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ABSTRACT 

Voluntary surface electromyography (sEMG) amplitude is known to be influenced by 

both electrode position and subcutaneous adipose tissue thickness, and these factors likely 

compromise both between- and within-individual comparisons. Normalization of voluntary 

sEMG amplitude to evoked maximum M-wave parameters [MMAX peak-to-peak (P-P) and Area] 

may remove the influence of electrode position and subcutaneous tissue thickness. The purpose 

of this study was to: (i) assess the influence of electrode position on voluntary, evoked (MMAX 

P-P and Area) and normalized sEMG measurements across the surface of the vastus lateralis 

(VL; experiment 1: n=10); and (ii) investigate if MMAX normalization removed the confounding 

influence of subcutaneous tissue thickness [muscle-electrode distance (MED) from ultrasound 

imaging] on sEMG amplitude (experiment 2; n=41). Healthy young men performed maximum 

voluntary contractions (MVCs) and evoked twitch contractions during both experiments. 

Experiment 1: voluntary sEMG during MVCs was influenced by electrode location (P≤0.046, 

ES≥1.49 “large”), but when normalized to MMAX P-P showed no differences between VL sites 

(P=0.929) which was not the case when normalized to MMAX Area (P<0.004). Experiment 2: 

voluntary sEMG amplitude was related to MED, which explained 31-38% of the variance. 

Normalization of voluntary sEMG amplitude to MMAX P-P or MMAX Area reduced but did not 

consistently remove the influence of MED which still explained up to 16% (MMAX P-P) and 

23% (MMAX Area) of the variance. In conclusion, MMAX P-P was the better normalization 

parameter for removing the influence of electrode location and substantially reduced but did 

not consistently remove the influence of subcutaneous adiposity.  

Key Words 

sEMG; sEMG Normalization; Maximal m-wave; Spatial location; Muscle-Electrode 

Distance.  
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INTRODUCTION 

 

Surface electromyography (sEMG) is used for a range of important applications within 

physiology and biomechanics, including measurement of neuromuscular activation 1 and 

detection of neuromuscular disorders 2. In these different contexts, sEMG amplitude is often 

employed to assess the changes within individuals and/or the differences between individuals. 

However, the influence of a range of both extrinsic (e.g. electrode position) and intrinsic (e.g. 

subcutaneous fat) factors can confound sEMG measurements 1 and may compromise both 

between- and within-individual comparisons.  

Voluntary sEMG amplitude is known to vary with electrode location across the surface 

of a muscle 3–5 and thus even minor differences in placement (between-days or -researchers) 

may influence sEMG measurements. In addition, intrinsic factors such as subcutaneous fat 

thickness can also influence the measurement of sEMG amplitude during voluntary 

contractions. Specifically, muscle-electrode distance (MED) has been found to be inversely 

related to sEMG amplitude 6–8 due to the high electrical resistance of adipose tissue 8. It is 

currently unknown if evoked sEMG responses vary with electrode location and MED in a 

similar way to voluntary sEMG amplitude. If this were the case then normalization of voluntary 

sEMG amplitude to evoked responses may remove the influence of electrode location and 

MED, but this has not been investigated. 

The use of an evoked supra-maximal compound muscle action potential (MMAX) has 

emerged as a promising way of normalizing sEMG amplitude during voluntary contractions 

due to the highly controlled and involuntary nature of MMAX. Furthermore, MMAX may be 

particularly useful as an independent reference for normalisation of sEMG during maximum 

voluntary isometric contractions (MVCs); given that the most widely used voluntary reference 

task (MVCs) are not valid in this case (i.e. a variable normalized to itself) 9,10. Both MMAX 
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amplitude (i.e. peak-to-peak, MMAX P-P) and area (MMAX Area), which is dependent on both 

amplitude and duration of the evoked potentials 11, have been suggested/used as reference 

normalization measurements for voluntary sEMG 9,10,12,13. Although MMAX normalization of 

voluntary sEMG has been demonstrated to reduce between-participant variability 9 it is 

currently unknown if MMAX normalization of voluntary EMG recordings: (1) removes the 

influence of electrode location across the surface of the muscle on voluntary sEMG amplitude, 

and (2) removes the influence of MED on voluntary sEMG amplitude between-participants. 

Therefore, the first purpose of this study was to assess the influence of electrode 

positioning on voluntary and evoked sEMG amplitude [root mean square (RMS) during MVC; 

and MMAX P-P and Area], and the proportionality of these measures, using multiple recording 

sites across the surface of the vastus lateralis (VL) (experiment 1). The second purpose was to 

investigate if MMAX normalization removed the confounding influence of body fat, measured 

as MED (via 2D ultrasonography), on sEMG amplitude during MVCs (experiment 2). Our first 

hypothesis was that voluntary sEMG and MMAX P-P and Area would change in proportion 

across the surface of the VL, thus, normalized voluntary sEMG amplitude (to MMAX) would 

remove the confounding effect of electrode location. Our second hypothesis was that MMAX 

normalization would remove the inverse relationship between voluntary surface EMG 

amplitude and MED. 

