
Distributed Task Allocation

Optimisation Techniques in

Multi-Agent Systems

Joanna Turner

Computer Science Department

Loughborough University

This dissertation is submitted for the degree of

Doctor of Philosophy

School of Science November 2018





Acknowledgements

There are many people I would like to thank for their support throughout my time as a PhD

student. Firstly, I would like to thank my supervisor Dr. Qinggang Meng, who believed in

my ability to do a PhD, and provided me with the opportunity to pursue a career in research.

Most significantly, he helped me to develop my ability to think independently. I would

also like to thank my second supervisor Dr. Gerald Schaefer, who offered valuable second

opinions on important matters. I would like to thank Dr. Andrea Soltoggio who helped me

to learn how to write scientifically, and regularly reminded me that the work I was doing

was worthwhile. Thank you also to Dr. Amanda Whitbrook for her support, and for the

opportunity to co-author a paper with her.

I would like to thank Dr. Shaheen Fatima, and Prof. Jon Timmis for agreeing and taking

the time to be the examiners for my viva. Thank you to the Doctoral College, especially Dr.

Duncan Stanley for the work that he does for PhD students, and for his valuable support and

advice. Thank you also to Dr. Eugenie Hunsicker, Dr. David Sibley, Dr. Andy Archer, Dr.

Ana Sălăgean, and Dr. Chris Hinde for their advice and support. I would like to thank the

School of Science admin, finance, and IT teams for being so responsive and friendly while

being under so much pressure. Thank you especially to Judith Poulton and Jo McOuat for

being exceptionally helpful.

I would like to thank my colleagues, Dr. Richard Ellis-Braithwaite, Dr. Martins Irhebhude,

Bob Nguyen, Carl Robinson, Angelika Skarysz, Mabelle Chen, Yanis Bahroun, and all my

other office-mates throughout my time as a research student, who made these years such

a unique experience. I would like to thank the School of Science lunchtime and monthly

socials regulars. In particular, Dr. Daniel Reidenbach, Dr. Russell Lock, Prof. Ray Dawson,



iv

Dr. Iain Phillips, Dr. Robert Mercaş, Dr. Paul Bell, Dr. Manfred Kufleitner, Dr. Dominik

Freydenberger, and Dr. Amitabh Trehan who welcomed me into their lunchtime routine.

Thank you very much to Dr. Christian Jäh, Dr. Konstantinos (Kostas) Kyriakopoulos, Dr

Hideyasu Shimadzu (Shimadzu-Sensei), and to Dr. Yang Hu for being great company, and

for being easy-going and inspiring people. I would also like to thank Dr. Firat Batmaz for

always being so friendly and welcoming since as long as I have known him. Thank you

Annette for being a great listener. Finally, I would like to thank my family who have been

endlessly supportive throughout my PhD, and who also very generously allowed me to move

back home during my writing-up phase.



Abstract

A multi-agent system consists of a number of agents, which may include software agents,

robots, or even humans, in some application environment. Multi-robot systems are increas-

ingly being employed to complete jobs and missions in various fields including search and

rescue, space and underwater exploration, support in healthcare facilities, surveillance and

target tracking, product manufacturing, pick-up and delivery, and logistics.

Multi-agent task allocation is a complex problem compounded by various constraints

such as deadlines, agent capabilities, and communication delays. In high-stake real-time

environments, such as rescue missions, it is difficult to predict in advance what the require-

ments of the mission will be, what resources will be available, and how to optimally employ

such resources. Yet, a fast response and speedy execution are critical to the outcome.

This thesis proposes distributed optimisation techniques to tackle the following questions:

how to maximise the number of assigned tasks in time restricted environments with limited

resources; how to reach consensus on an execution plan across many agents, within a

reasonable time-frame; and how to maintain robustness and optimality when factors change,

e.g. the number of agents changes. Three novel approaches are proposed to address each of

these questions. A novel algorithm is proposed to reassign tasks and free resources that allow

the completion of more tasks. The introduction of a rank-based system for conflict resolution

is shown to reduce the time for the agents to reach consensus while maintaining equal number

of allocations. Finally, this thesis proposes an adaptive data-driven algorithm to learn optimal

strategies from experience in different scenarios, and to enable individual agents to adapt

their strategy during execution. A simulated rescue scenario is used to demonstrate the

performance of the proposed methods compared with existing baseline methods.





Table of contents

List of figures xi

List of tables xiii

List of algorithms xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Agent Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Multi-Agent Task Allocation Problem . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Optimisation Objectives . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.4 Planning Architectures . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Multi-Agent Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 The Task Allocation Problem of Interest . . . . . . . . . . . . . . . . . . . 11

1.8 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.9 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.10 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.11 Publications Resulting from this Study . . . . . . . . . . . . . . . . . . . . 17



viii Table of contents

2 Distributed Task Allocation: Definition and Current Approaches 19

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Similar Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Task Allocation Mechanisms . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Centralised Task Allocation . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Decentralised Task Allocation . . . . . . . . . . . . . . . . . . . . 22

2.1.5 CBBA, Extensions and Variations . . . . . . . . . . . . . . . . . . 26

2.1.6 Multi-Agent Learning: Related Work . . . . . . . . . . . . . . . . 29

2.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Consensus Based Bundle Algorithm (CBBA) and Performance Impact (PI)

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Information Space . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Bundle construction phase . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Consensus phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Performance Impact (PI) . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Problem Formulation for PI algorithm . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Multi-Vehicle Task Allocation . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Task Assignment with Time Constraints . . . . . . . . . . . . . . . 35

2.5 PI Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Problem Formulation for BW-CBBA extensions . . . . . . . . . . . . . . . 40

2.6.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.2 Problem Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 CBBA and BW-CBBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Distributed Task Rescheduling 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 PI-MaxAss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Limitation of previous methods and proposed solution . . . . . . . 51

3.2.2 Formal Description . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Table of contents ix

3.2.3 Swap Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Scenario and Simulation Setup . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Fast Convergence 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 CBBA with Fast Convergence Design . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Rank-based Conflict Resolution . . . . . . . . . . . . . . . . . . . 74

4.2.2 Earliest Deadline First Task Inclusion . . . . . . . . . . . . . . . . 78

4.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Assessing Performance . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Autonomous Strategy Switching 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Learning Strategy Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Heuristic Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.2 Agent Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.3 Learning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.4 Distributed Strategy Adaptation . . . . . . . . . . . . . . . . . . . 91

5.2.5 Benchmark Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.6 Preparation of Dataset . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



x Table of contents

5.3.1 Unseen Row Topology, Task Numbers, and Rank-Based Conflict

Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.2 Unseen Agent Numbers and Task Numbers . . . . . . . . . . . . . 100

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusions 103

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Future Research directions . . . . . . . . . . . . . . . . . . . . . . . . . . 105

References 109



List of figures

1.1 A search and rescue scenario with multiple cooperating agents . . . . . . . 5

1.2 Multi-agent planning architectures . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Example of the task allocation process . . . . . . . . . . . . . . . . . . . . 12

2.1 Agent schedule with CBBA . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Agent schedule with PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Agent schedule with PI after losing the bid for a task . . . . . . . . . . . . 34

3.1 Graph representation of limitation of previous methods, and of the proposed

solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Schedule of limitation of previous methods, and of the proposed solution . . 53

3.3 Schedules of task reassignment using proposed method . . . . . . . . . . . 57

3.4 Performance comparison of task allocation algorithms as percentage change 63

3.5 Box plot performance comparison showing number of allocated tasks and

number of iterations until convergence . . . . . . . . . . . . . . . . . . . . 65

3.6 Scatter graphs comparing average waiting time performance of task alloca-

tion algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Network topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Comparison of number of allocated tasks and iterations over different net-

work topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Network topologies that determine the communication links between agents

with two agent types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



xii List of figures

4.2 Results for scenario with time constraints on tasks and on agents . . . . . . 82

4.3 Results for scenario with fuel constraints on agents and without deadlines . 84

5.1 Network topology types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Results for adaptive CBBA with different numbers of tasks . . . . . . . . . 98

5.3 Results for adaptive-CBBA with different numbers of tasks and agents . . . 100



List of tables

2.1 local information space for each agent i . . . . . . . . . . . . . . . . . . . 31

2.2 Task information space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Information communicated between agents . . . . . . . . . . . . . . . . . 32

2.4 Symbol Definitions for PI algorithm . . . . . . . . . . . . . . . . . . . . . 46

2.5 Symbol Definitions for BW-CBBA extensions . . . . . . . . . . . . . . . . 47

3.1 Scenario Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Average task allocations and iterations performance comparison . . . . . . 64

3.3 Task allocations and iterations performance of PI-MaxAss . . . . . . . . . 66

4.1 Scenario Specification for Rank-Based Conflict Resolution . . . . . . . . . 80

5.1 Scenario Specification for Adaptive CBBA . . . . . . . . . . . . . . . . . 96





List of Algorithms

1 Task allocation outer-loop iterative procedure for CBBA and PI running on

each vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 PI Task Inclusion phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 CBBA: Bundle Building with Non-DMG Scores [45] . . . . . . . . . . . . 47

4 Computing RPI-MaxAss for tasks in vi’s task list . . . . . . . . . . . . . . 54

5 CBBA: Bundle Building with EDF and agent rank bidding . . . . . . . . . 76

6 Task allocation outer-loop iterative procedure with predictive function run-

ning on vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Prediction function for optimal task inclusion strategy running on vi . . . . 94





Glossary

Agent An intelligent agent that independently carries out some set of operations using

knowledge of an objective or goal.

CBBA The Consensus Based Bundle Algorithm is a distributed task allocation algorithm

used as a benchmark in this thesis.

Conflict Used to refer to a conflicting assignment. This occurs when more than one agent is

assigned to the same task..

Deadline The time at which a task must be started by an agent for it to be completed

successfully.

Distributed system Networked agents communicate with each other and coordinate their

actions using this communication.

EDF Earliest Deadline First.

Environment The observable context in which agents are situated.

NTF Nearest Task First.

Objective function A numerical quantity to be maximised or minimised.

PI The Performance Impact algorithm is a distributed task allocation algorithm used as a

benchmark in this thesis.



xviii Glossary

Robot A physical autonomous agent capable of travelling to and completing tasks.

Task A job located in an environment to be completed by an agent.

Vehicle A physical autonomous agent capable of travelling to and completing tasks.



Chapter 1

Introduction

1.1 Motivation

In the field of computer science, an autonomous or intelligent agent is a computational entity

that, through observations of its environment, independently makes decisions about how to

act with the aim of achieving goals [104]. Examples of such agents include autonomous

robots and software programs [101]. The use of robots has been investigated and applied in

many real world settings such as manufacturing, search and rescue, space exploration, and

in healthcare facilities. In such scenarios, robots offer benefits including the ability to work

independently for an extended time in conditions that may be unsafe or unfavourable for

humans. Similarly, software agents can automate complex or repetitive tasks [105].

Increasingly, multi-agent systems are being developed and deployed to accomplish more

complex objectives with greater efficiency than a single agent is able to [90]. Applications

include manufacturing [99, 30], logistics, and process control. These systems comprise of

multiple agents, with possibly differing capabilities that solve different parts of the problem,

working collaboratively to achieve goals that are broken down into several tasks. Multi-agent

task allocation is an important research area as a wide range of real-world problems can be

modelled as a multi-agent task allocation problem [105]. In a rescue operation, for example,

autonomous drones equipped with cameras may be deployed to perform operations such as

searching and monitoring survivors, and gathering data to analyse the structural integrity of



2 Introduction

buildings. Meanwhile, ground teams may perform intricate rescue operations. Advances in

computing and networking technology have enabled increasingly complex, large, distributed

computing and information systems for complex applications, such as the internet, which

would be infeasible for a centralised or single-agent system. With a greater number of

collaborating agents comes a greater complexity for coordination, therefore designing an

effective multi-agent system to ensure a successful outcome requires careful consideration of

many factors:

• What is the application environment?

• What are the capabilities and limitations of the agents?

• How are tasks assigned to different agents?

• How does an agent prioritise and schedule its tasks?

• What information do agents have?

• How do agents communicate and synchronise their knowledge?

• Do agents have a common goal or individual goals?

• How are conflicting intentions and information handled?

• How are agents organised in terms of hierarchy?

• How does a change in the environment affect the behaviour of agents?

All of these factors and more can affect the success or optimality of the multi-agent team’s

performance in their environment. In this thesis, the questions of particular importance are of

how tasks are assigned to different agents, how do agents prioritise and schedule their tasks,

and how does changeability of factors such as the availability of agents affect the optimality

of these strategies.

Equivalent task allocation problems exist in various and diverse application fields, for

example the problem of assigning taxis to clients may be similar to the problem of assigning



1.2 Agent Definitions 3

cloud computing resources to users. Progress in solving the problem in one application may

provide insight into solving similar problems in other applications. Agents and multi-agent

systems therefore serve as a useful abstraction tool for the problem of task allocation.

1.2 Agent Definitions

Historically, the term ’agent’ has attracted various definitions [34]. According to [101], an

agent is generally understood as having the following essential characteristics: An agent

is a computational entity i.e. a program that runs on a computational device. Agents are

autonomous i.e. they have a certain degree of control over their own behaviour and can

operate without human or other intervention. Agents are goal directed i.e. they perform

tasks in such a way as to meet design objectives. An agent is said to be ’intelligent”, which

signifies that an agent pursues its goals such as to optimise defined performance metrics.

An agent is said to be able to perform its tasks flexibly in diverse environments given the

information it perceives through its sensors.

In a ’multi-agent system’, two or more agents influence each others’ goal driven be-

haviour through agent-to-agent interactions. Either through direct communication using a

shared language, or indirectly by modifying the environment. Agents may have identical

capabilities (homogeneous), such as a team of identical robots, or have different capabilities

(heterogeoneous), for example where one robot can dig, and another can fly. Agents may

achieve coordination either through cooperation (the pursuit of the same goal), or through

competition (the pursuit of conflicting goals), where competing agents aim to seek to achieve

their own goals at the expense of others [101].

1.3 Distributed Systems

A multi-agent system has the features of a distributed system. A distributed system is one in

which multiple computational nodes or agents are connected through a network and in which

the agents work cooperatively to achieve objectives. In a distributed architecture, there is no



4 Introduction

central controller or hierarchy, all agents are equal and autonomously make decisions [43].

The agents communicate only locally among neighbours and have no knowledge of the

network topology [42]. Such systems are best suited for applications in which objectives can

be broken down into multiple jobs or tasks, which can be autonomously performed by the

different agents in the network. Examples of such systems include cloud computing systems,

distributed sensor networks, and multi-robot teams. Figure 1.1 illustrates an example of

distributed agents cooperating in a search and rescue mission. According to the literature,

key desirable characteristics of a distributed system include:

• mathematical soundness, a predictable rate and a guarantee of convergence to a

solution [70];

• efficiency by exploiting concurrent computation and avoiding the bottlenecks that exist

with centralised controllers (provided that coordination overhead does not outweigh

these benefits);

• reliability and robustness, the ability to react appropriately to failures, such as func-

tioning agents compensating for the removal of an agent from the system due to

damage;

• scalability, the system accommodates growing numbers of agents and tasks;

• heterogeneity agents with different capabilities collaborate to solve the problem;

• responsiveness, rapid adaptation to changes in the environment, such as the addition or

removal of tasks [43].

1.4 Multi-Agent Task Allocation Problem

A task allocation problem aims to find a global feasible assignment of tasks to agents while

optimising one or more objectives. As the numbers of tasks and agents grow, finding the opti-

mal solution to a task allocation problem in real-time environments becomes computationally

unfeasible. In complexity theory, the problem is said to be NP-hard [51].



1.4 Multi-Agent Task Allocation Problem 5

Emergency Ambulance

Emergency Ambulance

Networked 
Communication

Search

Rescue

Rescue

Search

Rescue

Networked 

Communication

Fig. 1.1 An example of a search and rescue scenario involving multiple distributed communi-
cating agents, cooperating to perform life saving tasks.

Constraints

The solution space of a task allocation problem may be reduced or made more complex by

various constraints on how tasks can be assigned. The main constraints widely detailed in

the literature are:

• Heterogeonity: Agents may have limited capabilities that restrict which types of tasks

they can perform.

• Capacity constraints: such as limited fuel that restricts how many tasks agents can

perform before needing to recharge.

• Time constraints: tasks may need to be completed within a certain time frame, such as

delivering medical supplies in time to be useful.

• Complex tasks: some tasks may require more than one agent to be completed.



6 Introduction

• Precedence constraints: such that some tasks may need to be performed before others.

For example a blockage may need to be removed before supplies can be delivered to

survivors in a rescue mission.

1.4.1 Utility

The process of determining the ’value’ of a task to an agent with respect to the optimisation

objective has previously widely been referred to as a utility function [51], a cost function, a

score function [45], or an objective function [44]. Generally, the value of a task assignment

is determined by:

• Cost: the cost of performing a task. For example, this can represent the fuel consumed

to reach a task.

• Reward: this represents the gain of an agent performing a task, used as an incentive

to perform that task. Rewards are often used in market-based approaches to task

allocation.

• Utility: this can represent a combination of a reward and cost: Utility = Reward - Cost.

1.4.2 Optimisation Objectives

A task allocation problem may have one or more objectives to optimise. The optimisation

objective may be to maximise some reward or score, or minimise a cost. These objectives

can be equivalent. For example, the objective in a rescue mission may be to maximise the

number of survivors rescued or to minimise the number of fatalities. Another objective could

be to minimise the time taken to rescue all survivors. The accepted terminology for the

objectives most commonly found in the literature is as follows. Here, an agent’s path cost is

equivalent to the sum of costs of all tasks in that agent’s schedule:

• MiniMax: Minimise the maximum path cost over all the agents i.e. minimise the cost

of the highest cost agent. For example. if the cost is duration time, the objective could



1.4 Multi-Agent Task Allocation Problem 7

be to minimise the difference between the start of the first task, and the end of the last

task.

• MiniSum: Minimise the sum of the path costs over all the agents. For example, if the

cost is fuel consumption, the objective is to minimise the total fuel consumed by all

the agents.

• MiniAve: Minimise the average task cost over all tasks. When the cost is waiting time,

the objective is to minimise the average latency of tasks, between when the task is

available and when the task is serviced.

• Maximise completed tasks, or minimise missed tasks.

1.4.3 Taxonomy

Gerkey and Matarić [36] devised a useful taxonomy to classify different task allocation

problems for multi-robot task allocation (MRTA), which generalises to embodied agents.

First, the taxonomy distinguishes between problems with single-task (ST) robots, and multi-

task (MT) robots. ST robots can execute only one task at a time while MT robots can execute

multiple tasks simultaneously. Second, the taxonomy distinguishes between problems with

tasks that require only a single robot (SR) and tasks that require multiple robots (MR) to

be completed. Third, the taxonomy distinguishes between problems in which robots have

no planning capability, referred to as instantaneous assignment (IA), and in which robots

can plan to execute multiple tasks according to a schedule, referred to as time-extended

assignment (TA). Korsah et al. [51] introduced an extended version of this taxonomy, iTax,

that covers the issues of interrelated utilities and constraints in task allocation problems.

Three of the classifications are described:

• No Dependencies (ND): the utility of an agent performing a task is independent of any

other tasks or agents.



8 Introduction

• In-schedule Dependencies (ID): the utility of an agent performing a task depends on

the other tasks that the agent is planning to perform in its schedule. The agent can

optimise its own schedule independently from other agents.

• Cross-schedule Dependencies (XD): the utility of an agent performing a task depends

on the agent’s own schedule and the schedules of other agents. The agent needs to

consider the other agents’ schedules when optimising its own schedule.

Nunes et al. [73] also extend Gerkey and Matarić’s taxonomy by expanding the time-extended

(TA) category to distinguish temporal and ordering constraints. Ordering constraints are

expressed as synchronisation and precedence constraints (TA:SP). Temporal constraints

are expressed as time windows (TA:TW), which impose lower and upper bounds on the

start and end time of a task. This temporal constraint can be used to model relationships

such as deadlines, which impose a constraint on the latest time an agent can arrive at a task

before it expires. The authors distinguish between hard and soft temporal constraints. Hard

temporal constraints can not be violated and are used in scenarios such as the delivery of

perishable goods, and rescue missions. Soft temporal constraints can be violated but typically

result in a penalty for the agent. The authors also distinguish between deterministic and

stochastic models. With deterministic models, the initial conditions determine the output.

With stochastic models, a degree of uncertainty is assumed and modelled.

1.4.4 Planning Architectures

Multi-agent planning architectures can be classified under two main umbrellas: centralised

and decentralised. Centralised architectures have the advantage of computing a global plan

based on all available information, but have the main disadvantage of being a single point

of failure. Decentralised and distributed planning avoids this pitfall by having the agents

perform the planning. A hybrid architecture can exploit the benefits of having a centralised

controller gather the information required for the mission, and exploit the robustness of

distributed planning performed by the agents. Simple examples of these different types of

architectures are illustrated in Figure 1.2.



1.4 Multi-Agent Task Allocation Problem 9

Central Controller
Planner

Agent Agent Agent

AgentAgent

(a) Centralised: A centralised planner gathers all necessary information, computes
a plan for every agent in the team, and communicates the computed plans back to
each agent. Interaction among agents is not required in the planning process.

Agent
Planner

Agent
Planner

Agent
Planner

Agent
Planner

Agent
Planner

(b) Distributed: Each agent is equipped with its own planner which computes a
plan for that individual agent based on local information of the world. Agents then
synthesise a global plan through interactions that facilitate conflict resolution.

Agent
Planner

Agent
Planner

Agent
Planner

Agent
Planner

Agent
Planner

Central Controller

(c) Hybrid: A distributed planning architecture that exploits centralised informa-
tion gathering. A centralised server gathers information about the world from
agents with sensing capabilities. The centralised server formalises a global list
of tasks including the task properties, such as: location, deadline, and tools
required to complete the task. The centralised server feeds this information to
the distributed network of agents. Each agent is equipped with its own planner
which computes a task schedule for that individual agent based on the information
provided by the central server. Agents interact to synthesise a global plan.

Fig. 1.2 Multi-agent planning architectures. Dashed arrows symbolise two-way communica-
tion between agents and central controllers.



10 Introduction

1.5 Multi-Agent Learning

The high complexity inherent in multi-agent optimisation problems presents a significant

challenge in designing systems that generate optimal solutions, while also generalising

to unseen environments. The field of multi-agent learning incorporates machine learning

techniques to automate the optimisation process [76]. The rise of computational power of

physical systems offers an increasingly attractive solution for multi-agent systems operating

in real-time environments.

Machine learning is a fast growing domain that gives programs the ability to learn from

and make predictions on data. It is a useful tool that enables agents to learn from experience

to influence their decision making processes. Three broad categories of machine learning

exist:

• Supervised learning: the learning algorithm uses labeled training data to infer a general

rule or function that maps inputs to outputs. With classification supervised learning,

the goal is for the learned function to correctly predict the classification of unseen

instances.

• Unsupervised learning: the learning algorithm infers a function that describes the

structure of data, where the data does not include a labeled classification.

• Reinforcement learning: An agent learns to optimise decision making within its

environment through trial-and-error solely from a feedback of rewards and punishment.

A deeper investigation of multi-agent learning is outside the scope of this thesis. A compre-

hensive survey on cooperative multi-agent learning can be found Panait and Luke [76].

1.6 Complexity Theory

In computational complexity, algorithms are classified according to the resources required to

run them as the inputs grow. The most commonly considered resources are time and storage.

For task allocation problems, we are most interested in the running time i.e. the number



1.7 The Task Allocation Problem of Interest 11

of operations or computational steps required by algorithms to solve the problem. Such a

classification gives a useful indication of the scalability of algorithms, and of how algorithms

designed to solve the same problem perform with relation to each other. We look at the worst

case complexity, also known as big O notation, to determine the maximum time an algorithm

will take to compute a solution as a function of the number of input variables. Inputs for the

task allocation problem include the number of tasks and the number of agents.

Algorithms can be classified and compared generally according to whether they run in

polynomial time, or exponential time. An algorithm is said to run in polynomial time if the

number of computational steps required for it to complete, given an input n, is O(nk), where

k is a constant, non-negative integer. An algorithm runs in exponential time if the number of

steps, given an input n, is O(kn). Polynomial time algorithms are considered tractable and

are therefore desirable in real-world environments. Algorithms in this class have a much

slower growth rate, in general, compared to exponential time algorithms, which are generally

considered to be intractable.

Classifications of problem complexity are used to determine the types of decision prob-

lems that can be solved quickly. The class P contains all decision problems that can be

solved in polynomial time. Class NP (non-deterministic polynomial time) contains the set of

decision problems for which solutions can be verified in polynomial time. The class NP-hard

contains problems that are "at least as hard as the hardest problems in NP". Problems such as

the Travelling Salesman problem and the task allocation problem investigated in this thesis

belong to the NP-hard class of problems. There are no known polynomial algorithms that

can solve an NP-hard problem optimally, therefore, heuristic or approximate methods have

been developed to solve these problems in polynomial time.

1.7 The Task Allocation Problem of Interest

This thesis addresses the problem of distributed task allocation with time constraints for

a networked team of agents. The task allocation problem considered requires that agents

perform one task at a time, and each agent can be assigned multiple tasks that they execute



12 Introduction

t
t

t

t

Agent 1 Agent 2

(a) Autonomous planning

t
t

t

t

Agent 1 Agent 2

(b) Consensus

Fig. 1.3 Example of the task allocation process. Tasks ’t’ are located in a 2D space. Dashed
arrows represent the path that an agent has chosen, for which their is a travel distance that
agents must cover to reach the task. The dashed link between agents represents networked
communication. Autonomous planning (a), agents independently determine which tasks to
execute and in which order while respecting constraints and attempting to optimise a given
objective. Consensus (b), agents communicate their task assignments among networked
agents and resolve conflicting task assignments through a bidding process. The result is a
conflict-free task allocation.

based on a schedule. The predicted cost of an agent performing a task depends on other

tasks in that agent’s schedule. Using the iTax taxonomy [51] and the expansion of Nunes

et al. [73], this is known as the single-task (ST), single robot (SR), time-extended assignment

(TA) with time windows (TW) problem with in-schedule dependencies (ID) i.e. The ID[ST-

SR-TA:TW] class of task allocation problem. The task allocations are deterministic and

the constraints are hard. Therefore, the scheduling of tasks can not violate any temporal

constraints. Furthermore, a task can not be assigned to more than one agent, this is referred

to as a ’conflict’.

