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Abstract 

Bone drilling is an essential part of many orthopaedic surgery procedures, including 

those for internal fixation and for attaching prosthetics.  Estimation and control of 

bone drilling forces are critical to prevent drill-bit breakthrough, excessive heat 

generation, and mechanical damage to the bone. An experimental and 

computational study of drilling in cortical bone has been conducted. A 3D finite 

element (FE) model for prediction of thrust forces experienced during bone drilling 

has been developed. The model incorporates the dynamic characteristics involved in 

the process along with geometrical considerations. An elastic-plastic material model 

is used to predict the behaviour of cortical bone during drilling. The average critical 

thrust forces and torques obtained using FE analysis are found to be in good 

agreement with the experimental results. 

Keywords: Bone drilling, Orthopaedic surgery, Finite element, Experimental testing, 

Yield surface 

 



1. Introduction 

In orthopaedics surgery, drilling and tapping are extensively carried out before 

the insertion of screws. The desired outcome of bone drilling is to drill holes of the 

required diameter without mechanical and thermal damage to the bone and without 

affecting the surrounding tissues. 

At present, in orthopedic surgery, bone drilling is performed using hand  drills 

and the feed rate of the drill-bit is manually controlled by the surgeon.  The drilling 

performance depends, on a great extent, on the surgeon’s  manual skill and ‘drilling 

by feeling’ (G. Augustin et al. 2012).  The drilling  force sensed by the surgeon is 

subjective; it depends on the feed rate of the drill-bit, the quality of the bone and the 

type of drill-bit used.   Drilling into bone is a fundamental skill that can be both very 

simple, such as drilling through long bones, or very difficult, such as drilling through 

the vertebral pedicles where incorrectly drilled holes can result in nerve damage, 

vascular damage or fractured pedicles (Van Brussel et al. 1996, Carmouche et al. 

2005). Large forces experienced during bone drilling may result in drill overrun, 

causing considerable damage to surrounding tissues (Ong et al. 1999, Brett et al. 

2004) and may promote crack formation (Kasiri et al. 2010). Similarly, drilling forces 

are the major contributor to heat generation during bone drilling (Augustin et al. 

2008), which can cause thermal necrosis (Eriksson et al. 1984, Bachus et al. 2000, 

Davidson et al. 2003). Previous studies (Farnworth et al. 1974, Bassi et al. 2008, 

Price et al. 2002) have shown that uncontrolled drilling forces and torques could 

cause surgical complications due to the drill-bit breakage. It is also important in 

manual bone drilling to learn to anticipate drill-bit breakthrough and the necessary 

change in force depending on the quality and density of the bone, which is 

anisotropic and living.   Diseases such as osteoporosis and cancer affect the quality 

and density of the bone, and thus affect the drilling thrust force.  It is therefore 

important to understand the effects of bone drilling conditions, drill-bit geometry and 

material behaviour on the bone drilling forces to select favourable drilling conditions, 

and assist in robotic assisted surgical procedures (Ong et al. 1998, 1999, 2000, HSU 

2001). 

Experimental, analytical and numerical modeling techniques have been used 

by many researchers to study the drilling mechanism in bone. Experimental studies 



examined the effects of spindle speed (Thompson 1958, Jacob et al. 1976, Hobkirk 

et al. 1977) and feed rate (Jacob et al. 1976, Wiggins et al. 1976) on the thrust force 

and torque experienced during bone drilling. It was seen that increased drill-bit 

rotational speed results in lower drilling force, and higher feed rate produce higher 

thrust force and torque. Similarly, the effect of drill-bit geometry on bone drilling 

forces has been investigated experimentally (Farnworth et al. 1974, Jacob et al. 

1976, Hobkirk et al. 1977, Karmani et al. 2004, Saha et al. 1982), and twist drill-bits 

with lower point angle and large helix angle were seen to produce lower forces but 

were also seen to cause drill-bit breaking.   