 

MATERIALS AND METHODS 

 

Participants 

Healthy, recreationally active, young males with no previous lower-body injuries and 

no systematic strength training participation for >12 months took part in both experiments. 

Experiment one: n=10; age, 22 ± 2 y; height, 1.78 ± 0.07 m; body mass, 73 ± 5 kg; body mass 
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index, 24 ± 2 kg/m2. Experiment two: n=41; age, 24 ± 2 y; height, 1.76 ± 0.06 m; body mass, 

69 ± 6 kg; body mass index, 22 ± 1 kg/m2. The Loughborough University Ethics committee 

approved both experiments and participants provided written informed consent prior to their 

participation. 

 

Overview 

Participants reported for three laboratory sessions at a consistent time of day for both 

experiment one (sessions 3-6 days apart) and experiment two (sessions 7-10 days apart) and 

were instructed to avoid strenuous exercise in the 48 h prior to each session. In each experiment, 

the first laboratory session was used as familiarisation, followed by two main measurement 

sessions. All sessions involved isometric voluntary and evoked twitch contractions of the 

dominant knee extensors whilst seated in a rigid custom-built adjustable testing chair with knee 

and hip joint angles as follows: experiment 1, knee joint angle = 80°, hip joint angle = 54°; 

experiment 2, knee joint angle = 65°, hip joint angle = 54° (where 0° is full extension). The 

main measurement sessions involved a series of brief sub-maximum warm-up contractions 

followed by MVCs and evoked twitch contractions (via transcutaneous femoral nerve 

stimulation). During the main measurement sessions, sEMG recordings were made from six 

recording sites across the surface of the VL (Experiment 1) or from a single recording site over 

each of the superficial quadriceps [VL, vastus medialis (VM), rectus femoris (RF); Experiment 

2]. Experiment 2 also involved B-mode ultrasound measurements of MED at each of the sEMG 

recording sites over the individual quadriceps muscles, whilst participants were at rest in the 

testing apparatus. 

 

Recording Procedures 

Torque and sEMG recordings 
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Participants were securely strapped to the rigid isometric testing chair at the waist and 

across the chest to minimise extraneous bodily movement during all tasks. Force production 

was measured with a calibrated S-beam strain-gauge (linear range from 0-1500N, Force Logic, 

Swallowfield, UK). The strain gauge was attached to the participant using a custom reinforced 

non-extendable webbing strap (35 mm width) fastened ~3 cm superior to the lateral malleolus 

perpendicular to the participant’s lower leg. Force was sampled and recorded at 2,000 Hz using 

an analogue-to-digital (A/D) converter (Micro 1401, CED, Cambridge, UK) and PC utilising 

Spike 2 software (CED, Cambridge, UK). The force signal was low-pass filtered at 500 Hz 

with a fourth-order zero-lag Butterworth, digital filter (baseline noise: <0.2 N) and then gravity 

correction was applied by subtracting baseline force, before multiplying by lever length (the 

distance between the knee joint centre and the middle of the webbed strap) to calculate torque 

values. 

Following skin preparation (shaving, abrading, and cleansing with 70% ethanol) single 

differential (bipolar) wireless Trigno Standard sEMG sensors (Trigno, Delsys, Inc., Boston, 

MA; 1-cm inter-electrode distance) were placed at set percentages of thigh length (distance 

from knee joint space to the greater trochanter) parallel to the presumed orientation of the 

underlying fibres. Trigno wireless sensors have a built-in system with reference sensors in the 

same electrode, hence, no ground electrode is necessary. Sensors were secured to the skin using 

adhesive interfaces. For experiment one six sensors, organised in two rows of three sensors 

[anterior (A) or posterior (P)], were attached over the VL. The two parallel rows of sEMG 

electrodes were aligned along the long axis of the muscle at ~30% (anterior row) and ~70% 

(posterior row; Fig. 1) of the distance between the superficial anterior and posterior borders of 

the VL, respectively. The anterior and posterior borders of the VL muscles were assessed by 

palpation whilst participants contracted their quadriceps muscle. Sensors were placed at set 

percentages of thigh length (lateral knee joint centre to greater trochanter) from the superior 
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border of the patella as follows: A1 (40%), P1 (45%), A2 (50%), P2 (55%), A3 (60%) and P3 

(65%; Fig. 1). These sites were chosen to avoid the confounding influence of the innervation 

zone, in the most distal region of the VL 4,14, on EMG signal amplitude 3,15. For experiment 

two, sEMG sensors were placed in the centre of each constituent muscle belly at the following 

percentages of thigh length above the superior border of the patellar as follows: RF (65%); VL 

(60%); and VM (35%). In both experiments, sEMG signals were amplified at source (x300; 

20-to 450-Hz bandwidth) before further amplification (overall effective gain, x909) and 

subsequently sampled at 2,000 Hz using the same external (A/D) converter and computer 

software as the force recordings. During offline analysis, the sEMG data were time aligned 

with the force signal (inherent 48-ms delay of sEMG signal). 

