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Abstract

This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G. B. Whitham who was one of
the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported
on at the workshop “Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications” held in
May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries
of the various contributions to the Special Issue, placing them in a unified context.

This collection of papers is dedicated to the memory
of G.B. Whitham whose profound influence on the the-
ory of nonlinear dispersive waves is difficult to overesti-
mate. Whitham’s classic monograph Linear and Nonlin-
ear Waves [1], published in 1974, remains an exceptionally
rich and inspiring source of information on the subject,
even as the field of nonlinear waves has substantially and
further developed over the last several decades.

Many of the papers presented in this Special Issue are
co-authored by the participants of the workshop “Dis-
persive Hydrodynamics: The Mathematics of Dispersive
Shock Waves and Applications” that was held May 17–22,
2015 at the Banff International Research Station (BIRS).
This meeting brought together some of the leading experts
in the areas of dispersive waves, hyperbolic conservation
laws, and experimental science with the aim of address-
ing recent physical and mathematical developments in the
field.

Dispersive Hydrodynamics, the main theme of the BIRS
workshop and of this Special Issue, is the domain of applied
mathematics and physics concerned with fluid motion in
which internal friction, e.g., viscosity, is negligible relative
to wave dispersion. In conservative systems such as those
modeling certain superfluids, light waves in optical materi-
als, and water waves, nonlinearity has the tendency to en-
gender wavebreaking that is mitigated by dispersion. Rele-
vant mathematical models are often hyperbolic systems of
partial differential equations with conservative, dispersive
corrections that play a fundamental role in the dynamics.
Generically, the result of the combined action of nonlin-
earity and dispersion is a multiscale, unsteady, coherent
wave structure called a dispersive shock wave (DSW). In
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this connection, one should mention the important works
of Benjamin and Lighthill [2], Sagdeev [3], and Ostrovsky
[4] who studied the oscillatory structure of “collisionless
shocks” described by steady, traveling-wave solutions of
dissipative-dispersive equations. These early works could
be viewed as precursors to the modern understanding of
DSWs as fundamental, purely conservative, “superfluidic”
unsteady nonlinear wave phenomena.

A DSW is an expanding, modulated nonlinear wave-
train connecting two disparate states, the dispersive ana-
logue of a dissipative, classical shock. Generally, the gener-
ation of DSWs represents a universal mechanism to resolve
hydrodynamic singularities in dispersive media. Their fun-
damental role in such media is similar to that of viscous
shock waves in classical gas and fluid dynamics. At the
same time, DSWs are sharply distinct from their well-
studied dissipative counterparts both in terms of physical
significance and mathematical description. Physical mani-
festations of DSWs include undular bores on shallow water
and in the atmosphere (the Morning Glory) as well as non-
linear diffraction patterns in laser and atom (matter wave)
optics.

Additionally, the notion of turbulence in traditional,
dissipative fluid dynamics can be extended to dispersive
hydrodynamic systems and is often referred to as “inte-
grable turbulence” [5]. In this context, turbulence is usu-
ally associated with a complex, spatio-temporal ensemble
of waves/solitons that requires a statistical description.
This emerging theory bridges the notions of integrabil-
ity and stochasticity, encompassing both weak (wave) and
strong (soliton) turbulence, and is a natural extension of
deterministic DSW dynamics.

As an area of applied mathematics, dispersive hydro-
dynamics has origins in soliton theory, conservation laws,
and fluid dynamics. In 1965, just over fifty years ago,
the seminal computational work of Zabusky and Kruskal
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[6] demonstrated the existence of soliton solutions to the
Korteweg-de Vries (KdV) equation through a process of
nonlinear wavebreaking. That same year, Whitham in-
troduced a general asymptotic approach to study mod-
ulated periodic nonlinear dispersive waves [7, 8]. Both
of these contributions considered conservative, nonlinear,
dispersive wave problems. Another touchstone appearing
in 1965 was Glimm’s fundamental work on hyperbolic con-
servation laws [9] which contributed to the rapid growth
in understanding of this field, see, e.g. [10]. The marriage
of dispersive nonlinear waves and hyperbolic conservation
laws in the context of dispersive hydrodynamics was ini-
tiated in 1974 at the hands of Gurevich and Pitaevskii
[11] through their study of a Riemann problem for the
KdV equation where the resulting DSWs were understood
utilizing Whitham’s modulation equations. A multiphase
extension of Whitham theory for the KdV equation was
developed in 1980 by Flaschka, Forest and McLaughlin
[12] and revealed the deep connection between modula-
tion theory and the integrable structure of KdV via the
spectrum of finite-gap potentials. Shortly thereafter, Lax,
Levermore, and Venakides [13, 14] showed that exactly the
same “multiphase” Whitham equations describe the weak,
zero dispersion limit of the KdV evolution. Finally, a very
general approach to the description of dispersive regular-
ization of shocks in integrable equations with weak disper-
sion has become available in the nonlinear steepest descent
method of Deift and Zhou [15], which is designed to handle
singular limits of Riemann-Hilbert problems such as those
arising from inverse scattering. This approach has been
applied to the KdV equation [16] and has been extended
to other integrable equations, in particular to the focusing
nonlinear Schrödinger (NLS) equation [17].

