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Abstract: A robust control scheme is proposed for a class of systems with uncertainty

and time delay based on disturbance observer technique. A disturbance observer is de-

veloped to estimate the disturbance generated by an exogenous system, and the design

parameter of the disturbance observer is determined by solving linear matrix inequalities

(LMIs). Based on the output of the disturbance observer, a robust control scheme is

proposed for the time delay uncertain system. The disturbance-observer-based robust

controller combines two parts: one is a linear feedback controller designed using LMIs

and the other is a compensatory controller designed with the output of the disturbance

observer. By choosing an appropriate Lyapunov function candidate, the stability of the

closed-loop system is proved. Finally, simulation example is presented to illustrate the

effectiveness of the proposed control scheme.

Keywords: Uncertain system, Time delay, Disturbance observer, Robust control, Lya-

punov method, LMI.

1 Introduction

As is well known, time delay often appears in many practical processes such as manual controls,

neural networks, population dynamic models, rolling mills, and ship stabilization [1-8]. Furthermore,

time-delay and uncertainties result in the instability and performance degradation of the closed-

loop system. Therefore, considerable attention has been paid to stability analysis and robust control

design for time delay uncertain systems over the past years. Various effective techniques and their ap-

plications have been proposed, and their properties such as stability have been rigorously established.
∗Corresponding author: chenmou@nuaa.edu.cn
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The guaranteed cost control was investigated for parameter uncertain systems with time delay in [1].

Kim [2] studied the robust stability of time-delayed linear systems with uncertainties. The problem

of delay-dependent robust stability was investigated for systems with time-varying structured un-

certainties and time-varying delays [3]. A robust controller was proposed in [4] for delay-dependent

neutral systems with mixed delays and time-varying structured uncertainties. Sliding mode control

scheme was presented for the robust stabilization of uncertain linear input-delay systems with non-

linear parametric perturbations in [5]. In [6], the stability of systems in the presence of bounded

uncertain time-varying delays in the feedback loop was analysed. Han [7] studied the absolute sta-

bility for a class of nonlinear neutral systems using a discretized Lyapunov functional approach. In

[8], an adaptive neural control scheme was proposed for a class of uncertain multi-input multi-output

(MIMO) nonlinear state time-varying delay systems in a triangular control structure with unknown

nonlinear dead-zones and gain signs.

In the controller design of time delay uncertain systems, among a few others, there are two

most widely used methods: guaranteed cost control and H∞ control. The objective of guaranteed

cost control is to design a feedback controller to stabilize a dynamic system and to provide an upper

bound on the performance index in the presence of allowable uncertainty. The guaranteed cost control

problem was studied for a class of linear time-delay systems via a memoryless state feedback control

method in [9]. Lien [10] proposed a non-fragile guaranteed cost controller for a class of uncertain

neutral system with time varying delays in both state and control input. The robust guaranteed cost

controller was proposed for a class of uncertain neutral system with time-varying delays in [11]. In

[12], a robust guaranteed cost control scheme for uncertain linear time-delay systems was proposed

using dynamic output feedback.

In practical, except modeling error and parameter uncertainty, a time delay system may be subject

to various external disturbances. The control of time delay uncertain systems with disturbance is

an interesting topic. However, the guaranteed cost control is not sufficient to handle this kind

control problem. Instead, the H∞ control scheme provide a very useful tool to address this problem.

There have considerable research effort on H∞ control for uncertain time-delay systems. A H∞

control scheme for a class of linear systems with time-delays was proposed in [13]. Zhang and

Han [14] studied the problem of delay-dependent robust H∞ filtering for uncertain linear systems

with time-varying delay. In [15], a H∞ controller design method for continuous-time linear systems

with time delay and actuator faults was investigated based on a LMI technique and an adaptive

method. The issues of stability and H∞ control of linear systems with time-varying delays was

considered in [16]. Kim and Oh [17] proposed the robust and non-fragile H∞ control for descriptor
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systems with parameter uncertainties and time delay. Delay-dependent robust H∞ control was

proposed for uncertain systems with a state-delay in [18]. In [19], the robustness and H∞ control

problems of output dynamic observer-based control for a class of uncertain linear systems with time

delay was studied. The robust H∞ control scheme was proposed for linear time-delay systems with

norm-bounded time-varying uncertainty in [20]. H∞ control have achieved widely regarded success.

However the main drawbacks of this approach is that no information of the disturbance can be

exploited within this framework. Further more, it is quite hard to directly address time domain

specifications in tracking and regulation.

