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Abstract: A robust control scheme is proposed for a class of systems with uncertainty
and time delay based on disturbance observer technique. A disturbance observer is de-
veloped to estimate the disturbance generated by an exogenous system, and the design
parameter of the disturbance observer is determined by solving linear matrix inequalities
(LMIs). Based on the output of the disturbance observer, a robust control scheme is
proposed for the time delay uncertain system. The disturbance-observer-based robust
controller combines two parts: one is a linear feedback controller designed using LMIs
and the other is a compensatory controller designed with the output of the disturbance
observer. By choosing an appropriate Lyapunov function candidate, the stability of the
closed-loop system is proved. Finally, simulation example is presented to illustrate the
effectiveness of the proposed control scheme.

Keywords: Uncertain system, Time delay, Disturbance observer, Robust control, Lya-

punov method, LMI.

1 Introduction

As is well known, time delay often appears in many practical processes such as manual controls,
neural networks, population dynamic models, rolling mills, and ship stabilization [1-8]. Furthermore,
time-delay and uncertainties result in the instability and performance degradation of the closed-
loop system. Therefore, considerable attention has been paid to stability analysis and robust control
design for time delay uncertain systems over the past years. Various effective techniques and their ap-

plications have been proposed, and their properties such as stability have been rigorously established.
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The guaranteed cost control was investigated for parameter uncertain systems with time delay in [1].
Kim [2] studied the robust stability of time-delayed linear systems with uncertainties. The problem
of delay-dependent robust stability was investigated for systems with time-varying structured un-
certainties and time-varying delays [3]. A robust controller was proposed in [4] for delay-dependent
neutral systems with mixed delays and time-varying structured uncertainties. Sliding mode control
scheme was presented for the robust stabilization of uncertain linear input-delay systems with non-
linear parametric perturbations in [5]. In [6], the stability of systems in the presence of bounded
uncertain time-varying delays in the feedback loop was analysed. Han [7] studied the absolute sta-
bility for a class of nonlinear neutral systems using a discretized Lyapunov functional approach. In
[8], an adaptive neural control scheme was proposed for a class of uncertain multi-input multi-output
(MIMO) nonlinear state time-varying delay systems in a triangular control structure with unknown
nonlinear dead-zones and gain signs.

In the controller design of time delay uncertain systems, among a few others, there are two
most widely used methods: guaranteed cost control and H., control. The objective of guaranteed
cost control is to design a feedback controller to stabilize a dynamic system and to provide an upper
bound on the performance index in the presence of allowable uncertainty. The guaranteed cost control
problem was studied for a class of linear time-delay systems via a memoryless state feedback control
method in [9]. Lien [10] proposed a non-fragile guaranteed cost controller for a class of uncertain
neutral system with time varying delays in both state and control input. The robust guaranteed cost
controller was proposed for a class of uncertain neutral system with time-varying delays in [11]. In
[12], a robust guaranteed cost control scheme for uncertain linear time-delay systems was proposed
using dynamic output feedback.

In practical, except modeling error and parameter uncertainty, a time delay system may be subject
to various external disturbances. The control of time delay uncertain systems with disturbance is
an interesting topic. However, the guaranteed cost control is not sufficient to handle this kind
control problem. Instead, the H., control scheme provide a very useful tool to address this problem.
There have considerable research effort on H,, control for uncertain time-delay systems. A H.
control scheme for a class of linear systems with time-delays was proposed in [13]. Zhang and
Han [14] studied the problem of delay-dependent robust H, filtering for uncertain linear systems
with time-varying delay. In [15], a H, controller design method for continuous-time linear systems
with time delay and actuator faults was investigated based on a LMI technique and an adaptive
method. The issues of stability and H,, control of linear systems with time-varying delays was

considered in [16]. Kim and Oh [17] proposed the robust and non-fragile Ho, control for descriptor



systems with parameter uncertainties and time delay. Delay-dependent robust H,, control was
proposed for uncertain systems with a state-delay in [18]. In [19], the robustness and Hs, control
problems of output dynamic observer-based control for a class of uncertain linear systems with time
delay was studied. The robust H., control scheme was proposed for linear time-delay systems with
norm-bounded time-varying uncertainty in [20]. Hs, control have achieved widely regarded success.
However the main drawbacks of this approach is that no information of the disturbance can be
exploited within this framework. Further more, it is quite hard to directly address time domain
specifications in tracking and regulation.

