.1% in normalised shear capacity was 

also measured for the SFRC halving joints.  
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4 PROPOSED DESIGN METHODS FOR PRECAST 

ELEMENTS ADOPTING HYBRID STEEL FIBRE AND 

UNCONFINED REINFORCEMENT 

CONFIGURATIONS 

4.1 Lumped Plasticity  
 

Lumped plasticity idealisation is a widely adopted computational model, particularly utilised 

in earthquake engineering and robustness assessment, in order to determine the ultimate 

performance of a structural system by increasing step by step the load multiplier until failure 

(push-over or push-down analysis). It has been demonstrated within previous studies [1] [3] 

that it is possible to consider, as part of a computational assessment, the entire inelasticity of 

an RC panel element to be concentrated at the critical section for the span, with this ‘lumped 

plasticity’ modelled through the use of a non-linear hinge (Figure 6(a)). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Lumped plasticity computational panel representation (a); Fibre hinge at critical 

panel section (b); Unconfined [14] and SFRC [15] material models (c); Comparison of 

theoretical and experimental panel capacities (d) 

Such a computational model is effective for the cases considered as part of this study, because 

the location of the maximum moment (and thus the critical section) is known for the simply 

supported elements. In this representation the component’s cross section is subdivided into a 

number of elements or fibres, to which the appropriate material properties are then assigned 
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(Figure 6(b)). In this way, the non-linear moment-curvature relationships and limits of the 

fibre hinge can then be determined for a range of axial loads (assuming plane cross sections). 

As such, the arrangement illustrated can therefore be used in order to provide an effective 

representation of system non-linearity, and consequentially, of buckling capacity.    

Importantly, because the proposed computational method allows the designer to modify for 

the relevant concrete material model, it can therefore facilitate the incorporation within the 

analysis of other concrete types, such as the fibre reinforced mix adopted as part of this study. 

Therefore the Mander [14] model adopted for the unconfined concrete material within the 

traditional RC panels was replaced by the material model suggested by Al-Taan and Ezzadeen 

[15] (Figure 6(c)) for fibre reinforced concretes adopting a 1% fibre volume fraction. 

Additionally however, in order to correctly quantify the rotational capacity of a concrete 

member, the length of the resulting plastic hinge ( )pL  that will be formed during loading and 

subsequent failure must also be accounted for. Accordingly, the hinge lengths were computed 

for both panel types from the expression proposed by Panagiotakos and Fardis [16] for 

unconfined RC panels and column elements subjected to monotonic loading: 

 

0 18 0 021p s b yL . L . d f= +  (3) 

 

where 2
s

L H=  is the shear span of the member, 2
b

d t= (for the panels considered as part of 

this study) is the effective depth of the reinforcement and 
yf  is the yield strength of that 

reinforcement. As can be seen from Table 2, the resulting computational predictions for both 

the traditionally reinforced panels and those adopting the hybrid reinforcing strategy show a 

good correlation with the actual experimental capacities seen. This relationship is also 

illustrated within Figure 6(d) which shows the least-squares best fit to slope 
1

0 833θ = .  and 

2
0 846θ = . , for the RC and SFRC hybrid panel types respectively, to be acceptably close to the 

4θ π= ideal. The poorer correlation seen within the panels where the secondary fibre 

reinforcement was incorporated is likely due to the fact that a degree of calibration in relation 

to the length of fibre hinge is required. However, a greater number of data points would be 

required in order to inform how Eq 3 should be modified to account for the use of SFRC.  
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4.1 Design Using Strut and Tie  

 

To aid in the development of the proposed analytical strut-and-tie model for the beam 

elements considered, an elastic analysis was first undertaken in order to analyse the stress 

flows occurring, a method strongly advocated within existing literature [10]. A 2D finite 

element (FE) analysis was carried out, using shell elements due to the size of the section 

(100mm) in relation to the size of the shells considered. These stress flows were then used in 

the development of a relevant STM. Additionally the outputs of the FE model were used to 

verify the angle of the stresses against those obtained by experimental measurement, with the 

angle used for the analytical STM (59
o
) found to lie between the maximum measured angle of 

principal stress (52
o
) and that predicted through linear computational analysis (66

o
). The 

lower bound model developed is illustrated within Figure 7 (a) and compares well to those 

proposed within literature [9] for concrete elements with a similar geometry and 

reinforcement provision. The precedent cited however, considered the response of confined 

concrete without a steel fibre content. 

A key assumption made when arriving at the most appropriate analytical STM, was regarding 

the width of the critical compressive strut formed. Although the bearing plate was sized to 

spread loads across the full width of the beam it was assumed that the effective width was that 

confined by the welded mesh configuration (Figure 2). Therefore the width of concrete 

considered was that within the centreline of the reinforcement bars, as this was felt to best 

represent the ‘pinching’ or confining point. The design model was then used to calculate the 

capacity of the section, with the theoretical predictions summarised as part of Table 2. 