Many disturbances in real engineering are periodic and has inherit characteristic such as harmon-

ics and unknown constant load. They can be modeled as output of a neutral stable exogenous system.

This approach has been widely used in linear and nonlinear control such as internal model control,

robust servo-regulator schemes and nonlinear regulation theory; for example [28], [21]. Over the last

few years, considerable attention has been paid to the design of a disturbance observer to exploring

the information about the characteristic of disturbances, where a disturbance observer can be used

to approximate the system disturbance and a robust controller based on the output of the distur-

bance observer is designed to compensate the influence of unknown disturbances. Recently, using

disturbance observers to study the robust control of nonlinear systems has been received increasing

attention. Kim [22-23] proposed fuzzy disturbance observer and studied its application to control

discrete-time and continuous-time systems. Chen [24] presented a general framework for nonlinear

systems subject to disturbances using disturbance observer based control (DOBC) techniques. A new

nonlinear PID predictive control scheme was proposed based on disturbance observers in [25]. These

research results are applicable for systems whose disturbance relative degree is larger than or equal

to their input relative degree, and disturbance is only present in one dimension. Applications have

shown that disturbance observers can enhance disturbance attenuation and performance robustness.

In [26], a nonlinear disturbance observer-based approach was proposed for longitudinal dynamics of

a missile, while a new nonlinear disturbance observer for robotic manipulators was derived in [27].

Nevertheless, those research results did not consider a system with time delay.

This work is motivated by improving disturbance attenuation performance for robust control of

time delay uncertain systems. To utilize the information of disturbances, a disturbance observer

is developed to estimate disturbances generated by a linear exogenous system via linear matrix

inequality (LMI). Using the output of the disturbance observer, a robust control scheme is developed.

It is shown that zero steady state error can be achieved under the proposed scheme. The structure

of the paper is as follows. The control problem for a class of time-delayed uncertain systems under
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disturbances is formulated in Section 2 and the design of disturbance observers is described in Section

3. Section 4 presents the design of a composite robust controller for a class of time-delayed uncertain

systems using the output of disturbance observers, while the simulation results are given in Section

5, followed by concluding remarks in Section 6.

2 Problem description

Consider a time delay uncertain system described in the form of

ẋ(t) = [A + ∆A(t)]x(t) + [Ad + ∆Ad(t)]x(t− τ(t)) + B(u(t) + d(t)), t ≥ 0

x(t) = φ(t), t ∈ [−τM , 0] (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input vector, and d ∈ Rm is the system

input disturbance with unknown boundary. A, Ad , and B are constant matrices with corresponding

dimensions. φ(t) is the initial vector of the system. The time delay, τ(t) , is a time-varying continuous

known function which satisfies

0 ≤ τ(t) ≤ τM , τ̇(t) ≤ τD < 1 (2)

The uncertainties of system (1) are assumed to be of the form

[
∆A(t) ∆Ad(t)

]
= DF (t)

[
E1 E2

]
(3)

where D , E1 and E2 are constant matrices with corresponding dimensions, representing the system

structure uncertainty. F (t) is an unknown, real and possibly time-varying matrix with Lebesgue-

measurable elements satisfying

F T (t)F (t) ≤ I, ∀t. (4)

For the time delay uncertain system (1), a robust control can be designed using the H∞ control

method. In H∞ setting, no information about the disturbances is required (except the noise has

a limited power). Consequently, the disturbance attenuation results could be quite conservative.

Similar to other work in robust servo regulator and nonlinear regulation theory, this paper consider

a class of disturbance which can be modeled as output of an exogenous system. A disturbance

observer is proposed to approximate the system disturbance, and a robust controller taking into

account the output of the disturbance observer is designed for the time delay uncertain systems (1).

The designed robust controller utilises estimate information of disturbance which results in a much
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improved disturbance attenuation ability. As will be shown in Section 6, in contrast to H∞ control,

zero steady state error is achieved under the proposes scheme.

To proceed with the design of a robust controller for the time delay uncertain system, the following

lemma is required.

Lemma 1: Assume that X and Y are vectors or matrices with appropriate dimension. The

following inequality

XT Y + Y T X ≤ αXT X + α−1Y T Y (5)

holds for any constant α > 0.