 

Protocol 

Maximal voluntary contractions 

Following a series of sub-maximum contractions performed at percentages of perceived 

maximum [50% (x3), 75% (x3), and 90% (x1)] participants completed 2 (experiment 1) or 4 

(experiment 2) MVCs. Participants were instructed to extend their knee by “pushing as hard as 

possible” for 3-5 s during MVCs with ≥30 s recovery between each effort. Biofeedback was 

provided after the first MVC by displaying a horizontal cursor on the torque-time curve, 

displayed on a computer monitor in front of the participant, to indicate the greatest torque 

produced and encourage participants to produce greater torque with subsequent attempts. 

Additionally, verbal encouragement was given during all MVCs trials. Maximum voluntary 

torque (MVT) was the highest instantaneous torque during the MVCs, and RMS sEMG for 

each sensor was measured during a 500 ms epoch around MVT (250 ms either side of MVT; 

EMGMVT), and absolute values from each individual sensor were then normalized to both the 

MMAX P-P and MMAX Area (see below) from the same sensor.   
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Evoked twitch contractions and MMAX recordings  

Transcutaneous femoral nerve stimulation was conducted, whilst the participant was 

voluntarily passive, by placing an anode (70 x 100 mm carbon rubber electrode; Electro-

Medical Supplies, Greenham, UK) over the greater trochanter and a cathode (10 mm diameter, 

protruding 20 mm from a 35 x 55 mm plastic base; Electro-Medical Supplies, Greenham, UK) 

over the femoral nerve in the femoral triangle region, both were coated in conductive gel. 

Electrical stimulation was delivered with a constant current variable voltage stimulator 

(DS7AH, Digitimer Ltd., Welwyn Garden City, UK). The cathode was sequentially 

repositioned until the optimum cathode position was identified (highest twitch response to a 

constant low current stimuli), before being secured with transpore tape. Incremental single 

pulse stimuli were delivered (every 10 s, 15-20 mA increments) until peak twitch force and the 

peak-to-peak amplitude of the compound motor unit action potential (M-wave) plateaued for 

all recorded EMG sites. At least two further increments were delivered to ensure the plateau 

had been reached. Then three supra-maximal stimuli were delivered (10-15 s between each 

stimulus) at a current of 150% of the plateau level to measure supramaximal twitch force and 

MMAX P-P and Area.  

Ultrasound Measurements (Experiment two only) 

An ultrasound scanner [Hitachi EUB-8500, Northamptonshire, UK, 5-10 MHz linear 

array transducer (EUP-L53L), scanning width 92 mm] was used to collect B-mode images of 

the thigh with the mid-point of the probe positioned over VL (60% of thigh length), RF (65% 

of thigh length) and VM (35% of thigh length). Ultrasound images were recorded by a 

computer with ezcap video capture software (via an S-video to USB converter). Images were 

collected whilst participants were at rest in the same isometric testing apparatus used to record 
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knee extension torque. MED was measured, using an open source Tracker software (version 

4.92, physlets.org/tracker), as the distance from the surface of the skin to the muscle fascia 

(Fig. 2). 

 

Statistical analysis 

For both experiments the data from the main measurement sessions (session 2 and 3, 

excluding familiarisation) were averaged to enhance the reliability of the measurements, and 

statistical analysis was completed using SPSS version 22 (IBM Corporation, Armonk, New 

York, USA). The significance level was set at P < 0.05 and data are reported as mean ± SD. 

Due to both experiments having duplicate main sessions a within-participant coefficient of 

variation between sessions (CVW; (SD/mean) x 100) for twitch peak, MVT and EMGMVT data 

was calculated. CVW was quantified for each sEMG site (both experiments) but for experiment 

one individual CVW values from each measurement site were averaged across all six VL sites 

to provide an overall representation of the within-participant reliability of VL sEMG 

parameters that were measured. In addition, paired t-tests were used to confirm that there were 

no differences between the main measurement sessions. For experiment 1, repeated measures 

general linear models (one-way ANOVA) were used to determine the effects of electrode 

position on voluntary, evoked, and normalized sEMG measures. When a main effect of 

electrode position was detected differences between recording sites were assessed using 

Bonferroni adjusted post-hoc tests. The standardized effect size (ES; Cohen`s d) are included 

and ES of < 0.2 was considered “trivial”, ≥ 0.2 to ≤ 0.49 “small”, ≥ 0.5 to ≤ 0.79 “moderate” 

and ≥ 0.8 “large” 16.  

For experiment 2, bivariate relationships between MED and the sEMG parameters 

(absolute and normalized) were assessed with Pearson’s product moment correlations. As there 

were significant bivariate relationships between EMGMVT and MED for all three muscles, this 
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relationship was fitted with a quadratic function, which provided the best fit for the relationship 

between EMGMVT and MED. This relationship was used to correct individual sEMG amplitude 

to MED measurements at that recording site. This involved summating the individual’s 

residual, in comparison to the cohort relationship with MED (e.g. sEMG amplitude vs. MED), 

with the group mean for sEMG amplitude 17. Between-participant coefficient of variation [CVB 

(SD/Mean*100)] was calculated for absolute EMGMVT as well as EMGMVT normalized to 

MMAX P-P and MMAX Area, and MED corrected EMGMVT for each of the 3 muscles.  

