

This item was submitted to Loughborough's Institutional Repository (<u>https://dspace.lboro.ac.uk/</u>) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/

Design, Implementation, and Characterisation of a Novel Lidar Ceilometer

A Doctoral Thesis Submitted in Partial Fulfillment of the Requirements for the Award of Doctor of Philosophy of Loughborough University Wolfson School of Mechanical and Manufacturing Engineering

Joshua D. Vande Hey

February 26, 2013

Abstract

Design, Implementation, and Characterisation of a Novel Lidar Ceilometer

by

Joshua D. Vande Hey

A novel lidar ceilometer prototype based on divided lens optics has been designed, built, characterised, and tested. The primary applications for this manufacturable ground-based sensor are the determination of cloud base height and the measurement of vertical visibility.

First, the design, which was developed in order to achieve superior performance at a low-cost, is described in detail, along with the process used to develop it. The primary design considerations of optical signal to noise ratio, range-dependent overlap of the transmitter and receiver channels, and manufacturability, were balanced to develop an instrument with good signal to noise ratio, fast turn-on of overlap for detection of close range returns, and a minimised number of optical components and simplicity of assembly for cost control purposes.

Second, a novel imaging method for characterisation of transmitter-receiver overlap as a function of range is described and applied to the instrument. The method is validated by an alternative experimental method and a geometric calculation that is specific to the unique geometry of the instrument. These techniques allow the calibration of close range detection sensitivity in order to acquire information prior to full overlap.

Finally, signal processing methods used to automate the detection process are described. A novel two-part cloud base detection algorithm has been developed which combines extinction-derived visibility thresholds in the inverted cloud return signal with feature detection on the raw signal. In addition, standard approaches for determination of visibility based on an iterative far boundary inversion method, and calibration of attenuated backscatter profile using returns from a fully-attenuating water cloud, have been applied to the prototype.

The prototype design, characterisation, and signal processing have been shown to be appropriate for implementation into a commercial instrument. The work that has been carried out provides a platform upon which a wide range of further work can be built.

Preface

As a child I was fascinated by the weather and dreamed of someday building a functioning water cycle in a sealed glass container complete with miniature clouds, rain, plants, etc. I was also fascinated by lasers and the amazing things they could get photons to do. A project in laser stabilisation as part of my physics degree at Lawrence University in Appleton, Wisconsin, USA, led to employment as a R&D engineer working on characterisation systems for laser diodes at Alfalight, Inc., in Madison, Wisconsin, where I learned how to build and align optical systems. When my wife and I moved to Loughborough for her work in 2006, watching the swiftly moving clouds inspired me to consider building a weather station on the top of the three-storey steep-roofed row house we were renting at the time. Instead, however, I found a job using lasers to measure clouds in a joint project between Loughborough University and Campbell Scientific, Ltd, in nearby Shepshed. Perhaps someday I'll find a slightly more accessible location on which to build a weather station with my children.

The Loughborough–Campbell project has formed the basis of my PhD research. This work has been extremely interesting because it has involved not only optical instrumentation design, but also signal processing and atmospheric science. I have become very interested in designing low-cost sensors that can be manufactured easily and installed broadly in networks for atmospheric monitoring with the goal of providing data that is useful in some small way on both local and global scales. And, though it reaches beyond the current work, I have become interested in chemical processes in the atmosphere and the problem of relating optical properties of aerosols to their chemical properties.

Acknowledgements

I would like to thank my supervisor at the university, Jeremy Coupland, for pushing the project when it needed pushing but also for giving me the freedom and responsibility of working out the details. His enthusiasm, his approachability for problem-solving sessions, and his encouraging me to pursue the academic side of it have been major contributions, as has his example of high quality scientific work. I would also like to thank my supervisor at the company, Andrew Sandford, the Technical Director, for his insight based on vast experience in the manufacture of meteorological sensors, for his flexible approach to the project, and for his support of scholarly publication based on our work. Also deserving major credit is James Richards, research engineer at Campbell Scientific. His high standard of workmanship in electronic design and programming have brought the instrument to life, his creativity and problem-solving abilities have contributed to every aspect of the design, and his openness to collaboration has led to many productive discussions and experiments throughout the project.

A number of other individuals have also made important contributions to the project. Matthew Ayers collaborated on the implementation and refinement of the mechanical design and created most of the drawings for fabrication of the prototype mechanics. He patiently helped me to turn opto-mechanical design concepts into things that could be manufactured in a straightforward manner. Also contributing to the refinement of the mechanical design was David Bowles of Better Design, Ltd, whose creative consulting and thorough approach helped us bring our ideas and constraints into a coherent design. David Foo, who was my fellow KTP Associate, took the first stab at the signal processing design for the instrument, and his well-written code acted as my signal processing tutor when he moved on to a new employer. He also encouraged me to keep busy on the academic side of the project, and his sense of humour contributed greatly to the work environment. Paul Lepper, David's supervisor from the electrical and electronic engineering department at the university, gave me important advice on how to pick up someone else's code and run with it, and he was also supportive of the project throughout. Mike Brettle, the company's meteorologist, took the initiative to get the prototype instrument set up at Chilbolton Observatory in Hampshire, which has proved to be very important to the testing and refinement of the instrument's algorithms. At Chilbolton Observatory itself, Darcy Ladd helped us ready the installation site, and Judith Agnew has provided scientific support. Ranvir Dhillon has taken on the major task at the company of managing the data from the prototype. He has been very quick to help me locate and access relevant data, and has created some important quick-view software. Paul Whitmore, head of production at Campbell Scientific, provided logistical support throughout the research phase of the project, whether we needed power or vehicles for experiments, or installation of a pre-prototype. His quick response to any request for help kept the project moving forward. David Hammond, who has since left for Campbell Scientific Australia, contributed to design of some experiments during the project, welcomed me into the team when I started at the company and explained how the Knowledge Transfer Partnership worked. He also showed me that it is possible to finish a PhD when you are working closely with a company. Also at Campbell Scientific, David Jerrison assisted with ancillary electronic design for the prototype and patiently allowed me to steal tools from his desk, and Michael Dunn was a big help with an overlap verification field experiment. Emal Rumi, also at Campbell Scientific, has provided encouragement and shared her enthusiasm for cloud detection and remote sensing in general. At the Wolfson School at Loughborough University, Jagpal Singh assisted me in deciphering the aspheric surface profiler in the metrology lab. I would also like to acknowledge Andrew Wormald and Rahul Mandal from the Wolfson School for their assistance with gathering data for the overlap measurements. And Bob Ludlam and the entire staff of the teaching and fabrication mechanical workshops at the Wolfson school also deserve credit for building various experimental prototype components and optical alignment tools and for providing advice on improving some components.

Also, I appreciate the moral support and advice of my fellow students, Rahul Mandal, Kanik Palodhi, and Semanti Chakraborty, also, thanks to all of my office mates at the university for making our office a productive and collegial place to work, especially Deji Aremu, who encouraged me to try writing up using LaTeX, which has saved me a great deal of time, Dave Brackett, who provided technical help of various sorts, James Brennan-Craddock, whom I distracted every time I got stuck, and Helen Thomas, who helped me stay on track during the many long hours of writing up.

Also involved at the company were Paul Campbell, the CEO of Campbell Scientific, Incorporated, in Logan, Utah, USA, who has given practical input and shared his enthusiasm on his annual visits to Campbell Scientific, Ltd., and who steers the corporation down the paths of quality and excellence. And I would especially like to thank managing director Dick Saffell, who took the initiative to start building an R&D centre for the design of active and passive optical sensors at Campbell Scientific, Ltd., here in the UK, who has been enthusiastic about taking on new design projects, and who values collaboration with academia as well as scholarly publication.

Aside from those who have been directly involved in the project, I would like to thank Gary Gimmestad at Georgia Tech for his mentoring when I was just starting the project, and the lidar engineering short course he and his group teach which helped me get started in the field of lidar research. Gary's enthusiasm for teaching has had a positive influence on the field, and he has also reminded me of the importance of teaching. I would like to thank Ewan O'Connor from the University of Reading for helpful discussions on lidar calibration. I would also like to thank Thomas Barsch, who helped me put together a good presentation for my interview for the initial job that led to my thesis, and Sian Williams Worrall, who has helped me answer some chemistry questions. I would also like to thank all of my teachers at Lawrence University, who were very patient with my often shifting major, particularly Steven Jordheim, my saxophone professor, who shared and encouraged my broad interests even if it meant I played wrong notes very loudly on the bass saxophone during a performance, Jeff Collett, who helped make sure I actually finished my degree, and John Brandenberger, who encouraged me to pursue optics, helped me secure my first engineering job, and most importantly, introduced me to my wife to be. I also need to thank my fellow physics students, Quinn Marksteiner, Ryan Jung, and Wellington Phillips, who formed my physics study group, Paul Kondratko for his encouragement, and Burak Stodolsky, who stayed up one night with me to make sure I finished my electricity and magnetism assignment rather than drop the course when I was just getting back into physics, pointing out that undergraduate electricity and magnetism problems are essentially all variations on the same surface integral and therefore nothing to fear. I would also like to thank the Remley family for their support of my education at Lawrence, and all the teachers in the Pulaski Community School District who worked hard to provide a good education for their students. Also, I am grateful to my former colleagues at Alfalight where I began to learn the trade of experimental optics, specifically Mike Nesnidal, who invited me for an interview, Steve Meassick, my first supervisor who let me figure things out for myself even thought that took longer, Patrick Chaopricha, my software-writing colleague who made sure our instruments could actually take, process, and record data, Don Lindberg, who showed me how to get things done, and Manoj Kanskar, who mentored me and was always available to answer questions even during busy times.

I would like to thank my cousin, Ben Senson, for taking me to the observatory he built for his high school students and inspiring me to get back to science rather than abandoning it for music, and another cousin, Nicole Ebben, for her encouragement to push through the PhD. Thanks also go to Betty Chewning and Larry Lundy, for housing me when I first got to Madison and helping me build a community there, and to Kyle Struve, my jazz brother who once told me on a Brooklyn rooftop that I needed to play music *and* do science. I would like to thank John Kelley, astrophysicist and saxophonist for showing me how that is done, and also for his suggestions on my thesis earlier this year while we were making a recording, and my consistent musical collaborators Jared Thomas, Brad Carman, Dan Asher, Kyle Struve, and John Kelley who have helped me keep my music career going. And I would also like to thank Claire Patel for all the day to day support she gives our family.

Finally, I need to thank my family. To my father, Vincent, who inspired me to want to build things and showed me how, even though I've become an *engineer*, who firmly (though lovingly) encouraged me to take this PhD opportunity, and who sets such a strong example for me in so many ways, and to my mother, Valeria, who instilled in me the value of education from an early age, inspired my love of music and the arts, encouraged me to do whatever I was interested in doing, and always makes sure I'm doing at least a little music, even if it comes in the form of banjo playing only a mother could love, and to both of you, for your encouragement, enthusiasm and love, I am very thankful. To my sisters and brother, Heidi, Nathan, and Camille, thank you for your love and sense of humor even though we are far apart. To my mother and father in law, Carol and Larry, thank you for all you give our family. To Uncle Quince and Aunt Carolyn, thank you for the support you have given our family in this past year which has allowed me and the children to pursue our educations. To Agoate Geoff, Grandad Armando, and Auntie Irina, thank you for the shifts you've taken at our house, and to Agoate Tim, thanks for giving your parents a holiday from grandparent duty in Minneapolis to come to Loughborough for grandparent duty. To all of my family and friends, thanks for being who you are. And last, but not least, to my wife, Eugenie, thank you for the love, friendship, and important advice you give me, and to my sons, Asrat, Bereket, and Esubalew, thank you for your tolerance with parents working all the time, your love, your silliness, and for even occasionally admitting that science and engineering are cool-I hope this thesis proves useful to you as part of a ramp for bicycles or scooters.

Joshua D. Vande Hey

Nomenclature

(x_D, y_D)	Coordinates in the Detector Plane
(x_L, y_L)	Coordinates in the Laser Plane
(x_L, y_L)	Coordinates in the Receiver Lens Plane
(x_T, y_T)	Coordinates in the Object Plane
(x_W, y_W)	Coordinates in the Laser Lens Plane
$\alpha(r)$	Range-dependent Atmospheric Extinction Coefficient
$\alpha_A(r)$	Range-dependent Absorption Coefficient
α_L	Extinction at Lidar Wavelength
α_P	Extinction Observed by Pilot
α_{ave}	Average Extinction
$lpha_{min}$	Minimum Resolvable Extinction
eta'(r)	Range-dependent Attenuated Backscatter
$\beta'_{mol}(r)$	Calculated Molecular Attenuated Backscatter Profile
eta(r)	Range-dependent Backscatter Coefficient
β_m	Molecular Volume Backscatter Coefficient
$\beta_T(r)$	Range-dependent Total Scattering Coefficient
$\Delta_{\lambda R}$	Transmitting Wavelength Bandwidth of Optical Filter

$\Delta_{\lambda T}$	Wavelength Bandwidth of the Laser
$\epsilon(r)$	Function Relating Scattering Plane Intensity to Intensity Inci- dent on Receiver Objective
η	System Efficiency
η_A	Fraction of Laser Beam Transmitted by Objective Aperture
η_F	Transmission Efficiency of Optical Bandpass Filter
η_G	Transmission Efficiency of External Glass Plate
$\eta_m(r)$	Range-dependent Multiple Scattering Correction Factor
η_O	Transmission Efficiency of Objective Lens
$\Gamma(x)$	Gamma Distribution Function
λ	Wavelength
$\mathcal{A}(r)$	Overlap Area
${\cal F}$	Fourier Transform
\mathcal{F}^{-1}	Inverse Fourier Transform
\mathcal{R}	APD Responsivity
L_a	Imaging Lens
L _b	Relay Lens
μ	Term Describing Droplet Size Distribution Width
Ω	Field of View Solid Angle
ω	Frequency
ω_i	Frequency at Bin i
ω_L	Distance from Lidar Objective to Imaging Lens

ϕ	Phase Angle
Π_p	Constant Backscatter to Extinction Ratio
$\Pi_p(r)$	Range-dependent Backscatter to Extinction Ratio
ρ	Ratio of Extinction at Lidar Wavelength to Extinction of Visible Light
$\sigma(t)$	Standard Deviation of Signal
σ_x	Gaussian Laser Distribution Constant along x -axis
σ_y	Gaussian Laser Distribution Constant along y -axis
τ	Laser Pulse Duration
$ au_{lpha}$	Optical Depth
$ heta_F$	Full-angle Field of View
$ heta_{H}$	Half-angle Field of View
$ heta_T$	Maximum Half-Angle Transmitter Divergence
$ heta_V$	Viewing Angle Below Horizon
$\Upsilon(x_T, y_T, r)$	Transmitted Laser Distribution Function
Υ_0	Laser Power Normalisation Constant
a	Droplet Radius
$a(\omega)$	Real Magnitude
A_0	Area of Receiver Objective
a_0	Mode of Droplet Distribution
a_o	Distance from Imaging Lens to Target
$A_R(x_L, y_L)$	Receiver Aperture Function

A_T	Area of Transmitter Objective
$A_T(x_W, y_W)$	Transmitter Aperture Function
A_{eff}	Effective Receiver Area
a_{eff}	Effective Droplet Radius
В	Integrated Attenuated Backscatter
B_0	Lidar Ratio Constant Multiplier
$B_1(\omega)$	Bandpass Filter 1
$B_2(\omega)$	Bandpass Filter 2
b_o	Distance from Target to Relay Lens
C	Laboratory Scattering and Transmission Constant
C_0	Actual Contrast
C_{σ}	Coefficient of Variance
C_D	Perceived Contrast
$C_{\beta'}$	Dimensional Attenuated Backscatter Normalisation Constant
D	Extinction Integration Distance
d	Laser Emitter Stripe Spacing
$D(x_D, y_D)$	Detector Aperture Function
d_D	Detector Diameter
d_L	Lens Diameter
E_{det}	Energy Collected by Photodector
E_{obj}	Energy Incident on Receiver Objective
F	Outgoing Radiant Flux

f	Focal Length
$f(\lambda)$	Background Radiance at Wavelength λ
f(a)	Droplet Size Distribution Function
f(T)	Laser Lifetime Temperature-dependent Multiplier
F_0	Incoming Radiant Flux
f_a	Focal Length of Imaging Lens
f_b	Focal Length of Relay Lens
F_R	Pulse Repetition Frequency
G(r)	Range-dependent Geometric Factor
G_{A_1}	Gain of Primary Amplifier
G_{APD}	APD Gain
Н	Thickness of a Layer of Transmitting Medium
$H(\omega)$	Frequency Domain Amplifier Impulse Response
h(t)	Amplifier Impulse Response
$I(\omega)$	Frequency Domain Amplifier Input
i(t)	Amplifier Input Signal
$I(x_D, y_D, r)$	Distribution in Focal Plane of Intensity Received
k	Lidar Ratio Exponent
K'	Luminance Contrast Threshold of Human Eye
K_L	Constant of Unknown Measurement Parameters
K_s	Lidar System Constant
L	Laser Emitter Length

l	Laser Emitter Stripe Length
$L(x_S, y_S)$	Near-Field Laser Output Distribution
L_D	Laser Power Density at Transmitter Objective
m	Real part of Complex Refractive Index
N	Molecular Number Density
N_B	Background Noise Counts
$N_B(r)$	Range-dependent Background Noise
N_s	Molecular Number Density at Standard Temperature/Pressure
$O(\omega)$	Frequency Domain Amplifier Output
O(r)	Overlap Function
o(t)	Amplifier Output Signal
Р	Signal Counts
P(r)	Range-dependent Power
P(t)	Time Domain Signal
P_0	Average Laser Power During Pulse
P_L	Laser Power During Pulse
$P_M(r)$	Amplified Output Voltage Measured
$P_{B_1}(t)$	Return Signal Filtered using Bandpass Filter $B_1(\omega)$
$P_{B_2}(t)$	Return Signal Filtered using Bandpass Filter $B_2(\omega)$
$P_{D=\infty}(r)$	Power Incident on Infinite Aperture Detector
R	Range Bin Number
r	Range

$r(a_o)$	Perceived Range of Target from Lidar Objective
$r(b_o)$	Perceived Range of Target from Lidar Objective
r_0	Full Overlap Distance
r_b	Far Boundary Distance
R_c	Cloud Base Location
r_e	Pilot-reported Cloud Base Height
r_f	Farthest Range at which SNR $\geq 6 \mathrm{dB}$
r_p	Distance from Target to Lidar Entrance Pupil
r_s	Selected Range Near Far Boundary
$r_{\rm base}$	Range of Particle Layer Signal Onset
$r_{\rm peak}$	Range of Particle Layer Signal Peak
$R_{ m thr}$	Particle Layer Significance Threshold
S(r)	Range-dependent Extinction to Backscatter Ratio
S_c	Constant Ratio of Measured Returns to Modelled Molecular- only Returns
$S_c(r)$	Range-dependent Ratio of Measured Returns to Modelled Molecular- only Returns
s_p	Distance from Imaging Lens to Lidar Entrance Pupil
S_t	Thin Cloud Return Peak Threshold
Т	Temperature
T(H)	Optical Transmittance of a Layer of Thickness ${\cal H}$
$T_{tot}(r)$	Total One-way Transmission Along Path

u	Substituted Variable $u = \frac{r}{f} x_D$
v	Substituted Variable $v = \frac{r}{f}y_D$
V_d	Horizontal Visibility Threshold for Dense Cloud
$V_H(r)$	Horizontal Visibility as a Function of Vertical Range
V_i	Horizontal Visibility Calculated for Range Bin i
V_{MOR}	Meteorological Optical Range
V_{av}	Average Horizontal Visibility Threshold
w	Laser Emitter Stripe Width
w(r)	Laser Beam Radius
x_0	Offset of Transmitter and Receiver Optical Axes
x_g	Offset of Laser Beam Centre from Transmitter Optical Axis
Z(r)	Range-corrected Signal
a_o'	Distance from Imaging Lens to Image of Target Presented by Relay Lens
Ac	Altocumulus
APD	Avalanche Photodiode
As	Altostratus
BKN	Broken Cloud Layer
С	Speed of Light
Cb	Cumulonimbus
Cc	Cirrocumulus
CFARR	Chilbolton Facility for Atmospheric Research

Ci	Cirrus
CLR	Sky Clear
Cs	Cirrostratus
Cu	Cumulus
DIAL	Differential Absorption Lidar
F/#	F-number: focal length / diameter
FAA	Federal Aviation Administration
FEW	Few Clouds
FOTS	Fraction of Total Signal
FOV	Field of View
FWHM	Full Width at Half Maximum
GCM	General Circulation Model
HSRL	High Spectral Resolution Lidar
IR-corrected	Impulse Response-corrected
ISO	International Organization for Standardization
MTTF	Mean Time to Failure
NRB	Normalised Relative Backscatter
Ns	Nimbostratus
OVC	Overcast
PM	Particulate Matter
RBC	Rotating Beam Ceilometer
Sc	Stratocumulus

SCT	Scattered Clouds
SKC	Sky Clear
SNR	Signal to Noise Ratio
St	Stratus
STRAT	Structure of the Atmosphere
TCu	Towering Cumulus
UTC	Coordinated Universal Time
WMO	World Meteorological Organization

Contents

1	Intr	oducti	ion and Literature Review	1	
	et Background and Objectives	3			
	1.2	2 Clouds and Aerosols in the Troposphere			
		1.2.1	The Troposphere	4	
		1.2.2	Planetary Boundary Layer	4	
	1.3	Cloud	s Types, Formation, Structure, and Influence on Climate .	5	
		1.3.1	High Clouds	6	
		1.3.2	Middle Clouds	7	
		1.3.3	Low Clouds	7	
		1.3.4	Clouds with Vertical Development	8	
		1.3.5	Alternative Cloud Categorisation Approach	10	
		1.3.6	Sky Conditions	10	
		1.3.7	Clouds and the Earth's Radiation Budget	11	
	1.4	Aerose	ols	12	
	1.5	Motiva	ation for Measurement of Clouds and Aerosols	13	
	1.6	Lidar Remote Sensing of the Atmosphere		14	
		1.6.1	Lidar System Configurations	14	
		1.6.2	Elastic Backscatter Lidar	15	
		1.6.3	Depolarisation Lidar	16	
	1.7	Comm	nercial Ceilometers	17	
		1.7.1	Belfort	17	
		1.7.2	Eliasson	17	
		1.7.3	AWI	18	

		1.7.4	Vaisala	18	
		1.7.5	Jenoptik	19	
		1.7.6	Leosphere	19	
		1.7.7	Other Ceilometers	19	
		1.7.8	Prototypes in the Literature	20	
		1.7.9	Atmospheric Research Utilising Ceilometers	21	
	1.8	Overv	riew of Thesis	23	
2	The	eory of	Lidar	24	
	2.1 Introduction				
	2.2	Comp	osition of Liquid Clouds	24	
	2.3	Elasti	c Scattering and Transmission of Light in the Atmosphere	27	
		2.3.1	Rayleigh Scattering	27	
		2.3.2	Mie Scattering	28	
		2.3.3	Transmission and Extinction	30	
		2.3.4	The Lidar Ratio	31	
	2.4	Elasti	c Lidar System Constant	32	
	2.5	The S	Single-Scattering Elastic Lidar Equation	34	
	2.6	Elasti	c Lidar Inversion	35	
		2.6.1	Slope Method	35	
		2.6.2	Close Boundary Solution	36	
		2.6.3	Optical Depth Solution	36	
		2.6.4	Far Boundary Solution	37	
		2.6.5	Derivation of the Far Boundary Solution	37	
		2.6.6	Boundary Condition Selection for Klett Inversion	40	
		2.6.7	Stability of the Klett Inversion	41	
	2.7	Atten	uated Backscatter	42	
	2.8	Calibi	cation of Attenuated Backscatter	43	
	2.9	Concl	usion	45	
3	Opt	co-mec	hanical Design of a Biaxial Elastic Lidar Prototype	46	
	3.1	Introd	luction	46	

	3.2	Design	Specification	46
	3.3	Optica	l Design Concept	48
	3.4	Design	Approach for Optimisation of Optical Signal to Noise	
		Ratio .		51
	3.5	Field c	of View and Overlap Function	58
	3.6	Laser (Considerations	62
	3.7	Detect	or Considerations	69
	3.8	Optica	l Bandpass Filter Specification	72
	3.9	Lens C	Considerations	75
		3.9.1	Characterisation of Aspherical Optics	75
	3.10	Mecha	nical Design of the Optical Assembly	81
	3.11	Optica	l Alignment	85
	3.12	Therm	al Effects on Optical Performance	89
		3.12.1	Focus Displacement Effects on Signal to Noise Ratio	89
		3.12.2	Effects of Thermal Changes to the Lens Mount Sub-	
			assembly	93
	3.13	Conclu	$sion \ldots \ldots$	96
4	Dete	ermina	tion of Lidar Overlap	97
	4.1	Introdu	uction	97
	4.2	Approa	aches to Overlap Determination	03
		4.2.1	Review of Overlap Calculation Techniques in the Liter-	
			ature	03
		4.2.2	Review of Overlap Measurement Techniques in the Lit-	
			erature	05
	4.3	Geome	etric Overlap Calculation	08
		4.3.1	Convolution Method Overlap Calculation	09
		4.3.2	Advantages of the Convolution Method	17
		4.3.3	Comparison of Overlap Calculation Methods	18
		4.3.4	Overlap Comparison for Different Optical Designs 1	20
	4.4	Overla	p Measurement	22

		4.4.1	A Novel Imaging Method for Overlap Measurement 1	122	
		4.4.2	Experimental Determination of Prototype Lidar Overlap 1	126	
	4.5	Conclu	usions	132	
5	Det	ermina	ation of Cloud Base Height and Vertical Visibility		
	fror	n a Lic	lar Signal 1	34	
	5.1	Introd	uction	134	
	5.2	Impulse Response Correction		135	
	5.3	Attenuated Backscatter Profile			
		5.3.1	Calculation of Transmitted and Received Power 1	141	
		5.3.2	Calibration Using Lidar Returns from Stratocumulus Layer	142	
		5.3.3	Attenuated Backscatter Profile Examples	145	
	5.4	Cloud	Base Definitions	149	
		5.4.1	Peak Detection	151	
		5.4.2	First Derivative Zero Crossing	152	
		5.4.3	Method of Clothiaux et al	153	
		5.4.4	Method of Winker and Vaughan	155	
		5.4.5	Method of Platt et al	156	
		5.4.6	Method of Campbell et al	157	
		5.4.7	Method of Gaumet et al	158	
		5.4.8	Structure of the Atmosphere (STRAT) Method 1	159	
		5.4.9	Fraction of Total Signal (FOTS) Method	L61	
		5.4.10	Method of Poyer and Lewis	164	
		5.4.11	Summary of Cloud Base Determination Techniques 1	L65	
	5.5	Protot	ype Ceilometer Cloud Base Algorithm Part 1: Visibility-		
		Based	Detection	166	
		5.5.1	Horizontal Visibility Thresholds for Two Cloud Types 1	166	
		5.5.2	Inversion Boundary Point Assignment, and Minimum		
			Measurable Extinction Coefficient	168	

	5.6	Prototype Ceilometer Cloud Base Algorithm Part 2: Bandpass				
		Filtering and				
		Thres	holding	170		
		5.6.1	Filter Specification	171		
	5.7	Parall	el Algorithm Method, Cloud Layer Reporting Rules, and			
		Cloud	Detection Algorithm Results	173		
		5.7.1	Cloud Detection Algorithm Examples	173		
		5.7.2	Proximity Margins and Rounding Rules	176		
		5.7.3	Cloud Detection Output Comparison	177		
	5.8	Deter	mination of Vertical Visibility	182		
	5.9	Concl	usion \ldots	187		
6	Con	nclusio	ns and Further Work	189		
	6.1	Concl	usions	189		
	6.2	Furthe	er Work	192		
		6.2.1	Potential Advances in Overlap Characterisation and Cor-			
			rection	192		
		6.2.2	Signal Processing Approaches for Full Exploitation of			
			Ceilometer Potential	194		
		6.2.3	Further Development of Instrumentation	197		
	6.3	Concl	usion	200		

Chapter 1

Introduction and Literature Review

Clouds and aerosols are part of everyday life around the planet, affecting weather, air quality, and climate. Local monitoring of clouds and visibility is important to air travel safety, local aerosol monitoring is an important part of air quality assessment, and global observations of clouds and aerosols are critical to improving understanding of radiative forcing processes that lead to climate change. According to the Intergovernmental Panel on Climate Change report in 2007 [1], the processes of both direct radiative forcing by scattering and absorption by anthropogenic aerosols and indirect radiative forcing caused by the effects of aerosols on cloud albedo and cloud lifetime are poorly understood, and while in general clouds and aerosols are expected to have overall cooling influences, there are very large uncertainties on their total contributions to radiative forcing.

While clouds can be studied by in situ measurements such as balloonborne radiosondes measuring temperature, pressure, and relative humidity [2] or aircraft-based particle sensors such as nephelometers that measure the lightscattering properties of aerosol or cloud particles [3], various ground-based passive and active remote sensing techniques generally offer advantages such as high temporal resolution and are capable of characterising part or all of a column of the atmosphere. Some useful passive sensors include sun photometers, which measure aerosol optical thickness of an atmospheric column by tracking power received from the sun at a number of wavelengths [4], infrared radiometers, which can measure cloud temperature by looking at its radiometric brightness in the 10 to 12 μ m wavelength range [5], or microwave radiometers, which can measure temperature, water vapour content, and cloud liquid water content by monitoring radiometric brightness at a number of microwave frequencies [6].

Two active techniques are particularly important for atmospheric sensing. One of these is radar (radio detection and ranging), in which microwave signals are transmitted and backscattered radiation from scattering targets is measured, enabling the targets to be located by time of flight calculations. In addition, velocity of scatters can be determined by measuring frequency shift of the returned signals. Early meteorological applications for radar employed relatively long wavelengths, such as 3cm [7], to detect precipitation or precipitating clouds, but more recent systems with smaller wavelengths, such as 3mm, can detect backscatter from particles as small as a few microns and can be used to retrieve cloud properties such as vertical distribution of liquid water [8]. The other major active technique for atmospheric sensing and the subject of this thesis is lidar (light detection and ranging). Lidar is similar to radar in that it utilises time-of-flight measurements, but it operates in a different region of the electromagnetic spectrum ranging from ultraviolet to infrared light, typically 250nm to 11μ m [9] and relies on lasers as transmitters. Because of the significantly shorter wavelengths involved, lidar can be used to detect much smaller atmospheric constituents, down to the molecular scale. In addition, a wide variety of spectroscopic measurements are possible. As an aside, note that sodar (sound detection and ranging) is another active technique related to radar and lidar in which acoustic waves (at a variety of angles) are transmitted and backscattered signals detected in order to determine range-resolved three-dimensional wind speeds at ranges of up to 1000m [10] through analysis of the horizontal and vertical Doppler frequency shifts from moving air.

Lidar ceilometers, also called laser ceilometers, are low-cost instruments that employ the lidar technique to determine height of cloud base and vertical visibility. Extended capabilities of these instruments include boundary layer aerosol monitoring [11] and volcanic ash layer tracking [12]. While ceilometers are at the low end of the lidar performance range, the fact that they are also on the low end of the cost range means that they can be deployed much more widely than more advanced lidar systems. This means that improving the performance of these instruments while making them straightforward to manufacture allows them to be used not just for aviation safety but for also for study of weather and climate. They can therefore be used as part of the effort to reduce uncertainty in the understanding of global cloud processes.

In this thesis, a novel divided-lens ceilometer prototype design is presented. Its optical characterisation by a new method is then discussed. Finally, an original algorithm for automated cloud detection is described. Along with the description of the algorithm, preliminary performance results are given by comparison with a research ceilometer.

1.1 Project Background and Objectives

The research for this thesis was funded jointly by Campbell Scientific, the UK Technology Strategy Board through their Knowledge Transfer Partnership Scheme, and Loughborough University. The objective of the project was to design, build, and characterise a lidar ceilometer prototype for the measurement of cloud base height and vertical visibility. It was intended that the prototype would be suitable for manufacture after a period of testing and refinement, and that the design of the instrument would offer a strong alternative to other products on the market. Prior to my involvement in the project, which began in 2007, an engineer by the name of Nicholas Cann spent half a year in collaboration with my supervisor Professor Jeremy Coupland laying some groundwork. Though he had not assembled a working instrument, Nicholas found and purchased suitable fundamental electronic and optical components for a test system, and most importantly, built two prototype rigs, one based on two circular aspheric lenses and one based on a compound divided-mirror design he had developed with Professor Coupland. This meant that when I began work on the project I could immediately begin putting pieces together to experiment with, and it also meant that I had two physical systems in front of me which would eventually inspire me to develop the divided aspheric lens design that has been used in the prototype.

1.2 Clouds and Aerosols in the Troposphere

1.2.1 The Troposphere

As source of most of the activity directly influencing weather on the surface of the Earth, the troposphere, the region of the atmosphere closest to the surface of the Earth, is the atmospheric layer of primary interest to meteorologists. The thickness of the troposphere is about 12km on average, but can be 9km or lower in polar regions, and greater than 16km in the tropics [13].

1.2.2 Planetary Boundary Layer

The lowest 1-2km of the troposphere is known as the planetary or atmospheric boundary layer. According to Kovalev and Eichinger [14], this region is the most intensely studied part of the atmosphere for a number of reasons. It is the source of the vast majority of the energy, water vapour, and chemical species distributed throughout the atmosphere. In addition, much atmospheric chemistry takes place here, and human activity, particularly emission of pollutants, has great influence.

Due to the combination of convective and turbulent flow in this region, surface emissions can be distributed throughout the layer quickly. As defined by Stull [15], the planetary boundary region is "the part of the troposphere that is directly influenced by the presence of the earth's surface, and responds to surface forcings with a time scale of about an hour or less." Kovalev and Eichinger further define the top of the boundary layer as the height that "is characterized by a sharp increase in temperature and a sudden drop in the concentration of water vapour and particulates as well as most trace chemical species [14]."

During the daytime in fair weather, a well-mixed boundary layer tends to form. This is referred to as a convective (or unstable) boundary layer. Stable boundary layers, on the other hand, occur when there is a temperature inversion in which temperature increases with height from the surface. This often happens at night or when dry air moves across wet surfaces. Kovalev and Eichinger caution that stable boundary layers can lead to dangerous air pollution events. If troublesome natural or human-created emissions at ground level are not dispersed well by mixing in the boundary layer, their concentrations at the surface increase. Therefore, monitoring of the boundary layer is important for public health [14]. Note that boundary layer conditions are often complex and can be categorised more specifically than "stable" or "unstable" into a number of different types as has been done, for example, by Lock [16].

1.3 Clouds Types, Formation, Structure, and Influence on Climate

The types, heights, and amounts of cloud have implications for both weather and climate. A brief summary of cloud types and structures and their roles in weather and climate is presented here. According to Ahrens [17], a general definition of a cloud is "a visible aggregate of tiny water droplets or ice crystals suspended in the air." The discussion of tropospheric clouds presented here in the following four sections is a standard approach to this subject. Here Ahrens [17] was used as a reference for a typical cloud classification system that distinguishes clouds of the most common types from each other and places them into four categories or families: high clouds, middle clouds, low clouds, and clouds with vertical development. Typical altitude ranges for the first three cloud categories are shown for different latitude zones in Table 1.1.

CLOUD GROUP	TROPICS	MID-LATITUDES	POLAR REGIONS
High Clouds (Ci, Cs, Cc)	6000-18000m	5000-13000m	3000-8000m
Middle Clouds (As, Ac)	2000-8000m	2000-7000m	2000-4000m
Low Clouds (St, Sc, Ns)	0-2000m	0-2000m	0-2000m

Table 1.1: Approximate Cloud Base Heights by Latitude as Described in [17]

1.3.1 High Clouds

High clouds, in which ice crystals constitute the vast majority of water content, can generally be categorised as one of three types. Thin, wispy, heavily windblown, streamer like cirrus (Ci) are the most common among high clouds. They generally follow west to east prevailing winds and indicate fair weather.

Often appearing in expansive thin sheets, cirrostratus (Cs) can be so thin that the only indicator of their presence may be a refractive halo produced around the sun or the moon. Thick cirrostratus, which cast the sky glary white, often indicate advancing storm fronts and predict precipitation to follow in 12-24 hours, particularly if middle clouds follow.

The third and final type of high cloud is the cotton-puff-like cirrocumulus (Cc). These can occur individually or in woven rows, and they can produce striking visual effects at sunset by enhancing scattering of yellow or red light.

In addition, there is a fourth type of high cloud called sub-visual cirrus. Lynch [18] specifies sub-visual cirrus as cirrus clouds with maximum optical depths 0.03 (optical depth is discussed in Chapter 2), but points out that this commonly accepted limit is not physically-motivated. According to Lynch these clouds are often present at the tropopause (the boundary between the troposphere and the stratosphere above) and may be nearly omnipresent in tropical regions. Lynch also classifies cirrus contrails, the mixing clouds created by jet aircraft, as a fifth type of high cloud.

1.3.2 Middle Clouds

Middle clouds can generally be placed into one of two categories. The first of these are the grey or blue-grey altostratus (As) which often extend across the sky in large but somewhat diffuse-looking sheets. Made up of a mix of ice crystals and water droplets, they often semi-obscure the sun or moon which then appears as a watery disk. They can be distinguished from cirrostratus by their darker colour and lower height; the facts that halos are formed only by cirrostratus and that shadows are not generally visible when altostratus are present can also be used to tell the two types apart. Altostratus often indicate storms to follow with fairly continuous and widely distributed precipitation.

The puffy grey altocumulus (Ac) is the second type of middle cloud. Typically less than 1km in vertical extent and consisting primarily of water droplets, these clouds sometimes appear in arrays of cloud puffs or puffy hay-row type structures. They generally appear darker in some parts of the cloud than in others, which helps to distinguish them from cirrocumulus, and they generally appear rounded or rolled, which helps to distinguish them from altostratus. Castle-like altocumulus castellanus indicate rising air in the cloud layer, and the appearance of these clouds in warm, humid morning weather suggests the possibility of afternoon thunderstorms.

1.3.3 Low Clouds

Low clouds, whose bases are below 2000m, are generally assigned to one of three different types. The first of these is the dark grey nimbostratus (Ns) which generally produce light or moderate but steady precipitation. The bases of these clouds appear diffuse and are difficult to discern, and their vertical extent can exceed 3km. Below a nimbostratus layer, evaporating rain mixing with the air often leads to poor visibility and fog or a ragged, broken lower cloud layer. Nimbostratus can be distinguished from altostratus by their generally darker appearance and the fact that typically they completely obscure view of the sun or moon. The second type of low cloud is the lumpy, tufted stratocumulus (Sc), light to dark grey clouds that can appear in rows, patches, or as more greatlyspaced elements. They often develop late in the day as a larger cumulus breaks up. Occasionally they produce showers in winter if they increase in vertical extent and their tops cool to -5°C. Stratocumulus can be distinguished from altocumulus by the larger appearance of the cloud elements.

The third type of low cloud is the uniform, grey stratus (St) that has the appearance of a fog suspended above the surface and is often seen to obscure the whole sky. Frequently present in coastal areas in the summer, these clouds can form after a heavy fog begins to diminish, and though they do not generally produce precipitation, they may occasionally produce light mist or drizzle. A stratus layer can be distinguished from nimbostratus by its lower, often more uniform base and its lack of precipitation; stratus can be distinguished from altostratus by its lower height, darker grey appearance and greater obscuration of the sun and moon.

1.3.4 Clouds with Vertical Development

Clouds with vertical development are of great interest to meteorologists because these can become storm clouds. The white cotton-puff-like cumulus (Cu) usually have sharp outlines and flat, white or light grey bases. In humid conditions they can be as low as 1km above the ground and approximately 1km wide. The rounded tops of cumulus clouds are not particularly high, and the individual clouds in a layer are well-spaced. The rounded tops and greater spacing between clouds helps to distinguish them from the flatter, more closely-grouped stratocumulus. Fair weather cumulus (cumulus humilis) have limited vertical development.

Fair weather cumulus formed early on warm summer days can develop vertically as the day progresses. If a cumulus cloud has grown in height and begins to appear cauliflower-like with a dark base, it is categorised as a towering cumulus (TCu), also known as cumulus congestus. It may join with other towering cumulus to form a long line of cloud, and it may emit showery

Figure 1.1: Major Cloud Types, reproduced from [17] (used with permission).

precipitation.

Towering cumulus can develop further vertically to become immense, cumulonimbus (Cb) storm clouds. The bases of these clouds can be as low as 600m, and the clouds can extend more than 12km to reach all the way to the tropopause. They may occur as individual clouds, or they may be incorporated into a wall of cloud. The warmer, lower parts of cumulonimbus consist of water droplets alone. In the middle region of the cloud both water droplets and ice crystals can be found, while at the cold cloud top, only ice crystals are present. High winds at the top of the cloud can reform the upper part to give it a flattened anvil appearance (cumulonimbus incus).