3 Disturbance observer

In this section, a disturbance observer is proposed for monitoring the disturbance of the uncertain

time delay system (1). Suppose that the disturbance d(t) of system (1) is generated by a linear

exogenous system




ξ̇ = Wξ

d = V ξ
(6)

where ξ ∈ Rn and d ∈ Rm. W and V are matrices with corresponding dimensions. As shown in

[24], [28] and [21], a wide class of real engineering disturbance can be represented by this disturbance

model (6). For example, for a unknown constant load disturbance, it can be represented by (6) with

W = 0 and V = 1. For a harmonic disturbance with known frequency ω but unknown phase and

magnitude, it can be represented by (6) with

W =




0 ω

−ω 0


 , V =

[
1 0

]
(7)

To estimate the unknown disturbance d of the time delay system, a disturbance observer is

proposed as follows.




ς̇(t) = (W + LBV )(ς(t)− Lx(t)) + L(Ax(t) + Adx(t− τ(t)) + Bu)

ξ̂(t) = ς(t)− Lx(t)

d̂(t) = V ξ̂(t)

(8)

where L ∈ Rn×n is a gain matrix which is a design parameter of disturbance observer which will be

given by LMI.
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Define e(t) = ξ(t) − ξ̂(t). Differentiating e(t) with respect to time, and considering (6) and (8)

result in

ė = ξ̇(t)− ˙̂
ξ(t) = Wξ − (W + LBV )(ς(t)− Lx(t))− L(Ax(t) + Adx(t− τ(t)) + Bu) + Lẋ (9)

Considering (6) and (8), and invoking (1), we obtain

ė = Wξ − (W + LBV )(ς(t)− Lx(t))− L(Ax(t) + Adx(t− τ(t)) + Bu)

+ L[A + ∆A(t)]x(t) + L[Ad + ∆Ad(t)]x(t− τ(t)) + LBu + LBd(t)

= (W + LBV )e(t) + L∆A(t)x(t) + L∆Adx(t− τ(t)) (10)

The objective of disturbance approximation can be achieved by designing the observer gain matrix

L such that Eq.(10) satisfies the desired stability and robustness performance.

Remark 1: It can be seem form Eq.(10) that L is an important design parameter of the dis-

turbance observer (8). The choice of L has influence not only on the stability of the observer,

i.e. W + LBV < 0, but also on robust performance under the uncertainties L∆A(t)x(t) and

L∆Ad(t)x(t− τ(t)).

4 Design of disturbance-observer-based robust controller

In this section, the robust controller is proposed based on the disturbance observer. Suppose that

the system states can be directly measured. Then the robust controller can be designed as

u(t) = uk(t) + uc(t) (11)

where

uk(t) = Kx(t) (12)

uc(t) = −d̂ (13)

where uk is the linear state feedback controller, and uc is a compensatory controller. Matrix K will

be given by solving the LMI. d̂ is the approximation of the system disturbance d, and it is the output

of disturbance observer (8).

The main task is now to design disturbance gain matrix L, and feedback gain matrix K such

that the closed-loop system states and disturbance observer approximation error are asymptotically

stable. For the disturbance observer and robust controller proposed in (8) and (11) respectively, the

stability condition is given in the following theorem.
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Theorem 1: For given positive constants αi, i = 1, 2, 3, 4, if there exist some matrices X ∈
Rn×n > 0 , P̄1 ∈ Rn×n > 0 , P2 ∈ Rn×n > 0, H ∈ Rn×n , Y ∈ Rm×n , Q̄1 ∈ Rn×n , Q̄2 ∈ Rn×n ,

Q̄3 ∈ Rn×n and Q̄4 ∈ Rn×n such that the following LMI hold:



Λ11 Λ12 Λ13 Λ14 XET
1 0 0

ΛT
12 Λ22 Λ23 Λ24 0 HD 0

ΛT
13 ΛT

23 Λ33 Λ34 0 0 XET
2

ΛT
14 ΛT

24 ΛT
34 Λ44 0 0 0

E1X 0 0 0 −(α−1
1 + α−1

3 )−1I 0 0

0 DT HT 0 0 0 −(α3 + α4)−1I 0

0 0 E2X 0 0 0 −(α−1
2 + α−1

4 )−1I




< 0 (14)

where Λ11 = AX + BY + XAT + Y T BT + P̄1 − Q̄1 − Q̄T
1 + (α1 + α2)DDT , Λ12 = BV − Q̄4,

Λ13 = AdX − Q̄2 + Q̄T
1 , Λ14 = −Q̄3 + Q̄T

1 , Λ22 = P2W + W T P2 + HBV + V T BT HT , Λ23 = Q̄T
4 ,

Λ24 = Q̄T
4 , Λ33 = (τD−1)P̄1+Q̄2+Q̄T

2 , Λ34 = Q̄3+Q̄T
2 , Λ44 = Q̄3+Q̄T

3 . Then the closed-loop system

states and disturbance observer approximation error are asymptotically stable under the proposed

composite control law (11) when selecting K = Y X−1 and L = P−1
2 H.