Because the experimental work conducted identified that crushing of the primary compressive 

strut, positioned at the support bearing plate, resulted in element failure it could therefore be 

considered to be critical. It follows then that the size of this strut and thus the capacity of the 

section is then dictated by both the angle of the strut formed and the width of the bearing plate 

used. The remaining struts were still subsequently assessed for adequacy however, along with 

checks also required to ensure the tensile capacity of the reinforcement provided would not be 

exceeded within any of the associated ties. 
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Interestingly, and as can be seen from Table 2, the proposed STM overestimates the strength 

of the two samples adopting the welded mesh reinforcement without any additional steel fibre 

content by (2-24%). This is perhaps to be expected given the brittle nature of unconfined 

concrete and the sudden and explosive failure observed in the testing of the element. This 

finding perhaps indicates that unconfined concrete elements should not be designed using 

STM models without a further safety factor being applied to the current strut capacity 

equation given within EC2 [8]: 

 

0 6σ υ=RD ,max c. ' f  (4) 

 

where 
,maxRDσ  is the allowable axial stress within the compressive strut, 

c
f  is the concrete 

cylinder strength and ( )' 1 250
c

fυ = −  is a reduction factor applied for cracked compression 

zones within the Eurocodes. In contrast however, the STM model for samples where a 1% 

content of SFR, by volume was incorporated, tends to underestimate the capacity of the 

element by an average of 12%. This suggests that the use of standard STM design is valid for 

situations in which un-confined reinforcement configurations are adopted and perhaps even 

indicates that a beneficial factor of safety could be applied to the strut capacity expression (Eq 

4) for such design cases. However, a much larger degree of testing would be required before 

any such conclusions or design recommendations could be provided. A potential need for 

such further investigation and the establishment of more appropriate correction factors is well 

illustrated by the comparison of actual lintel capacities to the ideal least squares correlation 

illustrated in Figure 7(b).   

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 7: Proposed STM for the design of lintel members (a); Comparison of theoretical and  
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5 CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

The paper demonstrates that the incorporation of Steel Fibre Reinforcement (SFR) has 

significant effects on the structural performance of both eccentrically loaded panels and shear 

discontinuity regions for precast elements adopting unconfined configurations for the 

traditional bar reinforcement. The paper also shows the effectiveness of design methods that 

could enable an engineer to justify the use of such hybrid reinforcing strategies in practice. 

As far as the slender wall elements are concerned, the introduction of SFR was seen to 

increase both axial capacity and structural ductility for load eccentricities of e=t/6 and e=t/3, 

with a more significant improvement in the latter case. Moreover, an improved (and more 

acceptable) failure mechanism was observed, when compared to the sudden, brittle failure 

seen in the control samples. Lumped plasticity idealisation and fibre-hinge elements were 

shown to provide a good correlation with the experimental data relating to the singly and 

centrally reinforced panels adopting both traditional and SFR concrete mix alternatives. 

However, the computational method was found to be less effective in presence of steel fibres 

as secondary reinforcement, suggesting that further testing is required in order to calibrate the 

length of the fibre hinge. 

As far as the lintels with dapped ends are concerned, it has been similarly shown that the 

introduction of SFR leads to increased capacity and ductility. This is believed to be because 

the fibres act to control cracking at the re-entrant corner, inducing a greater degree of flexural 

action prior to failure. The investigations conducted have also developed and validated a 

suitable Strut-and-Tie Model (STM) for the design of halving joint details where an 

unconfined steel reinforcement layout is adopted, which however tends to overestimates the 

actual capacity. The findings also suggest that a modification (or safety) factor should be 

applied to the strut element to account for the brittle nature of the unconfined concrete without 

SFR. In contrast however, when a 1% volume of double-end hook SFR were introduced in the 

mix, the use of the STM design method could be justified, with the experimental values also 

indicating that a beneficial modification factor could be warranted. Also in this case, further 

testing would be required in order to adequately demonstrate and quantify what the value of 

such a beneficial factor should be. 