Tasks are allocated to agents with the assumptions that agents autonomously decide

which tasks to take on, and communicate with each other to reach consensus on which agents

take which tasks. To determine which agents take which tasks, agents place bids on their

selected tasks, share the bids by communicating with each other, and the agent with the

highest bid (or equivalently lowest cost) wins the task. A simple example of this process is

illustrated in Figure 1.3

1.8 Research Questions



1.9 Key Contributions 13

Consider the task allocation problem described in Section 1.7. The research in this thesis

aims to investigate the following research questions:

• In systems that employ heuristics to target optimisation objectives, a common issue

occurs when the search reaches a local optimum. Given the objective of maximising

the total number of allocated tasks, consider a scenario with a sub-optimal assignment

of tasks when no more tasks can be directly added due to time constraints. Using local

communications, can a sequence of task reassignments be coordinated that enables an

increase in the number of allocated tasks, without unnecessarily disrupting the whole

plan? Can the sequence of reassignments be initiated only when it will lead to an

increase in allocations?

• In scenarios for which communication rounds are expensive, the time taken for the

system to converge is an important factor. In distributed task allocation algorithms, can

the time to reach consensus be reduced by removing variability in the consensus proce-

dure? Can the quality of the solution be maintained by better exploiting scheduling

heuristics?

• The task allocation problem is highly complex due to the high number and different

combinations of variables, parameters and constraints. Accordingly, different heuristics

perform better or worse under different such conditions. Using information derived

from local communications, can each individual agent predict and adapt locally the

best task allocation strategy to match the optimisation objective?

1.9 Key Contributions

This thesis addresses the problem of optimising distributed task allocation algorithms in

scenarios where time constraints are critical. In particular, three extensions to existing state-

of-the-art task allocation algorithms, PI [102] and CBBA [17], are proposed and analysed,

providing optimisation techniques to maximise the number of task allocations, minimise



14 Introduction

the time to reach a solution, and autonomously adapt to dynamic factors. The specific

contributions of this thesis are as follows:

1. In scenarios with time constraints and a greater number of tasks than can be assigned,

a key challenge is to find an allocation of tasks to agents that allocates the highest

number of tasks possible. Due to the high complexity of the problem, distributed

task allocation algorithms, such as PI and CBBA, use heuristic methods that generate

sub-optimal solutions.

Consider a scenario in which an agent A is the only agent capable of servicing a task t1,

due to time constraints. However, A’s schedule is occupied by another task t2. Consider

another agent B that would be capable of servicing t2, but not t1. This scenario emerges

because allocations are sought by heuristics that do not always find optimal solutions.

In this situation, existing algorithms lack the ability to have the agents reassign t2 to

agent B so that agent A may service t1. As a consequence, only one task is allocated

when two could be allocated. As the problem size increases, so does the number of

potentially assignable tasks left unassigned. A key limitation of algorithms such as

CBBA, PI and other extensions of CBBA is therefore the inability of algorithms to

reassign tasks after initial allocations had already been made, in order to fully exploit

the time available in agents’ schedules.

The proposed solution, devised as part of the original contributions to this thesis, is

to create feasible time slots for unallocated tasks. This contribution was published

in [94, 97]. The principle idea is to ensure that an agent loses the bid for a task if a

feasible slot could instead be created for an unassigned task, while also ensuring that

the agent keeps the task if such a slot cannot be created. The proposed method requires

agents to check whether a task, if removed from their schedule, would create a feasible

slot for an unassigned task. If so, agents then place relatively low bids on those tasks

according to the proposed bidding policy. Multiple reassignments among networked

agents may be required to create a feasible time slot. The particular bidding policy



1.9 Key Contributions 15

introduced allows for task reassignment chains that can involve a predefined maximum

number of agents that can be adjusted according to performance requirements.

A simulated rescue scenario with task deadlines and fuel limits is used to demon-

strate the performance of the proposed method compared with existing methods, the

Consensus-Based Bundle Algorithm (CBBA) and the Performance Impact (PI) al-

gorithm. Starting from existing solutions (PI-generated), results show an up to 20%

increase in task allocations using the proposed method.

2. In highly dynamic and time critical environments, a fast convergence time is an

essential property of a distributed algorithm. With consensus-based task allocation

algorithms, the time it takes for all agents to converge is determined by the number

of times the two phases of the algorithm repeat (as in Figure 1.3) until all agents

reach consensus. This in turn is largely dependent on the number of conflicting task

allocations i.e. when multiple agents bid for the same tasks.

The second key contribution in this thesis, published in [96], is a proposed approach

to reduce convergence time while maintaining the same or a higher number of task

allocations. With previous methods, agents’ bids on task assignments indicate the

optimality of an assignment with respect to an optimisation objective. When conflicts

occur, the agent that can perform the task most optimally keeps the assignment. For

example, if the objective is to minimise the latency between a task becoming available

and the time at which the task is serviced, bids may be based on agents’ predicted

arrival time at the task location. Changes in an agent’s schedule are likely to affect its

arrival times and therefore the bids placed on tasks. The proposed approach resolves

conflicting task allocations based exclusively on agents’ relative ranking in a hierarchy.

Compared with using variable bids, the proposed rank-based approach stabilises the

convergence process which has the effect of speeding up the rate of convergence.

Certain insertion heuristics cause the CBBA to take a long time to converge but increase

the number of allocated tasks. The proposed method enables the use of such heuristics

while reducing the time to consensus. Two heuristics, earliest deadline first and



16 Introduction

shortest travel time between tasks, are compared across different network topologies.

Simulation results confirmed that the proposed rank-based conflict resolution approach

was able to converge faster than the benchmark CBBA using variable bids. The findings

suggested that the proposed approach is most effective and can significantly reduce the

time to convergence when agents’ ranks are determined by the network topology.

3. In consensus-based algorithms, a common approach in the autonomous scheduling

phase is to have the agents determine which tasks to assign and in which order using a

heuristic score function. The effectiveness of a given heuristic is dependent on various

factors such as the problem constraints and the objective being optimised. Two well-

known heuristics that perform well in time constrained scenarios are earliest deadline

first (EDF) and nearest task first (NTF) [68]. The research presented in [95] proposes

the idea that, given a choice of heuristics, agents can predict and select the best task

inclusion heuristic locally, based on the limited information shared among networked

agents. The proposed method extends CBBA with a learned prediction function

in combination with a strategy switching behaviour. The method is effectively a

prediction mechanism that uses past experience to select which task allocation strategy

(i.e. heuristic) yields the optimal global task allocation. This method enables agents

to independently adapt task allocation strategies in line with changing environmental

factors, and thereby boost performance.

To test the proposed method, the prediction function was trained to predict which

heuristic, between EDF and NTF, yields the highest number of task allocations. Simu-

lation results showed that for most scenarios tested, the agents were able to predict and

select the optimal heuristic using locally communicated task assignment information.

The method boosted performance in terms of the overall number of allocated tasks

without a significant change in number of iterations until convergence.



1.10 Thesis Layout 17

1.10 Thesis Layout

The remainder of this thesis is organised as follows. Chapter 2 outlines the field of multi-

agent ccordination and describes and discusses methods that have been previously developed,

including centralised and distributed methods. The problem definitions for the contribution

chapters are then described, along with detailed descriptions of the state-of-the-art distributed

task allocation algorithms PI and CBBA. Chapter 3 introduces a proposed extension of

PI, called PI-MaxAss, that increases the number of task allocations generated by PI. The

proposed algorithm is formally described and a method to guarantee convergence is proposed

for the PI algorithm as a whole. A complexity analysis of PI-MaxAss is also included.

Finally, results are provided to demonstrate the performance of PI-MaxAss in a simulated

search and rescue scenario. Chapter 4 introduces the fast consensus extension of CBBA.

The proposed algorithm is described and its performance is then evaluated and compared

with the baseline BW-CBBA. Chapter 5 Introduces the hybrid prediction and task selection

model as an extension of CBBA. The algorithm and the training of the prediction function are

described. The performance of the proposed method is then evaluated. Chapter 6 sumarises

the contributions of this thesis and discusses possible future directions.

1.11 Publications Resulting from this Study

Conference Papers

• J. Turner, Q. Meng, and G. Schaefer, "Increasing allocated tasks with a time minimiza-

tion algorithm for a search and rescue scenario." IEEE International Conference on

Robotics and Automation (ICRA), 2015.

• J. Turner, Q. Meng, and G. Schaefer, and A. Soltoggio "Fast Convergence for Fully

Distributed Multi-Agent Task Allocation." ACM/SIGAPP Symposium On Applied

Computing (SAC), 2018.



18 Introduction

• J. Turner, Q. Meng, and G. Schaefer, and A. Soltoggio "Distributed Strategy Adapta-

tion with a Prediction Function in Multi-Agent Task Allocation." 17th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018.

Journal Paper

• J. Turner, Q. Meng, G. Schaefer, A. Whitbrook, and A. Soltoggio "Distributed Task

Rescheduling With Time Constraints for the Optimisation of Total Task Allocations in

a MultiRobot System." IEEE Transactions on Cybernetics, 2018.

Doctoral Consortium Extended Abstract

• J. Turner "Distributed Task Allocation Optimisation Techniques." 17th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018.



Chapter 2

Distributed Task Allocation: Definition

and Current Approaches

This section presents existing approaches for multi-agent coordination, existing approaches

for solving the task allocation problem, and the problem formulations for the task allocation

scenarios tackled in the thesis.

2.1 Related Work

This section covers existing work related to the problem tackled in this thesis: related

representations of the problem, general solution approaches, and state-of-the art distributed

task allocation algorithms.

2.1.1 Similar Problems

The task assignment problem falls under the umbrella of combinatorial optimisation problems.

In applied mathematics, combinatorial optimisation aims to find the best solution to a

problem from a large set of possible solutions. Similarities can be found between the task

assignment problem and other well-known problems in combinatorial optimisation, including

the vehicle routing problem (VRP) [55], the travelling salesman problem (TSP) [33], and



20 Distributed Task Allocation: Definition and Current Approaches

other scheduling problems. In such problems, a brute-force approach that checks every

possible solution is often impractical.

The VRP is a class of problems that aims to find the optimal set of routes for a group

of vehicles to deliver goods to a set of customers. The vehicle routing problem with time

windows (VRPTW) [50] is a variant of VRP that specifies time windows within which

deliveries must be made. In vehicle routing problems, the assumption is that vehicles all

start and end at the same depot, and that vehicles all have the same capabilities. VRP

is a generalisation of TSP. A variant of the TSP that is similar to VRPTW is the Team

Orienteering Problem with Time Windows (TOPTW) [98], also known as the Multiple Tour

Maximum Collection Problem. The TOPTW considers multiple time-limited paths with the

objective to maximise the total collected score over a set of vertices. This is comparable

to multiple agents sequentially servicing tasks such as to maximise the total number of

completed tasks. In TOPTW, each vertex is assigned a time window and is to be visited

once at most. This is equivalent to the single task (ST) allocation problem with temporal

constraints. A secondary objective to minimise the average latency (applied in Chapter 3) is

comparable to another variant of the TSP, the K-Traveling Repairmen Problem (K-TRP) [26],

also known as the Minimum Latency Problem. The K-TRP tries to determine a set of tours for

multiple repairmen to visit a set of customers with the objective to minimise the average time

a customer must wait before a repairman arrives. The multi-agent task allocation problem

and TOPTW differ insofar as that the TOPTW specifies a start and end location between

which the paths are created, whereas the task allocation problem may define a start point, but

the final position is generally not specified.

2.1.2 Task Allocation Mechanisms

Two broad classifications for task allocation solutions in multi-agent systems have been

covered extensively in the literature: centralised and decentralised task allocation [105].

Centralised task allocation systems, where a central server gathers information from each

agent in the team and then computes an allocation for each agent, can optimise a chosen

global objective based on a complete set of information from all agents. The drawbacks



2.1 Related Work 21

are the resulting single point of failure, and the requirement that each agent must have a

communication link with the central server. Thus, the possible mission range is limited, and

a heavy communication and computation burden is put on the central server. Decentralised

and distributed methods for task allocation overcome these limitations. In such cases, the

task allocation algorithm runs on each agent simultaneously and the solution is reached

through the interaction and exchange of information among them [25, 14, 48]. One of the

drawbacks of distributed systems is that each agent has a different situational awareness and

therefore communication and consensus procedures are required for the team of agents to

reach agreement.

2.1.3 Centralised Task Allocation

While centralised task allocation is not the focus of this thesis, an overview of centralised

approaches is included here for completeness.

Exact Solutions

Exact task allocation solutions are equivalent to optimal task allocation solutions. A brute-

force approach that checks every possible solution is often impractical due to the high

computation time and space required as the problem size increases. Branch-and-Bound

is a centralised method that produces exact solutions more efficiently than an exhaustive

search [22, 19, 58, 53]. The branch and bound algorithm represents the task allocation

problem as a search tree. The algorithm explores branches of the tree, which represent

candidate task allocation decisions, and keeps track of bounds on the solution that it is

searching for. A branch is discarded if it cannot improve on the best solution found so

far. Variants of Branch-and-Bound, which reduce the computational requirements of the

algorithm by restricting the candidate solution search space, include Branch-and-Price [6, 84],

Branch-and-Cut [5], and Branch-and-Price-and-Cut [63]. The latter has been used to solve

the VRPTW [73, 4, 8]



22 Distributed Task Allocation: Definition and Current Approaches

Approximate Solutions

To generate solutions with a faster computation time than exact solutions, sub-optimal, but

"good enough" approximate task allocations are sought through heuristic and nature-inspired

approaches [75].

Various algorithms have explored strategies to solve multi-objective TSPs or vehicle

routing problems, see [47] for a survey. Reference [77] tackles a bi-objective Traveling

Salesman Problem with a two-phase local search procedure. The first phase generates a

solution that optimises only one objective. The second phase begins the search from the

solution generated in the first phase to optimise the second objective. The advantages to using

this approach highlighted by [77] are to exploit the strong performance of single objective

local search algorithms by chaining them together, and to maintain a flexible modularity

and ease of understanding to the procedure that allows for modifications and enhancements.

Heuristic methods to solve combinatiorial optimisation problems are prone to finding a local

optimum [57]; however, a second search can perturb the first phase solution out of local

optima to reach an enhanced solution closer to a non-dominated global optimum.

With larger multi agent teams, centralised solutions become intractable. Therefore

decentralised methods are used to solve the multi-agent task allocation problem.

2.1.4 Decentralised Task Allocation

In this section, the focus is on decentralised approaches to multi-agent coordination. Several

different branches of decentralised coordination have been developed that suit different appli-

cations with different priorities. The main approaches to decentralised task allocation stem

from constraint optimisation, sequential decision-making, bio-inspired, and most relevant in

this thesis, market-based.

Distributed Constraint Optimisation Problem (DCOP) approach

In constraint optimisation [21], problems are modelled as a set of constraints on variables, and

the objective function is to be optimised in the presence of those constraints. The distributed



2.1 Related Work 23

version of constraint optimisation is distributed constraint optimisation (DCOP) [32]. In

DCOP, a group of distributed agents, each controlling some variables, select values in an

attempt to minimise the cost of a set of constraints over those variables. The agents negotiate

a solution through localised message exchanges. The authors in [15] provide a gentle tutorial

on optimisation in multi-agent systems with a strong focus on DCOP techniques. The task

allocation problem can be modelled as a DCOP [65, 73].

Complete algorithms have been developed i.e. algorithms that are guaranteed to find a

configuration of variables that optimises the global objective function. The first complete

DCOP algorithm that solved a special case of DCOP, called distributed constraint satisfaction,

was the Asynchronous Backtracking Algorithm (ABT) [106]. The first DCOP algorithm

proposed to solve the general problem optimally was ADOPT (Asynchronous Distributed

OPTimization) [69]. With ADOPT, agents are arranged in a depth first search tree, and

constrained agents need to be on the same branch. DCOP methods that are guaranteed to

solve the problem optimally require an exponential communication overhead, large message

sizes, or exponential computations performed by the agents. Distributed complete algorithms

are therefore unsuitable for real-world applications [32].

Sub-optimal local search and inference-based approaches to solving DCOP have been

developed to provide faster methods of computing good solutions. With local search tech-

niques such as MGM (Maximum Gain Message) [64], agents perform local moves in parallel

to optimise the local gain. The authors in [16] provide a unifying theory for local search

techniques. Inference-based methods offer a different approach. Through iterative local

message exchanges, each agent builds up an estimation of the impact that each of its actions

has on the global objective. Once this estimation, also known as a belief function, is built

up, each agent then selects the assignment that optimises the belief function. The max-sum

approach is the most well-known of these approaches. Max-sum has been used to coordinate

low-powered embedded devices [29], sensor-networks [28], and in Robocup Rescue [82, 78],

however, it is also an algorithm with exponential complexity. In [81], the authors introduce

Tractable High Order Potentials (THOP) to reduce Max-Sum’s computational complexity



24 Distributed Task Allocation: Definition and Current Approaches

from exponential to polynomial time. The benchmarking platform RMASBench [49] was

developed to compare the performance of different DCOP algorithms.

Sequential Decision-Making

Another widely studied framework for autonomous multi-agent planning, where planning

refers to reasoning about which tasks will be implemented, is the Markov Decision Process

(MDP) framework. MDPs, originally developed in operations research in the 1950s, provide

a framework for modelling decision making in environments where there may be uncertainty

about the state. The Markov property posits that the probability distribution for future states

is based exclusively on the current state, and the action taken in the current state i.e. it is

independent from previous states. Optimisation problems modelled as MDPs are often solved

with dynamic programming and reinforcement learning [107].

A variant of MDP was developed to suit real world problems, in which information is

incomplete, communication is costly, and it is unrealistic to have central decision-maker.

Decentralised partially observable Markov decision process (Dec-POMDP) [2] is a variant

of MDP that models control distributed across multiple agents with possibly differing and

partial information about the environment. With Dec-POMDP, agents make choices based on

local information, and the global reward depends on the actions taken by all the agents [2].

A key issue for MDPs is the high complexity for generating an optimal solution that

quickly makes the methods intractable as the number of agents increases. It has been shown

that the running time of Dec-POMDPs to find an optimal solution is NEXP-hard [7, 71].

More recent research has focused on the use of macro-actions in Dec-POMDPs, called

MacDec-POMDP, that has increased the size of problems that can be solved practically [3].

With MacDec-POMDP, each robot temporally extended actions. These macro-actions allow

for a higher level of abstraction, resulting in coordinated decisions occurring at a higher level.

When the environment is unknown or uncertain, and the models representing the envi-

ronment are discrete and not too large, Dec-POMDP are well suited to solve discrete time

sequential decision making planning problems under uncertainty. The MultiAgent Decision



2.1 Related Work 25

Process (MADP) toolbox is a software platform for research in decision-theoretic multi-agent

planning [86].

Bio-inspired

The principles of scalable self-organisation are found in natural biology, where large groups

of insects or animals, such as ants, bees, and fish, collaborate without direct communication

to form complex emergent global behaviour. In these systems, there is generally no global

controller, and each individual acts based on local observations and a simple model of

behaviour. This simplicity and localisation results in highly adaptive and scalable systems.

These techniques are therefore well suited for scenarios in which distributed agents cannot

communicate directly.

A self-organisation mechanism observed in social insects such as ants, in which coordi-

nation occurs through indirect interaction, is stigmergy [38]. Here, stigmergy refers to the

sharing of information via modification of the environment. Ants leave pheromone trails that

attract other ants, this mechanism facilitates optimal routes to food sources. These, and other

bio-inspired self-organisation mechanisms have been used for coordination in fields such as

robotics [52], routing protocols for mobile networks, and balancing workload of computers

in a grid [27]. In [12], the authors propose a self-organisation method that allows a swarm of

robots to assign tasks that have sequential interdependencies, using robots’ perceptions of

task delays.

The threshold-response model [11] is another bio-inspired mechanism that has been

widely used for simple self organised division of labour. This model is based on the tendency

of social insects to perform certain tasks. The authors in [31] use Swarm-GAP, an algorithm

that adopts a probabilistic threshold model, for a distributed task allocation problem.

Contract-based

Contract-based methods have been developed, where two neighbouring agents or robots

adjust their task allocation through mechanisms such as exchanges or task swaps [83]. Zheng

and Koenig [109] developed a multi-robot distributed re-allocation mechanism called K-



26 Distributed Task Allocation: Definition and Current Approaches

swaps that describes multiple task exchanges among multiple agents at a time, and showed

empirically that the method can optimise an existing task allocation solution by reducing

team costs. Extending the idea of K-swaps, [62, 60, 61] introduced a decentralised task

assignment algorithm considering instantaneous assignment, such that each robot is assigned

exactly one task, the SR-ST-IA problem. The algorithm requires the differentiation of two

roles, organiser and member robots, and can be used to optimise existing sub-optimal task

assignments.

Market-Based Distributed Task Allocation

Market-based multi-robot coordination approaches [25] have been applied successfully to

the ST-SR-TA problem to find sub-optimal solutions efficiently. With this approach, teams of

self-interested agents iteratively trade tasks to maximise their own profit or minimise their

costs. A cost is associated with an agent visiting a task within its path and is often measured

as the total estimated use of individual resources to reach that task, such as fuel consumption,

distance traveled or time to reach the target. The local cost of an agent’s path is equal to

the sum of costs of each task the agent is assigned to [54], and the global cost of an agent

team is the sum of costs of all task assignments in the team. An auction is a commonly

used market-based approach to assign tasks [72]. The process consists of several rounds of

bidding in which agents place bids on each task where the value of a bid for a task is equal to

the agent’s estimated cost of visiting that task. The agent wins and is allocated those tasks for

which it has placed a bid lower than any other agent. The effect of using this market-based

approach is that local costs and subsequently global costs are minimised [25].

2.1.5 CBBA, Extensions and Variations

The Consensus-Based Bundle Algorithm (CBBA) [17] is a robust and fully distributed multi-

assignment task allocation algorithm that employs a greedy auction strategy to enable agents

to build a bundle of tasks sequentially. This task building phase is followed by a consensus

procedure phase that resolves conflicting assignments. These two stages alternate until

consensus has been reached by the team on all task assignments. For an analysis of CBBA’s



2.1 Related Work 27

scalability, see [17]. Of the various extensions and modifications, [18] and [41] address

multi-robot (MR) task assignments and heterogeneous networks for the ST-MR-TA problem

in which multiple robots may be required to service one task [36]. Choi et al. [18] address

the case in which a task requires only one single agent, one or two agents, and exactly two

agents of different type. Hunt et al. [41] propose the Consensus-Based Grouping Algorithm

(CBGA) that addresses the problem of multi-agent multi-task assignment with group and

equipment based dependencies, and which can accommodate any number of robots.

Ponda et al. [79] increase the overall efficiency of a task assignment by incorporating time

windows of validity and fuel costs as part of the scoring scheme. The scoring scheme rewards

agents for arriving at the optimal time for each task and for minimising fuel consumption.

Ponda et al. [79] also address real-time re-planning for broken communication links, solving

the problem of conflicting assignments when unconnected sub networks each have an agent

assigned to the same task.

The Consensus phase of CBBA requires synchronised communication between all agents.

In a real-time dynamic environment, coordinating a large number of agents to communicate

in sync may overburden the network and require artificially delaying the broadcast of new

messages until all earlier messages have been received by the network of agents. Johnson et

al. [46] extend CBBA with an asynchronous communication protocol to permit the agents

to run the consensus phase of the algorithm on their own schedule. The asynchronous

communication protocol also uses less bandwidth than CBBA. In [80], the authors introduce

CBBA with Relays algorithm that improves the team of agents’ range and ensures network

connectivity in a dynamic environment by utilising agents as communication relays.

Di Paola et al. [24, 23] propose the Heterogeneous Robots Consensus-based Allocation

(HRCA) algorithm that deals with multi-assignments in heterogeneous networked-teams.

The algorithm consists of two outer stages. Stage 1 iterates two inner phases that closely

resemble the two phases of CBBA: As opposed to CBBA, in Stage 1 of HRCA the maximum

task bundle size is ignored. Stage 2 is performed only if there exist bundles exceeding the

maximum limit. In this case, iterative task elimination based on least penalty is performed to

resize the bundle. Binetti et al. [9, 10] developed the Decentralised Assignment Algorithm



28 Distributed Task Allocation: Definition and Current Approaches

(DAA) based on CBBA and HRCA to solve the task allocation problem for assigning critical

tasks for heterogeneous agents with limited capacity.

Cui et al. [20] introduce a Game Theory approach for task allocation. As with CBBA,

the process of task allocation is split into two phases. A contract net protocol is used for

the initial task allocation and a Game theory approach is then used to reallocate the tasks

to satisfy Pareto Optimality. Smith et al. [85] extend CBBA to develop the Cluster-Formed

Consensus-Based Bundle Algorithm (CF-CBBA) to reduce the communication necessary

for reaching consensus on task allocation. The communication reduction has a trade-off of a

drop in optimality of task allocation as complexity increases. The BW-CBBA [45] addresses

the limitations of utilising DMG score functions to rank tasks within an agent’s internal

decision making process.