 

RESULTS 

 

Reliability 

For experiment 1, the mean CVW value of the six VL sensors was 15.1% for absolute 

EMGMVT, 20.7% for MMAX P-P, and 21.2% for MMAX Area respectively, with no differences 

detected between test sessions for any of these measurements (t(9)≥ -1.528, P≥ 0.139). For 

experiment 2, the range of CVW values of the 3 sites over the three superficial quadriceps (VM, 

VL, RF) were 14-17%, 14-16% and 14-19% for absolute EMGMVT, MMAX P-P, and MMAX Area, 

respectively (t(40)≥ -0.873, P≥ 0.383). 

Knee extension MVT torque presented a mean CVW value of 4.8% in experiment one 

and 2.9% in experiment two. Twitch peak torque presented an excellent CVW within 

experiment 1 (0.6%) and experiment 2 (6.3%). No differences were found between days in 

either experiment for MVT or Twitch peak torque (t(9)≥ -1.191 , P≥ 0.094 for experiment one 

and t(40)≥ -0.879, P≥ 0.111 for experiment two). 

 

Experiment one – Spatial Location 
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There were differences in absolute EMGMVT between the six recording sites over the 

VL (F2,45= 7.273, P< 0.003) with specific differences as follows: A1 and A2 > P2 and P3 

(Bonferroni P≤ 0.036, ES≥ 1.63 “large”); P1> P3 (P≤ 0.046, ES≥ 1.49 “large”). The recording 

site with the highest EMGMVT amplitude (A1) was 42% higher than the site with the lowest 

value (P3; Table 1). 

There were also differences in absolute MMAX P-P between sites (F2,45= 4.069, P= 

0.004) and post-hoc tests revealed that A1 was greater than P2 (Bonferroni P≥ 0.024, ES≥ 2.41 

“large”) and A2 showed a tendency to be greater than P2 (Bonferroni P= 0.070, ES= 2.33 

“large”; Fig. 3B) with a 51% difference between the highest and the lowest site (Table 1). 

Similarly, absolute MMAX Area presented differences between sites (F2,45= 4.529, P= 0.020) 

with A1 and P3 > P2 (Bonferroni P≤ 0.041, ES≥ 1.37 “large”; Fig. 3C), a tendency for A3 to 

be higher than P2 (Bonferroni P≤ 0.062, ES≥ 0.86 “large”) and for A1 to be higher than P1 

(Bonferroni P≤ 0.087, ES≥ 1.23 “large”) with an overall 49% difference between the sites with 

the highest and lowest MMAX Area values (Table 1). 

In contrast, EMGMVT normalized to MMAX P-P showed no differences between the sites 

of VL (F2,45= 0.731, P= 0.929; Fig. 4), and therefore was not confounded by electrode location. 

However, EMGMVT normalized to MMAX Area was different between the recording sites (up to 

35%; F2,45= 4.083, P= 0.004) and P3 was revealed to be smaller than A2 and P2 (Bonferroni 

P≤ 0.014, ES≥ 1.1 “large”). 

  

Experiment two – Subcutaneous tissue thickness 

As expected, there was an inverse relationship between absolute EMGMVT and MED 

for VM (r = -0.62, n= 41, P< 0.001), RF (r = -0.62, n= 41, P< 0.001) and VL (r = -0.68, n= 41, 

P< 0.001; Fig. 5A). Thus, MED explained 31% (VL) to 38% (VM & RF) of the variability in 
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EMGMVT. Similar correlations with MED were found for MMAX P-P [VM (r = -0.71, n= 41, P< 

0.001), RF (r= -0.45, n= 41, P< 0.001) and VL (r = -0.68, n= 41, P< 0.001)] and MMAX area 

[VM (r = -0.49, n= 41, P< 0.001), RF (r= -0.37, n= 41, P= 0.017) and VL (r = -0.43, n= 41, P< 

0.001)]. When EMGMVT was normalized to MMAX P-P there remained a relationship with MED 

for two of the three muscles, that was positive for the VM (r= 0.40, n= 41, P= 0.022, Fig.  5 C) 

and negative for the RF (r= -0.34, n= 41, P= 0.010), the exception being the VL where EMGMVT 

normalized to MMAX P-P was unrelated to MED (r= -0.25, n= 41, P= 0.106). Hence, while 

normalization of VL EMGMVT to MMAX P-P removed the influence of MED, VM and RF MED 

still accounted for 12-16% of the between-participant variability in normalized sEMG 

amplitude. When EMGMVT was normalized to MMAX Area a significant negative relationship 

remained for RF (r= -0.48, n= 41, P< 0.001) and VL (r= -0.44, n= 41, P< 0.010) with MED, 

but for the VM there was no relationship with MED (r= 0.15, n= 41, P= 0.330; Fig 5 B). 