The Whitham modulation equations for KdV are now
known to be strictly hyperbolic and genuinely nonlinear
[24], highlighting deep connections between conservation
laws and dispersive nonlinear waves. Another important
connection between dispersive hydrodynamics and the the-
ory of integrable hydrodynamic type systems [18] has been
facilitated by Tsarëv’s discovery of the generalized hodo-
graph transform [19] and Krichever’s algebro-geometric
construction [20] of multiphase waves. More recently, Dubrovin’s
universality conjectures [21] introduced a new direction in
the rigorous treatment of the initial stage of DSW forma-
tion. Additional progress in the understanding of solutions
to the Riemann problem for non-integrable nonlinear dis-
persive wave equations [22, 23] has made possible the an-
alytical description of DSWs in more physically-relevant
model equations.

An essential aspect of the subject of dispersive hydro-
dynamics is its physical or experimental realization. Lab-
oratory measurements of DSWs were undertaken in the
context of undular bores in shallow water waves by Favre
in 1935 [25]. Applications to collisionless plasmas in the
1960s motivated several early theoretical works [6, 11].
There has been steady interest in geophysical applications,
which include surface and internal waves in the ocean and

atmosphere (see e.g., [26, 27, 28]). More recently, exper-
iments in ultracold atomic physics [29, 30] and nonlinear
photonics [31, 32] have inspired the further mathematical
study of dispersive hydrodynamics.

The collection of papers presented in this Special Issue
consists of 25 articles, which can be roughly grouped into
the following sections:

G. B. Whitham memoir and review articles: The
memorial paper [33] by Minzoni and Smyth presents a
short biography of G. B. Whitham along with a descrip-
tion of his seminal contributions to the theory of nonlinear
dispersive waves. The memorial paper is followed by two
review articles, both devoted to DSWs.

El and Hoefer [34] present a broad review of DSW
theory for integrable and non-integrable nonlinear wave
equations from the perspective of Whitham’s modulation
theory. Detailed descriptions of DSWs for the KdV and
defocusing NLS equations are presented following Gure-
vich and Pitaevskii’s matching regularization procedure
[11]. The paper then proceeds through more recent devel-
opments related to DSWs in non-integrable systems, non-
classical DSWs in dispersively modified non-convex con-
servation laws and steady oblique 2D DSWs forming from
supersonic flows of superfluids past obstacles. Significant
attention is paid to DSWs in physical applications, from
shallow-water waves to nonlinear optics and Bose-Einstein
condensates.

Miller’s review article [35] concerns the mathematically
rigorous study of DSWs in integrable systems, based on the
use of the inverse-scattering transform (IST). Many fea-
tures of the analysis required to study weakly dispersive
nonlinear waves are first explained in the context of the lin-
ear Schrödinger equation and its solution by Fourier trans-
forms and Green’s functions. The paper then turns to the
subject of the defocusing NLS equation, explaining first
the weak (average) asymptotics of DSWs by means of Lax-
Levermore theory, and then using the Deift-Zhou method
to obtain strong (locally uniform) asymptotics. These an-
alytical techniques actually provide the correct implicit so-
lution of the modulation equations, yielding a strong con-
nection with Whitham’s modulation theory. The paper
concludes with a section on the notion of universality for
dispersive waves and a short description of some newer
areas of research.

Whitham equations and dispersive shock waves
— theoretical aspects: The paper by Ablowitz, Demirci
and Ma [36] enters the almost uncharted area of two-
dimensional (2D) DSWs. DSWs arising in the Kadomtsev-
Petviashvili (KP) and 2D Benjamin-Ono (BO) equations
are considered for step-like initial data along a parabolic
front. Employing a parabolic similarity reduction, the au-
thors reduce the original KP and 2D BO equations to
the cylindrical KdV and cylindrical BO equations, respec-
tively. The DSWs in these equations are then studied us-
ing Whitham modulation theory and the results are favor-
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ably compared with numerical simulations of DSWs in the
original equations.

The paper [37] by Kamchatnov describes the deriva-
tion of the modulation equations for a general class of per-
turbed KdV equations using Whitham’s original method,
as described in the foundational 1965 paper [7]. The au-
thor demonstrates an important difference between the ef-
fects of gradient and non-gradient perturbations and pro-
poses a method to eliminate gradient perturbations. This
is an extention of the author’s generalized modulation the-
ory [38], previously developed to handle non-conservative
perturbations.