In analytical studies, drilling models developed for metals have been applied 

to bone drilling to estimate the bone drilling forces, and in order to apply machining 

theory of metals to bone, an assumption was made that bone behaves like metal 

when it is machined (Wiggins et al. 1976, Allotta et al. 1996, Lee et al. 2012). The 

results obtained by Wiggin et al. (1976) did not show a good correlation between 

theoretical and experimental drilling force data.  Allotta et al. (1996) ignored the 

effect of chisel edge and their estimated specific cutting energy is not supported in 

the literature. Karalis et al. (1982) applied the theory of rock mechanics in bone 

drilling. However, the coefficient of determination found was very low (r2 = 0.23), so 

the validity of the formulation is not entirely convincing. More recently, an enhanced 

model of drilling forces during bone drilling was derived (Lee et al. 2012). However, 

all the mechanistic models used empirical equations to calculate cutting parameters, 

and the specific cutting energy, obtained from a number of calibration tests, is only 

valid for a certain range of cutting conditions and drill-bit geometries. 

Only a few numerical studies in the literature have attempted to model bone 

drilling and the cutting process. A Finite element (FE) model was used by Tu et al. 

(2008) to simulate the rise of temperature in bone during drilling. However, the model 

did not consider force calculations and was not validated experimentally. Childs et al. 

(2011) have applied a metal machining FE model, including a strain accumulation 

damage law to predict chip formation and forces in bone machining. It was 

concluded that the material model is the primary factor contributing to the simulated 

specific cutting force. The literature also showed that the mechanical characteristics 

of bone during drilling depend upon the amount of strain, strain rate and temperature 

(Hansen et al. 2008, Crowninshield et al. 1974, Pope et al. 1974). Therefore, the 



mechanics of bone drilling directly depends upon the drilling conditions, drill-bit 

geometry and material model of the bone. 

 The tremendous  advancements in computing power in the last two decades 

have made the finite-element method very attractive in the modeling of metals and 

polymers machining process. Three kinds of mechanical formulation can be used to 

model machining in FE analysis. Strenkowski et al. (2004) used Eulerian FE, in 

which the grid is not attached to the material; this is computationally efficient but 

needs a continuous update of the free chip geometry.  Leopold et al. (1999) used 

Lagrangian formulation, in which the grid is attached to the material; this method 

requires an update of the mesh (remeshing algorithm) or the use of an element 

removal criterion to form the chip from the workpiece (Ceretti et al. 1996). An 

alternative method is to use Arbitrary Lagrangian Eulerian (ALE) formulation (Pantale 

et al. 1996) in which the grid, which is not attached to the material, moves to avoid 

distortion and  the free chip geometry needs updating continuously (i.e. continuous 

remeshing).  Chen (1997) applied FE to design drill-bits based on drill-bit 

deformation.  Pantale (2004) developed 2D and 3D FE cutting models with damage 

effects for metals. These models were able to predict the formation of chips and the 

cutting forces during the process depending on the material machined. All of these 

studies have proven that FE modeling is effective in predicting cutting forces under 

varying cutting conditions and cutting tools. 

In this work, we have used the Lagrangian formulation with the element 

removal scheme to simulate drilling. We present a FE model for the bone drilling 

process to enable prediction of bone drilling forces as a function of drilling conditions, 

drill-bit geometry and material model of bone. In this model, dynamic effect, 

constitutive damage law and contact friction are taken into account. The yield stress 

is taken as a function of strain and strain rate. The damage constitutive law adopted 

here allows advanced simulations of tool penetration and material removal. The 

model is then experimentally evaluated using cortical portions of bovine femur. 

2. FE model of drilling 

Considering the similarity in the mechanics of bone drilling to that of metal and 

polymers, FE methods can provide a framework to develop a numerical model, 

which could reasonably predict the levels of thrust force and torque within a relatively 

reasonable computational time. In this work, a three dimensional (3D) Lagrangian FE 



model of drilling in cortical bone has been developed using a commercially available 

FE software ABAQUS/Explicit. The behaviour of cortical bone in elastic regime was 

defined using the Hill’s potential theory for anisotropic materials (Hill 1952, 1990) 

together with the rate dependent plasticity criterion. An element removal scheme 

was used based on ductile damage initiation criterion to replicate the hole making 

process.   