Condensation of water vapour in cumulonimbus releases great amounts of energy which leads to powerful updrafts and downdrafts that can exceed wind speeds of 36m/s. Lightning, thunder, all types of heavy precipitation, and sometimes even tornadoes can occur with these clouds. In contrast to towering cumulus, which have clearly defined cloud tops, cumulonimbus have less well-defined, fibrous-looking tops. The presence of lightning, thunder, and large hail also distinguishes cumulonimbus from towering cumulus. Sketches of the the major cloud types in each of the four groups are shown in Figure 1.1.

1.3.5 Alternative Cloud Categorisation Approach

Note that according to Lynch [18] the cloud categorisation scheme that has been presented here based on Ahrens [17] aligns with the World Meteorological Organisation's (WMO) categorisation by height. However, he suggests that since categorisation by height groups clouds of different composition together (for example water droplet and ice crystal mixed altostratus and water droplet-based altocumulus) a more logical approach might be to categorise based on water phase content, since this would place clouds into structural groups and could help unify discussion among different disciplines such as planetary physics, crystallography, and remote sensing.

1.3.6 Sky Conditions

Table 1.2: Cloud	Cover Sky	Condition	Definitions as	Described in	[17]

Sky Condition	Automated Observation	Human Observation	Meaning
Clear (CLR/SKC)	0 - 5%	0	No clouds
Few (FEW)	> 5% - 25%	$0 - \frac{2}{8}$	Few visible clouds
Scattered (SCT)	> 25% - 50%	$\frac{3}{8} - \frac{4}{8}$	Partly Cloudy
Broken (BKN)	> 50% - 87%	$\frac{5}{8} - \frac{7}{8}$	Mostly Cloudy
Overcast (OVC)	> 87% - 100%	$\frac{8}{8}$	Sky covered by clouds
Sky Obscured	N.A.	N.A.	Sky hidden by surface-based fog, blowing snow, smoke, etc.

The amount of cloud cover is typically reported as a sky condition. Table 1.2 shows the standard sky conditions categories and criteria for both automated and manual observations. Note that cloud cover amount for automated observations is defined in terms of percentages, while cloud cover amount for human observations is estimated in oktas, or eighths of sky cover. Although automated observations have widely replaced visual observations, this sky condition categorisation structure is still widely used and ceilometers are expected to report it.

1.3.7 Clouds and the Earth's Radiation Budget

Different types of clouds in different conditions influence the total amount of energy in the atmosphere-surface system in different ways. Two radiative processes determine the influence of clouds in the earth's radiation budget. The first of these is the albedo effect of reflecting shortwave (primarily visible or near-visible) incoming solar radiation and therefore reducing the amount of solar energy passing through them. Cloud albedo is poorly understood because it depends non-linearly on both concentration of cloud condensation nuclei and column-integrated liquid water content [19]. The second radiative process is the greenhouse effect whereby clouds prevent the escape of energy through the atmosphere into space by absorption and emission of longwave infrared radiation.

According to Ramanathan [20], the net global radiative impact of clouds is cooling of 13.2W/m². However, cirrus clouds, depending on their composition can either trap outgoing infrared radiation from the earth by the greenhouse effect or reflect incoming solar radiation by the albedo effect [21]. According to Del Genio, the current lack of knowledge of cirrus clouds and the processes that create them requires that large assumptions be made in general circulation model (GCM) simulations. This, in turn, leads to significant uncertainty in their role in a changing climate, to the extent that it is not clear whether they feedback positively or negatively in response to changing temperatures [22].

1.4 Aerosols

Aerosols are gaseous suspensions of solid and liquid particles [23]. In common practise in the atmospheric sciences, suspended particle types considered to be aerosols include all liquid and solid particles with the exception of hydrometers such as cloud droplets, raindrops, and ice crystals. In the atmosphere aerosols range from a few molecules in size to greater than 100μ m in diameter. Two aerosol categorisation schemes described by Pruppacher and Klett [23] are shown in Table 1.3.

JUNGE		WHITBY		
Dry Radius r	Particle Class	Diameter d	Particle Mode	
$r < 0.1 \mu m$ $0.1 \le r \le 1.0 \mu m$ $r > 1.0 \mu m$	Aitken Large Giant	$d < 0.1 \mu m$ $0.1 \le d < \sim 1 \mu m$ $d > \sim 1 \mu m$	Nuclei Accumulation Coarse	} Fine

Table 1.3: Aerosol Size Categorisation Schemes as Described in [23].

The difference between fine (less than approximately 1μ m) and coarse (greater than approximately 1μ m) aerosols is significant [24]. According to Willeke and Whitby [25], fine aerosols are formed primarily by condensation. Transient, nuclei mode aerosols are often observed as fresh combustion aerosols. Accumulation mode aerosols arise through growth of smaller aerosols by coagulation of nuclei aerosols, or by condensation or combustion, and tend to remain in the atmosphere for days. On the other hand, coarse aerosols, such as dust and sea spray, are generated primarily by mechanical processes. Though they tend to settle fairly quickly, their suspension times in the atmosphere vary considerably.

According to Pöschl [26], particulate matter (PM) in the troposphere is made up primarily of sulphate, nitrate, ammonium, sea salt, mineral dust, organic compounds, and black (elemental) carbon, or soot. Each of these
constitutes in the range of 10-30% of the total by mass. With time in the atmosphere aerosols evolve through dissolution, condensation into larger particles, and chemical reactions with atmospheric gases. Particles with diameters $\leq 1\mu$ m are classed as PM1, those with diameters $\leq 2.5\mu$ m as PM2.5, and those with diameters $\leq 10\mu$ m as PM10. Most dangerous to human health are ultrafine particles with diameters of less than 0.1μ m, since these can be absorbed by the lungs directly into the blood stream. However, Pöschl emphasises that exactly which aerosol properties, such as size, mass, structure, solubility, etc., are most important in terms of health impact is not well understood.

Aerosol particles can act as nucleation sites for cloud particles. Sub-micron sulphate aerosols, which are generated both by natural processes such as phytoplankton dimethyl sulphide production and human industrial processes, are a major type of cloud condensation nuclei [19]. Bréon et al. found that cloud droplet size tends to be significantly smaller over highly-polluted continental areas, than in unpolluted tropical ocean regions [27]. Due to a larger number of aerosols to act as cloud condensation nuclei in polluted regions, the number of droplets increases and the mean droplet size decreases. Though it is not fully clear which aerosols are anthropogenic and which are natural, Breon et al. explain that highest aerosol outputs are typically found in slash-and-burn agricultural areas and polluted urban areas. Aerosols themselves on average lead to global cooling by increasing the Earth's albedo. By increasing the number of cloud particles and decreasing their size, aerosols may also indirectly increase cloud albedo through a process called the Twomey effect [28]. According to Feingold et al., however, this effect can have either positive or negative radiative impact depending upon conditions [29].

1.5 Motivation for Measurement of Clouds and Aerosols

Clouds are important to human activity in a number of ways. They indicate weather conditions, produce precipitation, and generate phenomena such as lightning and tornadoes. They can obscure pilot visibility, and convective clouds are dangerous for aircraft. Clouds can reflect incoming sunlight and/or trap surface-emitted infrared radiation. Cloud measurement is of great importance to climate study, weather prediction, and air transportation safety. Since clouds are indicators of the state of the local atmosphere, knowledge of the height, type, and extent of cloud layers provides insight into the conditions and processes taking place in different parts of the atmosphere.

Aerosols, too, require study by remote sensing methods. Monitoring of aerosols is particularly important for public health. In addition, aerosols have a net cooling effect on the climate also act as cloud nucleation sites which further influences climate. Therefore measurements leading to better understanding of aerosol generation, transport, removal and chemistry, and their interactions with clouds are necessary for better air quality forecasting and a more thorough understanding of radiative forcing processes in the atmosphere.

1.6 Lidar Remote Sensing of the Atmosphere

The earliest lidar measurements of the atmosphere were reported in 1963 by Ligda [30] and Fiocco and Smullin [31] and in 1964 by Fiocco and Grams [32], just a few short years after Maiman's demonstration of the first working laser in 1960 [33]. Lidar measurements have broad application in the characterisation of the atmosphere, ranging from the determination of properties of cloud particles [34] or aerosols [35], to the profiling of trace gas concentrations [36], air temperature [37], or wind velocity [38].

1.6.1 Lidar System Configurations

A typical lidar consists of two subsystems, a laser transmitter and a receiver. The laser transmitter may consist simply of a laser source, or it may include additional components such as beam-expanding optics [9]. The receiver generally consists of a telescope with a detector placed at, or sometimes slightly offset from [39], its focal plane. Lidar instruments can be arranged in a number of different ways as will be discussed later but the primary configuration types are biaxial, in which the laser transmitter is located beside the receiver, sometimes tilted slightly toward it [40], and coaxial, in which the laser beam shares the receiver's optical axis through implementation of mirrors and/or beam splitters [41].

1.6.2 Elastic Backscatter Lidar

One of the tools used for the study of clouds and aerosols is elastic backscatter lidar. Elastic scattering of light, discussed in more detail Chapter 2, is the interaction of light with scattering media whereby light at a given wavelength is scattered without alteration of the atomic or molecular energy states of the scatterers. For molecules or very small particles the scattering process can be described by Rayleigh scattering theory [14] and for particles of sizes similar to or larger than the wavelength of the light being scattered, the process can be described by Mie theory [42]. Elastic backscatter lidars measure light backscattered by elastic processes. Though spectroscopic absorption and/or excitation processes may be present, as well as wavelength shifts due to Doppler broadening by moving scatterers, the instrument is blind to these effects, and the contributions of these processes to an elastic channel are generally disregarded with the possible exception of absorption by well-understood concentrations of atmospheric constituents at the laser wavelength. Broadband absorption, however, is an important consideration for all lidar systems.

Despite the lack of spectroscopic resolution, there is still a wealth of information that can be obtained by elastic lidar measurements of the atmosphere, particularly if some additional information, such as extinction somewhere along the profile, is known during the time of the measurement. Typically, an exponential decrease in returns with range reveals the presence of the pure molecular atmosphere, and deviations from this exponential profile indicate the presence of more strongly-scattering aerosols and cloud droplets at ranges corresponding to these deviations [43].

Elastic-only lidars can be used effectively to determine concentrations of

particles in the atmosphere if the scattering properties of particles in the measurement volume are known [44]. They can be used to retrieve cloud base height [45], estimate visibility [46], and with varied receiver fields of view, can be used to determine droplet sizes [47]. Based on the shape of the return signature they can also be used to discern precipitation type [48]. For regions of the atmosphere free of clouds and aerosols, backscatter intensity provides an indication of density, which can in turn be used to establish temperature [49]. Elastic lidars are the simplest type of lidar, but their signals tend to be the most difficult to invert because two parameters, extinction and backscatter, often need to be derived from one measurement, the intensity of backscattered light detected.

1.6.3 Depolarisation Lidar

One important extended technique that can be applied to elastic lidar systems is resolution of depolarisation. The orientation of the orthogonal electric and magnetic components of propagating light waves determine its polarisation. While spherical droplets do not significantly alter the polarisation of light they scatter, non-spherical particles such as ice crystals do alter the polarisation [50]. If the laser light transmitted from an elastic lidar system is highly polarised and the receiver is equipped with a means (such as a polarising beam splitter) of resolving the polarisation of returning light, the degree of depolarisation of backscattered light can be determined, and some understanding of the shapes of the scattering particles can be gained. Depolarisation lidar, discussed in detail by Sassen [51], resolves the polarisation ratio of the light backscattered from a volume illuminated by a polarised laser. Specifically, it determines the extent to which the polarisation of light is shifted away from the polarisation of the laser, as clarified by Gimmestad [52]. Application of the depolarisation technique can provide important information about the shapes of scatterers in the atmosphere. Furthermore, if the relationship between backscatter and extinction in the measurement volume is known, this technique can be used to make more subtle distinctions such as distinguishing ice from dust [53].

1.7 Commercial Ceilometers

The first patent for a laser ceilometer was filed in 1974 by Segre and Truscott [54]. After gradually replacing the searchlight-based rotating beam ceilometers of the past [55], commercial eye-safe lidar systems capable of measuring height of cloud base and reporting vertical visibility have become standard atmospheric measurement tools. Used widely for aviation and meteorology, these instruments typically transmit short, low power, near-infrared laser pulses at high repetition rates in order to adhere to eye-safety guidelines. A wavelength of 905nm is commonly used for a number of reasons. First of all, there is reasonably good atmospheric transmission of about 0.6 at 905nm. Secondly, inexpensive laser diodes with sufficient output power at 905nm and silicon avalanche photodiodes (APDs) with good responsivity at this wavelength make instruments based on these components affordable. Finally, aviation instrumentation rules require that laser light transmitted upward from sensors located near airfields be invisible in order to avoid interfering with pilots' vision.

1.7.1 Belfort

One of the first commercially-available lidar ceilometers was produced by the USA-based Belfort Instrument. The Belfort model 7013C was capable of detecting clouds at heights from 15 to 7350m [56]. Whereas the other instruments discussed here employ lenses, this one used a biaxial configuration based on two large mirrors. While these instruments were large and heavy and have now been largely retired, they were extremely rugged.

1.7.2 Eliasson

An instrument that has been deployed especially for aviation applications is the CBME80, manufactured in Sweden by Eliasson Engineering, AB. According to its specification, this biaxial instrument detects clouds ranging from 10 to 7500m above the surface [57]. While this is a fairly standard instrument in terms of performance, it offers the advantage of having a light weight of 15kg.

1.7.3 AWI

The USA-based AWI (All Weather, Inc.) offers two biaxial ceilometer models. Their base model, the 8339, has a specified range of 7600m, while their higherend model, the 8340, has a specified range of 12200m [58]. While these have found widespread use in North America, particularly for aviation applications, these instruments, somewhat surprisingly, do not appear to have been utilised for any study in the literature despite their impressive range.

1.7.4 Vaisala

Vaisala, Oyj., based in Finland, has produced two standard ceilometer models. Their current model, the Vaisala CL31 [59] has a specified altitude range of 7500m [60]. This instrument, which has a coaxial, common optics design where the laser beam and receiver utilise different regions of the same lens, replaced a previous model with a similar specification, the CT25K [48], which had fully-shared common optics. Both of these instruments are based on 905nm laser diode sources. One advantage of both the CT25K and the CL31 over the biaxial instruments of other manufacturers is good sensitivity in the nearrange. These instruments have been used for research, for example, to study cloud base height [61] and to study boundary layer aerosols [62], [63]. More details of the CL31 are given in Chapter 2.

Vaisala has offered a number of "research-grade" ceilometers at various times. One of these was a biaxial instrument called the LD-40, which had used a wavelength of 855nm and had a specified range of 13000m [48]. Another was the CT75k, which was constructed out of four CT25k instruments bundled together [64] and had a maximum working range of 11.25km [65]. A CT75k located at Chilbolton Observatory has been calibrated [66] and was used in this study as a reference for prototype measurements as described in Chapter 5. Vaisala's current research ceilometer model is the CL51, which also utilises a single-lens design, has a range of 13km for cloud detection and 15km for backscatter profiling [67].

1.7.5 Jenoptik

Another advanced ceilometer is offered by Jenoptik, GmbH, based in Germany. Their CHM 15k family of instruments has a specified range of 5m to 15km and is designed to have good sensitivity to either aerosols and cirrus clouds depending upon the model. Unlike other ceilometers, which are based on laser diodes typically at 905nm, this instrument utilises an Nd:YAG solid state laser at 1064nm. It is this laser which gives the CHM 15k, the cirrus model, its higher range, but also adds significantly to the cost of the instrument. A network of CHM 15k instruments installed by the German Weather Service (DWD) has been used to study aerosol layer thickness [68]. This network has also been utilised to track a volcanic ash layer [12]. A slightly different model, the CHM 15kx, has a wider field of view for improved aerosol profiling, but is not as sensitive to cirrus clouds as the CHM 15k. Recently an aerosol retrieval method for this instrument has been described [69].

1.7.6 Leosphere

Leosphere, based in France, has recently introduced the R-Man 510 Super Ceilometer. This instrument is based on an Nd:YAG laser and emits 355nm light. In addition to measuring elastic backscatter intensity, this instrument can provide information about scatterer shapes by the use of a depolarisation channel. It also includes a nitrogen Raman channel which is used to provide molecular signal calibration necessary for an accurate inversion of the signal. The range of the instrument is specified as 4.5m to 20km and it has been designed specifically with the goal of measuring volcanic ash concentrations accurately for aviation safety applications [70].

1.7.7 Other Ceilometers

A few other instruments, less well known, are also available. The first of these is the ALC30 from Degreane Horizon in France. This instrument is based on an Erbium-doped glass laser at the eye-safe wavelength of 1535nm, but has a range of only 15-7500m [71]. The second is from MTECH Systems in Australia. Their 905nm diode-based 8200-CHS has a specified range of up to 8000m [72]. Finally, there is an extremely small, hand-held ceilometer for military applications available from Tempestini in Italy. Their TMP-09-03 is based on an erbium-doped glass laser at 1.54μ m [73]. It is extremely portable but does not specify a range.

1.7.8 Prototypes in the Literature

Much of the work in the field of ceilometer design has been conducted in industry, so many of the subtleties of instrument design that have been learned are kept as trade secrets. However, a 905nm prototype lidar ceilometer design was developed by Gregorio et al. at Universitat Politcnica de Catalunya in Spain ([74]and [75]). First, they modelled and measured the signal to noise ratio for various receiver field of view (FOV) angles and receiver objective areas in a biaxial lidar [74]. Then, they presented an inexpensive ceilometer design using a Fresnel lens for the receiver [75]. Their work focused on optimizing design parameters of receiver diameter, FOV, and laser tilt angle using low cost laser diodes and APD detectors. This work was recently expanded to include more detail [40].

A significant attribute of their design was a slit-shaped field stop. In a biaxial lidar system where the transmitter is located next to the receiver, defocus arises because at short ranges, the backscattered signal returns will not be centred and focused at the focal point of the receiver lens, but rather off to the side and out of focus. Because defocus is a major contributor to the overlap function, the placement and shape of the aperture are significant in managing the dynamic range and low altitude performance of a biaxial lidar system [39]. The slit-shaped aperture employed by Gregorio et al. [75] allowed for increased detection of off-axis returns by increasing the FOV along the slit without making the entire FOV larger, thus enhancing close-range overlap while largely suppressing the corresponding increase in daytime background noise typically resulting from a larger FOV.

1.7.9 Atmospheric Research Utilising Ceilometers

Beyond the monitoring of cloud base height and vertical visibility, ceilometers have been used for a number of research applications including the study of signatures of different types of precipitation [48]. The most important extended application, however, is the retrieval of aerosol properties. Ceilometers often lack the stability and sensitivity of more refined instruments and typically have one elastic channel only. For these reasons, the aerosol-related parameter most realistic for study using ceilometers is the height of the planetary boundary layer.

As the planetary boundary layer contains the majority of the atmosphere's aerosols, which show significantly stronger returns than do the molecular atmosphere, its height can be found by locating the first significant decrease in lidar return intensity [63]. Note, however, that "boundary layer height" reported by this method is actually the height of the top of the aerosol layer closest to the surface. Therefore, higher aerosol layers and more complex boundary layer structures are disregarded and the "boundary layer height" may or may not relate directly to temperature inversion. Nevertheless, a number of authors, including Münkel and Räsänen [59] and Wiegner et al. [76], have considered the application of this type of technique.

Wavelet filtering techniques, which locate features in a signal through the use of filters based on families of wavelet functions [77], have also been applied to identify the top of the boundary layer from lidar signals [78]. These have been applied to ceilometers by, for example, Teschke et al. [79] and de Haij et al. [80]. Recently a study by Haeffelin et al. [81] found little difference in the ability of various derivative-based and wavelet-based techniques to identify aerosol layer gradients. The same study showed, however, that it is difficult to distinguish the top of the nighttime mixing layer from the top of the residual layer by an elastic lidar gradient method. The ability of the lidar measurements to locate the boundary layer height within 300m of that determined by radiosonde dropped from 67% during the day time to 33% at night. Haeffelin et al. also found that when near-infrared ceilometer data and UV lidar data both indicated the same mixing layer height, this value was 25-40% more likely to match within 300m that determined by radiosonde than when either the lidar or the ceilometer was used alone.

Boundary layer height has also been determined by assimilation of measured data with modelled data. Di Giuseppe et al. [82] described a method wherein the signal discontinuities from individual ceilometer measurements, which indicate possible aerosol layer structures, are coupled with a timedependent model of the boundary layer in order to identify the most statistically significant feature as the top of the boundary layer. While this method is more involved and requires a timescale of one day for processing, its boundary layer height assignments agree more closely with radiosonde measurements than do those derived from ceilometer measurements alone, particularly at night when residual aerosol layers often exist above the mixing layer. In some cases this approach was demonstrated to reduce to tens of metres ceilometerbased boundary layer measurement errors that would have otherwise been on the order of 1500m. It is therefore a powerful technique for enhancing the accuracy of ceilometer-reported boundary height.

In other work on ceilometer aerosol retrievals, Münkel et al. [83] compared ceilometer, radar, sodar, and in situ particulate measurements of the urban boundary layer. They found that PM10 (10 μ m particulates) concentrations showed an essentially linear relationship to backscatter intensity measured by the lidar. This suggests that in constrained conditions particulate pollutant concentrations might be inferred from ceilometer data. In related work, Heese et al. [84] have considered the effectiveness of aerosol optical property retrieval by ceilometers, Tsaknakis et al. [63] performed a comprehensive study of urban boundary layer involving lidar, ceilometer, and radiosonde, and Stachlewska et al. [85] have devised a novel variable spatial and temporal averaging technique to optimise the signal to noise ratio of ceilometer returns from boundary layer aerosols and extract transient features such as cloud layers. While some important work has been done in this area, more study of the most efficient and effective means of exploiting ceilometer data for aerosol retrievals is required.

1.8 Overview of Thesis

Following this introduction, Chapter 2 summarises elastic lidar theory relevant to the work in this thesis, placing emphasis on the lidar equation and its inversion. Chapter 3 presents the opto-mechanical design of a novel lidar ceilometer prototype suitable for manufacture and the design approach that was applied in order to develop it. Chapter 4 describes a theoretical method for the calculation of the overlap of a lidar transmitter and receiver throughout its range and presents and evaluates a novel imaging-based laboratory measurement of overlap. Chapter 5 presents a novel two-part signal processing algorithm that has been developed for automated determination of cloud base height and demonstrates its performance, and also discusses lidar calibration and determination of vertical visibility from lidar returns. Finally, Chapter 6 summarises the conclusions that can be drawn from this research and discusses further work emerging from it.

Chapter 2

Theory of Lidar

2.1 Introduction

This chapter introduces the subject of light scattering by molecules and water droplets in the atmosphere and gives an overview of the theory essential for interpreting elastic lidar returns from clouds and aerosols. First, parameters describing droplet size distributions in clouds are explained. Following this, scattering, extinction, and the relationship between the two are considered. Then the elastic backscatter lidar equation is introduced and the derivation of a standard signal inversion method, commonly referred to as the Klett inversion, is given, along with some discussion of its strengths and shortcomings. Finally, an expression for attenuated backscatter, the range-corrected calibrated signal, is given for use in comparison of measurements from different instruments.

2.2 Composition of Liquid Clouds

Because the nature of the particles that constitute a cloud determines the way light will interact with it, it is important to consider cloud composition when probing with lidar. Cloud properties have been studied extensively through active and passive remote sensing techniques, in situ measurements, and modelling [23]. This knowledge, in the form of cloud droplet size distributions and particle concentrations, for example, can be used to model how light is scattered by a cloud and predict return signals that might be detected from it. This is important for the current work particularly because water clouds with well understood droplet properties can be used for ceilometer attenuated backscatter calibration as explained later in this chapter and applied in Chapter 5.

A typical approach to modelling cloud droplet sizes is to consider spherical droplets with the gamma type distribution function, f(a), described by Deirmendjian such that [86]

$$f(a) = \frac{\mu^{\mu+1} a^{\mu} e^{-\mu \frac{a}{a_0}}}{\Gamma(\mu+1) a_0^{\mu+1}}$$
(2.1)

where a is a random variable representing droplet radius, a_0 is the mode of the distribution, and μ describes the width of the distribution and can be expressed as

$$\mu = \frac{1}{C_{\sigma}^2} - 1, \tag{2.2}$$

in which C_{σ} is the coefficient of variance. Note that the function $\Gamma(x)$ is the gamma function [87]

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt, \qquad (2.3)$$

which for integer values of x can be calculated as a factorial such that

$$\Gamma(x+1) = x! \tag{2.4}$$

Often the parameter used to describe the droplet size distribution is the effective radius, a_{eff} , where [88]

$$a_{eff} = (1 + \frac{3}{\mu})a_0. \tag{2.5}$$

For water clouds the mode, a_0 , ranges from 4 to 20μ m [89], and μ ranges from 2 to 8, which produces an effective radius range of 5 to 50μ m [88]. According to Han et al., however, a_{eff} typically ranges from 5 to 15μ m [90].

Figure 2.1: Droplet diameter distribution measured 500m above cloud base in continental cumulus in Northern Colorado, USA, with a measured number density N=780cm⁻³, as reported by Knollenberg [92] compared with the C1 distribution at the same number density.

The C1 distribution of Deirmendjian [86], commonly used to model the droplet size distribution of cumulus clouds in the literature, uses the values $a_0 = 4\mu$ m and $\mu = 6$ in Equation 2.1. This yields an effective radius of $a_{eff} = 6\mu$ m. Fomin and Mazin [91] caution that when relating model to measurement it is important to consider that the width of the droplet size distribution typically increases with the volume of the sampling region. They suggest that a value of $\mu = 6$ only applies to small spatial averaging regions.

Figure 2.1 shows an example of close agreement between measured and modelled distributions. Here the results of an in situ measurement of droplet size distribution using a forward scattering spectrometer probe 500m above the base of a continental cumulus cloud given by [92] were extracted from the original data and plotted alongside the modelled C1 distribution.

A comprehensive discussion of the formation and makeup of liquid water, mixed phase, and ice clouds is beyond the scope of this work. Understanding these properties and processes is an important area of research, however, both in terms of simulation and inversion of lidar returns, and in terms of improving understanding of radiative processes in clouds. These subjects are considered in detail in works by Pruppacher and Klett [23], Hobbs and Deepak [93], and Lynch et al. [94].

2.3 Elastic Scattering and Transmission of Light in the Atmosphere

Elastic interaction of light with scatterers is typically described by one of two processes, depending upon the size of the scatterers. Rayleigh scattering is used to describe scattering in situations where the scatterer is very small compared to the wavelength of the light. Mie scattering is typically used to describe interactions of light with particles whose sizes are similar to or somewhat larger than the wavelength of the light. Note that single-scattering, in which a photon interacts with one scatterer only before being detected, is typically the dominant process measured by lidar. However, multiple scattering, in which a photon interacts with more than one scatterer before being detected, must often be considered, particularly in systems with large fields of view.

2.3.1 Rayleigh Scattering

Scattering by gas molecules in the atmosphere can be described by Rayleigh scattering. As expressed by Kovalev and Eichinger[14], the wavelength-dependent molecular volume backscatter coefficient β_m can be determined such that

$$\beta_m = \frac{8\pi^3 (m^2 - 1)N}{3N_s^2 \lambda^4},\tag{2.6}$$

where *m* is the real part of the refractive index, *N* is the molecular number density at the pressure and temperature of the scattering volume, N_s is the molecular number density at standard temperature and pressure $(2.547 \times 10^{19} \text{ cm}^{-3}$ at 288.15K and 101.325kPa), and λ is the wavelength of the light. Rayleigh scattering is symmetric for forward scattered and backscattered light. At sea level the molecular volume backscatter coefficient can be calculated as [14]

$$\beta_m = 1.39 \left[\frac{550}{\lambda(\text{nm})} \right]^4 \times 10^{-8} \text{cm}^{-1} \text{sr}^{-1}.$$
 (2.7)

The most significant factor in these expressions is the λ^{-4} wavelength de-

pendence of the scattering intensity which means, for example, that ultraviolet light at 355nm is scattered 81 times more strongly by the molecular atmosphere than near-infrared light at 1064nm. Note that while scattering by very small particles is in fact Rayleigh scattering, in lidar research the term Rayleigh scattering usually refers only to scattering from the molecular atmosphere [9].

2.3.2 Mie Scattering

When the scatterer size is similar to the wavelength of incident light, a theory developed by Gustav Mie in 1908 [42] can be used to calculate the scattering phase function for spherical, optically conducting particles. In this case the scattering is given by an infinite series expansion.

Some example scattering phase functions calculated by a Mie-based method [95] at a wavelength of 1μ m for spheres of various radii with refractive index 1.5 are shown in Figures 2.2 and 2.3. As shown in Figure 2.2, when the radius is 0.1μ m, ten times smaller than the wavelength, the forward and backward scattering distributions are similar to each other. Note that when the radius is decreased to 0.01μ m, the forward and backward scattering distributions become essentially symmetric and approach the Rayleigh scattering solution.

As the particle radius increases with respect to the wavelength, the distribution becomes more pointed in the forward direction. Figure 2.3 shows the scattering distribution for radius equal to wavelength. A close-up view around the origin shows scattering lobes at various angles, the position and intensity of which relate to interference patterns of light propagating around and through the sphere; these will vary from the theory for non-spherical shapes and imperfect optical conductor materials [14]. As the size of the sphere increases further, Mie theory gives larger and larger forward scattering lobes until the sphere is significantly larger than the wavelength of the light, at which time geometric optics [96] can be used to describe the light path. Note that Deirmendjian [86] used Mie theory to calculate scattering phase functions for C1 and other droplet size distributions, thus providing a reference that has been used, for example, to calculate multiple scattering effects in clouds [97].

Figure 2.2: Relative scattering intensity of 1μ m wavelength light by spherical particles of refractive index 1.5 as a function of angle (in degrees) for three different radii considering light entering from the left.

Figure 2.3: Relative scattering intensity of 1μ m wavelength light by spherical particles of refractive index 1.5 as a function of angle (in degrees) for particles of 1μ m radius considering light entering from the left. A close-up view around the origin is shown on the right.

2.3.3 Transmission and Extinction

The transmission and extinction of light travelling through the atmosphere are key considerations for lidar. They are explained here following the approach of Kovalev and Eichinger [14].

For a given wavelength, the transmittance T(H) of a layer of thickness H can be expressed as the ratio of the outgoing radiant flux F to the incoming radiant flux F_0 such that

$$T(H) = \frac{F}{F_0}.$$
(2.8)

T(H) ranges from 0 for a fully-attenuating medium to 1 for a medium through which all of the light passes without experiencing any scattering or absorption. In order to account for range-variable transmission through a heterogeneous medium, the extinction coefficient function $\alpha(r)$ is introduced to describe, for each differential range element dr, the probability of photon scattering or absorption per unit path length. The change in radiant flux over a differential element can be considered as a function of $\alpha(r)$ such that

$$dF(r) = -\alpha(r)F(r)dr.$$
(2.9)

From this expression the Beer-Lambert-Bougert law, which relates outgoing to incoming radiant flux, can be derived such that

$$F = F_0 e^{-\int_0^H \alpha(r) dr},$$
 (2.10)

and by substituting Equation 2.8 into Equation 2.10 the transmittance can then be expressed as

$$T(H) = e^{-\int_0^H \alpha(r)dr}.$$
 (2.11)

Here the integral in the exponent $\int_0^H \alpha(r) dr$ is the summed extinction along the path and is therefore used to express the optical depth τ_{α} .

If inelastic scattering is sufficiently small to be disregarded as is usually the case for elastic lidar, the extinction coefficient can be expressed as the sum of the total elastic scattering coefficient, $\beta_T(r)$, and the absorption coefficient, $\alpha_A(r)$, such that

$$\alpha(r) = \beta_T(r) + \alpha_A(r). \tag{2.12}$$

For a cloud lidar, liquid water droplets are the primary particles of interest. The complex refractive index of water (the real part of which is approximately 1.33), which can be used to determine its scattering and absorption properties for a given radius, has been measured over a wide range of wavelengths by various authors, for example, by Hale and Querry [98]. However, total absorption and scattering vary with size and concentration of scatterers, which may not be known, and soluble aerosols dissolved in water may add complexity to light-particle interactions by increasing the imaginary part of the refractive index, i.e. absorption. In addition, the presence of mixed particle types in a scattering volume may introduce further complexity. This means it can be very difficult to separate the constituents of the extinction coefficient. Nonetheless, by applying some assumptions about the atmosphere and/or or by including information from external measurements, it is possible to draw some conclusions about the relationship between total extinction and backscatter, a relationship that is of key importance to lidar measurements.

2.3.4 The Lidar Ratio

Interpreting the physical meaning of a measured lidar signal is an inverse problem. Inversion techniques must therefore be applied in order to determine optical properties of atmospheric constituents from which return signals are collected. From an elastic lidar measurement of range-resolved power, it is not possible to distinguish with certainty the contributions of the two variables, extinction and backscatter, to the signal profile because the relationship between the range-dependent backscatter coefficient $\beta(r)$ and the range-dependent extinction coefficient $\alpha(r)$ varies depending upon the content of the measurement volume at each range r. Consider, for example, that a return from a thin, diffuse, weakly scattering cloud layer with clear air between it and the lidar instrument could look very similar to a return from thin, dense, strongly scattering cloud layer with a strongly absorbing gas layer between it and the lidar. In order to account for these differences, the range-dependent backscatter to extinction ratio $\Pi_p(r)$ can be expressed [14]

$$\Pi_p(r) = \beta(r)/\alpha(r). \tag{2.13}$$

This expression can be useful for applying assumptions to the lidar ratio over the detection range if, for example, $\Pi_p(r)$ is assumed to be constant or a linear function, or if it can be calculated using a model or measured by some method.

Klett explained that the relationship between backscatter and extinction can be also be approximately expressed in the form [99]

$$\beta(r) = B_0 \alpha^k(r), \qquad (2.14)$$

where B_0 and k are assumed to be constants. This power law expression was used in differential form in Klett's original derivation of the backward inversion method. He noted that k is wavelength-dependent and also influenced by aerosol properties in the measurement volume and explained that it is typically in the range of $0.67 \le k < 1.0$.

The lidar ratio is a fundamental unknown for most elastic lidar measurements. The quality of elastic lidar inversion often depends on the accuracy of the assumptions made regarding the lidar ratio.

2.4 Elastic Lidar System Constant

A number of parameters of a lidar system that affect the measured level of backscattered light are typically factored into a system constant, K_s , expressed by Wandinger [9] such that

$$K_s = P_0 \frac{c\tau}{2} A_0 \eta. \tag{2.15}$$

Figure 2.4: Lidar geometry.

Here P_0 is the average laser power output during a pulse, c is the speed of light, τ is the laser pulse duration, A_0 is the area of the receiver objective as shown in Figure 2.4, and η is the total efficiency of the instrument's optical path multiplied by the detection efficiency. The value of P_0 determines the peak intensity of the backscatter cross section. A_0 determines the solid angle of the backscatter cross section that is subtended from a given range as shown in Figure 2.4. The factor $\frac{c\tau}{2}$, also illustrated in Figure 2.4, determines the range resolution of a pulsed system by establishing time (distance) required for backscattered light from the beginning of the pulse to meet the forward-propagating light from the end of the pulse. Typically τ and A_0 are well characterised, P_0 may be known but is often prone to variability, and η can usually only be estimated to varying degrees of accuracy depending upon the complexity of the system and understanding of the efficiency of each component. Because of this uncertainty, it is often desirable to find a way to process lidar using a method that allows dependence on specific knowledge of the system constant to be cancelled out.

2.5 The Single-Scattering Elastic Lidar Equation

In the case where molecular returns are negligible compared to aerosol returns, which is the realm most relevant to ceilometer measurements, the rangedependent backscatter and extinction coefficients can be considered as functions only of the aerosol and water droplet returns. Under the assumption of single-scattering, and if a discrete laser wavelength is used, the lidar equation in this case can be expressed in the form [9]

$$P(r) = K_s \beta(r) \frac{O(r)}{r^2} e^{-2\int_0^r \alpha(r')dr'},$$
(2.16)

where P(r) is the power detected from range r, K_s is the system constant given in Equation 2.15, $\beta(r)$ is the scattering coefficient from the scattering volume at range r, O(r) is the overlap function which describes what fraction of the laser beam cross section at a given range will be imaged onto the detector (this function reaches a value of unity at a full overlap distance r_0), $\frac{1}{r^2}$ is the range dependence factor that accounts for the decrease in solid angle subtended with the square of the range, and the remaining factor, $e^{-2\int_0^r \alpha(r')dr'}$, based on the range dependent extinction coefficient $\alpha(r)$, is the integrated two-way extinction of the signal as it propagates from the instrument to the scattering volume at range r and back.

2.6 Elastic Lidar Inversion

A number of approaches for the inversion of elastic lidar signals have been described in the literature. Each of these methods applies a different set of assumptions in order to achieve inversion. While there are a variety of alternatives to, variations on, and combinations of these techniques (for example, [100] and [101]) as well as detailed error analyses (for example, [102] and [103]), only the fundamental methods are discussed here.

2.6.1 Slope Method

The first lidar inversion method described in the literature was the slope method discussed in 1966 by Collis [104]. In homogeneous atmospheric conditions, the extinction and backscatter coefficients can be assumed to be constants. In this case, the natural logarithm of the range-corrected lidar return is linear and from its slope the extinction coefficient can be derived. Kovalev and Eichinger note that in order to satisfy the homogeneity requirement the atmosphere need not be purely homogeneous but rather that local inhomogeneities do not significantly alter the linear fit across the region of interest [14]. They explain that for homogeneous atmospheres this method is often the best way to extract mean aerosol extinction, particularly if the aerosol and molecular returns are of similar amplitude. Kovalev and Eichinger caution, however, that if returns from aerosol-free atmospheres are being processed by this method, care must be taken to fully account for any background noise on the signal as that can greatly affect the slope that is calculated. They also emphasise the importance of either disregarding the region of incomplete overlap of the transmitter and receiver or carefully compensating for it.

2.6.2 Close Boundary Solution

A close boundary solution applies an assumed or measured value of the extinction coefficient at the start of the measurement range and inverts the signal in the forward direction. This method was first applied to lidar in 1967 by Barrett and Ben-Dov [105]. It can be applied successfully in clear atmospheric conditions, but in turbid conditions it quickly becomes unstable due to its mathematical formulation; its performance can be improved somewhat, however, by placing constraints that limit the possible solutions to positive values of extinction without extremely large "runaway" values [106].

2.6.3 Optical Depth Solution

Another approach to inversion, first introduced in 1988 by Weinman [107], is the optical depth solution. If the total optical depth of a lidar measurement range can be estimated, the transmission term in the lidar equation can be determined; this then acts as a constraint for the inversion. An important calibration method described in Section 2.8 is related to this approach. In order to perform an inversion based on the optical depth solution for combined molecular-aerosol atmospheres, three inputs typically used are the sun photometer-derived aerosol optical depth, the profile of molecular extinction (this may be disregarded if aerosol extinction is much greater than molecular extinction at the laser wavelength), and an aerosol lidar ratio assumption relating backscatter to extinction [108].

2.6.4 Far Boundary Solution

The most widely used method for inverting elastic lidar returns is the backward inversion method. This method, though also developed in similar form independently by Kaul in 1977 [109] and Zuev in 1978 [110]–those studies were not accessible in Western countries at the time–is typically credited to Klett who introduced it in 1981 [99]. In this method the extinction coefficient at the far boundary is assumed and the signal is inverted backward toward the instrument. This approach provides a stable result provided there are considerable aerosol or cloud returns present and is therefore the method typically applied in the inversion of ceilometer returns. The contemporary version of Klett's approach was reformulated in 1982 by Fernald [111], and a method for improving the lidar ratio assumption and a smoothing process at the boundary point were described in 1984 by Sasano and Nakane [112]. It is therefore sometimes referred to as the Klett-Fernald-Sasano inversion, however, in this thesis it is simply referred to as the Klett inversion.

The Klett inversion requires an input value of the extinction coefficient at the far boundary of the lidar range. This boundary value can be measured or assumed. Since information from in situ measurement of the extinction coefficient at the far range of the instrument is not usually available for vertical lidar profiling, boundary extinction is typically assumed from some knowledge of the current atmospheric conditions.

2.6.5 Derivation of the Far Boundary Solution

Under the assumption of a single-component atmosphere, in which aerosol returns dominate molecular returns (reasonable for ceilometers at 905nm), the far-boundary solution can be derived in a straightforward manner following the approach of Kovalev and Eichinger [14]. The lidar equation can first be rewritten somewhat by removing the overlap dependence. Overlap and its correction are discussed in detail in Chapters 3 and 4, but here only ranges beyond the full overlap height r_0 are considered such that O(r) = 1. Equation 2.16 therefore becomes

$$P(r) = K_s T_{r_0}^2 \frac{\beta(r)}{r^2} e^{-2\int_{r_0}^r \alpha(r')dr'},$$
(2.17)

where $T_{r_0}^{2}$ is a constant accounting for the unknown transmittance from r = 0to $r = r_0$.