The authors in [108, 102] propose a concept called Performance Impact (PI) as an

extension of CBBA. This method introduces PI, a value used by vehicles to prioritise task

assignments. With PI, unlike CBBA, tasks included into a vehicle’s task list can push back

the execution times of later tasks in that same list, provided that all time constraints are

satisfied. Likewise after a task is removed from a task list, the execution times of later

tasks in the list may be shifted forward. With the PI algorithm, a vehicle does not release

a task until it is reassigned elsewhere at a lower cost i.e. once a task is assigned it does

not become unassigned. PI considers not only the cost of a task assignment but also the

impact of that task assignment on the cost of other assignments in the vehicle’s task list.

The authors demonstrate the effectiveness of PI through a simulated rescue scenario with a

global objective to minimise the average start times of tasks with deadlines. The PI algorithm

was shown empirically to solve time-critical task allocation problems where CBBA could

not, and was shown to find a lower average start time compared with CBBA. Despite the

improved performance, the PI algorithm still fails to solve problems that are solvable due to

converging to locally optimal but globally sub-optimal solutions [102].



2.1 Related Work 29

2.1.6 Multi-Agent Learning: Related Work

Learning and adaptation in multi-agent systems is an established research field [100, 91, 88].

A commonly used approach to learning in multi-agent systems is reinforcement learning

(MARL), in which agents learn actions and policies through trial and error from a feedback

of rewards and punishment [56]. Extensive research has been done in this area. In early

research, Littman [59] proposes a Markov games framework for MARL that allows for

multiple adaptive agents with conflicting goals. Tan [92] investigates whether agents

that learn cooperatively outperform agents that do not. The study showed that sharing

learned policies could speed up learning with a cost in communication. Ho and Kamel

[39] introduced a probabilistic hill-climbing approach to learning multi-agent coordination

strategies that combines individual and group learning based on successful interactions

in cooperative assignments. In more recent work, Garland and Alterman [35] developed

distributed learning techniques to improve coordination among agents. By learning from

past experiences of successful cooperation with other agents, and by learning probabilities

of individual actions succeeding, agents were able to individually use past experience to

more efficiently solve coordination problems. Empirical results demonstrated that distributed

learning of individual agents improved performance of the whole system, including costs of

communication and planning. Hu et al. [40] proposed knowledge transfer mechanisms to

demonstrate how knowledge of individually learned policies can be utilised to learn better

joint policies. The study exploited sparse interactions in multi-agent systems to improve

the performance of multi-agent reinforcement learning. Marinescu et al. [66] introduced

a predictive MARL approach that exploits prediction of future environment behaviour and

pattern change detection capabilities to reduce the time needed for online learning. Panait

and Luke [76] provide a a comprehensive survey of MARL, as well as evolutionary learning,

for cooperative teams.

Reinforcement learning has recently been applied to applications with centralised task

allocation architectures, such as cloud computing [74], where a scheduler that handles

scheduling for multiple resources uses reinforcement learning to learn the best policies to

reduce execution time. Gombolay et al. [37] proposed a method to automatically learn



30 Distributed Task Allocation: Definition and Current Approaches

scheduling heuristics from expert demonstrations using inverse reinforcement learning for a

centralised scheduler.

2.2 Synthesis

With respect to the other approaches described, market-based approaches to task allocation

have the major advantage of scalability. CBBA and its extensions are particularly suited to

real-time applications due to CBBA’s fully distributed design. All agents hold the same role

in the task allocation process and therefore can be easily replaced if an agent is damaged.

Agents communicate locally and use a bidding and consensus approach that guarantees

convergence in polynomial time. The algorithm also has the advantage of a simple design.

The two phases of the algorithm, path building and consensus, are intuitive to understand

and easy to reproduce. These many beneficial reasons motivate the research in this thesis. In

particular, the aim was to investigate how the two phases of this algorithm can be exploited

and adapted to perform best under scenarios with different parameters, while maintaining the

algorithm’s performance guarantees. The research in this thesis investigates different bidding

approaches, different path building approaches, how these perform together, and how agents

can adapt these approaches to match environmental variables.

2.3 Consensus Based Bundle Algorithm (CBBA) and Per-

formance Impact (PI) Overview

This section provides a description of CBBA, developed by [17], and PI, developed by [102],

as well as their key features. A mathematical formulation of the algorithms will be introduced

in a later section.

CBBA is a distributed auction-based task allocation algorithm for multi-agents and multi-

tasks. The algorithm runs independently on each agent in a team of communication networked

agents iterating over two phases: a bundle construction phase, and a task consensus phase.

The algorithm guarantees convergence in polynomial time, even when agents have differences



2.3 Consensus Based Bundle Algorithm (CBBA) and Performance Impact (PI) Overview31

in situational awareness, to a provably good approximate conflict-free task allocation solution.

The algorithm therefore offers good scalability and is well suited to real-time environments.

2.3.1 Information Space

The local information space of each agent i is listed in Table 2.1. The information associated

to each task k is listed in Table 2.2. Communication that an agent i sends to each neighbouring

agent j is listed in table 2.3.

Table 2.1 local information space for each agent i

Agent i’s: location

travel speed

fuel reserve

capabilities for servicing certain types of tasks

network connection to neighbouring agents

local map of the environment

local list of tasks that need to be serviced by the team

local knowledge of winning bids and winning agents for all tasks

local schedule (or bundle) of tasks that it plans to service

Table 2.2 Task information space

Task k’s: location coordinates in the environment

duration of service time

deadline for starting the task

task type



32 Distributed Task Allocation: Definition and Current Approaches

Table 2.3 Information communicated between agents

agent i sends to agent j: agent i’s local knowledge of winning bids for all tasks

agent i’s local knowledge of winning agents for all tasks

Time

Ta
sk

s

Task duration

Travel Time

A B

Fig. 2.1 Agent’s schedule with two tasks A and B. With CBBA tasks added to the agent’s
schedule after A and B may not impact the start times of A and B. If A was added to the
schedule before B and the agent loses the bid for task A, the agent releases both tasks A and
B.

2.3.2 Bundle construction phase

In the bundle construction phase, agents incrementally and greedily build a local schedule by

selecting one task at a time using a local score function. The task is selected from the full

list of tasks for which the agent is capable of servicing. CBBA computes scores in terms

of the improvement in overall bundle score as a result of adding the new task i.e. it is a

marginal score. The task with the highest score, that is also higher than known bids from

other agents, is selected as the next task to add to the schedule. When inserting the task into

the schedule, the task needs to respect time constraints, and once added, newly added tasks

cannot impact the start time of previously added tasks. This greedy task selection approach

has the advantage of limiting the search to polynomial time. Figure 2.1 illustrates an agent’s

schedule where the length of tasks represents the task duration and the gap between tasks

represents the travel time between tasks.

2.3.3 Consensus phase

In the consensus phase, agents communicate their local knowledge of winning agents and

winning bids to their neighbours, and resolve conflicts according to a consensus protocol.



2.3 Consensus Based Bundle Algorithm (CBBA) and Performance Impact (PI) Overview33

See [17] for details of the rules that determine who wins a bid. In general, the highest bid

wins the task. If an agent is outbid for a task in its bundle, it releases that task as well as any

tasks added subsequently to that task. The reason being that marginal scores computed for

tasks added after the released task would no longer be accurate. In Figure 2.1, considering the

case that the agent added task A and then added task B to its schedule, if the agent loses the

bid for A, the agents removes both A and B from its schedule. The guarantee of convergence

of CBBA requires that agents’ score functions satisfy a property called Diminishing Marginal

Gains (DMG). Informally, the condition requires that the score for a task cannot increase as

more tasks are added to the bundle.

2.3.4 Performance Impact (PI)

The PI algorithm [102] extends CBBA with the following key modifications:

• PI minimises costs where CBBA maximises score.

• During the PI equivalent of the bundle construction phase, PI allows for the start

times of tasks in a bundle to shift when a new task is added. This optimises the use

of available time with a trade-off of increasing computation time. Starting from the

schedule illustrated in Figure 2.1, with PI, an agent can insert a task C between task A

and B by shifting the start time of B. This new schedule is illustrated in Figure 2.2.

• The next task included into an agent’s schedule with PI is the task with the greatest

positive difference between the current winning bid and the agent’s score for that task

i.e. the task with the greatest gain is selected.

• During the consensus phase, when an agent loses a bid, the agent releases only that

task. Rather than releasing all tasks added later than the released task, as with CBBA.

PI instead recomputes the start times of remaining tasks. In Figure 2.2, if an agent loses

the bid for task A, with PI, the times for tasks C and B are recomputed to the earliest

times the agent can reach them after task A is removed. The resulting schedule is

illustrated in Figure 2.3. The advantage is to reduce the number of tasks to reassign, and



34 Distributed Task Allocation: Definition and Current Approaches

Time

Ta
sk
s

A BC

Fig. 2.2 Agent schedule with PI: task C can be inserted between tasks A and B by shifting
the start time of task B.

Time

Ta
sk
s

BC

Fig. 2.3 Agent schedule with PI after losing the bid for task A. The start times for tasks C
and B are recomputed.

optimise the start times of remaining tasks. The trade-off is an increase in computation

time and an algorithm that does not satisfy the property of DMG. Therefore, cycling of

assignments can occur between agents, and the algorithm then fails to converge.

2.4 Problem Formulation for PI algorithm

Introduced here are formal definitions for the task allocation problem addressed in Chapter 3,

and formal definitions used to describe PI, as well as to describe the first novel contribution

of this thesis, introduced as an extension of PI.

2.4.1 Multi-Vehicle Task Allocation

Consider a rescue scenario with n heterogeneous autonomous vehicles and m survivors. In

this scenario, attending to a survivor is synonymous with executing a task. The goal is

to provide targeted emergency support to the survivors as quickly as possible: e.g. some

survivors may require food supplies, while others may require medical provisions. Thus in

some scenarios different types of vehicles are necessary to complete different tasks. The



2.4 Problem Formulation for PI algorithm 35

distributed vehicles in a network rely on local communication to co-ordinate a rescue plan

over multiple iterations.

In the particular scenario considered, each survivor must be visited by one vehicle in order

to be deemed rescued. Each vehicle can be assigned multiple targets and will sequentially

visit those targets, while not required to return to its initial location. The main challenge is

to reach an optimal allocation where allocation numbers are maximised and waiting time

minimised, while respecting time constraints.

To formulate the problem mathematically, a set of n heterogeneous autonomous vehicles

is defined by V = [v1, . . . ,vn], and a set of m tasks waiting to be completed is defined by

T = [t1, . . . , tm]. A list of key symbols used hereafter is provided in Table 2.5. The ordered

task allocation of the i− th vehicle vi is stored in ai, which can contain a variable number of

tasks depending on how many tasks are assigned to vi. Each task is to be assigned to one

vehicle only, or left unassigned when time constraints cannot be satisfied.

Different task types can be executed by heterogeneous vehicles with the right capabilities.

Thus, each task will be assigned only to vehicles functionally capable of performing them.

2.4.2 Task Assignment with Time Constraints

A latest start time sk is defined for each task tk after which it is too late for the task to be

executed successfully; it is therefore necessary to determine whether a vehicle can arrive at

the location of a task tk before the latest start time sk. The objective of minimising average

waiting time measures the cost of a task assignment as the time it takes to start servicing the

task from the start of the vehicle’s schedule i.e. the total time the survivor must wait before

being attended to. The time cost of a task tk in ai, defined as ci,k(ai) in [108], is the predicted

time taken by the vehicle vi to arrive at the location of the task tk. This time includes the

duration of earlier tasks in ai and travel time to and from those earlier tasks, but does not

include the duration of the execution of tk. For this particular scenario, the duration of a task

is dependent on the task type [108]. Vehicles are additionally assumed to have limited fuel

capacity that restricts the time a vehicle can be active for. All tasks must be started before

the vehicle reaches its fuel capacity. The latest time at which vi can arrive at a task before



36 Distributed Task Allocation: Definition and Current Approaches

reaching its fuel capacity is defined as fi. The start time of the k-th task must therefore also

be no later than fi such that

ci,k(ai)≤ min(sk, fi) . (2.1)

In [108] and [102], the global objective J is to minimise the average start time of all tasks,

such that

J = min

{
1
m

n

∑
i=1

|ai|

∑
k=1

ci,k(ai)

}
, (2.2)

where |ai| is the number of tasks assigned to vi.

The objective function to maximise the number of allocated tasks is defined as

J⋆ = max

{
n

∑
i=1
|ai|

}
. (2.3)

2.5 PI Algorithm

The PI algorithm is a distributed task allocation algorithm that runs simultaneously on each

vehicle. Using the same two-phase architecture as CBBA, the PI algorithm iterates over

a Task Inclusion phase and a Consensus and Conflict Resolution phase. During the first

phase vehicles locally and iteratively build themselves a task bundle; during the second

phase vehicles share their assignment lists with neighbouring vehicles and resolve conflicting

assignments. Both phases repeatedly alternate until a global conflict-free task allocation is

agreed upon by all vehicles. These main steps in an iteration of the algorithm are expressed

with pseudocode in Algorithm 1.

The PI algorithm measures the local impact of a task assignment to the total cost of a

vehicle’s task list with the Removal Performance Impact (RPI) and the Inclusion Performance

Impact (IPI) of a task assignment. The IPIs are computed during the Task Inclusion phase

and determine which task to include next into a task list. The RPIs are computed at the

end of the Task Inclusion phase and are communicated to networked vehicles during the

Communication and Conflict Resolution phase. RPIs determine which vehicle keeps a task

in case of conflict.



2.5 PI Algorithm 37

PI Task Inclusion Phase

The IPI of a task tq in ai, as defined for PI-MinAvg, is measured as the time cost of tq in ai

plus the sum of increase in time costs of other tasks in ai that have been assigned previously.

The increase in time costs occurs if later tasks need to be shifted to create enough time to

service tq. If no tasks have been assigned previously, the IPI of tq in ai is equal to its time

cost, i.e. the time for vi to reach tq. This is because the sum of increase in time costs of other

tasks in ai is necessarily equal to 0. Let ai⊕l tq be the insertion of task tq at position l in ai.

The IPI of tq in ai is computed as

w⊕q (ai, tq) =
|ai|+1
min
l=1
{w△q,l(ai, tq)} , (2.4)

where

w△q,l(ai, tq) =
|ai|+1

∑
z=l

ci,z(ai⊕l tq)−
|ai|

∑
z=l

ci,z(ai) . (2.5)

Equation (2.5) computes the IPI of tq at each position l in ai, where ci,z(ai) denotes the time

cost of the task at position z in vi’s task list. Equation (2.4) finds the smallest IPI and records

it as tq’s IPI in ai. A list to store the IPIs of each task is kept on each vehicle and is defined as

γ
⊕
i = [w⊕1 , . . . ,w

⊕
m] for vehicle vi.

During this Task Inclusion phase, vehicles select tasks to include into their task lists until

no more tasks can be added. This repeating process is depicted on lines 1–21 in Algorithm 2.

Before including a task, the algorithm computes the IPIs of all candidate tasks tq according

to Equation (2.5) and (2.4), where candidate tasks are those compatible with vi’s capabilities

Algorithm 1 Task allocation outer-loop iterative procedure for CBBA and PI running on
each vehicle

1: Initialise Timer T ← 1
2: converged← f alse
3: while converged is f alse do
4: Task Inclusion Phase
5: Communication and Conflict Resolution Phase
6: converged← Check Convergence.
7: T ← T +1
8: end while



38 Distributed Task Allocation: Definition and Current Approaches

and not already in ai. The computation of IPIs is depicted on lines 3–12 in Algorithm 2.

When there are already tasks in ai that have been assigned previously it is necessary to

determine which position in the task list yields the most optimal IPI, i.e. whether it is most

optimal to include tq at the start of ai, at the end, or in a position between tasks. Thus the IPI

of tq is computed in each position l (lines 5–9) and the position l in which the IPI is lowest is

the optimal position (line 10).

After the IPIs of all candidate tasks have been computed, vi selects for inclusion the task

whose IPI can improve upon that task’s current RPI the most. At this stage candidate tasks’

RPIs will either have their initial value if unassigned, or an updated value received during

the Communication and Conflict Resolution phase. RPIs for all tasks are initialised to their

highest permissible cost such that RPIs of tasks must be lower than this value once they are

assigned. An IPI of tq in ai lower than tq’s RPI in another vehicle’s task list a j indicates that

Algorithm 2 PI Task Inclusion phase
1: while task list not full do
2: w⊕q ← highest permissible cost, w⊕q ∈ γ

⊕
i

3: for each task q do // Compute IPI for each candidate task
4: if task q is a candidate then
5: for each insertion position l in task list do
6: if ai⊕l tq is feasible then // If all time constraints are respected
7: Compute w△q,l according to (2.5) // Compute IPI in position l
8: end if
9: end for

10: Compute w⊕q and position l according to (2.4) // Keep minimum IPI
11: end if
12: end for
13: Compute g from (2.6) // Max difference between RPIs and IPIs for all tasks
14: if g > 0 then
15: Insert task q yielding g in position l of task list
16: Update vehicle list β q = i
17: Update time costs of task list
18: else
19: break
20: end if
21: end while
22: Compute γ i (only RPIs in task list will be affected)



2.5 PI Algorithm 39

the global cost can be reduced if tq is reallocated to vi. The RPI of a task tq is referred to

formally as w⊖q and each vehicle stores the vector γ i = [w⊖1 , . . . ,w
⊖
m]. A task tq assigned to

v j with an RPI greater than the IPI of tq in ai is written formally as w⊖q (a j, tq)> w⊕q (ai, tq).

Multiple IPIs may improve on the current RPIs, as such, vi selects for inclusion the task that

reduces the global cost most. The maximum difference between the RPIs of all tasks and the

IPIs of all tasks is computed as:

g =
m

max
q=1
{γ i,q− γ

⊕
i,q} . (2.6)

Line 13 in Algorithm 2 computes g according to (2.6). If g > 0 (line 14), the task correspond-

ing to g is included into the vehicle’s ordered task list, leading to the maximum reduction to

the global cost. If g ⩽ 0, IPIs of all tasks are greater or equal to the current RPIs, meaning

that the current assignments cannot be improved upon, or that time constraints of candidate

tasks cannot be met. In this case the task inclusion process ends (line 19).

RPIs are updated at the end of the Task Inclusion phase (line 22). Whilst RPIs are

constant for unassigned tasks, once assigned, the RPI is measured as tk’s time cost in ai plus

the sum of the changes in time cost of remaining tasks in ai before and after the removal of

tk. By removing tk from ai, vi may be able to execute its remaining task assignments earlier.

The time costs of tasks earlier in the task list than tk are not affected by the removal of tk.

The RPI of a task tk in ai is formally

w⊖k (ai, tk) =
|ai|

∑
z=b

ci,z(ai)−
|ai|

∑
z=b+1

ci,z(ai⊖ tk) , (2.7)

where b is the position of task tk in vi’s task list, ci,z(ai) denotes the time cost of the task at

position z in vi’s task list, and ai⊖ tk denotes ai with tk removed. When a global consensus is

reached, all vehicles have an identical copy of γ .

PI Communication and Conflict Resolution Phase

Once the Task Inclusion phase is complete, the RPI list and an m-sized vehicle ID list that

keeps track of which vehicle is assigned to which task, are broadcast to neighbouring vehicles.



40 Distributed Task Allocation: Definition and Current Approaches

The vehicle ID list is necessary for consensus and is defined as β i = [β1, . . . ,βm]. Neigh-

bouring vehicles are those where a communication link exists between two vehicles based

on a network topology. This topology may be dynamic and depend on e.g. communication

range and physical distance between two local vehicles. The vehicles communicate once per

algorithmic iteration and the communication in this study does not consider a communica-

tion cost. As two or more vehicles may be assigned the same task, a consensus procedure

introduced in [17] is used to resolve these conflicting assignments. A lower RPI indicates a

more optimal assignment, therefore vehicles with a higher RPI for a conflicting assignment

release the task. RPIs and associated vehicle IDs are updated during consensus.

The Task Inclusion and Conflict Resolution phases repeat until no inclusions or removals

can be made. At this point, the system is deemed to have converged and the task allocation

procedure ends.

2.6 Problem Formulation for BW-CBBA extensions

Introduced here are formal definitions for the task allocation problem addressed in Chapters 4

and 5, and formal definitions used to describe CBBA, its extension BW-CBBA, as well as to

describe the second and third novel contributions of this thesis, introduced as extensions of

CBBA. The contributions are a proposed approach to reduce the time to reach consensus, and

a proposed approach to increase agents’ ability to adapt their strategies such as to increase

the optimality of the task allocation.

2.6.1 Basic Definitions

Given a team of n agents and m tasks, the problem of interest is to allocate tasks to agents

with the following assumptions: agents autonomously decide which tasks to take on using a

scoring function that computes a score for that agent to perform a certain task. These score

functions often incorporate heuristics designed to optimise a specified objective. Agents

then communicate with each other to reach consensus on which agents take which tasks. To

determine which agents take which tasks, agents place bids on their selected tasks, share



2.6 Problem Formulation for BW-CBBA extensions 41

the bids by communicating with each other, and the agent with the highest bid wins the

task. Agents co-operate to maximise the number of allocated tasks and to reach an agreed

allocation (consensus). Tasks and agents are subject to time constraints.

Formally, V = [v1, . . . ,vn] and T = [t1, . . . , tm] represent the set of n agents and m tasks,

respectively. Each agent vi ∈ V is initialised with:

• A bundle bi of tasks assigned to vi ordered chronologically based on when the tasks

were added. Newly assigned tasks are appended to the end of the bundle.

• A path pi, same as bi, but with tasks in the order in which vi will execute them.

To select which tasks to add to the bundle, an agent computes a score cik for each task tk ∈ T

using a function Fik(). Agents can take on up to Lt tasks. The length of the bundle and path,

represented by |bi| and |pi| respectively, must be therefore less than or equal to Lt .

• A winning agent list zi = [zi1, . . . ,zim] where an element zik stores the index of the

agent who has won the task tk according to the latest communication received by vi. If

vi has not received or made a bid on tk, then zik = 0 .

• A winning bid list yi = [yi1, . . . ,yim] where an element yik stores the winning bid for

tk corresponding to the winner zik. If there is no bid for task tk, then yik = 0. Bids on

tasks are greater than 0 and less than or equal to MaxBid.

2.6.2 Problem Constraints

Agents can perform at most one task at a time, and each agent can be assigned multiple tasks

that they execute based on a schedule, with travel times between tasks. Each agent has a

maximum operating time fi, which is the latest time at which vi can arrive at a task tk before

running out of fuel. Each task tk has a latest start time ξk after which the task expires. The

predicted time of execution of tk ∈ pi by vi is ςik. This time includes the duration of earlier

tasks in pi and travel time to and from those earlier tasks. Thus,

ςi,k ≤ min(ξk, fi) . (2.8)



42 Distributed Task Allocation: Definition and Current Approaches

Due to these time constraints, it may not be possible to assign all tasks. If a task is not

already in pi and satisfies the time constraints, it is a candidate task and can be considered

for inclusion.

Agents communicate with each other via links determined by a network topology. This

topology may be restricted, e.g. by communication range. In dynamic settings, the topology

may change and become disconnected when agents move [79]. In this study, the agents are

stationary during the task allocation process, the topology remains the same and is connected.

Once a plan has been agreed, the agents set off to perform their assigned tasks.

2.6.3 Objective Function

The primary global objective J⋆ for the problem of interest is to maximise the number of

allocated tasks, formally defined as

J⋆ =max

{
n

∑
i=1
|pi|

}
(2.9)

s.t. pi∩p j = /0,where i ̸= j (2.10)

The constraint states that the tasks in pi may not be in any other agents’ paths i.e. a task may

be assigned to one agent’s task list at most.

A secondary global objective J is to minimise the average start time of all tasks, such that

J = min

{
1
m

n

∑
i=1

|pi|

∑
k=1

ςi,k(pi)

}
. (2.11)

2.7 CBBA and BW-CBBA

In this section, CBBA and its extension BW-CBBA are formally defined.



2.7 CBBA and BW-CBBA 43

CBBA

CBBA iterates over the following two phases:

1. The bundle building phase: each agent greedily builds up a bundle and path through a

repeating process of computing scores for each candidate task and selecting the task

with the highest score to add to their bundle and path.

2. The consensus phase: agents communicate zi and yi to neighbouring agents i.e. those

with communication links based on a network topology. When there are conflicting

assignments, the highest bid wins and losing agents remove the task from their bundles

as well as all tasks that were added to the bundle after that task. If bids are tied then

the agent with the lowest index wins the task. [18]

As the consensus phase results in agents removing tasks from their bundles and creating time

in their schedules, the bundle building phase is repeated to attempt to assign more tasks in

the free time that is available. The two phases alternate until agents can no longer add tasks

into their schedules and consensus has been reached by the team on all task assignments,

such that all agents have an identical list zi. CBBA converges in polynomial time, within

max{m,Ltn} ·D iterations where D is the diameter of the network, provided that the scoring

function satisfies diminishing marginal gain (DMG) [17]. DMG means that the score that vi

computes for candidate task tk, defined as cik, cannot increase as a result of other tasks being

added to the bundle bi before tk [17], such that:

cik(bi)≤ cik(bi⊕end tz) , (2.12)

where ⊕end tz denotes the append of tz to the end of bi. The trade off of the DMG condition

is a possible performance degradation in certain scenarios.

Bid Warped CBBA

The Bid Warped CBBA (BW-CBBA) [45] decouples the scores that inform task selection in

the bundle building phase (internal scores) from the bids that are communicated to networked



44 Distributed Task Allocation: Definition and Current Approaches

agents (external scores). The idea is that the internal score function need not satisfy DMG

and the external bids need not be identical to the internal scores. Only the bids that agents

share with each other need to satisfy DMG to guarantee convergence. A proof is provided

in [45].

Score Functions

To determine the score of a candidate task tq, CBBA inserts tq into pi at each index l one

at a time. A constraint is that the insertion cannot impact the current start times for the

tasks already in the path [79] and - for the implementation in this study - satisfies the time

constraints in equation (2.8). The score is computed at each index l and the highest score is

stored as ciq. The score function is defined as:

Fiq(pi⊕l tq) = Riql−Ciql, (2.13)

and

ciq = maxlFiq(pi⊕l tq), (2.14)

where pi⊕l tq denotes the inclusion of tq into pi at index l. Riql denotes the reward and Ciql

the cost for including tq into pi at index l. If the insertion of tq cannot meet the constraints at

any index in the path, then ciq = 0.

