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Abstract - A simplified method for the design of multi-spar wing boxes is presented.  

In typical multi-spar wing boxes the spars divide the boxes into cells.  In the method 

presented these are analyzed individually, with adjacent cells taking their share of the 

stiffnesses of the common spar wall.  This splitting method yields a design method 

that is computationally much quicker than designing a complete wing box, because 

each cell is considered separately from the others, except for linking between their 

design variables. The critical buckling load factor of the assembled structure when 

designed in this way will usually exceed the design load factor and otherwise will be 

equal to it, i.e. the design is guaranteed to be conservative. 

 

1.  INTRODUCTION 

 

 There is a move towards the use of composite material in civil aircraft because 

overall operating costs mean that fabrication costs can be offset and because 



composite materials are well established for fighter aircraft.  'Next generation' wing 

boxes are typically tending towards composite structures.  The design of wing boxes 

can be very time consuming and involves considering various factors, one of which is 

buckling of the skin. 

 There is a voluminous literature on simple but approximate methods for 

analyzing such structures, e.g. hand methods using data sheets.  They can also be 

analyzed by many finite element codes, but this is very computationally intensive, 

particularly if high accuracy is required because then the elements must be very small 

and hence numerous, e.g. to model local buckling sufficiently accurately.  Therefore 

several authors have produced either approximate (i.e. finite) strip or exact strip 

methods to analyze such structures much (e.g. 2 or 3 orders) faster than finite 

elements can, e.g. see refs. [1-8].  However very few finite strip papers, e.g. refs. [9-

12], cover design for buckling (or vibration) as well as analysis. 

 The computer program VICONOPT is able to design any prismatic assembly 

of isotropic or anisotropic plates [13].  Hence it can be used to design complete wing 

boxes.  It does so by exact analysis when the plates are isotropic or orthotropic and 

carry no in-plane shear loads and otherwise gives a very close approximation.  It is 

probably the fastest code available for this purpose and is usually between 100 and 

1000 times quicker than a design using finite elements.  Nevertheless, even faster 

methods are desirable, particularly for preliminary design. 

 A faster simplified method, which is approximate but guaranteed to give 

conservative designs, is to design the structure by dividing it into cells which are then 

designed individually except for linking between their design variables, see Figure 1 

which is discussed in more detail later.  This is done by the code VMULTI, which has 



been fully implemented as an option in the latest release of the code VICONOPT 

(VIPASA [14] with CONstraints and OPTimization). 

 VICONOPT is a FORTRAN 77 computer program which incorporates the 

earlier programs VIPASA (Vibration and Instability of Plate Assemblies including 

Shear and Anisotropy) and VICON [15] (VIPASA with CONstraints).  It covers any 

prismatic assembly of isotropic, orthotropic or anisotropic plates each of which can 

carry any combination of longitudinally invariant in-plane stresses.  It can be used as 

either an analysis or an optimum design program. Its VIPASA and VICON analysis 

options are both used in this paper to calculate the eigenvalues, i.e. the critical load 

factors because the problems of this paper involve buckling, although in the code the 

eigenvalues can alternatively be the natural frequencies of undamped vibration.  The 

VICON method is used for overall modes and the VIPASA method is used for shorter 

wavelength modes.  The VICON method can be used to solve any analysis problem 

which could otherwise be solved by VIPASA, but has substantial additional 

capability, e.g. it models end conditions much more accurately for overall modes of 

plate assemblies with substantial in-plane shear loads, for which VIPASA is very 

conservative.  This is because VIPASA assumes modes having a sinusoidal 

longitudinal variation with half-wavelength , whereas VICON modes are sums of 

such modes obtained by coupling  different values of , as follows. 

 

2.  NECESSARY INFORMATION ABOUT VICONOPT 

 

 The VICON option of VICONOPT assumes an infinitely long plate assembly 

and uses Lagrangian multipliers to couple the responses for an appropriate set of half-



wavelengths, , so as to satisfy point support conditions which repeat at longitudinal 

intervals of l. Thus a plate assembly of finite length l with simply supported ends may 

be modelled reasonably accurately by representing the simple supports by a transverse 

line of rigid point  supports at x=0.  The results assume that the mode repeats over a 

length L=2l/ for some value 0,1.  Each value of  generates an infinite series of 

, although in practice the series is truncated by choosing a value of q in eqn (1) such 

that acceptable results are obtained. 