If the lidar ratio is introduced as in Equation 2.13, the backscatter coefficient $\beta(r)$ can be expressed in terms of extinction $\alpha(r)$ and lidar ratio function $\Pi_p(r)$ allowing Equation 2.17 to be rewritten as

$$P(r) = K_s T_{r_0}^{\ 2} \frac{\Pi_p(r)\alpha(r)}{r^2} e^{-2\int_{r_0}^r \alpha(r')dr'}.$$
(2.18)

Assuming that the particles along the measurement range are similar to each other, the backscatter to extinction ratio can be expressed by the constant Π_{ρ} such that

$$\Pi_p(r) = \Pi_p. \tag{2.19}$$

Kovalev and Eichinger note that if the variation among scatterers is relatively small, this assumption is reasonable, but that if precise determination of extinction is required, it can be problematic. If the assumption is applied, the unknown parameters of the measurement can now be expressed as a single constant such that

$$K_L = K_s T_{r_0}{}^2 \Pi_p, (2.20)$$

and Equation 2.18 can be written as

$$P(r) = K_L \frac{\alpha(r)}{r^2} e^{-2\int_{r_0}^r \alpha(r')dr'}.$$
(2.21)

If Z(r), the range-corrected signal, is considered, where $Z(r) = P(r)r^2$, then

$$Z(r) = K_L \alpha(r) e^{-2 \int_{r_0}^r \alpha(r') dr'}.$$
(2.22)

If the extinction coefficient $\alpha(r_b)$ at the far boundary r_b is known or can be

estimated, the constant K_L can be written

$$K_L = \frac{Z(r_b)}{\alpha(r_b)e^{-2\int_{r_0}^{r_b}\alpha(r')dr'}}.$$
 (2.23)

Substituting this into Equation 2.22, the range-corrected signal becomes

$$Z(r) = \frac{Z(r_b)\alpha(r)e^{-2\int_{r_0}^r \alpha(r')dr'}}{\alpha(r_b)e^{-2\int_{r_0}^{r_b} \alpha(r')dr'}}.$$
(2.24)

If this is expressed as the ratio of range corrected signal $Z(r_b)$ at the boundary r_b to the extinction coefficient $\alpha(r_b)$ at the boundary,

$$\frac{Z(r_b)}{\alpha(r_b)} = \frac{Z(r)}{\alpha(r)} \frac{e^{-2\int_{r_0}^{r_b} \alpha(r')dr'}}{e^{-2\int_{r_0}^{r} \alpha(r')dr'}},$$
(2.25)

which can be rewritten as

$$\frac{Z(r_b)}{\alpha(r_b)} = \frac{Z(r)}{\alpha(r)} e^{-2\int_r^{r_b} \alpha(r')dr'}.$$
(2.26)

By solving this equation for Z(r) and integrating both sides over the interval r to r_b , an expression for the transmission term, $e^{-2\int_r^{r_b} \alpha(r')dr'}$, can be derived in the form

$$e^{-2\int_{r}^{r_{b}}\alpha(r')dr'} = 1 + \frac{\alpha(r_{b})}{Z(r_{b})} \left[2\int_{r}^{r_{b}} Z(r')dr' \right].$$
 (2.27)

If this is substituted into Equation 2.26 and $\alpha(r)$ is solved for, the Klett solution is arrived at such that

$$\alpha(r) = \frac{Z(r)}{\frac{Z(r_b)}{\alpha(r_b)} + 2\int_r^{r_b} Z(r')dr'}.$$
(2.28)

In this way the range-dependent extinction coefficient is expressed in terms of only the range-corrected signal and the boundary value of the extinction coefficient.

This solution is useful because even though it relies on an assumed bound-

ary condition at the far boundary, it is stable in the near-range due to the fact that the factor $2 \int_{r}^{r_b} Z(r') dr'$ increases with decreasing r. In addition, as ranges closer and closer to the instrument are considered, errors due to incorrect assumption of the far boundary condition reduce significantly due to the reduced influence of the factor $\frac{Z(r_b)}{\alpha(r_b)}$, particularly in turbid atmospheres [99]. This far boundary solution is applied in Chapter 5 in order to invert prototype lidar returns.

2.6.6 Boundary Condition Selection for Klett Inversion

There are two factors to consider when making the far-range boundary assignment. The first of these is the signal level. Usually the maximum possible measurement range is desirable. In this case, the boundary condition is assigned at the farthest point in the signal that is above a certain threshold. Two examples of this from the literature are 2.3% of the maximum digitised signal amplitude [113], assuming the dynamic range of the receiver electronics is appropriately matched to the dynamic range of the signals, or, in another work, a signal to noise ratio of 5-10dB [114]. Choosing a boundary point too close to the noise level is likely to reduce the accuracy of the inversion. A signal to noise ratio method for locating the boundary range is applied in Chapter 5.

The second factor to consider is the boundary value of the extinction coefficient. It is possible to estimate the boundary value of the extinction coefficient directly from the signal by considering the slope of the logarithmic range-corrected signal as explained by Klett [99], such that

$$\alpha_b \approx \frac{\ln \left[P(r_s) r_s^2 \right] - \ln \left[P(r_b) r_b^2 \right]}{2(r_b - r_s)}.$$
(2.29)

This is calculated over a region starting at a selected range r_s and reaching to the maximum range r_b at the boundary. This method works best over a homogeneous region with significant returns.

If no clearly homogeneous region is present, a default value can be used depending upon measurement conditions. While a clear air value such as 10^{-4} /m can be applied as in [45], for cloud detection applications it may be better to select a cloud value such as 0.02/m as in [113], particularly if it is unlikely that clear air can be detected at far ranges or beyond a cloud layer due to attenuation and lack of sensitivity. Kovalev and Eichinger state that if the effects of multiple scattering are small, it is straightforward to assign a boundary value $\alpha(r_b)$ within a cloud. This approach is generally applicable to ceilometers, both because of their limited sensitivity to molecular returns and because their primary function is cloud detection, and is applied in Chapter 5.

2.6.7 Stability of the Klett Inversion

Figure 2.5: Influence of boundary extinction value $\alpha(r_b)$ on backward inversion as originally calculated by Klett [99].

A few examples of the behaviour of the Klett inversion under various conditions illustrate its value. First, Figure 2.5 shows the influence on the inversion of overestimating or underestimating the boundary value of the extinction coefficient by 50%. In both cases the inversion converges on the correct profile quite quickly as the range is considered backwards from the boundary r_b toward r = 0. Second, Figure 2.6 shows the influence of incorrect assumption of the lidar ratio exponent k from Equation 2.14. While the inversion is certainly sensitive to the lidar ratio exponent, it still strays in this case by less than 40% at most from the correct value, which is not much considering that values of the extinction coefficient range over several orders of magnitude. Finally,

Figure 2.6: Influence of lidar ratio exponent k on backward inversion as originally calculated by Klett [99].

since range-corrected signals are typically noisy at far ranges, the influence of this noise on inversion also needs to be considered. A thorough examination of error sensitivity of the backward inversion technique has been given by Rocadenbosch and Comerón [103].

2.7 Attenuated Backscatter

Since inverted data depends greatly on the inversion technique, the inverted profile is often not the best profile for inter-comparison of different instruments. The profile used most widely for instrument comparison is the attenuated backscatter, that is, the range-corrected, overlap-corrected, calibrated signal. It is a standard output of satellite lidar data [115] and is also a typical ceilometer output.

Considering discussion in [115] and [116], attenuated backscatter $\beta'(r)$ can be expressed, by solving the lidar equation for the product of backscatter and transmission, as

$$\beta'(r) = \frac{P(r)r^2}{K_s O(r)} = \beta(r)T_{tot}^2(r), \qquad (2.30)$$

where T_{tot} is the total transmission through all scatterers. The range-corrected power $P(r)r^2$ divided by the product of the overlap function O(r) and the system constant K_s therefore reflects the combined contributions of backscatter and attenuation. By fully expressing the system constant K_s using Equation 2.15, the attenuated backscatter becomes

$$\beta'(r) = \frac{P(r)r^2}{P_0 \frac{\tau c}{2}O(r)A_0},$$
(2.31)

given throughout this thesis in units of $m^{-1}sr^{-1}$.

2.8 Calibration of Attenuated Backscatter

One problem with the attenuated backscatter output is its dependence on knowledge of the transmitted laser power P_0 and the calibrated received power P(r), which are often poorly characterised and/or variable in a lidar system. In order to overcome this problem, O'Connor et al. devised a calibration method [66] that uses returns from fully signal-attenuating stratocumulus water clouds, whose optical scattering properties are well understood, in order to calibrate the attenuated backscatter output of an elastic lidar system.

The transmission T_{tot} in Equation 2.30 is dominated in this case by returns from the cloud droplets and can be expressed by application of Equation 2.11 as

$$T_{tot}(r) = e^{-\int_0^r \alpha(r')dr'} = e^{-\tau_{\alpha}},$$
(2.32)

where, as previously noted, the integrated extinction $\int_0^r \alpha(r) dr$ is equivalent to the optical depth, τ_{α} . Equation 2.30 can therefore be rewritten

$$\beta'(r) = \beta(r)e^{-2\tau_{\alpha}}.$$
(2.33)

Instead of defining the lidar ratio as the backscatter to extinction ratio $\Pi_p = \frac{\beta}{\alpha}$, O'Connor et al. used the extinction to backscatter ratio and defined it as $S = \frac{\alpha}{\beta}$. Assuming an infinitesimal change dr in range, for the single scattering case the corresponding change $d\tau_{\alpha}$ in optical depth can be expressed as

$$d\tau_{\alpha} = S(r)\beta(r)dr. \tag{2.34}$$

A factor, $\eta_m(r)$, that corrects for multiple scattering effects and ranges from 0.5 to 1 can then be introduced such that

$$d\tau_{\alpha} = \eta_m(r)S(r)\beta(r)dr.$$
(2.35)

If the attenuated backscatter as stated in Equation 2.33 is integrated over the entire range of the instrument, the resulting value B is expressed

$$B = \int_0^\infty \beta'(r) = \int_0^\infty \beta(r) e^{-2\tau_\alpha} dr.$$
 (2.36)

If Equation 2.35 is substituted into this expression and η_m and S are assumed constant, it becomes

$$B = \int_0^\infty \beta'(r) = \frac{1}{\eta_m S} \int_0^\infty e^{-2\tau_\alpha} d\tau_\alpha.$$
 (2.37)

Since the integral $\int_0^\infty e^{-2\tau_\alpha} d\tau_\alpha$ can be evaluated such that

$$\int_0^\infty e^{-2\tau_\alpha} d\tau_\alpha = \frac{1}{2},\tag{2.38}$$

the integrated attenuated backscatter becomes

$$B = \int_0^\infty \beta'(r) = \frac{1}{2\eta_m S},\tag{2.39}$$

and the attenuated backscatter calibration should be adjusted until this is true.

O'Connor et al. specified that the stratocumulus cloud used for calibration must have a peak backscatter coefficient of greater than $1 \times 10^{-4} sr^{-1}$ and the signal level at this height must be at least 20 times greater than that 300m above. In addition, no precipitation or strong aerosol events should be present during calibration. Using a droplet size spectrum width parameter (μ) ranging from 2 to 10, and median droplet diameters $(2 \times a_0)$ between 4 and 10μ m to define the droplet size distribution in a thick stratocumulus cloud, they derived an effective lidar ratio of $S = 18.8 \pm 0.8 sr$ at 905nm as the appropriate lidar ratio for this technique. The multiple scattering correction factor η_m is discussed further in Chapter 5 where this method is applied.

This calibration technique provides a useful means of calibrating the signal output from an instrument whose system parameters may be poorly characterised or subject to drift.

2.9 Conclusion

This chapter has discussed fundamental theoretical tools used to describe the nature of scattering particles in clouds and the mechanics of elastic scattering in the atmosphere. It has introduced the single-scattering elastic lidar equation and the parameters it contains, including the geometry involved. It has presented a derivation of the classical backward inversion technique used in elastic lidar and shown its robustness. Finally, it has explained the attenuated backscatter function used for inter-comparison of lidar returns along with a method by which it can be calibrated. The geometry of lidar measurement has largely guided the design of the prototype described in the next chapter, Chapter 3. The lidar equation is applied in a variety of ways in Chapters 3, 4, and 5, and inversion and calibration both become important in Chapter 5.

Chapter 3

Opto-mechanical Design of a Biaxial Elastic Lidar Prototype

3.1 Introduction

This chapter describes an eye-safe divided lens biaxial elastic lidar ceilometer prototype, as well as the considerations that were involved in its design. After the initial design specification for the instrument is given, the optical design concept is presented and a method for calculating the optical signal to noise ratio of the instrument is described, as are the key variables involved in optimising it. Several optical configurations are compared, both in terms of optical signal to noise ratio and overlap function, to a leading commercially-available instrument in a similar class. Following this discussion, the final optical design of the prototype is discussed in terms of each of its primary components. In addition, significant factors affecting optical and mechanical tolerancing of the instrument are presented, particularly with regard to sensitivity to changes in temperature.

3.2 Design Specification

Table 3.1 shows the preliminary specification for the prototype instrument that is intended to meet the needs of both the aviation and general meteoro-

Table 3.1: Ceilometer Design Specification

PERFORMANCE SPEC.

Cloud Base Detection Range Sampling Range Resolution Optical Range Resolution Reporting Interval Simultaneous Layer Reports Vertical Visibility Laser Safety 30m – 10km 5m 15m (for 100ns laser pulse duration) 15 seconds Up to 4 cloud layers Reported if no cloud base reported Class 1M

ENVIRONMENTAL SPEC.

Operating Temperature	$-40^{\mathrm{o}}\mathrm{C} - +60^{\mathrm{o}}\mathrm{C}$
Operating Relative Humidity	0-100%
Entrance Window	Self-detect and clear contamination
Solar Radiation Shield	Protect laser/detector from solar exposure

ADDITIONAL SPEC.

Installation Replaceable Components Sky Condition Algorithm Planetary Boundary Layer Size and weight suitable for one person Laser/detector modules field-replaceable Automatically estimate total cloud cover Report PBL height when possible

logical sectors. The range of the instrument needed at minimum to comply with the United States Federal Aviation Administration requirements of 100– 12500ft (30.48–3180m) [117]. However, meteorological stations tend to deploy farther reaching ceilometers, such as the Vaisala CL-31, that have maximum ranges of at least 25000ft (7620m). The current prototype instrument was designed to extend that range to 10km in order to put it closer to the next class of ceilometers which includes the Vaisala CL-51 (13km) and the Jenoptik CHM15k (15km) described in Chapter 1. The other parameters, with the exception of the planetary boundary layer height report, are fairly standard among commercially available instruments. Note that the field-replaceable laser and detector module requirement places significant constraints on both the design and the alignment process. The major item of influence not appearing in the design specification is the cost of manufacture of the unit, which demanded careful consideration but is highly variable due to shifting markets and is omitted due to its commercially-sensitive nature.

3.3 Optical Design Concept

The main performance goal for the instrument was to maximise the far-range optical signal to noise ratio of the instrument while maintaining adequate close-range detection capability. The key manufacturing considerations were to achieve a compact and lightweight design, to minimise the number and cost of optical components, and to limit the complexity and therefore the cost of optical assembly and alignment. Perhaps the most significant constraint on the optical design was compliance with the Class 1M laser safety rating which limits the allowed power density output for a collimated or divergent beam [118]. As is often the case with design, the optimisation process for this prototype involved balancing competing demands of different aspects of the instrument.

Existing lidar ceilometer instruments for general meteorology and aviation applications use biaxial optics (Belfort, Eliasson, AWI, Jenoptik) or common, coaxial optics (Vaisala). The biaxial instruments have the advantage of good optical isolation, while the common optics instrument has the advantage of increased transmitter-receiver overlap at low altitudes. Due to the complexity involved in avoiding optical cross-talk as well as possible commercial issues arising from a Vaisala patent on common optics [119], this approach was not considered. Instead, a novel biaxial system involving a divided aspheric lens was employed in order to combine the advantages of the two standard approaches. Since the transmitter and receiver each has its own optical channel, laser light leakage is prevented and good optical isolation is achieved. Due to close proximity of the optical axes, overlap at low altitudes is greater than that of a full-lens biaxial system with the same laser divergence and receiver field of view. It is noted that early in the design process a similar arrangement with mirrors was considered, but this approach was rejected due to the complexity
required in order to minimise partial blocking of the transmitter and receiver apertures by the laser and detector modules.

Figure 3.1: Prototype optical configuration.

The prototype lidar ceilometer design that has been developed is a biaxial system utilizing lenses of focal length f=335mm (at 905nm), a pulsed diode laser operating at 905nm, and an avalanche photodiode (APD) detector as shown in Figure 3.1. The laser beam is isolated from the detector by a dividing wall. This design is innovative in that a single aspheric objective (with a clear aperture diameter of 150mm) is divided into two elements of semicircular aperture, with optical axes separated by 21mm. One of the halves is used exclusively in the receiver and the other is used exclusively in the transmitter of this biaxial lidar. The laser is tilted slightly in order to fill the transmitter half lens, but since the laser is placed at the focal point of the lens, the collimated beam leaving the instrument is vertical. The laser and detector are mounted in removable modules on a base plate not shown in this diagram. In addition, each channel includes an optical filter that transmits the laser light but rejects

other wavelengths to limit optical noise due to background light and protect the laser and detector components from incidental focused solar radiation.

Besides the relatively large area of the lens apertures, which improves the optical signal to noise ratio, and the close proximity of optical axes, which enhances overlap at close ranges, there are a number of reasons for selecting this design. First, the most cost-effective high power pulsed laser sources are laser diodes for which the divergence angle in one axis is typically about twice that of the other due to diffraction at a slit-shaped exit aperture. Because of this, the elliptical beam of the laser approximately fills half of a round lens and therefore uses the transmitter optic efficiently without the need for beam shaping optics if the numerical aperture of the lens is matched to the wider divergence angle of the laser. Secondly, if an appropriate detector area is selected for a given lens focal length, the detector itself acts as the fieldstop; this eliminates the need for an additional aperture in the optical system. Another major advantage of this design is the fact that cutting two lenses from one element gives much closer focal length agreement between the two halves than would be expected, due to manufacturing tolerances, between two elements polished individually. Provided the rotational tolerances of the lens specification are acceptable, each half of the divided lens produces a focal point at the same effective distance, making for, effectively, a shared focal plane. This allows the laser and detector to be focused in parallel by translation of the plate on which they are both mounted. Since the modules need to be field-replaceable, they must be pre-focused before being installed in the optical assembly, and therefore this parallel focusing technique can be exploited for ease of alignment. Finally, the divided-lens configuration allows the optical assembly to be compact and the aspheric component itself also offers potential cost savings over typical two-lens optics.

Through efficient use of a small number of optical components, the cost and complexity of the design are minimised without compromising performance. In the following sections, signal to noise ratio, overlap, and the primary optical components and their arrangement are discussed in detail.

3.4 Design Approach for Optimisation of Optical Signal to Noise Ratio

A good signal to noise ratio (SNR) is the key to making sensitive measurements with an eye-safe lidar system, particularly during the daytime when background light is an issue. The class 1M laser safety rating restricts the laser power density that can be transmitted, so simply increasing the laser output power until the desired signal returns are detected is not an option unless the transmitter area is increased and the power density maintained. Gregorio et al. [75] presented a method, recently expanded [40], for evaluating ceilometer optical designs whereby the receiver lens area and field of view were adjusted and the resulting SNR and overlap calculated. The method used in this chapter is similar, though the transmitter aperture area, and correspondingly the total laser power output, were also varied for SNR analysis, and the SNR is evaluated in relative terms compared to a reference instrument rather than in absolute terms.

Assuming that a standard silicon APD detector is used, that a variety of laser powers are available, and that laser divergences can be matched with the numerical apertures of the lenses, the key variables for the optical design are the area of the laser transmitter optic, A_T , the area of the receiver optic, A_0 , the bandwidth of the laser, $\Delta_{\lambda T}$, the bandwidth of the optical bandpass filter, $\Delta_{\lambda R}$, the maximum half angle divergence of the laser transmitter, θ_T , and the half angle field of view of the receiver, θ_H . Note that the laser transmitter divergence θ_T was not allowed to exceed the field of view of the receiver θ_H .

For detection of a discrete random process, the signal to noise ratio, SNR, can be expressed as

$$SNR = \frac{P}{\sqrt{N_B + P}},\tag{3.1}$$

where P denotes signal counts and N_B denotes noise counts. In most daytime lidar applications, a far-range signal from a target at distance r is dwarfed by background light so that $N_B >> P(r)$, and the approximation

$$\operatorname{SNR}(r) \approx \frac{P(r)}{\sqrt{N_B}}$$
 (3.2)

can be applied.

The range-resolved measured signal power, P(r), at a given laser wavelength can be determined using the standard single-scattering elastic lidar equation given in Equation 2.16. If the system constant from Equation 2.15 is expressed fully, the lidar equation can be written

$$P(r) = P_0 \frac{c\tau}{2} \eta A_0 \beta(r) \frac{O(r)}{r^2} \left(e^{-2\int_0^r \alpha(r')dr'} \right).$$
(3.3)

By the class 1M laser safety standard [118], the cross-sectional laser beam power density L_D in the plane of the transmitter lens for a given pulse length and repetition frequency is restricted, but if the laser beam is collimated, the total laser power is not. Therefore L_D can be fixed and the area, A_T , of the transmitter lens varied accordingly for comparison of optical design SNR. For the purposes of this discussion, the substitution $P_0 = L_D A_T$ is made such that

$$P(r) = L_D A_T \frac{c\tau}{2} \eta A_0 \frac{O(r)}{r^2} \beta(r) \left(e^{-2\int_0^r \alpha(r)dr} \right).$$
(3.4)

Here L_D is assumed to be uniform in the plane of the transmitter lens to facilitate simplified comparison of possible optical designs, though in reality the beam is likely to have a Gaussian or approximately Gaussian profile.

The noise due to background light can be found using the sky background radiance equation [120],

$$N_B = f(\lambda)\Omega\Delta_{\lambda R}A_0, \qquad (3.5)$$

where $f(\lambda)$ is the radiance in $W/(sr \ nm \ m^2)$ of background light at the centre wavelength of the filter, and Ω is the solid angle describing the receiver field of view.

For a small field of view (FOV) plane angle, the solid angle can be approx-

imated from the full angle receiver FOV, θ_F , by

$$\Omega \approx \frac{\pi \theta_F^2}{4}.\tag{3.6}$$

For simplicity, the half-angle receiver FOV is used for all calculations. If θ_H is the half-angle FOV, the solid angle FOV is expressed as

$$\Omega \approx \pi \theta_H^2, \tag{3.7}$$

and the sky background radiance can be written in terms of half-angle FOV, θ_H , such that

$$N_B = f(\lambda) \Delta_{\lambda R} \pi \theta_H^2 A_0. \tag{3.8}$$

For a uniform laser distribution the daytime optical SNR at range r can be found by substituting Equations 3.4 and 3.8 into Equation 3.2 such that

$$\operatorname{SNR}(r) = \frac{L_D A_T \frac{c\tau}{2} \eta A_0 \frac{O(r)}{r^2} \beta(r) \left(e^{-2\int_0^r \alpha(r)dr} \right)}{\sqrt{f(\lambda) \Delta_{\lambda R} \pi \theta_H^2 A_0}}.$$
(3.9)

Assuming other parameters such as system efficiency and laser pulse length and repetition rate are equal, that comparison lidar measurements are made at the same time, location, and direction (backscatter and attenuation over the path length are fixed, as is the background light level) and that a comparison range beyond full overlap is used such that O(r) = 1, the optical signal to noise ratio can be simplified to

$$SNR(r) = \frac{A_T \sqrt{A_0}}{\theta_H \sqrt{\Delta_{\lambda R}}} K(r),$$
 (3.10)

where K(r) is

$$K(r) = \frac{L_D c \tau \eta \beta(r) \left(e^{-2 \int_0^r \alpha(r) dr} \right)}{2r^2 \sqrt{f(\lambda)}}.$$
(3.11)

Equation 3.10 reduces optimisation of signal to noise ratio to four parameters. The SNR for an eye-safe instrument with a fixed laser power output density measuring in fixed atmospheric and background light conditions is directly proportional to the area of the laser transmitter and the square root of the receiver area, and inversely proportional to the field of view angle and the square root of the optical filter bandwidth.

The calculated signal to noise ratios of a number of optical designs are given in Table 3.2. The optical arrangements of these designs fall into four categories. The first of these is the configuration of the Vaisala CL31 shown in Figure 3.2. In this configuration a common lens is used for both transmitting and receiving, but a different region of the lens is used for each of these. A ring mirror is used to reflect the outer part of the lens into the detector while the laser beam is transmitted through the hole in the middle. The second configuration is a fully shared common optics system of the type that was used in an older Vaisala model, the CT25k. This configuration, used in designs CLCO and G in Table 3.2, is shown in Figure 3.3. Figure 3.4 shows the typical dual-lens configuration used in designs A, B, and H, as used by AWI and Eliasson. The fourth design type, shown in Figure 3.5 is the divided-lens biaxial design that was selected for the prototype design C, and was also used in designs D, E, and F.

Design	Lens Dia.	Lens Configuration	Focal	Half-angle	Half-angle	Optical Filter	SNR
			\mathbf{Length}	Laser Divergence	FOV	FWHM	
$CL31^*$	96mm	coaxial 50% - 50% by area	$300 \mathrm{mm}$	$0.7\mathrm{mrad}^\dagger$	0.83mrad	36nm	1
$CLCO^{\ddagger}$	$96 \mathrm{mm}$	coaxial common optics	$300 \mathrm{mm}$	$0.39 \mathrm{mrad}$	$0.83 \mathrm{mrad}$	$36 \mathrm{nm}$	0.7
А	$96 \mathrm{mm}$	biaxial whole lenses	$300 \mathrm{mm}$	$0.39 \mathrm{mrad}$	$0.83 \mathrm{mrad}$	$36 \mathrm{nm}$	2.8
В	$106 \mathrm{mm}$	biaxial full lenses	$335 \mathrm{mm}$	$0.35 \mathrm{mrad}$	$0.75 \mathrm{mrad}$	$36 \mathrm{nm}$	4.3
C	$150 \mathrm{mm}$	biaxial half lenses	$335 \mathrm{mm}$	0.35mrad	$0.75 \mathrm{mrad}$	36nm	4.3
D	$150 \mathrm{mm}$	biaxial half lenses	$335 \mathrm{mm}$	$0.35 \mathrm{mrad}$	$0.75 \mathrm{mrad}$	$18 \mathrm{nm}$	6.0
E	$150 \mathrm{mm}$	biaxial half lenses	$335 \mathrm{mm}$	$0.35 \mathrm{mrad}$	$0.45 \mathrm{mrad}$	$36 \mathrm{nm}$	7.1
ĹŦ	$150 \mathrm{mm}$	biaxial half lenses	$335 \mathrm{mm}$	$0.35 \mathrm{mrad}$	$0.45 \mathrm{mrad}$	$18 \mathrm{nm}$	10.0
G^{\ddagger}	$150\mathrm{mm}$	coaxial common optics	$335 \mathrm{mm}$	$0.35 \mathrm{mrad}$	$0.75 \mathrm{mrad}$	$36 \mathrm{nm}$	8.5
Η	$150\mathrm{mm}$	biaxial full lenses	$335 \mathrm{mm}$	$0.35 \mathrm{mrad}$	$0.75 \mathrm{mrad}$	$36 \mathrm{nm}$	12.0
* Design	information	from $[59]$ and $[121]$, lens are:	a sharing a	assumed to be 50% pe	r channel, filte	r bandwidth estin	nated 36nm
† 0.39 ${ m mrs}$	ad used in ov	erlap calculation as discusse	d in text				
‡ 50% be	amsplitter in	cluded (laser power doubled	to compe	nsate, receiver lens are	ea multiplied b	by $\sqrt{2}$ to account 1	for $losses$)

4	Designs
	Uptical
• • •	Various
	NR OI
	Kelative S
	Table 3.2:

Figure 3.2: Optical configuration of the Vaisala CL31.

Figure 3.3: Optical configuration of a fully shared common optics system as used in design CLCO and design G.

Figure 3.4: Standard dual-lens biaxial configuration used in designs A, B, and H.

Figure 3.5: Divided lens configuration with optical axes offset as employed in prototype design C as well as in designs D, E, and F.

Figure 3.6: Divided lens configuration of design Modified C with minimal offset of optical axes.

A fifth arrangement, based on design C, is called Modified C. In this design the lens is divided in half for full optical isolation, but the gap between the channels is minimised such that it is just big enough for a thin optical barrier. In order to get the two channels as close together as possible, a fibre-coupled laser and detector are used, with a slit aperture on the laser output fibre to match the elliptical diode laser beam divergence to fill the half lens. This design, shown in Figure 3.6, has the same SNR as the prototype design C.

As the lidar prototype considered in this work is intended for commercial use, the optical design of a successful commercial instrument, the Vaisala CL31, was used as a reference for optical SNR. The four primary SNR parameters from Equation 3.10 were used to compare the signal to noise ratios of a number of possible designs to this reference. Table 3.2 shows the relative signal to noise ratios calculated using Equation 3.10, selecting a K(r) value such that SNR=1 for the Vaisala CL31. After considering size and cost of lenses, optical, mechanical and manufacturing tolerances, and overlap profile, design C with an SNR factor of 4.3 was selected as the optimal design for this instrument.

3.5 Field of View and Overlap Function

By a geometrical process that is described in Chapter 4, the overlap function that determines effective receiver response with range was calculated for the designs from Table 3.2 as shown in Figure 3.7. For all designs considered, a laser diode laser with an emitter stripe of 0.235mm was used; the light emitted from this stripe was assumed to be highly multi-mode and therefore incoherent. Also used in all designs was a circular detector of 0.5mm diameter. The receiver FOV and transmitter divergence were varied only by adjusting focal length. The primary variables considered were the size, shape, and position of the lenses. For biaxial arrangements besides Modified C, the spacing between the closest edges of the lenses was 21mm.

Figure 3.7: Calculated overlap function for possible lidar prototype optical designs. Half-angle FOV=0.75mrad unless otherwise noted.

Note that since the parameters of the laser and possible beam shaping optics have not been published for the Vaisala CL31, these had to be estimated in its overlap calculation. In an effort to make a direct comparison between optical configurations, the same 0.235mm laser stripe with no beam shaping optics was assumed for all designs, giving the CL31 a fast-axis laser divergence of 0.39mrad rather than the specified 0.7mrad. Since the distribution of the CL31's outgoing laser beam was not known, its overlap was calculated using both uniform and Gaussian distributions, but this was found to have negligible influence on overlap. While a full overlap height of approximately 70m has been reported for the CL31 in an article by Martucci et al. [61], the estimation here places it closer to 100m. Should more details of the CL31 design become available, this calculation could be refined accordingly. Note that it is not just the lens arrangement, but also the faster laser divergence and wider field of view that contribute to the fast overlap turn-on of the CL31. Use of a 0.83mrad half-angle (CL31) rather than a 0.75mrad (design C) gives its overlap function a greater slope than the other designs as can be seen in Figure 3.7, but this also reduces the signal to noise ratio by approximately 10%.

Perhaps the most important conclusion from these calculations is that design B, based on 106mm diameter circular lenses, each with the same area as half of a 150mm diameter lens, has the same optical SNR as the prototype design C but takes approximately 150m farther to reach full overlap. Also of interest are the variations between shared optical axis configurations. First, design CLCO, which is identical to the CL31 except that it has fully shared common optics rather than 50%-50% shared optics, was shown to have an overlap very similar to that of the CL31. Second, it is interesting to note the overlap difference between the 150mm common optics arrangement G, based on a fully-shared lens, and the divided-lens design, Modified C, with only a thin divider between its two half lenses and therefore essentially no offset between optical axes. Design Modified C takes about 20m longer to reach full overlap than design G. Though the Modified C design, in turn, reaches full overlap about 20m sooner than the prototype design C, this difference was not considered large enough to justify the cost and complexity of implementing it.

It was shown in Equation 3.10 that the optical SNR of the instrument is inversely proportional to the field of view (FOV) angle θ_R . From this perspective, the smallest possible FOV is desirable. Also, a smaller FOV means less multiple scattering contribution to the signal and therefore a more accurate inversion by the single-scattering lidar equation. However, a smaller FOV also means a longer distance to overlap onset and full overlap, which in turn means reduced close-range sensitivity of the instrument. Also, as the detector aperture size (and therefore FOV angle) approaches the laser aperture size (and therefore divergence angle), alignment tolerances become tighter and it becomes increasingly difficult to align the system without wasting signal by failing to focus it onto the detector. In addition, if the detector aperture is larger than the laser aperture, the instrument will be less sensitive to defocus effects for near-range signals. For these reasons the detector aperture was constrained to be no smaller than 0.5mm diameter, making it approximately 2 times larger than the 0.235mm laser aperture length and allowing for realistic alignment and focus tolerances.

There is one more consideration that must be made regarding overlap. For good close-range sensitivity, overlap onset is required at the shortest possible distance, but detector saturation due to strong near-range returns should be avoided. To balance these concerns, along with the concerns discussed previously in this section, the overlap profile of the divided-lens design C was deemed to be favourable. Note that the turn-on of its overlap is clearly faster than those of traditional biaxial designs B and H. In order to check the the accuracy of the calculated overlap, the overlap of a prototype instrument was characterised by the measurement method described in Chapter 4. As will be shown, the overlap of the design implemented into an actual instrument agreed throughout most of the profile to within ± 15 m of the calculated overlap and provided a calibration that could allow for reasonable inversion for close range aerosol detection.

It is important to note that overlap onset is not the same as minimum detection range, since multiple scattering of close range aerosols, such as water droplets in fog, makes for significant lidar returns even before overlap onset. The near-range response of the prototype instrument for cloud detection by multiple scattering was tested by aiming the instrument at cloud created by a steam pressure washer. The results of these measurements are shown in Figure 3.8 as raw, non-range-corrected signals that illustrate sensitivity to cloud droplets at close range; the top panel shows shows the noise signature without cloud detection, the centre panel shows pre-overlap signal detection from 10m, and the bottom panel shows greater signal detection amplitude from 20m (0.02km), where overlap onset increases the detected signal level.

Figure 3.8: Design C pre-overlap multiple scattering cloud returns (– polarity). Top: Electronic noise signature only. Centre: Cloud at approximately 0.01km. Bottom: Cloud at approximately 0.02km. Courtesy Campbell Scientific, Ltd.

3.6 Laser Considerations

The first consideration for laser selection is the wavelength of the laser. For elastic lidars, the key consideration is atmospheric transmittance of the wavelength. As shown in Figure 3.9, there are a number of wavelength bands in the spectral region from the ultraviolet through the near-infrared that allow good transmission of light through the atmosphere.

Figure 3.9: Modelled atmospheric transmittance as a function of wavelength, reproduced from [122] (public domain).

In addition to considering transmittance, the solar spectrum needs to be considered in order to evaluate background light levels at various wavelengths. Figure 3.10 shows the solar spectrum both outside the atmosphere and at sea level, and also indicates the primary absorbing species for each major absorption band. While of course lower transmittance at a given wavelength means less solar radiation at that wavelength, taking the black-body spectrum of solar light into consideration reveals, for example, that while transmittance at 1064nm and 1550nm are similar, both being greater than 0.85, the solar radiation level at 1550nm is approximately half of what it is at 1064nm.

Figure 3.10: Solar spectrum above the atmosphere and at the Earth's surface, reproduced from [123] (used with permission from Oriel Instruments, a Newport Corporation Brand).

Since visible laser light can distract pilots or attract unwanted attention to the presence of an expensive meteorological station, lidar ceilometers are typically designed to be invisible to humans. The 1064nm NdYAG wavelength, widely used in research lidars due to a high atmospheric transmittance of around 0.85, is also used in high cost ceilometers such as the Jenoptik CHM 15k, however, this technology is prohibitively expensive for a low cost ceilometer. Due to reasonable atmospheric transmission at 905nm of approximately 0.6, as well as the wide availability of inexpensive diode lasers at 905nm and silicon APD detectors sensitive to 905nm, this is the typical wavelength selected for lidar ceilometers.

Another wavelength, 1550nm, is a good candidate for use in invisible wavelength eye-safe lidar. According to Saito et al. [124], because absorption of 1550nm light by liquid water in the the lens and cornea of the human eye limits retinal damage, the maximum permissible exposure to this wavelength allowed by laser safety regulations is, by their calculations, approximately five orders of magnitude greater than that allowed near 1μ m. They also emphasised the wide availability of components at this wavelength due to its use in telecommunications applications. As mentioned previously, an additional advantage of 1550nm is the fact that the solar background level is about 50% lower than it is at 905nm, and besides this it has an atmospheric transmission of around 0.9, 50% greater than that at 905nm. However, the same higher absorption by water of 1550nm light that makes it "eye-safe", approximately 175 times greater than that of 900nm light [125], means that the liquid water droplets being measured in the atmosphere would be expected to attenuate a 1550nm beam significantly more than a 905nm beam and therefore lessen the gains somewhat. But due to the much higher laser safety limit and lower background light level at 1550nm, there would still be a clear advantage at this wavelength over 905nm if all else were equal.

Considering the cost constraints placed on the prototype, 1550nm technology was found to be prohibitively expensive and not technically viable. As of 2007 when the wavelength for the current prototype was selected, diode lasers at 1550nm were found to be approximately 2.5 times the cost of 905nm diode lasers, which are typically priced in the vicinity of £100 in quantity, and were rated to supply only 60% of the power of 905nm diodes. Indium-galliumarsenide APD detectors at 1550nm were approximately 6 times the cost of, had only 15% as much gain as, and generated significantly more noise than silicon APDs optimised for 905nm. In order to see optical SNR advantages, laser technology such as fibre or solid state lasers would be needed, and the least expensive fibre lasers were found at the time to start at around £1500-2000. For these reasons, 1550nm was not pursued. However, if 1550nm laser and detector technology becomes available at significantly lower prices, this could provide a major step forward in terms of signal to noise ratio in the future.

Ultraviolet lasers are another possibility for invisible wavelength lidar sources. Eye-safe lidars have been manufactured in the ultraviolet, for example at 355nm [126]. Atmospheric transmittance here is approximately 0.3, or half of its value at 905nm, but solar background irradiance is also halved. Lidars at this wavelength again rely on the same expensive Nd:YAG solid-state laser technology that is used at 1064nm, but here the 3rd harmonic wavelength is used. Therefore, like 1550nm, UV wavelengths do not currently provide sufficient cost advantages to prompt a shift away from 905nm for this application. After consideration of these options the 905nm wavelength was chosen, and after some evaluation of various 905nm diode lasers, a laser with the specification shown in Table 3.3 was selected for the instrument.

Peak Power	135W
Centre Wavelength	$905\pm5nm$
Spectrum Full Width Half Maximum	8nm
Maximum Pulse Duration	$150 \mathrm{ns}$
Maximum Duty Cycle	0.1%
Divergence Parallel to Junction Plane	12° at 50% Peak Intensity
Divergence Perpendicular to Junction Plane	$20^{\rm o}$ at 50% Peak Intensity
Drift of Centre Wavelength With Temperature	$0.27 \mathrm{nm} \mathrm{per} \ ^{\mathrm{o}}\mathrm{C}$
Emitter Area	$235\mu m$ by $200\mu m$

Table 3.3: Laser parameters at 21C

Since the optical range resolution of a pulsed lidar is considered to be half the distance travelled by light during the pulse duration as discussed in Chapter 2, a laser pulse length of 100ns was specified in order to achieve the desired optical range resolution of approximately 15m. To maximise the light output by the laser, the repetition frequency was set to 10kHz. For a 100ns pulse duration, a frequency of 10kHz maximises the duty cycle of the laser at its specified limit of 0.1%. At this repetition frequency a pulse propagates 32km before the next pulse is sent, which means, taking into consideration the round trip nature of light in a lidar measurement, that the theoretical range limit of the instrument is 16km. Applying the laser safety guidelines given in the class 1M standard [118], in any 7mm diameter aperture (typical human pupil size in darkness) the maximum average instrument power output density at 910nm with 100ns pulse length and 10kHz repetition frequency may not exceed 0.298mW. This is the fundamental optical constraint on the instrument.

When this safety limit is reached, the total power measured outside the prototype (outside the environmental enclosure window) during each pulse is 30W, which means a pulse energy of 3μ per pulse. Before the laser beam leaves the instrument, however, its intensity is reduced by a number of optical effects that must be taken into consideration in order to achieve the desired output level. The external window, AR-coated on the inside but not on the outside, is expected to attenuate the power by 5%, and the AR-coated lenses have 1% reflectivity per side. In addition, the optical filter used to shield the laser from direct solar exposure attenuates the power by up to 20%. Finally, since the half-lenses are designed with an F/# of 2.233 (numerical aperture of 0.216) the angular acceptance along the full angle is 25 degrees and along the half angle is 12.5 degrees. This means that the laser divergence (at 50%intensity) of 20 degrees by 12 degrees falls within the acceptance angles of the lenses. However, due to the broad, approximately Gaussian, angular power distribution of the laser, 50% of the laser power is transmitted, while 50% falls outside of the lens aperture. The accumulation of these losses means that in order to achieve the desired 30W output pulse power, the laser must be run at approximately 85W per pulse.