 



 Introduction  

 

 151 

References 

[1]     G.P. Robinson, A. Palmeri and S.A. Austin, Tension Softening Effects on the Buckling 

Behaviour of Slender Concrete Wall Panels, Proc. of ISEC-6 Modern Methods and Advances 

in Structural Engineering and Construction, Zurich (2011)  

[2]     J.H. Doh, S. Fragomeni, Evaluation of Experimental Work on Concrete Walls in One-

Way and Two-Way Action, Aus. J. Struct. Eng, 6(1), 103-115 (2005)  

[3]     G.P.Robinson, A.Palmeri, S.A.Austin Design Methodologies for One Way Spanning 

Eccentrically Loaded Minimally or Centrally Reinforced Pre-Cast RC Panels, J. of 

Engineering Structures, Currently Under Review (2011)   

[4]     K.M. Kripanarayanan, Interesting Aspects of the Empirical Wall Design Equation, ACI 

Stuct. J, 204-207 (1977) 

[5]     S.U. Pillai, C.V. Parthasarathy, Ultimate Strength and Design of Concrete Walls, J. of 

Bld. and Env, Vol 12, 25-29 (1977)  

[6]     H.H. Abrishami, D. Mitchell, Influence of Steel Fibers on Tension Stiffening, ACI 

Struct J, 769-776 (1997)  

[7]     American Concrete Institute, ACI 318-05 Building Code Requirements for Structural 

Concrete, Farmington Hills (2005) 

[8]     Comité Européen de Normalisation, EN 1992-1-1 Eurocode 2 Design of Concrete 

Structures Part 1-1 General Rules for Building, Brussels (2004)  

[9]     J.K. Wight, J.G. MacGregor, Reinforced Concrete Mechanics and Design, 5
th

 Edition, 

Pearson Education International, San Jose (2009)   

[10]     J. Schlaich, K. Schafer, M. Jennewith, Towards a Consistent Design of Structural 

Concrete, PCI Journal, 32(2), 74-150 (1987)  

[11]     D.R. Sahoo, S.H. Chao, Use of Steel Fiber Reinforced Cocncrete for Enhanced 

Performance of Deep Beams with Large Openings, Proc. of ASCE 2010 Structures Congress, 

1981-1989, Orlando (2010)  

[12]   Z. Fu, Use of Fibres and Headed Bars in Dapped End Beams, Masters Thesis, M
c
Gill 

University, Montreal (2004)  

[13]   D. Kuchma, S. Yindeesuk, T. Nagle, J. Hart Experimental Validation of Strut-and-Tie 

Method for Complex Regions, ACI Structural J., 105(5), 578-589 (2008)  

Paper C1 



Design and Performance of Precast Concrete Structures 

152 

[14]   J.B.Mander, M.J.N Prestly, Park R Theoretical Stress-Strain Model of Confined 

Concrete, J. of Structural Engineering, 114(8), 1804-1826 (1988) 

[15]   S.A. Al-Taan, N.A. Ezzadeen Flexural Analysis of Reinforced Fibrous Concrete 

Members Using the Finite Element Method, J. of Computers and Structures, 56(6), 1065-1072 

(1995) 

[16]   T.B.Panagiotakos, M.N. Fardis, Deformations of Reinforced Concrete Members at 

Yielding and Ultimate, ACI Struct. J., 98(2), 135-148 (2001)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Introduction  

 

 153 

6.4 PAPER C2 

 

Full Reference – 

 

Robinson, G.P., Palmeri, A., Austin, S.A., 2013. Appropriateness of Current Regulatory 

Requirements for Ensuring the Robustness of Precast Concrete Building Typologies. In: 

Proceedings of 5
th

 ICE International Conference on Forensic Engineering, 16-17 April, 

London, UK 

 

 

Abstract – 

 

The phenomenon of progressive collapse can be likened to the failure of a house of cards 

where structural damage propagates beyond the locality of the initial damage and to an extent 

disproportional to the original cause. Insufficient consideration of the structure’s potential for 

progressive collapse has widely been seen as responsible for some of the most high profile 

structural collapses of the last 60 years. The need to rigorously consider and mitigate for the 

risk of such collapse occurring is often seen to be more imperative within the design and 

detailing of pre-cast concrete structures, which is mainly due to their segmental nature of and 

associated inherent lack of structural continuity. Aimed at highlighting the need for a more 

quantitative design methodology, the paper evaluates the suitability of commonly advocated 

measures for ensuring structural robustness in pre-cast building typologies. 

 

Using a non-linear ‘push-down’ simulation the suitability of existing tying and anchorage 

force provisions are evaluated, with such prescriptive detailing rules often adopted by design 

engineers to justify a suitable level of structural robustness. This computational assessment 

enabled a quantitative assessment of the performance of pre-cast framed buildings subjected 

to a sudden column loss event. The findings highlight a need for current design and detailing 

practice to take more appropriate account of the nonlinear response of components and joints 

incorporated within multi-storey buildings. 

