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ABSTRACT 
A study of blood perfusion mapping was performed with a remote opto-physiological imaging (OPI) system coupling a 
sensitive CMOS camera and a custom-built resonant cavity light emitting diode (RCLED) ringlight. The setup is suitable 
for the remote assessment of blood perfusion in tissue over a wide range of anatomical locations. The purpose of this 
study is to evaluate the reliability and stability of the OPI system when measuring a cardiovascular variable of clinical 
interest, in this case, heart rate. To this end, the non-contact and contact photoplethysmographic (PPG) signals obtained 
from the OPI system and conventional PPG sensor were recorded simultaneously from each of 12 subjects before and 
after 5-min of cycling exercise. The time-frequency representation (TFR) method was used to visualize the time-
dependent behavior of the signal frequency. The physiological parameters derived from the images captured by the OPI 
system exhibit comparable functional characteristics to those taken from conventional contact PPG pulse waveform 
measurements in both the time and frequency domains. Finally and more importantly, a previously developed opto-
physiological model was employed to provide a 3-D representation of blood perfusion in human tissue which could 
provide a new insight into clinical assessment and diagnosis of circulatory pathology in various tissue segments. 
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1. INTRODUCTION 
Assessments of the peripheral pulse with photoplethysmography (PPG) can provide information about the 

cardiovascular system, such as blood oxygen saturation, heart and respiration rates, cardiac output and blood pressure 1. 
PPG, first described in the 1930s 2, is an optical biomonitoring technique that non-invasively measures arterial pulsations 
in-vivo and its ease of use and convenience make it an attractive area of research in the biomedical and clinical 
community. Although successful, conventional contact PPG is not suitable in situations of skin damage (burn/ulcer), or 
when free movement is required. One potential way to overcome these problems is to use the recently introduced 
technique of imaging PPG, a remote, contactless diagnostic technique that can assess peripheral blood perfusion 3-5.  

Although numerous epidemiologic studies provide strong evidence that occupational or recreational exercise not only 
maintains fitness but also boosts the immune system and reduces mortality from cardiovascular disease 6, there is also  
evidence that excessive exercise is hazardous and may result in sudden death 7. The “dose” of exercise, i.e. intensity, 
duration, and frequency of training required to achieve and optimize the beneficial response, however, have yet to be 
fully understood 8. Hence, it is worthwhile to develop a remote technique capable of offering reliable assessment of the 
cardiovascular system during/after exercise. Recently, Wieringa and colleagues have introduced a multiple wavelength 
imaging PPG device that provides a possible route toward contactless blood oxygen saturation assessment 4, and 
Verkruysse has reported a digital camera based on a remote PPG signal acquisition technique, using ambient light 
illumination5. This has stimulated our interest in the remote assessment of the cardiovascular system to evaluate the 
influence of exercise through imaging PPG measurement. Furthermore, our group at Loughborough University have 
demonstrated an integration of imaging PPG setup for the detection of tissue opto-physiological properties11.   

In this paper, we show that PPG signals obtained after exercise can be remotely accessed by our opto-physiological 
imaging (OPI) system. To assess the influence of different exercise levels on the cardiovascular system, the nature of 
pulsatile variations in the PPG signal under different exercise levels was studied. The results of this study prove the 
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rest, another 5 minutes exercise was performed at 25 km/h (exercise 2) and the post-exercise data acquisition procedures 
were repeated. A final measurement was made after a further 10 minute rest period. 

 
Figure 2. Schematic of the experimental protocol. 

2.4 Image processing 
After a set of recordings were acquired, the raw image frames were divided into discrete sub-windows and a new set of 

reduced frames were calculated, where the value of each pixel in the reduced frame was set as the average of all the pixel 
values within each sub-window. Though compromising the spatial resolution, such a procedure was found to 
significantly improve the signal to noise ratio 5. For the mapping, the optimum window size was found to be 10×10 
pixels. This resulted in a reduced frame size of 64×48 pixels, yielding PPG signals at each pixel position across a 
sequence of frames. The PPG signals were then band-pass filtered using a 5th order Butterworth filter. Cut-off 
frequencies were set at [0.5, 4] Hz to allow a wide range of heart rate measurements. 