BW-CBBA applies a bid warping function to ciq that produces a DMG satisfying score

c̄iq. The bid warping function G is defined as:

c̄iq = Giq(ciq,bi) = min(ciq, c̄iq j) ∀ j ∈ {1, . . . , |bi|} (2.15)

where c̄iq j is the score of the jth element in the current bundle [45]. In other words, the bid

for a candidate task must be lower than, or is made to be equal to, the lowest bid of all other

tasks already in agent vi’s bundle.



2.7 CBBA and BW-CBBA 45

Bid Warped CBBA Bundle Building Phase

The bundle building phase of BW-CBBA [45] that runs independently on each agent vi is

summarised in Algorithm 3: For each candidate tq, vi computes a score ciq with its internal

score function Fiq (line 4). A DMG satisfying bid c̄iq is then created with the function Giq

(line 5). c̄iq is compared with the current winning bid yiq for tq. The boolean hiq = true

if vi outbids the current winner (line 6). The candidate task selected to be added to vi’s

task list (using task index q⋆) is the task that has the highest score ciq that also outbids the

current winner (line 8). The new winning agent for tq⋆ is set as vi’s index in zi (line 10). The

winning bid for tq⋆ is set as c̄iq⋆ in yi. Then, tq⋆ is appended to the bundle, and inserted into

the path where it yielded the highest score ciq⋆ . The bundle building phase terminates when

no candidate tasks can outbid the current winning bids, or the maximum bundle length is

reached.



46 Distributed Task Allocation: Definition and Current Approaches

Table 2.4 Symbol Definitions for PI algorithm

Symbol Definition

V = [v1, . . . ,vn] Set of n vehicles

T = [t1, . . . , tm] Set of m tasks

ai Ordered task allocation of the ith vehicle vi

sk Latest start time for task tk

ci,k(ai) The time cost of a task tk in ai: the predicted time taken by
vi to arrive at the location of the task tk in its schedule ai

fi The latest time at which vi can start a task before running
out of fuel

|ai| The number of tasks assigned to vi

w⊖k (ai, tk) The Removal Performance Impact (RPI) of a task tk in ai

ai⊖ tk ai with tk removed

γ i = [w⊖1 , . . . ,w
⊖
m] Vector on each vehicle to store RPIs

ai⊕l tk The inclusion of task tk at position l in ai

w⊕q (ai, tq) The Inclusion Performance Impact (IPI) of including tq into
ai

γ
⊕
i = [w⊕1 , . . . ,w

⊕
m] A list to store the IPIs of each task on each vehicle

β i = [β1, . . . ,βm] A vehicle ID list corresponding to the RPI list that keeps
track of which task is assigned to which vehicle.

ψ i = [t1, . . . , tζ ] Candidate tasks for inclusion into vi’s task list

a⊖k
i Temporary task list with tk removed

℧i,k List of tasks that can replace tk in ai while respecting time
constraints

SD Swap Distance: maximum number of permissible reassign-
ments to create a time slot for an unassigned task

r Reduction rate of RPI-MaxAss for each additional reassign-
ment

ϖ i A vector that stores the number of times each task has been
removed from a vehicle vi’s task list



2.7 CBBA and BW-CBBA 47

Table 2.5 Symbol Definitions for BW-CBBA extensions

Symbol Definition

V = [v1, . . . ,vn] Set of n agents

T = [t1, . . . , tm] Set of m tasks

bi set of tasks assigned to vi ordered chronologically based on
when the tasks were added.

pi Ordered task allocation of the i− th agent vi

ξk Latest start time for task tk

ςik The predicted time of execution of tk ∈ pi

fi The latest time at which vi can start a task before running
out of fuel

|pi| The number of tasks assigned to vi

ci,k The score that vi computes for candidate task tk

c̄ik ci,k warped to satisfy Diminishing Marginal Gain

Algorithm 3 CBBA: Bundle Building with Non-DMG Scores [45]
1: procedure BUILD BUNDLE
2: while |pi|< Lt do
3: for tq ∈ T \pi do // Candidate tasks not already in agent i’s path
4: ciq =maxlFiq(pi⊕l tq), ∀l≤ |pi|+1 // Compute score for each candidate
5: c̄iq = Giq(ciq,bi) // Warp score to satisfy the DMG condition
6: hiq = Π(c̄iq > yiq) // Check if DMG score is higher than highest bid
7: end for
8: q⋆ = argmaxqciq ·hiq // Find candidate task with highest score
9: if c̄iq⋆ > 0 then

10: ziq⋆ = i
11: yiq⋆ = c̄iq⋆

12: bi⊕end tq⋆
13: pi⊕l tq⋆ where l yielded ciq⋆

14: else
15: break
16: end if
17: end while
18: end procedure





Chapter 3

Distributed Task Rescheduling

This chapter introduces the first original contribution in this thesis: the extension of the PI

algorithm to a novel algorithm, named PI-MaxAss. The work described in this section was

published in [94] and [97] during the work for this Ph.D. thesis.

3.1 Introduction

One challenge in using teams of robots is to co-ordinate them to perform tasks while

optimising one [36, 1], or more objectives [77, 47, 93]. Considering a search and rescue

scenario, in which survivors need to be assisted before specified deadlines, the two main

objectives are 1) to maximise the number of rescued survivors, 2) to minimise the average

waiting time before their rescue [87]. The novel contribution outlined in this section, called

PI-MaxAss, was devised to solve the problem of increasing the number of allocated tasks

in a distributed team of agents where deadlines prevented all tasks from being assigned.

Specifically, if a certain task could be reached in time by one agent only, the approach ensures

that the agent selects this task. A first hypothesis: given pre-defined conflict resolution rules,

if the cost of an assignment is high when the assignment could be replaced by an unassigned

task, this would facilitate an increase in the number of assigned tasks when possible. A

second hypothesis was that by starting from an existing task allocation, such an approach

would either increase the number of allocated tasks or leave the number unchanged.



50 Distributed Task Rescheduling

PI-MaxAss assigns costs to task assignments such as to shift task assignments among

vehicles to create feasible time slots for unassigned tasks. The maximum number of reas-

signments can be adjusted to match performance requirements. With this method, existing

task assignment solutions are iteratively improved without the need to repeat the whole task

allocation procedure. The procedure follows a two-phase task assignment strategy that starts

from a solution generated by an existing distributed task allocation algorithm, Performance

Impact (PI) [102], that minimises average waiting time. The proposed method PI-MaxAss is

used in the second stage for maximising task allocations. A simulated rescue scenario with

task deadlines and fuel limits is used to demonstrate the performance of the proposed method

compared with CBBA and baseline PI. Starting from existing (PI-generated) solutions, results

show an up to 20% increase in task allocations using the proposed method. PI-MaxAss takes

the solution generated by PI, and iteratively increases the number of allocated tasks when it

is possible to do so. The advantages of this design choice are:

1. PI-MaxAss has a marginally higher runtime complexity per iteration compared with

PI, therefore it is advantageous to generate an initial solution with PI.

2. PI-MaxAss guarantees a solution with higher or equal number of allocated tasks to PI.

3. PI optimises average waiting time for task allocations. This optimisation is preserved

for tasks that are not reassigned with PI-MaxAss. This would hold true if the solution

that PI-MaxAss starts with were optimised for different objectives, such as distance

covered.

3.2 PI-MaxAss

Simulated experiments have shown that the PI algorithm both allocates more tasks and

optimises average waiting time better than CBBA in time critical scenarios with a low task-

to-vehicle ratio [108, 102]. However, preliminary experiments showed that when there is a

higher ratio of tasks to vehicles, PI can fail to allocate all tasks when it is possible to do so.

Due in part to their scoring strategies, the baseline CBBA and PI do not reassign tasks when



3.2 PI-MaxAss 51

this is necessary in order to assign additional tasks. In the search and rescue scenario the

safety and rescue of survivors is a high priority; a poorer quality of solution results in fewer

survivors being rescued than is possible with the available resources.

Starting from a sub-optimal assignment in which additional tasks cannot be directly

included without violating time constraints, the extension PI-MaxAss presented in this thesis

is able to reassign tasks to increase the total number of allocated tasks simply through a

change in the computation of IPIs and RPIs. The idea introduced in this work is to attribute

a high cost (RPI) to an assigned task when the release of this task can permit an additional

task to be inserted within the free time created. An assignment is considered optimal and

without cost if the release of any task does not permit another task to be assigned within the

free time created. Likewise, a task’s IPI is set to be without cost if it can be included into a

task list and satisfy time constraints. During the conflict resolution phase, conflicts resolve in

favour of vehicles offering the lowest RPI. Vehicles that can create a time slot for candidate

tasks through the release of an assigned task therefore release that task during a conflict. The

result is that tasks are reassigned and feasible time slots are created for unassigned tasks.

3.2.1 Limitation of previous methods and proposed solution

To illustrate the limitation of previous methods and the proposed solution, consider a simple

scenario shown in Fig. 3.1(a) and the associated schedule on a timeline in Fig. 3.2(a). With

the PI algorithm, the vehicles include tasks into their lists starting with the lowest IPI. With

PI-MinAvg, v1 first includes t1 and v2 first includes t2 into their task lists. Once included,

t1 cannot be released from v1 unless v2 includes t1 with a lower RPI. Likewise, t2 cannot

be released from v2 unless v1 includes t2 with a lower RPI. For t3 to be serviced before

its deadline, v1 must go to t3 directly. However, v1 is incapable of servicing both t1 and t3

and meet both of their time constraints. Task t1 does not get reassigned to v2 because the

RPI of t1 is lower in v1’s task list than in v2’s task list. Therefore t3 does not get assigned.

The suboptimal task allocation is due to the minimisation of waiting time performed by

PI-MinAvg. The novelty in PI-MaxAss is that the cost of t1 in v1’s task list is higher than in

v2’s task list, causing t1 to be reassigned to v2. This creates a time slot in v1’s schedule for t3.



52 Distributed Task Rescheduling

v
1

V
2

t
1 t

2

IPI = RPI = 2
IPI = RPI = 2

t
3

IPI = 5

RPI = IPI = 4

IPI = 3

(a) PI-MinAvg

V
2

t
1 t

2

t
3

V
1

RPI = IPI = 0

RPI = IPI = 0

RPI = IPI = 0

(b) PI-MaxAss

Fig. 3.1 In this scenario PI-MinAvg is unable to assign all tasks. PI-MaxAss assigns all tasks.
Dotted lines connecting vehicles to tasks indicate examples of IPIs computed during the task
inclusion phase. Solid lines indicate tasks assigned after reaching consensus. (a) Each task
assignment is labeled with its PI-MinAvg IPI or RPI. With PI-MinAvg t1 is assigned to v1, t2
is assigned to v2, and t3 is left unassigned. v2 may also include t1 if v2 has not yet received
v1’s RPI list. In this case v2 releases t1 during the conflict resolution phase due to a higher
RPI than v1. (b) PI-MaxAss reassigns tasks starting from the PI-MinAvg solution and creates
a time slot for t3. Each task assignment is labeled with its IPI and RPI for maximising the
number of task assignments.

Therefore, PI-MaxAss achieves the optimal allocation illustrated in Fig. 3.1(b) and Fig. 3.2(b).

Although the waiting time for t1 and t2 has increased in Fig. 3.2(b), this reassignment has

enabled an additional task to be assigned.

3.2.2 Formal Description

With PI-MaxAss, unallocated tasks are set initially to have a fixed highest RPI-MaxAss, a

constant defined as U , such that if tq is unassigned then w⊖q =U . The RPIs of assigned tasks

tk are initially set to 0, such that w⊖k = 0.



3.2 PI-MaxAss 53

t
1

V
1

t
2

V
2

Time

t
3Unallocated

t
2 deadline

t
3 deadline

t
1 deadline

Task Duration

(a) PI-MinAvg

t
1

V
1

t
2

V
2

Time

t
3

t
2 deadline

t
3 deadline

Unallocated

t
1 deadline

Travel Time

(b) PI-MaxAss

Fig. 3.2 Task schedules for v1 and v2. A travel time is assumed between the vehicles’ initial
locations and between different task locations, based on the distance and speed that they can
travel. A fixed task duration is also assumed. A task must be started before the deadline in
order to rescue that survivor, but may end after the deadline. v1 is the only vehicle close
enough to reach t3 in time. (a) t1 and t2 are optimised to minimise waiting time but t3 is
unallocated. v1 cannot feasibly include t3 into its schedule given t1. (b) If t1 is reassigned
from v1 to v2, this creates the time slot for v1 to include the unallocated task t3.

The steps of PI-MaxAss follow the two phases depicted in Algorithm 1. During the task

inclusion phase shown in Algorithm 2, as with PI-MinAvg, the PI-MaxAss candidate tasks

for inclusion into ai are those compatible with vi’s capabilities and not already in ai, and with

an RPI-MaxAss greater than 0. The candidate tasks for inclusion into ai are formally defined

as

ψ i = [t1, . . . , tζ ], tq /∈ ai,0 < w⊖q . (3.1)

The IPI-MaxAss of tq in ai is formally defined as



54 Distributed Task Rescheduling

w⊕⋆q (ai, tq) = 0,∃l ∀tz ∈ {ai⊕l tq}

: ci,z(ai⊕l tq)≤ min(sz, fi), tq ∈ ψ i .
(3.2)

In other words, the IPI-MaxAss of the candidate task tq is set to 0 if there exists a position l

in ai where the task tq is inserted and all time constraints are met. On line 10 in Algorithm 2,

IPI-MaxAss is recorded in place of IPI-MinAvg such that w⊕⋆q = 0 if the condition on

line 6 returns true for at least one position l. The optimal position l is computed as it is for

IPI-MinAvg, according to Equations (2.4) and (2.5).

Lines 13–21 in Algorithm 2 remain the same for PI-MaxAss. As the RPI-MaxAss of

assigned tasks were initialised to 0, only unassigned tasks are candidates for inclusion in the

first round of the task inclusion phase. RPI-MaxAss is computed on line 22 in the place of

RPI-MinAvg. The steps for computing RPI-MaxAss are shown in Algorithm 4.

Candidate tasks in the computation of RPI-MaxAss follow the same contraints as the

candidates in Equation (3.1) with the added constraint that the candidate task’s RPI-MaxAss

is greater than δ . This constraint is used to limit the number of reassignments permissible

Algorithm 4 Computing RPI-MaxAss for tasks in vi’s task list
1: Set RPI of tasks in ai to 0: γi,k← 0, tk ∈ ai
2: Identify Candidate Tasks: ψ̄ i
3: for each task k in ai do // For each task k in task list
4: a⊖k

i = ai⊖ tk // Remove k from task list
5: Update times ci,z(a⊖k

i ) for tasks after tk
6: for each task q in ψ̄ i do // For each candidate task q
7: if γi,q− r > γi,k then
8: for each position l in a⊖k

i do
9: if a⊖k

i ⊕l tq is feasible then // If task k can be replaced by task q
10: γi,k = γi,q− r // Compute new RPI for k
11: break
12: end if
13: end for
14: end if
15: end for
16: end for



3.2 PI-MaxAss 55

to allocate an additional task (see 3.2.3). Candidate tasks used in the computation of RPI-

MaxAss for a task tk are formally defined as

ψ̄ i = [t1, . . . , tζ ], tq /∈ ai, 0 < δ < γ i,q . (3.3)

The identification of candidate tasks occurs on line 2 in Algorithm 4. To compute the RPI-

MaxAss of a task tk in ai, first, a temporary task list a⊖k
i is created that is equivalent to ai

with tk removed and is formally defined as

a⊖k
i = ai⊖ tk, tk ∈ ai . (3.4)

The creation of a⊖k
i occurs on line 4 in Algorithm 4. Next, a candidate task tq is inserted into

each position l in a⊖k
i to determine if there exists a position l in a⊖k

i in which tq is inserted

and all time constraints are met. If such a position l exists then tk can feasibly be replaced by

tq in ai and the RPI-MaxAss of tk is computed as the RPI-MaxAss of tq reduced by r. This

computation is repeated for each task tq in ψ̄ i. The list of tasks ℧i,k that can replace tk in ai

while respecting time constraints is formally defined as

℧i,k = {tq ∈ ψ̄ i | ∃l ∀tz ∈ {a⊖k
i ⊕l tq}

: (ci,z(a⊖k
i ⊕l tq)≤ min(sz, fi))} .

(3.5)

If a task tk in ai can be replaced by two or more candidate tasks tq with different RPI-MaxAss,

the highest RPI-MaxAss is recorded. The RPI-MaxAss of a task is formally defined as

w⊖⋆k (ai, tk) =
|℧i,k|
max
q=1
{w⊖⋆q − r}, tq ∈ ℧i,k,r ∈ R+ . (3.6)

The condition on line 7 in Algorithm 4 ensures that the feasibility of inserting tq into a⊖k
i is

not computed if the the resulting RPI-MaxAss of tk is not higher than its current value. This

condition reduces unnecessary computation and satisfies finding the maximum RPI-MaxAss

according to (3.6). The condition on line 9 checks the feasibility of inserting tq in position l



56 Distributed Task Rescheduling

in a⊖k
i so that the computation of RPI-MaxAss on line 10 is performed only with candidate

tasks that satisfy (3.5).

Fig. 3.3 illustrates how the computation of a decreasing RPI-MaxAss allows for multiple

reassignments to create a time slot for an unassigned task, and signposts the path with the

fewest reassignments. Fewer reassignments minimises the time to reach consensus and better

maintains the original solution’s optimisation for minimising average waiting time.

3.2.3 Swap Distance

In a time critical scenario such as search and rescue, it may be necessary to limit the time

it takes for the distributed system to converge to a task allocation. The time to converge

partly depends on the number of iterations of the algorithm until consensus. Depending

on the network topology, propagating new assignments across the network may require

multiple iterations affecting the total time to consensus. Therefore, with PI-MaxAss, lim-

iting the number of reassignments permissible to assign an unassigned task is required. A

maximum number of reassignments, expressed as “Swap Distance” SD is defined. SD is a

new parameter, not present in CBBA or PI-MinAvg, introduced in PI-MaxAss to limit the

maximum number of reassignments. It was empirically derived that, as a rule of thumb, a

maximum of 1 or 2 reassignments provides the best trade-off between an increase in the

number of allocated tasks and the increase in the number of iterations resulting from this

method. Further guidance on setting SD is discussed in Section 3.4. As defined by (3.3), a

candidate task in ψ̄ i must have an RPI-MaxAss greater than δ which limits the number of

reassignments to SD; δ is defined as

δ =U− (r ∗SD), r <
U
SD

,SD ∈ R+,U ∈ R+ . (3.7)

In Fig. 3.3, U = 100 and r = 10. If SD = 0 then δ = 100 resulting in no candidates for the

computation of RPI, according to (3.3). As a consequence only unassigned tasks have an RPI

greater than 0 and can therefore be included in the task inclusion phase according to (3.1). If

SD = 1 then δ = 90 and one reassignment is permissible for the inclusion of an unassigned



3.2 PI-MaxAss 57

t
1

V
1

t
2

V
2

Time

t
4

Unallocated

t
3

V
3

100

80

90

Fig. 3.3 RPI-MaxAss minimises number of changes to existing task assignments to create a
time slot for an unallocated task. In this scenario it is assumed that v3 is the only vehicle near
enough to t4 to service it in time. t4 is unallocated and takes RPI-MaxAss =U = 100. r is
set as 10. t3 can be replaced by t4 according to (3.5) therefore t3’s RPI-MaxAss is 100 - 10
= 90 according to (3.6). t2 can be replaced by t3 therefore t2’s RPI-MaxAss is 90 - 10 = 80.
During the task inclusion phase, v1 can include t3 or t2 (without removing t1) therefore t3 and
t2’s IPI-MaxAss are 0 according to (3.2). Given Equation (2.6), v1 selects t3 for inclusion as
t3 yields the greatest difference between RPI and IPI. During the communication and conflict
resolution phase, v3 releases t3 due to having a higher RPI-MaxAss for t3 than v1. During the
task inclusion phase, v3 includes t4. The decreasing RPI-MaxAss ensures that the minimal
number of reassignments is selected when different options are available for the inclusion of
an unassigned task.

task. In Fig. 3.3, the path that requires two reassignments in which the RPI-MaxAss of t2 is

80 is not permissible when SD = 1. When SD = 1, t3 does not satisfy the constraints to be in

ψ̄2 because its RPI-MaxAss is not greater than δ , therefore the RPI-MaxAss of t2 remains as

0. The path with two reassignments is only possible with SD = 2 (or higher). SD therefore

restricts the tasks eligible to be candidates so that the number of reassignments is less than or

equal to SD.

3.2.4 Convergence

Preliminary experiments running PI showed that two or more vehicles occasionally get

caught in an infinite cycle exchanging the same tasks. In order to avoid infinite cycles and

to guarantee convergence, the solution proposed here is to limit the number of times that

a vehicle can remove the same task from its list before it no longer attempts to include it.

This proposed approach will iteratively remove tasks involved in an infinite cycle from an



58 Distributed Task Rescheduling

agent’s search space. With the assumption that the number of tasks is finite, in the worst

case, all tasks will be removed from the agent’s search space, at which point convergence

is guaranteed because with no assignments there can be no conflicts. A maximum limit on

removals ϒ where ϒ ∈ Z+ can be set. This precaution may prevent those tasks that are being

repeatedly exchanged from being allocated optimally, however it ensures that the system can

converge. A vector ϖ i is used to store the number of times each task has been removed from

a vehicle vi’s task list. During the conflict resolution Phase when a task tk has been removed

from vi’s task list: ϖ i,k = ϖ i,k +1. During the task inclusion phase, a task tk is considered a

candidate in ψ i for inclusion if ϖ i,k < ϒ is satisfied.

3.2.5 Complexity

To assess the computational complexity of running PI-MaxAss on one vehicle, the method

used in [108] is followed. In [108], the computational complexity of PI-MinAvg is determined

to be polynomial. The complexity is dominated by the computation of IPI-MinAvg during

the task inclusion phase and it is defined in [108] as

O((mi−|ai|)|ai|2)ϑyσ , (3.8)

where |ai| represents the cardinality of the task list ai. mi is the capacity of vehicle vi. A

maximum number mi−|ai| tasks can be added into a vehicle’s task list during each iteration

of the algorithm. σ denotes the complexity of computing the time cost of a task. ϑy denotes

the number of tasks that are not yet in the task list and meet the compatibility constraints.

ϑy is equivalent to the cardinality of candidate tasks |ψ i| as defined in this thesis. In the

experiments conducted in this study, no hard limit was imposed on the number of candidate

tasks. However, such a parameter could be introduced to limit the computational cost of the

task inclusion phase.

The complexity of PI-MaxAss is dominated by the computation of each task’s RPI-

MaxAss in vehicle vi’s task list, as shown in Algorithm 4. The first step in the outer loop (for

each task in vehicle vi’s task list) is to remove a task and adjust the times of the remaining



3.3 Experiments 59

tasks in the temporary task list a⊖k
i ; the complexity is |a⊖k

i |(|a
⊖k
i |+ 1)σ/2. Within the

inner loop, the task times of each task starting from the position of the included task are

computed: |ai||ψ̄ i|(|a⊖k
i |+1)((|a⊖k

i |+1)+1)σ/2. Altogether that is |a⊖k
i |(|a

⊖k
i |+1)σ/2+

|ai||ψ̄ i||ai|(|ai|+1)σ/2. This simplifies to

O(|ai|3|ψ̄ i|σ/2) . (3.9)

The RPI-MaxAss computation has a higher complexity than the RPI-MinAvg computation,

but is equivalent to the complexity of computing IPI-MinAvg.

3.3 Experiments

This section presents the results of numerical simulations conducted to test the performance

of the proposed PI-MaxAss compared with the performance of PI-MinAvg and CBBA when

maximising allocated tasks in scenarios with time constraints. CBBA is an established

benchmark for comparison in distributed task allocation problems and therefore provides

a useful metric for general comparisons with similar algorithms. Thus, the evaluation of

the proposed method is performed by comparison with CBBA using a range of parameter

settings. All simulations were performed in MATLAB on a computer with 2.5 GHz Intel

Core i5 CPU and 8 GB of RAM.

3.3.1 Scenario and Simulation Setup

To test the robustness of the proposed approach, the same types of scenarios as in [108, 102]

were used. These include scenarios with a variety of different parameters including task and

vehicle numbers, and network topologies. Moreover, the parameter settings are extended

in this study to include a more challenging high task-to-vehicle ratio, and to include fuel

constraints on vehicles. Preliminary experiments revealed that changing other parameter

settings such as the starting positions of the vehicles e.g. all vehicles starting from the same

position, did not significantly affect the number of task allocations. The setup uses a rescue



60 Distributed Task Rescheduling

team equally split into two vehicle types with different functions. One vehicle type provides

medicine, the other provides food. All tasks are considered to have equal priority to facilitate

a clearer analysis of the task allocation maximisation process. However, a range of priorities

could be introduced in future extensions of the algorithm through an ordering of candidate

tasks.