Since beam-shaping optics and prohibitively expensive large lenses were to be avoided in this design, clipping the beam at the 50% intensity points of the angular distribution is helpful for achieving greater total power out of a lens of a given size. This is because the safety rules limit the power of the maximum intensity point rather than the total power output. Figure 3.11 shows this effect. The solid line shows the power distribution clipped at 50% of the peak, and the dashed line shows it clipped at 1%. Since the peak power is limited to the same value for any laser distribution, calculating the area under the curves shows that for this case, collecting close to 100% of the laser light would reduce the transmitted laser power by half due to eye-safety rules. Thus excluding half of the laser light creates a more even power distribution and approximately doubles the amount of light that can be transmitted by the instrument.

Figure 3.11: Comparison of power output for different laser distributions though a one-dimensional aperture

In order for the laser to maintain 85W pulses reliably at temperatures of 40-60°C, a 135W laser was selected. Since this laser has two stacks of emitters, the estimated lifetime of this laser running significantly below its maximum power output is much better than that of a single emitter stack running at full power. Laser mean time to failure, MTTF, is calculated in years of operation by the manufacturer as follows [127],

MTTF =
$$\frac{1.7 \times 10^{21}}{365 \times 24} \left(\frac{P_0}{L}\right)^{-6} \tau^{-2} F_R^{-1} f(T),$$
 (3.12)

where P_0 is the pulse power in watts, L is the emitter length in μ m (235 μ m for the lasers considered), τ is the pulse width in ns (100ns for this system), F_R is the pulse repetition frequency in kHz (10kHz for this system), and the function f(T) is a multiplier based on laser temperature, shown in Figure 3.12. From Equation 3.12 and Figure 3.12 it is clear that for a given emitter length, pulse length, and pulse repetition frequency, the calculated mean time to failure of the laser reduces significantly with increases in either power or temperature. By application of the formula in Equation 3.12, a double emitter stack 135W laser running at 85W at 50°C has a calculated mean time to failure of 19 years, whereas for a 70W single emitter stack laser running at 70W at 50C this is approximately 1 year.

Figure 3.12: Temperature-dependent multiplier f(T) contribution to MTTF given by [127].

Since the centre wavelength of the laser drifts with temperature, limiting the range of temperatures of the laser reduces the amount of possible drift. Since the instrument is not hermetically sealed, cooling of the laser was not considered due to concerns over possible condensation. Instead of a cooling or a combined heating/cooling system, a simple resistive heating system was used to keep the laser at 40°C. Since the hottest temperature expected inside the instrument is 60°C, the laser temperature is kept within a 20°C range and the centre wavelength of the laser can drift no more than 5.4nm. In the middle of this range at 50°C, the centre wavelength of the laser is 912nm.

3.7 Detector Considerations

Due to reasons of cost and stability, photomultiplier tubes were not considered for this instrument. Because of its very good performance and stability at a low cost, an APD was the only detector type that was seriously considered. While APDs optimised for photon-counting are available, the count rate of these devices is limited, due to recovery times of around 100ns, to approximately 10MHz; analogue-mode APDs, on the other hand, can handle bandwidths in the GHz range [128]. APDs optimised for analogue use are therefore the better choice for ceilometer measurements made under high background light conditions. An analogue-mode silicon APD optimised for high responsivity near 900nm was selected for the prototype as specified in Table 3.4.

Table 3.4: APD Parameters

Detection Area Geometry	0.5mm diameter circle
Peak Responsivity	860nm
Spectral Response Range	440-1100nm
Responsivity at Gain of 1	$0.52 \mathrm{A/W}$
Quantum Efficiency at Gain of 1	72%
Typical Gain in Instrument	100

The gain of an APD increases approximately exponentially with increased reverse bias voltage up to its breakdown voltage where it becomes unstable. Since APD gain is quite sensitive to temperature, the performance of the selected APD was characterised at a number of temperatures to simulate possible drift due to changes in the prototype temperature over its required operating range. This was done by supplying the APD with a fixed optical input and varying the reverse bias voltage at each of five temperatures ranging from 30°C to 70°C. Both the gain and the signal to noise ratio were measured at each point. Because gain cannot be measured directly, a gain of 100 was assigned to the APD at a standard operating point of 30°C and 270V reverse bias as approximated from the specification. The results of the gain measurement are shown in Figure 3.13. Note that for 30°C and 40°C the amplifier was saturated beyond the points shown.

Figure 3.13: APD gain as a function of reverse bias voltage at five different temperatures.

These measurements show the expected APD behaviour of exponential increase with reverse bias voltage. They also reveal that beyond 50°C the maximum gain achievable before breakdown voltage is significantly lower than that reached at lower temperatures. Since the instrument is rarely expected to operate beyond 50°C, and since the APD is still functional at these greater temperatures, this is not of great concern.

In order to evaluate the noise level of the APD for the data, the signal to noise ratio was determined as shown in Figure 3.14. Interestingly, the maximum signal to noise ratio of the APD does not occur at the point of maximum gain. The maximum SNR of about 200 turns out to be easily achievable at up to 50°C, and only decreases by about 25% at 60°C compared with the gain which drops off more dramatically.

Figure 3.14: APD signal to noise ratio as a function of reverse bias voltage at five different temperatures.

Since a variable gain amplifier can be used to boost gain without compromising signal to noise ratio, the SNR of the APD is the key parameter for optimisation. From these measurements it can be concluded that keeping the temperature of the APD below 50°C would be helpful but that the instrument can run at higher temperatures without a prohibitive reduction in performance. Note that in practise a cowling around the internal enclosure provides shade and allows for airflow, thereby helping to reduce the maximum daytime temperature of the enclosed optical system.

3.8 Optical Bandpass Filter Specification

An optical bandpass filter is used to minimise the amount of background light outside of the laser spectrum that reaches the detector. The filter plays a second role, which is to prevent direct sunlight from damaging the laser or detector should the instrument be pointed incorrectly. For this reason, identical filters are placed in front of the laser and the detector.

The optical filter bandwidth specification depends on the width of the laser spectrum, the laser's centre wavelength tolerance over the whole range of operating temperatures, the range of angles of incidence, filter manufacturing tolerances and the required transmission and attenuation. Based on these parameters, a custom dielectric Fabry-Perot interference filter has been specified as shown in Table 3.5.

Table 3.5: Optical Bandpass Filter Manufacturing Specification

Parameter	Specification
Filter Centre Wavelength at Normal Incidence	915 ± 4 nm
Filter Centre Wavelength at Half of Maximum	912 ± 4 nm
Angle of Incidence of Converging Beam	
Filter FWHM	36 ± 4 nm
Transmission in Bandpass Region	> 80%
Average Solar Blocking Outside Bandpass	> OD3
X-ray to 1600nm	

Given the laser spectrum of centre wavelength 912 ± 5 nm at 50°C with full width at half maximum (FWHM) of 8nm, the filter was designed such that the FWHM of the laser spectrum is contained within the FWHM of the bandpass region. Table 3.6 shows how each of the factors affecting the bandpass filter spectrum is included to produce the specification for the filter. Note that though the default laser temperature in the instrument is 40°C, it can under extreme conditions reach as high as 60°C. Because of this the filter is specified for 912nm, the centre wavelength of the laser at 50°C. Note also that since wavelength shift of the filter with temperature is an order of magnitude smaller than that of the laser, it is inconsequential over this range of temperatures.

The centre wavelength of an interference filter decreases with increasing angle of incidence. Since angles from 0 to 12.5 degrees are to be accepted by the filter, this shift must be considered. Following a filter bandpass shift calculation given by Andover Corporation [129], an effective centre wavelength shift of approximately -3nm was determined. Therefore 3nm was added to the 912nm laser centre wavelength in order to establish a 915nm centre wavelength of the filter at normal incidence to be specified to the filter manufacturer.

The additive effects of all of the sources of filter width specification and tolerances are shown in Table 3.6. This table illustrates how each parameter pushes out the maximum bandpass turn-on and turn-off points. Note that a 32nm bandwidth is required prior to consideration of filter bandwidth manufacturing tolerances of ± 4 nm. Since this tolerance means that the width of the filter could be 4nm narrower than specified, the specified width must therefore be 36nm to ensure that the FWHM spectrum of the laser always stays within the FWHM bandpass region of the filter.

Parameter	Contribution	λ Min	λ Max
Laser Centre Wavelength at 50° C	912 ± 5 nm	907nm	$917 \mathrm{nm}$
Laser Centre Wavelength Shift for $\pm 10^{\circ}$ C	± 3 nm	904nm	920nm
Laser 8nm FWHM Spectrum Bandwidth	-4nm, $+4$ nm	900nm	$924 \mathrm{nm}$
Manufacturer Filter Centre λ Tolerance	± 4 nm	896nm	928nm
Manufacturer Filter FWHM Tolerance	-2nm, +2nm	894nm	930nm
Angular Distribution Correction	+3nm	897nm	933nm

Table 3.6: Optical Bandpass Filter Width Contributions

As shown earlier in this chapter in Equation 3.10, the signal to noise ratio of the optical design is inversely proportional to the square root of the filter bandwidth. In order to further improve the SNR, filter bandwidth could be decreased by reducing the laser centre wavelength tolerance through temperature tuning or wavelength stabilisation, by selecting a laser with a narrower spectrum or narrowing the laser spectrum by using a narrower filter after the laser, or by collimating the receiver beam and tightening the angle-dependent filter width tolerance. All of these would require added cost or complexity, with the possible exception of using a narrower filter in front of the laser. The problem with this approach is the significantly higher laser power that would be required and would therefore reduce laser longevity.

One essential feature of the filter is its ability to protect the optoelectronic components from direct focused sunlight. After considering various possibilities, including a broadband reflective coating on the lenses, it was determined that the simplest and most cost effective way to protect the laser and detector from direct focused sunlight was to place a bandpass filter with an extended blocking region in front of each component.

BK7, the glass used for the lenses, transmits light from 330nm to 2100nm. Using numerical integrals of the solar irradiance data provided by the American Society for Testing and Materials [130] over that region, it was determined that $858W/m^2$ could be transmitted by BK7 in direct light. For each of the half lenses the clear aperture area is approximately $0.01m^2$, putting the potential focused power at 8.58W. If this energy were focused to an area of $1mm^2$, the power density would be $8.58MW/m^2$. The fact that different wavelengths of light focus at different points (for example, 400nm light focuses at 320mm, 905nm focuses at 334mm, and 1800nm focuses at 342mm) helps to further reduce the power density incident on the detector or laser. To protect the components from potentially damaging radiation, the bandpass filter was designed with an optical density of 3 (10^3 reduction) over a blocking region from UV to 1600nm while still maintaining a high transmission of up to 85% in the bandpass region.

3.9 Lens Considerations

In order to meet the performance requirements of the instrument using only one lens per channel without corrective optics, there are two options, a doublet or an aspheric lens. In order for the lens to accept slightly more than the 20 degree 50% intensity angular distribution of the laser, an F/# of approximately 2 is required. As discussed previously, because of safety limitations on the laser power density transmitted by the instrument, a large optical area on the transmitter lens is required in order to obtain a good optical signal to noise ratio. Increasing the area of the receiver lens also improves the SNR. A lens diameter of 160mm (clear aperture is 150mm) was chosen as a large yet affordable and manageable size. Since a doublet with F/# = 2 tends to be extremely thick and heavy, as well as expensive, two types of aspheric lenses were tested. First, an inexpensive fire-polished aspheric lens was purchased off the shelf. Second, a custom design for aspheric lenses was generated and optimised using OSLO ray-tracing software [131], and manufactured to specification. This lens was designed to produce a geometric spot radius of $5\mu m$ at focus for a wavelength of 905nm.

3.9.1 Characterisation of Aspherical Optics

Two aspheric lenses from different suppliers were characterised based on the results of surface form measurements. This section presents the results of this analysis. Note that due to the time-intensive nature of aspheric surface profile measurements, only one lens from each supplier was measured.

Characterisation of Fire-polished Aspheric Lens

The fire-polished condenser lens tested is OEM lens AOI114 from Align Optics Incorporated, based in Florida, USA. This lens was used for the lidar test prototypes, with the lenses cut in half along a diameter. This lens has an effective focal length of 335mm and a diameter of 160mm. It has one aspheric side and one spherical side with a large radius of curvature. A whole, uncoated lens was used for characterization. Using a Taylor Hobson Talysurf PGI 1250 (now called Talysurf PGI Dimension) aspheric form measurement system [132], stylus-based contact surface measurements were made of both sides of the lens. After the best-fitting surface formula for the aspheric side and the best-fitting radius of curvature for the spherical side were determined by the Taylor Hobson analysis software, the form information was entered into OSLO for ray tracing analysis.

With the clear aperture of the modelled lens set at 78mm and the wavelength set to 905nm, ray tracing indicated that the spot radius at focus would be 0.2878mm (about 100 times the diffraction limit) at a focal distance of 330.35mm from the back surface of the optic. An additional measurement of the aspheric surface was made with the lens rotated 90 degrees from its original position. When analysed by the same method this data indicated a spot radius of 0.2772mm at a focal distance of 330.56mm.

In order to study the effect of this minimum spot size limit, the image of the laser stripe was convolved, by a method similar to that detailed in Chapter 4, with the resolvable spot size of the lens to account for the blurring of the laser image by the transmitter lens. This result was convolved with the same minimum spot size to account for the blurring effects of the receiver lens.

The fractional power of the doubly-convolved laser image collected as a function of detector radius was then calculated as shown in Figure 3.15. From this it can be seen that only about 50% of the laser energy that could be detected is collected by a detector with radius 0.25mm. Because of this, the fire-polished asphere would reduce the potential signal to noise ratio by a factor of at least 2. In addition, the distortion of this lens caused it to produce more than one focal point, making it difficult to judge where the optimum focus location was.

Figure 3.15: Fractional power collected as a function of detector radius using fire-polished aspheric lenses.

Characterisation of Custom Aspheric Lens

A plano-aspheric custom lens design was optimized in OSLO and manufactured to the specification given in Table 3.7. The full details of the lens design are not included because this is commercially-sensitive information. Note that lens manufacturing form tolerances translate to a focal length tolerance of $\pm 2\%$ or ± 6.7 mm which means the mechanical design needs to accommodate this amount of focus variation.

Table 3.7: Custom Asphere Specification

Lens Diameter	160mm
Lens Clear Aperture	150mm
Lens Type	Plano-Convex (Aspheric)
Effective Focal Length	335 mm $\pm 2\%$ (6.7mm)
Resolvable Spot Radius	$5\mu \mathrm{m}$
Maximum Surface Form Deviation	$25 \mu \mathrm{m}$
Anti-reflective Coating	$\leq 1\%$ reflectivity per surface

The planar side of the lens was evaluated by placing it onto an optical flat under a sodium lamp. Eight uniform fringes were measured, indicating a slight spherical sag of around 2μ m, which is well within the specified tolerance.

Figure 3.16: Interpolated minimized surface difference of measured and designed surfaces for custom aspheric half-lens (units in mm).

The aspheric side of half of this lens was measured on the Taylor Hobson asphere characterisation machine. Six measurements across the lens were made starting from near the centre of the lens at 30 degree rotational increments, with the lens rotated around the approximate centre of rotation of the surface. Because this lens was already cut in half when it came from the manufacturer and the Taylor Hobson analysis software was not designed to be used on halflens (it relies on finding the crest of the lens as a reference point), the raw data was entered into MATLAB [133], smoothed, and interpolated. It was then subtracted from surface data generated from the design specification. The position of the measured lens data was adjusted until it had the best fit with the specified data, and the theoretical base radius of curvature of the aspheric surface was also adjusted to find the best fit. The minimized difference is shown in Figure 3.16.

The maximum surface deviation found in this analysis was 35μ m. The deviation was slowly varying rotationally, which suggests that the MATLAB script did not fully correct for the displacement of the centre of the optical surface of the lens from the centre of rotation of the measurement, or that

there was an unknown tilt of the lens. Since it was estimated that these possible errors would have increased the amount of apparent surface deviation, the manufactured surface form was deemed to be close enough to the 25μ m specified form deviation tolerance.

Figure 3.17: Aspheric quality optical measurement setup.

In order to double-check the surface quality measurements with the optical performance of the lens, the following verification test was performed. As shown in Figure 3.17, a 633nm laser beam was directed through a beamsplitter to a 100x objective. The small reflection of the laser beam off of the glass-air interface on the objective side of the beamsplitter was directed by the semireflecting angled surface toward an imaging target where it acted as an alignment reference. The continuing laser beam was focused by the objective to a point at the focal plane of the aspheric lens under test and then diverged to fill the lens. A large, precision-flat mirror ($\lambda/10$) behind the asphere reflected the beam back through the asphere and the objective to the beamsplitter, which in turn directed it to the imaging target, centred on the reference beam. The distance from the objective to the target via the beamsplitter was approximately 640mm or 4 times a microscope tube length, making the magnification of the image on the wall approximately 400x. The aspheric lens could be focused by adjusting its position until the size of the return beam on the target was minimised.

When this measurement was performed, the return laser light had a radius of about 20mm in diameter, which with a magnification of 400x suggests that the focused spot radius imaged by the objective was about 0.05mm. This means that assuming negligible aberration by the components in the optical test system and good optical alignment, a 0.05mm minimum spot radius is formed by light travelling twice through the aspheric lens, giving the lens the capability of focusing a collimated beam to a spot of 0.025mm radius. This is roughly 4 times larger than the 0.0062mm radius calculated from the ideal surface data for 633nm. Back at the design-optimised wavelength of 905nm where the ideal minimum spot radius is 0.005mm, this factor of four times would give an actual minimum spot radius of 0.02mm. By applying the same convolution technique used for the fire-polished lens (the results of which were shown in Figure 3.15), even with a 0.03mm spot minimum radius of the lenses, the slightly blurred image of laser emitter projected by the transmitter lens and reflected back to the receiver from sufficiently large ranges would appear to be about 0.18mm radius after its trip through the receiver lens and would therefore fit easily onto a 0.25mm radius detector.

Based on the characterisation measurements presented, the fire-polished lenses were found to be unsatisfactory due to overfilling of the 0.5mm diameter detector aperture by the blurred image of the laser stripe. The customdesigned lenses, however, were shown to be appropriate for this application, since the slightly blurred image of the backscattered laser stripe can be contained by the 0.5mm diameter detector aperture used in the instrument.

3.10 Mechanical Design of the Optical Assembly

The mechanical design of the optical assembly is a critical part of the prototype instrument design. It must be adjustable for initial alignment and then fully securable for long term stability. To meet an essential requirement of the design specification it must also accommodate laser and detector module replacement without realignment. After careful consideration of various structural arrangements, a sturdy, easy to assemble design was developed.

The initial mechanical design concept for the optical assembly and alignment tooling is shown in Figure 3.18. An aluminium optical tube is compressed between two aluminium plates by threaded rods that are tightened at the bottom into precision machined steel posts. This provides a stable structure on which to mount the lenses at the top, in recessed pockets, and the laser and detector modules at the bottom, on an adjustable optical base plate that slides along the posts during alignment. An alignment plate with positioning tooling is temporarily bolted onto the bottom of the steel posts during alignment until the modules and optical base plate have been secured. This alignment plate has three focus micrometers positioned in a circle around the plate to raise, lower, and level the optical base plate. When the focus has been set and the optical base plate secured, an X-Y translation stage is used to position the laser and detector modules via height-adjustable alignment pins that accommodate focal length differences from lens to lens. Oversized bolt holes in the module plate allow room for X-Y adjustment.

Figure 3.18: Initial mechanical design concept of optical assembly with alignment tools attached.

Several changes to the mechanical design of the optical assembly took place during the process of building pre-production prototypes. With help from the product design team, a lighter, more compact design was created. A schematic representation of this design is shown in Figure 3.19. The major change was the implementation of a two-part optical tube. The convergence of the beams as they travel down towards focus was exploited to reduce the diameter, and therefore the size and weight of the lower tube. Threaded rods were again used for compression, but here they are kept inside the tube and out of the way. The upper tube is machined with a flange to bolt through at the bottom and has tapped holes in the top to which the lens plate can be directly bolted. The tube sections and the plates were all made from aluminium.

Figure 3.19: Schematic of refined mechanical design of optical assembly.
3.11 Optical Alignment

To achieve consistent performance from one instrument to the next, an optical alignment technique capable of focusing the modules to within ± 0.1 mm is required in order to keep the instrument within a reasonable range of focus over the range of temperatures it could experience in deployment. And since the laser and detector modules must be replaceable in the field without realignment of the optics, these modules must be manufactured to a high degree of repeatability. These two constraints led to the development of the optical alignment procedure outlined in this section. Note that since the optical design is based on lenses, not mirrors, the alignment technique also required a means of aligning the system at the invisible 905nm wavelength.

In order to satisfy the field-replaceable module requirement, reference laser and detector modules are needed for use in alignment of each optical assembly. Laser and detector modules are pre-aligned to the reference modules, and all of the optical assemblies are aligned using these same reference modules. In the actual laser and detector modules, the laser emitter and detector aperture are referenced in their respective module plates to the centres of two machined dowel registration holes. These holes mate precisely to two machined alignment dowel pins in the X-Y adjust plate of the optical assembly as shown in Figure 3.20.

The reference module plates are largely the same as the laser and detector module plates, except that in the reference plates the laser or detector apertures are replaced by a 0.2mm diameter aperture which is referenced to the machined dowel registration holes as shown in Figure 3.21. The optical filters are included on the reference plates in order to ensure that the effective focal distance of the system is the same for both the reference modules and the actual modules. If they were left off the reference plates, a mechanical offset would need to be introduced to compensate for the slightly extended focal distance that occurs due to the high refractive index of the filter material.

Figure 3.20: Schematic of laser/detector module plate as it connects to the X-Y adjust plate.

Figure 3.21: Schematic of reference module plate as it connects to the X-Y adjust plate.

Pre-alignment of the modules is done using a microscope focused and aligned to the standard modules, mechanically registered to the laser and detector modules using the same precision dowels arrangement used in the optical assembly. The laser and detector are moved into place with a threeorthogonal-axis plus tilt translation stage, and then they are glued with a proprietary adhesive with high thermal conductivity. Correct laser tilt is checked by imaging the laser beam onto a target before it is glued in place.

Table 3.8: Steps in the optical assembly alignment procedure

- 1. Collimate alignment telescope and attach CCD camera (no IR filter).
- 2. Attach reference modules to the optical assembly.
- 3. Fix optical assembly to the telescope stand, parallel to the telescope.
- 4. Power up 905nm LEDs in the reference modules.
- 5. Adjust height of optical base plate to focus module aperture images.
- 6. Fix positon of optical base plate.
- 7. Adjust X-Y position of modules until images are centred & coincident.
- 8. Fix position of X-Y adjust plates for each module.
- 9. Iterate steps 7 and 8 if slight adjustment is needed.
- 10. Secure optical base plate and X-Y adjust plates.
- 11. Remove reference modules and attach laser and detector modules.

The optical assembly itself can be be aligned by the procedure summarised in Table 3.8. A collimator was constructed using a 12-inch Newtonian telescope mounted in a custom-built mechanical assembly as shown in Figure 3.22. A close-up of the optical assembly mounted under the collimator is also shown in Figure 3.22. LEDs at 905nm are illuminated in the reference modules, and this light propagates through the precision 0.2mm apertures in the modules, through the half lenses, where they are collimated, and then into the alignment telescope. Since the telescope is collimated, when the images of the apertures are in focus at the focal plane of the alignment telescope, they will also be in focus in the optical assembly. A CCD camera sensitive to near infrared light is placed at the focal plane of the telescope and used to view the images of the apertures. When the circular image from each channel is focused, centred, and coincident with the other, optical alignment has been achieved. The adjustable mechanics of the system can then be secured and the reference modules removed and replaced by the pre-aligned laser and detector modules.

Figure 3.22: Left: Collimator in its mounting assembly (note that the telescope mirror objective is at ceiling height). Right: Optical assembly in position under collimator.

3.12 Thermal Effects on Optical Performance

Since the prototype instrument needs to be able to perform over a wide range of temperatures, some analysis of possible effects of this temperature range was required. The two key thermal considerations are focus changes with temperature, and changes in the metal-adhesive-glass system in the lens mount plate.

3.12.1 Focus Displacement Effects on Signal to Noise Ratio

An important consideration regarding the opto-mechanical design is the influence temperature changes have on the optical performance of the instrument. Maintaining adequate focus is of primary concern, as both the lenses and the mechanical assembly change with temperature. Fortunately, focal length changes of the lenses due to temperature changes can be calculated in a straightforward manner using ray-tracing software, and, since the optical tube assembly is nearly 100% aluminium, the focus shifts due to changes in the length of the tube assembly can be accounted for using the linear thermal expansion coefficient of aluminium, 23.1×10^{-6} m/m K [134].

For the custom aspheric lenses that have been designed, an OSLO model of the lens was used to calculate that the focal length decreases by 7μ m per degree C increase in temperature. The aluminium mechanical assembly holding the optics, on the other hand, increases in length with temperature. A 335mm length of aluminium increases by 7.7 μ m per degree C. Since the the focal length decreases with temperature and the mechanical assembly length increases with temperature, the optical and mechanical shifts do not cancel each other out but are instead additive; the plane in which the detector and laser are located is moved 14.7 μ m down from the focal plane for each degree increase in temperature. Therefore, the effect of temperature change on optical signal to noise ratio must be considered. In order to determine the size of the image of the laser at various defocus points, the image of the laser stripe as seen by the detector is determined by the same convolution method used in Section 3.9.1. But here, instead of being convolved with the minimum resolvable spot size of the lens at focus, the laser stripe image was convolved with the larger spot size at a defocused point. The following assumptions were made in this calculation. First, the power distribution of the laser is uniform and is spatially incoherent. Secondly, the spots formed by each half-lens (cut from the same whole lens) are equal to each other in size at each defocus point. Thirdly, the laser and the detector always defocus by the same amount. In addition, this calculation is used to compare SNRs only for ranges beyond full overlap. Note that in contrast to Section 3.9.1, here it is the calculated, not the measured spot size that is used in the convolution.

As an example, at 0.9mm defocus, the fraction of energy in the defocused image that is collected by a detector with a radius of 250μ m was determined as shown in Figure 3.23. Here it is shown that 82% of the received light is incident on the detector when the system is defocused by 0.9mm.

Figure 3.23: Fractional laser power collected by 0.25mm radius detector with +0.9mm defocus of each channel.

The same calculation was performed for a number of defocus distances as shown in Table 3.9. Here for each defocus in the first column, the calculated minimum spot radius is shown in the second column and the fractional power collected by a 0.25mm radius detector at this displacement is shown in the third column. It is shown that up to a defocus of 0.72mm, greater than 90% of the collected laser energy should be seen by the detector.

Laser & Detector Defocus (mm)	Minimum Spot Radius (mm)	Fractional Power on $r = 0.25$ mm Detector
0.55	0.14	0.99
0.6	0.15	0.98
0.7	0.17	0.94
0.72	0.18	0.92
0.82	0.20	0.87
0.9	0.22	0.82
1.0	0.25	0.74
1.25	0.31	0.60
1.5	0.37	0.49

Table 3.9: Effect of defocus on collected laser power

To investigate the SNR implications of temperature changes over the required operating temperature range of the instrument (-40°C to +60°C), calculations were done considering both the effective focal length changes of the lenses and the changes in a 335mm tube length aligned at 20°C, for shifts of -60°C and +40°C, for two different materials, aluminium and steel. The coefficient of thermal expansion for structural steel is 12×10^{-6} m/m K [134], approximately half that of aluminium. The possible extensions of the focal length due to the 0.1mm focus tolerances were also considered for all of these cases. The results of this analysis are shown in Table 3.10. Note that the SNR effects for cooling or heating by the same amount were assumed to be the same by geometric optics.

Assembly Material	Defocus distance, SNR factor for $\Delta 60^{\circ}$ C	Defocus distance, SNR factor for $\Delta 40^{\circ}$ C
Aluminium	$0.9\mathrm{mm} \rightarrow 0.82 \ \mathrm{SNR}$	$0.6\mathrm{mm} \rightarrow 0.98 \ \mathrm{SNR}$
Aluminium Inc. 0.1mm focus tol.	$1.0\mathrm{mm} \rightarrow 0.74 \ \mathrm{SNR}$	$0.7\mathrm{mm} \rightarrow 0.94 \ \mathrm{SNR}$
Steel	$0.7\mathrm{mm} \rightarrow 0.94 \ \mathrm{SNR}$	$0.4\mathrm{mm} \rightarrow > 0.99 \ \mathrm{SNR}$
Steel Inc. 0.1mm focus tol.	$0.8\mathrm{mm} \rightarrow 0.87~\mathrm{SNR}$	$0.5\mathrm{mm} \rightarrow > 0.99 \mathrm{SNR}$

Table 3.10: Effect of temperature shift on signal to noise ratio

What this means is that even though steel undergoes half the length shift that aluminium undergoes for a given temperature change, the length changes of aluminium over the operating temperature range are not extreme enough to limit the performance significantly. Since aluminium is considerably lighter and easier to machine than steel, it is preferred as the primary material used for mounting of the optical assembly. In order to limit the effects of extreme cold, a heater is used to keep the optical assembly from getting colder than -20°C. This means that if the optics are aligned at $+20^{\circ}$ C, the maximum temperature change it should undergo in either direction is 40°C, which means that even with the introduction of focusing tolerances of ± 0.1 mm, the SNR of the instrument should not drop below 90% of its optimum value over the operating temperature range of the instrument.

3.12.2 Effects of Thermal Changes to the Lens Mount Sub-assembly

Mounting two half-lenses in the same plate is somewhat more complex than mounting a circular lens directly into a tube assembly. The lenses were designed with a flat base to help ease the mounting process, but there are a few other important considerations. The lens mount plate is shown in Figure 3.24.

Figure 3.24: Schematic of lens mount sub-assembly. Note that the clear aperture radius of the lens plate is 75mm.

The first issue to consider is thermal displacement of the optical axes. The half-lenses are mounted such that the flat edge of the cut diameter of each plate is intended to be kept tight along the edge of the lens plate it faces. If this is maintained on both sides, the optical axes can be expected to be pushed apart or pulled together slightly as the aluminium plate expands or contracts, respectively. Since there is a 21mm offset between the optical axes at 20° C, this can be expected to change by +/-0.019mm over the maximum temperature change of +/-40°C. As the laser and detector are both mounted in aluminium with the same initial gap between them, they can be expected to experience parallel, matched displacements to the optical axes, thus maintaining straight alignment of both channels.

The second thermal issue for this sub-assembly is the mechanical behaviour of the adhesive over the operating temperature range of the instrument. The gap in the lens plate around the semi-circular side of each half lens allows for differences in thermal expansion of the aluminium and glass, and also allows a channel for the application of adhesive. Due to the large size of the lenses, rigid adhesives are undesirable as even small thermal expansion mismatches can lead to large stresses on the glass which can adversely effect the optical quality of the lenses, or worse, crack them. Therefore, a flexible, high quality silicone sealant is applied in this channel around the half-lens and a fine line of it placed on top of the flat edge of the metal facing the cut side of the lens. This method has proven to be successful in terms of mitigating stresses, but it has been found on occasion to introduce slight tilts of up to 1 degree on each half-lenses. While it is expected that a mechanical solution to this problem will be found prior to production of the instrument, the effect of this tilt on the performance of the lenses was characterised using ray tracing in OSLO. The lens was tilted by an angle of 2 degrees in order to simulate the maximum expected distortion of the signal due to two trips through lenses tilted at angles of 1 degree each. The fraction of radial energy contained within a given radius was calculated using the point spread function at this angle as shown in Figure 3.25.

This analysis shows that if one lens is tilted at 2 degrees (or if both lenses are tilted at 1 degree), the light can be collected within a radius of 0.15mm. Applying this as the minimum spot radius, Table 4.2, shown previously, can be used to determine that 98% of the imaged light would fall within the 0.25 detector radius at 20°C where no temperature-induced defocus is expected.

Figure 3.25: Radial fraction of energy of custom aspheric lens with no tilt (left) and with 2 degrees tilt (right). The green line indicates on axis rays, the blue line indicates full-field (1.5mrad) rays, and the blue-green line indicates half-field rays.

However, it is presumed that this tilt effect would not generally occur at the alignment temperature of 20°C, but rather at extreme temperatures where temperature-induced defocus effects also occur. If the minimum spot radii from these effects are summed in order to approximate their combined effects, at a temperature increase of 40°C, the aluminium-design instrument would see a minimum spot radius of 0.17mm (spot radius due to defocus) + 0.15mm (spot radius due to tilt), or 0.32mm. By looking up this spot radius in Table 4.2 it can be seen that the fractional power received on the detector could be as low as 60% of the imaged power and hence 60% of the optimum SNR. However, this is deemed acceptable considering that the estimated SNR advantage of this design over instruments of a similar class is 4.3 and therefore the minimum SNR after 40% reduction should still be 2.6 times greater than the reference. In addition, since these calculations were done, a number of test gluings of half-lenses showed maximum tilts on the order of 0.1 degrees at extreme temperatures. Therefore the lens tilt effect is not considered to have significant influence on the signal to noise ratio.

3.13 Conclusion

A prototype lidar ceilometer based on a novel divided-lens optical configuration was designed and built in a full environmental enclosure. A photo of the built-up prototype is shown in Figure 3.26. The optimisation of the optical design for good signal to noise ratio and close-range overlap has been discussed, along with manufacturing considerations such as use of low cost components and ease of assembly and alignment. Key characterisation processes for components were used to investigate the influence on the optical signal to noise ratio of the instrument of various optical parameters, and the trade-offs involved in the design process have been emphasised. Although the final instrument refinements and costing are still in progress, the design has already proven to be an excellent compromise between performance and cost. Compared to leading instruments of similar performance class, the maximum range of this design is approximately 25% greater and the estimated selling price about 25% lower.

Figure 3.26: Prototype instrument in full external enclosure with cowelling.

Chapter 4

Determination of Lidar Overlap

4.1 Introduction

A good understanding of overlap of transmitter and receiver channels as a function of height is essential for interpretation of lidar returns. At the very least, the range at which full overlap is first reached should be known; this can be used to set a minimum range from which signal inversion can be performed. If information prior to full overlap distance is required, the overlap profile must be known accurately. If the overlap function is not accurately known then estimates of the aerosol backscatter coefficient at low altitudes will be poor [135]. Because of this, lidar systems frequently invert the lidar equation using only data collected beyond the point where there is high confidence that full overlap has been reached. If overlap can be predicted, however, aerosol extinction in the lowest region of the atmosphere can be measured more accurately, as can derived parameters such as vertical visibility.

As discussed in Chapter 2, for the case of weak, elastic scattering from atmospheric constituents, the backscattered intensity is related to transmission and the backscatter coefficient by the lidar equation. Under the assumption that the effects of multiple scattering are negligible, the lidar equation in its simplest form expresses the backscattered signal power, P(r), at a given wavelength as a function of target range, r, such that [9]

$$P(r) = K_s G(r)\beta(r)T(r), \qquad (4.1)$$

where K_s is the system factor (which includes the area A_0 of the receiver), $\beta(R)$ is the backscatter coefficient at distance r, and T(r) is the transmission term that describes round-trip losses as the laser pulse travels through the atmosphere to and from range r. The remaining factor, G(r), the geometric factor, is the concern of this chapter and is generally stated as

$$G(r) = \frac{O(r)}{r^2},\tag{4.2}$$

where O(R) is the overlap function describing the fraction of laser beam crosssection imaged by the receiver as a function of range. In this expression, the quadratic factor in the denominator is due to the reduction in solid angle subtended by the lidar receiver and is consequently inversely proportional to the square of the distance from the target to the entrance pupil [9]. When a lidar is in normal use it is noted that this distance is simply equal to the range, however, if additional optics are included between the lidar and the target, the position of the entrance pupil changes and for this reason in this chapter it is more useful to write the geometrical factor in the explicit form,

$$G(r) = \frac{O(r)}{r_p^2},$$
(4.3)

where r_p is the distance from the target to the entrance pupil of the instrument.

For situations in which the field of view of the receiver is greater than the divergence angle of the laser, Stelmaszczyck et al. [136] formulated a precise definition for the overlap function, or geometrical compression form factor, as the ratio of the energy E_{det} collected by the photodetector to the energy E_{obj} incident on the primary objective of the receiver such that

$$O(r) = E_{det}(r) / E_{obj}(r) \tag{4.4}$$

Stelmaszczyk et al noted that once the overlap function has been determined, it can be used to define the telescope's effective receiver area, A_{eff} , such that

$$A_{eff}(r) = O(r)A_0, \tag{4.5}$$

where A_0 is the area of the receiver's primary objective [137].

When O(r) is small, much of the collected light is focused outside the detector. These losses tend to decrease with distance, increasing overlap until all backscattered radiation incident on the lens is registered and O(r)=1. The closest range at which this occurs is called the full-overlap distance. At this point and beyond, the laser beam stays within the receiver FOV and each point on the primary lens or mirror of the receiver has the same light collecting efficiency. This doesn't hold true if the laser beam diverges faster than the receiver FOV, or if the laser is tilted so much that it exits the receiver FOV at some range.

Note that here O(r) refers to the overlap function (where O(r) = 1 when the laser beam cross section is fully imaged by the receiver onto the detector). It does not refer to the fractional overlap area, $\mathcal{A}(r)/\pi w^2$. The overlap area $\mathcal{A}(r)$ is the area of the region at range r where the receiver field of view overlaps the laser beam of radius w(r) as shown in Figure 4.1. It is possible to make the

Figure 4.1: Overlap area of a biaxial lidar system at range r.

transmitter beam and receiver field of view coincident and therefore make the overlap area identically 1 by using coaxial arrangement with common optics such that the laser and detector use exactly the same aperture. However, as stated by Measures [137], it is not possible to make the overlap function O(r) = 1 throughout the range of the instrument unless the aperture of the receiver objective is the only aperture in the system. Detector apertures used in lidar systems are usually, if not always, set back from and much smaller than the receiver objective aperture. Since scattering from atmospheric particles occurs over a wide range of angles, light backscattered from close ranges will focus over a broad region as shown in Figure 4.2. Here it is shown that when a scatterer at approximately two focal lengths from the lens is illuminated by the laser beam (shown in light red), only a small fraction of the backscattered light incident on the lens (shown in grey hatching) is focused onto the detector. Whether lidar systems use biaxial optics [138], expand the laser beam outside of the receiver optics [139] or utilise separate regions of the aperture for the laser and receiver [62], overlap correction is required for calibration of measurements at near ranges.

Figure 4.2: Focusing of light received from close ranges.

This chapter describes the work that has been undertaken in order to evaluate overlap in the prototype instrument. Following a review of literature discussing overlap determination, a convolution method that was devised in order to account for the unique geometry of the prototype optical system is described. This geometric calculation technique, which was validated by experiment and through comparison with other geometric methods, is the tool that was used to evaluate the various possible ceilometer designs discussed in Chapter 3. After the calculation is explained, a novel optical test system capable of measuring the overlap of a lidar system is proposed. The optical test system can be considered as a means of presenting a "virtual cloud" that appears at a prescribed distance from the lidar instrument; the virtual cloud can be positioned at various effective ranges and the returns from each range measured in order to determine the overlap. It provides a significant advantage over existing methods for elastic lidar overlap determination because it can be performed in the space of a laboratory environment with controlled optical conditions. Finally, the results of the calculation and measurement are compared with horizontal lidar returns from a hard target translated along the overlap region.

4.2 Approaches to Overlap Determination

In this section, theoretical techniques for determination of overlap described in the literature are summarised. These methods are based almost entirely on geometric optics. After this, experimental techniques from the literature relevant to elastic lidar are described.

4.2.1 Review of Overlap Calculation Techniques in the Literature

Theoretical determination of the overlap function has been discussed by several authors. Halldórsson and Langerholc employed a method [140] whereby a geometric optics approach is applied by integrating over scattering angles to determine the fraction of light focused by the telescope onto the detector from each infinitesimal scattering volume. Their work included an analytical determination of the cross-sectional area of the overlap region in order to determine the illuminated region at each distance that overlaps with the receiver field of view. The primary drawback of this method is its reliance on explicit determination of the overlap area in order to define the region over which to integrate, which adds unnecessary complexity to the calculation.

Harms et al. [141] presented a method that used integration in object space, that is, in the sensing volume, over a region bounded by the area of the image of the detector. They expressed the effects of overlap in terms of what they termed a geometric compression of the signal, and calculated the irradiance and power incident on detectors of different sizes in the focal plane using fixed extinction and backscatter for a clear atmosphere. In order to accomplish this, however, their derivation included the use of lidar equation variables, such as laser pulse length and atmospheric attenuation, that do not directly affect the overlap. Ancellet [142] went on to refine this method by including a thorough treatment of laser distribution. As with the previous method, however, the method of Harms et al. includes unnecessary complexity, here in terms of extra variables, if only determination of the overlap function is desired. Kuze et al. [143] developed a method by which rays are projected by geometrical optics in order to formulate analytical expressions for ranges at which overlap onset and full overlap occur. The overlap function is derived from the analytical expressions for these heights by an arbitrary function (a hyperbolic tangent function) along with a fitting parameter. The fitting parameter can then be adjusted to match profile shapes from observed system overlap to improve the accuracy of the analytical expressions. This method provides a straightforward means of expressing overlap of parallel biaxial lidars and was shown to generate simulated lidar returns for specified atmospheric conditions that matched observed returns for a number of different receiver field of view angles reasonably well. The advantage of this method is its flexibility for refinement through observation via the fitting parameter. However, in the absence of well-understood atmospheric conditions in which to verify the overlap calculation through experiment, a method relying only on the optical parameters of the instrument is preferred.