2.1 Constitutive material model 

Bone as an anisotropic material exhibits different yield behaviour in different 

directions. The present work is based on the modeling of anisotropic yield behaviour 

of cortical bone using yield stress ratios. In this study bone material is considered as 

a transversely isotropic material with five independent elastic constants. The long 

axis of the bone has been taken as the axis of symmetry. The transversely isotropic 

model proposed in this work is based on the Hill’s quadratic yield criterion for 

anisotropic material (Hill 1952, 1990) and a non-linear isotropic hardening rule for 

rate dependent plasticity. The constitutive equations of this model for uniaxial loading 

are as follows: 

The total strain tensor during deformation is the sum of elastic strain tensor and 

plastic strain tensor, given by, 

ߝ ൌ 	 ௘௟ߝ ൅  ௣௟                                                                                                (1)ߝ

In this case the yield ratios were defined with respect to a reference yield stress, σo 

(a user-defined reference yield stress specified for the material plasticity). For 

anisotropic yielding Hill’s potential function can be expressed in terms of rectangular 

stress components as given by, 
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where F, G, H, L, M and N are constants, obtained from the following equations, 
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Here ߪത  is the measured yield stress when applied as the only non-zero stress 

component, Rij are anisotropic yield ratios and can be calculated from the cortical 

bone yield strengths. ߪ௬ is the size of an initial yield surface.  

 

R is the isotropic hardening term given as: 

 

ܴ ൌ ,௣௟ߝ଴ሺߪ	                     ଴ሻ                                                                              (4)ߠ

 

Here θ0 is the temperature of the cortical bone. For 2-3 plane to be the plane of 

isotropy at every point, transverse isotropy requires that E1 = Ep, E2 = E3 = Et, ν12	 ൌ 

ν13	 ൌ	 νpt,	 ν21	 ൌ	 ν31	 ൌ	 νtp and G12 = G13 = Gt where p and t stand for in-plane and 

transverse respectively. 

 

The rate-dependent properties of the cortical bone were also defined using 

the Cowper–Symonds overstress power law (Cowper et al. 1957): 
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where σ is the yield stress under different strain rates, σ0 is the static strain rate, and 

d and n are material constants. 

 

 



2.2 Element removal scheme 

Here, simulation of the hole-generation process in cortical bone was 

accomplished with the help of the element removal scheme in Abaqus/Explicit. The 

chip formation was not modelled, and the damage initiation in the cortical bone was 

based on a ductile damage criterion. The ductile criterion is specified by providing 

the equivalent plastic strain at the onset of damage, ߝ஽̅
௣௟,	 which is a function of stress 

triaxiality and strain rate: 

 

஽̅ߝ
௣௟ሺߟ	, ߝ ̅ሶ௣௟ሻ                                                                                      (6) 

 

where η = p/q is the stress triaxiality (p is the pressure stress and q is the Mises 

equivalent stress).  The criterion for damage initiation is met when the following 

condition is satisfied by ωD, a state variable that increases monotonically with plastic 

deformation, and is proportional to the incremental variation in the equivalent plastic 

strain. :  
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The characteristic stress-strain behaviour of a material under uni-axial loading that 

undergoes progressive damage is shown in Fig. 1. 
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Fig. 1. Stress-strain curve with damage behaviour 



 

   In the case of the elastic-plastic material, this damage can be decomposed into 

two parts; softening of the yield stress and degradation of the elastic modulus. The 

solid curve in Fig. 1 represents the damaged stress-strain response, whereas the 

dashed line represents the undamaged behaviour. σyo and ߝ଴̅
௣௟ are yield stress and 

equivalent plastic strain at the onset of damage respectively, while ߝ௙̅ is the 

equivalent plastic strain at failure, also known as fracture strain.  D is the overall 

damage parameter: with D= 0 at damage initiation, and D=1 at complete damage. 