 

Keywords – Robustness, Disproportionate Collapse, Push-Down, Tying, Effective Anchorage 

 

 

Paper type – Article 
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1 INTRODUCTION 

Progressive collapse refers to the phenomenon where localised damage brings about wider 

and even total structural collapse. The failure of the Ronan Point flats in London (1968), the 

collapse of the 

Alfred P Murrah Building in Oklahama (1995) and the destruction of the World Trade Centre 

towers 

(2001) are perhaps the seminal incidents that highlighted the potential vulnerability of 

structures to such events. In response, the major international design codes incorporated a 

number of regulations designed to assure that adequate attention is provided within the 

design, detailing and construction of buildings so that the resulting structures can be 

considered to have an adequate 'robustness' or insensitivity to local failure events (Starrosek, 

2008). However, despite the existence and application of such rules, a number of studies and 

publications (Beeby, 1999) have suggested that although practising engineers inherently 

understand the need to prevent against disproportionate collapse they still lack: the analytical 

tools, assessment methodologies, appropriate metrics and explicit design guidance that would 

enable them to ensure the risk of disproportionate collapse is adequately considered and 

suitably mitigated. Starrosek (2007) actually suggests that the lack of a widely accepted 

quantitative method for assessing a structure's ability to resist collapse following an event 

means that the scope for efficient and repeatable structural design, optimisation and effective 

review is currently limited. 

 

One such potential method is through the use of a non-linear 'push-down' computational 

assessment procedure. This method is directly analogous to 'push-over' analysis, which is 

often used as part of contemporary seismic design to determine the ultimate performance of a 

structural system. This is achieved by increasing the load multiplier in step increments until 

the plastic failure of the assembly can be identified and has previously been successfully 

adapted for use within the robustness assessment of both steel and RC building typologies 

(Kim 2009, Lee 2011). However, no such similar analysis appears to have been conducted for 

common precast building types. This is despite the fact that such buildings are often 

intuitively considered to be less robust than similar, alternative steel or insitu reinforced 
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concrete structures. Such analysis is perhaps then more imperative for buildings constructed 

in this way, because of the need to demonstrate that the individual structural components used 

will be effectively and robustly 'stitched' together. 

 

This paper conducts a series of non-linear push down assessments to better understand the 

response of typical precast framed structures to a column loss event, quantifying their 

performance relative to existing robustness requirements. Such analysis will also allow for an 

assessment of the widely adopted prescriptive 'tying' and 'anchorage' rules, currently deemed 

sufficient for the avoidance of disproportionate collapse within many of the major 

international codes. Such assessment is necessary following concerns (Izzuddin 2008) that 

such rules and details are (in reality) unrelated to the actual actions imposed and structural 

performance necessary following such a damage event. Specifically, the existing provisions 

currently exclude any consideration of the necessary ductility demands place on the 

connections and structural members (Izzuddin 2008). 

 

2 LIMITATIONS OF CURRENT DESIGN METHODS 

The UK, US and European (ODPM 2004, ACI 2008, CEN 2006) design regulations all 

contain specific provisions addressing the need to design against disproportionate collapse. 

All adopt similar procedures in which the buildings are classified based upon their intended 

use, size and the level of risk that any potential structural collapse may present to the public. 

This process of building classification defines the appropriate level of structural robustness 

that must be achieved following the design, detailing and construction processes. However, 

the subsequent and necessary definition of the required structural performance always appears 

to be: highly qualitative, aspirational and subjective in nature for each of the regulatory 

guidance documents. 

 

Starrosek (2007) highlighted this fact, also suggesting that the lack of a more quantitative 

performance requirement limits the engineer's ability to assess, evaluate or optimise one 

design method or structural solution against another. Consequentially an engineer is not 

currently able to quantifiably demonstrate that his/her building will adequately perform in a 

manner deemed appropriate to its risk classification. For example the designer cannot 
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currently assess how much closer or further away from an acceptable robustness the design 

will become by adopting one structural form, transfer structure or connection detail over 

another. 

 

Such limitations within the existing design codes effectively force the design engineer to 

instead achieve regulatory approval by demonstrating that their adopted design and detailing 

philosophy is in line with one of the ‘approved’ design strategies available. Through 

employing such design methods, the resulting building is adjudged (by the pertinent design 

codes (ODPM, ACI, CEN)) to be sufficiently robust without any need to: assess, measure or 

justify the resulting structural performance of the construction. This paper however, aims to 

assess the suitability of two of these strategies, each of which is discussed below. 

 

2.1 Prescriptive Tying  
 

Perhaps the most commonly adopted of the available methods is where the engineer ensures 

that the structural elements and any resulting joints detailed are in line with the prescriptive 

'tying force' provisions provided by the codes. The philosophy is based on the assumption that 

through the use of such details, the designer will consequentially improve the indeterminacy 

of the structure, localising any damage that may occur, by taking advantage of the alternative 

load paths established. This is accepted however, without a subsequent need to demonstrate or 

justify these mechanisms by explicit calculation or computational assessment. Recent studies 

(Izzudin 2008) have questioned this approach, querying whether the tying provisions defined 

suitably allow for the true structural actions and effect that such elements and joints will be 

required to resist following a partial building collapse. 