Proof: Let the Lyapunov function candidate be given by

V (x(t), e(t)) = xT (t)Px(t) +
∫ t

t−τ(t)
xT (s)P1x(s)ds + eT (t)P2e(t) (15)

where P = X−1 and P1 = X−1P̄1X
−1 are positive-definite matrices with corresponding dimensions.

Substituting (11), (12) and (13) into (1) yield

ẋ(t) = (A + ∆A)x(t) + (Ad + ∆Ad)x(t− τ(t)) + B(Kx(t) + uc) + Bd(t)

= (A + ∆A + BK)x(t) + (Ad + ∆Ad)x(t− τ(t))−Bd̂ + Bd(t) (16)

According to Leibniz-Newton formula
∫ t

t−τ
ẋ(s)ds− x(t) + x(t− τ) = 0 (17)

the time derivatives of V (x(t), e(t)), along the trajectories of system (1), is given by

V̇ = xT (t)[P (A + ∆A + BK) + (A + ∆A + BK)T P ]x(t) + 2xT (t)P (Ad + ∆Ad)x(t− τ)

+ 2xT (t)PBd(t)− 2xT (t)PBd̂(t) + xT (t)P1x(t)− (1− τ̇)xT (t− τ)P1x(t− τ) + 2eT P2ė

+
[∫ t

t−τ
ẋ(s)ds− x(t) + x(t− τ)

]T [
Q1x(t) + Q2x(t− τ) + Q3

∫ t

t−τ
ẋ(s)ds + Q4e(t)

]

+
[
Q1x(t) + Q2x(t− τ) + Q3

∫ t

t−τ
ẋ(s)ds + Q4e(t)

]T [∫ t

t−τ
ẋ(s)ds− x(t) + x(t− τ)

]
(18)
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Define d̃ = d− d̂ . Substituting (10) into (18) yields

V̇ = xT (t)[P (A + BK) + (A + BK)T P ]x(t) + xT (t)[P∆A + ∆AT P ]x(t) + xT (t)PAdx(t− τ)

+ xT (t− τ)AT
d Px(t) + xT P∆Adx(t− τ) + xT (t− τ)∆AT

d Px(t) + xT (t)PBd̃(t)

+ d̃T (t)BT Px(t) + xT (t)P1x(t)− (1− τ̇)xT (t− τ)P1x(t− τ)

+
[∫ t

t−τ
ẋ(s)ds− x(t) + x(t− τ)

]T [
Q1x(t) + Q2x(t− τ) + Q3

∫ t

t−τ
ẋ(s)ds + Q4e(t)

]

+
[
Q1x(t) + Q2x(t− τ) + Q3

∫ t

t−τ
ẋ(s)ds + Q4e(t)

]T [∫ t

t−τ
ẋ(s)ds− x(t) + x(t− τ)

]

+ eT (t)[P2(W + LBV ) + (W + LBV )T P2]e(t) + eT (t)P2L∆Ax(t) + xT (t)∆AT LT P2e

+ eT (t)P2L∆Adx(t− τ) + xT (t− τ)∆AT
d LT P∈e(t) (19)

Recalling (6) and (8), it obtains

d̃ = d− d̂ = V ξ(t)− V ξ̂(t) = V e (20)

Considering (3) and substituting (20) into (19), we have

V̇ = xT (t)[P (A + BK) + (A + BK)T P ]x(t) + xT (t)[PDFE1 + ET
1 F T DT P ]x(t)

+ xT (t)PAdx(t− τ) + xT (t)(t− τ)AT
d Px(t) + xT (t)PDFE2x(t− τ)

+ xT (t− τ)ET
2 F T DT Px(t) + xT (t)PBV e(t) + eT (t)V T BT Px(t)

+ xT (t)P1x(t)− (1− τ̇)xT (t− τ)P1x(t− τ)

+
[∫ t

t−τ
ẋ(s)ds− x(t) + x(t− τ)]T [Q1x(t) + Q2x(t− τ) + Q3

∫ t

t−τ

˙x(s)ds + Q4e(t)
]