    

 

 

Table 1 lists the values of  derived from eqn (1) for typical values of  and Figure 2 

shows the Hermitian overall matrix used by VICONOPT when four values of  are 

coupled by the VICON option.  Negative values of m indicate that the complex 

conjugate of the Hermitian stiffness matrix Km must be used.  The (approximately) 

triangular shape of the constraint matrices, em, is achieved by ordering the point 

supports in ascending order of the node numbers (also used when assembling the Km) 

of the nodes at which they are attached.  This triangular shape makes the calculations 

faster.  The number of eigenvalues exceeded by an initial trial value is given by 

   J = 
m

 (J
0m

 + s{K
m
}) + s{R} - r    (2) 

where J0m is the number of eigenvalues which would be exceeded if all of the degrees 

of freedom at junctions (i.e. nodes) between the plates of the assembly were to be 

clamped and s{} is the sign count of the matrix within the brackets, i.e. the number of 

negative elements on its leading diagonal after it has been reduced to upper triangular 

m=0,1,2,.......,(q-1) for  = 0 or 1 

{ } m =l/(+2m)  

m=0,12,. .. .q otherwise  

(1) 



form by the usual form of Gaussian elimination, in which multiples of the pivotal row 

are added to (unscaled) succeeding rows.  Here r is the number of point supports and 

so is also the order of the matrix R, which replaces the null matrix of Figure 2 when 

Gauss elimination is applied to the complete matrix of Figure 2 and is arrested after 

all rows except those in R have been pivotal.  For analysis problems, convergence on 

the buckling load factor is achieved by calculating J at appropriately chosen 

successive values of the load factor.  Design involves a stabilization step (see Figure 5 

below) in which the load factor is instead kept constant and J is calculated for 

appropriately chosen successive designs. 

 

3.  PROPOSED SPLITTING METHOD 

 

 The latest release of VICONOPT incorporates VMULTI.  This option in the 

code allows any number, p, of stiffened panels (or other prismatic plate assemblies) to 

be designed simultaneously as physically separate parts of an aerospace structure, but 

with some design variables shared between them or linked to one another by linking 

equations.  This option is necessary because if the panels were designed separately, 

the resulting lack of continuity of the design variables (e.g. skin thicknesses) where 

the panels meet would often lead to serious manufacturing difficulties.  For example, 

physically adjacent panels may be constrained to have the same or related stiffener 

heights and pitch, or particular plies may be common to all panels, etc., e.g. so that 

plate thicknesses and or stiffener heights are uniform or vary linearly along the entire 

length of a wing surface. 



 Let Km,i, em,i and Ri be the Km, em and R for panel i (i=1,2,...,p).  Then Figure 

3 shows the Hermitian stiffness matrix for a two panel problem, i.e. p=2, using the 

VMULTI  option. Clearly the number of eigenvalues, Jp,  exceeded by an initial trial 

value is given by 

  Jp = 
i

p




1

(
m

 (J0m,i + s{Km,i}) + s{Ri} - ri)    (3) 

This problem has much smaller orders for its Km,i, em,i and Ri than those of the Km, em 

and R that would be obtained by applying the standard VICONOPT method to 

analyze the p panels as a single structure and therefore it gives a much faster solution. 

 The splitting method presented modifies the requirement of VMULTI that the 

panels should be entirely physically separate from each other to make it more 

powerful, as illustrated by the multi-spar wing box of Figure 1.  The spars divide this 

wing box into cells of which three typical ones are shown, for which the spar wall 

stiffnesses are assumed to be split between adjacent cells in the ratio :(1-) shown.  

Such splitting into cells has previously been investigated for analysis problems [17] 

but not for design.  The present paper investigates the use of such splitting in design.  

This is relevant because although the standard VICON method enables the complete 

wing box to be designed as a whole structure, the computational time may be higher 

than is desirable for preliminary design, particularly if the wing box has a large 

number of cells.  This time can be reduced significantly by using the VMULTI option 

to design the cells as separate panels, with the shared design variables chosen to 

include those properties of the shared spar walls that are not held constant during the 

design. 



 The VICON method of VICONOPT is highly accurate, e.g.more accurate than 

F.E.M. with the size of elements likely to be used in practice, so long as the variables 

q and r of eqns (1) and (2) are high enough, i.e. so long as sufficient wavelengths are 

used and so long as the line support at x=0 is represented by sufficient point supports.  