Therefore, EMGMVT normalized to MMAX Area removed the influence of MED for the VM, but 

for the RF and VL MED still accounted for 19-23% of the between-participant variability in 

sEMG amplitude. 

Absolute EMGMVT had a mean CVB across the 3 muscles of 52.5% (VM 51.1%; RF 

44.0%; VL 62.1%) but after MED correction (EMGMVT corrected to MED) mean CVB was 

34.4% (VM 34.2%; RF 29.6%; VL 39.5%). Therefore, MED correction reduced the between-

participant variability by 35% (Table 2). The mean CVB of EMGMVT normalized by MMAX P-

P at 38.3% (VM 40.5%; RF 30.8%; VL 38.9%; Table 2) and EMGMVT normalized by MMAX 

Area at 41.6% (VM 44.4%; RF 36.2%; VL 44.2%; Table 2) were also lower than absolute 

EMGMVT, but greater than EMGMVT corrected to MED. 

 

DISCUSSION 
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The present study assessed the influence of electrode location and MED on voluntary 

absolute and normalized (to MMAX P-P and Area) sEMG measurements. Absolute voluntary 

sEMG measurements varied by up to 42% with electrode location over the surface of the VL 

muscle; however, when normalized to MMAX P-P, but not MMAX Area, there was no longer an 

effect of electrode location. As expected, voluntary sEMG amplitude for each of the 3 muscles 

was moderately correlated with MED (largely subcutaneous fat), which explained 31-38% of 

the variance in EMGMVT. Normalization of voluntary sEMG to MMAX parameters reduced but 

did not consistently remove the variance explained by MED (P-P up to 16%, Area up to 23%), 

Thus, MMAX P-P was the better normalization parameter, that removed the influence of 

electrode location and reduced but did not consistently or fully remove the influence of 

adiposity.  

 

Electrode location 

EMGMVT varied across the surface of the VL, being as much as 42% higher at some 

sites compared to others. Previous investigations using the trapezius muscle have also found 

voluntary sEMG amplitude to vary with location over the surface of the muscle 18,19. MMAX P-

P showed a similar pattern to absolute voluntary EMG and consequently normalization of 

EMGMVT to MMAX P-P was independent of electrode location as both parameters changed 

proportionally across the surface of the VL. Hence this normalization method removed the 

effect of electrode location on voluntary sEMG amplitude. Furthermore, this finding suggests 

that any apparent differences in EMG amplitude across the surface of the muscle during MVCs 

are primarily due to differences in volume conduction and signal recording conditions, as 

shown by similar changes in MMAX P-P, rather than any physiological differences in voluntary 

neuromuscular activation. However, the current study did not examine sub-maximum 

contractions, thus the possibility of regional differences in neuromuscular activation during 
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low and moderate level contractions according to the specific task remains a distinct possibility 

20,21.  

In contrast, MMAX Area showed a different pattern to absolute voluntary sEMG, such 

that when EMGMVT was normalized to MMAX Area there remained a pronounced effect of 

electrode location with differences between sites of up to 57%. Therefore, MMAX P-P 

normalization may be preferred when trying to remove/account for the issue of electrode 

location/re-location between test sessions or between investigators. Normalisation to MMAX P-

P could theoretically have removed/reduced the influence of several between site confounding 

factors that may influence EMGMVT, such as the amplitude of motor unit action potentials, 

adipose tissue thickness, skin and skin-electrode interface impedance. Although experiment 1 

was not able to discriminate between these mechanisms by which MMAX P-P was effective. 

MMAX P-P qualitatively showed a similar pattern with electrode location as absolute 

voluntary sEMG, but not MMAX Area. The reason for these contrasting effects between MMAX 

P-P and Area, and thus also the greater efficacy of MMAX P-P for normalization purposes may 

reflect the differences in the nature of these measurements. MMAX P-P is a measure of amplitude, 

whereas MMAX Area is dependent on both amplitude and duration 11, thus our finding might 

indicate that absolute EMGMVT depends primarily on signal amplitude rather than duration. 

Previous studies have only examined spatial distribution of M-wave amplitude, during sub-

maximal stimulation and found the amplitude to be both higher 22 and lower at distal sites 23 in 

gastrocnemius. Sub-maximal stimulation selectively activates lower threshold motor units, and 

thus fibres, that could be concentrated in specific locations. In contrast, our findings are the 

first indication that MMAX P-P and Area vary with electrode location across the surface of the 

VL (albeit with different patterns). 

Although experiment 1 involved 6 electrodes over the surface of the VL muscle, we 

deliberately chose a large superficial muscle, and selected the measurement sites to minimise 
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the possibility of cross-talk from other muscles. Specifically, the measurement sites were a 

minimum of 3.5 cm distance, and typically >4 cm, from other muscles. Winter et al (1994) 

estimated that with a 3 cm distance between electrodes, cross-talk would account for ~4% of 

the signal 24. Therefore, it is possible that there could have been some small, limited cross-talk 

within our measurements, although our understanding is that there is no accepted analytical 

procedure to assess the extent of cross-talk within an EMG signal 26. 