The scenario specification, summarised in Table 5.1, is as follows: the vehicles’ speeds

are assumed to be constant and are set to 30m/s and 50m/s respectively. The assumption is

that the speeds are used for the purpose of determining travel time. Further details such as

acceleration are not modelled. The survivors are likewise equally split into those requiring

food and those requiring medicine. The medicine tasks last for a duration of 300 seconds, the

food tasks last 350 seconds. The deadlines for starting each rescue are uniformly distributed

on a timeline between 0 and 2000 seconds. The mission takes place in a 3D space spanning

10 000m x 10 000m x 1000m. The tasks are randomly placed in a 3D space, and vehicles on

the 2D ground space, with coordinates drawn from uniform distributions. The battery limit

of each vehicle is set randomly between 1000 and 2000 seconds. Random initialisations are

pseudorandom and are generated with a random number generator in MATLAB. Given the

random initialisation of task and vehicle locations and deadlines, it is sometimes impossible

for some tasks to be started by any vehicle before its deadline. In these simulations, all task

information is available to all vehicles up front. The task allocation procedure is performed

Table 3.1 Scenario Specification

Medicine Food

Vehicle Speed 30m/s 50m/s

Vehicle Battery Between 1000 and 2000 seconds

Vehicle Start Position 10 000m x 10 000m x 0m ground space

Task Duration 300 seconds 350 seconds

Task Deadline Between 0 and 2000 seconds

Task Location 10 000m x 10 000m x 1000m 3D space



3.3 Experiments 61

before any tasks are executed. Previous studies have demonstrated that the PI algorithm is

effective at allocating new tasks online [103]. Results are computed as averages over 50 runs,

where a run is a completed experimental simulation of the task allocation procedure. For

each run, the time to convergence is determined by the number of iterations of the algorithm

until the agents reach consensus.

3.3.2 Simulation Results

PI-MinAvg vs. PI-MaxAss

Fig. 3.4 compares the PI-MinAvg solutions with the PI-MaxAss solutions that are initialised

with the PI-MinAvg solution. A row formation was used for these experiments and a Swap

Distance of 2 (SD = 2) was set. Fig. 3.4(a) shows the percentage of runs where PI-MaxAss

increased the number of allocated tasks from the PI-MinAvg solution. Fig. 3.4(b) shows

the corresponding average percentage change and standard deviation of number of allocated

tasks when PI-MaxAss changed the number of allocated tasks.

Fig. 3.4 shows both the results using the same experimental setup as in [108, 102] with

a task-to-vehicle ratio of 2 to 1 (ratio p = 2), deadlines for each task and without battery

limit time constraints, and results using a task-to-vehicle ratio p = 4.6 with task deadlines

only, vehicle battery limits only, and combined task deadlines and battery limits, respectively.

Ratio p = 4.6 was selected to test the system approaching maximum capacity. In [108, 102]

experimental results showed that PI-MinAvg was capable of finding a solution that maximised

the number of allocated tasks in most cases. The ratio p = 2 results in 3.4(a) reflect these

findings. For each of the 5 setups with ratio p = 2, PI-MaxAss increased the number of

allocated tasks from the PI-MinAvg solution; in the best case 14% of the runs were improved

upon. In each run that PI-MaxAss increased the number of allocations, starting from PI-

MinAvg with p = 2, one extra task was allocated. The results for ratio p = 4.6 show that

when the system is approaching maximum capacity, i.e. when the order and allocation of

tasks is critical to optimise number of allocated tasks, PI-MaxAss increased the number of

task allocations in approximately half the runs with battery only time constraints and in up to



62 Distributed Task Rescheduling

100% of runs with task deadlines. Up to 3 extra tasks were assigned in runs with battery only

time constraints. Up to 8 extra tasks were assigned in runs with task deadlines with ratio

p = 4.6. In one such instance, PI-MaxAss increased the number of allocated tasks from 44

to 52 out of 56 tasks, where 4 tasks were impossible to allocate from the outset due to their

relative positions and deadlines. In other words, PI-MaxAss facilitated an 18% increase in

allocated tasks achieving the maximum allocation. In another instance, a 20% increase was

achieved by increasing the number of allocations from 35 to 42 out of 46 tasks.

Out of the total number of experimental runs covering different ratios and constraints,

only in 6 cases PI-MaxAss modified the solution by reassigning tasks without increasing

the total number of assigned tasks. In all other instances that the solution was modified, the

number of allocations was increased.

Swap distance parameter comparison

Fig. 3.5 shows the results of a comparison between the performance of CBBA, PI-MinAvg,

and PI-MaxAss with Swap Distance set between 1 and 4. The performance with regards to

number of allocated tasks and number of iterations until convergence is presented. The total

number of iterations for one simulation is determined by the last time an allocation change

was made, either through inclusion or removal. As the PI-MaxAss solutions are initialised

with the solutions from PI-MinAvg, the number of iterations for a run of PI-MaxAss is the

sum of iterations taken for PI-MinAvg and PI-MaxAss, so PI-MaxAss will necessarily be at

least as high as PI-MinAvg in all instances. Fig. 3.5(a) is a notched box and whisker plot

with outliers [67] that shows the total number of allocated tasks for each algorithm. Each box

represents the interquartile range that encompasses the center 50% of the data. The line on

the notches represents the median of the data. Fig. 3.5(b) is the same type of plot that shows

the corresponding total number of iterations for each algorithm. The statistical significance

between different Swap Distances for numbers of allocations and iterations was evaluated

using a Wilcoxon Rank Sum Test, equivalent to the Mann-Whitney U-test. With a null

hypothesis that the two samples are independent, a failure to reject the null hypothesis occurs

at 5% significance. The tests indicated that increases in allocated tasks between PI-MinAvg,



3.3 Experiments 63

p=2
deadlines

p=4.6
deadlines

p=4.6
battery

p=4.6
battery
deadlines

%
 m

od
ifi

ed
 s

ol
ut

io
ns

0

20

40

60

80

100

6-v 8-v 10-v 12-v 14-v

(a)

p=2
deadlines

p=4.6
deadlines

p=4.6
battery

p=4.6
battery
deadlines

Av
er

ag
e 

%
 in

cr
ea

se
 in

 a
llo

ca
te

d 
ta

sk
s

0

2

4

6

8

10

12

14

16

6-v 8-v 10-v 12-v 14-v

(b)

Fig. 3.4 For each scenario, the simulations were tested for an increasing number of vehicles
and tasks. Vehicle numbers were 6, 8, 10, 12 and 14. For the ratio p = 2 the number of
tasks were 12, 16, 20, 24 and 28, and with ratio p = 4.6 task numbers were 28, 36, 46, 56,
64. Ratio p = 2 was tested with task deadlines, ratio p = 4.6 was tested with task deadlines,
with battery limits only, and with battery limits and task deadlines, respectively. In (a) each
bar shows the percentage of solutions over 50 experimental runs that PI-MaxAss assigned
additional tasks starting from PI-MinAvg solution. (b) shows the corresponding average
percentage change with whiskers representing the standard deviation in number of allocated
tasks when PI-MaxAss changed the number of allocated tasks.



64 Distributed Task Rescheduling

PI-MaxAss with SD = 1 and SD = 2 are statistically significant. Meanwhile, the increase in

the number of allocated tasks between PI-MaxAss with SD = 2, SD = 3, and SD = 4 were

not significant. The increase in the number of iterations between PI-MinAvg, PI-MaxAss

with SD = 1, SD = 2, and SD = 3 were shown to be significant, while the difference between

SD = 3 and SD = 4 was shown to be not significant. Therefore, for SD = 3 and SD = 4 there

is an increase in iterations without a significant increase in task allocations compared with

SD = 2. Table 3.2 shows that when the Swap Distance is limited to 1, an average of 3 extra

tasks are allocated from the PI-MinAvg solution (Shown in Table 3.3) and the number of

iterations has 95% confidence of being between the intervals 7.86 and 9.42 (not counting

the iterations for PI-MinAvg). The trade-off is just over 1 fewer allocated tasks on average

compared with SD = 2. As the Swap Distance increases, the confidence intervals for the

number of iterations also widen.

Table 3.2 Average task allocations and iterations performance of PI-MaxAss over 50 simula-
tions, with standard deviation and confidence intervals for iterations

Deadlines
14-v 64-t SD = 1 SD = 2 SD = 3 SD = 4

Allocations 57.7 58.8 59 59.2

Iterations 8.9 25.7 40.3 47.2
Std dev 3.0 23.8 27.0 26.0

95% confidence 8.1-9.8 19.0-32.5 32.6-48.0 39.8-54.6

Batteries and Deadlines
14-v 64-t SD = 1 SD = 2 SD = 3 SD = 4

Allocations 55.1 56.4 56.7 56.8

Iterations 8.6 20.4 30.3 34.5
Std dev 2.7 15.2 25.8 26.1

95% confidence 7.9-9.4 16.0-24.7 23.0-37.7 27.1-41.9



3.3 Experiments 65

Algorithm
CBBA MinAvg SD=1 SD=2 SD=3 SD=4

A
llo

c
a
ti
o

n
s

40

45

50

55

60

(a)

Algorithm
CBBA MinAvg SD=1 SD=2 SD=3 SD=4

It
e
ra

ti
o
n
s

0

20

40

60

80

100

120

140

160

(b)

Fig. 3.5 Comparison of CBBA, PI-MinAvg, PI-MaxAss with Swap Distance 1, 2, 3 and 4
on number of allocated tasks and iterations for the 14-vehicle 64-tasks scenario with battery
limits and task deadlines. The plus symbols represent outliers. a) A notched box plot of the
total number of allocated tasks for each of the 50 runs for each algorithm. b) A notched box
plot of the number of total iterations for each of the 50 runs for each algorithm.



66 Distributed Task Rescheduling

Table 3.3 Task allocations and iterations performance of PI-MaxAss with Swap Distance = 2
starting with PI-MinAvg solution compared with PI-MinAvg and CBBA over 50 simulations
(Average and Standard Deviation)

Task Allocations (Avg) Iterations (Avg)

Ratio Vehicles Tasks CBBA std MinAvg std MaxAss std CBBA std MinAvg std MaxAss std
dev dev dev dev dev (only) dev

6 12 10.4 0.9 11.4 0.9 11.4 0.9 3.8 1.4 7.2 2.2 0.1 0.7
p = 2 8 16 13.8 1.2 15.2 1.0 15.3 1.0 5.6 1.9 11.3 2.8 0.3 1.1
deadlines 10 20 17.4 1.4 19.2 1.0 19.3 0.8 7.3 2.1 15.3 3.6 0.8 2.2

12 24 20.9 1.4 22.9 0.9 23.1 0.9 8.6 2.6 21.7 6.1 1.3 3.3
14 28 24.4 1.6 26.9 1.0 26.9 0.9 12.1 3.3 28.5 6.5 0.8 2.7

6 28 19.3 1.7 21.9 1.5 24.2 1.6 4.8 1.5 6.8 2.1 6.3 2.3
p = 4.6 8 36 25.2 1.9 29.5 2.1 31.9 1.7 6.9 2.7 11.8 3.4 9.4 6.4
deadlines 10 46 32.3 2.2 38.2 2.1 41.3 2.0 10.2 2.9 16.7 5.0 19.8 19.5

12 56 39.1 2.9 46.7 2.5 50.8 2.3 13.3 4.1 21 12.6 16.9 13.5
14 64 45.3 2.8 54.3 2.6 58.8 2.3 15.6 4.7 26.3 7.8 25.7 23.8

6 28 24.5 1.9 24.6 1.8 25.2 1.8 6.0 2.4 4.9 2.8 1.9 2.2
p = 4.6 8 36 32.9 2.1 33.4 2.1 33.8 1.9 9.6 3.9 8.2 3.8 2.0 2.6
battery 10 46 42.0 2.6 42.8 2.1 43.4 2.0 12.4 4.7 9.7 4.3 3.5 5.9

12 56 51.2 2.4 51.9 2.2 52.6 2.1 18.6 7.6 14.6 8.5 3.2 3.9
14 64 59.7 2.3 60.5 2.2 61.3 2.1 23.6 7.9 16.2 8.5 4.6 3.9

6 28 19.0 2.0 21.0 1.6 22.5 1.4 4.4 1.7 5.0 1.5 7.4 12.2
p = 4.6 8 36 24.6 1.7 28.1 1.5 30.4 1.6 7.7 2.7 9.8 6.6 8.8 7.9
battery 10 46 32.0 2.4 36.6 2.1 39.5 2.1 9.7 2.9 11.9 4.7 10.9 6.9
deadlines 12 56 38.8 2.4 44.7 2.3 48.4 2.0 12.7 4.6 20.7 16.3 14.7 12.0

14 64 45.0 2.3 52.1 2.0 56.4 2.2 16.5 4.9 21.1 7.6 20.4 15.2

Average time comparison

Fig. 3.6(a) plots a comparison of the average waiting time and allocations for each run.

Fig. 3.6(b) plots the same results where SD = 2 & MinAvg shows the effect of switching

back to optimising waiting time after increasing allocated tasks with PI-MaxAss. Here,

PI-MinAvg was initialised with the solution of PI-MaxAss. Average waiting time logically

increases as more tasks are performed. This increase is reflected in the graphs that show a

proportional increase in average waiting time between CBBA, PI-MinAvg and PI-MaxAss.

Fig. 3.6(b) shows that average waiting time can be optimised with PI-MinAvg after allocations

have increased with PI-MaxAss. In 32 out of the 50 runs, the average waiting time is reduced,



3.3 Experiments 67

Average Time
400 500 600 700 800

A
llo

c
a
ti
o

n
s

40

45

50

55

60

CBBA
PI-MinAvg
SD=2

(a)

Average Time
400 500 600 700 800

A
llo

c
a

ti
o
n

s

40

45

50

55

60

CBBA
PI-MinAvg
SD=2 & MinAvg

(b)

Fig. 3.6 Scatter graphs comparing the performance of CBBA, PI-MinAvg, and PI-MaxAss
with Swap Distance = 2, with respect to average waiting time for 50 runs. Each plot represents
the final average waiting time of all assigned tasks for one run. In b) PI-MinAvg was run
starting from the solution of PI-MaxAss to show that average waiting time can be further
optimised once additional tasks have been assigned. An improved average waiting time is
indicated by points shifted to the left for SD=2 & MinAvg compared with SD=2.

in the best case by 63 seconds with PI-MinAvg. In this instance 4 extra tasks had been

allocated with PI-MaxAss. The improvement in waiting time was achieved with 9 iterations

of PI-MinAvg. The average iterations for the second round of PI-MinAvg was 6.1 over the

50 runs.

Topology comparison

Changing topologies are inherent to dynamic environments with moving vehicles. It is there-

fore informative to assess how the proposed method performs across different topologies [14].



68 Distributed Task Rescheduling

V11

V10V8V7

V12

V9

V5V3

V13

V2

V1

V6

V14

V4

(a) Row Topology

V11

V8

V7

V12

V9

V5

V3

V13

V2

V1

V6

V14

V4

V10

(b) Circular Topology

V11

V8

V7V12

V9

V5

V3

V13

V2

V1 V6

V14

V4

V10

(c) Mesh Topology

V11

V10

V8

V7 V12

V9

V5

V3

V13

V2

V1

V6

V14

V4

(d) Star Topology

Fig. 3.7 Network topologies that the system was tested with.

Fig. 3.7 illustrates with non-directed graphs the different network topologies under which the

system was tested.

Fig. 5.1 shows the results of comparing different vehicle formation topologies on the

number of allocated tasks and iterations. The row topology, circular topology, the fully

connected topology and the star topology illustrated in Fig. 3.7 are compared. The number

of allocated tasks is consistent across topologies for CBBA and similar across topologies

for PI-MinAvg and PI-MaxAss with SD = 2. Notable differences are the reduced number of

iterations for each algorithm with the fully connected topology and the relative increase in

iterations for the star topology for each algorithm.

3.4 Discussion

The results showed that PI-MaxAss can significantly increase the total number of allocated

tasks starting from a sub-optimal solution. There is a trade-off between computation time

and solution quality that should be considered depending on the application [77]. Note

that computation time here is represented by the number of iterations, while in practice

the processing speed and the communication speed of the agents will determine how long

an iteration lasts. If extra computation time is available, the results show that switching



3.4 Discussion 69

Iterations
0 20 40 60 80 100 120

A
llo

c
a
ti
o

n
s

40

45

50

55

60

CBBA
PI-MinAvg
SD=2

(a) Row Network

Iterations
0 20 40 60 80 100 120

A
llo

c
a
ti
o

n
s

40

45

50

55

60

CBBA
PI-MinAvg
SD=2

(b) Circular Network

Iterations
0 20 40 60 80 100 120

A
llo

c
a
ti
o

n
s

40

45

50

55

60

CBBA
PI-MinAvg
SD=2

(c) Fully Connected Network

Iterations
0 20 40 60 80 100 120

A
llo

c
a

ti
o
n

s

40

45

50

55

60

CBBA
PI-MinAvg
SD=2

(d) Hybrid Star Network

Fig. 3.8 Comparison of the performance over 50 runs of CBBA, PI-MinAvg, PI-MaxAss
with Swap Distance 2 for 14-vehicle 64-task battery and deadlines scenario, with respect
to number of allocated tasks and iterations over different network topologies, row, circular,
mesh and star topologies.



70 Distributed Task Rescheduling

optimisation objectives from minimising average waiting time to maximising task allocations

can break the solution out of local optima and further optimise the task allocation without

reducing the quality of the solution. After more tasks have been included, the quality of

the solution can then be optimised further with few iterations by switching back to the

time minimisation method. This switching strategy as described in [77] exploits the high

optimisation performance of single-objective search algorithms for a bi-objective problem,

while remaining flexible and modular.

In the cases where PI-MinAvg was able to reach an optimal or near optimal solution

with regards to the number of allocated tasks, such as the two tasks-per-vehicle scenario,

PI-MaxAss made few or no improvements on the PI-MinAvg solution and accordingly

the computation time was not unnecessarily increased. These results further support the

switching strategy [77] which increased computation time only when the solution could be

improved by the proposed method PI-MaxAss.

The results show that a Swap Distance limited to 1 is preferable when a reliably low

number of iterations is required while still providing a significantly higher number of allocated

tasks. A higher Swap Distance can be used if the extra computation time is available to

increase the likeliness of finding a better solution. On the other hand, although PI-MaxAss

is guaranteed not to decrease allocations starting from an initial task allocation, it cannot

be guaranteed that PI-MaxAss with a higher swap distance finds an equal or higher task

allocation than a lower swap distance.

For the scenarios tested, the Swap Distance set to 3 and 4 did not significantly increase the

allocations despite the correlated increase in iterations. For each additional task reassignment,

the new task allocations are propagated through the network of vehicles, and this can

take several iterations depending on the network topology meaning that, as the number of

reassignments increases, so do the number of iterations. It is also likely that the number

of instances where 3 or 4 reassignments are required are fewer than those requiring 1 or 2

reassignments. This may result in an insignificant increase in task allocations along with a

relatively high increase in number of iterations.



3.4 Discussion 71

PI-MaxAss was shown to be effective at increasing allocated tasks when the time con-

straint was on vehicle battery limits only. In these cases, the extra flexibility in the possible

ordering of task allocations meant that PI-MinAvg was more likely to find an optimal solu-

tion, however PI-MaxAss increased the allocations in about half of the runs, a noteworthy

proportion.

In 0.3% of 2000 runs, PI-MaxAss modified the solution by reassigning tasks without

increasing the total number of assigned tasks. This may happen because an additional task

allocation attempt may be inhibited if a time slot created to assign a new task is instead filled

by a task later in that reassignment sequence.

Tests with different topologies provided strong evidence that the number of allocated

tasks is independent of the specific topology. The number of iterations required to reach

consensus, on the contrary, appears to vary according to the type of topology. The increase

in iterations is due to information requiring multiple iterations or ‘hops’to reach all vehicles

when the network is not fully connected. In general, the longer the network diameter i.e. the

shortest path between the two most distant vehicles, the longer the system takes to reach

consensus.

The task shifting effect of PI-MaxAss is similar to the theoretical task swap loop methods

described and analysed in [109, 62, 89, 60, 61]. Compared with these methods, PI-MaxAss

has the advantage that it does not require distinguishing roles. Furthermore, PI-MaxAss

does not require finding a complete swap loop to reassign tasks. As opposed to the task

swap loop methods, with PI-MaxAss the last task reassignment in the sequence need not be

assigned to the vehicle that started the sequence. By following the task swap loop strategy,

the created time slot is more likely to be filled by the task being reassigned from another

vehicle, inhibiting the assignment of an additional unassigned task. A final distinction

is that the objective of PI-MaxAss is to increase the number of task assignments within

vehicles’ schedules, whereas the costs being minimised in [62, 60, 61] are non-specific, and

the problem being addressed considers vehicles that can be assigned one task each, at most.



72 Distributed Task Rescheduling

3.5 Conclusion

In this chapter, an effective algorithm that allows for simple and efficient reassignment

of allocated tasks is proposed and analysed to improve the task allocation solution of a

previous method for task allocation. The novel idea is to allow vehicles to re-allocate tasks to

create a feasible space for unallocated tasks by taking advantage of existing schedule space.

Simulations showed a noteworthy increase in performance, measured as the total number of

allocated tasks, making the method appealing when this objective is a priority. An increment

in the number of iterations appeared proportionate to the gain in performance. Experimental

results confirmed that the proposed algorithm can be applied beneficially to PI, thus opening

the possibility of integration to other implementations.

While PI was shown to perform well towards the optimisation objectives of minimising

average time and maximising allocated tasks, the limitations of the algorithm are that it

does not provide performance guarantees on convergence like CBBA. When applied to a

system for which one iteration of the algorithm is expensive, a performance guarantee on

convergence is a desirable feature. In the next chapter, a fast convergence approach that

maintains a high number of task allocations is introduced as an extension to CBBA.



Chapter 4

Fast Convergence

4.1 Introduction

This chapter introduces a new distributed consensus procedure for consensus-based task

allocation algorithms that optimises convergence time, i.e. the time required for the network

of agents to agree on a task allocation. In distributed multi-agent task allocation problems,

the time to find a solution and a guarantee of reaching a solution, i.e. an execution plan, is

critical to ensure a fast response. In real time environments such as a rescue mission, a fast

convergence time to a solution is an essential quality of an algorithm as any time spent on

computing a global task allocation is time not spent rescuing. Algorithms, such as CBBA,

employ the use of bids that can vary based on an agent’s schedule. Changes to the agent’s

task list can therefore result in changes to the bids that the agent places. Additionally, when

the network topology is sparsely connected, it can take multiple iterations of the algorithm

before an agent receives information that it has lost a bid. It may therefore require many

iterations to resolve all conflicting task allocations. This is a key limitation which becomes

an increasing problem as the number of agents and the number of tasks increases.

While PI has been shown to produce better quality results under the scenarios tested

with metrics such as average waiting time, the convergence guarantees of CBBA are much

stronger than for PI. For this reason, CBBA is used as the baseline algorithm from this

chapter onwards. The task allocation algorithm consists of two phases, in the first phase



74 Fast Convergence

agents build their individual schedules using a score function. In the second phase, agents

resolve conflicts based on the bids they place on their selected tasks. This chapter investigates

the hypothesis that in scenarios with a high task-to-agent ratio, the time to reach consensus

can be reduced by removing the variability of bids. At the same time, the overall solution

quality can be maintained by using appropriate heuristics in the first phase. The second key

contribution in this thesis is a novel approach to stabilise the convergence process and reduce

the time to reach a solution for algorithms such as CBBA. The key idea is to resolve task

allocations among agents using a rank-based conflict resolution. A second advantage is that

this method enables different agents to construct their task schedules using any insertion

heuristic, and still guarantee convergence. Simulation results demonstrate that the proposed

approach, as an extension of BW-CBBA, can allocate a greater number of tasks in a shorter

time than the baseline BW-CBBA.

4.2 CBBA with Fast Convergence Design

This section introduces the rank-based conflict resolution method that reduces the time to

convergence, implemented in this study as a modification to CBBA. The insertion heuristics

used in combination with the rank-based conflict resolution to demonstrate the proposed

method’s performance are also detailed in this section. The proposed method is not limited

to CBBA but may be implemented into similar distributed consensus-based task allocation

algorithms.

4.2.1 Rank-based Conflict Resolution

In standard task allocation algorithms, bids on task assignments give an indication of the

optimality of an assignment with respect to an optimisation objective. When conflicting

assignments occur, the agent that can perform the task most optimally keeps the assignment.

This process requires that bids be comparable and therefore that agents must share a function

to assign scores to their assignments. The novelty in this study is to introduce bids that are

invariant to factors such as the agent’s path and score function. Constant bids add stability



4.2 CBBA with Fast Convergence Design 75

to the convergence process and therefore speed up the rate of convergence. Additionally,

this method enables agents to simultaneously use different score functions from each other.

As a result of losing information from bids, a trade-off is the possible reduction in quality

of the task allocation with respect to the objective being optimised by the score function.

In this study, the number of allocated tasks and the time to convergence are considered as

the highest priority optimisation objectives, and it is therefore worth a possible reduction in

optimality of secondary objectives, such as distance covered by the agents. Future work may

look at autonomously adapting the task allocation method in line with the most appropriate

optimisation objective given the problem domain.

Inbuilt into CBBA’s conflict resolution phase is a tie-breaking heuristic based on agent

identification numbers [17]. This unique numerical ID is initialised at the outset as the agent’s

index. When a tie occurs between bids on the same task, the agent with the lowest index wins

the task. To implement conflict resolution based on agent ranking requires therefore simply

that agents’ bids are made to be identical at all times. The modification to the bundle building

phase is shown in Algorithm 5 line 5 where a constant bid value defined as constantBid is

applied to all bids. It is worth noting that a constant bid value satisfies the condition of DMG

in equation (2.12) and therefore preserves CBBA’s guarantee of convergence.

A key feature of this approach is that the distribution of rank is transitive i.e. every agent

is either dominant or submissive relative to every other agent. As a consequence, agents lose

conflicts only to agents of higher rank. Consider that the relative rank of each agent matches

its index such that v1 is the highest ranked and vm the lowest ranked agent. v1 will win all

conflicts on tasks that it selects from T. v2 will win all conflicts on tasks that it selects from

T\b1. vi will win all conflicts on tasks that it selects from T\bh, ∀h ∈ {1, . . . , i−1}. By

selecting only tasks that have not been included by higher ranking agents, an agent is ensured

to have winning bids, because lower ranking agents cannot challenge that. When there are

no more conflicts, the system converges. A network where agents are ranked in topological

order, such as in Fig. 5.1(a), will propagate more efficiently the assignments of higher ranked

agents to lower ranked agents such as to reduce the number of conflicts, compared with a

network where agents are not ranked in topological order such as in Fig. 5.1(b).