Given the period during which they were developed (following the Ronan point collapse in 

1968) and the simplicity of the resulting equations, it is unlikely the expressions developed 

were intended to account for the complex dynamic and non-linear effects induced in reality. 

The lack of any compulsory regulation requiring the engineer to demonstrate that the adopted 

construction details are suitably ductile to allow for the resulting large deformations induced, 

is perhaps the starkest indication that these design expressions do not rigorously consider the 

true performance requirements for buildings exposed to accidental load conditions. 
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Alexander (2004) also introduced that for certain structural typologies the philosophy of 

ensuring structural redundancy via the provision of adequate joint continuity may actually 

contribute to a progressive collapse event. This work argues that in the event of the loss of 

structural stability, excessive tying may actually have the effect of 'dragging' out or down 

elements above or below the region in which the member has been removed or destroyed, 

questioning the blanket insistence on the use of continuous vertical ties. This 'pull down' 

phenomenon was actually observed on an experimental concrete panel high rise block 

constructed and tested by the Building Research Establishment (HMSO 1968). However, no 

further detailed experimentation, modelling or quantification of this effect appears to have 

been subsequently conducted. As such, there is little understanding of which building types, 

layouts or details might be most susceptible to its realisation.  

 

This paper asserts that the suitability of stipulating tying provisions without having first 

demonstrated that such detailing rules provide a suitable performance in relation to the likely 

structural actions and ductility demands for which they are included should be questioned. An 

assessment to check that the final building is not susceptible to any secondary ‘pull-down’ 

effects is also prudent, with the paper therefore aiming to demonstrate the suitability, or 

otherwise, of common 'fully tied' precast concrete framed structures in meeting these 

additional design requirements. 

 

2.2 Effective Anchorage  
 

A further, code compliant (ODPM, CEN), robustness design strategy is that of demonstrating 

that 'effective anchorage' exists at the structural connections between elements, with such a 

design approach restricted to buildings classified as being of a lower risk of disproportionate 

collapse (i.e. 2A, 2Lower etc). This provision is again prescriptive in nature, with similar 

concerns to those expressed in relation to the existing tying requirements again applicable. 

That is the suitability of the current guidance in relation to calculating and stipulating 

acceptable loads that the effective anchorage details must resist. For example, the overly 

simplistic requirement for the connections to resist a (presumably factored) force equivalent 

to the dead weight of the member it supports (BSI 2010) is again unlikely to correctly allow 

for the true structural action, ductility requirements and dynamic effects that will be 
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experienced during a collapse or damage event. In a manner similar to that which currently 

exists for the contemporary tying expressions, little information is at this time provided into 

how such guidelines have been derived and more significantly in regards to their validity. 

Additionally, engineers often fail to appreciate that the use of effective anchorage and 

prescriptive tying rules represent two distinct design approaches to ensuring a building's 

robustness. A prominent example of such a misunderstanding appears to be present within the 

latest European national guidance document for precast structures (BSI 2010). The specific 

clause requires all precast floor, roof and stair members to be ‘effectively anchored’ 

regardless of the building's robustness class, stating that such anchorages must be designed so 

that they are capable of transmitting the "dead weight of the member to that part of the 

structure that contains ties". Such a requirement however, is incongruous and contradictory to 

the currently accepted approach to robustness design. For example an engineer is entitled to 

design a lower class structure without the inclusion of vertical ties, with the engineers also 

possibly having adopted one of the two alternative design strategies available to them (see 

Research Methodology). If either of these philosophies is instead adopted, it would then be 

possible that no part of the structure would have to contain vertical ties. How then could the 

necessary anchorage regulation be met? 

 

3 RESEARCH METHODOLOGY 

The major international design codes allow the adequate robustness of buildings to be 

demonstrated through the use of any one of four potential design approaches. These include 

meeting the prescriptive 'tying force' or alternative 'anchorage' provisions discussed, with the 

anchorage provisions only relevant to the UK and European regulations for class 2A and 

2Lower buildings respectively. Alternatively the engineer may also achieve compliance by 

ensuring that either the 'Notional Member Removal' or 'Key Element' provisions have instead 

been met. 

 

Most pertinent to this study are the assessment methods that can be adopted as part of a 

notional member design. This requires the engineer to demonstrate that following the loss of 

any vertical load bearing member, the remaining structural components will have sufficient 
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'capacity' to transfer any resulting actions, through the establishment of suitable alternative 

load paths. The provision however is currently commonly, with some suggesting unsuitably 

(Izzudin 2008), applied using conventional design checks. Adopting such a simplistic 

approach will again fail to account for the complex nonlinear geometric and material effects 

induced by the occurrence of partial structural collapse. Despite this current practice however, 

the notional column design provision is essentially performance based and as such has been 

found to allow for the more appropriate consideration of the progressive collapse 

phenomenon (Kim 2009, Lee 2011). This is because if the correct assessment methodology is 

used, the engineer becomes able to assess the actual capacity of the structural system. The 

term ‘capacity’ is taken to refer to the critical property preventing structural collapse and may 

therefore relate to element strength, deformability, ductility, stability or stiffness. 