In [39], Ratliff and Bridges develop modulation the-
ory for a class of systems that lead to hyperbolic equa-
tions with degenerate characteristics. They show that, on
a slower time scale, the modulation equations exhibiting
such degeneracy universally morph into the two-way, dis-
persive Boussinesq equation. The authors’ method pro-
vides insight into the Kelvin-Helmholtz instability. An-
other implication of the method is that the two-way Boussi-
nesq equation is invalid as a model for water waves.

Exact and asymptotic methods for nonlinear
waves — rigorous theory: In the paper [40] by Bion-
dini, Fagerstrom and Prinari, the IST is used to solve the
defocusing NLS equation with fully asymmetric non-zero
boundary conditions. In contrast to the case of symmet-
ric non-zero boundary conditions, which can be effectively
treated by making use of a uniformization variable, in the
asymmetric case, the direct and inverse scattering prob-
lems can be successfully formulated on a single sheet of the
spectral variable, notwithstanding the square root branch
cut of the asymptotic eigenvalues. It is also shown that no
pure soliton solutions, i.e., reflectionless potentials, exist
in the asymmetric case.

In [41], Deng, Biondini and Trillo study the small dis-
persion limit of the KdV equation with periodic initial
conditions and apply the results to the Zabusky-Kruskal
experiment. The WKB method is employed to obtain
an asymptotic expansion of the scattering eigenfunctions,
which in turn yield an asymptotic expression for the trace
of the monodromy matrix. Such expression is then ana-
lyzed to characterize the asymptotic properties of the scat-
tering problem. The results, which show excellent agree-
ment with numerical simulations of the scattering problem,
imply that, in the limit of zero dispersion, the problem
gives rise to a pure soliton gas.

The paper [42] by Dyachenko, D. Zakharov and V. Za-
kharov is devoted to the construction of a novel class of
potentials of the Schrödinger equation, termed primitive
potentials. These potentials are shown to generate a broad
class of bounded, non-vanishing aperiodic solutions of the
KdV hierarchy. The authors interpret these solutions as
an example of integrable turbulence in the framework of
the KdV equation.

In [43], Dubrovin, Grava and Klein study the formation
of 2D DSWs in solutions to the generalized KP equation.

The main result of the paper is a numerically supported
conjecture about the universal asymptotic description of
the solution to the generalized KP equation for generic
initial data. The description is made in terms of a special
solution to the second equation of the Painlevé-I hierarchy.
This conjecture extends universality theory for critical be-
havior in Hamiltonian equations with one space dimension
to 2D problems.

The paper [44] by Tovbis and El explores interrelations
between Whitham modulation theory for the focusing NLS
equation and the rigorous Riemann-Hilbert problem ap-
proach to the description of rapidly oscillating solutions
that develop in the evolution of the focusing NLS equation
with small dispersion. Understanding the links between
the two major approaches in the theory of nonlinear dis-
persive waves could prove beneficial for a broad range of
problems involving the semiclassical focusing NLS equa-
tion.

In [45], Miller and Wetzel use IST methods to study the
Benjamin-Ono equation in the small-dispersion limit. The
authors begin with a complete, recently-developed theory
for the relevant nonlocal, direct scattering problem valid
for rational initial data. They then show explicitly how
the scattering data behaves asymptotically as the disper-
sion parameter tends to zero. In particular, the authors
rigorously determine the asymptotic location of the soliton
eigenvalues, the number of which grows without bound in
the small-dispersion limit.

Fluid dynamics applications: In [46], Grimshaw
and Yuan study the propagation of internal ocean waves
and, in particular, how DSWs (undular bores) are modified
by variable bottom topography in the framework of the
variable-coefficient KdV equation. Numerical simulations
and asymptotic analysis based on Whitham modulation
equations are used to investigate the effect of a polarity
change. This change occurs for certain topography profiles
when the undular bore passes through a critical point at
which the coefficient of the quadratic nonlinear term in the
KdV equation changes sign.

In [47], Khusnutdinova and Zhang undertake numer-
ical modeling of weakly nonlinear surface and interfacial
ring waves in a two-layer fluid within the framework of
the recently derived 2+1-dimensional concentric KdV-type
equation. The 2D version of the dam-break problem is
studied and the obtained numerical solutions are shown to
exhibit the formation of concentric DSWs. The effect of a
piecewise-constant shear flow is also discussed.