+ [Q1x(t) + Q2x(t− τ) + Q3

∫ t

t−τ
ẋ(s)ds + Q4e(t)]T

[∫ t

t−τ
ẋ(s)ds− x(t) + x(t− τ)

]

+ eT (t)[P2(W + LBV ) + (W + LBV )T P2]e(t) + eT (t)P2LDFE1x(t)

+ xT (t)ET
1 F T DT LT P2e(t) + eT (t)P2LDFE2x(t− τ) + xT (t− τ)ET

2 F T DT LT P2e(t) (21)

Using Lemma 1, one can show that

xT (t)[PDFE1 + ET
1 F T DT P ]x(t) ≤ α1x

T (t)PDDT Px(t) + α−1
1 xT (t)ET

1 E1x(t) (22)

xT (t)PDFE2x(t− τ) + xT (t− τ)ET
2 F T DT Px(t)

≤ α2x
T (t)PDDT Px(t) + α−1

2 xT (t− τ)ET
2 E2x(t− τ) (23)

eT (t)P2LDFE1x(t) + xT (t)ET
1 F T DT LT P2e(t)

≤ α3e
T (t)P2LDDT LT P2e(t) + α−1

3 xT (t)ET
1 E1x(t) (24)
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eT (t)P2LDFE2x(t− τ) + xT (t− τ)ET
2 F T DT LT P2e(t)

≤ α4e
T (t)P2LDDT LT P2e(t) + α−1

4 xT (t− τ)ET
2 E2x(t− τ) (25)

Substituting (22)-(25) into (21) gives

V̇ ≤ xT (t)[P (A + BK) + (A + BK)T P ]x(t) + α1x
T (t)PDDT Px(t)

+ α−1
1 xT (t)ET

1 E1x(t) + xT (t)PAdx(t− τ) + xT (t− τ)AT
d Px(t)

+ α2x
T (t)PDDT Px(t) + α−1

2 xT (t− τ)ET
2 E2x(t− τ) + xT (t)PBV e(t)

+ eT (t)V T BT Px(t) + xT (t)P1x(t)− (1− τ̇)xT (t− τ)P1x(t− τ)

+
[∫ t

t−τ
ẋ(s)− x(t) + x(t− τ)

]T [
Q1x(t) + Q2x(t− τ) + Q3

∫ t

t−τ

˙x(s)ds + Q4e(t)
]

+
[
Q1x(t) + Q2x(t− τ) + Q3

∫ t

t−τ
ẋ(s)ds + Q4e(t)

]T [∫ t

t−τ
ẋ(s)− x(t) + x(t− τ)

]

+ eT (t)[P2(W + LBV ) + (W + LBV )T P2]e(t) + α3e
T (t)P2LDDT LT P2e(t)

+ α−1
3 xT (t)ET

1 E1x(t) + α4e
T (t)P2LDDT LT P2e(t) + α−1

4 xT (t− τ)ET
2 E2x(t− τ) (26)

Eq.(26) can be rewritten as

V̇ ≤




x(t)

e(t)

x(t− τ)
∫ t
t−τ ẋ(s)ds




T

Ω̄0




x(t)

e(t)

x(t− τ)
∫ t
t−τ ẋ(s)ds




(27)

where

Ω̄0 =




Λ̄11 Λ̄12 Λ̄13 Λ̄14

Λ̄T
12 Λ̄22 Λ̄23 Λ̄24

Λ̄T
13 Λ̄T

23 Λ̄33 Λ̄34

Λ̄T
14 Λ̄T

24 Λ̄T
34 Λ̄44




(28)

where Λ̄11 = P (A+BK)+(A+BK)T P +P1−Q1−QT
1 +(α1 +α2)PDDT P +α−1

1 ET
1 E1 +α−1

3 ET
1 E1,

Λ̄12 = PBV −Q4, Λ̄13 = PAd−Q2 +QT
1 , Λ̄14 = −Q3 +QT

1 , Λ̄22 = P2(W +LBV )+(W +LBV )T P2 +

(α3 +α4)P2LDDT LT P2, Λ̄23 = QT
4 Λ̄24 = QT

4 , Λ̄33 = (τD− 1)P1 +Q2 +QT
2 +α−1

2 ET
2 E2 +α−1

4 ET
2 E2,

Λ̄34 = Q3 + QT
2 , Λ̄44 = Q3 + QT

3 .