Many disturbances in real engineering are periodic and has inherit characteristic such as harmon-
ics and unknown constant load. They can be modeled as output of a neutral stable exogenous system.
This approach has been widely used in linear and nonlinear control such as internal model control,
robust servo-regulator schemes and nonlinear regulation theory; for example [28], [21]. Over the last
few years, considerable attention has been paid to the design of a disturbance observer to exploring
the information about the characteristic of disturbances, where a disturbance observer can be used
to approximate the system disturbance and a robust controller based on the output of the distur-
bance observer is designed to compensate the influence of unknown disturbances. Recently, using
disturbance observers to study the robust control of nonlinear systems has been received increasing
attention. Kim [22-23] proposed fuzzy disturbance observer and studied its application to control
discrete-time and continuous-time systems. Chen [24] presented a general framework for nonlinear
systems subject to disturbances using disturbance observer based control (DOBC) techniques. A new
nonlinear PID predictive control scheme was proposed based on disturbance observers in [25]. These
research results are applicable for systems whose disturbance relative degree is larger than or equal
to their input relative degree, and disturbance is only present in one dimension. Applications have
shown that disturbance observers can enhance disturbance attenuation and performance robustness.
In [26], a nonlinear disturbance observer-based approach was proposed for longitudinal dynamics of
a missile, while a new nonlinear disturbance observer for robotic manipulators was derived in [27].
Nevertheless, those research results did not consider a system with time delay.

This work is motivated by improving disturbance attenuation performance for robust control of
time delay uncertain systems. To utilize the information of disturbances, a disturbance observer
is developed to estimate disturbances generated by a linear exogenous system via linear matrix
inequality (LMI). Using the output of the disturbance observer, a robust control scheme is developed.
It is shown that zero steady state error can be achieved under the proposed scheme. The structure

of the paper is as follows. The control problem for a class of time-delayed uncertain systems under



disturbances is formulated in Section 2 and the design of disturbance observers is described in Section
3. Section 4 presents the design of a composite robust controller for a class of time-delayed uncertain
systems using the output of disturbance observers, while the simulation results are given in Section

5, followed by concluding remarks in Section 6.

2 Problem description
Consider a time delay uncertain system described in the form of

B(t) = [A+AAD)]e(t) + [Ag+ Adg(®)]a(t — 7(2)) + Bu(t) + d(t)),t > 0

z(t) = o(t),t € [=7ar, 0] (1)

where x € R" is the state vector, u € R™ is the control input vector, and d € R™ is the system
input disturbance with unknown boundary. A, Ay , and B are constant matrices with corresponding
dimensions. ¢(t) is the initial vector of the system. The time delay, 7(¢) , is a time-varying continuous

known function which satisfies
0<7(t) <mm,7(t) <7p <1 (2)
The uncertainties of system (1) are assumed to be of the form
AA(t) AAg) ] = DF(t) { E, E, } (3)

where D , F1 and FEs are constant matrices with corresponding dimensions, representing the system
structure uncertainty. F'(t) is an unknown, real and possibly time-varying matrix with Lebesgue-

measurable elements satisfying
FT(#)F(t) < I,Vt. (4)

For the time delay uncertain system (1), a robust control can be designed using the H, control
method. In Hy setting, no information about the disturbances is required (except the noise has
a limited power). Consequently, the disturbance attenuation results could be quite conservative.
Similar to other work in robust servo regulator and nonlinear regulation theory, this paper consider
a class of disturbance which can be modeled as output of an exogenous system. A disturbance
observer is proposed to approximate the system disturbance, and a robust controller taking into
account the output of the disturbance observer is designed for the time delay uncertain systems (1).

The designed robust controller utilises estimate information of disturbance which results in a much



improved disturbance attenuation ability. As will be shown in Section 6, in contrast to Hy, control,
zero steady state error is achieved under the proposes scheme.

To proceed with the design of a robust controller for the time delay uncertain system, the following
lemma is required.

Lemma 1: Assume that X and Y are vectors or matrices with appropriate dimension. The

following inequality
XY +YTX <aXTX +a YTy (5)

holds for any constant a > 0.