 

This study asserts that because no robustness performance metric is currently defined within 

the design regulations, and because a building designed using any of the available design 

approaches can be considered to be adequately robust, it must therefore also currently be the 

case that a building designed using one of the possible design strategies should be equally 

robust to a similar building designed using an alternative strategy. As such, it should be that a 

building designed using the prescriptive tie or anchorage rules will be able to sustain the 

actions imposed on it under an assessment conducted to meet the notional column removal 

provisions. This therefore presents an opportunity to assess the adequacy of current tying and 

effective anchorage rules for ensuring the insensitivity of typical precast concrete building to 

a progressive collapse. This will be done through the use of a non-linear push down 

computational study, with such assessments having historically been shown to be suitable for 

robustness assessment and design against disproportional collapse 

(Kim 2009, Lee 2011). This analysis will also be capable of investigating both the suitability 

of the joint details and the building's susceptibility to any secondary effects that may 

compound the advancement of a progressive collapse. It will thus allow the key concerns 

associated with tied and anchored buildings to be addressed and evaluated in a quantifiable 

manner. 
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4 NONLINEAR PUSHDOWN ANALYSIS OF MODEL 

STRUCTURES 

Guidance does exist (GSA 2010) with regards to conducting this type of computational 

progressive collapse analysis and assessment. Such analysis should be performed by instantly 

removing vertical load bearing structural elements and then by assessing the structure's 

residual ability to accommodate such damage. However, software packages that are capable 

of carrying out such analysis, in order to correctly account for instantaneous changes in the 

stiffness matrix and building geometry are rarely commercially viable, and thus available to a 

practising design engineer. As such the GSA (2010) guidelines also allow for alternative (yet 

'equivalent'): linear static non-linear static (pseudo-dynamic) and simplified dynamic 

assessment procedures to be adopted within the progressive collapse assessment of buildings. 

These analysis methodologies are then more easily carried out using more widely available 

software packages. 

 

The non-linear static analysis method defined within the GSA regulations requires a stepwise 

increase in regards to the amplitude of applied vertical loads, until the maximum amplified 

loads are reached or a collapse is observed (Marjanishvili 2006), with the computational 

analysis essentially becoming a vertical derivative of a seismic 'push-over' analysis. This 

assessment technique is utilised as part of this study, as it is capable of allowing for the non-

linear material and geometrical effects currently believed to be absent from the contemporary 

prescriptive design techniques. Although the 'push-down' method cannot capture the 

instantaneous dynamic effects associated with aspects such as column loss events or debris 

loading for example, studies (Izzuddin 2008, Marjanishvili 2006) have shown that the 

application of factored ‘equivalent’ static load cases are capable of accounting for such 

actions and effects. 

 

Interestingly, the GSA guidelines (GSA 2003) allow for and define a load controlled, non-

linear static analysis, in which the load is applied to the structure in at least ten incremental 

steps from zero up until the total specified loading. The resistance of the structure against 

such loading is assessed, with the output forces, moments, shears and deformations each then 

compared against the relevant acceptance criteria. However, it has been shown that such load 
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controlled push-down generally involves numerous analysis re-runs, is sensitive to the chosen 

load steps and tolerances and is also unable to converge to a solution when the ‘load factor’ 

begins fall, i.e. when building collapse is progressing (Marjanishvili 2006). The load factor 

refers to a measure of performance utilised as part of similar studies considering the non-

linear push-down assessment of multi-storey buildings (Kim 2009, Lee 2011, Marjanishvili 

2006). The metric essentially quantifies what proportion of the load case the plastically 

deformed or ‘collapse-arrested’ structure can transmit to the foundations through the 

alternative load paths it can establish and is defined as: 

 

                          
Equivalent Applied Load

Load Factor = 
Total 'Linear Static' Load

   (27) 

In this way a load factor > 1.0 represents a building that would not collapse before the 

required design load conditions have been exceeded and as such can be considered to be 

suitably robust. 

5 DESIGN AND ANALYSIS OF STRUCTURAL MODELS 

The adopted analysis models have been designed to represent a precast framed structure with 

a ×7.5 7.5m  structural grid and a floor to floor height of 3.8m . Models consisting of two, four 

and ten storeys were analysed for a 'tied' frame design. Alternative models adopting 

effectively anchored connections were also considered for the two and four storey structures, 

with the elevations for the analysed structures illustrated within Figures 1 ((a)-(c)). The 

precast column and beam elements are designed in accordance with the EC2 design code 

(CEN, 2006) for 40 / 50C  and 2500
y

f N mm= grade concrete and reinforcement respectively. 