Stelmaszczyk et al. [136] followed an approach similar to that of Kuze et al. to develop an analytical expression for overlap, but extended it to account for laser tilt and coaxial lidar configurations. In addition, they removed the need for an arbitrary fitting function. Their method used an angular approach to determining the overlap of the detector aperture with the image of the laser beam cross section in the focal plane as a function of height for a uniform laser distribution. The concept of this method, that of considering images from the perspective of the detector, is similar to the one presented in the next section, but the mechanics of its derivation are different in that it formulates the problem in terms of angular image projection. While the method used by Stelmaszczyk et al. assumes a uniform distribution and is used with systems of circular objective, the approach applied in this chapter allows for variation of the laser power distribution and objective aperture shape, and also considers the particular case of a diode laser of short coherence length.

A few additional approaches have been discussed in the literature. Sassen and Dodd [144] developed an approximation for determining overlap area as a function of range using a Gaussian laser distribution, but this method did not account for close range imaging effects. Velotta et al. [145] applied a raytracing approach, and Kokkalis et al. [146] extended the ray-tracing approach to include effects of additional components, such as the optical bandpass filter, on the overlap. Ray-tracing utilises the same geometrical optical principles used by any of these calculation methods and should therefore arrive at the same solution. It allows optical component models to be used, which can improve the accuracy of the method, but it does not provide a mathematical expression for overlap.

Finally, a hybrid approach using geometrical optics along with diffraction theory has been discussed by Berezhnyy [147]. Diffraction is an important consideration that should not be ignored in a real optical system. However, since Berezhnyy found that diffraction effects were small for receivers without central obstructions, and since the objective aperture size is very large compared to the wavelength, the additional complexity required for considering diffraction effects was not deemed to be essential for the analysis here.

4.2.2 Review of Overlap Measurement Techniques in the Literature

A number of experimental techniques applicable to elastic backscatter lidar have utilised atmospheric measurements to determine overlap. The most straightforward of these were described by Sasano et al. [135], who used measurements of a well-mixed boundary layer, and Tomine et al. [148], who used measurements of a light mist to determine the overlap. Both of these approaches compute an overlap function that modifies a measured signal to match the exponentially decreasing return expected from a homogeneous scattering volume. Given truly homogeneous atmospheric conditions throughout the overlap region, this approach is valid provided the detector response is linear throughout dynamic range of the signal. However, in the case of the measurements by Sasano et al., while a well-mixed boundary layer with a nearly uniform distribution of aerosols may occur regularly, at the time of measurement it may not be uniform throughout the overlap region, particularly for lidar systems with narrow fields of view and therefore large overlap distances. In addition, an eye-safe lidar instrument such as a ceilometer may require a large averaging time in order to get a good aerosol profile due to limited laser output, and during the measurement time required the atmospheric conditions may change. The returns from a mist would be considerably larger than those from aerosols, making the approach of Tomine et al. more desirable for use with instruments of relatively low signal to noise ratios. However, in many locations occurrence of conditions of light mist may be rare and difficult to predict. In addition, even with the regular occurrence of light mist, the assumption of homogeneity of droplet size and concentration throughout the overlap region is would need to be validated somehow as precipitation intensity is often inconsistent.

Another experimental approach was suggested by Dho et al. [149]. They applied a fifth-order polynomial regression technique to data obtained beyond the height of full overlap to extrapolate the atmospheric conditions below this point. By comparing the extrapolated atmospheric conditions to the return signal below the full overlap point, the overlap function was established. While the results shown were reasonable for one particular measurement, the assumption that this technique could be extended to any heterogeneous atmospheric conditions is questionable since, for example, the likelihood of heterogeneous aerosol concentrations higher in the atmosphere being linked to aerosol concentrations lower down by a fifth-order polynomial that describes the whole distribution seems highly unlikely.

Techniques for measurement of the overlap function of an elastic plus Raman lidar were developed by Wandinger and Ansmann [150] and by Hu et al. [151]. Raman lidars exploit the Raman scattering effect [152] whereby the incident wavelength is shifted by predictable changes to the vibrationalrotational energy levels of the scattering molecules. Raman lidar channels are typically used to measure returns from molecular nitrogen or oxygen, whose concentrations in the atmosphere are well understood and whose backscatter coefficients and transmissions are known based on their concentrations. Under the assumption that the overlap function for the elastic channel is identical to that of the Raman channel, which Wandinger and Ansmann state is reasonable for a well-aligned system based on experience, the overlap function for both channels can be found by looking at what percentage of the expected molecular returns are received by the Raman channel at each range. This method, however, is not applicable to elastic-only lidars.

Another experimental approach, described by Guerrero-Rascado et al. [153], utilised returns from ceilometers which were assumed to have well-understood, small full-overlap ranges in order to use the signals beyond this range to calibrate the overlap of another elastic lidar system. If an instrument of known overlap is available, this method is feasible. However, errors in the judgement of full overlap height and/or non-linearity in the receiver response of the reference instrument can introduce considerable error into the overlap calibration of the other instrument.

The experimental method described later in this chapter allows the overlap of an elastic lidar system to be measured with no assumptions about atmospheric conditions except for those within a small laboratory that contains the setup. Provided that optical instrumentation used for the measurement is well characterised, this approach can be used successfully for overlap determination.

4.3 Geometric Overlap Calculation

In order to be able to relate experimental determination of the prototype's overlap to theory, a method for calculation of overlap based on geometric optics was devised. This section describes that method, compares it with methods from the literature for simpler optical arrangements, and discusses a few examples of overlap calculated for different optical designs.

The problem of geometric determination of lidar overlap can be approached by considering fractional power incident on the detector using a calculation method here called the *convolution method*. The only information needed for this calculation is the angular laser power distribution and the geometric arrangement of the optical system, including the laser emitter pattern, lens focal lengths, offset of optical axes, and aperture profiles. As described previously, the prototype lidar that has been developed is a biaxial system utilising aspheric lenses of focal length f = 335mm (at 905nm), a pulsed diode laser operating at 905nm and a silicon APD detector. One small but important difference between the final prototype design and the system considered in this chapter is that a single-stack 70W laser was used here rather than the doublestack 135W laser that was eventually selected for the design. The double-stack laser system, the overlap of which was shown in Figure 3.7, was calculated to have a slightly longer full overlap distance than that of the system considered here. Note that while the calculation is derived here specifically for the unique divided lens geometry and laser diode used in the instrument that was evaluated, it can be adjusted for a wide variety of optical configurations.

The essence of the *convolution method* is as follows. At each measurement range, each infinitesimal element of the laser emitter can be considered to illuminate a region whose area is defined as a projection of the transmitter objective aperture. The total laser power distribution at each range is the collective power of all of the laser element projections. The distribution at each range is found by convolving the appearance of the transmitter objective as seen from that range with the appearance of the image of the laser as seen from that range. At close ranges, this convolved distribution looks like the transmitter aperture with slightly extended blurred edges, and at far ranges it looks like the image of the laser emitter with slightly extended blurred edges. Between the near and far range there is a gradual transition from one of these distributions to the other. Similarly, each point on the detector is considered to be sensitive to light backscattered to the instrument from the region contained within the projected area of the receiver objective aperture at each given range. The effective receiver sensitivity function is calculated in the plane at each range as the convolution of the receiver objective as seen from that range with the appearance of the detector aperture as seen from that range. Here again, at close ranges the convolved distribution looks like the receiver objective, at far ranges it looks like the image of the detector aperture, and in between it varies gradually. If the laser power distribution is normalised, the overlap function can be found as the product of the laser distribution and the effective receiver sensitivity function at each range.

In order to explain this method explicitly, a general function for the laser distribution is formulated first, along with its normalisation. Then the expression describing the effective received intensity is derived. Finally, the laser power function is expressed fully and the full analytical expression for overlap is given.

4.3.1 Convolution Method Overlap Calculation

The derivation of this calculation is most straightforward when approached first from the standpoint of the receiver. It is simplified somewhat, however, if a general function describing the transmitted laser power in the plane at range r, along with this function's normalisation are given first. Suppose that the cross-sectional laser intensity incident on a uniform scattering plane at some distance, r, from the instrument is given by the function $\Upsilon(x_T, y_T, r)$. As the laser beam propagates, it diverges, but in the absence of attenuating particles (i.e., in a vacuum) the total laser power remains constant and integrating over a region containing a full cross section of the beam at any height gives the same power. Therefore the total power illuminating the scattering plane at any height can be normalised by introducing the constant Υ_0 such that

$$\Upsilon_0 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Upsilon(x_T, y_T, r) dx_T dy_T = 1.$$
(4.6)

This normalised general function for the laser power distribution is sufficient for the derivation of an expression for fractional received power. The specifics of the transmitter function are discussed later in this section.

If the overlap as a function of range is defined as the fraction of light incident on the receiver objective that is directed onto the detector, it can be expressed as

$$O(r) = \frac{P(r)}{P_{D=\infty}(r)}.$$
(4.7)

Here P(r) is the backscattered power incident on the actual detector area, and $P_{D=\infty}(r)$ is the power that would be incident on a detector of infinite aperture, therefore equal to the amount of backscattered light incident on the receiver objective.

In order to calculate the power P(r) collected from various ranges, the receiver geometry must be considered. In Figure 4.3 it is shown that geometrically, each point on the detector in the focal plane collects light from scattering particles within a column whose cross section is equal to that of the projected lens aperture. In the object plane (the plane of measurement at range r) this column is displaced from the optical axis by a distance determined by the magnification. At any range r the receiver field of view includes all projected apertures. Since the detector apertures and therefore the projected angles involved are small, it is assumed that each of the projections of the lens aperture can be considered to have the same cross-sectional area as the lens aperture itself and lie in the plane at range r. Note that in reality, however, slight curvature of the surface formed by the projections at a specific distance with varying angle would result, and slight variation in the effective shape of the lens aperture as viewed from different points on the detector would occur.

Figure 4.3: Geometry of the receiver.

The receiver half lens aperture can be defined as an indicator function $A_R(x_L, y_L)$ in the lens plane such that

$$A_{R}(x_{L}, y_{L}) = \begin{cases} 1 & (x_{L}^{2} + y_{L}^{2}) < (\frac{d_{L}}{2})^{2} , x_{L} < 0 \\ 0 & \text{otherwise}, \end{cases}$$

$$(4.8)$$

where d_L is the clear aperture diameter of the lens from which the half lens was cut. The receiver's optical axis, in the lens plane, lies at $(x_L, y_L) = (0,0)$.

Since the intensity $I(x_D, y_D, r)$ from range r incident on a point (x_D, y_D) in the focal plane is proportional to the integral of the laser intensity $\Upsilon(x_T, y_T, r)$ within the corresponding projection of the lens aperture $A_R(x_L, y_L)$ on the uniform scattering surface in the object plane at distance r from the instrument, the intensity at this point on the detector can be expressed

$$I(x_D, y_D, r) = \epsilon(r) \Upsilon_0 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_R(\frac{r}{f}x_D + x_T, \frac{r}{f}y_D + y_T) \Upsilon(x_T, y_T, r) dx_T dy_T,$$
(4.9)

where $\frac{r}{f}$ is the magnification determined from the range r and the focal length f, and $\epsilon(r)$ is a function that relates intensity in the scattering plane to intensity incident on the receiver objective. Here the form of $I(x_D, y_D, r)$ is a convolution with a kernel defined by the aperture of the receiver.

Now that the intensity has been found for each point on the detector, the total power received across the area of the detector can be found. First, the circular detector aperture of diameter d_D in the focal plane is defined by the indicator function $D(x_D, y_D)$ such that

$$D(x_D, y_D) = \begin{cases} 1 & (x_D^2 + y_D^2) < (\frac{d_D}{2})^2 \\ 0 & \text{otherwise.} \end{cases}$$
(4.10)

The total power P(r) from range r incident on the detector can then be found by integrating the intensity in the focal plane across the region bounded by the detector such that

$$P(r) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(x_D, y_D, r) D(x_D, y_D) dx_D dy_D.$$
 (4.11)

Note that introducing the function $D(x_D, y_D)$ makes it possible for the integral in Equation 4.11 to be written with infinite limits of integration.

When $I(x_D, y_D, r)$ is substituted from equation 4.9, P(r) becomes

$$P(r) = \epsilon(r)\Upsilon_0 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_R(\frac{r}{f}x_D + x_T, \frac{r}{f}y_D + y_T) \cdot \Upsilon(x_T, y_T, r)D(x_D, y_D)dx_Tdy_T \right] dx_D dy_D.$$

$$(4.12)$$

Under the substitution of variables $u = \frac{r}{f}x_D$ and $v = \frac{r}{f}y_D$, this can be rewritten such that

$$P(r) = \epsilon(r)\Upsilon_0 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_R(u + x_T, v + y_T) \cdot \Upsilon(x_T, y_T, r) D(\frac{u}{(\frac{r}{f})}, \frac{v}{(\frac{r}{f})}) dx_T dy_T \right] \frac{dudv}{(\frac{r}{f})^2}.$$

$$(4.13)$$

Because the functions A_R and Υ have compact support and are bounded, the order of integration may be reversed to give

$$P(r) = \epsilon(r)\Upsilon_0 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Upsilon(x_T, y_T, r) \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_R(u + x_T, v + y_T) \right] \cdot D\left(\frac{u}{\left(\frac{r}{f}\right)}, \frac{v}{\left(\frac{r}{f}\right)}\right) \frac{dudv}{\left(\frac{r}{f}\right)^2} dx_T dy_T.$$

$$(4.14)$$

The expression in square brackets in equation 4.14 may be interpreted as the weighting function that determines the fractional effective receiver area at range r. It describes the image of the detector in the object plane as the sum of all projections of the receiver aperture.

If an infinite detector were used, the detector function would become the constant function

$$D\left(\frac{u}{\left(\frac{r}{f}\right)}\right) = 1. \tag{4.15}$$

This means that all of the light from the scattering plane incident on the receiver lens would be detected, and Equation 4.14 could be expressed

$$P_{D=\infty}(r) = \epsilon(r)\Upsilon_0 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Upsilon(x_T, y_T, r) \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_R(u + x_T, v + y_T) \frac{dudv}{(\frac{r}{f})^2} \right] dx_T dy_T.$$
(4.16)

Notice in this case that the inner integral, enclosed in square brackets, is in fact independent of (x_T, y_T) and is equal to the area, A_0 , of the lens aperture over $(\frac{r}{f})^2$, the square of the magnification. Therefore Equation 4.16 can be

further rewritten as

$$P_{D=\infty}(r) = \frac{\epsilon(r)\Upsilon_0 A_0}{(\frac{r}{f})^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Upsilon(x_T, y_T, r) dx_T dy_T.$$
(4.17)

By applying the normalisation of transmitted power expressed in Equation 4.6, Equation 4.17 can be reduced to

$$P_{D=\infty}(r) = \frac{\epsilon(r)A_0}{(\frac{r}{f})^2}.$$
 (4.18)

Then, by substituting Equations 4.14 and 4.18 into Equation 4.7, the overlap O(r) can be expressed as

It is important to note that by the manipulations described here, dependence on the function $\epsilon(r)$, the function relating intensity in the scattering plane to intensity incident on the receiver objective, has been removed from the expression for overlap. The overlap is therefore purely a function of the optical geometry and the normalised laser power distribution. The final step necessary for a full analytical derivation is an explicit expression of this distribution.

The function $\Upsilon(r)$ describes the laser intensity distribution on the scattering plane at range r. A similar approach to determining the receiver region in (x_T, y_T) can be used to calculate $\Upsilon(x_L, y_L, r)$, the intensity in the object plane due to the transmitter, by the convolution

$$\Upsilon(x_T, y_T, r) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_T(\frac{r}{f}x_S + x_0 + x_T, \frac{r}{f}y_S + y_T)L(x_S, y_S)dx_Sdy_S.$$
(4.20)

Here $L(x_S, y_S)$ is the near field output of the laser source observed in the focal plane of the transmitter objective and x_0 is the offset of the receiver optical axis from the transmitter optical axis. The coordinate shift from receiver optical axis to transmitter optical axis shown in Figure 4.4 accounts for their offset in the overlap calculation and can be expressed by

$$(x_D, y_D) - (x_0, 0) = (x_S, y_S).$$
(4.21)

This is used to allow the laser emitter to be described around the transmitter optical axis (0,0). The same shift is applied to assign coordinates (x_W, y_W) in the lens plane, where

$$(x_L, y_L) - (x_0, 0) = (x_W, y_W).$$
(4.22)

Figure 4.4: Coordinates of transmitter focal plane relative to receiver focal plane.

Since the light output by the laser diode is partially coherent, the farfield output of the laser is elliptical and does not fill the aperture of the lens uniformly. In this work it is assumed that the far field laser output has an elliptical Gaussian distribution which is blocked or transmitted in the plane of the objective according to the lens aperture. Following the same approach used to define the receiver aperture as in Equation 4.3.1 but here superimposing the elliptical Gaussian distribution of the laser, the effective aperture of the transmitter $A_T(x_W, y_W)$ can be written as

$$A_{T}(x_{W}, y_{W}) = \begin{cases} e^{-\frac{1}{4} \left[\left(\frac{x_{W} - x_{g}}{\sigma_{x}} \right)^{2} + \left(\frac{y_{W}}{\sigma_{y}} \right)^{2} \right]} & x_{W}^{2} + y_{W}^{2} < \left(\frac{d_{L}}{2} \right)^{2}, \ x_{W} > 0 \\ 0 & \text{otherwise.} \end{cases}$$

(4.23)

Here $\sigma_x = 30mm$, $\sigma_y = 51mm$, and the center of the beam is offset x_g from the optical axis of the transmitter. Note that for this system x_g was set to 20mm by tilting the laser beam to best fit the transmitter lens as shown in Figure 4.5.

Figure 4.5: Distribution of laser intensity across transmitter half-lens.

Finally, the laser diode used in this case is a single-stack device with three active regions. Accordingly, the near field laser output described is modelled by the indicator function $L(x_S, y_S)$ such that

$$L(x_S, y_S) = \begin{cases} 1 & |x_S| < \frac{l}{2} , \frac{-w}{2} < y_S < \frac{+w}{2} \\ 1 & |x_S| < \frac{l}{2} , \frac{-w}{2} < y_S - d < \frac{+w}{2} \\ 1 & |x_S| < \frac{l}{2} , \frac{-w}{2} < y_S + d < \frac{+w}{2} \\ 0 & \text{otherwise,} \end{cases}$$

(4.24)

where the parameters l = 0.235mm, w = 0.001mm, and d = 0.005mm are the length, width and separation distance of the active regions, respectively, taken from the manufacturer specification.

The function $\Upsilon(x_T, y_T, r)$ can now be calculated using Equation 4.20 and substituted into Equation 4.19 to determine the geometric overlap function. In order to calculate the overlap function O(r), the integrals are computed numerically using discrete two-dimensional arrays. If the receiver aperture area A_0 is normalised to 1 and the laser power normalisation constant Υ_0 is used to set the total cross-sectional laser power to 1, the overlap O(r) is unity when full overlap has been reached. Note that if the receiver area is not normalised the result is the expression for effective area rather than the overlap, but this is simply a scaled version of the overlap function.

4.3.2 Advantages of the Convolution Method

One advantage of this method is the fact that the need for analytical determination of the range-dependent cross-sectional overlap area $\mathcal{A}(r)$ (shown in Figure 4.1) is removed, since the transmitted laser power cross section function and the receiver sensitivity function are multiplied and integrated with infinite limits of integration. The method does not include a straightforward way of accounting for displacement of the detector from the focal plane as the method of Halldórsson and Langerholc does. This was not deemed necessary for the lidar instrument characterised in this work as the detector is always placed in the focal plane. It has the additional advantages, however, of being extremely flexible and easy to adjust for different detector aperture shapes and sizes, different lens aperture shapes, sizes, and horizontal displacements, and different multi-mode laser diode near-field distributions.

4.3.3 Comparison of Overlap Calculation Methods

In order to validate the described method and its computation, effective area (overlap times receiver area) for an example biaxial lidar setup was calculated by the convolution method and compared with the results given for the same system in the literature. This system was first used for analytical calculation by Halldórsson and Langerholc [140] and later used for ray-tracing verification by Velotta et al. [145]. The system configuration considered, calculated for two different fields of view, is described in Table 4.3.3. Note that a uniform laser distribution was applied in all these calculations, and the laser beam was considered as a uniform projecting cone; the convolution approach therefore needed only be applied to the receiver.

Primary receiver entrance aperture radius	$175\mathrm{mm}$
Effective focal length	4600mm
Uniform laser beam radius	$10\mathrm{mm}$
Half-angle laser divergence	$0.5 \mathrm{mrad}$
Offset between optical axes	$200 \mathrm{mm}$
Receiver field of view	(A) 1mrad and (B) 0.5mrad

The calculation methods are compared in Figure 4.6. All three methods show close agreement for both fields of view. Note that in configuration B where the detector field of view is the same as the laser divergence, the effective area only approaches the actual receiver area $(0.0962m^2)$ at great distances.

Figure 4.6: Comparison of overlap calculation by the convolution method with results given by Halldórsson and Langerholc [140] and Velotta et al. [145] for an example biaxial system. The actual area of the receiver objective is $0.0962m^2$.

Figure 4.7: Calculated overlap function for various lidar prototype designs. Half-angle FOV is 0.75mrad for all designs considered.

4.3.4 Overlap Comparison for Different Optical Designs

In order to explore the overlap characteristics of different optical configurations, the calculated overlap functions of a number of possible prototype designs were compared using the geometrical method discussed. This is a similar exercise to one described in Chapter 3, but here the half-angle field of view was held constant at 0.75mrad, and the effect of an additional parameter, transmitted laser beam tilt, was considered for the prototype design. The detector, the laser, and the focal length of the lenses were kept the same for all configurations. The overlap of each design is shown in Figure 4.7.

The thin solid line shows the coaxial common optics system where one full 150mm diameter lens is shared by the transmitter and receiver channels. This configuration has the quickest turn-on, but it does not offer the optical isolation benefits of a biaxial system. The other extreme is a biaxial system using two full 150mm lenses with 21mm between their edges and therefore 171mm offset between their optical axes. This is shown by the bold dash-dot line. The second slowest overlap function, shown by the thin dash-dot line, was calculated for two full 106mm diameter lenses with optical axes offset by 127mm; each of these lenses has the same area as a 150mm half-lens. Shown by
the bold dashed line is the divided lens system with no offset between optical axes. This configuration would allow no room to fit the laser and detector at the focal points without some some additional complexity in the design, but it is shown as a reference to highlight the differences between this configuration, the coaxial common optics system, and the 21mm offset half-lens prototype design shown by the bold solid line. Considering the way the laser beam and receiver field of view diverge from a lidar instrument, it is not surprising that the zero offset split lens has slightly slower overlap than the shared-lens coaxial arrangement. It is interesting to see, however, that the overlap function of the zero offset lens sits approximately half way between these other two.

The other comparison to note is that between the prototype, shown by the bold solid line, and the same system with a transmitted laser beam tilt of 0.7mrad toward the receiver, indicated in Figure 4.7 by the thin hatched line. Laser beam tilt can be achieved by shifting the laser slightly away from the optical axis of the transmitter. Though the perpendicular alignment of the laser beam is more straightforward in a production setting, the laser could be tilted to achieve an overlap function closer to that of the coaxial common optics configuration if additional close range sensitivity were desirable. Note, however, that before changing the optical design a thorough analysis of the multiple scattering effects of fog and low clouds would be recommended, since for ceilometer applications the ability to detect the presence of these features via multiple scattering is more important than a precise inversion of extremely close range aerosol extinction. A small but detectable signal that allows fog and low cloud features to be detected without saturation is desirable at very close ranges to the instrument so that the gain does not have to be dropped to compromise detection of higher features in the atmosphere. In addition, aberration effects of shifting the laser away from the optical axis would need to be considered before implementing this change.

4.4 Overlap Measurement

While theoretical techniques are extremely useful for lidar system design, their success for overlap calibration of a specific instrument in the field depends upon the availability of reliable knowledge of system parameters. Such parameters include the laser source power distribution and propagation, the angular and positional response of the detector and the performance of the optics, which are often difficult to obtain in practise [150]. Therefore, effective experimental methods for lidar overlap determination are important for gaining the most accurate understanding of the optical system's performance.

4.4.1 A Novel Imaging Method for Overlap Measurement

After the overlap of the prototype system was calculated, it was measured using a novel imaging technique. The method proposed herein for the measurement of lidar overlap is similar in concept to placing a planar target with isotropic scattering properties at various distances from the instrument and measuring the lidar return from each distance. This method is often impractical, however, since a long (up to several km) unobstructed path with homogeneous atmospheric properties is required, and a large target is required at the far end of the measurement range. To overcome these practical difficulties, an optical system is used to present a virtual image of the target to the instrument at various ranges. The simplest configuration that is required to achieve this is presented in Figure 4.8.

In this configuration an imaging lens outside the lidar system is used to present a virtual image of a scattering target to the instrument. Using the Gaussian lens law [96] it is straightforward to show that this image appears at a distance, $r(a_o)$, from the instrument given by

$$r(a_o) = \omega_L + \left| \frac{f_a a_o}{a_o - f_a} \right|, \qquad (4.25)$$

Figure 4.8: Imaging system for determination of overlap.

where the constant ω_L is the distance from the lidar to the imaging lens, f_a is the focal length of the imaging lens, and a_o is the distance from the imaging lens to the target. It is clear that when the target is in the focal plane its image is presented at infinity. It is important to realise that although $r(a_o)$ is the distance at which the image of the target is presented to the instrument it cannot be simply substituted as range into the geometric factor G(r) in Equation 4.2. This is because, as noted previously, the light collected by the lidar is proportional to the inverse square of the distance from the target to the entrance pupil of the instrument. The insertion of an imaging lens between the target and the instrument has effectively moved the position of the entrance pupil.

Using the Gaussian lens law again it is straightforward to show that the (real) image of the entrance pupil is located at a distance, s_p , from the imaging lens, given by

$$s_p = \frac{f_a \omega_L}{\omega_L - f_a}.$$
(4.26)

Consequently, the distance, $r_p(a_o)$, from the target to the entrance pupil is given by

$$r_p = |s_p - a_o|. (4.27)$$

In order to measure the overlap function it is necessary to make two assumptions. First, it is assumed that the target is uniform with isotropic scattering efficiency. Secondly, it is assumed that over the short target translation distances in a controlled laboratory environment, variations in atmospheric transmission losses due to target translation are negligible. With these assumptions the terms $K_s\beta(r)T(r)$ in Equation 4.1 can be replaced by a constant, $\frac{1}{C}$, and using Equation 4.3 the overlap can be written,

$$O(r(a_0)) = CP(r(a_0))(r_p(a_0))^2,$$
(4.28)

where the apparent target distance, $r(a_o)$, and the apparent distance from the target to the entrance pupil, $r_p(a_o)$, are given explicitly by Equations 4.25 and 4.27 respectively.

Although the basic imaging system of Figure 4.8 provides a way to measure the overlap function of a lidar instrument in a confined space, it is not easy to use in practise. Because the distance $r(a_o)$ is a non-linear function of the target distance a_o , measurements are clustered around the focal plane of the imaging lens. Furthermore, for the characterisation of typical lidar systems by this method, the range correction factor $(r_p(a_0))^2$ depends much more strongly on the target distance than the overlap function does, and thus small errors in the measurement of target distance a_0 can introduce substantial errors in the overlap measurement. The second of these problems and to some extent the first may be overcome by using a second imaging lens to form the compound imaging system shown in Figure 4.9.

In essence, lens L_b acts as a relay that presents a real image of the target to lens L_a (this image becomes the object for L_a). The main advantage of this system over the first is the fact that here the distance between the lenses can be adjusted in order to form the image of the entrance pupil of the lidar at infinity, thereby removing the need for range correction.

Figure 4.9: Compound imaging system for determination of overlap.

Again employing the Gaussian lens law the virtual range, here $r(b_o)$, can be calculated using Equation 4.25 by

$$r(b_o) = \omega_L + \frac{f_a a_o'}{f_a - a_o'},$$
(4.29)

where

$$a_o' = f_b + s_p - \frac{b_o f_b}{b_o - f_b}.$$
(4.30)

The geometric factor from Equation 4.28 can now be formulated for this system with the added relay lens. In this case the image of the entrance pupil is formed at infinity, so as b_o changes, the solid angle subtended by the entrance pupil does not change. The range dependence of the geometrical factor is thereby removed, allowing Equation 4.28 to be formulated as

$$O(r(b_0)) = CP(r(b_0)), \qquad (4.31)$$

where the distance to the virtual image of the target, $r(b_o)$, is given explicitly by Equation 4.30.

Note that this expression with constant C only applies if the system being characterised reaches full overlap at some range. Otherwise C can not be used to set the maximum value of O(r) equal to 1. However, since this method images to infinity, it should be clear from the result whether or not the slope of the overlap function reaches zero at some point after overlap onset. The slope should reach zero at the full overlap range and then stay at zero out to infinite imaging distance. If the overlap reaches a maximum and then decreases, misalignment of the system is revealed. In this case, the overlap at the maximum cannot be considered to be unity and measurements from the system cannot be inverted properly, but the misalignment has been identified, and the signal intensity could still be overlap-corrected in a relative sense. The ability of this method to present virtual clouds at infinite ranges therefore gives it a significant advantage over other methods for elastic lidar overlap measurement, since it can reveal small misalignments in the lidar system under test that might result in full overlap not ever being reached by that system.

A compound imaging system similar to that described above was employed to measure the overlap of the prototype lidar with a single-stack laser. In the following section the experimental setup is described and the results of the measurement given in comparison with the calculated results and results from horizontal hard target measurements on an airstrip.

4.4.2 Experimental Determination of Prototype Lidar Overlap

The experimental setup used to measure the lidar overlap function by application of the technique described in the previous section has the same basic layout as the configuration presented in Figure 4.9. It is clear, however, that in order for the system to provide an accurate measure of overlap, the aperture of any optics used must not restrict the system aperture and any aberrations introduced by additional components should have a negligible effect. In this work, the large imaging lens L_a of the compound imaging system of Figure 4.9 was replaced by a 0.25*m* diameter spherical mirror with a focal length $f_a = 3.057m$. Consequently the mirror was tilted at an angle of 1.5 degrees to fold the imaging system as shown in Figure 4.10, placing a 3 degree angle between the light directly from the lidar and the light reflected by the mirror.

Figure 4.10: Overlap measurement experimental set-up.

The relay lens was a 75mm diameter achromatic doublet of nominal focal length $f_b = 0.4$ m (Edmund Optics NT45-419). As the calculation of virtual target distance is quite sensitive to this focal length, careful determination of the focal length of the relay lens was necessary and this was found to be $f_b = 0.402$ m at a wavelength of 905nm. The 1.5 degree angle was chosen to be as small as possible to reduce aberration but sufficient to allow the lidar beam to pass unobstructed to the mirror. The gap between the lidar and the mirror, ω_L , was set to 20.05m to ensure that the returned signal could be separated from electronic noise generated by the laser pulse. The distance between the mirror and the relay lens was adjusted such that the image of the lidar entrance pupil as viewed from the target was located at infinity, and was therefore equal to 4.0176m, the sum of the entrance pupil image distance, s_p , and the relay lens focal length, f_b .

To ensure that aberrations were negligible the system was modeled using OSLO optical design software. It was found that at the most aberrationsensitive point, where the target is placed such that its virtual image is set at infinity, the calculated minimum radius of the focused spot image of an ideal collimated laser beam was 0.031mm (approximately twice that of the diffraction-limited value). At this target distance (well past the point of full overlap such that laser stripe image should be well within the detector image) the radius of the image of the laser stripe was calculated to be 0.77mm and the radius of the image of the detector was calculated to be 1.64mm. The influence of the 0.031mm minimum spot radius should therefore be insignificant, increasing the laser image radius by 4% and the detector image radius by 2%. Thus the level of aberration present in the imaging system was judged to be acceptable.

A matt-black painted aluminium target and a white paper target were used for this work. It was assumed that these targets provided scattered returns that were largely isotropic over the range of accepted target angles. At each measurement point the difference between the returns from the white and black targets was measured to compensate for any spurious signals arising from scattering within the imaging system. In all measurements the laser was operated at normal operating power to ensure its beam profile matched that used in the field, and lidar returns were measured from each target at each distance. Because the signals returned were significantly larger than those obtained from clouds, no reverse voltage was applied to the APD, so it behaved as a simple photodiode. This mode of operation was not expected to change the overlap characteristics of the lidar system. The target was mounted on a precision motorized translation stage and measurements were taken at target positions ranging from 0.406m to 0.691m from the back surface of the relay lens which corresponded to lidar ranges from 17m to 8402m.

The results of overlap measurements made using this virtual imaging technique are shown in Figure 4.11 as red asterisks. These are compared with the overlap calculated by the geometric calculation described earlier in this chapter, shown as a bold line. An additional measurement of the overlap was made by gathering hard target measurements at ranges up to 300m with the lidar, at a low gain setting, pointing horizontally along a retired local air field on a windy afternoon when aerosol content was assumed to be low. This comparison measurement was made up to a range of 300m using a target of roughly 1.5m by 1.5m. These results, range-corrected, are shown in Figure 4.11 as blue circles.

The data set gathered by the virtual imaging technique was normalised to 1 at 8402m, essentially infinity, and the range-corrected horizontal hard target measurements were in turn normalised to the virtual imaging data at 240m. Since alignment for the hard target measurements became difficult at farther ranges, 240m was chosen to ensure that the laser beam was not approaching the edge of the target. If the laser beam had inadvertently moved slightly off target at the normalisation point, the results would have been skewed.

The largest potential sources of error in the imaging method are the focal length of the relay lens (which was measured in the laboratory at 633nm and then recalculated at 905nm based on the lens design using OSLO), the focal length of the mirror (also measured in the laboratory) and the determination of the distance from the target to the relay lens at each measurement point. Error in either of the focal length measurements will shift the virtual target distance to stretch or compress the S-shape of the typical overlap function, as will systematic error in the measurement of target position. Uncertainty in each of these three parameters was estimated to be 0.1%. At a range of 150m (approximately half the distance to full overlap for this system, at a calculated overlap of 0.64), a 0.1% error in the focal length measurement of the lens would shift the virtual target distance 4m, while a 0.1% error in either the focal length measurement of the mirror or the measurement of target distance would shift the virtual target distance by 3m at the same point. Less shift at closer ranges and more shift at farther ranges is expected due to the fact that the virtual target distance, $r(b_o)$, is a nonlinear function of distance b_o from the relay lens to the target. The uncertainty in calculated range $r(b_o)$ due to $\pm 0.1\%$ uncertainties in the focal lengths and target distances was computed as a root mean square sum of the effects of the individual uncertainties at each range and is shown as grey error bars along the x-axis. Error bars along the y-axis indicate, for each measurement technique, uncertainties of ± 2 standard deviations due to random fluctuations in the power measurements that were used to derive the fractional overlap.

Beyond ranges of approximately 125m (overlap of 50% and greater) the the hard target measurements and the virtual imaging measurements agree within the calculated uncertainties. However, regardless of possible adjustment of the point selected for normalisation of the hard target data, there is a significant disagreement below 125m due to error that has not been accounted for in the data analysis. There are a number of possible sources of this error. Alignment of the prototype could have shifted slightly due to vibration during its transport from the laboratory to the air field or as a result of possible small operating temperature differences between the two measurement environments. Error could also have resulted from one or both of two assumptions made in this work: the assumption that the target scattering is isotropic over the accepted angle of the optical system, and the assumption that the spatial response of the APD detector is the same regardless of bias voltage.

Since the optical system used in the calculation was an ideal system, the measured overlap was not expected to agree exactly with the calculation. The assumption, for the purposes of calculation, of aberration-free optics in the lidar prototype, is of course a tenuous one. The earlier onset of the experimental data sets could possibly be explained by aberrations, incidental scattering within the optics, or other optical effects in the lidar system. The fact that both of the experimental data sets take longer to reach full overlap than the calculated curve suggests a possible small, unintentional tilt of the laser away from the receiver. As mentioned previously, diffraction effects of the laser source can have considerable influence on the overlap function of a lidar system with an annular beam shape. Since the beam shape of this system is not annular and since the objective aperture is much larger than the laser wavelength, the assumption of a Gaussian laser distribution in the calculation was assumed to be reasonable and diffraction effects were not expected to contribute significant error beyond the more substantial errors likely resulting from other factors such as uncharacterised aberrations.

4.5 Conclusions

An analytical expression based on geometric optics has been derived specifically for the prototype lidar optical system. Overlap calculated using this method was validated by comparison with an analytical calculation and a ray-tracing method for a system described in the literature. While it was designed specifically for the task of characterising the overlap function resulting from the unique geometry of the prototype optics, this method has a benefit of straightforward adaptability for a wide variety of aperture arrangements, emitter shapes, and laser distributions, and it proved to be a useful tool for optimising the optical design of the prototype.

Following the calculation of overlap, a compound imaging system for the measurement of lidar overlap in the laboratory was designed and proved. In essence, the method presents to the lidar instrument a virtual image of a scattering target at a specified range, and the response is measured. By using a compound lens system it is possible ensure that the entrance pupil of the instrument as seen from the scattering target is presented at infinity. In this case, the signal returned to the lidar is not diminished by the inverse square characteristic and becomes a direct measure of the overlap function.

Hard target overlap measurements used to validate overlap measured using this imaging system fell within the calculated uncertainty beyond the range of 50% overlap. Discrepancies at closer ranges likely resulted from one or more of a number of possible sources of error that were identified but could not be quantified for this experiment. At ranges corresponding to about 50-80% overlap (125-200m), the calculated overlap fell within the error bars on the overlap determined using the imaging method. However, below and above this region, the calculations did not fall within the measurement error. Discrepancies between theoretical and experimental determinations of overlap are to be expected and highlight the importance of measuring the overlap. Here these discrepancies probably arise from poorly understood optical properties of the lidar system that are not accounted for in the calculation. Overlap is influenced by a number of factors that are either unknown or difficult to measure in practise and therefore any theoretical determination of overlap is likely to be flawed in some way. For example, the far field distribution of the laser, which may be poorly understood, influences the overlap considerably. Similarly, the angular response of the detector, which was assumed to be uniform in this study, is likely to vary in practise, especially when combined with a bandwidth-restricting interference filter. This again will modify the effective aperture of the receiver and in turn affect the overlap function. Measurement of the overlap function is therefore critical if data from the instrument near and below the full overlap distance is to be used.

Note that regardless of the technique used to calculate or measure overlap, significant multiple scattering at close ranges can produce significantly greater returns than would be expected from single-scattering alone [144]. Therefore the effects of multiple scattering, in addition to the overlap profile, should be taken into consideration when lidar signals are evaluated.

If reliable estimates of aerosol distributions or visibility are required at close ranges then it is usually necessary to calibrate the lidar in at least part of overlap region. The measurement system discussed here shows that this is indeed possible in a controlled laboratory environment.

Chapter 5

Determination of Cloud Base Height and Vertical Visibility from a Lidar Signal

5.1 Introduction

The instrument presented in Chapter 3 was designed to automatically report cloud height and vertical visibility. This chapter presents the signal processing methods that have been applied to the prototype and subsequently evaluates their performance. While ceilometers are widely available for purchase, the methods by which cloud base height is determined from their signals is usually kept as proprietary commercial information, even though this information can be important to users in the scientific community. Here, a comprehensive cloud detection signal processing method for a ceilometer is described in detail.

This chapter begins with a discussion of signal conditioning, and then describes calibration of attenuated backscatter output and provides some example measurements of this parameter. Following this, cloud base height definitions in the literature are reviewed, and then the novel two-part automated algorithm for the determination of cloud base height from measured signals that has been developed for the prototype is described. The performance of the instrument is then compared with that of a research ceilometer at the Chilbolton Observatory. Finally, since ceilometers are expected to report visibility when no cloud base is detected, the implementation of a standard vertical visibility algorithm is described and evaluated. Note that aside from the prototype data, all other data from the Chilbolton Observatory used in this chapter, specifically the CT75k ceilometer data, the cloud camera images, and the rainfall rate and ground-based visibility data, were provided by the NERC-funded Chilbolton Facility for Atmospheric and Radio Research (CFARR).

5.2 Impulse Response Correction

Before feature detection methods are applied to a signal, any significant artefacts of the detection process should be removed. In a pulsed system such as the prototype, fast recovery from an impulse is an important feature of its amplifier [154]. Even in a system with a fast recovery, however, artefacts may still appear in the signal. The impulse response behaviour of an amplifier is represented schematically in figure 5.1, where i(t) is the input signal, h(t) is the impulse response of the amplifier, and o(t) is the output signal.

Figure 5.1: Amplifier impulse response diagram.