76 Fast Convergence

Algorithm 5 CBBA: Bundle Building with EDF and agent rank bidding
1: procedure BUILD BUNDLE
2: while |pi|< Lt do
3: for tq ∈ T \pi do
4: ciq = maxlFi(pi⊕l tq), ∀l ≤ |pi|+1
5: c̄iq = constantBid // Set score to a predefined constant
6: hiq = Π(c̄iq > yiq)
7: end for
8: q⋆ = argminqξq ·hiq, ∀ciq > 0 // Find task q with earliest deadline
9: if ξq⋆ > fi then // If q’s deadline is later than agent’s fuel time

10: q⋆ = argmaxqciq ·hiq // Select task with highest score
11: end if
12: if c̄iq⋆ > 0 then
13: ziq⋆ = i
14: yiq⋆ = c̄iq⋆

15: bi⊕end tq⋆
16: pi⊕l tq⋆ where l yielded ciq⋆

17: else
18: break
19: end if
20: end while
21: end procedure



4.2 CBBA with Fast Convergence Design 77

11

108*7

12

9*

53

13

2*

1*

6

14

4

(a) Ordered Row Topology

14

128*2*

13

10

65

11

3

1*

4

9*

7

(b) Unordered Row Topology

14

11

3

13

12

10 7

8*

5

9*

4

6

1*

2*

(c) Hybrid Topology

Fig. 4.1 Network topologies that determine the communication links between agents with
two agent types (circles and pentagons). Agent indexes correspond to the agents’ ranks.
Agents 1-7 service medicine tasks and agents 8-14 service food tasks. Agents with or without
a star (*) employ different insertion heuristics as explained in section 4.3.1.



78 Fast Convergence

The topology of the network is a determining factor in time to convergence. If agents

bidding on the same tasks are not directly connected, such as in Fig. 5.1(c) where agents of

the same type are connected through agents of a different type, it may take many iterations to

receive bids on conflicting assignments and therefore longer to resolve conflicts and converge.

A finding in section 4.3 is that the proposed consensus strategy is most effective at reducing

convergence time with the ordered row topology (Fig. 5.1(a)) and least effective with the

unordered hybrid topology (Fig. 5.1(c)).

4.2.2 Earliest Deadline First Task Inclusion

A main benefit of decoupling scores from bids, as shown by BW-CBBA, is the capability to

match more closely the agent’s internal decision making process to the optimisation objective,

while maintaining convergence guarantees. This extension was shown to yield higher quality

task allocations than baseline CBBA regardless that the communicated bids were required to

be approximated [45].

EDF is a well known scheduling algorithm in which tasks with the earliest deadlines are

given highest priority. EDF has recently theoretically and empirically been shown to be fast

and effective at maximising the number of allocated tasks in a similar scenario [68]. An

inclusion strategy such as EDF can cause a high number of conflicts as all agents prioritise

tasks in the same order. By applying EDF task inclusion to a subset of agents, with the

remaining agents using a different strategy, the number of conflicts can potentially be reduced

and therefore speed up convergence compared with all agents using EDF (this is tested in

section 4.3). EDF is implemented on line 8 of Algorithm 5. The best task, with index q⋆, is

selected as the task with the earliest deadline for which hiq evaluates as true.

If the agent’s fuel limit is earlier than the earliest deadline, the agent selects the task with

the highest score. This condition is added on lines 9–11. A scenario with fuel constraints and

no deadlines on tasks is used to further evaluate the performance of the proposed method in

section 4.3.



4.3 Performance Analysis 79

4.3 Performance Analysis

In this section, the performance of the proposed rank-based conflict resolution is tested

and compared using 3 different heuristics against the baseline BW-CBBA that is used as

a benchmark. These different combinations are evaluated as a function of the number of

iterations until convergence, the number of allocated tasks, and the distance travelled per task.

A range of topologies is used to assess these performances since, as described in section 4.2.1,

the topology affects the allocation dynamics. An increasing number of tasks with a fixed

number of agents is also used to assess the performance of the algorithms ranging from

when the system is under-constrained to over-constrained. Over-constrained signifies that

there are a greater number of tasks than can be assigned given the time constraints, while

under-constrained signifies that there is enough capacity to assign all tasks. A variation in

the time constraints is also applied to further demonstrate the performance of the proposed

method.

4.3.1 Assessing Performance

The combinations of the proposed rank-based conflict resolution with three different heuris-

tics, and the benchmark algorithm, are detailed as follows:

1. EDF-Rank: Selecting tasks based on EDF (section 4.2.2) and rank-based conflict

resolution (section 4.2.1) - (Algorithm 5).

2. Score-Rank: Selecting tasks based on score function (section 2.7) and rank-based

conflict resolution (section 4.2.1). This configuration is Algorithm 5 with lines 8, 9

and 11 removed.

3. Mixed-Rank: Selecting tasks based on either EDF (section 4.2.2) or score function

(section 2.7) and rank-based conflict resolution (section 4.2.1). This configuration

applies EDF task selection to 4 agents and applies task selection based on scores to the

other 10 agents.



80 Fast Convergence

4. Score-Bids: Selecting tasks based on score function and convergence with varying

bids. This configuration is the benchmark Algorithm 3, first introduced in [45].

4.3.2 Experimental Setup

A simulated search and rescue scenario is used to test the performance of the algorithms, with

a rescue team equally split into two agent types with different functions. The tested scenarios

build on the environment types described in Chapter 3. One agent type provides medicine,

the other provides food. The survivors are likewise equally split into those requiring food

and those requiring medicine. The scenario specifications are summarised in Table 5.1. The

mission takes place in a 3D space. The task locations are uniformly distributed within this 3D

space, while the agents’ starting positions are uniformly distributed on the 2D ground space.

For these simulations, it is assumed that the agents are stationary during the task allocation.

The deadlines for starting each rescue and the battery limits on each agent are uniformly

distributed. Given the random initialisation of task and agent locations and deadlines, it is

sometimes impossible for some tasks to be started by any agent before its deadline.

The reward and cost for the scoring function (equation 2.13) were set as R = 10000

and Ciql = ∆Diq(pi)/veli, where ∆Diq(pi) is the distance travelled by the agent to reach the

candidate task location from its previous location in pi, and veli is the velocity of agent i.

The value for R was set to ensure that the score is greater than 0 after the cost is deducted.

The total iterations for one simulation is expressed as the last iteration number at which

an allocation change was made, either through inclusion or removal. The travel distance

Table 4.1 Scenario Specification for Rank-Based Conflict Resolution

Medicine Food
Agent Speed 30m/s 50m/s
Agent Battery Between 2500 and 5000 seconds
Agent Start Position 10 000m x 10 000m x 0m ground space
Task Duration 300 seconds 350 seconds
Task Deadline Between 0 and 5000 seconds
Task Location 10 000m x 10 000m x 1000m 3D space



4.3 Performance Analysis 81

is represented as the average travelling distance per task for all agents with the final task

allocation. The number of agents was fixed at 14 and the number of tasks tested was 84, 112,

140, 168, 196, and 266. These numbers were selected to cover a range from under-constrained

to over-constrained. The increase in the number of tasks was arbitrarily selected. The number

of agents 14 was selected as the largest number to fit within computer performance limitations.

The agent network topologies used are illustrated in Fig. 5.1. The topology is initialised

at the outset and remains constant through the task allocation process. Each setup was run

50 times with the same configuration but different initial conditions. Results are shown as

averages over those 50 runs. All simulations were performed in MATLAB on an Intel(R)

Xeon(R) CPU server with 2.2 GHz and 128Gb RAM on LINUX operating system Ubuntu

14.04.5 LTS

4.3.3 Results

Figure 4.2 plots the results of Score-Rank, EDF-Rank, Mixed-Rank and the benchmark

Score-Bids across the different topologies as a function of the total number of tasks. The

trend in the number of allocations is consistent across topologies. The algorithm using EDF

allocates the highest average number of tasks for the lower 3 task numbers. In the best case,

EDF-Rank allocates 17.4 more tasks on average than Score-Bids with ordered row topology.

For all task numbers, Score-Rank allocates more tasks than Score-Bids. In the best case,

Score-Rank allocates 8.2 tasks more on average than Score-Bids. Compared with EDF-Rank,

The algorithms using Score allocate the most tasks for the highest 2 task numbers. A general

trend is that EDF allocates the most tasks when the system is under-constrained i.e. the lower

3 task numbers. When the system is over-constrained, i.e. the higher 3 task numbers, Score

allocates the most tasks by a clear margin.

The performances of the algorithms using Rank consistently average at 7 iterations, with

below 0.5 standard deviation, at all numbers of tasks with the ordered row topology. In

comparison, the benchmark Score-Bids ranges from 13.5 to 17.5 average with between 4 and

5 standard deviation. The average number of iterations for the Rank algorithms increases

with the unordered row topology, but remain lower than for Score-Bids. With the hybrid



82 Fast Convergence

50 100 150 200 250 300

Tasks

60

80

100

120

140

160

A
ll
o

c
a

ti
o

n
s

Score-Rank

EDF-Rank

Mixed-Rank

Score-Bids

(a) Ordered Row Allocations

50 100 150 200 250 300

Tasks

60

80

100

120

140

160

A
ll
o

c
a

ti
o

n
s

Score-Rank

EDF-Rank

Mixed-Rank

Score-Bids

(b) Unordered Row Allocations

Tasks

50 100 150 200 250 300

A
ll
o

c
a

ti
o

n
s

60

80

100

120

140

160

Score-Rank

EDF-Rank

Mixed-Rank

Score-Bids

(c) Hybrid Allocations

50 100 150 200 250 300

Tasks

5

10

15

20

25

It
e

ra
ti
o

n
s

Score-Rank

EDF-Rank

Mixed-Rank

Score-Bids

(d) Ordered Row Iterations

50 100 150 200 250 300

Tasks

5

10

15

20

25

It
e

ra
ti
o

n
s

Score-Rank

EDF-Rank

Mixed-Rank

Score-Bids

(e) Unordered Row Iterations

Tasks

50 100 150 200 250 300

It
e

ra
ti
o

n
s

10

15

20

25

30

Score-Rank

EDF-Rank

Mixed-Rank

Score-Bids

(f) Hybrid Iterations

50 100 150 200 250 300

Tasks

1000

2000

3000

4000

5000

D
is

ta
n

c
e

Score-Rank

EDF-Rank

Mixed-Rank

Score-Bids

(g) Ordered Row Travel Distance

50 100 150 200 250 300

Tasks

1000

2000

3000

4000

5000

D
is

ta
n

c
e

Score-Rank

EDF-Rank

Mixed-Rank

Score-Bids

(h) Unordered Row Travel
Distance

50 100 150 200 250 300

Tasks

1000

2000

3000

4000

5000

D
is

ta
n

c
e

Score-Rank

EDF-Rank

Mixed-Rank

Score-Bids

(i) Hybrid Travel Distance

Fig. 4.2 Average allocations, iterations, and travel distance per task across different network
topologies in a scenario with time constraints on tasks and on agents. The number of agents
is 14 and the numbers of tasks are 84, 112, 140, 168, 196, and 266. The error bars represent
standard deviation.



4.3 Performance Analysis 83

topology, Score-Rank consistently converges in fewer iterations on average than Score-Bids,

whereas EDF-Rank converges slower on average than Score-Bids 5 out of 6 times.

With the unordered row and hybrid topologies, Mixed-Rank achieves higher average

allocations than the Score algorithms 5 out of 6 times. Similar results are achieved with the

ordered row topology. With the unordered row and hybrid topologies, the corresponding

average iterations for Mixed-Rank are second lowest. In the best case for the hybrid topology,

Mixed-Rank allocates 11.7 tasks more than Score-Bids in 3.9 iterations on average fewer

than Score-Bids.

The average travel distances per task are consistent across the three topologies. EDF-Rank

gives the highest travel distance by a significant margin, between 3 and 4 times greater than

Score-Bids, which achieves the lowest average distance. As might be expected, Mixed-Rank

falls between EDF-Rank and Score-Rank proportionally to the split of agents using either

heuristic. Interestingly, while Score-Rank gives higher average distances than Score-Bids,

there remains a clear advantage towards optimising travel distances by using Score-Rank

compared with EDF-Rank. With the higher numbers of tasks, there is not a significant

difference in average travel distance between Score-Rank and Score-Bids. These results

give an indication of the trade-off for speeding up convergence with a marginal increase in

average travel distance, using the proposed method.

Figure 4.3 shows the results for the scenario with time constraints on agents without

deadlines on tasks, using the unordered row topology. Score-Rank and Score-Bids are

compared. The numbers of allocations consistently match for both algorithms. In the best

case, Score-Rank converges in less than half the number of iterations compared with Score-

Bids. The average travel distance per task is significantly higher with Score-Rank for the

lower two task numbers. However, for the higher task numbers, the average travel distance is

the same for both Score-Rank and Score-Bids.



84 Fast Convergence

Tasks

50 100 150 200 250 300

A
ll
o
c
a
ti
o
n
s

80

90

100

110

120

130

140

150

160

Score-Rank

Score-Bids

(a) Allocations

Tasks

50 100 150 200 250 300

It
e
ra

ti
o
n
s

5

10

15

20

25

Score-Rank

Score-Bids

(b) Iterations

50 100 150 200 250 300

Tasks

600

800

1000

1200

1400

1600

1800

D
is

ta
n

c
e

Score-Rank

Score-Bids

(c) Travel Distance

Fig. 4.3 Average allocations, iterations, and travel distance per task for a scenario with fuel
constraints on agents and without deadlines on tasks using the unordered row topology.



4.4 Discussion and Conclusions 85

4.4 Discussion and Conclusions

Simulation results indicated that the proposed rank-based conflict resolution combined with

insertion heuristics were successful for minimising time to convergence while maximising

task allocations. The findings suggest that the proposed approach of rank-based conflict

resolution is most effective and can strongly reduce convergence time when agents’ ranks are

determined by the network topology. Future work may look at a theoretical analysis of the

proposed method to formally compare the average and worst case convergence times with

previous methods. The proposed method may also be extended to assign agents’ ranks based

on the network topology. The performance of the proposed method may be further assessed

under time-varying topologies. Results also showed that different insertion heuristics perform

best in different environments. EDF allocated the most tasks when the number of tasks to

agents was lower, while NTF allocated the most tasks when the number of tasks to agents

was higher. These results motivate further studies to devise algorithms that can select the

appropriate strategy autonomously. The strategy may be selected according to a dynamically

changing number of tasks, number of agents and network connectivity links. In the next

chapter, an approach is proposed that enables each agent to select the task allocation strategy

which they independently predict is the best based on locally communicated bids.





Chapter 5

Autonomous Strategy Switching

5.1 Introduction

Current state-of-the-art consensus-based task allocation algorithms incorporate heuristics

into agent score functions in order to optimise a given objective. While extensive research

has been done in the area of multi-agent learning of optimal policies [76, 13], at the time

of writing this, consensus-based task allocation algorithms have not been designed to adapt

online to changing environmental factors [80, 44]. Results in the previous chapter indicated

that different task allocation strategies perform most optimally depending on environmental

factors such as the ratio of tasks to agents. This chapter investigates the hypothesis that each

individual agent can predict and select the best task allocation strategy using information

derived from local communications. This chapter introduces the novel idea of learning

a prediction function and adopting a strategy switching behaviour that allows agents to

independently adapt task allocation strategies in line with changing environmental factors,

and boost performance. The learned function is effectively a prediction mechanism that

uses past experience to select which task allocation strategy yields the optimal global task

allocation.

The proposed method is tested through a simulated search and rescue scenario. Two

heuristics that have been previously shown to perform well in such a scenario are earliest

deadline first (EDF) and nearest task first (NTF) [68]. The prediction functions were trained



88 Autonomous Strategy Switching

to predict which heuristic, between the two, will yield the most task allocations. The

following assumptions are made: an agent does not have knowledge of the time availability

of other agents in the system, and does not have knowledge of the decisions made by

other agents concerning the optimal heuristic. The input for the prediction function is

limited to information about task assignments received locally from networked agents. The

reasoning for these choices is to show that the proposed adaptive method can be applied

to consensus algorithms by exploiting the communications necessary for consensus, and

without requiring any additional information to be communicated among agents. Results

showed that for the majority of scenarios tested, the agents were able to predict and switch

to the optimal heuristic based on observations of locally communicated task assignments,

without a significant impact on the time to convergence. Additionally, results showed that an

additional gain in performance could be achieved by enabling the agents to independently

adapt their consensus strategy.

5.2 Learning Strategy Adaptation

This section introduces the proposed adaptive approach for consensus-based task allocation

that enables agents to individually predict and select the best task inclusion strategy with the

aim to automatically maximise task allocation.

5.2.1 Heuristic Strategies

In task allocation problems that require agents to execute multiple tasks, the heuristic

with which agents include tasks into their schedules is key to optimising allocations. The

appropriateness of any heuristic varies as conditions change, such as the number of tasks

to agents, the time constraints, and the travel times between tasks. The two heuristics used

in this study are earliest-deadline-first (EDF), and nearest-task-first (NTF) [68]. With EDF,

agents prioritise tasks with the earliest deadline to include into their schedules, while with

NTF, agents prioritise tasks that are nearest to the previous location in their schedule. In a

standard environmental setting (see Section 5.2.6 for an example), EDF allocates more tasks



5.2 Learning Strategy Adaptation 89

than NTF under conditions with relatively few tasks per agent. As the number of tasks per

agent increases, the travel time between tasks becomes a greater factor and eventually NTF

allocates the most tasks. As a result, traditional consensus-based task allocation algorithms

perform often sub-optimally because there is not a single strategy that works well in all

scenarios.

In this study, the key idea is that optimal strategies can be inferred online, i.e., during

execution, and locally, i.e., in a distributed fashion for each agent. Thus, the information

exchanged by the agents to reach consensus can be exploited to implement a distributed

adaptive system. A decision-making mechanism is devised in which agents use the local

information available to predict the best heuristics online. The process is shown to result

result in the optimisation of the number of allocated tasks under a variety of different

conditions.

To infer a rule connecting the local observations made by an agent and the appropriate

heuristic, supervised classification learning is used. With supervised learning, the learning

algorithm uses labeled training data to infer a general rule or function that maps inputs to

outputs. In this study, the input is an agent’s observation following a consensus phase, and

the prediction is the heuristic that will yield the highest number of allocated tasks overall.

The proposed method exploits locally available task assignment information that is

necessary for consensus. Agents are able to resolve conflicting assignments through sharing

information about which agents are assigned to which tasks [17]. Thus, the proposed

method can be integrated into consensus-based algorithms without additional communication

overhead. The implementation of the proposed method is described as an extension to CBBA.

5.2.2 Agent Observations

As described in Chapter 2.7 that formalises CBBA, reaching consensus requires that agents

exchange the list z of agent-task allocations. The list zi corresponds to agent vi’s local

knowledge of the current global task allocation. From these communications vi can make the

following local observations:



90 Autonomous Strategy Switching

• The set of assigned tasks: a = {k ∈ zi | zik > 0} and the set of unassigned tasks:

ā = {k ∈ zi | zik = 0}. The cardinalities |a| and |ā| denote the total numbers of assigned

tasks and unassigned tasks respectively.

• The set of tasks assigned to other agents not including tasks assigned to vi is defined

as: o = {k ∈ zi | zik > 0∧ zik ̸= i}, where |o| denotes the cardinality of o.

When accounting for heterogeneous agents with different capabilities to perform different

tasks, the observations refer to the tasks that vi is capable of performing i.e. |a| denotes the

number of compatible assigned tasks. We refer to the total number of compatible tasks as mc.

In summary, each agent can derive the following information from received communications:

the number of assigned and unassigned tasks, the number of tasks assigned to other agents,

and the total number of compatible tasks. This information is used to predict which allocation

strategy is more likely to perform better as explained in the following sections. It is worth

noting that additional information can be derived and used for predictions. We focus on the

set described above as the most informative for the problem of interest, and allow for the

possibility of extending the set of inputs in future work.

5.2.3 Learning Systems

The main focus of this study is the integration of learning and decision making into CBBA

to demonstrate that, within the established framework of such an algorithm, appropriate

predictions and decisions can be made. Thus, off-the-shelf supervised learning algorithms

were used with default parameters to implement the prediction function. It is important

to note that learning the prediction function is performed centrally and offline, while the

adaptation of the strategy, using the learned function, is performed online and in a distributed

fashion. Two popular supervised learning methods used in this study are: support vector

machine (SVM) and neural network (NN). The proposed adaptive method using SVM and

NN are referred to as CBBA+
SVM and CBBA+

NN, respectively. The SVM model used a radial

basis function kernel with the MATLAB function for binary classification fitcsvm. Using

MATLAB R2017a’s Neural Pattern Recognition toolbox, the two-layer feed-forward network



5.2 Learning Strategy Adaptation 91

with sigmoid hidden and softmax output neurons was trained with default parameters using

scaled conjugate gradient backpropagation and had a single hidden layer with 10 nodes.

The inputs used for training corresponded to the observation: [|o|, |ā|]/ mc. Two outputs

corresponded to the classification predictions of which strategy (between EDF and NTF) led

to the most tasks being allocated in previous task allocation experiments with non-adaptive

strategies. The SVM model returns 0 or 1 corresponding to the classification prediction

of an observation. The neural network returns a real number between 0 and 1, indicating

the confidence in the classification prediction, where an output of 1 indicates the highest

confidence in the classification, and an output of 0 indicates the lowest confidence in the

classification.

5.2.4 Distributed Strategy Adaptation

The task allocation algorithm with the added prediction function is shown with pseudocode

in algorithm 6. Before the task allocation procedure begins, each agent is initialised with

an index h that determines with which heuristic the agent includes tasks into its schedule

(line 3). This initialisation can be done through a uniform random assignment. Once the

task allocation procedure is in progress, predictions can be made using locally received

information about task assignments. The Predict function (line 5) uses zi to make a prediction

on the optimal heuristic and returns a heuristic index h. This index is passed to the Task

Inclusion Phase (line 6) where vi includes tasks into its schedule according to the heuristic

corresponding to h. During the consensus phase (line 7), zi is updated.

The prediction function is shown with pseudocode in algorithm 7. Applying a limit

to the number of times that an agent can switch functions is fundamental to maintain the

guarantee of convergence of the algorithm (see [17] for details on convergence). Therefore,

a condition SwitchCondition on line 3 determines whether a prediction can be made and

therefore whether the heuristic can be changed or not. In this study, that limit is set to 1 to

test the basic concept that one single switch of strategy is sufficient to increase the overall

number of allocated tasks. For a real-time system operating in a dynamic environment,

in which agents converge locally rather than as a group [46], a refractory period could be



92 Autonomous Strategy Switching

implemented to allow for multiple switches over time with a delay in between. To ensure that

the agent has sufficient information to make a prediction, the SwitchCondition applied in

this study requires that the agent has received task assignment information from other agents,

such that: |o|> 0. If the condition returns false then the agent’s current heuristic index is

returned. Before computing a prediction, the input for the prediction function is normalised

by dividing it by the number of tasks: input = [|o|, |ā|]/mc (line 4). The output computed by

the prediction function fpredict is evaluated to determine which heuristic is likely to generate

the optimal task allocation. If the predicted heuristic is different from the agent’s current

heuristic, then the agent unassigns all tasks previously assigned to itself so that it can rebuild

its schedule with the predicted optimal heuristic (lines 7-11). CBBA’s task inclusion phase

(see [17]) is the algorithm’s point of highest time complexity, consisting of three nested loops.

As the proposed adaptive strategy function runs outside of the task inclusion phase and does

not require loops, the algorithm’s time complexity is unaffected.

Agents communicate task allocations according to a network topology, which impacts the

task assignment information that an agent holds at any given time. Moreover, agents bidding

on the same task types may be connected through multiple agents bidding on different task

types. Therefore, it may take several rounds of the algorithm before an agent receives bid

information from same-type agents, which is the key information used for the prediction

of the best strategy. Different topologies result in different delays to the agents receiving

sufficient information for making an accurate prediction. Early predictions may therefore

benefit from being delayed until more task assignment information is gathered from the

rest of the network. Figure 5.1 illustrates examples of common topologies. With a fully

connected topology (Figure 5.1(a)), each agent receives information about all other agents’

task assignments at every communication round. With a row topology (Figure 5.1(b)), it may

take many rounds of CBBA for an agent’s allocations to be propagated through the network.

Considering the possible delays in receiving sufficient information, and the requirement

to limit the number of times an agent switches heuristic, we apply basic rules to ensure

that the adaptive system is able to work under such constraints. After the training phase,

the NN gives an output of 0.5 when no strategy has a clear advantage over the other. A



5.2 Learning Strategy Adaptation 93

(a) Fully connected (b) Row connected (c) Star connected

Fig. 5.1 Network topologies: agents are represented as circles and communication connec-
tions are represented as dashed lines between agents. Different topologies affect the timing at
which each agent acquires information on allocations. Thus, the decision making capabilities
of the agents may be affected by different topologies.

question is, how much more advantageous a strategy needs to be to trigger a switch? Given

the incompleteness of the information available to agents through local communication, it

is reasonable to assume that a strategy prediction requires a confidence margin to signal

that switching is advantageous. A ROC (receiver operating characteristic) curve shows

graphically the true positive rate as a function of the false positive rate for different cut-off

points. A ROC analysis therefore can provide experimental evidence to estimate a confidence

parameter so that switching occurs with a desired probability. In the proof-of-concept

presented in this study, the threshold to switch for fevaluate in CBBA+
NN is set to an arbitrary

value of 0.6. This simple adjustment prevents strategy switching when no clear advantage

for one strategy can be inferred. This prevents unnecessary strategy switching and maintains

a low number of iterations as shown in the analysis later. Further studies could address the

tuning of such a parameter to achieve the best compromise between reactive switches and

number of iterations to convergence. In other words, introducing this condition effectively

results in the agent delaying a decision until there is a sufficient confidence in either heuristic.