The resulting beam and column sections are depicted as part of Figure 2 ((a)-(b)).  
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Figure 1   Elevation, Plan View and Loading Conditions for the Analysis of Computational 
Structures 

 

A superimposed dead load of 26kN m  and an imposed load of 22.5kN m were applied to each 

of the models analysed. In addition, a notional horizontal lateral load, equivalent to 1.5%of 

the characteristic weight of the structure, was also applied in order to represent the non-

verticality of the precast column members. The lack of application of such a minimum level 

of horizontal load appears to be a significant limitation of similar previously undertaken 

studies (Kim 2009, Lee 2011). However, this load is important in correctly accounting for and 

identifying any potentially detrimental secondary geometrical effects that may occur. 
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Figure 2   Structural Sections, Connection Designs and Computational Equivalents 
 

 

Further, in order to account for the dynamic effects associated with a sudden column removal 

event, the recommendations given within the GSA (2010) guidelines require a dynamic 

amplification factor of 2 to be applied to the spans for which the column is removed. An un-

amplified dead load is also applied to the remaining spans, with an imposed load reduction 

factor of 0.25 applied in both cases. The resulting load combinations are illustrated as part of 

Figure 1 (e). Because the chosen building types have a simple and repetitive layout, only two 

critical structural damage scenarios are considered necessary for investigation. These were the 

removal of central and corner column elements at the critical lower level of the structure 

(Figure 1 (e)). 

 

Because of the identified limitations associated with the load-controlled push-down method 

currently prescribed within the GSA recommendations, the vertical push-down analysis was 

instead carried out through the adoption of a displacement controlled assessment. That is, the 

vertical displacement at the position (or node) where the column is removed was 

incrementally increased with the corresponding vertical load to this displacement then 

calculated. This allows the load factor to be similarly evaluated, although the analysis can be 
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more expediently run, as well as being significantly less likely to diverge, when compared to 

the load controlled alternative (Kim 2009).   

 

Effective use of the proposed non-linear, static robustness assessment procedure is of course 

highly dependent on the adopted representation of the plastic properties of each component, 

as well as their connections, as part of the computational model (Inel 2006). That is, our 

understanding of the ultimate inelastic deformation capacities of the components detailed in 

terms of their geometric and mechanical characteristics should be captured as part of the 

assessment. The required non-linear load-deformation relationships have, in previous studies 

(Kim 2009, Lee 2011), been based on those values published within seismic design guidance, 

such as ASCE 41-06 (2007). However, these values do not account for the effect of 

significant variations in the axial forces applied to the components. Such forces and variation 

though, will be much more prominent and critical within a progressive collapse simulation 

than for the seismic assessments for which the values were derived. This is because such 

forces will significantly affect (in potentially both a beneficial and detrimental manner) the 

rotational behaviours and thus capacities of the elements and connections. Therefore, a much 

more effective method of capturing the structural behaviour of the RC elements was 

considered to be through the use of ‘fibre-hinge’ analytical elements. In this representation, 

the element’s cross-section is subdivided into a number of elementary layers or ‘fibres’ to 

which the appropriate material models can then be assigned (Figure 2 (c)). By dividing the 

structural cross section in this way it is possible to determine an effective representation of the 

non-linear moment-curvature relationship for the structural component in a manner that 

suitably accounts for the proportion of axial load applied. The non-linear load deformation 

characteristics derived in this way were then also validated against relevant experimentally 

derived values (Panagiotakis 2001). The associated structural behaviour was then 

incorporated within the computational models as ‘hinge’ elements that are specified at the 

locations where the applied lateral and gravity loads are considered to produce maximum 

effects. That is the plasticity of the structural components (modelled as a 2 3P M M− −  hinge) is 

assumed to be lumped at the centre and ends of the beam and column elements.  
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The load deformation characteristics relating to the precast connection details were 

determined by consideration of the behaviour of the details illustrated within Figures 2(d) and 

2(f). Such details are commonly adopted in UK structural design in order to meet tied and 

effective anchorage conditions respectively. For the vertical continuity tying requirements, the 

load that the connection is required to resist (as a tensile force), is determined by 

consideration of the equivalent axial compressive load that the column removed resists prior 

to its loss. However, this load only relates to that action which results from the application of 

the accidental load case and only for the load that is from the storey which would have been 

directly supported by the removed column. The resulting detail (Figure 2(d)) incorporates 

H25 reinforcing bars which are equally spaced about the centre point of the column, with the 

bars also fully anchored and lapped with the reinforcement within the precast column. The 

connection was modelled using non-linear ‘link’ elements and constraints as illustrated within 

Figure 2(e) in order to assess the suitability of the connection with respect to its rotational 

capacity.   