Suppose that

P = X−1,K = Y X−1, P1 = PP̄1P, L = P−1
2 H, Q1 = PQ̄1P,

Q2 = PQ̄2P, Q3 = PQ̄3P,Q4 = PQ̄4 (29)
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Left and right multiplying both sides of (28) by diag{P−1, I, P−1, P−1}, one obtains

Ω0 =




¯̄Λ11
¯̄Λ12

¯̄Λ13
¯̄Λ14

¯̄Λ
T

12
¯̄Λ22

¯̄Λ23
¯̄Λ24

¯̄Λ
T

13
¯̄Λ

T

23
¯̄Λ33

¯̄Λ34

¯̄Λ
T

14
¯̄Λ

T

24
¯̄Λ

T

34
¯̄Λ44




(30)

where ¯̄Λ11 = AX + BY + XAT + Y T BT + P̄1− Q̄1− Q̄T
1 + (α1 + α2)DDT + (α−1

1 + α−1
3 )XET

1 E1X ,
¯̄Λ12 = BV −Q̄4, ¯̄Λ13 = AdX−Q̄2 +Q̄T

1 , ¯̄Λ14 = −Q̄3 +Q̄T
1 , ¯̄Λ22 = P2W +W T P2 +HBV +V T BT HT +

(α3 + α4)HDDT HT , ¯̄Λ23 = Q̄T
4

¯̄Λ24 = Q̄T
4 , ¯̄Λ33 = (τD − 1)P̄1 + Q̄2 + Q̄T

2 + (α−1
2 + α−1

4 )XET
2 E2X ,

¯̄Λ34 = Q̄3 + Q̄T
2 , ¯̄Λ44 = Q̄3 + Q̄T

3 .

Eq.(30) can be rewritten as

Ω0 =




Λ11 Λ12 Λ13 Λ14

ΛT
12 Λ22 Λ23 Λ24

ΛT
13 ΛT

23 Λ33 Λ34

ΛT
14 ΛT

24 ΛT
34 Λ44




+ ∆ (31)

where

∆ =




XET
1 0 0

0 HD 0

0 0 XET
2







(α−1
1 + α−1

3 )I 0 0

0 (α3 + α4)I 0

0 0 (α−1
2 + α−1

4 )







E1X 0 0

0 DT HT 0

0 0 E2X



.

Considering (14) and applying the Schur complement theorem, it can be shown that

Ω0 < 0 (32)

Combining (27), (28), (30), (31) with (32) reaches

V̇ < 0 (33)

It follows from Eq.(33) that the closed loop system states of the time delay uncertain system and

disturbance observer approximation error are asymptotically stable. Hence, the convergence of x and

e is proven using the Lyapunov stability criterion.

Remark 2: Solving the inequality (14) yields the feedback gain matrix K and disturbance

observer gain matrix L. Eq.(14) is a LMI after αi, i = 1, 2, 3, 4 are chosen. This will introduce

conservativeness with a given set of αi. The conservativeness can be reduced by using linear search

techniques. The feedback gain matrix K and disturbance observer matrix L satisfying Eq.(14)
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guarantee the convergence of the disturbance observer estimate error and zero state state error of

the system states.

Remark 3: A delay-independent stabilization control is developed in this paper. All the existing

robust control methods and stability conditions for time delay systems can be classified into delay-

independent and delay-dependent categories. As it is well known, delay-independent methods give

results irrespective of the size of delay, while the delay-dependent results for time delay systems are

dependent of the size of delay. In general, the delay-dependent stabilization is considered to be less

conservative than the delay-independent one.

5 Simulation example

For illustrating the effectiveness of the proposed control scheme, an example is given to show the

effectiveness in this section.

The longitudinal dynamics of a fighter at H = 2800ft and V = 0.5M can be expressed as



θ̇

θ̈

α̇




= (A + ∆A(t))




θ

θ̇

α




+ [Ad + ∆Ad(t)]x(t− τ(t)) + B







δz1

δz2


 + d(t)


 (34)

where x = [θ, θ̇, α]T , θ, θ̇ and α denote pitching angle, pitching rate and angle of attack, respectively.

δz1 and δz2 stand elevator and flap deflection angle, respectively. When time delay and uncertainty

are considered, Eq.(34) can be written as the form of system (1), where

A =




1 0 0

1 −0.87 43.2

0 0.99 −1.34




, Ad =




0.8 0 0

0 −0.87 0

0 0.99 −1




, B =




1 0

−17.25 −1.58

−0.17 −0.25




,

D =




1 0 0

0 1 0

0 0 1




, F =




sin(t)/2 0 0

0 cos(t)/2 0

0 0 sin(t)/2




,

E1 =




0.2 0 0

0 0.2 0


 , E2 =




0.3 0 0

0 0.3 0

0 0 0.3




, τM = 1, τD = 0.5.
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The system disturbance d(t) can be generated by a linear exogenous neutral stable system de-

scribed by (6) with

W =




0 1.5 0

−1.5 0 0

0 0 −1.5




, V =




1 0 0

0 1 0




which represents an external periodic disturbance with known frequency but without any information

of its magnitude and phase.