After damage initiation, the residual elastic modulus, Er, is given as: 
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When the material undergoes damage, the stress-strain relationship fails to 

accurately represent its behaviour because of a strong mesh dependency linked to 

the strain localisation. Hence, a different approach is required to trace the strain 

softening branch of the stress-strain curve. Thus, Hillerborg’s fracture energy 

approach (Hillerborg 1985)  was employed in this model, which helped to reduce 

mesh dependency by formulating a stress displacement response after damage 

initiation. The fracture energy was idealised as work required to open a unit area of a 

crack; it is expressed as: 
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where ݑത௣௟	is the equivalent plastic displacement and can be considered as fracture 

energy conjugate of yield stress after the damage initiation: ݑത௣௟ ൌ 0  at damage 

initiation and ݑത௣௟ ൌ 	݈ .after it	௣̅௟ߝ݈ is the characteristic length of an element in a 

meshed body that depends on its geometry and formulation. 

 

2.3      Material properties 

As the cortical bone was modelled as transversely isotropic elasto-plastic rate 

dependent material, the quasi static properties were taken from the literature (Reilly 

et al. 1975). For rate dependent properties, split-Hopkinson pressure bar (SHPB) 



tests were conducted and a best-fit curve and constitutive constants for equation 5 

were generated. The stress-strain curve of a material at a known strain rate could be 

scaled to determine the material properties at an unknown strain rate by using 

equation 5 with the respective material coefficients (d and n). The material properties 

of cortical bone used in the FE analysis are listed in Tables 1 and 2 below.   

 

 

Table 1.  
Mechanical parameters of cortical bone. 

 
Property                                                     Value 
 
Longitudinal stiffness, E11 (GPa)                  20 

Transverse stiffness, E22 (GPa)                    18 

Poisson’s ratio, v12                                        0.34 

Poisson’s ratio,	v23																																																																															0.4 

Shear modulus, G12 (GPa)                            5 

Density  (kg/m3)                                             2000 

Materials constants (d/n)                      9897/0.65 

 

Table 2.  
Values of Rij for calculating Hill’s potential constants. 

 

 

 

2.4     Geometric modeling and boundary conditions 

A 3D FE model of drilling was developed which consists of a HSS twist drill-bit 

and cortical bone with appropriate boundary conditions as shown in Fig. 2a. A 3D 

geometry of a 2.5mm diameter twist drill-bit with a point angle of 118° and a helix 

angle of 28o was modelled in Abaqus. The drill-bit was modelled as a rigid body 

because the elastic stiffness of the HSS twist drill-bit used is in the range of 220–

240GPa as compared to 20GPa for the cortical bone; this reduces the computational 

cost involved in the highly resource-consuming drilling simulations. An elastic 

R11 R22 R33 R12 R13 R23 

1.2 1 1 0.77 0.77 0.88 



modulus of 235GPa was used for the drill-bit in this simulation.  The mesh size of 

cortical bone was refined in the immediate vicinity of the drilled area to capture high 

stress gradients during the drilling process. The elements in the refined cylindrical 

zone were removed when the failure criterion was met during simulations using 

element deletion discussed in Section 2.2. The cortical bone was fixed at all four 

vertical faces, while the drill-bit was constrained to rotate only about its own 

longitudinal axis with a specified speed and fed vertically downwards into the work 

piece as shown in Fig. 2b. The FE analysis was performed with the drilling 

parameters listed in Table 3.  

In this study, eight-node, first-order, one integration point hexahedral 

elements of type C3D8R were used. As the mesh-sensitivity study is very important 

in simulations involving high deformations and a non-linear material behaviour, a 

rigorous mesh-sensitivity study was carried out to obtain a computationally accurate 

finite-element mesh. In the current model, due to the implementation of the drill-bit 

and removal of material, the history of the force-time signal is used as the criterion of 

convergence.  All the results are presented based on simulations performed with an 

optimised mesh. The computational time was reduced by introducing different mesh 

sizes in distinct regions of the FE model. The cortical bone was meshed with 101320 

elements with a smallest element size of 5μm. The drill-bit was modelled with four-

node, 3D discrete rigid elements of type C3D4 and meshed with 4850 elements. 