Therefore results given by applying the VICON method of VICONOPT  to the 

complete structure are used in this paper as a datum against which the accuracy and 

computational efficiency of the proposed splitting method are assessed. 

 

4.  THEORY FOR TIMING ESTIMATES RELATED TO COMPUTING J 

 

 Time estimates can be made with confidence because it is known what tasks 

the computer is performing [16,18].  When computing J or Jp it is assumed that the 

times associated with the assembly of Km or Km,i can be ignored, so that time 

estimates need to account only for the calculation of the plate stiffnesses and for the 

computation of the sign counts of the Km and R of eqn (2) or of the Km,i and Ri 

(i=1,2,...,p) of eqn (3). 

 The mathematical manipulation is very similar for both of the J and Jp cases, 

the only significant difference being the size of the problem and hence the time 

requirements.  The time estimates follow from the work requirements and are taken 

from those given for J in ref. [18].  The stiffness matrices Km and Km,i shown as 

shaded squares (m=1,2,3,4) on Figures 2 and 3 are only coupled by, respectively, the 

R which replaces the null matrix of Figure 2 and by the corresponding uncoupled 

matrices R1 and  R2 of Figure 3.  Because of the lack of coupling, except via R or Ri 

(i=1,2), each Km or Km,i and its associated em or em,i for any chosen m on Figures 2 



and 3 can be operated on separately from other values of m, which is equivalent to 

operating on 

Km    em

em
H
     0

 A =

 

Km,i    em,i

em,i
H
     0

 or Ai =

 

where H denotes Hermitian transpose. 

 The form of Gauss elimination described previously is applied to A (or Ai) but 

is arrested after all rows within Km (or Km,i) have been pivotal.  This standard 

procedure replaces Km (or Km,i) by the upper triangular form from which s{Km} (or 

s{Km,i}) is derived and contributes to the generation of R (or Ri (i=1,2)).  Since Km 

(or Km,i) and the R (or Ri) matrices are Hermitian, or real and symmetric in some 

cases, Gauss elimination only involves operations on or above their diagonals. Note 

that two array locations are allocated for complex numbers and that each node has 

only four displacement amplitudes, because the longitudinally sinusoidal variation 

with half-wavelength  results in these four amplitudes defining the displacements in 

all six spatial degrees of freedom [14].  Hence Figures 4(a) - (d) show, for p=3, that 

when a typical row is pivotal, only elements in the shaded regions are operated on.  

Here N denotes the number of nodes and B is the bandwidth expressed as one plus the 

maximum node number difference for any pair of connected nodes. 

 The VICONOPT User Manual[19] gives the detailed formulas needed to 

calculate the time needed per iteration using the VICON method, which is defined as 

Tv in  this paper. These formulas are very sophisticated and allow for substructures, 

(4) 



which are used to  represent flanges in this paper, and also allow for beam 

substructures, supporting structures and repetitive analysis, although none of these are 

used in the example or equations given in this paper.  Its value is calculated and 

printed by VICONOPT.  Tv contains machine dependent constants which must be 

found by using measured computer times for typical problems.  Iteration times for the 

VMULTI option need to be found for each of the panels or cells i (i=1,2,...,p) and 

hence use exactly the same formulas.  For the purpose of estimating Tv, Figure 4(b) 

replaces Figure 4(a) and Figure 4(d) replaces Figure 4(c).  Hence simplified forms of 

the formulas used by VICONOPT for the wing box example of Section 6 follow from 

Figure 4 and are as follows.  

 

Timing estimation formulas in simplified form needed by Section 6 

For =0 or 1 

Tv = q {c{32B
2(N- 2

3
B)+8(N-B)Br+ 2

3
Nr

2 
+ [

s

 32Bs
2(Ns-

2
3

B)]}+cP} 

 + r
1
6

r
3
          (5) 

and for 0< <1 

Tv = (2q+1) {c{32B
2(N- 2

3
B)+8(N-B)Br+ 2

3
Nr

2
+[

s
 32Bs

2(Ns-
2
3

B)]} + cP}

 + c
1
6

r
3
          (6) 

where c is the time per update operation in complex Gauss elimination (r for real), 

c is the time required to calculate complex plate stiffness matrices of a plate, P is the 

number of plates in the assembly, 
s

  is a summation over all complex substructures, 

Ns is the number of nodes in the substructure and Bs equals three for doubly 

connected substructures and two for singly connected substructures.  In eqns (5) and 



(6) the 32B
2
(N- 2

3
B) term is the usual expression for Gauss elimination  within Km, 

the 8(N-B)Br and 2
3

Nr
2
 terms are the corresponding work within em and R, 

respectively, and the 1
6

r
3
 term is for the final reduction of R to obtain s{R}. 