3 Disturbance observer

In this section, a disturbance observer is proposed for monitoring the disturbance of the uncertain
time delay system (1). Suppose that the disturbance d(t) of system (1) is generated by a linear

exogenous system

£=We
d=V¢

(6)

where £ € R" and d € R™. W and V are matrices with corresponding dimensions. As shown in
[24], [28] and [21], a wide class of real engineering disturbance can be represented by this disturbance
model (6). For example, for a unknown constant load disturbance, it can be represented by (6) with
W =0 and V = 1. For a harmonic disturbance with known frequency w but unknown phase and

magnitude, it can be represented by (6) with

W = jui : V—{10] (7)

To estimate the unknown disturbance d of the time delay system, a disturbance observer is

proposed as follows.
S(t) = (W + LBV)(s(t) — Lx(t)) + L(Ax(t) + Aqz(t — 7(t)) + Bu)
£(t) = <(t) — La(t) (8)
d(t) = VE(t)

where L € R™ " is a gain matrix which is a design parameter of disturbance observer which will be

given by LMI.



Define e(t) = £(t) — £(t). Differentiating e(t) with respect to time, and considering (6) and (8)

result in
é=E(t) — é(t) =WE¢— (W + LBV)(s(t) — Lx(t)) — L(Az(t) + Agz(t — 7(t)) + Bu) + L& (9)
Considering (6) and (8), and invoking (1), we obtain

¢ = WE— (W +LBV)(s(t) — La(t)) — L(Az(t) + Aga(t — 7(t)) + Bu)
+ LIA+ AA®))2(t) + L[Ag + AAg(D)]x(t — 7(t)) + LBu + LBd(t)

= (W+ LBV)e(t) + LAA(t)x(t) + LAAgz(t — 7(t)) (10)

The objective of disturbance approximation can be achieved by designing the observer gain matrix
L such that Eq.(10) satisfies the desired stability and robustness performance.

Remark 1: It can be seem form Eq.(10) that L is an important design parameter of the dis-
turbance observer (8). The choice of L has influence not only on the stability of the observer,
ie. W 4+ LBV < 0, but also on robust performance under the uncertainties LAA(t)x(t) and
LAA;(t)x(t — 7(t)).

4 Design of disturbance-observer-based robust controller

In this section, the robust controller is proposed based on the disturbance observer. Suppose that

the system states can be directly measured. Then the robust controller can be designed as

u(t) = wp(t) + uc(t) (11)

where
ug(t) = Kx(t) (12)
ue(t) = —d (13)

where wuy is the linear state feedback controller, and u, is a compensatory controller. Matrix K will
be given by solving the LMI. d is the approximation of the system disturbance d, and it is the output
of disturbance observer (8).

The main task is now to design disturbance gain matrix L, and feedback gain matrix K such
that the closed-loop system states and disturbance observer approximation error are asymptotically
stable. For the disturbance observer and robust controller proposed in (8) and (11) respectively, the

stability condition is given in the following theorem.



Theorem 1: For given positive constants «;,7 = 1,2,3,4, if there exist some matrices X €
R¥™™ >(0,P € R”"" >0,P c R >0, HcR> ,Y cR™ Q@ €R™, 6 Qyc R,
Q3 € R™™ and Q4 € R™ ™ such that the following LMI hold:

| A A2 A1z Ay XET 0 0 |
AL, Ay Aoy Ay 0 HD 0
Ay Al Ay A 0 0 XET
Ay AL AL Au 0 0 0 <0 (14)
EX 0 0 0 —(agt+azh)™ I 0 0
0 DTHT 0 0 0 —(a3 +aq)7 0
0 0 FEX 0 0 0 —(ax' + a3t

where Ay = AX + BY + XAT +YTBT + P — Q1 — QF + (aq + a0)DDT, A5 = BV — Qq,
Az = AgX — Qo+ QF, Ay = —Q3 + Qf, App = BW + WP, + HBV + VIBTHT, Ay3 = QF,
Aoy = QF, A3 = (Tp—1) P+ Q2+ QF, Ay = Q3+Q3, Ayy = Q3+Q2F. Then the closed-loop system
states and disturbance observer approximation error are asymptotically stable under the proposed
composite control law (11) when selecting K =YX~ and L = Py 'H.

Proof: Let the Lyapunov function candidate be given by

t
V(z(t), e(t)) = 2T (t)Pz(t) + 2T (s)Prx(s)ds + e (t) Poe(t) (15)

t—7(t)
where P = X! and P, = X 1P X! are positive-definite matrices with corresponding dimensions.