Localised stiffness reduction due to internal damage can cause excessive element 

distortion that could lead to difficulties in numerical convergence. To resolve this 

numerical issue, ‘distortion control’ was used in Abaqus, and damage variables were 

limited to a maximum value of 0.999. Following a wave stability study it was 

observed that the smallest element which governs the stability of the solution has a 

very low stable time increment of the order of 10-8s.This affected the overall solution 

run time, and hence a selective variable mass scaling technique was used for the 

element set in the refined cylindrical zone. The mass scaling increased the mass of 

the selected elements to 0.5% with a stable time increment of the order 10-7s. This 

had minimal effect on the kinetic energy of the model. 

The contact and friction parameters used in the simulations were based on a 

number of experimental factors such as spindle speed, feed rate and drill-bit 

geometry. Contact between the twist drill-bit and cortical bone was defined by the 

general contact algorithm available in Abaqus/explicit. This algorithm generated the 



contact forces based on the penalty-enforced contact method. The friction coefficient 

µ is used to account for the shear stress of the surface traction, τ =µ p, (where p is 

the contact pressure). In this case, the frictional contact between the drill-bit and 

cortical bone was modelled with a constant coefficient of friction of 0.7 (Davidson et 

al. 2003). The models required on average 54 hours on 36 Intel quad-core 

processors with 48 GB RAM each. A High Performance Computing (HPC) facility 

available at Loughborough University was used. 

 

Table 3.  
Machining parameters used in cortical bone drilling 

Drill-bit HSS, 2.5 mm, point angle 118o 

Spindle speed (rpm) 800, 1200, 1500 

Feed (mm/rev) 0.05, 0.1,0.15, 0.1875 
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Fig. 2. (a) Finite element model of bone drilling (b) Meshing and boundary conditions 

 

3. Drilling Experiments 

3.1 Specimen preparation 

Bovine bone was used in this research as it replicated the properties of 

human bone (Vashishth 2004). The bones were obtained from a local butcher and 

were stored frozen at −10 0C before the tests. The bone used in the experiments 

was allowed to thaw for 24 hours just before the tests were carried out. The 

epiphysis was then cut off. The tests were carried out on the diaphysis of the femur 

bone, which is predominantly cortical bone. The bone pieces were 75-90mm in 

length with an average thickness of the cortical wall of 7–9 mm. However, the shape 

of the bone was not suitable for gripping the bone in a holding device. To eliminate 

this problem, the bone was cut into three parts along its longitudinal axis. One part of 

the bone (specimen) was screwed to the surface of a metal block, with the bone’s 

top surface facing the drill-bit. A total of eight test specimens were prepared from the 



bone pieces, and every specimen was divided into seven equal sections, each 

accommodating approx. four drilled holes. The main stages of specimen preparation 

are shown in Fig. 3.  

 

 

 

Fig. 3. Preparation of drilling specimen 

 

3.2 Experimental setup 

An electromechanical test rig, shown in Fig. 4a, was designed to carry out the 

drilling experiments. Test specimens were mounted on a force transducer (model no. 

LCM101-10, Omega Engineering Ltd., UK) which measured the drilling force during 

the drilling experiments. The force transducer was further mounted on a rotary table 

supported on ball bearings. The mounting arrangement is shown in Fig. 4b.The 

rotary movement of the rotary table is restricted using a strain gauged (Wheatstone 

bridge) cantilever beam; thus giving a measure of the drilling torque. Drill-bit guide 

bushings were used to guide the drill-bit and ensure that it is driven into the 

specimen at a 90o angle. The drilling force was recorded at a sampling rate of 1000 

Hz. A 12-bit, eight channel data acquisition system was used for the data acquisition 