Prior studies have shown that light intensity in tissue can be described by the Beer-Lambert law 9:  ܫ௢ ൌ ௜ܫ · ௦ሻܮ௔,௦ߤሺെ ݌ݔ݁ ·  ௔ሻ                                                        (1)ܮ௔,௔ߤሺെ ݌ݔ݁

where Io is the transmitted light intensity, Ii is the incident light intensity; μa,s is the wavelength-dependent absorption 
coefficient of the static component of tissue, in units of cm-1; and μa,a is the absorption coefficient of the arterial blood; 
and Ls and La, represent, respectively, the optical path length of static and arterial components. The latter, pulsatile (ac) 
component, attributed to changes in blood volume synchronous with the heartbeat 10, can be expressed as:  ∆ܫ௢ ൌ െܫ௜ߤ௔,௔ · ௦ሻܮ௔,௦ߤሺെ ݌ݔ݁ · ௔ሻܮ௔,௔ߤሺെ ݌ݔ݁ ·  ௔                                            (2)ܮ∆

The PPG waveform comprises a pulsatile (ac) physiological waveform which is superimposed on a slowly varying (dc) 
baseline 1. The ac/dc ratio is acquired through normalization: ΔIo/Io=−μa,aΔLa, which depends upon the relative changes 
in the arterial optical path length ΔLa.  

We have previously presented a Monte Carlo (MC) simulation based opto-physiological model of multi-layered skin 
tissue 11. With unique tissue optical properties and specified geometries, each layer contributes differently to the changes 
of arterial optical path length. In this study, a six-layer skin tissue model 12 was employed in a MC simulation to obtain 
the contribution of each layer to ΔLa. The arterial pulsation was simulated by adding pulsatile blood into non-pulsatile 
tissue, consequently changing the volume fraction. Hence, the blood perfusion map of each specific layer could be 
calculated. 

2.5 Signal processing 
Fourier Transform (FT), which offers a passage from the time domain to the frequency domain, is widely utilized in 

conventional PPG signal processing as it straightforwardly provides fundamental information such as heart rate and 
respiration rate 4, 13. However, it does not allow a combination of the two domains. Hence, it could lead to ambiguous 
results since it assumes that signals are steady-state when, in reality, physiological signals are generally transient in 
nature. Hulsbusch and colleagues have shown that the uncritical use of the FT could lead to misinterpretation of 
perfusion PPG signals 3. Therefore, to obtain a potentially more revealing picture of the temporal localization of a 
signal’s spectral components, one has to resort to the joint time-frequency analysis, e.g., time-frequency representation 
(TFR). The TFR approach converts a one-dimensional time signal into a two dimensional function of time and frequency 
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so that frequency components can be localized with a good temporal resolution 14. In this study, a smoothed pseudo-
Wigner-Ville distribution (SPWVD) was chosen for TFR estimation of the obtained PPG signals:   ܹܸܵܲܦሺݐ, ݂ሻ ൌ ℎሺ߬ሻ׬ ׬ ݃ሺݏ െ ݔሻݐ ቀݏ ൅ ఛଶቁ ݏሺכݔ െ ఛଶሻ݁ି௝ଶగ௙ఛ݀(3)                               ߬݀ݏ 

where g(s) and h(τ) are two windows whose effective lengths independently determine the time and frequency 
smoothing spread respectively. 

3. RESULTS 
3.1 Physiological variables 

As mentioned previously, four physiological measurements were performed, i.e., rest, post-ex1, post-ex2, and 
recovery. Fig.3 shows the measured variables: heart rate (HR), systolic blood pressure (SBP), and diastolic blood 
pressure (DBP). 

 
Figure.3 Effects of exercise on blood pressure and heart rate. Each bar represents the average SBP (a), DBP (b), and HR (c) for 
each state (rest, ex1, ex2, and recovery). Error bars show standard deviations. Significant statistical differences are indicated with 
* for p<0.05 and ** for p<0.01.  