 

5.  TIMING ESTIMATES FOR THE COMPLETE DESIGN PROCEDURE 

 

 Figure 5 is a flow diagram for the design process of VICONOPT.  The sizing 

strategy consists of a series of numbered steps which are now described. 

 The initial and final analyses of steps 1 and 7 perform buckling analyses as 

described earlier, beneath eqn (2).  The initial stabilization of step 2 and the 

stabilization of step 6 factor the design variable ply thicknesses to just satisfy the most 

critical design requirements, which may be buckling or material strength constraints.  

This is achieved by an iterative approach similar to that of the initial design, the 

difference being that the eigenparameter that is changed between iterations is no 

longer the load factor but is instead the factor by which the ply thicknesses are 

multiplied.  The constraint and sensitivity analysis of step 3 calculates a set of critical 

constraints and their sensitivities.  This involves first calculating the unperturbed 

eigenvalue to high accuracy and then re-calculating it for small perturbations of each 

design variable in turn.  The move limit calculations of step 4 calculate the move 

limits for the design variables [13].  The CONMIN [20] optimization of step 5 uses 

linear programming techniques to alter the design variables so that the plate assembly 

mass is reduced without violating the buckling, material and configurational 

constraints.  Because the problem is very non-linear, step 6 adjusts the design to make 



it just stable and the CONMIN loop uses rationally chosen [13] revised move limits at 

step 4 and continues until appropriate convergence criteria are met.  The sizing cycle 

then calculates new constraints and sensitivities at step 3, ultimately leading to an 

adequately converged design which is analyzed to high accuracy at step 7. 

 VICONOPT is a sophisticated program with many refinements [21-24] 

including linking it to a space frame program, the details of which are spread over 

many papers. The basis of the timing estimates for each of the steps are given in 

Section 6 and use principally Tv, calculated by eqns (5) and (6).  No timings are 

included for VIPASA type calculations because although these are performed to 

guard against short wavelength buckling they only take a small time in comparison to 

the total, which is dominated by VICON type calculations. 

 

6.  TEST STRUCTURE AND RESULTS 

 

Details of the example 

 The wing box test specimen considered for computer modelling had three 

cells, as shown in Figure 6.  It is a variation on the dimensions of a wing box which 

was obtained from British Aerospace Defence (Military Aircraft) for an earlier [17] 

demonstration of a structure splitting method for analysis, as opposed to the present 

design application. 

 Tables 2 and 3 show the lay-ups and loading of the structure.  NS is an in-

plane shear load per unit width (positive to the right on Figure 6) and ply angles are 

measured clockwise from the longitudinal axis.  All lay-ups are symmetric and the 

flanges are identical to the webs on Figure 6. The unusual angles are due to a (0, 90, 



45, -45) lay-up being rotated by 6.  All the plies have the same elastic properties 

with E1 = 130 kN/mm
2
; E2= 9 kN/mm

2
; G12= 4.8 kN/mm

2
; 12=0.3 and density 1.598 

kg/m
3
. 

 Each flange is connected to the skin by a single line of bolts (see Figure 6) 

which are the only connection between the spars and the skins.  The wing box was 

split into cells along the bolt lines, with the spar stiffnesses divided equally between 

adjacent cells, i.e.  = 0.5 on Figure 1.  This value of =0.5 was applied to the loads 

and stiffnesses in the hatched portions of the spars, but not to their thicknesses, which 

retained their values for the original box.  A lower bound answer is guaranteed for 

analysis [17,25], which implies that an upper bound must be obtained when designing 

by this splitting method.  Hence the design which results must overestimate the 

optimum design mass and must have a reserve of strength, i.e. the design is 

conservative. 

 

 The design was defined such that the external dimensions were unchanged i.e. 

the aerodynamic properties were not allowed to change, whereas the skin thicknesses 

and the point support spacing were allowed to change.  Lay-ups were balanced 

through linking.  Figure 7 shows how the problem was modelled for VICONOPT.  