In the prototype lidar, the AC-coupled amplifier used on the receiver exhibits an impulse response characteristic as shown in figure 5.2. The measured impulse to a 7×10^3 magnitude signal is shown as a thin line and the fitted function (exponential from bins 8 - 30) is shown as a bold line. This negative "kickback" of the signal following detection of electronic noise from the pulse

and any close-range optical returns is due to a non-uniform response to the frequencies in the impulse. Once the impulse response has been measured and fitted to a smooth function, this function can be used to correct the response.

Figure 5.2: Amplifier impulse response characterisation.

Given a filter with characterised time-domain response h(t), the input signal i(t) can be recovered from the output signal o(t) as follows. First, o(t) is expressed as the convolution,

$$o(t) = i(t) * h(t),$$
 (5.1)

which, by application of the convolution theorem [155], becomes in the frequency domain

$$O(\omega) = I(\omega)H(\omega).$$
(5.2)

Therefore,

$$I(\omega) = O(\omega)/H(\omega), \tag{5.3}$$

where each of these frequency domain functions is the Fourier transform of the corresponding time domain function, defined such that

$$H(\omega) = \mathcal{F}[h(t)] = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt.$$
 (5.4)

The function $H(\omega)$ can be expressed as the product of a real magnitude $a(\omega)$ and a complex phase component $e^{i\phi(\omega)}$ with real phase angle ϕ as

$$H(\omega) = a(\omega)e^{i\phi(\omega)}.$$
(5.5)

By substituting this into Equation 5.3, $I(\omega)$ can now be expressed as

$$I(\omega) = O(\omega) \cdot \frac{e^{-i\phi(\omega)}}{a(\omega)}.$$
(5.6)

The amplification electronics in the prototype act as a low-pass filter, with a fairly flat response at low frequencies and roll-off at higher frequencies following an approximately Gaussian distribution as shown in the upper graph in Figure 5.3. The lower graph in Figure 5.3 shows the phase response.

Figure 5.3: Frequency response of prototype electronics subjected to an impulse. The upper graph shows the absolute amplitude response and the lower graph shows the phase response.

A full inverse filter would compensate for inconsistencies in both the amplitude and phase response of the electronics at all present frequencies. However, boosting high frequencies to achieve a flat amplitude response increases the noise in the signal substantially. Since the amplitude response is fairly flat at low frequencies and since the major phase distortion occurs at high frequencies which are naturally dampened by the system, it is actually the small phase distortion at the lowest frequencies shown close up view in Figure 5.4 that was found to be the primary source of the negative "kickback" of the electronics following an impulse.

Figure 5.4: Close-up view of phase of low frequency impulse response shown in the lower graph in Figure 5.3.

If it can be assumed that phase-only correction is sufficient, $a(\omega)$ in Equation 5.6 can be set equal to 1 and the phase-corrected signal in the frequency domain can be expressed

$$I(\omega) = O(\omega) \cdot e^{-i\phi(\omega)}.$$
(5.7)

Then, by returning to the time domain through application of an inverse Fourier transform, the original input signal, i(t), can be written

$$i(t) = \mathcal{F}^{-1}[O(\omega) \cdot e^{-i\phi(\omega)}].$$
(5.8)

The impulse response, h(t), of the amplifier can be measured while the system is running if an optical impulse is provided to the detector before each measurement. In this way, any drift in the electronics due to changes in gain, temperature, etc., can be accounted for in real time. It is important to note, however, that if saturation occurs during either the impulse response measurement or the actual lidar measurement, the method described here cannot be expected to correct the signal.

An example of a signal before and after impulse response correction using this technique is shown in figure 5.5, and a close up of the data along the xaxis is shown in figure 5.6. Even though the "kickback" following an impulse may be small, it can have major implications for inversion of the signal if it is not corrected, so this step is critical to the quality of results given by the instrument.

Figure 5.5: Amplifier impulse response correction applied to data from 5 December, 2011.

Figure 5.6: Close up view of data shown in Figure 5.5.

5.3 Attenuated Backscatter Profile

Once the signal has been corrected for impulse response, it is ready to be processed. The first output that needs to be generated is the attenuated backscatter profile, that is, the calibrated, range-corrected signal. This is an important output for a ceilometer as it can be used to assess the signal and compare returns with those from other lidar instruments.

Recall from Chapter 2 that the attenuated backscatter profile $\beta'(r)$ at a given wavelength can be calculated as follows,

$$\beta'(r) = \frac{P(r)r^2}{P_0 \frac{\tau c}{2} O(r) A_0},$$
(5.9)

where P(r) is the power measured from range r, r^2 is the range-correction factor, P_0 is the transmitted laser power, τ is the pulse length $(100 \times 10^{-9}s)$ for the prototype), c is the speed of light, O(r) is the fractional overlap at range r, and A_0 is the area of the receiver objective aperture $(0.0088m^2)$ for the prototype). O(r) is included here so that the attenuated backscatter profile can be estimated at ranges before full overlap is reached. Note that the wavelength dependence of $\beta(r)'$ has not been expressed in these equations under the assumption of a fixed, narrow laser wavelength typically used in lidar systems.

In order to determine P_0 and P(r), the key factors for an absolute calibration, the efficiency of the optical system must be characterised and the total output power and absolute gain of the receiver determined. In a manufacturing setting these need to be checked for variation from instrument to instrument due to component tolerances.

5.3.1 Calculation of Transmitted and Received Power

Transmitted Laser Power

The laser output power leaving the instrument during a pulse P_0 can be determined such that

$$P_0 = P_L \eta_F \eta_O \eta_G \eta_A, \tag{5.10}$$

where P_L is the laser output power during the pulse, η_F is the transmission efficiency of the optical bandpass filter, η_O is the transmission efficiency of the objective, η_G is the transmission efficiency of the external glass plate of the instrument, and η_A is the fraction of the divergent laser beam that is transmitted by the objective aperture.

The laser output power P_L is measured by collecting the entire output of the laser. Before it is installed in the prototype lidar, the laser drive current is set to achieve an output, P_L , of 83W at 40C to meet the laser safety standards as discussed in Chapter 3. In the instrument a photodiode is included so that the laser power can be monitored and adjusted if necessary in order to maintain a stable value of P_0 .

The transmission efficiency, η_F , of the optical bandpass filter that protects the laser from inadvertent exposure to direct solar radiation is specified by the manufacturer as being greater than 0.8 at 915nm, the transmission efficiency, η_O , of the AR-coated objective lens is 0.98, and the transmission efficiency, η_G , of the external glass plate is 0.95.

The final factor, η_A , the fraction of the laser light that is collected by the aperture, is calculated by assuming a Gaussian distribution along each of the primary orthogonal axes of the propagating laser beam. Manufacturerspecified divergence angles are used to calculate the distribution at a distance away from the laser equal to the focal length of the lens. The semicircular aperture is superimposed on the laser distribution, and the fraction of energy allowed through is calculated by numerical integration over the aperture area.

Calibrated Received Power

In order to determine the range-dependent power P(r) incident on the receiver, the receiver gain must be determined and the efficiency of the receiver characterised. P(r) can be expressed as

$$P(r) = \frac{P_M(r)}{G_{A_2}G_{A_1}G_{APD}\mathcal{R}\eta_F\eta_O\eta_G},$$
(5.11)

where $P_M(r)$ is the amplified output (volts) measured from range r. The three stages of amplification considered in the electronics are G_{A_2} , the gain (unitless) of the secondary amplifier, G_{A_1} , the gain (V/A) of the primary amplifier, and G_{APD} , the gain (unitless) of the APD itself. The constant \mathcal{R} is the responsivity of the APD (0.52A/W). The efficiencies η_F , η_O , and η_G are the same as those described for the laser channel. The gains G_{APD} , G_{A_1} , and G_{A_2} are variable, and since the APD gain varies significantly in a nonlinear fashion with both temperature and bias voltage, G_{APD} is calibrated for each measurement through the use of an LED with fixed power output. This calibration is particularly important because the APD gain needs to be adjusted in a controlled and traceable manner in order to optimise the gain from measurement to measurement as background light conditions change.

The values P_0 and P(r) found using equations 5.10 and 5.11, respectively, can now be substituted into equation 5.9 and the calibrated attenuated backscatter calculated. However, as it is quite difficult to fully characterise the gain and efficiency of the system, and to monitor all of these in the field, an alternative method that can be used to calibrate attenuated backscatter using only measured signals is highly desirable.

5.3.2 Calibration Using Lidar Returns from Stratocumulus Layer

In the case of the prototype instrument used for preliminary field-testing at Chilbolton Observatory (51.15°N, 1.44°W) in Hampshire, UK, the gain of the APD was not calibrated before deployment and the gain at a reference reverse bias voltage and temperature specified by the manufacturer was applied instead. Due to the nonlinear gain behaviour of APDs, a large uncertainty in calculated gain can result if the gain is not known precisely at a specific voltage and temperature. The attenuated backscatter calculated using the best available parameterisation of the system deviated by more than two orders of magnitude from that given by a calibrated Vaisala CT75k research ceilometer at the test site. Therefore, the method of O'Connor et al. [66] described in Chapter 2 was applied. This same method was applied by O'Connor et al. in 2004 to calibrate the Chilbolton Observatory's CT75k.

As discussed in Chapter 2, this calibration method relies on the presence of a stratocumulus layer with a backscatter peak value of $\beta \ge 1 \times 10^{-4} m^{-1} s r^{-1}$ and the signal at this peak must be at least 20 times greater than the value 300m higher. In addition, the calibration must be performed in the absence of drizzle, rain, and strong aerosol events. A stable stratocumulus layer at a height of about 750m was observed between 15:00 and 16:00 UTC at Chilbolton in the afternoon on 4 September, 2012. A photograph of the cloud layer at 15:00 UTC is shown in Figure 5.7.

Figure 5.7: Image gathered by Chilbolton Observatory camera-axis2100 at the beginning of calibration measurements at 15:00 UTC on 4 September 2012.

Both the prototype and the CT75k were calibrated using lidar returns from this stratocumulus layer. Recall from Chapter 2, Equation 2.39, that

$$\int_0^\infty \beta'(r) = \frac{1}{2\eta_m S},\tag{5.12}$$

that is, the integrated attenuated backscatter return from a fully-attenuating cloud is equal to the reciprocal of twice the product of η_m , the multiple scattering correction factor, and S, the extinction to backscatter ratio. In order to perform the calibration, the factor $\eta_m S$ was determined for each instrument using a calculation table created by O'Connor [156]. The factors were calculated for a wavelength of 905nm and a range of 750m above the instruments, with the instruments considered to be located at sea level. The laser divergence and field of view of each of the instruments was used to calculate the correction factors. The prototype laser divergence is 0.35mrad half-angle, with a half-angle field of view of 0.75mrad. For the CT75k the half-angle laser divergence is 0.75mrad and the half-angle receiver FOV is 0.6mrad.

Figure 5.8 shows the attenuated backscatter measurements averaged for one hour for both instruments and calibrated using the principle of Equation 5.12 by adjusting the scaling of the attenuated backscatter $\beta'(r)$ until the equation held true. The traces for each are shown with thin lines above and below designating the the upper and lower bounds, respectively, of the calibration due to uncertainty in ηS as determined from O'Connor's table [156]. The calibrations of the two instruments do not quite fall within each other's uncertainty. Differences in range resolution between the two instruments (5m for the prototype and 30m for the CT75k) could lead the shapes of the traces to appear slightly different from each other. Also, since it is the integrated backscatter that is being calibrated to determine the correction factor, slight differences in profile shape between the two instruments will of course scale differently. As they are, the peak amplitudes of calibrated returns from the two instruments differ by around 15%. Note that the correction multiplier found for the CT75k through the this calibration was a factor of 1.59 greater than that currently applied

Figure 5.8: Calibrated measurements of stratocumulus attenuated backscatter from the prototype and the CT75k at Chilbolton Observatory based on returns averaged for 60 minutes from 15:00 to 16:00 UTC on 4 September 2012.

in the instrument settings at the observatory, which suggests a possible drift in the instrument, though only one calibration point was used for the current calibration.

5.3.3 Attenuated Backscatter Profile Examples

After application of the calibration method described by O'Connor et al., attenuated backscatter profiles measured by the prototype at Chilbolton were compared with those of the Vaisala CT75k research ceilometer (with its new calibration) located on the same site at three different times.

Figure 5.9 shows night-time measurements of boundary layer aerosols. The attenuated backscatter levels in this case were two orders of magnitude lower than those present during the calibration. Here the attenuated backscatter measured by the prototype, smoothed to match the 30m range resolution of the other instrument, was a factor of 1.5 times greater than that measured by the CT75k. While there is this small difference between the amplitudes

Figure 5.9: Attenuated backscatter measurements from the prototype instrument and the CT75k at Chilbolton Observatory averaged for 30 minutes from 00:00 to 00:30 UTC on 2 September 2012.

reported two instruments, it is clear from this example that the prototype instrument is capable of monitoring boundary layer aerosols. Mixed layer height can be determined from a lidar signal by, for example, finding the first significant negative gradient in the attenuated backscatter return [63]. By this definition the prototype would report the mixed layer height at 660m while the CT75k would report it at 630m for the measurement in Figure 5.9.

Figure 5.10 shows attenuated backscatter measured from an ice cloud layer just below 8000m. Here again, the prototype output was smoothed to give it a 30m range resolution. As in the previous case, the prototype measured a slightly larger attenuated backscatter level. Note that the prototype shows significantly more noise at this high range than the other instrument for two reasons. First, for the field testing of the instrument, it was configured to measure for only 2 seconds every 30 or 60 seconds for cloud height measurement. During the measurements shown in Figure 5.10, the prototype was measuring for 2 seconds out of every 60, while the CT75k performed continuous averaging. Secondly, no noise suppression has been applied to the prototype output, while noise suppression is applied to the CT75k automatically.

Figure 5.10: Attenuated backscatter measurements from the prototype instrument and the CT75k at Chilbolton Observatory averaged for 60 minutes from 01:00 to 02:00 UTC on 4 September 2012.

A third and final example example of attenuated backscatter measurements is shown in Figure 5.11. For this low cloud measurement, the attenuated backscatter measured by the CT75k was, at the peak of the return, a factor of 1.3 greater than that measured by the prototype instrument. In the other comparisons, the prototype attenuated backscatter measurements were slightly greater than those measured by the CT75k. As multiple scattering effects from aerosols (Figure 5.9) and ice clouds (Figure 5.10) are considerably lower than those from water clouds, it would be expected that ratios for attenuated backscatter between the two instruments would be similar to the ratio between the two calibrations. However, it would be expected that two instruments of different laser divergence and receiver field of view would show different values of attenuated backscatter for water clouds at heights other than the calibration height. For this reason O'Connor recommends that for a finelytuned calibration, stratocumulus clouds from a variety of ranges should be used to derive the scalar correction for the instrument's integrated backscatter at each range, and then the scalar factor selected that minimises the error of the curve (Personal Communication, Ewan O'Connor, 2013).

These three examples of different scattering media at different ranges demonstrate that calibration by the stratocumulus method at one range does not provide calibration for all instrument configurations at all ranges. This is not surprising considering the variability of multiple scattering effects in water cloud at different ranges and the effects of this variability on measured returns, as well as the possibility of unknown misalignments of the instruments or small unknown sensitivity variations in either instrument. The calibration does, however, provide a good reference point and the instruments in these varied examples showed a maximum ratio of one output to the other of about 1.5, a ratio which could have been orders of magnitude greater had the calibration not been performed.

Figure 5.11: Attenuated backscatter measurements from the prototype instrument and the CT75k at Chilbolton Observatory averaged for 30 minutes from 09:30 to 10:00 UTC on 2 September 2012.

5.4 Cloud Base Definitions

Figure 5.12: Lidar returns from a stratocumulus layer (top), an altocumulus layer (centre), and a dense cirrus layer (bottom) recorded by Platt et al. [157].

Figure 5.12 shows typical lidar returns from three different cloud types: a stratocumulus layer, an altocumulus layer, and a dense cirrus layer, all as measured by Platt et al. [157]. These three examples illustrate the fact that lidar return signals from clouds vary considerably in width, amplitude, and shape. It is also clear from these examples that there are a variety of different possible ways to define cloud base in terms of the signal. In the altocumulus return, for example, it could be assigned at the peak at 4km, at the onset at 3.5km, or somewhere else. A useful automated cloud base detection algorithm must be based on definitions that can accommodate different types of cloud returns while also taking the effects of noise into account.

Figure 5.13: Dependence of perceived optical thickness on viewing angle in a cloud.

The most appropriate definition of cloud base may vary depending upon the application. For ceilometers, accuracy for aviation applications is a primary concern, so tying the cloud base definition to human perception of visibility is a top priority for the detection algorithm. This means, for example, that since extinction varies with wavelength, if the laser wavelength strays too far from the visible region a wavelength correction may need to be applied. Furthermore, visibility near the base of a cloud varies greatly with viewing angle due to the difference in viewed cloud thickness as shown in Figure 5.13. In this example, as the angle θ_V below horizontal increases, the optical thickness between the observer and the clear atmosphere outside the cloud decreases significantly.

In the following 10 sections, key methods from the literature for the determination of cloud base are reviewed, and the usefulness of each is considered particularly from the standpoint of ceilometer applications.

5.4.1 Peak Detection

The peak detection method searches a return signal from a cloud for the peak intensity at the top of an upward sloping cloud signal and assigns the cloud base to that height. Since it searches for the point of highest signal, this method is the least sensitive to the effects of noise. It is also the simplest method and the primary method used for visible spectrum searchlight-based rotating beam ceilometer (RBC) measurements. According to Eberhard [55], the peak of the measured signal was used for many years by the US National Weather Service as the definition of cloud base height.

In a study comparing ground-based measurements with airborne visual observations, Eberhard found that the peaks of the reported signals for lidar and RBC measurements agree well with each other and with nadir (downward vertical view) reports of pilots. However, Eberhard also found, from measurements of non-precipitating clouds at heights ranging from 160m to 3200m, that the peaks of the ground-based signals were on average 79m above cloud base reports of pilots viewing at a typical landing approach angle of 3 degrees below horizontal. Thus the pilots lost visual contact with the ground well below the height of the signal peak. This corroborated earlier work by Eggert [158] which also showed that pilots viewing at a 3 degree slant angle reported cloud base at significantly lower heights than the RBC peak. Eberhard explained that because is it based on an oversimplified model, defining cloud base height as the signal peak will generate significant errors in cases where clouds are diffuse or are not vertically and horizontally homogeneous. He also reported that traffic controller experience indicates that if a simple method is required, the onset of signal agrees much better with pilot reports than does the peak of the signal.

5.4.2 First Derivative Zero Crossing

One way to locate the onset of a cloud return is to look for positive changes in the slope of the signal. Pal et al. [159] developed a cloud base height algorithm that monitors the first derivative of the signal in order to find the lowest significant returns from a cloud. The algorithm is based on the following reasoning. Once full overlap is reached, the returned signal in a clear atmosphere should decrease approximately exponentially. The presence of cloud particles should lead to an increase in the amount of backscattered signal detected, or at least a less than exponential decrease. The base of the cloud can be defined as the point where the first derivative of the signal crosses zero to become positive. Though it relies on a somewhat arbitrary definition, one advantage of this algorithm is that it can assign cloud base for a variety of types and densities of clouds in a consistent manner for meteorological study.

Figure 5.14: Altocumulus lidar return (blue) from Figure 5.12 and its derivative (dashed green).

Figure 5.14, shows the altocumulus measurement from Figure 5.12, this time along with its derivative. As is evident from this example, when there is noise or a varying return from thin layers near the cloud base, the onset of signal is harder to fix precisely than the peak position. Three points near the cloud base (at 3.3km, 3.7km, and 3.8km) show positive derivatives immediately

following non-positive derivatives. In this case confusion could be avoided simply by testing for two or three successive positive slope bins starting from the first positive slope bin in order to filter out spurious results; in that case the cloud base would be assigned at 3.8km. Based on this example, it is clear why Pal et al. noted that this detection method does not work well for signals that do not show a monotonic decrease in clear air, for signals in fog or precipitation conditions, or for signals from clouds that do not show a clear signal increase at the cloud base. A relatively noisy lidar signal such as that from a ceilometer would also be expected to be difficult to process with this method.

Besides setting a minimum number of consecutive range bins of positive slope in order to flag a cloud, these problems could be partially addressed by changing the threshold value for the derivative. For instance, it could be set to some small positive value for the algorithm to work in noisy conditions, or it could be set to a small negative value for cases of low density cloud in which returns from the clouds are not substantial enough to fully overcome the exponential decrease of the signal.

5.4.3 Method of Clothiaux et al.

Clothiaux et al. [43] improved the slope-based cloud detection method somewhat by comparing the slopes of clear sky returns with those of cloudy sky returns in order to locate cloud edges. Before individual signals are evaluated, some pre-processing is required. First, an experimentally-derived threshold is used to distinguish periods of clear sky from periods of cloudy sky in the data. Then recent clear sky period signals are averaged to determine the current clear air return. The molecular extinction and backscatter coefficients, $\alpha_{mol}(r)$ and $\beta_{mol}(r)$, respectively, are derived using pressure and temperature measurements of the local atmosphere and applied to calibrate the clear air lidar measurements and therefore account for changes in the lidar instrument pulse power, overlap, sensitivity, etc.

After pre-processing, the ratio of an individual measured cloud signal can be compared with the averaged clear air return as shown in Figure 5.15. When

Figure 5.15: Schematic example of signal zones designated by the method of Clothiaux et al. [43].

the ratio is constant with range, a clear atmosphere is assumed, and when the ratio is changing with range, a cloud layer is assumed. In the example shown in figure 5.15, the dotted trace indicates a model clear air return and the solid line indicates a cloudy return. The ratio between these returns is roughly constant within regions A, C, and E, whereas it is changing in regions B and D. This gives the general positions of the various cloud layers during the cloudy periods. To define cloud edges for these identified layers, the backscatter coefficient $\beta(r)$ is determined by inversion of the lidar equation, and the cloud base height is assigned at the altitude where the measured backscatter exceeds an experimentally-determined threshold.

This method can be effective for remote instruments in climates where the lidar return contour of the clear atmosphere can be measured, for example via radiosonde, or modelled precisely. Clothiaux et al. explained that their method has been used successfully on data from the Micropulse Lidar [41], a researchgrade eye-safe elastic lidar. However, for an instrument such as a ceilometer with low sensitivity to molecular returns, this approach is unlikely to perform well, since many hours of averaging can be required to obtain a single clear sky return profile. In addition, this method is best suited for processing of data only after a significant number of measurements have been made, which is problematic for an instrument that is required to provide real-time outputs every 30 seconds. The definition of cloud base height based on a threshold on the backscatter coefficient, however, is similar in many ways to the visibility methods discussed later in this chapter, which provide the starting point for the algorithm applied in this thesis.

5.4.4 Method of Winker and Vaughan

Rather than relying on the measurements of the signal itself to identify clear air returns and then using a model to generate a backscatter threshold as Clothiaux et al. did, Winker and Vaughan [160] applied a threshold to the ratio of measured attenuated backscatter returns to calculated clear-atmosphere molecular returns. For noise-free measurements the threshold for this ratio could be set to unity. However, in practise a threshold, S_c , greater than unity is used.

Since noise generally increases with range on a range-corrected attenuated backscatter signal, for returns from farther ranges they applied a rangedependent threshold, $S_c(r)$, calculated by

$$S_c(r) = 1 + \frac{S_c(r_0)}{\beta'_{mol}(r)},$$
(5.13)

where $S_c(r_0)$ is a threshold that depends on the noise level of the signal and $\beta'_{mol}(r)$ is the calculated molecular attenuated backscatter signal which decreases exponentially with range. This means that the threshold $S_c(r)$ will increase with range at a rate that depends on the $S_c(r_0)$ value selected. The range-variable threshold, $S_c(r)$, is designed for detection of higher clouds, and the constant threshold, S_c , is generally preferred for lower clouds since $\beta'_{mol}(r)$ may be so large that $S_c(r)$ approaches a value of 1. At any given range the greater of these two thresholds is applied.

In addition to these amplitude thresholds that account for the slope of the signal, width thresholds are applied. For most clouds, the amplitude threshold needs to be exceeded for seven consecutive range bins, where the variable range resolution is 6, 15, or 30 metres per bin. If this criterion is not met, a second width test for thin clouds is applied. In this test a feature above threshold for three consecutive range bins in which at least one range bin exceeds a higher threshold, S_t , will be identified as a thin cloud layer.

Since the threshold variables S_c , $S(r_0)$, and S_t are not tied precisely to physical definitions, they require experimental fine-tuning. This is not unusual for cloud detection algorithms, however, and this method has been further developed for use on space-based lidar signals [161], [115]. For lidar ceilometry the fact that the sensitivity to molecular returns is very small would again make this method difficult to apply. However, the general techniques of rangevariable amplitude thresholding and variable width thresholding are useful techniques, and different width thresholds for wide and narrow clouds are applied in the current work.

5.4.5 Method of Platt et al.

A related method described by Platt et al. [157] looks at the difference between the received signal and a stored clear background measurement for each range bin. Two criteria must be met in order to assign a cloud base. First, the amplitude of this difference must exceed a selected multiple of the standard deviation of the signal noise. Second, this amplitude must be maintained or exceeded for a specified minimum number of range bins. The cloud base is then assigned to the first bin above threshold.

The amplitude difference threshold filters the low level noise, while the duration (width) requirement helps remove spurious noise spikes. As with the slope method, this threshold method may have difficulty detecting a diffuse cloud, as the difference between the cloud signal and the background signal may not be much more than the standard deviation of the noise. However, setting the threshold low enough to detect thin clouds makes the instrument
more susceptible to noise. This trade-off can be optimised through tuning of the thresholds, but the tuning would be expected to vary somewhat depending upon the atmospheric conditions during the measurement.

5.4.6 Method of Campbell et al.

Campbell et al. [162] proposed a way reduce the noise-susceptibility problems of threshold methods like the previous one by using an approach that sets two different thresholds that must both be exceeded.

First, the normalised relative backscatter (NRB), which is equal to the attenuated backscatter, β' , times a dimensional system calibration constant, $C_{\beta'}$, such that

$$NRB(\mathbf{r}) = C_{\beta'}\beta'(r), \qquad (5.14)$$

must show an increase of 55% over one or two range bins.

Second, the signal to noise ratio must show an increase of approximately 42% over the same one or two range bins. The SNR can be expressed (in a form simplified from that expressed by Campbell et al.) as

$$SNR(r) = \frac{\frac{NRB(r)}{r^2}}{\sqrt{\frac{NRB(r)}{r^2}} + N_B(r)},$$
(5.15)

where $N_B(r)$ is the background noise received during the measurement from each range r. Note that since the NRB is a range-corrected function, here it is divided by r^2 in order for it to be expressed as part of the signal to noise ratio.

Equation 5.15 demonstrates the noise-dependent relationship between SNR and NRB. In low background light conditions the NRB is the more restrictive threshold, since in that case the SNR will be larger than required. In bright background conditions the SNR is the more restrictive threshold, since in that case the NRB will be larger than required. This dual threshold approach provides an attractive means of dealing with differences between daytime signals and nighttime signals.

When applied to ceilometers, however, the problem with any thresholding approach is the relatively large amount of noise. Since wide laser spectra and therefore wide bandpass filters are typically used in ceilometers, as are fairly wide fields of view, the noise due to background light is much greater than that present in most research lidar systems. Note that in contrast to the the prototype instrument described in this thesis which has a filter bandwidth of 36nm, the Micropulse Lidar to which this method was applied has a filter bandwidth of 0.2nm [41]. This means approximately 180 times more optical background noise for the ceilometer during daytime measurements based on the filter bandwidth alone. In addition, while the prototype has a half-angle field of view of 0.75mrad, the Micropulse Lidar has a half-angle field of view of 0.05mrad, which means an additional factor of 225 times more noise for the ceilometer during daytime measurements. Since the signal to noise ratio of a ceilometer is much smaller than that of a high performance instrument like the Micropulse Lidar, it is also more likely that spurious 55% increases in NRB over one or two range bins will be present in the ceilometer signal.

5.4.7 Method of Gaumet et al.

Gaumet et al. [45] described a cloud detection method specifically for ceilometers based on first identifying cloud signal onset, peak, and top, and then applying a threshold test. These features are located, either on the signal itself or on the inversion of the signal, by performing sliding derivative tests on three consecutive range bins. The signal onset is identified at the first significant positive derivative, the peak is identified just before the following significant negative derivative, and the top of the cloud is located when the negative slope concludes just before a roughly constant slope is reached.

If the signal itself is used, a threshold on the amplitude of the peak of the signal is applied to determine whether the cloud is a significant layer or not. It the inversion is used, the optical depth of the layer is calculated and compared with a threshold to determine its significance. These thresholds were established through comparison with visual observation. If the layer is considered significant, the height of the peak of the signal within the layer is assigned as the cloud base height. This type of method should perform well at identifying visible cloud layers in situations without excessive noise, though it would be better for aviation applications to locate the cloud base at the onset of the signal. In the presence of considerable noise, however, this derviative-based method would be expected to struggle.

5.4.8 Structure of the Atmosphere (STRAT) Method

Morille et al. [163] described a comprehensive method for identifying aerosol and cloud layers throughout the troposphere from lidar signals. The method, called <u>Structure of the Atmosphere (STRAT)</u> requires a signal to noise ratio of at least 3 in order for any layers to be considered. If the signal meets this criterion, layers containing aerosol or cloud droplet particles are detected using a continuous wavelet transform method based on the second derivative a of Gaussian distribution, known as the *Mexican hat wavelet*. This particular wavelet, shown in Figure 5.16, is used because it closely resembles the lidar signature of a cloud or aerosol layer.

Figure 5.16: Second derivative of a Gaussian distribution, referred to as the *Mexican hat wavelet*.

If a feature is identified through wavelet analysis, it must also exceed a peak to base ratio threshold, R_{thr} , in the signal P(r) such that

$$R_{\rm thr} = \frac{P(r_{\rm peak})}{P(r_{\rm base})} = 10\sigma(t), \qquad (5.16)$$

where $P(r_{\text{peak}})$ is the calibrated signal power at the peak of the feature identified by the wavelet analysis, $P(r_{\text{base}})$ is the calibrated signal power at the onset of the feature identified by the wavelet analysis, and $\sigma(t)$ is the standard deviation of the calibrated lidar signal P(r) at time t.

Once a significant particle layer has been identified in this way, cloud layers are distinguished from aerosols by application of another threshold. To do this a test, originally devised by Wang and Sassen [164], is applied in which the calibrated, range-corrected peak to base ratio δPr^2 is considered such that

$$\delta P r^2 = \frac{P(r_{\text{peak}}, t) r_{\text{peak}}^2}{P(r_{\text{base}}, t) r_{\text{base}}^2}.$$
(5.17)

If $\delta Pr^2 > 4$, the layer is determined to be a cloud.

Morille et al. found that a co-located Vaisala ceilometer typically reported cloud base height between the onset and the peak of the signal. In the STRAT algorithm, cloud base is assigned at the onset of the lidar signal as determined by analysis of the slope, and therefore reported cloud base on average 178m below the ceilometer.

This method is effective because it does not rely on inverted data, and because it combines threshold and slope analysis with feature detection. It is intended, however, as a comprehensive algorithm for vertical profiling of the atmosphere utilising lidar systems which show clear molecular returns, as the molecular returns are used in the calibration of the signal. While a wavelet approach was investigated for the prototype, it was not applied, as it was not found to show advantage over the method that was eventually implemented. However, the concept of signal filtering for feature identification as a separate step from thresholding was applied to the prototype.

5.4.9 Fraction of Total Signal (FOTS) Method

In the same study in which he suggested lidar signal onset was a more accurate definition for cloud base based on visibility than signal peak [55], Eberhard went on to suggest a more complex approach called the fraction of total signal (FOTS) method to relate lidar signals to pilot-reported cloud base height at various viewing angles in a variety of non-uniform cloud density distributions.

As illustrated previously in Figure 5.13, the optical thickness perceived by a pilot near the bottom of a cloud varies significantly with viewing angle. In order to calculate the height, r_e , at which a pilot will report cloud base for a particular viewing angle, θ_V , below horizontal, based on a lidar return, Eberhard applied two assumptions. First, he assumed that the lidar ratio $\Pi_{\rho}(r)$ defined in Equation 2.14 is constant with range such that $\Pi_{\rho}(r) = \Pi_{\rho}$. Then, since the particles in clouds are relatively large, he assumed a fixed ratio, ρ , of extinction, α_L , at the lidar wavelength to extinction, α_P , observed by the pilot such that $\rho = \frac{\alpha_L}{\alpha_P} = \text{constant}$. He also fixed a standard contrast threshold of 0.05 of perceived contrast C_D over actual contrast C_0 at distance D such that

$$\frac{C_D}{C_0} = e^{-\int_0^D \alpha(s)ds} = 0.05.$$
(5.18)

By integrating extinction up to distance D, the optical depth at this contrast ratio is found by

$$\tau_e = \int_0^D \alpha(s) ds = 3. \tag{5.19}$$

Note that contrast can be defined as the difference in relative brightness between an object and its surroundings [165].

Using the assumptions of constant lidar ratio and constant ratio ρ , Eberhard derived an expression, slightly rewritten here, that can be used to find cloud base height perceived by a pilot from a ground-based lidar return. For a vertically-pointing lidar, when the ratio of attenuated backscatter β' integrated up to range r_e to the total integrated attenuated backscatter in a cloud meets the following criteria,

$$\frac{\int_{0}^{r_{e}} \beta'(r) dr}{\int_{0}^{\infty} \beta'(r) dr} = 1 - e^{-2\rho \sin(\theta_{V})\tau_{e}},$$
(5.20)

where the viewing angle θ_V and the optical depth threshold τ_e are user selected, the height r_e is reported as the cloud base height.

Dependence on the unknown lidar ratio Π_{ρ} and the unknown system constant K_s , both accounted for in the attenuated backscatter $\beta'(r)$, is therefore removed when the two integrals are divided. In order to remove the dependence on infinite distance for the total integrated attenuated backscatter, Eberhard assumed that any cloud under measurement is sufficiently optically dense to fully attenuate the signal before the top of the cloud is reached. He noted, however, that for thin clouds that do not fully attenuate the signal, the FOTS method can still assign cloud base height at least as accurately as can the peak detection method.

To explore how this method performs it was applied, as demonstrated in Figures 5.17 and 5.18, to two example measurements of Platt et al. shown earlier in Figure 5.12. Note that neither of these returns is range-corrected, and that the signal was integrated starting from just below each cloud. Though the example in Figure 5.18 shows a much broader return than that in Figure 5.17 and is presumably considerably less dense, based on the approximately exponential shape of the decay of the cloud return in each example it seems reasonable to assume that both fully attenuated the signal.

The perceived cloud base was calculated from the lidar return for each of these examples for pilot viewing angles, θ_V , equal to 1°, 3°, and 90° below horizontal. Note that the perceived cloud base height calculated using a viewing angle of 90° below horizontal occurs near the height of full extinction of the received lidar signal, while for the smaller viewing angles cloud base height is reported below the peak of the return. The 3° report is approximately 100m below the 90° report for the stratocumulus example in Figure 5.17 and more than 1km below it in the altocumulus example in Figure 5.18. Perception of

Figure 5.17: Example of cloud base location by Eberhard's FOTS method applied to the stratocumulus lidar return shown in Figure 5.12. Cloud base heights for different viewing angles are indicated by vertical lines.

Figure 5.18: Example of cloud base location by Eberhard's FOTS method applied to the altocumulus lidar return shown in Figure 5.12. Cloud base heights for different viewing angles are indicated by vertical lines.

cloud base height is therefore highly dependent upon viewing angle, and this angle should always be specified for cloud base definitions based on visibility.

The FOTS method provides an interesting way of linking cloud base height to optical properties without relying on assumptions necessary for inversion of the lidar equation. The assumption of lidar signals being fully attenuated within clouds is not a bad one, since lidar signals rarely penetrate substantial clouds. However, when this is not the case, the definition used in this approach loses its meaning. The following method is also based on visibility, but the assumptions necessary for Klett inversion are applied, rather than the signal attenuation assumption applied by Eberhard.

5.4.10 Method of Poyer and Lewis

Poyer and Lewis [166] reported a cloud height method based on horizontal visibility determined from a Klett inversion of the atmospheric extinction coefficient, $\alpha(r)$. Since visibility can be determined from extinction using Koschmieder's law for visual meteorological optical range V_{MOR} [167],

$$V_{\rm MOR} = \frac{\ln K'}{\alpha},\tag{5.21}$$

where K' is the luminance contrast threshold of the human eye, a horizontal visibility at each height can be calculated from the inverted signal. Though there are differences in perceived contrast at daytime and nighttime [168], the typical visual contrast threshold as dictated by the World Meteorological Organization [169] and the International Civil Aviation Organization [170] is 5%. Applying this threshold and assuming horizontal homogeneity at each height, Poyer and Lewis calculate horizontal visibility $V_H(r)$ as a function of height r from the retrieved extinction profile $\alpha(r)$ by [166]

$$V_H(r) \approx \frac{3}{\alpha(r)}.$$
 (5.22)

Poyer and Lewis then applied empirically-derived thresholds for horizontal visibility and slope of horizontal visibility to determine cloud base height from Micropulse Lidar signals. Because this approach ties the cloud base reported to visibility, it makes it appropriate for use in aviation, but as it relies on clearly defined optical properties of the cloud, it is also relevant for meteorological use. This method forms the basis for the first part of the algorithm applied to the prototype data and is described in more detail in Section 5.5.

5.4.11 Summary of Cloud Base Determination Techniques

Each of these methods has advantages and disadvantages. Peak detection is the simplest method but typically overestimates the height at which a pilot can see out of a cloud, and as Eberhard pointed out, there does not seem to be a simple formula that reliably relates cloud base height to signal peak [55]. The slope and threshold methods have advantages for research lidars, particularly the threshold method of Clothiaux in the setting of instruments where current atmospheric state data is available. Eberhard's FOTS method considers pilot perception of cloud base as its basis and is therefore relevant to ceilometers, but its reliance on the assumption of optically dense clouds means it may significantly under-report the heights of thin cloud bases. The method of Poyer and Lewis, which was used as the starting point for the prototype algorithm, ties the signal to visibility in a straightforward manner.

5.5 Prototype Ceilometer Cloud Base Algorithm Part 1: Visibility-Based Detection

In order for a lidar ceilometer to report cloud height automatically, an algorithm must be applied to the data inside the instrument. This algorithm must not only determine whether or not cloud detections are significant and assign cloud base height accurately, but it must also avoid false reports in precipitation, discern whether apparently independent cloud detections within close proximity to each other are actually part of the same layer, and create outputs that can be used by standard meteorological reporting frameworks. This section details the first part of the two-part cloud base algorithm that has been developed for the prototype instrument.

5.5.1 Horizontal Visibility Thresholds for Two Cloud Types

The first part of the algorithm that has been developed is based on the visibility-based method of Poyer and Lewis [166]. By applying Equation 5.22, horizontal visibility is determined for each height of the inverted signal.

In order to detect cloud base height from the lidar returns, Poyer and Lewis applied visibility threshold rules that were derived empirically by comparing ground-based visual observations of cloud base height to data inverted by the Klett method. Their algorithm works as follows.

For dense water droplet clouds, the following criteria are applied to identify cloud base.

If
$$V_H(R) < V_d$$
 and $[V_H(R+1) - V_H(R-1)] > \Delta V_d$, then $R = R_c$. (5.23)

Here $V_H(R)$ is the horizontal visibility at range bin R, calculated using Equation 5.2, V_d is the visibility threshold for dense cloud base, $V_H(R+1)$ and $V_H(R-1)$ are the visibilities calculated 1 range bin higher and 1 range bin lower, respectively, than range bin R, ΔV_d is the visibility gradient threshold, and R_c indicates a cloud base.

The threshold for dense cloud base chosen by Poyer and Lewis,

$$V_d = 0.64$$
km (Poyer and Lewis), (5.24)

sets the horizontal visibility (as expressed by Equation 5.21) that an observer would perceive when standing at the base of a cloud to match the visibility that would be observed when standing on the ground in a fairly dense fog (Personal Communication, Aaron Poyer, 2009). Meteorological expertise within Campbell Scientific suggests that this threshold should be raised slightly, therefore lowering the height at which the base of a cloud would be reported. A threshold of $V_d = 1$ km was suggested, since that is the visibility limit at which fog is first reported [171], rather than demanding the visibility decrease to that of a dense fog before a cloud can be reported. This adjusted threshold is intended to match the cloud base reports of the instrument more closely with those reported by pilots. Therefore, for the algorithm used in the prototype, the threshold

$$V_d = 1 \text{km} \text{(Prototype)} \tag{5.25}$$

is applied for dense cloud base detection.

The range bin size of the Micropulse Lidar instrument used by Poyer and Lewis was 15m. The gradient threshold they applied for this range bin was

$$\Delta V_d = 0.064 \text{km} \text{ (Poyer and Lewis)}. \tag{5.26}$$

Since the prototype ceilometer has 5m range bins, the gradient threshold

$$\Delta V_d = \frac{0.064 \text{km}}{3} = 0.022 \text{km} \text{ (Prototype)}$$
(5.27)

was used to give an equivalent definition.