With α1 = α2 = α3 = α4 = 1, solving LMI (14) gives

X =




0.9948 0.0053 −0.8577

0.0053 1.4813 0.2789

−0.8577 0.2789 3.1306




, P̄1 =




4.5197 −0.2276 0.9174

−0.2276 8.3131 0.1340

0.9174 0.1340 8.5229




,

P2 =




5.1318 1.5042 0.0211

1.5042 5.7386 0.0549

0.0211 0.0549 2.5446




,H =




−0.0621 0.6382 0.0061

0.6382 0.1058 −0.0014

0.0061 −0.0014 0.0006




,

Q̄1 =




−0.0236 0.0841 −0.6509

0.0841 −2.1655 −0.2406

−0.6509 −0.2406 −1.0964




, Q̄2 =




−0.3248 0.0271 0.2028

0.0271 −0.4675 −0.0972

0.2028 −0.0972 −1.3232




,

Q̄3 =




−1.3548 0.0276 −0.1409

0.0276 −1.3193 −0.0166

−0.1409 −0.0166 −1.2556




, Q̄4 =




0.1916 −1.1576 −0.1207

−1.1576 −0.2321 −0.0523

−0.1207 −0.0523 −0.0028




,

Y =



−6.0529 −8.2356 4.1912

36.9789 107.8751 23.7502


 , K =



−5.8547 −5.5824 0.2322

49.7211 69.8247 14.9872


 ,

L =




−0.0484 0.1289 0.0014

0.1239 −0.0153 −0.0006

0.0001 −0.0013 0.0003




,W + LBV =




−2.2714 1.2961 0

−1.1115 0.0244 0

0.0223 0.0020 −1.5000




,

The initial state values are x0 = [0.1,−0.1, 0]T , the initial generated disturbance value are

d0 = [−0.12,−0.13]T , and the disturbance observer initial value are d̂0 = [−0.1,−0.1]T . The robust
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Figure 1: The closed-loop state response

controller is designed according to (11), and the simulation results are shown in Fig.1-Fig.3. It is

shown in Fig.1 that the stability of the closed-loop system can be obtained under the proposed robust

controller. The simulation results shown in Figs.2 and 3 indicate that the output of disturbance can

effectively approximate the unknown external harmonic disturbance.

From these simulation results of the example, we can know that the disturbance observer can well

approximate the system disturbance, and the designed robust control scheme based on disturbance

observer is valid.

6 Conclusion

In this paper, a disturbance-observer-based robust controller is proposed for a class of time delay

uncertain systems. To enhance the disturbance attenuation and performance robustness, the dis-

turbance observer is designed, and it can be used to approximate the system disturbance which is

generated by a linear exogenous system. Based on the output of the disturbance observer, a robust

controller is presented for the time delay uncertain system, and the stability is proved of the closed-

loop system using Lyapunov method. Finally, an example is used to illustrate the effectiveness of

the proposed robust control scheme. The simulation result suggests that the designed robust control
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Figure 2: The disturbance d1 and the approximation output of d̂1
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Figure 3: The disturbance d2 and the approximation output of d̂2
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scheme is valid.

Acknowledgment

This work is partially supported by Jiangsu Natural Science function (Granted Number: SBK2008390)

and Aeronautical Science Foundation of China (Granted Number: 20075152014). The authors also

gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved

the presentation.