(model no. USB-1208FS, Measurement Computing Corp. UK). A constant drill feed 

rate was provided by a ball screw feed mechanism which was powered by a stepper 

motor. An encoder was mounted on the ball screw to directly record its rotation, 

which is converted into drill-bit displacement and feed rate using the lead 

measurement of the ball screw. During the drilling operation, the drill-bit feed rate 

was recorded via RS232 interface and displayed on the computer screen. This 

information was used to set the feed rate value and also to monitor any change in 



the feed rate during the drilling operation. The drilling was carried out at feed rates 

between 40mm/min and 282mm/min, based on the assumption made about the 

approximate drilling time that a surgeon would take to perform drilling in clinics. The 

required drilling speed was provided by a DC servo motor with speed control. Drilling 

in the cortical bone specimens were carried out at drilling speeds of 800rpm, 

1200rpm and 1500rpm, using  diameter 2.5mm industrial drill-bits (Model 

A9762.2X95 Dormer UK). This speed range was chosen to reduce the generation of 

high temperature during drilling. All the experiments were performed at room 

temperature without cooling as in real orthopaedic surgery. The minimum number of 

holes to be drilled into each section of cortical bone specimen, for the study to be 95% 

statistically significant, was calculated using the sample size calculation equation 

presented by (Dell et al.2002). A sample size of three was obtained. This was based 

on the calculated drilling force standard deviation value of 0.5N and a margin of error 

of 0.65N for the experimental setup using a homogenous material. 

 

 

 

 

Fig. 4. (a) Drilling Test Rig (b) Mounting of Specimen 



  

4. Results and discussion 

4.1 FE Results 

To identify the maximum force and maximum torque easily, any noise in the 

force and torque data was filtered using the running average function. A typical 

profile of the drilling force with respect to drill-bit displacement for a single hole was 

obtained as shown in Fig. 5a. The drilling profile is divided into four zones. Zone I 

shows the penetration of the drill-bit, which can be seen by a sharp rise in the drilling 

force. Zone II shows the start of material removal by the chisel edge and main 

cutting edge with gradual rise in thrust force upon drill-bit entry into the anterior 

cortex. The Drill bit is fully engaged at the end of zone II and throughout zone III, and 

the maximum drilling force is calculated in zone III, Zone IV shows a gradual drop in 

thrust force as the drill-bit exits the cortex. Similar drilling force profiles having 

different drilling force magnitudes were observed for all the drilling conditions 

considered in this study. A typical torque profile is shown in Fig. 5b. It shows the 

same increasing trend as the thrust force upon drill-bit penetration.  

 

The noise observed in the simulation results is due to the continuous make-

and-break of contact between the drill-bit and bone upon removal of material. Such 

inherent noise caused by the “Alternating in and out” of drill-bit is due to the removal 

of material and the small stable time increment in the “explicit solver” used.  The 

noise could be reduced through inducing artificial damping, but this will reduce the 

stable time further which results in high computational costs. 
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Fig. 5.  FE Results at 150mm/min and 800 rpm (Smoothed using the moving 

average function) (a) Thrust Force  (b) Torque 

 

 

4.2 FE Model validation 

In order to allow a better comparison of the experimental and simulated 

drilling thrust force and torque, a feed rate of 150mm/min was chosen with a spindle 

speed of 800rpm.  This gives a feed rate with respect to the rotational speed of 

0.1875mm/rev. The FE simulations were carried out using these process parameters, 

which were subsequently used to predict the thrust force and torque for other feed 

rates. Figures 6a and 6b show the experimental and simulation results of the drilling 

thrust force and torque in cortical bone.  The noise in the simulated FE force and 

torque data has been filtered using the running average function.  The average 

maximum thrust force (obtained for the period of complete drill engagement) in the 

experimental trials was between 70 and 75N, compared to 73N for the FE simulated 



model. The experimentally measured torque was 1.54–1.62Ncm compared to an 

estimated torque of 1.5Ncm obtained from FE simulation. This shows that the FE 

model estimated the thrust force and torque accurately. 

 

 

 

 

 

 

  

(a) 



 

(b) 

 

Fig. 6. Experimental validation of FE model at 150 mm/min and 800 rpm (a) Thrust 

force (b) Torque.  (The FE data is smoothed using the moving average filter) 

 

 

4.3 Prediction of thrust force and torque 

Fig. 7(a) shows the effect of drilling conditions on the average maximum 

thrust force. Both FE modelling and experimental tests gave similar results. The 

thrust force was between 28N and 70N for the range of feed (mm/rev) modeled. 