Substituting (11), (12) and (13) into (1) yield

#(t) = (A + AA)z(t) + (Ag + AAQ)x(t — 7(8)) + B(Ka(t) + ue) + Bd(t)

= (A+AA+ BEK)z(t) + (Ag + AAg)z(t — 7(t)) — Bd + Bd(t) (16)
According to Leibniz-Newton formula

¢
/ #(s)ds — o(t) + o(t —7) = 0 (17)
t—1
the time derivatives of V' (z(t),e(t)), along the trajectories of system (1), is given by

V = 2T(#)[P(A+ AA+ BK) + (A+ AA+ BK)TPla(t) + 227 (1) P(Ag + AAg)x(t — )
+ 22T(t)PBd(t) — 227 () PBd(t) + 2" (t) Pre(t) — (1 — 7)aT (t — 7)Prac(t — 7) + 2e7 Poé

+ Utt &(s)ds — x(t) + x(t — T)r {Qll"(t) + Qx(t —7) + Qs /tt i(s)ds + Q4e(t)]

—T —T

t T

+ {Qliﬂ(t) + Qow(t —7) + Q3/ i(s)ds + Qqe(t)

t—1

/tt n‘c(s)ds—:v(t)—i—x(t—T)] (18)

—T




Define d = d — d . Substituting (10) into (18) yields

V = zT(t)[P(A+ BK)+ (A+ BK)TPlz(t) + 27 (t)[PAA + AAT Pla(t) + 2T (t)PAgz(t — 7)

+ 2Tt — 1) AT Px(t) + T PAAgx(t — 7) + 2T (t — ) AALY Px(t) 4+ 27 (t) PBd(t)

+ d't)BTPx(t) + 27 (t) Pia(t) —

t
+ [/ &(s)ds — x(t) + x(t — 1)
t—7

1— )l (t — 7)Pra(t — 1)

t
Q1z(t) + Qoz(t — 7) + Q3/ i(s)ds + Q4€(t)]

t—1

(
T

i(s)ds + Q4e(t)]T [ / " (s)ds — a(t) + 2t T)]

t—1

+ eT(t)[Po(W + LBV) + (W + LBV)T Pyle(t) 4 e (t)P,LAAx(t) + 2T (t) AAT LT Pye

+ {le + Q2x(t —7) +Q3/t

t—1

+ TP LAAgz(t — 1) 4+ 2T (t — 7)AAL LT Pee(t)
Recalling (6) and (8), it obtains

d=d—d=VEl)—VER) = Ve
Considering (3) and substituting (20) into (19), we have

V = 2"(#®)[P(A+ BK)+ (A+ BK)'Plz(t) + 27 (t)[PDFE, + EF'FT D" Pla(t)
2T () PAg(t — 1) + 2T (t)(t — 7) AT Pa(t) + 2T (t)PDF Eyx:(t — 7)
T (t — ) EYFT DT Pa(t) + 27 (t)PBVe(t) + e (t)VT BT Px(t)
(W) Piz(t) — (1 — )T (t — 7)Pyx(t — 7)
[ t s)ds —a(t) + ot = T [Qua(t) + Qaalt —7) + Qs | tT £(s)ds + Q4e(t)}

/t i i(s)ds — () + ot — T)]
el (t)[Py(W + LBV) + (W + LBV)T Pyle(t) 4 e* (t) P, LDF Ey (t)

+ o+ o+ o+

_|_

Qu(t) + Que(t =)+ Qs [ (s)ds + Que(0)”

t—1

_|_

(19)

+ 2l () ETFTDT LT Pye(t) + el (t)PyLDF Eox(t — 7) + 2 (t — 7)ET FT DT LT Pye(t) (21)

Using Lemma 1, one can show that

T (t)[PDFE, + ETFTDT Pla(t) < ayz” (t)PDDT Px(t) + oy e (t) ET Byx(t)

2T (t)PDFEyx(t —7) + 2l (t —7)EIFTDT Pa(t)

IN

ozl (t)PDDT Px(t) 4+ ay'al (t — 7)EY Byx(t — 1)

' ()P, LDFEyx(t) + af (t)ETFTDTLT Pye(t)

azel (t)PyLDDT LT Poe(t) + az ta” (t) BT Bya(t)

8

(24)



el (t)P,LDFFox(t —7) + 2l (t —7)EXFTDTLT Pye(t)

< auel ()P,LDDT LT Pye(t) 4+ oy 'a® (t — 7)EY Byx(t — 1) (25)
Substituting (22)-(25) into (21) gives