 

Muscle-Electrode distance 

In experiment 2, there were negative relationships between EMGMVT and MED in all 

the three muscles (r = -0.56 to -0.62), with MED explaining 31-38% of the variance even within 

this relatively lean cohort (BMI≤ 24). Previous investigators identified similar negative 

relationships between absolute voluntary sEMG amplitude and MED measure by ultrasound (r 

= 0.57) 7 or skinfold thickness (r = 0.90 26 and r = 0.67 7). The relationship between absolute 

sEMG amplitude and MED can be explained by the high electrical resistance of body fat 8,27 

which acts as a low pass filter reducing the signal amplitude 28. Specifically, more subcutaneous 

tissue between the sEMG electrode and the muscle would provide more electrical resistance. 

Thus, tissue thickness between the electrode and the active muscle fibers has a pronounced 

influence on sEMG amplitude. 

MMAX normalization substantially reduced, but did not consistently remove the effect 

of MED on EMG amplitude with up to 16% (MMAX P-P) or 23% (MMAX Area) of the variability 

in normalized voluntary sEMG still explained by MED. Therefore, whilst MMAX normalization 

was certainly an improvement on absolute values it was only partially effective at removing 

the confounding effects of differences in MED between participants. Therefore, it is possible 

that a measured MED is more effective at fully removing the influence of adipose tissue 

thickness, than MMAX parameters when comparing participants. In addition, EMGMVT corrected 
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to MED produced lower between-participant variability (CVB 34%) than absolute EMGMVT 

(53%) or EMGMVT normalized to MMAX P-P (38%) or MMAX Area (42%) suggesting that MED 

correction may be the most effective method at reducing the between-participant variability 

introduced by volume conduction and signal recording conditions. Consequently, when 

comparing individuals with substantial differences in MED, or comparing repeated 

measurements that may involve changes in MED after an intervention (e.g. exercise training 

or weight loss) it is recommended to normalise voluntary sEMG measurements, either to MMAX 

P-P or preferably MED (e.g. 29). It is unclear why voluntary sEMG recordings and MMAX 

parameters do not change in proportion with MED, but it is likely to be due to the fact that 

voluntary sEMG is a summation pattern from the electrical activity of numerous muscle fibres 

2 that propagates through the surrounding tissues in a different manner to a synchronous evoked 

M-wave.  

Any variability in electrode location and orientation between participants could have 

been a contributory factor to the observed between-participant variability in voluntary sEMG 

recordings. Whilst the current investigation examined MED correction in relation to between-

participant variability in voluntary sEMG, as far as we are aware it is currently unknown how 

MED correction compares to MMAX normalisation for different electrode locations and future 

work should address this question to better understand the merits of these normalisation 

procedures. Moreover, it is recommended that future work more carefully examine the 

reliability and validity of voluntary sEMG amplitude measurements corrected to MED as this 

correction procedure has had relatively little attention despite the well-known confounding 

influence of adiposity 6–8. 

In conclusion, electrode location across the surface of the VL had a pronounced effect 

on voluntary sEMG amplitude during MVCs, and this was removed by normalization to MMAX 

P-P, but not MMAX Area. The moderate relationship between adiposity (MED) and voluntary 
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sEMG amplitude (R2=0.31 up to 0.38) was reduced but not consistently removed by MMAX 

normalization (up to R2= 0.16 [P-P] and R2= 0.23 [Area]). MMAX P-P was the better 

normalization parameter that removed the influence of electrode location and substantially 

reduced but did not consistently or fully remove the influence of adiposity. 

 

PERSPECTIVES 

Whilst surface electromyography (sEMG) measurements are widely used in 

physiological and biomechanical assessments and research studies, the amplitude of these 

recordings are known to be influenced by both electrode position and subcutaneous adipose 

tissue thickness. The present study quantified the influence of electrode position and adipose 

tissue thickness and examined the possibility that normalization to evoked maximum M-wave 

(MMAX) parameters may remove the influence of these factors. As expected electrode location 

and adiposity both had a pronounced influence on voluntary sEMG amplitude. Normalisation 

of these measurements to MMAX peak-to-peak removed the influence of electrode location and 

reduced, but did not consistently remove the influence of subcutaneous adiposity. Thus, 

normalization to MMAX peak-to-peak may help to reduce the influence of these potential 

confounding factors when comparing measurements within- or between-participants in clinical 

assessments or research studies. However, to fully remove the influence of adipose tissue 

thickness may require direct measurements of this parameter beneath the recording electrodes.  

 

REFERENCES 

1.  De Luca CJ. The Use of Surface Electromyography in Biomechanics. J Appl Biomech 

1997;13:135–163. 

2.  Raez MBI, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: 



 
 

18 

detection, processing, classification and applications. Biol Proced Online 2006;8:11–

35. 

3.  Farina D, Madeleine P, Graven-Nielsen T, Merletti R, Arendt-Nielsen L. Standardising 

surface electromyogram recordings for assessment of activity and fatigue in the human 

upper trapezius muscle. Eur J Appl Physiol 2002;86:469–478. 

