Development and evaluation of new control algorithms for a mechanical golf swing device

Golf swing machines have become fundamental tools in the development of new equipment because they provide more consistent swing motions than golfers. Golf robots perform a simplification of the complex sequence of motions that compose a golf swing; however, traditional devices are typically capable of performing only a single swing profile at variable speeds. Significant differences exist between individual golfers’ swing motions, especially for golfers of different ability, experience, and physical stature, which suggests a requirement for swing profile variability in mechanical simulators. This investigation has found that the swing motion of a traditional golf robot provides a poor representation of golfers’ swings and, as a result, a bespoke control system has been developed for a commercially available golf robot to enable performance of variable swing profiles with positional feedback. Robot swing command files are generated by fitting a curve to a number of discrete data points that are equally spaced in time, and which define angles representative of individual golfers’ swings. The swing profiles of a professional golfer and a traditional golf robot were repeated accurately using this golf robot with a modified motion control system. The capability for individual golfers’ swings to be accurately replicated using a mechanical device was demonstrated using feedback data. All manufacturers recognize the importance of tailoring equipment to the unique characteristics of a particular golfer’s swing, and this increased robot functionality will provide considerable benefits in the development of customized equipment.