The point supports are shown as crosses.  They are located such that each bolt 

position corresponds to a point support at which it can be seen that the skin and/or the 

flanges must be connected with an offset which was modelled using a standard feature 

of VICONOPT [14,19].  Vertical displacements (z) and rotations about the x axis () 

were constrained at all point supports on the top and bottom skins and displacement in 

the y direction (v) was constrained at the spar mid-point nodes. 



 

Design results 

 There were twelve design variables.  Six of these were ply thicknesses as 

follows.  Table 2 gives the initial thicknesses of all components.  The four spars 

shown in Figure 6 were of initial equal thickness 1.92 mm.  For the two internal spars 

the plies of the web and flanges were assumed all to be of equal thickness t1 

throughout the design process and this thickness was one of the six thickness design 

variables.  Similarly all plies  of the two outer spars were equal and this thickness t2 

was the second design variable.  For the skin component of initial thickness 5.28 mm 

the -84 and 6 plies were initially of equal thickness and shared the same thickness t3 

throughout design, giving the third design variable.  Similarly, the equal thicknesses 

of the 51 and -39 plies formed the fourth independent variable t4.  For the skin 

component of initial thickness 5.78mm the -84 and 6 plies were initially of equal 

thickness and shared the same thickness t5 throughout design, giving the fifth design 

variable, while the equal thicknesses of the 51 and -39 plies formed the sixth 

independent variable t6.  The remaining six independent variables were the breadths 

shown thick on Figure 7.  The remaining breadths were linked to keep the total width 

of the panel at 725 mm and its height at 110 mm, as shown in Figure 7. 

 

 Table 4 shows the principal results for the VICONOPT and VMULTI designs, 

while Table 5 shows the initial, lower bound and final values for the ply thicknesses 

and for the independent and dependent width variables shown in Figure 7. 

  

Bandwidth and constraints. 



 Table 6 shows that the VMULTI option has the advantage that the minimum 

obtainable bandwidth is lower than for the VICON method. Here the 9 and 18 cell 

structures were modelled by repeating cell 2 seven times for the 9 cell structure and 

sixteen times for the 18 cell structure.  Figures 2-4 show that for the VMULTI option 

the work done on the constraint matrices is lower than for the corresponding VICON 

method.  For example Table 6 shows that for all of the 3, 9 and 18 cell structures the 

bandwidths Bi are equal to three or four for the VMULTI  option, whereas B=5 for the 

VICON method. 

 

Iteration times 

 The timing estimates and actual measured computer run times contained in 

this paper are for a VAX - 4500 computer.  Table 7 shows the predicted time needed 

per iteration for the VICON method, Tv, and for cell i when using the VMULTI 

option, Ti (i=1,2,3).  It also shows the corresponding measured times per iteration, TvA 

and TiA, and the total times used in the complete analysis of step 1, which are equal to 

 TvA and 
i

p




1

TiA, where p=3, 9 or 18 for these examples and the summations 

without limits are over all the iterations needed to obtain a complete analysis. 

 

 Table 8 shows the actual times for each of the design steps in Figure 5 for the 

three cell structure, with the exception of step 4, which takes very little time.  The 

information in the last two columns of Table 7 was used to estimate the time 

requirements for the complete 9 and 18 cell designs as follows.  It was assumed that 

the times for all the steps increase by the same factor when the number of cells is 



changed.  For example the final column of Table 7 gives the factor as 270/45=6 for 

VMULTI design of the 18 and 3 cell structures.  Hence the values in the final (i.e. 

seventh) column of Table 8 were obtained by multiplying the values in the third 

column by six.  This is a reasonable procedure because all of steps 1-7 except for the 

relatively quick steps 4 and 5 are dominated by TvA for VICON designs and by TiA for 

VMULTI designs.  However the results are only meant to be of first order accuracy, 

e.g. because they inevitably assume that all the designs will perform the same number 

of CONMIN cycles and the same number of sizing cycles. 

 

7.  CONCLUSIONS 

 

 The process of splitting structures into cells has been demonstrated to be more 

efficient than designing the complete structure.  The structure designed by the 

splitting method will have a critical buckling load that exceeds or equals the buckling 

load obtained by designing the complete structure without splitting, i.e. the design is 

guaranteed to be safe but somewhat overweight.  For  realistic sized problems in the 

design of wing boxes, where there may be between 9 and 18 cells, preliminary design 

will be achieved much more quickly by using the splitting method presented. 
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Figure Captions: 

Figure 1. A multi spar wing box: (a) typical cross section; (b) split into cells and; (c) 

spar split at the bolt lines. 