Similar to other studies, the obtained results show that the drilling thrust force 

increases with increasing feed rate. It can also be observed from Fig. 7a that at a 

feed of 0.1875mm/rev (obtained from a spindle speed of 800rpm and a feed rate of 

150mm/min), the average maximum thrust force was the highest, and lowest at a 

feed of 0.05mm/rev (obtained from a spindle speed of 800rpm and a feed rate of 

40mm/min). Comparing the levels of thrust force for different feed rates, it was 

observed that when the feed was increased from 0.05mm/rev to 0.1mm/rev (i.e. from 

40mm/min to 80mm/min at 800rpm spindle speed) the thrust force increased by 60% 

and when the feed was increased from 0.1mm/rev to 0.15mm/rev (i.e. from 

 



80mm/min to 120mm/min at 800rpm spindle speed) the thrust force increased by 

83%. The effect of drilling speed on torque and force was also examined. The torque 

decreased significantly as the spindle speed was changed from 800rpm to 1500rpm 

for a feed rate of 150mm/min, as shown in Fig. 7b.  This was observed for all the 

feed rates used in this study.  However, the effect of feed rate on the torque is 

negligible as shown in Fig. 7c.  Comparing the level of torque for different feed rates, 

it was observed that when the feed was increased from 0.05mm/rev to 

0.1875mm/rev (i.e. increased from 40mm/min to 150mm/min at a spindle speed of 

800rpm) the torque increased by only 6%. Also, similar to the effect of spindle speed 

on the torque, the thrust force decreased as the spindle speed was changed from 

800rpm to 1500rpm at a feed rate of 120mm/min, as shown in Fig. 7d; such trend 

was observed for all the feed rates used in this study.   
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Fig. 7. Comparison of experimental and FE results at different feed rates and spindle 

speeds (a) Thrust force (with error bar of fixed value + 5), (b) Torque (with error bar 

of fixed value + 0.15), (c) Torque (with error bar of fixed value + 0.02), (d) Thrust 

force (with error bar of fixed value + 4) 

 

 

4.4 Clinical and biomechanical implications 

As noted earlier, the thrust force data in Fig. 6(a) showed that there was a 

gradual increase of thrust force during drill-bit entry and gradual drop of thrust during 

drill-bit exit. This increase and decrease of load is due to the increase and decrease 

of drill-bit engagement with the bone. The rate of decrease can be used to enhance 

safety against drill-bit breakthrough. Fig. 6 also shows that there is a fluctuation in 

force and torque profiles in the experimental results. One reason for this may be the 

anisotropic nature of bone mechanical properties. Bone porosity, although not 

directly considered in this study, may be the additional factor that contributes to force 

and torque fluctuations during drilling. 

  



 

4.5 Comparison to previous studies 

Current findings for maximum thrust force and torque are compared to those 

reported by others as shown in table 4 ( Wiggins et al. 1976, Natali et al. 1996, Ong 

et al. 1999, 2000, Hillery et al. 1999, Tsai et al. 2007, Alam et al. 2011, Lee et al. 

2012, MacAvelia et al. 2012). The presented force and torque results overlap with 

some reports (Alam et al. 2011, Lee et al. 2012 ) which have values up to 70N and 

3.8Ncm respectively. To the authors’ knowledge, no 3D numerical study has been 

reported previously on the prediction of drilling force in cortical bone, only a few 

studies predict forces in plane cutting of cortical bone using FE models ( Alam et al. 

2009, Childs et al. 2011). Consequently, the current study of 3D FE model with 

material damage law is the first study to predict drilling forces in bovine cortical bone. 