To demonstrate the influence of exercise on the cardiovascular system, ANOVA was conducted on each of the 
measured variables. Post hoc analysis with Duncan’s test was also employed. The results are shown in Fig.3. ANOVA 
SBP and HR showed a significant influence of exercise (F=7.608, p=0.001 & F=12.666, p=0.000). Post hoc tests 
revealed that compared to the rest condition, the HR and SBP were significantly higher after both exercise levels (ex1 vs. 
rest, p<0.05, ex2 vs. rest, p<0.01). In addition, a significant difference between different exercise levels was also 
observed in HR and SBP. Specifically, higher HR (p=0.004) and SBP (p=0.039) were revealed aftert exercise 2 (25 
km/h) compared to the moderate exercise level (15 km/h). After 10 mins rest, the hemodynamic parameters all returned 
to the rest level. No significant effect of exercise on DBP was observed. 

3.2 Heart rate estimation (iPPG vs. cPPG)  

  
Figure 4. A representative figure showing a reduced frame with greyscale sidebar showing the signal amplitude (a), PPG signals 
(b), and the corresponding TFR results (c). The upper TFR trace is from the non contact imaging PPG and lower is from contact 
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PPG with the greyscale indicating the power intensity. The signal is from Subject #7 (Male, age=55 yrs) at rest condition. The 
position from which  the iPPG signal was obtained is highlighted with a black box (x=20, y=25) and an arrow.  

Fig. 4 is an example of the PPG signals obtained from a single subject and the TFR, in which the HR frequency and 2nd 
harmonic components are shown. Additionally, the HR derived from the TFR plot is found to be in excellent agreement 
with the HR obtained from the commercial pulse oximeter sensor readings. A slowly varying HR is also detected from 
the TFR trace which indicates the potential usage of TFR in revealing the time-varying HR during the exercise.   

To evaluate the reliability and stability of the OPI system, Bland Altman plots were employed to compare the 
agreement between the imaging-PPG (iPPG) and contact-PPG (cPPG) measurements 15. The HRiPPG is obtained through 
averaging the HR within all the sub-windows (64×48 pixels). Historical estimations of the HR were used to define a 
threshold for maximum deviation in HR among different regions. The HR calculation was started in the middle of the 
processed frames (x=32, y=24), using the HR within this region as a reference. Successive calculations were then 
performed where, if the difference between the current HR estimation and the reference value exceeded the threshold (9 
bpm in this study), the algorithm isolated it as a non-tissue or corrupt area and rejected the invalid HR.  

  
Figure 5. Bland Altman plots showing the average of the HR measured by the cPPG and iPPG, plotted against the difference 
between their measurements for each subject at (a) rest, (b) post-exercise 1, (c) post-exercise 2, and (d) recovery states. 

Fig.5 shows a comparison of HR measured from cPPG and iPPG. Specifically, the mean bias is 0.33 bpm with 95% 
limits of agreement -1.29 to 1.96 bpm in the rest state. While the mean bias obtained after the first and second exercise 
periods are -0.78 and -0.55 bpm respectively. The corresponding 95% limits of agreement are from -2.29 to 0.73 bpm 
and -2.42 to 1.32 bpm. After 10 minutes rest, the mean bias is 0.24 bpm with 95% confidence interval -2.40 to 2.88 bpm. 
Moreover, significant correlation coefficients between both measurements are revealed in all states (Pearson’s 
correlation, r2>0.9, p<0.01). 
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3.3 Blood perfusion mapping 
As mentioned in the Image processing section, a six-layer tissue model was employed in a Monte Carlo simulation to 

obtain the contribution of each layer to the output signals by accounting for the absorption (i.e., photon packet intensity) 
and scattering (i.e., optical path length) properties of tissue. The minima and maxima of the PPG signals were identified 
using a custom algorithm in Matlab. The amplitude of the PPG signal was then determined for each pulse and the mean 
peak-to-peak amplitude served as the ac part. The slowly varying baseline was obtained by low pass filtering the PPG 
signal (<0.5 Hz), and the mean value of the baseline was taken as the dc component. Accordingly, the ac/dc ratio for 
each ROI could be calculated. Fig.6 shows a layered blood perfusion map from a subject at rest.  