In [48], Kurkina, Rouvinskaya, Talipova, Kurkin and
E. Pelinovsky, motivated by the shoaling propagation of
internal tidal waves, perform a numerical study of the
nonlinear disintegration of a sine wave in the framework
of the Gardner (extended KdV) equation containing both
quadratic and cubic nonlinear terms. The authors observe
the formation of multiple undular bores at intermediate
times and study their properties. The evolution of a sine
wave is shown to strongly depend on the relative signs of
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the quadratic and cubic terms in the Gardner equation.
In [49], Milewski and Wang perform high resolution

computations of capillary gravity wave packets from prim-
itive fluid equations. Self-focusing dynamics of patches
of ripples are observed and compared to solutions of the
(critical) focusing 2D NLS equation. The authors discuss
similarities and differences to the focusing of light beams
in Kerr media and explore long time dynamics — beyond
the regime of validity of NLS.

The paper [50] by Kalisch, Khorsand and Mitsotakis
presents a systematic derivation of balance laws for the
Serre-Green-Naghdi (SGN) equations, a Boussinesq-type
system describing fully nonlinear dispersive shallow water
waves. Numerical solutions of the SGN equations are con-
structed via a high-order finite element method and are
used to study the energy balance in shallow water undular
bores and shoaling solitary waves.

In [51], Camassa, Marzuola, Ogrosky and Vaughn study
dissipative-dispersive traveling waves for a model of gravity-
driven film flows in cylindrical domains. The authors ex-
plore the mean thickness threshold for traveling wave for-
mation for viscous films and compare the results with ex-
periments.

Ostrovsky and Stepanyants [52] study the interaction
of a KdV soliton with a long wave in a rotating ocean
within the framework of the rotation-modified KdV equa-
tion, also known as the Ostrovsky equation. A model dy-
namical system describing the interaction is derived and
studied analytically and numerically. It is shown that soli-
tons riding on long waves can propagate over great dis-
tances in a rotating ocean.

The paper [53] by Trillo, Klein, Clauss and Onorato
reports the observation of surface gravity DSWs develop-
ing from initial depressions in an experiment conducted in
a shallow water tank. The results of the experiment are
shown to be in excellent agreement with numerical simula-
tions of DSWs for “time-like” versions of the KdV equation
and the (nonlocal) Whitham equation.

Other applications: In [54] Gershenzon, Bambakidis
and Skinner use the Frenkel-Kontorova model and its con-
tinuum limit, the sine-Gordon equation, to develop a math-
ematical model of macroscopic non-lubricant friction. The
model is based on solutions of the sine-Gordon modula-
tion (Whitham) equations and connects the kinetic and
dynamic parameters of the frictional process. The appli-
cation of the model to the description of seismic events over
a wide range of rupture and slip velocities is discussed.

The paper [55] by Giglio, Landolfi and Moro, develops
an integrable extended model for van der Waals fluids via
the theory of nonlinear conservation laws and the descrip-
tion of phase transitions in terms of classical (dissipative)
shock waves. The authors propose a novel approach to
the construction of multiparameter generalizations of the
van der Waals model and provide a detailed comparison of
their extended model with well-known empirical models.
Possible further generalizations are discussed that could

associate thermodynamic phase transitions with DSW for-
mation.

Smyth [56] studies the Riemann dam break problem for
a system of equations describing optical beam propagation
in nematic liquid crystals. This system is comprised of the
defocusing NLS equation coupled with an elliptic equation
describing the non-local response of the medium. In the
regime of strong nonlocality, the dispersive dynamics in-
duced by small initial jumps is shown to be described by
the KdV equation exhibiting bright solitons despite the
defocusing nature of the associated NLS equation. The
modulation DSW solution of the KdV equation is then
used to explain solution features observed in numerical
simulations. The generation of a linear, highly oscillatory
wavetrain propagating ahead of the DSW is observed and
its length is estimated using phase- and group-velocity ar-
guments.

Incoherent nonlinear dispersive waves: The pa-
per [57] by Xu, Garnier, Faccio, Trillo and Picozzi reports a
unified presentation of different forms of incoherent shock
waves that emerge in the long-range interaction regime
of a turbulent optical wave system described by a nonlo-
cal NLS equation. Some of the incoherent wave dynamics
presented in the paper are shown to exhibit DSWs when
considered in the spectral (frequency) domain.

The paper [58] by Randoux, Walczak, Onorato and
Suret is an experimental and numerical study of nonlinear
propagation of random waves in optical fiber systems ac-
curately described by the integrable one-dimensional NLS
equation. Statistical properties of incoherent waves are
examined. Heavy- and low-tailed deviations from Gaus-
sian statistics are observed in the focusing and defocus-
ing regimes respectively. Heavy-tailed statistics in the fo-
cusing regime are associated with the formation of rogue
waves. The phenomenon of intermittency is revealed in
the integrable turbulence of random optical waves.
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