 

Figure 2.  Matrix used by standard VICON method of VICONOPT.  The shaded areas 

contain only the non-zero elements, the squares labeled Km(m=1,2,3,4) are the 

stiffness matrices for each of  the four values of m, the triangular matrices, em, 

represent matrices which are only approximately triangular [16] and contain the 

constraints which couple the different values of m. 

 

Figure 3.  Matrix for a two structure VMULTI type problem.  The shaded areas 

contain the only non-zero elements, the squares labeled Km,1 and Km,2 (m=1,2,3,4) are 

the stiffness matrices for each of the four values of m, the triangular matrices, em,1, 

and em,2  represent matrices which are only approximately triangular [16] and contain 

the constraints which couple the different values of .  The shaded squares denoted R1 

and R2 are initially null but become R1 and R2 after Gauss elimination of all rows 

within the Km,i (m=1,2,3,4; i=1,2). 

 

Figure 4.  Form of matrices A and Ai. (a) True form of A (VICON) showing only one 

wavelength to save space; (b) form used to estimate Tv; (c) true form of Ai (VMULTI) 

again showing only one wavelength per structure to save space;(d) form used to 

estimate Ti (i=1,2,3). 

 

Figure 5.  VICONOPT design flow chart. 

 



Figure 6.  Test specimen representing wing box of Figure 1(a).  The length is 280mm 

and all the other dimensions are for the initial design and are also in mm. 

 

Figure 7.  Modelling of wing box using: (a) VICONOPT; (b) VMULTI.  Nodes in the 

upper skin are vertically above their counterparts in the lower skin, so the design 

variables apply to both skins.  Breadths b1-b6 were the independent design variables 

and are shown thick.  Corresponding breadths were design variables in the  VMULTI 

option.  Other breadths which were equal to the independent design variables are also 

labelled b1-b6 and the dependent breadths are denoted x1-x4.  The dependency of x1-x4 

on b1,b3 and b6 was not sufficiently relevant to be defined in this paper. 



Table 1. Half wavelengths  used in VICON type analysis of a plate assembly of 

length l with q=2 (∞ denotes a rigid body translation). 

  

0 ∞, l/2 

0.25 4l, -4l/7, 4l/9, -4l/15, 4l/17 

0.5 2l, -2l/3, 2l/5, -2l/7, 2l/9 

0.75 4l/3, -4l/5, 4l/11, -4l/13, 4l/19 

1 l, l/3 

 



Table 2. Lay-up of plies used in wing box. 

Components  of 

initial thicknesses 

 

Ply angles in degrees 

1.92 45 -45 45 -45 45 -45 45 -45 45 -45 45 -45 S 

5.28 -84 6 -84 6 51 51 -39 -39 -84 6 51 51 -39 -39 -51 -39 -84 6 51 51 -39 -39 -39 -39 S 

5.78 -84 6 -84 6 51 51 -39 -39 -84 6 51 51 -39 -39 -51 -39 -84 6 51 51 -39 -39 51 -39 51 -39 S 

 

 

 

 

 

 

 

 

 

 

Table 3. Loadings per unit width on the loaded components of the wing box.  The 

webs and the flanges were unloaded. 

Initial skin thickness 

 (mm) 

Ns 

(N/mm) 

5.78  1680 

5.28  -1050 

 



Table 4.  Results for optimization of 3 cell structure.  The number of CONMIN cycles 

is the total for all the design cycles. 

 VICON VMULTI 

Initial mass (kg) 4.146 4.146 

Initial stable mass (kg) 4.834 4.902 

Number of design cycles 5 4 

Number of CONMIN cycles 22 18 

Final mass (kg) 4.571 4.590 

 CPU time(sec) 1898 1002 



Table 5.  Initial, lower bound and final values for independent and dependent 

variables (mm). 