 

To demonstrate the suitability of an effective anchorage connection (Figure 2(f)), it was only 

necessary to demonstrate that a lateral force equal to the dead weight of the horizontal 

member it supports can be resisted. This is a specific and explicit performance requirement 

for precast connections within current European design regulations (BSI 2010).  All the 

applied loads are again factored as required, under accidental conditions by the European 

code (CEN 2006).  For the detail considered, the reinforcing bar grouted into position is 

designed to act as a type of cast in steel billet, i.e. it acts in shear. However, because of the 

insufficient lap/anchorage of the bar it cannot be considered to have any rotational capacity. 

Therefore this connection type was modelled as non-linear link element, which was specified 

to lose load bearing capacity once the code stipulated axial limit had been reached (Figure 

2(g)). 
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6 THE PERFORMANCE OF TIED AND ANCHORED 

PRECAST FRAMDED BUILDINGS 

The response of the chosen precast building typologies to the nonlinear static push-down 

analyses conducted is presented within Figures 3(a) and 3(b) for the structures subjected to a 

column loss event at the centre and corner of the building’s end bay respectively. The plots 

show the load factor (Eq. (1)) against the imposed deflection at the location at which the 

column has been removed. Because the maximum strength of structures in each case does not 

exceed a load factor of 1.0 none of the structural typologies considered would satisfy the 

recommendations of the GSA (2010) guidelines. 

 

It was observed that for buildings of 10 storeys adopting a tied design, and for cases in which 

a corner column was removed, the precast framed structure 'yielded' at a load factor of around 

0.58 with plastic hinge failures observed to occur initially, and as would be expected, at the 

point of maximum moment due to the induced cantilever. A much higher initial yield (0.75) 

and increased maximum strength (0.81-0.84) was observed for the structural models in which 

the central column was removed. Such a response should be expected because in the cases 

where a corner column has been removed, the push-down load is only being resisted by one, 

rather the two bays that act for the central column case. 

 

Interestingly, an improved performance was seen for both the central and corner column load 

cases as the number of storeys was increased for the tied buildings. This appears to be because 

of a combination of effects. Firstly, the increased axial load appears to act so as to improve 

the moment rotation capacity of the plastic hinges. In addition, the taller buildings also have 

more structural members and the presence of more components in the building/model appears 

to inherently increase the number of alternative load paths which are available to resist and 

redistribute the induced loads. 

 

As can be seen from Figure 3(a) a much more suitable overall building response to the 

column loss events was seen for the 'tied' rather than the 'anchored' building types. This is 

because after reaching ultimate strength a much more gradual saw toothed falling branch is 

seen until failure, with every instantaneous drop in strength relating directly to a plastic hinge 
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reaching its ultimate strain limit and the loss of residual plastic strength. In contrast, the load 

factor plot observed for the anchored low rise buildings was observed to be almost 'elastic' 

and 'brittle' in its nature. This is because framed structures resist progressive collapse 

essentially through the action of the vertical ties in tension and the rotational capacity/ductility 

of the beam to column connections. Because the anchored connections modelled only offer 

restraint in one constrained axial direction, they are consequentially ineffective in arresting 

the building collapse for the low rise structures considered. 

 

 

 

 

 

 

 

 

 

 

Figure 3 Load-Displacement Relationships of Model Structures 

 

7 CONCLUSIONS AND PROPOSALS FOR FUTURE 

WORK 

For the simplistic precast framed structures considered none were found to meet the GSA 

(2010) robustness performance regulations. All of the two and four storey structures 

investigated could also be classified as 'susceptible' to progressive collapse, according to the 

performance metric proposed by Marjanishvili and Agnew (2006). However, none of the 

buildings considered showed any indication that a secondary, detrimental 'pull down' effect 

due to the use of ties would induce or hasten the collapse sequence. The resulting behaviour 

and therefore ‘performance’ of the tied structures though is considered to be directly related to 

and significantly affected by the chosen tying detail Figure 2(d). However, a larger amount of 

investigation into the sensitivity of building performance to the nature of the precast tied 

connections to be used is required before any firm conclusions in regards to the suitability of 
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the current prescriptive tie design methodology and detailing rules, as they apply to precast 

framed structures, can be drawn. 

 

Further, this study also provides no indication of in what manner the measured robustness of 

the structure will change in response to variations in: span length, storey height or plan shape. 

It is proposed therefore that such variables should be considered and incorporated as part of 

any future, similar studies, so as to further inform any necessary corrections to the existing 

robustness design regulations and guidance. In addition, analogous investigation of the 

performance of alternative precast cross wall construction typologies and the effect of 

utilising and suitably modelling for segmental and flexible floor diaphragms (e.g. Prestressed 

Hollowcore floor units) would also be of great significance to ensuring the suitable design of 

robust precast building typologies in the future. 
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