For thin water droplet and/or ice crystal clouds that do not meet the

criteria in Equation 5.23, Poyer and Lewis applied a different rule.

If
$$\frac{\sum_{R=0}^{R+20} V_i}{20} < V_{av}$$
 then $R = R_c$. (Poyer and Lewis) (5.28)

Here V_i is the horizontal visibility calculated for range bin *i*, and V_{av} is the average visibility over 20 of the micropulse lidar's 15m range bins, or 300m. The average visibility threshold specified by Poyer and Lewis is

$$V_{av} = 4.8 \text{km} \tag{5.29}$$

In the prototype algorithm, the same criterion requiring a 300m vertical extent with average horizontal visibility below V_{av} was applied in order to indicate a thin cloud, but the cloud base height was assigned at the centre height of the 300m region rather than at the bottom, placing the cloud base 150m above the lowest bin exceeding the threshold in an attempt to agree more closely with pilot observations of visibility. In order to centre the cloud base height assigned to a thin cloud feature and employ 5m range bins rather than 15m range bins, the rule from Equation 5.28 becomes the following.

If
$$\frac{\sum_{R=30}^{R+30} V_i}{61} < V_{av}$$
 then $R = R_c$. (Prototype) (5.30)

This rule was used on the prototype data to locate thin cloud layers.

5.5.2 Inversion Boundary Point Assignment, and Minimum Measurable Extinction Coefficient

After the data has been corrected for the impulse response of the electronics, overlap corrected, and range corrected, it is inverted using Klett's backward inversion method. Recall from Chapter 2 that this can be expressed as

$$\alpha(r) = \frac{Z(r)}{\frac{Z(r_b)}{\alpha(r_b)} + 2\int_r^{r_b} Z(r')dr'} , \qquad (5.31)$$

where Z(r) is the range-corrected (here also overlap-corrected) power as a function of range, $Z(r_b)$ is the range-corrected power at the far boundary r_b (the far boundary being the maximum range at which the signal to noise ratio is deemed to be acceptable), $\alpha(r_b)$ is the assumed far boundary value of the extinction coefficient, and $\int_r^{r_b} Z(r') dr'$ is the range-corrected power integrated from range r to range r_b .

Typically, the starting range of the inversion is the range at which full overlap has been reached, however, since the overlap function of the instrument has been characterised, inversion of the prototype data begins at 80m, the height of onset of overlap. This is the first range from which single-scattering returns can be detected. Empirically-derived visibilities for strong multiple scattering returns are used below this height.

The boundary range r_b is determined by finding the farthest point where the signal to noise ratio is 2 times the noise found at the maximum range of the instrument and and is immediately preceded by at least three consecutive range bins also exceeding this threshold. The noise is found by taking the standard deviation of the top 500m of the measurement range where very little, if any, backscatter signal is expected to be detectable.

In an elastic lidar application where the extinction coefficient at the far boundary is not known, it must be assumed. For turbid atmospheres where clouds are the primary features of interest, the Klett inversion typically converges quickly to the correct solution regardless of the assumed boundary extinction coefficient [99]. An experiment on data from the prototype showed that a change of 2 orders of magnitude in the boundary extinction coefficient $\alpha(r_b)$ produced a much smaller change of a factor of 2 in the inverted extinction coefficient at close ranges in a cloudy atmosphere. Boundary values for $\alpha(r)$ reported in the literature range from approximately 0.02/m for cloudy boundaries [113] to 0.0001/m for clear boundaries [45]. Due to limited sensitivity to molecular returns (on the order of 8 hours of averaging at night time is required to see a ceilometer molecular return [172]), it is assumed that structures detected at the far boundary are very likely to be either clouds of some sort or highly concentrated aerosol layers. Because of this, and also to make sure that the highest clouds are not missed by the visibility threshold, a fairly high boundary extinction value of $\alpha(r_b) = 0.01 \text{m}^{-1}$ is used. If this guess is higher than the actual extinction coefficient at the boundary, greater values of $\alpha(r)$ at far ranges are calculated and therefore lower visibilities, making cloud features at far ranges more likely to show up. Rather than leave out high clouds that are actually there, the high estimate approach is preferred; this is balanced by the second part of the algorithm, which is designed to remove false cloud hits as discussed in the next section.

5.6 Prototype Ceilometer Cloud Base Algorithm Part 2: Bandpass Filtering and Thresholding

In order to filter out spurious cloud reports generated by the visibility threshold method, particularly at the far end of the measurement range where the inversion of the extinction coefficient profile is highly sensitive to noise, a second cloud detection method not requiring inversion was developed to run in parallel with the visibility-based algorithm. Only when both methods detect a cloud base at a given height is that cloud base considered significant and therefore reported.

Initially, a matched filtering approach was was applied to the data in the time domain. Gaussian or Hanning (cosine) windows on various scales were convolved with measured data in order to enhance features of that shape in noisy situations. The problem with this method was that a broad non-cloud

Figure 5.19: Bandpass filters 1 and 2.

feature such as light haze or precipitation could push the filtered signal above threshold, and then any returns from smaller-scale clouds within that region would not show up since the threshold was already crossed by the returns from the broad feature. Rather than attempting to optimise a set of thresholds with variable amplitudes and feature widths, the following method was used.

5.6.1 Filter Specification

Two frequency domain bandpass filters, shown in figure 5.19, were selected to enhance signal features of widths corresponding to typical broad and narrow cloud returns. Bandpass filter 2, $B_2(\omega)$, was generated using low-frequency roll-on and high frequency roll-off from an inverted Gaussian profile. Using 1024 frequency bins ω_i (where ω_{1024} corresponds to a frequency of 15 MHz), bandpass filter 2 was generated such that

$$B_2(\omega_i) = \begin{cases} 1 - e^{-\left(\frac{\omega_i}{50}\right)^2} & \omega_i \le 512\\ 1 - e^{-\left(\frac{\omega_i - 1024}{50}\right)^2} & 512 < \omega_i \le 1024 \end{cases}$$

Bandpass filter 1, $B_1(\omega)$, has the same high frequency roll-off as filter 2, but it has a faster low frequency roll-on from a different Gaussian profile such that,

$$B_1(\omega_i) = \begin{cases} 1 - e^{-(\frac{\omega_i}{25})^2} & \omega_i \le 512\\ 1 - e^{-(\frac{\omega_i - 1024}{50})^2} & 512 < \omega_i \le 1024 \end{cases}$$

These specific filters were selected because when applied to the signal they successfully identified the wide variety of cloud layer shapes that were manually identified in the test dataset.

Bandpass filter 1, $B_1(\omega)$, is applied to the Fourier transform of a time domain signal P(t) that has been corrected for impulse response, but not corrected for overlap or range. The filtered signal in the time domain $P_{B_1}(t)$ is found by

$$P_{B_1}(t) = \mathcal{R}\left[\mathcal{F}^{-1}\left[B_1(\omega) \cdot \mathcal{F}[P(t)]\right]\right].$$
(5.32)

The same method is applied using bandpass filter 2, $B_2(\omega)$ in order to find the second filtered signal, $P_{B_2}(t)$.

In order to identify potential cloud features from the filtered signals, the standard deviation is calculated for the top 500m of the range, and a threshold is set to four times this value. Regions in the filtered signals that exceed this threshold are flagged as potential clouds. As with the shapes of the filters, this threshold was optimised by comparison with manual analysis of the test dataset.

As shown in figure 5.19, filter 1 and filter 2 share the same high frequency roll-off, however, filter 1 turns on faster than filter 2, reaching 50% by 308kHz, while filter 2 doesn't reach 50% until 615kHz. Filter 1 is therefore expected to enhance wider features in the time domain than filter 2. The performance of these filters and their application along with the visibility threshold method is demonstrated in the next section.

5.7 Parallel Algorithm Method, Cloud Layer Reporting Rules, and Cloud Detection Algorithm Results

In order for the algorithm to report a cloud base, two criteria must be met. First, a cloud feature must be identified by the bandpass filter method just discussed, and second, the inverted cloud return must pass either the dense cloud test or the thin cloud test in the horizontal visibility threshold method. Only when both of these methods locate a cloud will cloud base be reported. Two example measurements illustrates how these methods work together in order to determine if a significant cloud layer is present.

5.7.1 Cloud Detection Algorithm Examples

Figure 5.20 shows the application of the cloud detection algorithm to a cloud located at an altitude of approximately 3500-4000m at Chilbolton Observatory early in the morning on 5 June, 2012. The upper graph shows the Impulse Response-corrected (IR-corrected) signal measured by the prototype. Potential cloud features identified using the bandpass filters are indicated by the shaded areas, dark grey for wider features identified using bandpass filter 1, and light grey for narrower features identified using bandpass filter 2. The lower graph shows the extinction profile, in green, derived from the IR-corrected signal by Klett inversion and the horizontal visibility, in blue, at each range calculated from the extinction profile. Here a point meeting the thin cloud visibility threshold criteria is indicated by a dashed vertical line and a point meeting the dense cloud visibility threshold is indicated by a solid vertical line.

Figure 5.20: Cloud detection algorithm applied to prototype measurement made 5 June 2012 at 03:16 UTC at Chilbolton Observatory. A vertical red line in the upper graph indicates the height of cloud base reported by the algorithm.

In this example, potential close range features arising from noise spikes and/or aerosol returns detected by the bandpass method in the first 200m of the upper graph are not determined to be clouds since range correction and inversion in the lower graph reveal the detections to be insignificant. However, returns from just above 3500m are determined to be cloud by both methods. The cloud feature as a whole ranging from 3600 to 2800m is detected using bandpass filter 1, while its narrower peak ranging from 3680 to 3770m is detected using bandpass filter 2. Narrow and wide cloud bases found using the visibility method are located at 3600 and 3680m, respectively, as shown in the lower graph and replicated on the upper graph. Since the features run together, one cloud base is output at 3600m, indicated by the vertical red dashed line in the upper graph.

Figure 5.21: Cloud detection algorithm applied to prototype measurement made 5 June 2012 at 04:25 UTC at Chilbolton Observatory. No cloud was reported by the algorithm.

Figure 5.21 shows an example from later the same morning when a cloud layer was not reported. In this case instability of the inversion at far ranges due to noise led to the detection of three dense cloud layers using the visibility method as shown in the lower graph. The feature detection method again detected close range noise and/or aerosol returns as shown in the upper graph. The lack of any co-located cloud detections identified by both methods meant that no cloud layer was identified based on this measurement.

5.7.2 Proximity Margins and Rounding Rules

Occasionally a cloud layer may meet the criteria for both of the methods, but the feature detection indicated by the bandpass filtering method may be slightly offset in range from the point indicated by the visibility threshold method. In order to allow for such offsets and avoid the non-reporting of detected cloud layers, small proximity margins have been introduced. Below 1.5km a proximity margin of 30m is allowed between the detections flagged up by the two methods; the lower of the two detections is reported as the cloud base. Above 1.5km a proximity margin of 60m is applied in a similar manner, and again the lower of the two detections is taken as the cloud base. Note that a thin cloud identified using one method located within the margin of a dense cloud identified using the other method is still considered to be a cloud.

According to the World Meteorological Organization, cloud layers are to be reported such that they may be easily implemented into standardised codes called METAR codes as described in the WMO Manual on Codes [173]. This document states that for aviation applications, cloud base heights must be reported at the very least to up to 1500m, the top of the operationally-critical zone. Recall from Chapter 1 that most instruments report to significantly greater heights than this, and from Chapter 3 that the FAA in the US requires bases to be reported at least up to 3810m. The WMO states that from 30m to 3000m, heights should be reported in multiples of 30m and rounded down to the next 30m.

5.7.3 Cloud Detection Output Comparison

Cloud base height reports from the prototype instrument over a 24 hour period at Chilbolton Observatory on 5 June, 2012 are shown in Figure 5.22. Throughout the first half of the day a gradually descending cloud layer was observed, with a second, lower layer appearing after 07:00. After around 12:00, a very low, stable cloud layer was reported throughout the rest of the observation period.

This was compared with cloud base reported on the same day by the Chilbolton CT75k research ceilometer, the outputs of which are shown in Figure 5.23. Cloud layers were tracked similarly by both instruments throughout the day, though the CT75k was slightly more sensitive to upper layers in the presence of lower layers, for example, from 12:00 to 13:00 UTC, probably due to a more sensitive tuning of its algorithm. Comparison of the number of lowest layer cloud hits by the two instruments revealed that the CT75k reported at least one layer 2578 of the 2880 measurement cycles taking place every 30 seconds throughout the 24 hour comparison period, while the prototype instrument reported at least one layer 2232 times. This equates to cloud detected 89.5% of the time throughout the day by the CT75k and 77.5% of the time by the prototype. The prototype algorithm could be tuned for more sensitivity by decreasing the thresholds for bandpass filtered feature detection, but this might mean that insignificant cloud layers would be reported, which is undesirable for aviation applications.

Figure 5.22: Cloud base determined by the prototype algorithm run on data gathered by the prototype instrument at Chilbolton Observatory on 5 June 2012.

Figure 5.23: Cloud base determined by Vaisala CT75k research ceilometer at Chilbolton Observatory on 5 June 2012.

To compare the two instruments in terms of their relative cloud base height reports, the lowest layer output throughout the day was compared in cases where the two instruments deviated by less than 300m in order to ensure the instruments were reporting the same layer, with the prototype outputs rounded down to the nearest 10m mark to match the 10m reporting resolution of the CT75k. The two instruments gave positive 1st layer reports within 300m of each other 1931 times out of the 2880 measurement cycles during the 24 hour period. On average the prototype instrument reported bases 80m lower than the CT75k, with the standard deviation of this difference being 78m and the mode being 40m. A linear regression of the same filtered data, that is, lowest cloud bases reported within 300m of each other simultaneously by both instruments, is shown in Figure 5.24, where the least squares linear fit has an R squared value of 0.998. The y-intercept of linear fit is located at 91m, and the slope is 0.985, which means the difference between the cloud base reports of the two instruments gradually decreases with height, with the offset becoming essentially zero at a range of 6000m.

Figure 5.24: Linear regression of lowest cloud base layer height detections from Figures 5.22 and 5.23. Layers were required to be within 300m of each other for this analysis in order to remove comparisons of reports from different layers.

The CT75k was used as a reference for comparison with the prototype instrument, not as a standard. Recall from earlier in this chapter that Eberhard [55] found the pilot's at a 3 degree approach angle typically reported cloud base 79m lower than the peak of lidar signals for non-precipitating clouds ranging from 160m to 3200m. The results of this comparison suggest that it may be possible that the CT75k is reporting cloud base based on peak detection and that the prototype goal of the instrument of assigning cloud base based on visibility aligns with pilot observations in Eberhards study. Further knowledge of the CT75k algorithm as well as additional intercomparison between these two instruments, particularly at higher ranges, would be necessary to validate such a claim.

In order to provide a sense of what the clouds looked like over the course of the day of these measurements, a series of photos taken at the observatory are shown in Table 5.1. Here hourly photos are included from first daylight until 14:00 UTC, after which time the appearance of the sky changed very little for the rest of the daylight hours. At 04:00 it appears that an altocumulus layer at just above 4000m is showing through a gap in the the gradually descending altrostratus layer which is being reported at 3500m by the ceilometers at that time. At 10:00 and 11:00 the altocumulus layer is no longer visible, but the previous altostratus layer has descended to around 1750m and would now be categorised as stratus. At the same time a scattered stratocumulus layer is visible below. Occasional gaps in these layers, for example at 12:00, allow the ceilometers to reveal the presence of a third layer, but the photos show primarily the stratocumulus layer at around 200m with some view of the stratus layer above. Table 5.1: Hourly sky images from camera-axis 2100 at Chilbolton Observatory $% \left({{{\rm{C}}} \right)_{\rm{T}}} \right)$ on 5 June 2012 from 03:00 UTC to 14:00 UTC.

12:00

13:00

14:00

5.8 Determination of Vertical Visibility

If no clouds are detected by a ceilometer, it is expected to report vertical visibility. A recently-introduced international standard, ISO 28902-1 [171], describes an algorithm for lidar determination of visibility for meteorological optical ranges (MOR) of up to to 2000m, where MOR is defined as the range at which the integrated extinction reaches 3 (a contrast of 5%). Since the proto-type instrument is intended for commercialisation, this standard was followed closely in the development of the instrument's visibility algorithm. The steps of the method described in the standard are summarised in Table 5.2

Table 5.2: Outline of the ISO lidar vertical visibility algorithm [171].

- 1. Find r_f , the farthest range at which SNR ≥ 6 dB.
- 2. Set initial boundary value of the extinction $\alpha(r_f) = 1 \times 10^{-1}$ /m.
- 3. Perform a Klett inversion to determine extinction $\alpha(r)$ (from range r_0 , where overlap O(r) = 0.8, to range r_f).
- 4. Determine the system's minimum resolvable extinction, α_{\min} (for the prototype $\alpha_{\min} = 1.5 \times 10^{-3}/\text{m}$).
- 5. Find the average α_{ave} of all $\alpha(r) \geq = \alpha_{\min}$.

6. If
$$\left|\frac{\alpha_{\text{ave}} - \alpha(x_f)}{\alpha_{\text{ave}}}\right| \ge 0.1$$
, set $\alpha(r_f) = \alpha_{\text{ave}}$.

7. Iterate inversion until $\left|\frac{\alpha_{\text{ave}} - \alpha(x_f)}{\alpha_{\text{ave}}}\right| < 0.1$ or an iteration limit is reached.

8. MOR is determined from $\alpha(r)$ by $\int_{r_0}^{\text{MOR}} \alpha(r) dr = 3$.

An initial far boundary value of $\alpha(r_f) = 1 \times 10^{-1}$ /m, corresponding to a visual range of 30m, is assigned by the standard as the maximum resolvable extinction coefficient for a typical lidar. This value of $\alpha(r_f)$ is lowered through iteration until it is within 10% of the average extinction α_{ave} calculated from the inversion. A minimum resolvable extinction coefficient $\alpha_{min} = 1.5 \times 10^{-3}$ /m, corresponding to a visual range of 2000m, is specified by the standard, and during each iteration any extinction values $\alpha(r)$ below this minimum are omitted from the average α_{ave} that is used to assign the next boundary value $\alpha(r_f)$.

This prevents gaps in the scattering media from artificially reducing the the boundary value of $\alpha(r_f)$. Once the iteration criteria have been met and the inversion has been completed, the MOR is determined by integrating $\alpha(r)$ up to the range at which the integral equals 3, and this range is reported as the vertical visibility by the instrument. This iterative method for determination of the boundary extinction value $\alpha(r_f)$ operates under the assumption that when visibilities are low enough to be reported, the extinction coefficient value at the boundary of the region will be similar to the values within the region, i.e., the scatterers in the region and their concentrations are expected to resemble each other, except within clear gaps. Note that according to the standard the accuracy of visibility measurements made including ranges prior to 80% overlap is questionable due to uncertainties arising from multiple scattering.

Figure 5.25: Images taken by horizontal camera at Chilbolton Observatory at 10:45:15 UTC (left) and 10:46:00 UTC (right) on 29 August, 2012, just before and during a sudden burst of rain that reduced visibility for approximately 1 minute.

Although the most desirable conditions for initial testing of a vertical visibility algorithm would be a uniform fog or haze, these conditions were not encountered during the preliminary test phase, so a precipitation event was selected as a test case. Measurements were taken during a sudden burst of rain that lasted for about 1 minute. Images from the observatory taken just before and during the rain are shown in Figure 5.25. A droplet counting rain gauge (*droplet counter b*) located at the observatory reported a rainfall of 0.56mm during this time. A ground-level visibility of 2150m (corresponding to an extinction of $\alpha = 0.0014m^{-1}$) was reported for the same minute by the observatory's Vaisala PWD21 present weather sensor (*cfarr-pwd21*). The CT75k reported vertical visibilities of 210m and 180m at around the same time.

Figure 5.26: Range-corrected and overlap-corrected prototype signal and its inversion by application of the visibility algorithm iterative method at 10:46 UTC on 29 August, 2012 at Chilbolton Observatory.

Figure 5.26 shows the result of the iterative inversion method applied to this low cloud and rain situation along with some parameters calculated from it. The integrated extinction was 2.38, indicating a contrast of 9.3%. Therefore the integrated extinction threshold of 3 corresponding to a contrast ratio of 5% dictated by the standard [171] was not reached. Since that threshold was not reached, the average extinction over the measurement region of significant returns was used to calculate an average visibility of 196m, which turned out to be close to the two visibility values of 180m and 210m reported by the CT75k. While the standard should be followed for the primary visibility output, a secondary output giving average visibility and the depth of the averaging region could prove useful in cases where visibility is nearly obscured but the threshold is not met. The usefulness of this approach was examined as follows.

While averaging the extinction coefficient over the region from 80m (where overlap begins to be significant) to the top of the signal as shown in Figure 5.26 and using this to calculate the visibility gave results that appear to be in line with the CT75k visibilities, this does not accurately reflect the visibility situation during this measurement. This is because in this case, two features are contributing to obscuration of visibility: the rain and the low cloud. The cloud, the base of which is located at a height of 150m, provides significantly more extinction than the rain. Therefore, averaging only over the region from 80m and above biases the extinction to a higher value, and therefore the visibility to a lower value of 196m. Since the extinction appears to be fairly uniform in the rain, in these special circumstances the range and overlap-corrected signal was extrapolated in order to extend it to ground as shown in Figure 5.27.

Figure 5.27: Extrapolated range-corrected and overlap-corrected prototype signal and its inversion by application of the visibility algorithm iterative method at 10:46 UTC on 29 August, 2012 at Chilbolton Observatory.

In this case, the average extinction coefficient that is calculated from the signal is somewhat lower, and therefore gives a higher visibility of 291m. The photograph in Figure 5.28 indicates that the cloud layer was not fully obscuring and suggests that an observer on the ground could therefore have seen, through the cloud, a target positioned 291m above the ground. While it may or may not be useful to provide an alternative report of visibility over the range of significant returns, investigation of this method reveals that the extrapolated inverted extinction coefficient near the surface matches closely that reported

by the ground-based present weather sensor at the same time, thus providing some validation of the the iterative inversion method. This investigation also demonstrates that in order for any visibility report to be meaningful, the definitions and algorithms applied must be made clear to the user of the data.

Figure 5.28: Image taken by vertical camera at Chilbolton Observatory at 10:30:01 UTC on 29 August, 2012.

The main purpose of this section was to demonstrate that the iterative inversion method suggested by the ISO visibility standard could be implemented in a satisfactory manner. While ideal conditions such as fog were not encountered during the preliminary testing phase of the prototype algorithms, suitable conditions for testing the iterative inversion method were encountered. In fact, the presence of rain beneath the cloud allowed the inverted data to be extrapolated to ground level and checked with ground-level readings of extinction. Although the prototype visibility algorithm can be refined further, it has been shown here to meet basic expectations of functionality.

5.9 Conclusion

A method for correcting for phase distortion by the impulse response of the prototype amplifier has been explained. The calibration of attenuated backscatter returns based on prototype signals corrected for impulse response has been performed. After this calibration, attenuated backscatter returns were shown to agree with those from the CT75k research ceilometer at Chilbolton Observatory within a maximum ratio of 1.5 for a variety of different scattering media at a variety of different ranges. On the calibration data itself the instruments agreed within 15%. In addition, sensitivity of the prototype to boundary layer aerosols has been demonstrated.

A variety of cloud detection algorithms from the literature have been reviewed, and a visibility-based cloud detection algorithm built upon the method of Poyer and Lewis [166] has been developed to determine cloud base height using inverted data. To improve the performance of this method, it has been coupled with a new algorithm based on two bandpass filters that identify cloud signatures in lidar returns. This second method looks for cloud-return-shaped features in the signal after it has been corrected for impulse response, but before it has been range-corrected and inverted. Only when a threshold in the bandpass filtered data is exceeded and the visibility threshold criteria are met in the inverted data at the same range is a cloud reported. These two approaches in the parallel cloud detection algorithm used in the prototype balance each other to remove spurious detections while still providing good sensitivity.

Compared to the CT75k, the prototype has been shown to track layers similarly. The sensitivity of the cloud detection algorithm described in this chapter and applied to the prototype instrument is slightly lower than that of the CT75k. Since the CT75k was used as a reference for cloud base but was not considered to be a standard, this could mean that the prototype algorithm should be tuned for increased sensitivity or that it is simply better at filtering out clouds that are insignificant for aviation applications. For samelayer lowest cloud base height reports (lowest layers where the two instruments reported within 300m of each other), the prototype algorithm gave outputs on average 80m below those of the CT75k.

In the case of no cloud report, a vertical visibility output is given by the prototype based upon the method [171] recommended by the International Organization for Standardization. This method was described here and the results of its application to a rain event validated the method's usefulness.

The prototype instrument is therefore capable of providing the three primary outputs required of a ceilometer: cloud base height, vertical visibility, and attenuated backscatter, and has shown sensitivity to boundary layer aerosols.

Chapter 6

Conclusions and Further Work

6.1 Conclusions

A novel lidar ceilometer prototype has been designed, built, and tested. The design has an optical signal to noise advantage of greater than 4 times that of a leading instrument in a similar class. A divided-lens design with close proximity of optical axes efficiently utilises the elliptical output of a diode laser without the need for beam-correcting optics, balances relatively fast turn-on of the overlap function (overlap is greater than 80% at a range of 200m) with good optical isolation between the channels, and, since two halves of the same lens are used, the transmitter and receiver can be focused in a single procedure. A compact mechanical design for the optical assembly has been produced, and a straightforward optical alignment procedure has been devised. Overall, low cost components have been selected, the number of components has been minimised, and the assembly process simplified as much as possible. The goal of this design of improving the optical performance of ceilometers while at the same time reducing their cost has been achieved through an effective compromise between these two competing approaches, increasing the range of the instrument by approximately 25% while decreasing the estimated selling price by approximately 25% compared to commercially available instruments in a similar class.

As a good understanding of the close range sensitivity of this type of instrument is important for cloud detection and particularly important for aerosol profiling and determination of vertical visibility, a novel experimental method for the characterisation of the range-dependent transmitter-receiver overlap has been described and applied to the prototype. This method utilises an imaging technique which presents a virtual image of a scattering target to a lidar instrument at various effective ranges in order to characterise the overlap of the system throughout its entire range within the limited space of a laboratory. In addition, a geometric calculation of the overlap has been derived specifically for the unique geometry of the prototype system. This calculation has a great deal of built-in flexibility for dealing with different laser emitter patterns and aperture configurations and is therefore a useful tool for lidar design intercomparison. Finally, to provide another reference, the overlap of the prototype was characterised by measuring returns from a hard target translated along the overlap region.

The hard target measurements fell within the error bars of the imagingbased overlap measurement beyond the 50% overlap range of approximately 125m, but not below it. The reasons for the differences between these two measurements at close ranges were not understood quantitatively, but a number of potential causes were identified, including possible inadvertent shift in the optical alignment of the prototype between the two test sites. The calculated overlap fell within the experimental error bars on the imaging based overlap measurement in the region from 125m to 200m corresponding to approximately 50-80% overlap. As anticipated, however, calculation and experiment did not agree entirely. In the overlap onset region and in the region approaching full overlap there were nontrivial differences. Poorly understood optical effects not accounted for in the calculation, such as inadvertent scattering and/or unintentional laser tilt, were the most likely causes of these discrepancies. The differences between measured and calculated overlap underscore the importance of measuring overlap prior to deploying a lidar instrument in order to evaluate the performance of its optical design.

Once the prototype had been built and its overlap had been characterised, it required calibration as well as the development of automated signal processing methods in order for the instrument to be capable of reporting the necessary outputs of attenuated backscatter, vertical visibility, and cloud height.

The instrument was given a preliminary calibration following a method described in the literature. Attenuated backscatter calibration measurements were found agree to within 15% of those of a research ceilometer calibrated by the same method. In addition the instrument has demonstrated sensitivity to boundary layer aerosols and the attenuated backscatter profile can clearly be used to monitor the vertical extent of concentrated aerosol layers in this region for lidar-based boundary layer height retrieval.

A method to allow the prototype to automatically determine vertical visibility from the signal has been implemented. This method, based on an iterative inversion algorithm described in the literature, has been tested and shown to provide reasonable results through comparison with outputs from a research ceilometer and visibility measured by a ground-based present weather sensor.

A novel two-part algorithm has been developed for the automated detection of clouds. This algorithm uses two sets of criteria in order to identify cloud base. The first set of criteria is based on a method described in the literature which assigns cloud base where certain threshold conditions, expressed separately for dense and diffuse clouds in terms of horizontal visibilities derived from the inverted extinction profile, are satisfied. The second set of criteria is based on feature identification in the non-range-corrected signal. In this second method, potential cloud return features are located by application of two bandpass filters which are designed to filter out high frequency noise and very broad low frequency features such as precipitation returns. Only when a feature meets both sets of detection criteria is a cloud layer reported by the prototype algorithm. Since the visibility-threshold method is somewhat oversensitive at far ranges where the inversion may be unstable, and the bandpass filter method is somewhat over-sensitive at near ranges due to noise artefacts and increased sensitivity to aerosol returns, the effect of using these two methods together is that false reports are to a large extent avoided. Cloud outputs from the prototype instrument tracked closely those from a research ceilometer used as a reference, showing slightly less sensitivity (77.5% compared to 89.5% positive detections of at least one layer during the measurement period) and slightly lower reporting (on average 80m lower) than the research instrument. These differences in the prototype's sensitivity and cloud base height reports could be advantageous for aviation, but further investigation is required to validate this supposition. Regardless of the differences between the two instruments, the prototype algorithm was shown to be fully functional for tracking cloud base.

By lowering the cost of lidar ceilometers, improving their performance, and deploying the technology broadly, more coverage of the earth can be made, and more people can contribute to the meaningful study of the atmosphere through widespread networks. Not only large scale government agencies such as the Met Office, but also schools, local governments, universities, and amateur weather associations can become involved in this process, a process that can help to create a deeper understanding of climate and weather on many levels.

6.2 Further Work

There are many exciting and challenging areas of research that can be explored in order to build upon the current work. The primary recommendations for further study fall into three categories: Overlap calibration and correction, signal processing methods, and instrumentation.

6.2.1 Potential Advances in Overlap Characterisation and Correction

Portable Overlap Characterisation Tool

There are three particularly important areas to investigate following the work that has been described in this thesis regarding measurement of overlap. The
first of these is the implementation of the laboratory-based compound imaging system described in Chapter 4 into a portable system for the calibration of elastic lidar overlap. Though it would require significant effort in terms of optical design and alignment, it could, for example, be used to characterise the overlap of ceilometers coming off an assembly line or used at observatories or in the field to calibrate elastic systems. The main obstacle to the development of a compact, mobile instrument would be the cost of imaging optics with large aperture and suitably low f/#. This requirement is exactly the same as that of the imaging system in a compact, large aperture lidar, however, and although expensive, should not be prohibitive.

Multiple Scattering Models for Maximising Usefulness of Signal Prior to Full Overlap

A second important problem relating to overlap is the question of how to gain useful information from the signal prior to full overlap. Based on good understanding of the overlap, and if some assumptions about the particles in the closest part of the atmosphere can be made, a multiple scattering model could be used for inverting close-range returns. For the prototype instrument, signals due to multiply-scattered returns have been detected as close as 10m to the instrument. With another instrument as a reference to provide particle size information, or possibly with the help of a model, a multiple scattering calculation method such as that of Eloranta [97] could be used to estimate concentrations of particles prior to full overlap. For the prototype instrument, this could improve visibility measurements, low cloud detection, and aerosol profiling. While the errors that would likely result through the use of such a method might be too high for detailed aerosol study with research lidars, this approach could be extremely useful for improving the quality of close-range ceilometer data.

Multiple Fields of View

The third area worth investigating is application of multiple fields of view, for example, by implementing a method described by Hutt et al. [47] which utilised a detector based on isolated concentric detection regions. This could provide a close range wide field of view channel with fast overlap and a farrange narrow field of view channel with slow overlap. This approach might also facilitate determination of the lidar ratio and effective particle radii if, as noted by Hutt et al., signals were detected simultaneously by three different field of view channels. Implementation of this method would require significant consideration on detector design, but would likely at the very least provide a good solution to the near-range overlap versus far-range SNR tradeoff.

6.2.2 Signal Processing Approaches for Full Exploitation of Ceilometer Potential

Further fine-tuning of the prototype algorithm through implementation of techniques such as variable cloud detection thresholds based on time series analysis of feature persistence is certainly possible. But beyond this kind of work there are a number of signal processing methods that should be studied in an attempt to increase the value of the prototype's data.

Additional Outputs

First, there are two additional outputs that should be considered. According to Chiu et al. [174], optical depth is the most important property of clouds in terms of their influence on the Earth's radiation budget, but is unfortunately also one of the most poorly observed. While the upper limit of optical depth determined by a ceilometer would be not much greater than $\tau = 3$, with a good inversion, optical depths of thin clouds could be tracked by ceilometers, and clouds that fully extinguish the signal could simply be reported as being above a threshold. Since ceilometers are widely deployed, this could contribute to the effort of characterising cloud optical depth around the globe. Another output that should be considered is height-dependent cloud fraction. Ceilometers are often expected to report an estimate of cloud cover in terms of oktas or eights of the sky in order to match what a visual observer might report. Bretherton et al. proposed an alternative approach that is a more appropriate for a vertically-pointing instrument. They applied a method whereby cloud bases were measured each minute, and on an hourly basis cloud fraction was calculated based on these measurements in each of a number of height ranges [175]. This is a much more useful way to evaluate ceilometer data because it utilises the vertically-resolved capability of the measurement and doesn't require horizontal extrapolation that varies widely in quality depending upon cloud structure and wind velocity. It is strongly recommended that this approach be used over the traditional sky condition report, and it is hoped that meteorological agencies will soon adopt this approach.

Improving Boundary Layer Aerosol Profiling

As discussed in Chapter 1, monitoring of planetary boundary layer aerosols is an important application of ceilometers. Due to the somewhat noisy signals of ceilometers and the somewhat difficult assumptions that are often necessary for a good inversion of the signal, aerosol profiling by these instruments is typically limited to boundary layer height retrieval. The variable spatial and temporal averaging approach of Stachlewska et al. [85] could prove to be be a useful tool for improving the quality of aerosol retrievals from ceilometers. Complexities in the boundary layer, however, can mean that the boundary layer top reported by a gradient method might not correspond to the structure of the temperature inversion. The method of Di Giuseppe et al. [82], in which measured data are evaluated using a boundary layer model, appears to be the way forward in terms of getting the best possible information from ceilometer measurements. The prototype that has been developed should be used to investigate the performance of these two methods used together. The powerful processor in the prototype electronics could be used to do some of the required processing inside the instrument on a quasi-real time basis, particularly if model data were remotely accessible.

In addition, the quality of ceilometer aerosol data can be further improved through synergy with complementary, co-located instruments, such as sun photometers or radiosondes. Research in this area has already begun, as evidenced by the work of Madonna et al. [176], Heese et al. [84], and Tsaknakis et al. [63] et al. Also, networks of ceilometers can provide good coverage of a geographical area to study aerosol transport in the boundary layer as described, for example, by Englebart et al. [68]. To further extend the usefulness of the ceilometer described here, it should be installed in such networks, and its attenuated backscatter data output should be fully characterised and calibrated to ensure accuracy. In addition, efforts should be made to establish the data gathering infrastructure required to record and evaluate attenuated backscatter profiles from ceilometers based at airports and helipads around the world as currently most of these simply report cloud base height and vertical visibility in METAR format.

Forward Modelling of Ceilometer Signals

Another area that should be considered for the evaluation of ceilometer signals is forward modelling. In a forward modelling approach, rather than inverting the signal, which for ceilometers can vary significantly in accuracy depending upon available knowledge of the local atmosphere, an attenuated backscatter signal is generated from an atmospheric model and compared with the signal itself, and then data assimilation can be used to further improve the accuracy of the modelled conditions. Since the quality of modelled data is constantly improving, this can be an extremely effective way to utilise ceilometer data. This is a current area of interest at the UK Met Office, where preliminary work has been done by Cox and Charlton-Pérez [177]. In order for this to be implemented in a useful manner, a network of well-characterised, wellcalibrated ceilometers is necessary. In order to pursue research in this direction, a network of ceilometers based on the prototype should be installed and their outputs assimilated into a model.

6.2.3 Further Development of Instrumentation

Diffraction-limited Optics

While the prototype instrument has met its design specification at a reasonable cost, there are a number of follow-on instruments that could be developed in order to further extend the capabilities of this instrument. The first area to consider is the incorporation of diffraction-limited optics and a single-mode laser source. The diffraction limited spot radius for an optical system with an aperture radius of 75mm and an F/#=2 is 2.5μ m. This would allow a much smaller receiver field of of view of 7.5μ rad and therefore improve the daytime SNR by a factor of 100 times for the same eye-safe laser power. In addition, the wavelength bandwidth of the single-mode laser would be significantly narrower, which would allow a narrower bandpass filter to be used. If a filter with a bandwidth of 0.2nm were used (the bandwidth of the Micropulse Lidar [178]), SNR would further increase by a factor of 13.4. Despite the costs and complexity involved, and the fact that full overlap height would be significantly higher, the move to a high quality laser and diffraction-limited optics would increase SNR by 3 orders of magnitude over the current system. The challenge here is to find the best, most current, cost effective technology, and implement it in an effective manner in order to achieve an instrument that could perform similarly to the Micropulse Lidar but at a significantly lower cost.

Depolarisation

One modification to the instrument that would be valuable to both the research and meteorology communities would be the introduction of a depolarisation channel. This would allow a user to distinguish ice clouds from water clouds, but also to identify the sphericity of aerosols. Depolarisation for identification of volcanic ash clouds is particularly important for aviation. This capability has been included on the Micropulse Lidar [178], but has not yet been incorporated into a low cost ceilometer. Depolarisation could be achieved on the prototype by using a polarising beamsplitter and two detector channels.

Multiple Laser Wavelengths

Another possible extension of the prototype instrument would be the incorporation of a second wavelength, for example at 1550nm, to allow particle radii to be determined by analysis of the colour ratio between two wavelengths. This could be achieved using a dichroic beamsplitter/combiner.

Doppler Profiling

Doppler lidar for wind speed is another technology that can be implemented into manufactured lidar systems. According to Werner [179], the preferred method for Doppler lidar measurements is the heterodyne mixing technique which resolves the difference between the transmitted signal frequency and the return signal frequency. This however, requires an extremely stable laser source. Commercial Doppler lidar systems capable of measuring wind speed are already available, for example, from Leosphere [180], so in order to justify work in this area, a significant technological advance or significant cost-savings would be required.

Differential Absorption

An extended research area worthy of serious consideration is low-cost differential absorption lidar. Differential absorption lidar (DIAL) probes the atmosphere for concentrations of specific atmospheric molecular constituents by transmitting two wavelengths: one "online" wavelength that is a specific absorption wavelength of the species of interest and one "offline" wavelength that is not absorbed by the species. By analysing the ratio of these two, the concentration of the specific atmospheric constituent can be determined. The DIAL technique has been applied to a wide variety of trace gases including industrial emissions such as O_3 , NO_2 , SO_2 , NH_3 , HCl, CO, and Hg and has become a powerful tool for air quality monitoring [181]. DIAL systems require laser wavelengths at the specific absorption lines of the species. This means that obtaining an appropriate laser can be difficult unless a tunable source is available. In addition, there are tight tolerances on the optical filter, and high sensitivity requirements on the detector. As with some of the other technologies discussed here, it is a difficult but important task to reduce the cost of DIAL instruments, particularly because there are so many chemical species of interest that can be studied by this technique. Due to its broad absorption spectrum and the fact that it is highly absorbing of solar background light, O_3 might be the starting point for this kind of work.

High Spectral Resolution

Perhaps the most exciting further work in instrumentation, from both scientific and engineering perspectives, would be the development of a low-cost high spectral resolution lidar (HSRL). While Rayleigh-scattered returns from molecules show temperature-dependent Doppler broadening based on a distribution of molecular velocities which varies depending on the kinetic energy of the gas, Mie-scattered returns from larger, slower moving aerosols, exhibit significantly lower temperature-dependent spectral shift. According to Eloranta [182], HSRL instruments typically distinguish aerosol from molecular returns by resolving a narrow spectral linewidth with a Fabry-Perot interferometer, either in a scanning or a fixed configuration. Rayleigh-scattered returns from the atmosphere can be predicted from a model in order to calibrate the spectrum, and the independently-resolved Mie and Rayleigh signals can then be used to determine the lidar ratio at every range of the instrument without the need for additional information.

In order to build a "low-cost" HSRL, however, there are a number of challenges. First, there are tight specifications on some of the components. For example, a highly stable single-mode laser with high spectral purity (linewidth below 100MHz) is required, along with a matched, stabilised bandpass filter (bandwidth below 1GHz). Secondly, the complexity of the system can be great. According to Eloranta, the University of Wisconsin's Arctic HSRL uses more than 50 optical components in order to achieve the stable spectral resolution required to distinguish the Doppler-broadened Rayleigh return from the Mie Return. However, with continuing improvements in available laser and optics technology, and with considerable engineering effort, it should become possible to build a compact, high spectral resolution lidar at an affordable cost. Due to its ability to determine the lidar ratio, this type of instrument would see broad deployment in the field.