4.  Rainoldi  a, Melchiorri G, Caruso I. A method for positioning electrodes during 

surface EMG recordings in lower limb muscles. J Neurosci Methods 2004;134:37–43. 

5.  Beck TW, Housh TJ, Cramer JT, Weir JP. The effects of electrode placement and 

innervation zone location on the electromyographic amplitude and mean power 

frequency versus isometric torque relationships for the vastus lateralis muscle. J 

Electromyogr Kinesiol 2008;18:317–328. 

6.  Farina D, Rainoldi A. Compensation of the effect of sub-cutaneous tissue layers on 

surface EMG: a simulation study. Med Eng Phys 1999;21:487–497. 

7.  Nordander C, Willner J, Hansson GÅ, Larsson B, Unge J, Granquist L, Skerfving S. 

Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers 

and BMI, on the EMG amplitude. Eur J Appl Physiol 2003;89:514–519. 

8.  Petrofsky J. The effect of the subcutaneous fat on the transfer of current through skin 

and into muscle. Med Eng Phys 2008;30:1168–1176. 

9.  Buckthorpe MW, Hannah R, Pain TG, Folland JP. Reliability of neuromuscular 

measurements during explosive isometric contractions, with special reference to 

electromyography normalization techniques. Muscle Nerve 2012;46:566–576. 

10.  Papaiordanidou M, Mustacchi V, Stevenot JD, Vanoncini M, Martin A. Spinal and 



 
 

19 

supraspinal mechanisms affecting torque development at different joint angles. Muscle 

Nerve 2016;53:626–632. 

11.  Rodriguez-Falces J, Duchateau J, Muraoka Y, Baudry S. M-wave potentiation after 

voluntary contractions of different durations and intensities in the tibialis anterior. J 

Appl Physiol 2015;118:953–964. 

12.  Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 

2001;81:1725–1789. 

13.  Balshaw TG, Fry A, Maden-Wilkinson TM, Kong PW, Folland JP. Reliability of 

quadriceps surface electromyography measurements is improved by two vs. single site 

recordings. Eur J Appl Physiol 2017;117:1085–1094. 

14.  Barbero M, Merletti R, Rainoldi A. Atlas of Muscle Innervation Zones. Milano: 

Springer Milan; 2012. 142 p. 

15.  Beck TW, Housh TJ, Cramer JT, Weir JP. The effect of the estimated innervation zone 

on EMG amplitude and center frequency. Med Sci Sports Exerc 2007;39:1282–1290. 

16.  Cohen J. Statistical power analysis for the behavioral sciences. Stat Power Anal Behav 

Sci 1988;2nd:567. 

17.  Moya-Laraño J, Corcobado G. Plotting partial correlation and regression in ecological 

studies. Web Ecol 2008;8:35–46. 

18.  Jensen C, Vasseljen O, Westgaard RH. The influence of electrode position on bipolar 

surface electromyogram recordings of the upper trapezius muscle. Eur J Appl Physiol 

Occup Physiol 1993;67:266–273. 

19.  McLean L, Chislett M, Keith M, Murphy M, Walton P. The effect of head position, 



 
 

20 

electrode site, movement and smoothing window in the determination of a reliable 

maximum voluntary activation of the upper trapezius muscle. J Electromyogr Kinesiol 

2003;13:169–180. 

20.  Staudenmann D, Roeleveld K, Stegeman DF, van Dieen JH. Methodological aspects of 

SEMG recordings for force estimation--a tutorial and review. J Electromyogr Kinesiol 

2010;20:375–387. 

21.  Watanabe K, Kouzaki M, Moritani T. Task-dependent spatial distribution of neural 

activation pattern in human rectus femoris muscle. J Electromyogr Kinesiol 

2012;22:251–258. 

22.  Vieira TM, Botter A, Minetto MA, Hodson-Tole EF. Spatial variation of compound 

muscle action potentials across human gastrocnemius medialis. J Neurophysiol 

2015;114:1617–1627. 

23.  Hodson-Tole EF, Loram ID, Vieira TMM. Myoelectric activity along human 

gastrocnemius medialis: Different spatial distributions of postural and electrically 

elicited surface potentials. J Electromyogr Kinesiol 2013;23:43–50. 

24.  Winter DA, Fuglevand AJ, Archer SE. Crosstalk in surface electromyography: 

Theoretical and practical estimates. J Electromyogr Kinesiol 1994;4:15–26. 

25.  Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface 

EMG: an update. J Appl Physiol 2014;117:1215–1230. 

26.  Hemingway MA, Biedermann HJ, Inglis J. Electromyographic recordings of 

paraspinal muscles: Variations related to subcutaneous tissue thickness. Biofeedback 

Self Regul 1995;20:39–49. 



 
 

21 

27.  Lowery MM, Stoykov NS, Taflove A, Kuiken TA. A multiple-layer finite-element 

model of the surface EMG signal. IEEE Trans Biomed Eng 2002;49:446–454. 

28.  Farina D, Merletti R, Indino B, Nazzaro M, Pozzo M. Surface EMG crosstalk between 

knee extensor muscles: experimental and model results. Muscle Nerve 2002;26:681–

695. 