   
Figure 6. Layered blood perfusion map with color bar indicating the intensity (a.u.). The signal is from Sub#6 (Male, age: 27 yrs) 

at rest.  

Within the six-layer tissue model, the blood fraction was set to zero within the outermost layer, i.e., epidermis and 
dermis, which served as a wavelength-dependent attenuator. Fig.6 shows the contribution of the blood fraction to the 
three inner layers, i.e., papillary plexus, dermis, and cutaneous plexus. Specifically, the dermal layer contributes the most 
of the output signals and a stronger perfusion in the fingers is also revealed.  

4. DISCUSSION 
It has been shown that PPG signals after the exercise could be remotely accessed through an experimental OPI system. 

The performance of the OPI system has been evaluated by comparing it with a commercial pulse oximeter sensor. The 
strong correlation and good agreement between these two modes of detection suggest that the OPI system can 
successfully obtain data about cardiovascular variables such as heart rate and regional blood flow.  

The optimal amount of exercise to maintain fitness and reduce mortality from cardiovascular disease remains a matter 
of debate. For instance, Lee and colleagues showed that moderate-intensity exercise training was sufficient to produce 
substantial benefits 16, while Williams argued that high-intensity training produced proportionally greater effects 17. In 
the present study, two different exercise levels, which represent moderate- and high-intensity exercise respectively, were 
performed by 12 normotensive subjects. Compared to the resting condition, a gradual increase in SBP and HR was 
uncovered in the post-ex1and post-ex2 states, which agrees well with previous studies 18, 19. Bland-Altman analysis 
showed that the physiological signals obtained from the OPI system compared well with the commercial contact-sensor, 
thus revealing the potential value of this remote technique in monitoring the pathophysiological response to the 
cardiovascular system to exercise as well as longer term monitoring of tissue perfusion in patients suffering from shock 
or injury.  
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Many previous PPG studies yield data only for a single site 1 and cannot provide information about skin perfusion and 
associated pulsatile processes. Driven by the demand for remote and reliable technology for clinical primary care and 
home health patient monitoring, imaging PPG has attracted much recent attention and has brought new insights into the 
characterization of vascular skin lesions 3-5, 20. For example, a clear contrast in pulsatility between normal and adjacent 
port wine stain skin has been reported in 5, as has, a strong signal strength in areas of wounded skin when compared to 
healthy skin 3. In the present study, it has been shown that a combination of Monte Carlo simulation and imaging PPG 
can provide a 3-D representation of blood perfusion in peripheral tissue and thus might lead to improved clinical 
assessment and diagnosis of circulatory pathology in various tissue segments.  

A potential limitation of this work is the motion artifact. Since the sensor has no contact with the skin, movements of 
the subject relative to the camera can occur which might introduce artifact and lead to inaccurate results. Such a problem 
can, however, be solved by employing signal/image processing techniques for movement compensation and motion 
noise separation. Therefore, further investigation of imaging PPG signal with motion compensation/cancelation is 
needed. Another limitation is the quantification of the blood perfusion information. Since the main purpose of the present 
study is to propose and evaluate a novel OPI system, the perfusion was not fully investigated under different states. 
However, the quantified perfusion especially the contrast between normal and wounded skin provides valuable 
information. A future study with additional patient numbers and states will consider the performance of the blood 
perfusion mapping. 

5. CONCLUSION 
In this study, the novel OPI system coupling a sensitive CMOS camera and a customized RCLED ringlight was 

implemented to evaluate physiological changes during cycling exercise. The performance of the OPI system was 
analyzed with heart rate in 12 normotensive subjects. Compared to conventional contact pulse waveform measurements, 
the OPI system not only exhibits comparable functional characteristics in detecting pulsatile blood flow but also offers 
functional mapping of the blood perfusion status which could lead to new insights and applications in clinical 
assessment.  
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