  Lower Final value 

Variable Initial value  bound VICON  VMULTI 

t1 0.08 0.08 0.117 0.130 

t2 0.08 0.08 0.0931 0.109 

t3 0.08 0.08 0.0800 0.0801 

t4 0.125 0.08 0.134 0.133 

t5 0.08 0.08 0.0800 0.0801 

t6 0.125 0.08 0.144 0.138 

b1 24 7 18.9 16.7 

b2 18.5 16 16 16 

b3 106 - 114.9 118.3 

b4 8.5 7 7 7 

b5 16.5 16 16 16 

b6 124 - 122.7 117.7 

x1 96 - 105.9 109.4 

x2 116 - 113.7 108.7 

x3 116.5 - 115.0 118.7 

x4 118.5 - 115.0 118.7 

 



Table 6. N, r and B for the structure used in the VICON design and Ni, ri and Bi for 

each structure used by the VMULTI option. 

 VICON   VMULTI 

 3 cells 9 cells 18 cells   Cell 1 Cell 2 Cell 3 

N 28  70 133  Ni 12 10 12 

r 52 130 247  ri 22 18 22 

B 5 5 5  Bi 4 3 4 



Table 7. Estimated and actual times per iteration for = 0 and, in the last two columns,  

total times for the initial analysis of step 1 of Figure 5 (in CPU sec).   

No. of cells Tv T1 T2 T3 TvA T1A T2A T3A 

 

TvA 

 

i

p




1

 

TiA 

3 0.46 0.11 0.083 0.11 0.44 0.12 0.10 0.12 62 45 

9 4.1 0.11 0.083 0.11 4.3 0.12 0.10 0.12 740 120 

18 23.8 0.11 0.083 0.11 37 0.12 0.10 0.12 5200 270 

 



Table 8.  Actual and predicted times for the completed design (CPU seconds) 

 3 cells, actual 9 cells, predicted 18 cells, predicted 

Step No. VICON VMULTI VICON VMULTI VICON VMULTI 

1 62 45 740 120 5200 270 

2 10 15 119 40 839 90 

3 951 616 11350 1643 79761 3696 

5 99 95 1182 253 8303 570 

6 709 178 8462 475 59465 1068 

7 66 52 788 139 5535 312 

Totals 1897 1001 22641 2670 159103 6006 
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Figure 1. A multi-spar wing box: (a) typical cross section; (b) split into cells and; (c) 

spar split at the bolt lines. 
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Figure 2.  Matrix used by standard VICON method of VICONOPT.  The shaded areas 

contain only the non-zero elements, the squares labeled Km(m=1,2,3,4) are the 

stiffness matrices for each of  the four values of m, the triangular matrices, em, 

represent matrices which are only approximately triangular [16] and contain the 

constraints which couple the different values of m. 
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Figure 3.  Matrix for a two structure VMULTI type problem.  The shaded areas 

contain the only non-zero elements, the squares labeled Km,1 and Km,2 (m=1,2,3,4) are 

the stiffness matrices for each of the four values of m, the triangular matrices, em,1, 

and em,2  represent matrices which are only approximately triangular [16] and contain 

the constraints which couple the different values of .  The shaded squares denoted R1 

and R2 are initially null but become R1 and R2 after Gauss elimination of all rows 

within the Km,i (m=1,2,3,4; i=1,2). 

 



Hermitian

Km

R

em

4B

(a)

Hermitian

4B

4N

r

(b)

4B1

em,1

em,2

R1

R2

R3

Km,2

Km,3

em,3

Km,1

Hermitian

(c)

4B2

4B3

4B1

4N1

4N2

4N3

r1

r3

r2

Hermitian

(d)

4B3

4B2

 

Figure 4.  Form of matrices A and Ai. (a) True form of A (VICON) showing only one 

wavelength to save space; (b) form used to estimate Tv; (c) true form of Ai (VMULTI) 

again showing only one wavelength per structure to save space;(d) form used to 

estimate Ti (i=1,2,3). 
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Figure 5.  VICONOPT design flow chart 
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Figure 6.  Test specimen representing wing box of Figure 1(a). The length is

280 mm and all the other dimensions are for the initial design and are also in mm.
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Figure 7.  Modelling of wing box using: (a) VICONOPT; (b) VMULTI.  Nodes in the 

upper skin are vertically above their counterparts in the lower skin, so the design 

variables apply to both skins.  Breadths b1-b6 were the independent design variables 

and are shown thick.  Corresponding breadths were design variables in the  VMULTI 

option.  Other breadths which were equal to the independent design variables are also 

labelled b1-b6 and the dependent breadths are denoted x1-x4.  The dependency of x1-x4 

on b1,b3 and b6 was not sufficiently relevant to be defined in this paper. 