Similarly, the decision system is adapted to operate with predictions from the SVM: in this

case, CBBA+
SVM agents can perform a switch only when T > 5, so that each agent has

received task allocation information from multiple other agents before switching heuristic in

the worst case topology tested. These mechanisms highlight the important fact that decision

making in consensus-based algorithms cannot be simply left to a prediction function, but

needs to take into consideration the collective multi-agent dynamics. Future studies may

investigate further the tuning and implications of different decision making rules.

A factor that affects allocations in consensus-based algorithms is the conflict resolution

mechanism. The most common approach to resolving conflicts in consensus task allocation



94 Autonomous Strategy Switching

algorithms is to assign tasks to the highest bidder. This process can either happen via an

auctioneer [25], or can be fully distributed as with CBBA [17]. Variations of this process

exist to account for different problem constraints [18, 23, 10, 20]. A second mechanism

consists of utilising relative ranking among agents [96]. To assess how well the proposed

approach generalises with different conflict resolution strategies, both the bid-based and

the rank-based conflict resolution procedures are tested. The implementation of rank-based

conflict resolution is easily performed thanks to the tie-breaking heuristic based on agents’

unique identification numbers [17] built into CBBA. If all agents place bids of the same

value, all conflicts are resolved based on the agents’ IDs, which can be thought of as the

Algorithm 6 Task allocation outer-loop iterative procedure with predictive function running
on vi

1: initialise timer T ← 1
2: converged← f alse
3: initialise h
4: while converged is f alse do
5: h = Predict(h,zi)
6: TaskInclusionPhase(h)
7: Consensus Phase
8: converged← Check Convergence.
9: T ← T +1

10: end while

Algorithm 7 Prediction function for optimal task inclusion strategy running on vi

1: function PREDICT(hcurr,zi)
2: Compute |o|,|ā| from zi // Number of tasks assigned to others and unassigned
3: if SwitchCondition is true then
4: input = [|o|, |ā|]/mc
5: out put = fpredict(input)
6: hnew = fevaluate(out put)
7: if (hcurr ̸= hnew) then // If predicted strategy is different from current strategy
8: Empty pi // Empty task list
9: Set all zik = i to zik = 0 // Reset own bids

10: hcurr = hnew // Update strategy
11: end if
12: end if
13: return hcurr
14: end function



5.2 Learning Strategy Adaptation 95

agents’ rank. Agents place all bids equal to the constant MaxBid for Rank-based conflict

resolution.

5.2.5 Benchmark Algorithms

The proposed adaptive approach with CBBA+
NN and CBBA+

SVM is compared to variations

of the non-adaptive baseline CBBA:

• CBBAEDF - all agents use EDF.

• CBBANTF - all agents use NTF.

• CBBA50/50 - half of the agents use EDF and half use NTF.

CBBA resolves conflicting task assignments by assigning tasks to the highest bidder. For

each of these algorithms, agents place bids to the value determined by the score function

using NTF. Thus, conflicting task assignments are resolved based on which agent can reach

the task fastest from the previous location in their schedule.

5.2.6 Preparation of Dataset

A simulated search and rescue scenario is used to test the performance of the algorithms,

with a rescue team equally split into two agent types with different functions. One agent

type provides medicine, the other provides food. The survivors are likewise equally split into

those requiring food and those requiring medicine. The task allocations for these two job

types are solved independently, but require agents of both types to contribute in message

passing and to resolve conflicts. The scenario specifications are summarised in Table 5.1.

The task locations are uniformly distributed within a 3D space, while the agents’ starting

positions are uniformly distributed on the 2D ground space. The deadlines for starting each

rescue and the battery limits for each agent are uniformly distributed. Given the random

initialisation of task and agent locations and deadlines, it is sometimes impossible for some

tasks to be started by any agent before its deadline.



96 Autonomous Strategy Switching

The training set is generated by running task allocation experiments under various

configurations. The task and agent numbers were selected to cover a range from under-

constrained to over-constrained. Over-constrained signifies that there are a greater number

of tasks than can be assigned given the time constraints, while under-constrained signifies

that there is enough capacity to assign all tasks. Each observation was labeled corresponding

to whether CBBAEDF or CBBANTF yielded the highest number of allocated tasks overall

at the time of convergence. Under a star communication network topology, the number of

agents was fixed at: 14, and the numbers of tasks were: 84, 112, 140, 168, 196, 266. Under a

fully connected communication network topology, the numbers of agents were: 4, 6, 8, 10,

12, 14, 16 and the number of tasks was fixed at: 130. To add variation, this latter setup was

repeated with both agent types able to service both task types. The increase in number of

tasks and agents were arbitrarily selected within a range to cover a variety of tasks to agent

ratios, from under-constrained to over-constrained. Each setup was run 50 times with the

same configuration but different initial conditions.

From simulations running these configurations with CBBAEDF and CBBANTF, the obser-

vations: [|o|, |ā|]/ mc, were taken from each agent at each iteration starting from T = 2 to

the time of convergence. Given the high number of agents deployed in one scenario and the

repetition of scenarios, input vectors [|o|, |ā|]/ mc with identical values and labels may be

observed in the dataset. Such data points are effectively duplicates and can be safely removed

from the dataset. After removal of duplicates, the labeled data set consisted of approximately

6000 unique observations. Cases for which the two heuristics were equivalent were left in.

Table 5.1 Scenario Specification for Adaptive CBBA

Medicine Food
Agent Speed 30m/s 50m/s
Agent Battery Between 2500 and 5000 seconds
Agent Start Position 10 000m x 10 000m x 0m ground space
Task Duration 300 seconds 350 seconds
Task Deadline Between 0 and 5000 seconds
Task Location 10 000m x 10 000m x 1000m 3D space



5.3 Performance Analysis 97

5.3 Performance Analysis

The simulation results compare the performances of the different algorithms with respect

to average task allocations and iterations until convergence at the end of the task allocation

process. In real-time systems, the time to reach a solution may be critical to successfully

completing the mission. Thus, our analysis also investigates whether strategy adaptation

allows the system to converge to a solution within similar time to non-adaptive algorithms.

The total iterations for one simulation is determined by the last time an allocation change

was made by any agent, either through inclusion or removal. A marginal increase in average

execution time per iteration is expected with the adaptive strategies compared to the non-

adaptive algorithms. In real-time settings, variable factors that depend on the specific

implementation, such as the time required for communication, the processing speed, the

number of tasks, the number of times the agent attempts to make a prediction, are all factors

that may impact the proportional increase in average execution time. These points are worth

investigating in future work to evaluate the trade-off. Results are shown as averages over 50

runs. All simulations were performed in MATLAB on an Intel(R) Xeon(R) CPU server with

2.2 GHz and 128Gb RAM on LINUX operating system Ubuntu 14.04.5 LTS.

5.3.1 Unseen Row Topology, Task Numbers, and Rank-Based Conflict

Resolution

This section shows the results of tests comparing the algorithms operating with 14 agents

under conditions not seen in training: under a row topology, with different task numbers,

and a different conflict resolution strategy. In Figure 5.2(a), the proposed CBBA+
NN and

CBBA+
SVM both match the best average numbers of allocations achieved by the non-adaptive

approaches showing that the agents are correctly predicting and selecting the optimal heuristic

under different conditions. The number of iterations until convergence are similar for the

proposed adaptive approach and the non-adaptive approach that the agents are selecting,

indicating that strategy adaptation maintains a similarly low number of iterations as the non-

adaptive cases. CBBA+
NN takes marginally longer to converge on average than CBBAEDF



98 Autonomous Strategy Switching

90

100

110

120

130

140

150

Al
lo
ca
tio
ns

EDF
NTF
50/50
NN
SVM

100 150 200 250
Tasks

0

30

60

Ite
ra
tio
ns

90

100

110

120

130

140

150
Al
lo
ca
tio
ns

EDF-Rank
NTF-Rank
50/50-Rank
NN-Rank
SVM-Rank

100 150 200 250
Tasks

0

30

60

Ite
ra
tio
ns

90

100

110

120

130

140

150

Al
lo
ca
tio
ns

EDF
NTF
NN
NN-Rank
NN-Switch

100 150 200 250
Tasks

0

30

60
Ite
ra
tio
ns

(a) (b) (c)

Fig. 5.2 Average task allocations (top) and average iterations until consensus (bottom) for
scenarios with different task numbers (100,130,160,190,220,250) and a fixed number of
networked agents (14), connected with a row topology. In a) five algorithms are compared: all
agents self-assign tasks with the earliest-deadline-first (EDF) heuristic; all agents self-assign
tasks with the nearest-task-first (NTF) heuristic, agents are split half and half into using EDF
and NTF respectively (50/50); agents are initialised with 50/50 and then optionally switch to
EDF or NTF based on a trained neural network (NN) prediction; agents are initialised with
50/50 and then optionally switch to EDF or NTF based on a support vector machine (SVM)
prediction. In b) the same algorithms resolve conflicts according to the relative ranking of
agents (Rank). In c) with NN-Switch, the task inclusion is as with NN, and conflict resolution
switches to Rank if the optimal task inclusion heuristic is predicted to be NTF.



5.3 Performance Analysis 99

and CBBA+
SVM at 130 tasks, but matches the fastest convergence time of CBBANTF at 220

and 250 tasks. CBBA+
SVM is relatively faster to converge for the lower task numbers and

relatively slower for the higher task numbers compared with CBBA+
NN.

Figure 5.2(b) shows the results with all algorithms using the Rank-based conflict reso-

lution strategy, where agents resolve conflicts on task assignments based on agents’ ranks.

CBBA+
NN-Rank still matches the best allocation numbers compared with the non-adaptive

approaches, mostly unaffected that Rank consensus was not seen during training. CBBA+
SVM-

Rank matches the best average numbers of allocations for the lower task numbers, but for the

higher numbers shows a drop in performance compared with CBBA+
NN-Rank. However,

CBBA+
SVM-Rank still allocates more tasks on average than CBBAEDF-Rank. The time to

convergence for each algorithm is faster overall with Rank consensus, and average time taken

is comparable for each algorithm. CBBA+
NN-Rank takes at most 2 extra iterations on average

than the slowest non-adaptive algorithm, and at best 1 iteration less. CBBA+
SVM-Rank is the

slowest to converge.

Figure 5.2(c) shows that when agents use the NTF heuristic in the scenarios with the

higher numbers of tasks, the agents allocate more tasks overall on average if combined

with Rank-based conflict resolution. The experiments for CBBA+
NN were repeated with the

added condition that if an agent predicts that NTF is the optimal heuristic, it also switches to

using Rank-based conflict resolution. The results are plotted as NN-Switch. Figure 5.2(c)

shows that for the higher number of tasks, NN-Switch benefits from the higher allocations

enabled by Rank-based conflict resolution, as well as the faster convergence time compared

with CBBA+
NN and CBBANTF. For the higher number of tasks, the convergence time for

NN-Switch is closest to CBBA+
NN-Rank, which has the fastest convergence. In the lower

task numbers, NN-Switch benefits from the higher allocations afforded by using bids for

conflict resolution, and matches the slower convergence times of CBBA+
NN and CBBA+

EDF.

In these scenarios, the task inclusion strategy and the consensus strategy both affect the

performance of the task allocation algorithm.



100 Autonomous Strategy Switching

100 150 200
Tasks

0

30

60

Ite
ra
tio
ns

60

70

80

90

100

110

Al
lo
ca
tio
ns

EDF
NTF
50/50
NN
SVM

100 150 200
Tasks

0

30

60

Ite
ra
tio
ns

40

60

80

100

120

Al
lo
ca
tio
ns

EDF
NTF
50/50
NN
SVM60

70

80

90

100

110

Al
lo
ca
tio
ns

EDF
NTF
50/50
NN
SVM

5 10 15
0

30

60

Agents
Ite
ra
tio
ns

(a) (c)(b)

Fig. 5.3 Average task allocations (top) and average iterations until consensus (bottom). In a)
and b) task numbers are (70,100,130,160,190,220) with a fixed number of agents (10). In
a) agents are connected with a fully connected topology, in b) a star topology. In c) a fixed
number of tasks (130), agent numbers are (5,7,9,11,13,15) with a fully connected topology.
The algorithms using EDF, NTF, 50/50, NN, and SVM are compared.

5.3.2 Unseen Agent Numbers and Task Numbers

This section shows the results of tests comparing the algorithms operating with different and

varying numbers of agents, as well as task numbers unseen in training. Figure 5.3(a) and

Figure 5.3(b) plot results with a fixed number of agents (10) and different numbers of tasks

unseen in training. In Figure 5.3(a) the topology is fully connected and in Figure 5.3(b) it is

star connected. Under both the full and star topologies, CBBA+
SVM is able to consistently

match the average allocations achieved by the best non-adaptive approaches in a comparable

convergence time. CBBA+
NN performs marginally less well in this scenario compared

with CBBA+
SVM. With the fully connected topology, CBBA+

NN falls short of achieving

the highest average allocations for 4 out of the 6 task numbers. With the star topology,

CBBA+
NN only falls short once when the best non-adaptive algorithm is CBBA50/50, which



5.4 Conclusions 101

is not used for training. The convergence times of the proposed adaptive approaches are

again comparable to the non-adaptive baseline approaches.

Figure 5.3(c) plots results for simulations with different unseen agent numbers and a fixed

number of tasks (130) under a fully connected network. With the higher number of agents

(11,13, and 15), CBBA+
NN and CBBA+

SVM perform well in allocating tasks by accurately

predicting and selecting the optimal heuristic. The proposed adaptive algorithms perform

less well for the lower number of agents (5 and 7). CBBA+
SVM matches CBBA50/50 for

number of allocations which achieves the second highest average allocations of the non-

adaptive approaches, while CBBA+
NN predicts incorrectly that EDF is the optimal heuristic.

With 5 and 7 agents, CBBA+
NN and CBBA+

SVM also converge marginally slower than the

non-adaptive approaches.

It is worth noting that CBBA50/50 performs well in all the tested scenarios and offers

good convergence speed. Adjusting the ratio to have more agents using EDF proportionally

increases the average number of allocations for the lower task numbers, and reduces the

average number of allocations for the higher task numbers. The inverse holds true when

the ratio favours agents using NTF. For simple problems, this static approach is a viable

alternative to the proposed approach. The proposed adaptive approach instead offers a proof

of concept that can be extended for more complex scenarios. In fact, more sophisticated

heuristics can be added or learned to give agents greater adaptability and ability to optimise

the task allocation. Such an increase in flexibility and ability to optimise the task allocation

would justify the use of the proposed adaptive approach compared to a static approach.

5.4 Conclusions

This study investigated the performance gain of enabling distributed agents to independently

adapt their task allocation strategies according to locally received information. An adaptive

distributed approach is proposed that combines a prediction function with a decision making

capability to select the predicted optimal strategy. Results showed that in the majority of

scenarios tested, a performance gain was achieved by using the proposed approach. Agents



102 Autonomous Strategy Switching

were able to predict and select the optimal task inclusion heuristic to optimise the number

of allocated tasks. In a minority of cases tested, when the number of agents was lowest, the

agents predicted the incorrect heuristic. However, this resulted in a performance no worse

than the non-adaptive strategy. Preliminary results showed that agents could further optimise

the task allocation by adapting their conflict resolution strategy.

Factors such as the training data, the inputs, the machine learning tool, and the time of the

prediction, are all factors that may impact the accuracy of the predictions, and are therefore

interesting points to consider more deeply in future work. The proposed method could be

extended to support a greater number of heuristics. For problems of greater complexity,

additional inputs could be tested for increased accuracy. Additional inputs may include the

number of tasks an agent removes during a round due to conflicts. Furthermore, the proposed

approach could be adapted to support agents in learning the best strategy online, as well as

adapting to changing optimisation objectives.



Chapter 6

Conclusions

This thesis introduced techniques for distributed task allocation algorithms to boost the task

allocation solution. In particular, this thesis addressed the problem of maximising the number

of task allocations in scenarios with time constraints, minimising the time to convergence,

and augmenting agents with the capability to adapt their strategies to better meet these

objectives. A bidding scheme was introduced that enables agents to reassign tasks such as to

create feasible schedule space for unassigned tasks. A consensus policy based exclusively on

agent ranking was introduced that speeds up the time to convergence. An adaptive approach

using a prediction function and a decision making capability was introduced to enable agents

to adapt their task allocation strategies in line with changing factors. In this chapter, the main

contributions of the thesis are summarised.

6.1 Summary of Contributions

1. The main contribution described in Chapter 3 was the introduction of the algorithm

PI-MaxAss, an extension of PI. The proposed PI-MaxAss uses a bidding scheme

designed for increasing the number of allocated tasks in scenarios that prevent all tasks

from being assigned. This novel scheme allows for simple and efficient reassignment

of allocated tasks that enables the allocation of additional tasks. The method allows for

task reassignment chains that can be limited to a predetermined maximum number of



104 Conclusions

agents. Simulations showed a noteworthy increase in the total number of allocated tasks

and confirmed that the proposed algorithm can be applied beneficially to an existing

scheduling method, thus opening the possibility of integration to other implementations.

Maximising the number of allocated tasks is an important problem in scenarios such as

search and rescue. The proposed method is most applicable to scenarios in which the

ratio of tasks to agents is relatively low, where the decision of which agent gets which

task is more significant to the overall task allocation than the order in which agents plan

to execute their tasks. Due to the higher convergence time of PI, this method is also

recommended for applications in which the time to convergence is not a significant

factor.

2. The contribution introduced in Chapter 4 is a bidding scheme based exclusively on

the relative rank of agents that aims to speed up the rate of convergence, without

compromising the number of task allocations. The method is proposed as an extension

to CBBA and incorporates well known insertion heuristics. Simulation results showed

that the proposed rank-based conflict resolution combined with insertion heuristics

proved successful for reducing the time to convergence and increasing the number of

task allocations compared to a benchmark. The findings suggest that the proposed

approach to resolve conflicts based on agents’ ranks is most effective and can strongly

reduce convergence time when agents’ ranks are determined by the network topology.

This approach would be most beneficial for teams of agents whose topology changes

infrequently relative to the time required to reach consensus. Another result in this

study is that faster consensus can be effectively achieved by employing multiple

selection strategies across agents. The rate of convergence is an important factor in

real-time systems, as time taken up by planning is time not spent on execution. The

novel approach proposed here may enable real-world task allocation algorithms with

slow or unreliable communication to reduce the number of messages exchanged by the

robots and thus significantly reduce the time to convergence.



6.2 Future Research directions 105

3. The contribution described in Chapter 5 introduces a distributed prediction mechanism

that learns from past experience to enable an agent to select the task allocation strategy

that yields the optimal global task allocation. The proposed adaptive method exploits

the communications necessary for the agents to reach consensus, without requiring any

additional information to be communicated among agents. Results showed that for the

majority of scenarios tested, the agents were able to predict and switch to the optimal

heuristic based on observations of locally communicated task assignments, without a

significant impact on the time to convergence. Additionally, results showed that an ad-

ditional gain in performance could be achieved by enabling the agents to independently

adapt their consensus strategy. In dynamic real-time environments, there are many

unknown changing factors that can affect the relative performance of any heuristic.

Therefore, the performance of static approaches may suffer due to the changeability

of the environment. This study aimed to offer a proof of concept to demonstrate the

potential performance gain of enabling distributed agents to independently adapt their

task allocation strategies according to locally received information. This simple ap-

proach can be extended for more complex scenarios with more sophisticated heuristics

that would enhance agents’ adaptability and capability to optimise the task allocation.

6.2 Future Research directions

The work in this thesis proposes optimisation techniques for distributed task allocation

algorithms that have been tested in simulation. This section details some promising directions

to extend the research.

1. Chapter 3 demonstrated the optimisation of two objectives with a two-step procedure

that optimises one objective at a time through the tuning of score and bid functions. Fu-

ture work could investigate the possibility of optimising additional objectives through

additional steps. One of the drawbacks of changing bid functions when bids are reflec-

tive of the optimality of an assignment is that the bids lose meaning if two agents are

attempting to optimise different objectives. In this case, as was the setup in Chapter 3,



106 Conclusions

the team of networked agents is required to coordinate the time at which they switch

objectives. It would be interesting to investigate a bidding scheme that preserves the

information of the optimality of a task assignment for different objectives, such as

having the agents communicate multiple bid values for a single task assignment, and

combine this with a mechanism similar to the adaptive approach described in Chap-

ter 5. This can enable agents to switch objectives autonomously and asynchronously

according to a prediction of which objective needs to be prioritised. It would also

be worth comparing the performance of such an approach to a static method with a

bidding scheme designed a priori to incorporate multiple objectives, which does not

have the ability to tune which objective is prioritised online.

2. The performance of the fast convergence technique introduced in Chapter 4 is most

effective when agents’ ranks are determined by the network topology. In future work, it

would therefore be interesting to look into combining the rank-based conflict resolution

approach with a fast, flexible and robust method to assign ranks to agents based on the

network topology. The potential in terms of performance could hypothetically achieve

consensus in linear or close to linear time complexity, and as demonstrated by the

results in Chapter 4, maintain a high number of allocations. In combination with such

an extension, it would be beneficial to analyse and prove theoretically the convergence

properties of the proposed method, and provide a formal comparison of the average

and worst case convergence times as compared with previous methods. A hypothesis

of what contributes to the effectiveness of the rank-based conflict resolution posits that

when the ratio of tasks to agents is high, the strategy with which agents self assign

tasks is more significant to the overall task allocation than how agents resolve conflicts

among each other. A theoretical analysis of the conflict resolution strategy will produce

better guarantees of convergence. In terms of application, more sophisticated insertion

heuristics could be employed by the agents to optimise the optimality of their decisions

when self-assigning tasks. The performance could then be analysed to determine if

the initial trade-off incurred by losing bid information can be further compensated by

more advanced insertion heuristics.



6.2 Future Research directions 107

3. The proposed adaptive approach described in Chapter 5 has promising research direc-

tions. Optimising task allocations in dynamic and changing environments for real-time

systems is an important problem. The ability of agents to autonomously and efficiently

adapt their task allocation strategies in line with changing environmental factors is

an exciting research avenue. For the proposed method as applied to consensus-based

task allocation algorithms, future research could investigate a wider range of task

allocation problems, such as those with cross-schedule dependencies, in combination

with a comparison of the accuracy of the prediction functions given different sized

training data. The training data, the inputs, the machine learning tool, and the time of

the prediction, are all factors that can impact the accuracy of the prediction functions,

therefore a deeper investigation into these parameters would provide a useful reference

for the design of adaptive consensus-based task allocation systems. For problems

of greater complexity, additional inputs could be tested to determine the effect on

accuracy. Additional inputs may include the number of tasks an agent removes during

a round due to conflicts. The proposed method could be extended to support more

advanced heuristics, this would enhance agent’s capability to optimise the global task

allocation objective. Furthermore, the proposed approach could be adapted to support

agents in learning the best strategy online, as well as adapting to changing optimisation

objectives.





References

[1] Sergey Alatartsev, Sebastian Stellmacher, and Frank Ortmeier. 2015. Robotic Task
Sequencing Problem: A Survey. Journal of Intelligent & Robotic Systems 80, 2 (2015),
279–298. https://doi.org/10.1007/s10846-015-0190-6

[2] Christopher Amato, Girish Chowdhary, Alborz Geramifard, N. Kemal Ure, and Mykel J.
Kochenderfer. 2013. Decentralized control of partially observable Markov decision
processes. In 52nd Annual Conference on Decision and Control (CDC). IEEE, 2398–
2405.

[3] Christopher Amato, George Konidaris, Gabriel Cruz, Christopher A. Maynor,
Jonathan P. How, and Leslie P. Kaelbling. 2015. Planning for decentralized con-
trol of multiple robots under uncertainty. In International Conference on Robotics and
Automation (ICRA). IEEE, 1241–1248.

[4] Claudia Archetti, Mathieu Bouchard, and Guy Desaulniers. 2011. Enhanced branch and
price and cut for vehicle routing with split deliveries and time windows. Transportation
Science 45, 3 (2011), 285–298.

[5] Jonathan F. Bard, George Kontoravdis, and Gang Yu. 2002. A branch-and-cut procedure
for the vehicle routing problem with time windows. Transportation Science 36, 2 (2002),
250–269.

[6] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W.P. Savelsbergh,
and Pamela H. Vance. 1998. Branch-and-price: Column generation for solving huge
integer programs. Operations research 46, 3 (1998), 316–329.

[7] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002. The
complexity of decentralized control of Markov decision processes. Mathematics of
operations research 27, 4 (2002), 819–840.

[8] Andrea Bettinelli, Alberto Ceselli, and Giovanni Righini. 2011. A branch-and-cut-
and-price algorithm for the multi-depot heterogeneous vehicle routing problem with
time windows. Transportation Research Part C: Emerging Technologies 19, 5 (2011),
723–740.

[9] Giulio Binetti, David Naso, and Biagio Turchiano. 2012. Decentralized task allocation
for heterogeneous agent systems with constraints on agent capacity and critical tasks.
(2012), 1627–1632. https://doi.org/10.1109/ROBIO.2012.6491200

https://doi.org/10.1007/s10846-015-0190-6
https://doi.org/10.1109/ROBIO.2012.6491200


110 References

[10] Giulio Binetti, David Naso, and Biagio Turchiano. 2013. Decentralized task allocation
for surveillance systems with critical tasks. Robotics and Autonomous Systems 61, 12
(2013), 1653–1664. https://doi.org/10.1016/j.robot.2013.06.007

[11] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. 1999. Swarm intelligence: from
natural to artificial systems. Number 1. Oxford university press.