V < 2T(t)[P(A+ BK)+ (A+ BK)TPlz(t) + a1z (t)PDDT Px(t)

o 2T )BT Eya(t) + 2T () PAgz(t — 1) + 27 (t — 7) AL Pa(t)

_l’_

ozl (t)yPDDT Px(t) + a2l (t — 7)EY Esx(t — 1) 4+ 2 (t) PBVe(t)
TyvTBTPx(t) + 2T (t)Prz(t) — (1 — 7)aT (t — 7)Pra(t — 7)

/ >+x<t¢>f [le@)wzx(tﬂwg[

-7

+ o+ o+

2(s)ds + Q4e(t)]

T

+

{le + Qoa(t—7) + Qs / tT i(s)ds + Que(t) /t tT i(s) — 2(t) + 2t - T)]
el (t)[Po(W + LBV) + (W + LBV)T Pyle(t) 4+ azel (t)PB,LDDT LT Pye(t)

+

+ a3 2T ET Byo(t) + age” () BLLDDT LT Poe(t) + oy 'a™ (t — 7)Ed Bax(t — 1) (26)

Eq.(26) can be rewritten as

- -T -
a(t) x(t)
V< e(t) 0| W (27)
x(t—1) x(t—7)
Ji—r E(5) | S i(s)ds

where

A A Mg Ay
AT, Ay Mgz Agy
Az A3y Az Au
Ay AJy AL Au

2
o
I

(28)

where Aj; = P(A+BK)+(A+BEK)'P4+ P, —Q1— QY + (a1 +a2)PDDT P+ o 'ET Ey + a3 'ET By,
Az = PBV —Quq, Aizg = PAg— Qo+ Q1 , Ay = —Q3+Q1, Apo = (W +LBV)+ (W +LBV)" P, +
(34 s)P.LDDTLT Py, Aoz = QT Aoy = QY Ass = (1p — )Py + Q2+ QY + oy ' ET By + o ' ET B,
Ass = Q3+ QF, Ay = Q3+ QF .

Suppose that

P = XY K=YX' P =PPPL=P,'HQ =PQP,

Q2 PQsP, Q3 = PQ3P, Q4 = PQq (29)



Left and right multiplying both sides of (28) by diag{P~',I, P~', P~'}, one obtains

A/:\ll KIQ j:\lg /:X14
=T = = =
A A A A
Q(): :;2 :;2 :23 :24 (30)
Az Agz Az Asg
=T =T =T =
| Ay Agg Mgy Ay |

where A1 = AX + BY + XAT + YTBT + P, — Q1 — QT + (a1 + a2) DD + (o7 + a3 WX ETE X
Aig = BV —Qu4, A1z = AgX — Qo+ QT, Ay = —Q3+QT, Apo = LW +WTP,+ HBV +VTBTHT +
(a3 + a)HDDTHT  Ays = QT Aoy = QT Asz = (tp — )PL+ Qo + QT + (a5 ' + a7 WX ETEy X |
K34=:Q3+-Q§,K44=:Q3+-Q§-

Eq.(30) can be rewritten as

AL A Aos A
QO _ 12 22 23 24 LA (3 1)
Afy Ads Az Az

ATy A AL Ay

where
XEF 0 0 (a7t +az I 0 0 E/X 0 0
A= 0 HD 0 0 (s + o)l 0 0 DTHT 0
0 0 XEJ 0 0 (agt +agh) 0 0 ExX

Considering (14) and applying the Schur complement theorem, it can be shown that

0y <0 (32)
Combining (27), (28), (30), (31) with (32) reaches

V<0 (33)

It follows from Eq.(33) that the closed loop system states of the time delay uncertain system and
disturbance observer approximation error are asymptotically stable. Hence, the convergence of  and
e is proven using the Lyapunov stability criterion.

Remark 2: Solving the inequality (14) yields the feedback gain matrix K and disturbance
observer gain matrix L. Eq.(14) is a LMI after «;,i = 1,2,3,4 are chosen. This will introduce
conservativeness with a given set of a;. The conservativeness can be reduced by using linear search

techniques. The feedback gain matrix K and disturbance observer matrix L satisfying Eq.(14)

10



guarantee the convergence of the disturbance observer estimate error and zero state state error of
the system states.

Remark 3: A delay-independent stabilization control is developed in this paper. All the existing
robust control methods and stability conditions for time delay systems can be classified into delay-
independent and delay-dependent categories. As it is well known, delay-independent methods give
results irrespective of the size of delay, while the delay-dependent results for time delay systems are
dependent of the size of delay. In general, the delay-dependent stabilization is considered to be less

conservative than the delay-independent one.