29.  Clark DJ, Patten C, Reid KF, Carabello RJ, Phillips EM, Fielding RA. Impaired 

Voluntary Neuromuscular Activation Limits Muscle Power in Mobility-Limited Older 

Adults. Journals Gerontol Ser A Biol Sci Med Sci 2010;65A:495–502. 

 

  



 
 

22 

Figure Legends 

 

Fig. 1 - Electrode placement over the vastus lateralis (VL) for Experiment one (Spatial 

Location). Anterior (A) and posterior (P) rows of electrodes were placed at ~30% and ~70% 

of the distance between the superficial anterior and posterior borders of the VL (respectively) 

and numbered from distal to proximal. 

Fig. 2 - An example ultrasound image from one participant for the measurement of muscle 

electrode distance (MED) in Experiment two. Measurement of MED over the vastus lateralis 

(VL) at 60% of the thigh length. 

Fig. 3 - Experiment one – Spatial location. Absolute sEMG measurements from 6 recording 

sites over the surface of the vastus lateralis (VL) during maximum voluntary torque production 

(EMGMVT, A) and during MMAX responses [B, peak-to-peak (P-P); and C, area]. Mean values 

are shown for n=10. Post-hoc differences between sites are indicated as: * higher than P2 and 

P3 (P≤0.036), ≠ higher than P3 (P≤0.046), § higher than P2 (P≤0.041). 

Fig. 4 - Experiment one – Electrode spatial location. EMGMVT (surface EMG at maximum 

voluntary torque) normalized to (A) MMAX peak-to-peak (P-P) or (B) MMAX Area for 6 

recording sites over the surface of the vastus lateralis. Mean values are shown for n=10. Post-

hoc differences between sites are indicated as: # higher than P3 (P≤0.014). 

Fig. 5 - Experiment two – muscle-electrode distance (n=41). Relationship between muscle-

electrode distance (MED) and three different measures of surface EMG amplitude during 

maximum voluntary torque (MVT) production: A, absolute EMGMVT; B, EMGMVT normalized 

to MMAX peak-to-peak (P-P); C, EMGMVT normalized to MMAX Area; for individual muscles 

[rectus femoris (RF); vastus medialis (VM); and vastus lateralis (VL); n=41]. 
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Table 1 – surface EMG recorded at the six sites over the vastus lateralis (VL) during isometric knee extension maximum 

voluntary torque (MVT) production (absolute and normalized to MMAX Area and peak-to-peak [P-P]), and absolute evoked MMAX 

responses (MMAX Area and P-P). Data are mean ± SD (n=10). 

VL Sites EMGMVT MMAX Area MMAX P-P Normalized EMGMVT Normalized EMGMVT 
 (mV) (mV.s) (mV) (MMAX Area.s-1)  (%MMAX P-P) 

A1 0.22 ± 0.06 0.019 ± 0.004 2.8 ± 0.7 12.3 ± 2.2 8.5 ± 2.9 

A2 0.21 ± 0.06 0.018 ± 0.006 2.9 ± 0.9 12.5 ± 3.1 7.7 ± 1.9 

A3 0.22 ± 0.10 0.021 ± 0.009 3.0 ± 1.6 11.7 ± 6.3 8.7 ± 4.8 

P1 0.18 ± 0.05 0.014 ± 0.004 2.3 ± 0.7 13.8 ± 2.3 8.3 ± 1.8 

P2 0.14 ± 0.03 0.010 ± 0.003 1.4 ± 0.3 13.5 ± 4.1 9.8 ± 2.4 

P3 0.13 ± 0.03 0.015 ± 0.004 1.9 ± 0.7 8.8 ± 3.9 7.6 ± 4.0 
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Table 2 – surface EMG variables recorded over the rectus femoris (RF), vastus medialis (VM) and vastus lateralis (VL) during 

isometric knee extension maximum voluntary torque (MVT) production: absolute EMGMVT; EMGMVT corrected for muscle-

electrode distance (MED); EMGMVT normalized to both MMAX Area and peak-to peak (P-P). Data are mean ± SD (n=41). 

EMG Variables RF CVB (%) VM CVB (%) VL CVB (%) 

       
EMGMVT (mV) 0.17 ± 0.09 51.1 0.22 ± 0.10 44.0 0.15 ± 0.09 62.1 

EMGMVT (mV, corrected for MED) 0.17 ± 0.05 29.6 0.22 ± 0.07 34.2 0.15 ± 0.06 39.5 

Normalized EMGMVT (MMAX Area.s-1) 13.7 ± 4.8 36.2 12.7 ± 5.7 44.4 10.9 ± 4.9 44.2 

Normalized EMGMVT (%MMAX P-P) 9.5 ± 2.9 30.8 8.7 ± 3.5 40.5 8.0 ± 3.1 38.9 
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[Fig. 2] 

 

 

 

  

MUSCLE (VL) 

MED 



 
 

27 

 
[Fig. 3] 
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[Fig. 4] 
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