[12] Arne Brutschy, Giovanni Pini, Carlo Pinciroli, Mauro Birattari, and Marco Dorigo.
2014. Self-organized task allocation to sequentially interdependent tasks in swarm
robotics. Autonomous agents and multi-agent systems 28, 1 (2014), 101–125.

[13] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A Comprehensive
Survey of Multiagent Reinforcement Learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 38, 2 (2008), 156–172. https:
//doi.org/10.1109/TSMCC.2007.913919

[14] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. 2013. An overview of recent
progress in the study of distributed multi-agent coordination. IEEE Transactions on
Industrial Informatics 9, 1 (2013), 427–438. https://doi.org/10.1109/TII.2012.2219061

[15] Jesus Cerquides, Alessandro Farinelli, Pedro Meseguer, and Sarvapali D. Ramchurn.
2013. A tutorial on optimization for multi-agent systems. Comput. J. 57, 6 (2013),
799–824.

[16] Archie C. Chapman, Alex Rogers, Nicholas R. Jennings, and David S. Leslie. 2011. A
unifying framework for iterative approximate best-response algorithms for distributed
constraint optimization problems. The Knowledge Engineering Review 26, 4 (2011),
411–444.

[17] Han-Lim Choi, Luc Brunet, and Jonathan P. How. 2009. Consensus-based decentralized
auctions for robust task allocation. IEEE Transactions on Robotics 25, 4 (2009),
912–926.

[18] Han-Lim Choi, Andrew K. Whitten, and Jonathan P. How. 2010. Decentralized task
allocation for heterogeneous teams with cooperation constraints. In American Control
Conference (ACC). IEEE, 3057–3062.

[19] Jens Clausen. 1999. Branch and bound algorithms-principles and examples. Department
of Computer Science, University of Copenhagen (1999), 1–30.

[20] Rongxin Cui, Ji Guo, and Bo Gao. 2013. Game theory-based negotiation for multiple
robots task allocation. Robotica 31, 6 (2013), 923–934. https://doi.org/10.1017/
S0263574713000192

[21] Rina Dechter and David Cohen. 2003. Constraint processing. Morgan Kaufmann.

[22] Erik Demeulemeester and Willy Herroelen. 1992. A branch-and-bound procedure for
the multiple resource-constrained project scheduling problem. Management science 38,
12 (1992), 1803–1818.

https://doi.org/10.1016/j.robot.2013.06.007
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1109/TII.2012.2219061
https://doi.org/10.1017/S0263574713000192
https://doi.org/10.1017/S0263574713000192


References 111

[23] Donato Di Paola, Andrea Gasparri, David Naso, and Frank L. Lewis. 2014. Decentral-
ized dynamic task planning for heterogeneous robotic networks. Autonomous Robots
38 (2014), 31–48. https://doi.org/10.1007/s10514-014-9395-y

[24] Donato Di Paola, David Naso, and Biagio Turchiano. 2011. Consensus-based robust
decentralized task assignment for heterogeneous robot networks. In American Control
Conference (ACC). IEEE, 4711–4716.

[25] M. Bernardine Dias, R. Zlot, N. Kalra, and A. Stentz. 2006. Market-Based Multirobot
Coordination: A Survey and Analysis. Proc. IEEE 94, 7 (2006), 1257–1270. https:
//doi.org/10.1109/JPROC.2006.876939

[26] Jittat Fakcharoenphol, Chris Harrelson, and Satish Rao. 2007. K-Traveling Repairmen
Problem. ACM Transactions on Algorithms 3, 4 (2007), 40. https://doi.org/10.1145/
1290672.1290677

[27] Alessandro Farinelli, Luca Iocchi, and Daniele Nardi. 2004. Multirobot systems: a
classification focused on coordination. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 34, 5 (2004), 2015–2028.

[28] Alessandro Farinelli, Alex Rogers, and Nick R. Jennings. 2014. Agent-based decen-
tralised coordination for sensor networks using the max-sum algorithm. Autonomous
agents and multi-agent systems 28, 3 (2014), 337–380.

[29] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R. Jennings. 2008. De-
centralised coordination of low-power embedded devices using the max-sum algorithm.
In 7th international joint conference on Autonomous agents and multiagent systems,
Vol. 2. IFAAMAS, 639–646.

[30] Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad, and Jaydeep Balakrishnan. 2015.
Mathematical optimization for earliness/tardiness minimization in a multiple automated
guided vehicle manufacturing system via integrated heuristic algorithms. Robotics and
Autonomous Systems 72 (2015), 131–138.

[31] Paulo R. Ferreira, Felipe S. Boffo, and Ana L.C. Bazzan. 2007. Using Swarm-GAP
for distributed task allocation in complex scenarios. In International Conference on
Autonomous Agents and Multiagent Systems. Springer, 107–121.

[32] Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. 2018. Distributed constraint
optimization problems and applications: A survey. Journal of Artificial Intelligence
Research 61 (2018), 623–698.

[33] Merrill M. Flood. 1956. The traveling-salesman problem. Operations Research 4, 1
(1956), 61–75.

[34] Stan Franklin and Art Graesser. 1996. Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents. In International Workshop on Agent Theories, Architectures,
and Languages. Springer, 21–35.

[35] Andrew Garland and Richard Alterman. 2004. Autonomous agents that learn to better
coordinate. Autonomous Agents and Multi-Agent Systems 8, 3 (2004), 267–301.

https://doi.org/10.1007/s10514-014-9395-y
https://doi.org/10.1109/JPROC.2006.876939
https://doi.org/10.1109/JPROC.2006.876939
https://doi.org/10.1145/1290672.1290677
https://doi.org/10.1145/1290672.1290677


112 References

[36] Brian P. Gerkey and Maja J. Matarić. 2004. A Formal Analysis and Taxonomy of Task
Allocation in Multi-Robot Systems. The International Journal of Robotics Research
23, 9 (2004), 939–954. https://doi.org/10.1177/0278364904045564

[37] Matthew Gombolay, Reed Jensen, Jessica Stigile, Sung-Hyun Son, and Julie Shah. 2016.
Apprenticeship Scheduling: Learning to Schedule from Human Experts. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16).
AAAI Press, 826–833. http://dl.acm.org/citation.cfm?id=3060621.3060736

[38] V.I. Gorodetskii. 2012. Self-organization and multiagent systems: I. Models of multia-
gent self-organization. Journal of Computer and Systems Sciences International 51, 2
(2012), 256–281.

[39] Fenton Ho and Mohamed Kamel. 1998. Learning coordination strategies for cooperative
multiagent systems. Machine Learning 33, 2 (1998), 155–177.

[40] Yujing Hu, Yang Gao, and Bo An. 2015. Learning in Multi-agent Systems with Sparse
Interactions by Knowledge Transfer and Game Abstraction. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’15).
IFAAMAS, 753–761.

[41] Simon Hunt, Qinggang Meng, Chris Hinde, and Tingwen Huang. 2014. A consensus-
based grouping algorithm for multi-agent cooperative task allocation with complex
requirements. Cognitive computation 6, 3 (2014), 338–350.

[42] Xiao Jia and Max Q.-H Meng. 2013. A survey and analysis of task allocation algorithms
in multi-robot systems. In International Conference on Robotics and Biomimetics
(ROBIO). IEEE, 2280–2285.

[43] Yichuan Jiang. 2016. A survey of task allocation and load balancing in distributed
systems. IEEE Transactions on Parallel and Distributed Systems 27, 2 (2016), 585–599.

[44] Luke B. Johnson, Han-Lim Choi, and Jonathan P. How. 2016. The Role of Information
Assumptions in Decentralized Task Allocation: A Tutorial. IEEE Control Systems 36,
4 (2016), 45–58.

[45] Luke B. Johnson, Han-Lim Choi, Sameera Ponda, and Jonathan P. How. 2012. Allow-
ing Non-Submodular Score Functions in Distributed Task Allocation. In 51st IEEE
Conference on Decision and Control (CDC). IEEE, 4702–4708.

[46] Luke B. Johnson, Sameera Ponda, Han-Lim Choi, and Jonathan P. How. 2010. Im-
proving the Efficiency of a Decentralized Tasking Algorithm for UAV Teams with
Asynchronous Communications. In AIAA Guidance, Navigation, and Control Confer-
ence. 8421.

[47] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. 2008. Multi-Objective
Vehicle Routing Problems. European Journal of Operational Research 189, 2 (2008),
293–309. https://doi.org/10.1016/j.ejor.2007.05.055

[48] Alaa Khamis, Ahmed Hussein, and Ahmed Elmogy. 2015. Multi-robot Task Allocation:
A Review of the State-of-the-Art. Cooperative Robots and Sensor Networks 2015 604
(2015), 31–51. https://doi.org/10.1007/978-3-319-18299-5_2

https://doi.org/10.1177/0278364904045564
http://dl.acm.org/citation.cfm?id=3060621.3060736
https://doi.org/10.1016/j.ejor.2007.05.055
https://doi.org/10.1007/978-3-319-18299-5_2


References 113

[49] Alexander Kleiner, Alessandro Farinelli, Sarvapali D. Ramchurn, Bing Shi, Fabio Maf-
fioletti, and Riccardo Reffato. 2013. Rmasbench: benchmarking dynamic multi-agent
coordination in urban search and rescue. In International conference on Autonomous
agents and multi-agent systems. IFAAMAS, 1195–1196.

[50] Antoon W.J. Kolen, A.H.G. Rinnooy Kan, and Harry W.J.M. Trienekens. 1987. Vehicle
routing with time windows. Operations Research 35, 2 (1987), 266–273.

[51] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. 2013. A comprehensive
taxonomy for multi-robot task allocation. The International Journal of Robotics
Research 32, 12 (oct 2013), 1495–1512. https://doi.org/10.1177/0278364913496484

[52] C. Ronald Kube and Eric Bonabeau. 2000. Cooperative transport by ants and robots.
Robotics and autonomous systems 30, 1-2 (2000), 85–101.

[53] Philippe Lacomme, Aziz Moukrim, and Nikolay Tchernev. 2005. Simultaneous job
input sequencing and vehicle dispatching in a single-vehicle automated guided vehicle
system: a heuristic branch-and-bound approach coupled with a discrete events simula-
tion model. International Journal of Production Research 43, 9 (2005), 1911–1942.

[54] Michail G. Lagoudakis, Evangelos Markakis, David Kempe, Pinar Keskinocak, Anton J.
Kleywegt, Sven Koenig, Craig A. Tovey, Adam Meyerson, and Sonal Jain. 2005.
Auction-Based Multi-Robot Routing. Robotics: Science and Systems 5 (2005), 98.

[55] Gilbert Laporte. 1992. The vehicle routing problem: An overview of exact and approxi-
mate algorithms. European journal of operational research 59, 3 (1992), 345–358.

[56] Martin Lauer and Martin Riedmiller. 2000. An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. In Seventeenth International Conference
on Machine Learning. Citeseer.

[57] Shen Lin and Brian W. Kernighan. 1973. An effective heuristic algorithm for the
traveling-salesman problem. Operations research 21, 2 (1973), 498–516.

[58] John D.C. Little, Katta G. Murty, Dura W. Sweeney, and Caroline Karel. 1963. An
algorithm for the traveling salesman problem. Operations research 11, 6 (1963),
972–989.

[59] Michael L. Littman. 1994. Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the eleventh international conference on machine learning
(ICML). 157–163.

[60] Lantao Liu, Nathan Michael, and Dylan A. Shell. 2014. Fully Decentralized Task
Swaps with Optimized Local Searching. Robotics: Science and Systems (2014).

[61] Lantao Liu, Nathan Michael, and Dylan A. Shell. 2015. Communication constrained
task allocation with optimized local task swaps. Autonomous Robots 39, 3 (2015),
429–444. https://doi.org/10.1007/s10514-015-9481-9

[62] Lantao Liu and Dylan A. Shell. 2013. An anytime assignment algorithm: From
local task swapping to global optimality. Autonomous Robots 35, 4 (2013), 271–286.
https://doi.org/10.1007/s10514-013-9351-2

https://doi.org/10.1177/0278364913496484
https://doi.org/10.1007/s10514-015-9481-9
https://doi.org/10.1007/s10514-013-9351-2


114 References

[63] Zhixing Luo, Hu Qin, and Andrew Lim. 2014. Branch-and-price-and-cut for the
multiple traveling repairman problem with distance constraints. European Journal of
Operational Research 234, 1 (2014), 49–60.

[64] Rajiv T. Maheswaran, Jonathan P. Pearce, and Milind Tambe. 2004. Distributed Algo-
rithms for DCOP: A Graphical-Game-Based Approach.. In Parallel and Distributed
Computing Systems (PDCS). 432–439.

[65] Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, and Pradeep
Varakantham. 2004. Taking DCOP to the real world: Efficient complete solutions
for distributed multi-event scheduling. In Third International Joint Conference on
Autonomous Agents and Multiagent Systems. IEEE Computer Society, 310–317.

[66] Andrei Marinescu, Ivana Dusparic, and Siobhán Clarke. 2017. Prediction-Based Multi-
Agent Reinforcement Learning in Inherently Non-Stationary Environments. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 12, 2 (2017), 9:1–9:23.

[67] Robert McGill, John W. Tukey, and Wayne A. Larsen. 1978. Variations of box plots.
The American Statistician 32, 1 (1978), 12–16.

[68] Hakim Mitiche, Dalila Boughaci, and Maria Gini. 2015. Efficient Heuristics for a Time-
Extended Multi-Robot Task Allocation Problem. In First International Conference on
New Technologies of Information and Communication (NTIC). IEEE, 1–6.

[69] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. 2005. ADOPT:
Asynchronous distributed constraint optimization with quality guarantees. Artificial
Intelligence 161, 1-2 (2005), 149–180.

[70] Alejandro R. Mosteo and Luis Montano. 2010. A survey of multi-robot task allocation.
Instituto de Investigación en Ingenierıa de Aragón, Technical Report (2010).

[71] Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella. 2003.
Taming decentralized POMDPs: Towards efficient policy computation for multiagent
settings. In Eighteenth International Joint Conference on Artificial Intelligence (IJCAI),
Vol. 3. 705–711.

[72] Maitreyi Nanjanath and Maria Gini. 2010. Repeated auctions for robust task execution
by a robot team. Robotics and Autonomous Systems 58, 7 (2010), 900–909.

[73] Ernesto Nunes, Marie Manner, Hakim Mitiche, and Maria Gini. 2017. A taxonomy
for task allocation problems with temporal and ordering constraints. Robotics and
Autonomous Systems 90 (2017), 55–70.

[74] Alexandru Iulian Orhean, Florin Pop, and Ioan Raicu. 2017. New scheduling approach
using reinforcement learning for heterogeneous distributed systems. J. Parallel and
Distrib. Comput. (2017). https://doi.org/10.1016/j.jpdc.2017.05.001

[75] Nunzia Palmieri, Xin-She Yang, Floriano De Rango, and Salvatore Marano. 2017.
Comparison of bio-inspired algorithms applied to the coordination of mobile robots
considering the energy consumption. Neural Computing and Applications (2017),
1–24.

https://doi.org/10.1016/j.jpdc.2017.05.001


References 115

[76] Liviu Panait and Sean Luke. 2005. Cooperative multi-agent learning: The state of the
art. Autonomous agents and multi-agent systems 11, 3 (2005), 387–434.

[77] Luis Paquete and Thomas Stützle. 2003. A two-phase local search for the biobjec-
tive traveling salesman problem. In International Conference on Evolutionary Multi-
Criterion Optimization. Springer, 479–493.

[78] James Parker, Alessandro Farinelli, and Maria Gini. 2016. Max-sum for allocation of
changing cost tasks. In International Conference on Intelligent Autonomous Systems.
Springer, 629–642.

[79] Sameera Ponda, Josh Redding, Han-Lim Choi, Jonathan P. How, Matt Vavrina, and John
Vian. 2010. Decentralized planning for complex missions with dynamic communication
constraints. In American Control Conference (ACC). IEEE, 3998–4003.

[80] Sameera S. Ponda, Luke B. Johnson, Andrew N. Kopeikin, Han-Lim Choi, and
Jonathan P. How. 2012. Distributed planning strategies to ensure network connectivity
for dynamic heterogeneous teams. IEEE Journal on Selected Areas in Communications
30, 5 (2012), 861–869.

[81] Marc Pujol-Gonzalez, Jesus Cerquides, Alessandro Farinelli, Pedro Meseguer, and
Juan Antonio Rodriguez-Aguilar. 2015. Efficient inter-team task allocation in RoboCup
Rescue. In International Conference on Autonomous Agents and Multiagent Systems.
IFAAMAS, 413–421.

[82] Sarvapali D. Ramchurn, Alessandro Farinelli, Kathryn S. Macarthur, and Nicholas R.
Jennings. 2010. Decentralized coordination in robocup rescue. Comput. J. 53, 9 (2010),
1447–1461.

[83] T. Sandholm. 1998. Contract types for satisficing task allocation. In Proceedings of the
AAAI spring symposium: Satisficing models. 23–25.

[84] Martin Savelsbergh. 1997. A branch-and-price algorithm for the generalized assignment
problem. Operations research 45, 6 (1997), 831–841.

[85] Darren Smith, Jodie Wetherall, Stephen Woodhead, and Andrew Adekunle. 2014. A
cluster-based approach to consensus based distributed task allocation. In International
Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE,
428–431.

[86] Matthijs T.J. Spaan and Frans A. Oliehoek. 2008. The MultiAgent Decision Process
toolbox: software for decision-theoretic planning in multiagent systems. In AAMAS
Workshop on Multi-Agent Sequential Decision Making in Uncertain Domains (MSDM).
107–121.

[87] M. Statheropoulos, A. Agapiou, G. C. Pallis, K. Mikedi, S. Karma, J. Vamvakari, M.
Dandoulaki, F. Andritsos, and C. L. Paul Thomas. 2015. Factors that affect rescue time
in urban search and rescue (USAR) operations. Natural Hazards 75, 1 (2015), 57–69.
https://doi.org/10.1007/s11069-014-1304-3

[88] Peter Stone and Manuela Veloso. 2000. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots 8, 3 (2000), 345–383.

https://doi.org/10.1007/s11069-014-1304-3


116 References

[89] Cynthia Sung, Nora Ayanian, and Daniela Rus. 2013. Improving the performance of
multi-robot systems by task switching. In International Conference on Robotics and
Automation (ICRA). IEEE, 2999–3006.

[90] Katia P. Sycara. 1998. Multiagent systems. AI magazine 19, 2 (1998), 79.

[91] Milind Tambe. 1997. Towards flexible teamwork. Journal of artificial intelligence
research 7 (1997), 83–124.

[92] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Tenth international conference on machine learning. 330–337.

[93] Avraam Th. Tolmidis and Loukas Petrou. 2013. Multi-objective optimization for
dynamic task allocation in a multi-robot system. Engineering Applications of Artificial
Intelligence 26, 5-6 (may 2013), 1458–1468. https://doi.org/10.1016/j.engappai.2013.
03.001

[94] Joanna Turner, Qinggang Meng, and Gerald Schaefer. 2015. Increasing allocated tasks
with a time minimization algorithm for a search and rescue scenario. International
Conference on Robotics and Automation (ICRA) (2015), 3401–3407.

[95] Joanna Turner, Qinggang Meng, Gerald Schaefer, and Andrea Soltoggio. 2018. Dis-
tributed Strategy Adaptation with a Prediction Function in Multi-Agent Task Allocation.
In 17th International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS). IFAAMAS.

[96] Joanna Turner, Qinggang Meng, Gerald Schaefer, and Andrea Soltoggio. 2018. Fast
Consensus for Fully Distributed Multi-Agent Task Allocation. In The 33rd Symposium
On Applied Computing (SAC ’18). ACM/SIGAPP. https://doi.org/10.1145/3167132.
3167224

[97] Joanna Turner, Qinggang Meng, Gerald Schaefer, Amanda Whitbrook, and Andrea
Soltoggio. 2018. Distributed task rescheduling with time constraints for the optimization
of total task allocations in a multirobot system. IEEE transactions on cybernetics 48, 9
(2018), 2583–2597.

[98] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. 2011. The
orienteering problem: A survey. European Journal of Operational Research 209, 1
(2011), 1–10.

[99] Lihui Wang, Shadi Keshavarzmanesh, Hsi-Yung Feng, and Ralph O Buchal. 2009.
Assembly process planning and its future in collaborative manufacturing: a review. The
International Journal of Advanced Manufacturing Technology 41, 1-2 (2009), 132.

[100] Gerhard Weiß. 1995. Adaptation and learning in multi-agent systems: Some remarks
and a bibliography. In International Joint Conference on Artificial Intelligence. Springer,
1–21.

[101] Gerhard Weiss. 1999. Multiagent systems: a modern approach to distributed artificial
intelligence. MIT press.

https://doi.org/10.1016/j.engappai.2013.03.001
https://doi.org/10.1016/j.engappai.2013.03.001
https://doi.org/10.1145/3167132.3167224
https://doi.org/10.1145/3167132.3167224


References 117

[102] Amanda Whitbrook, Qinggang Meng, and Paul W.H. Chung. 2015. A novel distributed
scheduling algorithm for time-critical multi-agent systems. In International Conference
on Intelligent Robots and Systems (IROS). IEEE, 6451–6458. https://doi.org/10.1109/
IROS.2015.7354299

[103] Amanda Whitbrook, Qinggang Meng, and Paul W.H. Chung. 2017. Reliable, dis-
tributed scheduling and rescheduling for time-critical, multiagent systems. IEEE
Transactions on Automation Science and Engineering (2017).

[104] Michael Wooldridge and Nicholas R. Jennings. 1995. Intelligent agents: Theory and
practice. The knowledge engineering review 10, 2 (1995), 115–152.

[105] Dayong Ye, Minjie Zhang, and Athanasios V. Vasilakos. 2017. A survey of self-
organization mechanisms in multiagent systems. IEEE Transactions on Systems, Man,
and Cybernetics: Systems 47, 3 (2017), 441–461.

[106] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. 1998.
The distributed constraint satisfaction problem: Formalization and algorithms. IEEE
Transactions on knowledge and data engineering 10, 5 (1998), 673–685.

[107] Chongjie Zhang and Victor R. Lesser. 2011. Coordinated Multi-Agent Reinforcement
Learning in Networked Distributed POMDPs. In Twenty-Fifth Conference on Artificial
Intelligence (AAAI-11).

[108] Wanqing Zhao, Qinggang Meng, and Paul W.H. Chung. 2015. A heuristic distributed
task allocation method for multivehicle multitask problems and its application to search
and rescue scenario. IEEE transactions on cybernetics 46, 4 (2015), 902–915.

[109] Xiaoming Zheng and Sven Koenig. 2009. K-Swaps : Cooperative Negotiation for
Solving Task-Allocation Problems. In International Joint Conference on Artificial
Intelligence, Vol. 9. 373–379.

https://doi.org/10.1109/IROS.2015.7354299
https://doi.org/10.1109/IROS.2015.7354299

	Table of contents
	List of figures
	List of tables
	List of algorithms
	1 Introduction
	1.1 Motivation
	1.2 Agent Definitions
	1.3 Distributed Systems
	1.4 Multi-Agent Task Allocation Problem
	1.4.1 Utility
	1.4.2 Optimisation Objectives
	1.4.3 Taxonomy
	1.4.4 Planning Architectures

	1.5 Multi-Agent Learning
	1.6 Complexity Theory
	1.7 The Task Allocation Problem of Interest
	1.8 Research Questions
	1.9 Key Contributions
	1.10 Thesis Layout
	1.11 Publications Resulting from this Study

	2 Distributed Task Allocation: Definition and Current Approaches
	2.1 Related Work
	2.1.1 Similar Problems
	2.1.2 Task Allocation Mechanisms
	2.1.3 Centralised Task Allocation
	2.1.4 Decentralised Task Allocation
	2.1.5 CBBA, Extensions and Variations
	2.1.6 Multi-Agent Learning: Related Work

	2.2 Synthesis
	2.3 Consensus Based Bundle Algorithm (CBBA) and Performance Impact (PI) Overview
	2.3.1 Information Space
	2.3.2 Bundle construction phase
	2.3.3 Consensus phase
	2.3.4 Performance Impact (PI)

	2.4 Problem Formulation for PI algorithm
	2.4.1 Multi-Vehicle Task Allocation
	2.4.2 Task Assignment with Time Constraints

	2.5 PI Algorithm
	2.6 Problem Formulation for BW-CBBA extensions
	2.6.1 Basic Definitions
	2.6.2 Problem Constraints
	2.6.3 Objective Function

	2.7 CBBA and BW-CBBA

	3 Distributed Task Rescheduling
	3.1 Introduction
	3.2 PI-MaxAss
	3.2.1 Limitation of previous methods and proposed solution
	3.2.2 Formal Description
	3.2.3 Swap Distance
	3.2.4 Convergence
	3.2.5 Complexity

	3.3 Experiments
	3.3.1 Scenario and Simulation Setup
	3.3.2 Simulation Results

	3.4 Discussion
	3.5 Conclusion

	4 Fast Convergence
	4.1 Introduction
	4.2 CBBA with Fast Convergence Design
	4.2.1 Rank-based Conflict Resolution
	4.2.2 Earliest Deadline First Task Inclusion

	4.3 Performance Analysis
	4.3.1 Assessing Performance
	4.3.2 Experimental Setup
	4.3.3 Results

	4.4 Discussion and Conclusions

	5 Autonomous Strategy Switching
	5.1 Introduction
	5.2 Learning Strategy Adaptation
	5.2.1 Heuristic Strategies
	5.2.2 Agent Observations
	5.2.3 Learning Systems
	5.2.4 Distributed Strategy Adaptation
	5.2.5 Benchmark Algorithms
	5.2.6 Preparation of Dataset

	5.3 Performance Analysis
	5.3.1 Unseen Row Topology, Task Numbers, and Rank-Based Conflict Resolution
	5.3.2 Unseen Agent Numbers and Task Numbers

	5.4 Conclusions

	6 Conclusions
	6.1 Summary of Contributions
	6.2 Future Research directions

	References