References

[1] J H Kim. Guaranteed cost control of parameter uncertain systems with time delay. International

Journal of Control, Automation, and Systems. 2000, 2(1): 19 - 23

[2] J H Kim. Delay and its time-derivative dependent robust stability of time-delayed linear systems

with uncertainty. IEEE Transaction on Automatic Control. 2001, 46(5):789-792

[3] M Wu, Y He, J H She, G P Liu . Delay-dependent criteria for robust stability of time-varying

delay systems . Automatica. 2004, 40 (6): 1435-1439

[4] Yong He, M Wu , J H She, G P Liu. Delay-dependent robust stability criteria for uncertain

neutral systems with mixed delays. Systems & Control Letters. 2004, 51 (1): 57-65

[5] Y H Roh, J H Oh. Robust stabilization of uncertain input-delay systems by sliding mode control

with delay compensation. Automatica. 1999, 35 (11): 1861-1865

[6] C Y Kao, A Rantzer. Stability analysis of systems with uncertain time-varying delays. Auto-

matica. 2007, 43 (6): 959 -970

[7] Q L Han . A new delay-dependent absolute stability criterion for a class of nonlinear neutral

systems. Automatica. 2008, 44 (1) 272 - 277

[8] T P Zhang, S S Ge. Adaptive neural control of MIMO nonlinear state time-varying delay systems

with unknown dead-zones and gain signs. Automatica. 2007, 43 (6): 1021 - 1033

[9] L Yu, J Chu. An LMI approach to guaranteed cost control of linear uncertain time-delay systems.

Automatica. 1999, 35 (6) :1155-1159

15



[10] C H Lien. Non-fragile guaranteed cost control for uncertain neutral dynamic systems with time-

varying delays in state and control input. Chaos, Solitons and Fractals. 2007, 31 (4): 889-899

[11] C H Lien. Delay-dependent and delay-independent guaranteed cost control for uncertain neutral

systems with time-varying delays via LMI approach. Chaos, Solitons and Fractals. 2007, 33 (3):

1017-1027

[12] H Z Li, S I Niculescu1, L Dugard J M Dion. Robust guaranteed cost control of uncertain linear

time-delay systems using dynamic output feedback. Mathematics and Computers in Simulation.

1998, 45 (3): 349-358

[13] G P Lu, L F Yeung. H∞-control problem for linear systems with multiple time-delays via

dynamic output feedback . Mathematics and Computers in Simulation. 2002, 60 (3):335-345

[14] X M Zhang, Q L Han. Robust H∞ filtering for a class of uncertain linear systems with time-

varying delay . Automatica. 2008, 44 (1): 157 - 166

[15] D Ye, G H Yang. Adaptive reliable H∞ control for linear time-delay systems via memory state

feedback. IET Control Theory Appl.. 2007, 1 (3): 713-721

[16] V Suplin, E Fridman, U Shaked . H∞ control of linear uncertain time-delay systems-a projection

approach. IEEE Transaction on Automatic Control. 2006, 51(4):680-685

[17] J H Kim, D C Oh. Robust and non-fragile H∞ control for descriptor systems with parameter

uncertainties and time delay. International Journal of Control, Automation, and Systems. 2007,

5(1): 8-14

[18] Y S Lee, Y S Moon, W H Kwon, P G Park. Delay-dependent robust H∞ control for uncertain

systems with a state-delay. Automatica. 2004, 40 (1): 65-72

[19] J D Chen. Robust H∞ output dynamic observer-based control of uncertain time-delay systems.

Chaos, Solitons and Fractals. 2007, 31(2): 391-403

[20] L Yu, J Chu, H Y Su. Robust memoryless H∞ controller design for linear time-delay systems

with norm-bounded time-varying uncertainty. Automatica. 1996, 32(12): 1759-1762

[21] J Huang. On the minimal robust servo-regulator for nonlinear systems. Systems & Control

Letters. 1995; 26(3):313-320

16



[22] E Kim. A discrete-time fuzzy disturbance observer and its application to control. IEEE Trans-

action on Fuzzy Systems. 2003; 11(3):399-410

[23] E Kim. A fuzzy disturbance observer and its application to control. IEEE Transaction on Fuzzy

Systems. 2002; 10(1):77-84

[24] W H Chen. Disturbance observer based control for nonlinear systems. IEEE Transaction on

Mechatronics. 2004; 9(4):706-710

[25] W H Chen, D J Ballance, P J Gawthrop, J O’Reilly. Nonlinear PID predictive controller. IEE

Proc.-Control Theory Appl.. 1999; 146(6):603-611

[26] W H Chen. Nonlinear disturbance observer-enhanced dynamical inversion control of missiles.

Journal of Guidance, Control, and Dynamics. 2003; 26(1):161-166

[27] W H Chen, D J Ballance, P J Gawthrop, J O’Reilly. A nonlinear disturbance observer for robotic

manipulators. IEEE Transaction on Industrial Eleectronics. 2000; 47(4); 932-938

[28] A Isidori, C I Byrnes. Output regulation of nonlinear systems. IEEE Transaction on Automatic

Control. 1990; 35:131-140

17