Short-range Aerosol Profiler

In contrast to the high spectral resolution lidar, which is extremely technologyintensive, there is an area of research in the other direction, straightforward and inexpensive, that is well worth investigating. While research lidar systems, and even ceilometers, typically have substantial ranges, this often means that data quality near the ground is sacrificed for improved signal to noise ratios at far ranges. An instrument that could be of importance to the research and meteorological communities is a short-range, wide field of view lidar. An instrument such as this, with a very short full overlap distance, could be used to profile aerosols near the boundary layer, perhaps up to around 1000m. This is something that could be implemented based on the prototype technology, and is recommended as the first step in further work relating to instrumentation.

6.3 Conclusion

All of the these possibilities for further work emerging from the current research are worth pursuing. While some of them have direct commercial implications and others do not, they are all interesting and significant from a scientific perspective. The prototype lidar instrument that has been developed and the techniques that have been employed in its implementation and characterisation provide a substantial base upon which to build further research.

Bibliography

- [1] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. M. (eds.), *Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge, UK, and New York, NY, USA: Cambridge University Press, 2007.
- [2] C. M. Naud, J.-P. Muller, and E. E. Clothiaux, "Comparison between active sensor and radiosonde cloud boundaries over the arm southern great plains site," *J. Geophys. Res.*, vol. 108, no. D4, pp. 4140–, Feb. 2003.
- [3] J. F. Gayet, O. Crpel, J. F. Fournol, and S. Oshchepkov, "A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. part i: Theoretical design," *Annales Geophysicae*, vol. 15, pp. 451–459, 1997, 10.1007/s00585-997-0451-1.
- [4] M. Morys, I. Mims, Forrest M., S. Hagerup, S. E. Anderson, A. Baker, J. Kia, and T. Walkup, "Design, calibration, and performance of microtops ii handheld ozone monitor and sun photometer," *J. Geophys. Res.*, vol. 106, no. D13, pp. 14573–14582, 2001.
- [5] S. Y. Matrosov, T. Uttal, J. Snider, and R. Kropfli, "Estimation of ice cloud parameters from glround-based infrared radiometer and radar measurements," *J. Geophys. Res.*, vol. 97, no. D11, pp. 11567–11574, July 1992.
- [6] J. Liljegren, E. Clothiaux, S. Kato, and B. Lesht, "Initial evaluation of profiles of temperature, water vapor and cloud liquid water from a new microwave profiling radiometer," in Proc. 5th Am. Met. Society (AMS) Symp. Int. Obs. Systems, Albuquerque, NM, 14-19 Jan. 2001.
- [7] J. S. Marshall, "Precipitation trajectories and patterns," J. Meteor., vol. 10, no. 1, pp. 25–29, Feb. 1953.
- [8] E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, and W. J. Syrett, "An evaluation of a 94-ghz radar for remote sensing of cloud properties," *J. Atmos. Oceanic Technol.*, vol. 12, no. 2, pp. 201–229, Apr. 1995.

- [9] U. Wandinger, "Introduction to lidar," in *LIDAR: Range-Resolved Op*tical Remote Sensing of the Atmosphere, C. Weitkamp, Ed. Springer, 2005, pp. 1–18.
- [10] K. Baumann and M. Piringer, "Two-years of boundary layer measurements with a sodar - statistics and applications," *Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere*, vol. 26, no. 3, pp. 205 – 211, 2001.
- [11] I. Stachlewska, S. Migacz, A. Szkop, A. Zielinska, M. Piadlowski, P. Swaczyna, K. Markowicz, S. Malinowski, and A. Gorska, "Annual variability of atmospheric boundary layer in Warsaw," in *Reviewed & Revised Papers of 26th ILRC International Laser Radar Conference*, 25-29 July 2012, Porto Heli, Greece, 2012, pp. 945–948.
- [12] H. Flentje, H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, W. Steinbrecht, W. Thomas, A. Werner, and W. Fricke, "The Eyjafjallajökull eruption in april 2010–detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles," *Atmospheric Chemistry and Physics*, vol. 10, no. 20, pp. 10085–10092, 2010.
- [13] F. Lutgens, E. Tarbuck, and D. Tasa, *The Atmosphere: An Introduction to Meteorology*, 9th ed. Upper Saddle River, New Jersey, USA: Prentice Hall, 2004.
- [14] V. Kovalev and W. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods. Hoboken, New Jersey, USA: John Wiley and Sons, Inc., 2004.
- [15] R. Stull, An Introduction to Boundary Layer Meteorology, ser. Atmospheric Sciences Library. Kluwer Academic Publishers, 1988.
- [16] A. P. Lock, A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, "A new boundary layer mixing scheme. part i: Scheme description and single-column model tests," *Mon. Wea. Rev.*, vol. 128, no. 9, pp. 3187–3199, Sep. 2000.
- [17] D. C. Ahrens, Meteorology Today: An Introduction to Weather, Climate, and the Environment, 9th ed. Belmont, California, USA: Brooks/Cole, 2009.
- [18] D. K. Lynch, *Cirrus*. New York, New York, USA: Oxford University Press, 2002, ch. Cirrus: History and Definition, pp. 3–10.
- [19] P. G. Falkowski, Y. Kim, Z. Kolber, C. Wilson, C. Wirick, and R. Cess, "Natural versus anthropogenic factors affecting low-level cloud albedo over the north atlantic," *Science*, vol. 256, no. 5061, pp. 1311–1313, 1992.

- [20] V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, "Cloud-radiative forcing and climate: Results from the earth radiation budget experiment," *Science*, vol. 243, no. 4887, pp. 57–63, 1989.
- [21] K. Sassen, Cirrus. New York, New York, USA: Oxford University Press, 2002, ch. Cirrus: A Modern Perspective, pp. 11–40.
- [22] A. D. DelGenio, *Cirrus*. New York, New York, USA: Oxford University Press, 2002, ch. GCM Simulations of Cirrus for Climate Studies, pp. 310–326.
- [23] H. Pruppacher and J. Klett, *Microphysics of Clouds and Precipitation*. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1997.
- [24] K. T. Whitby, "The physical characteristics of sulfur aerosols," Atmospheric Environment (1967), vol. 12, pp. 135 – 159, 1978.
- [25] K. Willeke and K. T. Whitby, "Atmospheric aerosols: Size distribution interpretation," *Journal of the Air Pollution Control Association*, vol. 25, no. 5, pp. 529–534, 1975.
- [26] U. Pöschl, "Atmospheric aerosols: Composition, transformation, climate and health effects," Angewandte Chemie International Edition, vol. 44, no. 46, pp. 7520–7540, 2005.
- [27] F.-M. Bréon, D. Tanré, and S. Generoso, "Aerosol effect on cloud droplet size monitored from satellite," *Science*, vol. 295, no. 5556, pp. 834–838, 2002.
- [28] S. Twomey, "The influence of pollution on the shortwave albedo of clouds," J. Atmos. Sci., vol. 34, no. 7, pp. 1149–1152, Jul. 1977.
- [29] G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, "First measurements of the twomey indirect effect using ground-based remote sensors," *Geophys. Res. Lett.*, vol. 30, no. 6, pp. 1287–, Mar. 2003.
- [30] M. Ligda, "Meteorological observations with a pulsed laser radar," Proceedings 1st Conference on Laser Technology (U.S. Office of Naval Research), pp. 63–72, 1963.
- [31] G. Fiocco and L. D. Smullin, "Detection of scattering layers in the upper atmosphere (60-140 km) by optical radar," *Nature*, vol. 199, no. 4900, pp. 1275–1276, Sep. 1963.
- [32] G. Fiocco and G. Grams, "Observations of the aerosol layer at 20km by optical radar," J. Atmos. Sci., vol. 21, pp. 323–324, 1964.
- [33] T. H. Maiman, "Stimulated optical radiation in ruby," Nature, vol. 187, no. 4736, pp. 493–494, Aug. 1960.

- [34] J. Reichardt and S. Reichardt, "Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements," *Appl. Opt.*, vol. 45, no. 12, pp. 2796–2804, Apr 2006.
- [35] T. Berkoff, E. Welton, J. Campbell, S. Valencia, J. Spinhirne, S.-C. Tsay, and B. Holben, "Observations of aerosols using the micro-pulse lidar network (mplnet)," in *Proc. Geoscience and Remote Sensing Symposium*, 2004, vol. 3. IEEE International, 2004, pp. 2208 –2211.
- [36] O. Uchino, M. Tokunaga, M. Maeda, and Y. Miyazoe, "Differentialabsorption-lidar measurement of tropospheric ozone with excimer-raman hybrid laser," *Opt. Lett.*, vol. 8, no. 7, pp. 347–349, Jul 1983.
- [37] G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, "Atmospheric temperature measurements made by rotational raman scattering," *Appl. Opt.*, vol. 32, no. 15, pp. 2758–2764, May 1993.
- [38] T. Mikkelsen, J. Mann, M. Courtney, and M. Sjholm, "Windscanner: 3-d wind and turbulence measurements from three steerable doppler lidars," *IOP Conference Series: Earth and Environmental Science*, vol. 1, no. 1, p. 012018, 2008.
- [39] D. Roberts and G. Gimmestad, "Optimizing lidar dynamic range by engineering the crossover region," in *Proc. 21st International Laser Radar Conference*, 2002.
- [40] E. Gregorio, F. Rocadenbosch, J. Tiana-Alsina, A. Comern, R. Sanz, and J. R. Rosell-Polo, "Parameter design of a biaxial lidar ceilometer," *Journal of Applied Remote Sensing*, vol. 6, no. 1, pp. 063546-1-063546-19, 2012.
- [41] J. Spinhirne, "Micro pulse lidar," IEEE T. Geosci. Remote, vol. 31, no. 1, pp. 48 –55, Jan 1993.
- [42] G. Mie, "Beiträge zur optik trber medien, speziell kolloidaler metallösungen," Annalen der Physik, vol. 330, no. 3, pp. 377–445, 1908.
- [43] E. Clothiaux, G. Mace, T. Ackerman, and T. Kane, "An automated algorithm for detection of hydrometeor returns in micropulse lidar data," *Journal of Atmospheric and Oceanic Technology*, vol. 15, no. 8, pp. 1035–1042, 1998.
- [44] A. Lavrov, A. B. Utkin, R. Vilar, and A. Fernandes, "Evaluation of smoke dispersion from forest fire plumes using lidar experiments and modelling," *International Journal of Thermal Sciences*, vol. 45, no. 9, pp. 848 – 859, 2006.

- [45] J. L. Gaumet, J. C. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, "Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer," *J. Atmos. Oceanic Technol.*, vol. 15, no. 1, pp. 37–45, Feb. 1998.
- [46] X. Xiong, S. Feng, L. Jiang, and Z. Zhuang, "Research on lidar visibility measurement system for airport," in *Electric Information and Control Engineering (ICEICE), 2011 International Conference on*, april 2011, pp. 3514 –3517.
- [47] D. L. Hutt, L. R. Bissonnette, and L. Durand, "Multiple field of view lidar returns from atmospheric aerosols," *Appl. Opt.*, vol. 33, no. 12, pp. 2338–2348, Apr 1994.
- [48] C. Münkel, "Rain-snow discrimination with a biaxial lidar ceilometer," pp. 160–170, 2003.
- [49] D. Jenkins, D. Wareing, L. Thomas, and G. Vaughan, "Upper stratospheric and mesospheric temperatures derived from lidar observations at aberystwyth," *Journal of Atmospheric and Terrestrial Physics*, vol. 49, no. 3, pp. 287 – 298, 1987.
- [50] M. Nicolet, M. Schnaiter, and O. Stetzer, "Circular depolarization ratios of single water droplets and finite ice circular cylinders: a modeling study," *Atmospheric Chemistry and Physics*, vol. 12, no. 9, pp. 4207–4214, 2012.
- [51] K. Sassen, "The polarization lidar technique for cloud research: a review and current assessment," *Bull. Amer. Meteor. Soc*, vol. 72, p. 18481866, 1991.
- [52] G. G. Gimmestad, "Reexamination of depolarization in lidar measurements," Appl. Opt., vol. 47, no. 21, pp. 3795–3802, Jul 2008.
- [53] T. Sakai, T. Nagai, M. Nakazato, Y. Mano, and T. Matsumura, "Ice clouds and asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over tsukuba," *Appl. Opt.*, vol. 42, no. 36, pp. 7103–7116, Dec 2003.
- [54] N. Segre, J.P.; Truscott, "Erbium laser ceilometer," US Patent 3 963 347, 6 15, 1976.
- [55] W. L. Eberhard, "Cloud signals from lidar and rotating beam ceilometer compared with pilot ceiling," J. Atmos. Oceanic Technol., vol. 3, no. 3, pp. 499–512, Sep. 1986.
- [56] C. Flynn, "Arm technical report tr-040: Belfort laser ceilometer handbook," US Department of Energy Atmospheric Radiation Measurement (ARM), Tech. Rep., 2004.

- [57] Eliasson Engineering, AB. (2012, September) Cbme80 data sheet.[Online]. Available: http://www.eliasson.com/products/cbme80.shtml
- Weather, [58] All (AWI). (2012,September) 8339 Inc. and 8440 laser cloud height brochures. [Online]. Available: http://www.allweatherinc.com/meteorological/toc_cloudheight.html
- [59] C. Münkel and J. Räsänen, "New optical concept for commercial lidar ceilometers scanning the boundary layer," A. Comeron, M. R. Carleer, R. H. Picard, and N. I. Sifakis, Eds., vol. 5571, no. 1. SPIE, 2004, pp. 364–374.
- [60] Vaisala, Oyj. (2012, September) Cl31 datasheet. [Online]. Available: http://www.vaisala.com/en/products/ceilometers/Pages/cl31.aspx
- [61] G. Martucci, C. Milroy, and C. D. ODowd, "Detection of cloud-base height using jenoptik chm15k and vaisala cl31 ceilometers," J. Atmos. Oceanic Technol., vol. 27, no. 2, pp. 305–318, Feb. 2010.
- [62] C. Münkel, N. Eresmaa, J. Räsänen, and A. Karppinen, "Retrieval of mixing height and dust concentration with lidar ceilometer," *Bound-Lay Meteorol.*, vol. 124, pp. 117–128, 2007, 10.1007/s10546-006-9103-3.
- [63] G. Tsaknakis, A. Papayannis, P. Kokkalis, V. Amiridis, H. D. Kambezidis, R. E. Mamouri, G. Georgoussis, and G. Avdikos, "Intercomparison of lidar and ceilometer retrievals for aerosol and planetary boundary layer profiling over athens, greece," *Atmospheric Measurement Techniques*, vol. 4, pp. 1261–1273, 2011.
- [64] A. Kaerkkaeinen, A. Piironen, T. Kaehkoenen, and J. Loennqvist, "Characteristics and performance of Vaisala's new CT75K lidar ceilometer," in *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, ser. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, J.-P. Wolf, Ed., vol. 3104, May 1997, pp. 12– 17.
- [65] O. Krasnov and H. Russchenberg, "A synergetic radar-lidar technique for the lwc retrieval in water clouds," in 7th International Symposium on Tropospheric Profiling: Needs and Technologies, no. 11-16 June, Boulder, CO, USA, 2006.
- [66] E. O'Connor, A. Illingworth, and R. Hogan, "A technique for autocalibration of cloud lidar," *Journal of Atmospheric and Oceanic Technology*, vol. 21, pp. 777–786, May 2004.
- [67] Vaisala, Oyj. (2012, September) Cl51 datasheet. [Online]. Available: http://www.vaisala.com/en/products/ceilometers/Pages/CL51.aspx

- [68] D. Engelbart, J. Reichardt, and G. Teschke, "Intercomparison of methods for determining mixing height using a new network of single-photoncounting high-sensitivity ceilometers in germany," in *Proc. WMO meeting*, *December*, 2008, St. Petersburg, Russian Federation, 2008.
- [69] M. Wiegner and A. Gei
 ß, "Aerosol profiling with the jenoptik ceilometer chm15kx," Atmospheric Measurement Techniques, vol. 5, no. 8, pp. 1953–1964, 2012.
- [70] Leosphere. (2012, October) R-MAN 510 Super Ceilometer Datasheet.[Online]. Available: http://leosphere.com/page.php?rubrique=182
- [71] Degreane Horizon. (2012, September) Laser ceilometer datasheet, model alc30. [Online]. Available: http://www.degreane-horizon.com
- [72] MTECH Systems. (2012, September) 8200-chs datasheet. [Online]. Available: http://www.mtechsystems.com/data-sheets/8200-CHS-Ceilometer-Sensor.pd
- [73] Tempestini. (2012, September) Model tmp-09-03 specification. [Online]. Available: http://www.tempestinisystems.it
- [74] E. Gregorio, F. Rocadenbosch, and A. Comeron, "905-nm biaxial lidar ceilometer prototype," in *Proc. Remote Sensing of Clouds and the Atmosphere XI*, J. R. Slusser, K. Schafer, and A. Comeron, Eds., vol. 6362, no. 1. SPIE, 2006, p. 63621L.
- [75] —, "Design methodology of a ceilometer lidar prototype," in Proc. Geoscience and Remote Sensing Symposium, 2007. IEEE International, 2007, pp. 3162 –3165.
- [76] M. Wiegner, S. Emeis, V. Freudenthaler, B. Heese, W. Junkermann, C. Mnkel, K. Schfer, M. Seefeldner, and S. Vogt, "Mixing layer height over munich, germany: Variability and comparisons of different methodologies," *J. Geophys. Res.*, vol. 111, no. D13, pp. D13201–, Jul. 2006.
- [77] E. W. Weisstein. (2012, June) "Normal Distribution". From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/NormalDistribution.html.
- [78] I. M. Brooks, "Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles," J. Atmos. Oceanic Technol., vol. 20, no. 8, pp. 1092–1105, Aug. 2003.
- [79] R. J. Teschke, D. and D. Engelbart, "Wavelet algorithm for the estimation of mixing layer height with ceilometers," in *Reviewed and revised* papers presented at the 24th International Laser Radar Conference, 2008, p. pp. 313316.

- [80] M. de Haij, W. Wauben, H. Klein Baltink, and A. Apituley, "Determination of the mixing layer height by a ceilometer," in *Proceedings of the 8th International Symposium on Tropospheric Profiling, ISTP-2009*, W. M. A. Apituley, H.W.J. Russchenberg, Ed., 2009.
- [81] M. Haeffelin, F. Angelini, Y. Morille, G. Martucci, S. Frey, G. Gobbi, S. Lolli, C. O'Dowd, L. Sauvage, I. Xueref-Rémy, B. Wastine, and D. Feist, "Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in europe," *Boundary-Layer Meteorology*, vol. 143, pp. 49–75, 2012.
- [82] F. Di Giuseppe, A. Riccio, L. Caporaso, G. Bonaf, G. P. Gobbi, and F. Angelini, "Automatic detection of atmospheric boundary layer height using ceilometer backscatter data assisted by a boundary layer model," *Quarterly Journal of the Royal Meteorological Society*, vol. 138, no. 664, pp. 649–663, 2012.
- [83] C. Münkel, S. Emeis, W. Müller, and K. Schäfer, "Aerosol concentration measurements with a lidar ceilometer: results of a one year measuring campaign," in *Remote Sensing of Clouds and the Atmosphere VIII*, K. P. Schäfer, A. Comerón, and M. C. adn Richard H. Picard, Eds., vol. 5235, 2004.
- [84] B. Heese, H. Flentje, D. Althausen, A. Ansmann, and S. Frey, "Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination," *Atmospheric Measurement Techniques*, vol. 3, no. 6, pp. 1763–1770, 2010.
- [85] I. Stachlewska, M. Piadłowski, S. Migacz, A. Szkop, A. Zielińska, and P. Swaczyna, "Ceilometer observations of the boundary layer over Warsaw, Poland," *Acta Geophysica*, vol. 60, pp. 1386–1412, 2012, 10.2478/s11600-012-0054-4.
- [86] D. Deirmendjian, Electromagnetic scattering on spherical polydispersions. New York, New York, USA: American Elsevier Pub. Co., RAND Corporation, 1969.
- [87] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, ser. Applied mathematics series. Dover Publications, 1964.
- [88] A. Kokhanovsky, "Optical properties of terrestrial clouds," Earth-Science Reviews, vol. 64, no. 34, pp. 189 – 241, 2004.
- [89] B. Mason, Clouds, Rain and Rainmaking. Cambridge University Press, 1975.
- [90] Q. Han, W. B. Rossow, and A. A. Lacis, "Near-global survey of effective droplet radii in liquid water clouds using isccp data," *J. Climate*, vol. 7, no. 4, pp. 465–497, Apr. 1994.

- [91] B. Fomin and I. Mazin, "Model for an investigation of radiative transfer in cloudy atmosphere," Atmos. Res., vol. 4748, no. 0, pp. 127 – 153, 1998.
- [92] R. Knollenberg, Clouds, their formation, optical properties, and effects, ser. Academic Press Rapid Manuscript Reproduction. Academic Press, 1981, ch. Techniques for Probing Cloud Microstructure, pp. 15–92.
- [93] P. Hobbs and A. Deepak, Clouds, their formation, optical properties, and effects, ser. Academic Press Rapid Manuscript Reproduction, P. Hobbs and A. Deepak, Eds. Academic Press, 1981.
- [94] D. K. Lynch, K. Sassen, D. O. Starr, and G. Stephens, Eds., Cirrus. Oxford University Press, 2002.
- [95] S. Prahl. (2012, July) Mie scattering calculation. Oregon Medical Laser Center. [Online]. Available: http://omlc.ogi.edu/calc/mie_calc.html
- [96] W. J. Smith, Modern Optical Engineering. SPIE, 2008.
- [97] E. W. Eloranta, "Practical model for the calculation of multiply scattered lidar returns," *Appl. Opt.*, vol. 37, no. 12, pp. 2464–2472, Apr 1998.
- [98] G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-μm wavelength region," *Appl. Opt.*, vol. 12, no. 3, pp. 555–563, Mar 1973.
- [99] J. D. Klett, "Stable analytical inversion solution for processing lidar returns," Appl. Opt., vol. 20, no. 2, pp. 211–220, Jan 1981.
- [100] F. Rocadenbosch, C. Soriano, A. Comerón, and J.-M. Baldasano, "Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a kalman filter," *Appl. Opt.*, vol. 38, no. 15, pp. 3175–3189, May 1999.
- [101] I. S. Stachlewska and C. Ritter, "On retrieval of lidar extinction profiles using two-stream and raman techniques," *Atmospheric Chemistry and Physics*, vol. 10, no. 6, pp. 2813–2824, 2010.
- [102] F. Rocadenbosch, A. Comerón, and D. Pineda, "Assessment of lidar inversion errors for homogeneous atmospheres," *Appl. Opt.*, vol. 37, no. 12, pp. 2199–2206, Apr 1998.
- [103] F. Rocadenbosch and A. Comerón, "Error analysis for the lidar backward inversion algorithm," *Appl. Opt.*, vol. 38, no. 21, pp. 4461–4474, Jul 1999.
- [104] R. Collis, "Lidar: A new atmospheric probe," Q.J.R. Meteorol. Soc., vol. 92, pp. 220–230, 1966.

- [105] E. W. Barrett and O. Ben-Dov, "Application of the Lidar to Air Pollution Measurements." *Journal of Applied Meteorology*, vol. 6, pp. 500–515, Jun. 1967.
- [106] V. A. Kovalev and H. Moosmüller, "Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere," *Appl. Opt.*, vol. 33, no. 27, pp. 6499–6507, Sep 1994.
- [107] J. A. Weinman, "Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar," *Appl. Opt.*, vol. 27, no. 19, pp. 3994–4001, Oct 1988.
- [108] V. A. Kovalev, "Stable near-end solution of the lidar equation for clear atmospheres," Appl. Opt., vol. 42, no. 3, pp. 585–591, Jan 2003.
- [109] B. Kaul, "Laser sensing the aerosol pollution in the atmosphere," Ph.D. dissertation, Institute of Atmospheric Optics, Tomsk, 1977.
- [110] V. Zuev, G. Zadde, S. Kavkjanov, and B. Kaul, *Remote Sensing of the Atmosphere*. Nauka, Novosibirsk, 1978, ch. Interpretation of Lidar Signals from the Regions of Large Optical Depths, pp. 60–68.
- [111] F. G. Fernald, "in proceedings," in *Eleventh International Laser Radar Conference, Madison Wisc.*, June 1982, p. 213.
- [112] Y. Sasano and H. Nakane, "Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation," *Appl. Opt.*, vol. 23, no. 1, pp. 11–13, Jan 1984.
- [113] W. Carnuth and R. Reiter, "Cloud extinction profile measurements by lidar using klett's inversion method," *Appl. Opt.*, vol. 25, no. 17, pp. 2899–2907, Sep 1986.
- [114] J. Dias, J. Leitao, and E. Fonseca, "Reconstruction of backscatter and extinction coefficients in lidar: a stochastic filtering approach," *Geo-science and Remote Sensing, IEEE Transactions on*, vol. 42, no. 2, pp. 443–456, February 2004.
- [115] M. Vaughan, S. Young, D. Winker, K. Powell, A. Omar, Z. Liu, Y. Hu, and C. Hostetler, "Fully automated analysis of space-based lidar data: an overview of the calipso retrieval algorithms and data products," *Laser Radar Techniques for Atmospheric Sensing, Proceedings of SPIE*, vol. 5575, 2004.
- [116] L. Mona, A. Amodeo, G. DAmico, and G. Pappalardo, "First comparisons between CNR-IMAA multi-wavelength Raman lidar measurements and CALIPSO measurements," in *Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III:* 17 September 2007, Florence, Italy, ser. Proceedings of SPIE– the International Society for Optical Engineering, U. Singh and G. Pappalardo, Eds. SPIE, 2007, pp. 675 010–1–675 010–10.

- [117] Federal Aviation Administration (FAA), "Automated weather observing systems (AWOS) for non-federal applications, advisory circular 150/5220-16D," FAA, United States Department of Transportation, Tech. Rep., 2011.
- [118] BSI, BS EN 60825-1:2007, Safety of laser products-Part 1: Equipment classification and requirements, BSI Std., 2007.
- [119] J. Kallio, U.S. Patent 7,428,041, September 23, 2008.
- [120] G. Gimmestad, D. Roberts, and J. Stewart, *LIDAR Engineering Short Course Notes*, 2007, Georgia Institute of Technology, Atlanta, Georgia, USA.
- [121] J. He, W. Liu, Y. Zhang, R. Kan, Z. Chen, and J. Ruan, "Atomosphere boundary layer height determination and observation from ceilometer measurements over hefei during the total solar on july 22, 2009 eclipse," *Chin. Opt. Lett.*, vol. 8, no. 5, pp. 439–442, May 2010.
- [122] R. N. Clark, Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences. John Wiley and Sons, New York, 1999, ch. Chapter
 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, pp. 3–58.
- [123] Oriel Instruments. (2012, July) Introduction to solar radiation. Oriel Instruments, a Newport Corporation Brand. [Online]. Available: http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx
- [124] Y. Saito, H. Kurata, H. Kurushima, F. Kobayashi, T. Kawahara, A. Nomura, T. Maruyama, and M. Tanaka, "Experimental discussion on eye-safe 1.54 m photon counting lidar using avalanche photodiode," *Optical Review*, vol. 11, pp. 378–384, 2004, 10.1007/s10043-004-0378-7.
- [125] L. Matthies, P. Bellutta, and M. Mchenry, "Detecting water hazards for autonomous off-road navigation," in *Proceedings of SPIE Conference* 5083: Unmanned Ground Vehicle Technology V, 2003, pp. 263–352.
- [126] L. Sauvage, S. Lolli, B. Guinot, and M. Lardier, "New eye safe autonomous EZ lidar for pollution and meteorological continuous monitoring," in World Meteorological Organization (WMO) Technical Conference on Meterological and Environmental Instruments and Methods of Observation, 2008.
- [127] P. Rainbow, "3JMTTFestimate," August 2005, Laser Components, GmbH, Unpublished.
- [128] R. Paschotta. (2012, August) Avalanche Photodiodes. RP Photonics Encyclopedia of Laser Physics and Technology. RP Photonics Consulting, GmbH. [Online]. Available: http://www.rpphotonics.com/avalanche_photodiodes.html

- [129] Andover Corporation. (2012, June). [Online]. Available: http://www.andovercorp.com/Web_store/General_info/Technical.php
- [130] A. S. Testing (ASTM). Terrestrial reference for and М. spectra for photovoltaic performance. [Online]. Available: http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html
- [131] Lambda Research. (2012) OSLO: Optics Software for Layout and Optimization. [Online]. Available: http://lambdares.com/software_products/oslo/
- [132] (2012, October) Optics pgi surface profilers. Taylor Hobson. [Online]. Available: http://www.taylor-hobson.com/opticspgi.html#talysurf%203d%20optics
- [133] (2012, October) Matlab: The language of technical computing. The Mathworks, Inc. [Online]. Available: http://www.mathworks.co.uk/products/matlab/
- [134] G. Elert. (2012, July) Thermal expansion. The Physics Hypertextbook. [Online]. Available: http://physics.info/expansion/
- [135] Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okuda, "Geometrical form factor in the laser radar equation: an experimental determination," *Appl. Opt.*, vol. 18, no. 23, pp. 3908–3910, Dec 1979.
- [136] K. Stelmaszczyk, M. Dell'Aglio, S. Chudzynski, T. Stacewicz, and L. Wöste, "Analytical function for lidar geometrical compression form-factor calculations," *Appl. Opt.*, vol. 44, no. 7, pp. 1323–1331, Mar 2005.
- [137] R. Measures, Laser remote sensing: fundamentals and applications, ser. Wiley-Interscience publication. Wiley, 1984.
- [138] E. M. Patterson, D. W. Roberts, and G. G. Gimmestad, "Initial measurements using a 1.54-µm eyesafe raman shifted lidar," *Appl. Opt.*, vol. 28, no. 23, pp. 4978–4981, Dec 1989.
- [139] R. E. W. Pettifer, G. J. Jenkins, P. G. Healey, and J. H. Convery, "A large coaxial lidar for elastic and inelastic scattering studies of the stratosphere," *Opt. Quant. Electron*, vol. 8, pp. 409–423, 1976, 10.1007/BF00624832.
- [140] T. Halldórsson and J. Langerholc, "Geometrical form factors for the lidar function," Appl. Opt., vol. 17, no. 2, pp. 240–244, Jan 1978.
- [141] J. Harms, W. Lahmann, and C. Weitkamp, "Geometrical compression of lidar return signals," *Appl. Opt.*, vol. 17, no. 7, pp. 1131–1135, Apr 1978.

- [142] G. M. Ancellet, M. J. Kavaya, R. T. Menzies, and A. M. Brothers, "Lidar telescope overlap function and effects of misalignment for unstable resonator transmitter and coherent receiver," *Appl. Opt.*, vol. 25, no. 17, pp. 2886–2890, Sep 1986.
- [143] H. Kuze, H. Kinjo, Y. Sakurada, and N. Takeuchi, "Field-of-view dependence of lidar signals by use of newtonian and cassegrainian telescopes," *Appl. Opt.*, vol. 37, no. 15, pp. 3128–3132, May 1998.
- [144] K. Sassen and G. C. Dodd, "Lidar crossover function and misalignment effects," Appl. Opt., vol. 21, no. 17, pp. 3162–3165, Sep 1982.
- [145] R. Velotta, B. Bartoli, R. Capobianco, L. Fiorani, and N. Spinelli, "Analysis of the receiver response in lidar measurements," *Appl. Opt.*, vol. 37, no. 30, pp. 6999–7007, Oct 1998.
- [146] P. Kokkalis, G. Georgoussis, A. Papayannis, D. Hatzidimitriou, J. Porteneuve, R. Mamouri, and T. G., "Optimization-through optical design-of a multi-wavelength fiber-based raman-lidar system in the near-field for vertical aerosol measurements in the troposphere," *Proceedings of the 8th International Symposium on Tropospheric Profiling*, *A.Apituley, H.W. J.Russchenberg, and W.A. A.Monna, eds.*, vol. paper S06-P01, ISTP, 2009.
- [147] I. Berezhnyy, "A combined diffraction and geometrical optics approach for lidar overlap function computation," Opt. Laser Eng., vol. 47, no. 7-8, pp. 855 – 859, 2009.
- [148] K. Tomine, C. Hirayama, K. Michimoto, and N. Takeuchi, "Experimental determination of the crossover function in the laser radar equation for days with a light mist," *Appl. Opt.*, vol. 28, no. 12, pp. 2194–2195, Jun 1989.
- [149] S. W. Dho, Y. J. Park, and H. J. Kong, "Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere," *Appl. Opt.*, vol. 36, no. 24, pp. 6009–6010, Aug 1997.
- [150] U. Wandinger and A. Ansmann, "Experimental determination of the lidar overlap profile with raman lidar," *Appl. Opt.*, vol. 41, no. 3, pp. 511–514, Jan 2002.
- [151] S. Hu, X. Wang, Y. Wu, C. Li, and H. Hu, "Geometrical form factor determination with raman backscattering signals," *Opt. Lett.*, vol. 30, no. 14, pp. 1879–1881, Jul 2005.
- [152] C. Raman and K. Krishnan, "A new type of secondary radiation," Nature, vol. 121, pp. 501–502, 1928.

- [153] J. L. Guerrero-Rascado, M. J. ao Costa, D. Bortoli, A. M. Silva, H. Lyamani, and L. Alados-Arboledas, "Infrared lidar overlap function: an experimental determination," *Opt. Express*, vol. 18, no. 19, pp. 20350–20359, Sep 2010.
- [154] S. Jones, "The impulse response of amplifiers with six identical singletuned stages," *Circuit Theory, IEEE Transactions on*, vol. 10, no. 2, p. 302, jun 1963.
- [155] E. W. Weisstein. (2012, June) "Convolution Theorem". From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/ConvolutionTheorem.html.
- [156] E. O'Connor. (2012, October) Lidar calibration. University of Reading Department of Meteorology. [Online]. Available: http://www.met.reading.ac.uk/ swr99ejo/lidar_calibration/
- [157] C. M. Platt, S. A. Young, A. I. Carswell, S. R. Pal, M. P. McCormick, D. M. Winker, M. DelGuasta, L. Stefanutti, W. L. Eberhard, M. Hardesty, P. H. Flamant, R. Valentin, B. Forgan, G. G. Gimmestad, H. Jger, S. S. Khmelevtsov, I. Kolev, B. Kaprieolev, D.-r. Lu, K. Sassen, V. S. Shamanaev, O. Uchino, Y. Mizuno, U. Wandinger, C. Weitkamp, A. Ansmann, and C. Wooldridge, "The experimental cloud lidar pilot study (eclips) for cloudradiation research," *Bull. Amer. Meteor. Soc.*, vol. 75, no. 9, pp. 1635–1654, Sep. 1994.
- [158] W. E. Eggert, "Approach visibility studies at Newark, Final report AMB Project D-1-902," Bureau of Research and Federal Aviation Agency, Washington, D.C., Tech. Rep., 1960.
- [159] S. R. Pal, W. Steinbrecht, and A. I. Carswell, "Automated method for lidar determination of cloud-base height and vertical extent," *Appl. Opt.*, vol. 31, no. 10, pp. 1488–1494, Apr 1992.
- [160] D. M. Winker and M. A. Vaughan, "Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs," vol. 8095, no. 93, 1994.
- [161] C. Platt, D. Winker, M. Vaughan, and S. Miller, "Backscatter-toextinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations," *Journal of Applied Meteorology*, vol. 38, no. 9, pp. 1330–1345, 1999.
- [162] J. R. Campbell, D. L. Hlavka, J. D. Spinhirne, D. D. Turner, and C. J. Flynn, "Operational processing and cloud boundary detection from micro pulse lidar data," ARM Science Team, pp. 119–122, 1998.
- [163] Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, "Strat: An automated algorithm to retrieve the vertical structure of the atmosphere

from single-channel lidar data," J. Atmos. Oceanic Technol., vol. 24, no. 5, pp. 761–775, May 2007.

- [164] Z. Wang and K. Sassen, "Cloud type and macrophysical property retrieval using multiple remote sensors," J. Appl. Meteor., vol. 40, no. 10, pp. 1665–1682, Oct. 2001.
- [165] C. Bohren, Clouds in a Glass of Beer: Simple Experiments in Atmospheric Physics, ser. Dover science books. Dover Publications, 2001.
- [166] A. J. Poyer and R. Lewis, "Adapting the micropulse lidar for use as a reference for cloud measurement," AMS Fourth Symposium on Lidar Atmospheric Applications, 2009.
- [167] H. Koschmieder, "Theorie der horizontalen sichtweite," Beitr age zur physik der freien Atmosph are., vol. 12, pp. 33–53, 1924.
- [168] W. Middleton, Vision Through the Atmosphere. University of Toronto Press, 1963.
- [169] World Meteorological Organisation, "International meteorological vocabulary," Tech. Rep. WMO No. 182., 1992.
- [170] International Civil Aviation Organization, Annex 3: Meteorological Services for International Air Navigation, 16th ed., 2007.
- [171] I. O. for Satandardization (ISO), ISO 28902-1:2012, Air quality-Environmental meteorology-Ground-based remote sensing of visual range, ISO Std.
- [172] I. Binietoglou, A. Amodeo, G. D'Amico, A. Giunta, F. Madonna, L. Mona, and G. Pappalardo, "Examination of possible synergy between lidar and ceilometer for the monitoring of atmospheric aerosols," in *Proceedings of SPIE*, vol. 8182, 2011, p. 818209.
- [173] World Meteorological Organisation, "WMO Manual on Codes," Tech. Rep. Publication No. 306, 2011.
- [174] J. C. Chiu, C.-H. Huang, A. Marshak, I. Slutsker, D. M. Giles, B. N. Holben, Y. Knyazikhin, and W. J. Wiscombe, "Cloud optical depth retrievals from the aerosol robotic network (aeronet) cloud mode observations," *J. Geophys. Res.*, vol. 115, no. D14, pp. D14202–, Jul. 2010.
- [175] C. S. Bretherton, E. Klinker, A. K. Betts, and J. A. Coakley, "Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ecmwf diagnostic cloud parameterization scheme during astex," J. Atmos. Sci., vol. 52, no. 16, pp. 2736–2751, Aug. 1995.

- [176] F. Madonna, G. Pappalardo, A. Amodeo, G. DAmico, L. Mona, A. Giunta, A. Boselli, and V. Cuomo, "Cnr-imaa experimental field for atmospheric research," in *Proceedings of the 8th International Sympo*sium on Tropospheric Profiling, W. M. A. Apituley, H.W.J. Russchenberg, Ed., 2009, pp. S05–P02.
- [177] O. Cox and C. Charlton-Pérez, "A met office forward operator for attenuated backscatter," in *Reviewed & Revised Papers of 26th ILRC International Laser Radar Conference, 25-29 July 2012, Porto Heli, Greece,* 2012.
- [178] J. R. Campbell, D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang, "Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing," J. Atmos. Oceanic Technol., vol. 19, no. 4, pp. 431–442, Apr. 2002.
- [179] C. Werner, "Doppler wind lidar," in *Lidar*, ser. Springer Series in Optical Sciences, C. Weitkamp, Ed. Springer Berlin / Heidelberg, 2005, vol. 102, pp. 325–354.
- [180] Leosphere. (2012, September) WINDCUBEv2 Brochure. [Online]. Available: http://leosphere.com/products2.php?cat=wl&rubrique=86
- [181] G. Gimmestad, "Differential-absorption lidar for ozone and industrial emissions," in *Lidar*, ser. Springer Series in Optical Sciences, C. Weitkamp, Ed. Springer Berlin / Heidelberg, 2005, vol. 102, pp. 187–212.
- [182] E. Eloranta, "High spectral resolution lidar," in *Lidar*, ser. Springer Series in Optical Sciences, C. Weitkamp, Ed. Springer Berlin / Heidelberg, 2005, vol. 102, pp. 143–163.

Publications and Presentations

Publications

J. Vande Hey, J. Coupland, M. Foo, J. Richards, and A. Sandford, "Determination of overlap in lidar systems," Appl. Opt. 50, 5791-5797 (2011).

J. Vande Hey, J. Coupland, J. Richards, and A. Sandford, "Design and implementation of a divided-lens lidar ceilometer prototype for manufacture," Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, pp.5002-5005, 22-27 July 2012.

Oral Presentations

IEEE IGARSS, Munich, Germany, July, 2012: Design and implementation of a divided-lens lidar ceilometer prototype for manufacture.

European COST Action Working Group ES0702 on automatic lidar/ceilometer networks for numerical weather prediction applications, Reading, UK, September, 2012: Design and implementation of a divided lens lidar ceilometer prototype.

NCAS (National Centre for Atmospheric Science) ACITES (Atmospheric Chemistry in the Earth System) emerging scientists meeting, York, UK, January, 2013: Aerosol Profiling with Lidar Ceilometers.

Poster Presentations

26th ILRC, Porto Heli, Greece, June, 2012: SNR and overlap of a divided-lens lidar ceilometer.

NCEO (National Centre for Earth Observation) / CEOI (Centre for Earth Observation Instrumentation) Joint Science Conference, Leicester, UK, September, 2012: SNR and overlap of a divided-lens lidar ceilometer.