5 Simulation example

For illustrating the effectiveness of the proposed control scheme, an example is given to show the
effectiveness in this section.

The longitudinal dynamics of a fighter at H = 2800ft and V' = 0.5M can be expressed as

0 0
§ | =a+aaw)| 6 | + 1At AOlalt - () + B Z can| e
. z2

where z = [0, 0, a)T, 0,0 and « denote pitching angle, pitching rate and angle of attack, respectively.
0,1 and .2 stand elevator and flap deflection angle, respectively. When time delay and uncertainty

are considered, Eq.(34) can be written as the form of system (1), where

1 0 0 08 0 0 1 0
A=|1 —0.87 432 |,As=| 0 —-087 0 |,B=| —-1725 —1.58 |,
0 099 —1.34 0 099 -1 -0.17 —0.25
1 00 sin(t)/2 0 0
D=]1010]|,F= 0 cos(t)/2 0 ;
00 1 0 0 sin(t) /2
1 03 0 0
0.2 0 0
Ey = yEo=1 0 03 0 |,7m=1,7p=0.5.
0 02 0
. 0 0 03

11



The system disturbance d(t) can be generated by a linear exogenous neutral stable system de-

scribed by (6) with

0 1.5 0
100
W=1|-15 0 0 V=
010
0 0 -15

which represents an external periodic disturbance with known frequency but without any information
of its magnitude and phase.

With a1 = ag = ag = oy = 1, solving LMI (14) gives

0.9948 0.0053 —0.8577 4.5197 —0.2276 0.9174
X =1 00053 14813 02789 |,P1=| —0.2276 83131 0.1340 |,
—0.8577 0.2789  3.1306 0.9174  0.1340 8.5229
5.1318 1.5042 0.0211 —0.0621 0.6382  0.0061
Py =| 1.5042 5.7386 0.0549 |.H =] 0.6382 0.1058 —0.0014 |,
0.0211 0.0549 2.5446 0.0061 —0.0014  0.0006
—0.0236  0.0841 —0.6509 —0.3248 0.0271  0.2028
Qu=| 0.0841 —2.1655 —0.2406 |.Q2= | 0.0271 —0.4675 —0.0972 |,
—0.6509 —0.2406 —1.0964 0.2028 —0.0972 —1.3232
—1.3548 0.0276  —0.1409 0.1916 —1.1576 —0.1207
Q3= | 00276 —1.3193 —0.0166 |,Qs= | —1.1576 —0.2321 —0.0523 |,
—0.1409 —0.0166 —1.2556 —0.1207 —0.0523 —0.0028
v —6.0529 —8.2356 4.1912 % —5.8547 —5.5824 0.2322
36.9789 107.8751 23.7502 | 49.7211  69.8247 14.9872
—0.0484 0.1289  0.0014 —2.2714 1.2961 0
L= 01239 —0.0153 —0.0006 | ,W + LBV = | —1.1115 0.0244 0 ;
0.0001  —0.0013  0.0003 0.0223  0.0020 —1.5000
The initial state values are 2o = [0.1,—0.1,0]7 , the initial generated disturbance value are
dy = [—0.12,—0.13]7, and the disturbance observer initial value are dy = [—0.1, —0.1]7. The robust

12
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Figure 1: The closed-loop state response

controller is designed according to (11), and the simulation results are shown in Fig.1-Fig.3. It is
shown in Fig.1 that the stability of the closed-loop system can be obtained under the proposed robust
controller. The simulation results shown in Figs.2 and 3 indicate that the output of disturbance can
effectively approximate the unknown external harmonic disturbance.

From these simulation results of the example, we can know that the disturbance observer can well
approximate the system disturbance, and the designed robust control scheme based on disturbance

observer is valid.

6 Conclusion

In this paper, a disturbance-observer-based robust controller is proposed for a class of time delay
uncertain systems. To enhance the disturbance attenuation and performance robustness, the dis-
turbance observer is designed, and it can be used to approximate the system disturbance which is
generated by a linear exogenous system. Based on the output of the disturbance observer, a robust
controller is presented for the time delay uncertain system, and the stability is proved of the closed-
loop system using Lyapunov method. Finally, an example is used to illustrate the effectiveness of

the proposed robust control scheme. The simulation result suggests that the designed robust control
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scheme is valid.
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