The difference between the experimental results of various studies arise from the 

wide variety of test conditions used by researchers regarding drill-bit diameter, drill-

bit type, rotational speed, feed rate and bone type 

Table 4.  
Comparison of presented results with respect to previous studies  

STUDY MATERIAL RESULT 

    Force (N) 
Present Bovine femoral shaft 25 to 75 

Wiggin and Malkin Human femoral shaft 2 to 300 
Natali et al. Human tibial shaft 10 to 20 
Ong and Bouazza-Marouf Porcine vertebra 0.6 to 29.6 
Tsai et al. Human femoral trochanter 0 to 5 
Ong and Bouazza-Marouf Porcine femoral trochanter 2 to 24 
Ong and Bouazza-Marouf Porcine femoral head 4 to 32 
Alam et al. Bovine femoral shaft 24 to 70 
Hillery and Shuaib Bovine tibial shaft 24 to 48 
Lee et al. Bovine tibial shaft 0 to 20 
Salahi et al. Human femoral shaft 176 to 198 

    Torque (N.cm) 
Present Bovine femoral shaft 1.2 to 1.6 
Wiggin and Malkin Human femoral shaft 0.2 to 12 
Tsai et al. Human femoral trochanter 0 to1 
Alam et al. Bovine femoral shaft 1 to 2.3 
Hillery and Shuaib Bovine tibial shaft 1 to1.45 
Allota et al. Porcine femoral shaft 5.5 
Lee et al. Bovine tibial shaft 0 to 3.8 
Salahi et al. Human femoral shaft 14 to 18 
      

 



 

4.6 Possible limitations 

It should be noted that several factors could improve the accuracy of the 

simulation results. Amongst these is the use of a more realistic friction model, chip 

tool interaction, type of chip, inclusion of thermal effects and accounting for drill-bit 

wear effects.  Friction is a contributor to heat generation which may result in bone 

necrosis. We have not used it in our study because the maximum drilling time was 

only 3s and the bone was fully soaked at room temperature (approx. 25oC).  

Fonseca et al. (2013) established that there is an increase of 14oC in temperature 

when irrigation is not used, and Eriksson et al. (1984) established that thermal 

necrosis of cortical bone occurs when the bone is exposed for 1 min to a threshold 

temperature of 47oC.  Matthews and Hirsch (1972) investigated human cadaveric 

femora; they measured  the effect of applied force from 19.6N to 117.6N along with 

drill-bit speeds varying  from 345rpm to 2900rpm and concluded that both the 

temperature above 50oC and its time  duration decrease as the applied load 

increases. Also, because of the high elements distortion at the front of the drill-bit, 

the time step decreases and results in a very high computational time. Therefore, to 

make the computational time reasonable the distorted elements at the front of the 

drill-bit were removed, and the chip formation was not modelled; and thus the friction 

between the chip and the drill-bit was ignored.  

The type of element used to discretize the bone may also affect the  results. A 

discrepancy in torque predictions may be due to overly stiff 3D solid  elements used 

with the default reduced-integration scheme available in  Abaqus/explicit. Artificially 

relaxing the stiffness of solid elements may address this  issue; this will be a topic of 

future research and is not addressed in the current  study. 

Only one drill-bit diameter was used i.e., ϕ2.5mm, thereby limiting the present 

conclusion to this drill-bit size. However, the current diameter is within the range 

reported in previous literature, and the chosen particular drill-bit is commonly used in 

clinics. Only three spindle speeds were used, thereby limiting the conclusion to this 

range. The current speeds are within the range of speeds reported earlier in 

biomechanics publications. 

  



 

5. Conclusions 

In this paper the effect of different drilling parameters on thrust force and 

torque in drilling of cortical bone has been investigated both experimentally and 

numerically. A three dimensional (3D) Lagrangian FE model of drilling on cortical 

bone was developed using a commercially available FE software ABAQUS/Explicit. 

The behaviour of cortical bone in elastic regime was defined using the Hill’s potential 

theory for anisotropic materials together with the rate dependent plasticity criterion. 

An element removal scheme was used based on ductile damage initiation criterion to 

replicate the hole making process. The following observations are made in this study: 

 

 This is the first study using 3D FE model with a material damage law to 

predict drilling forces in cortical bone with experimental validation  

 The FE model predicted drilling thrust force and torque with reasonable 

accuracy when compared to experimental results. 

 The validated drilling model was used to determine the thrust force, and 

torque for different drilling conditions. It was observed that the thrust force 

increased with an increase in feed rate while the torque decreased with an 

increase in rotational speed. Similarly the thrust force decreased with an 

increase in rotational speed while  the effect of feed rate on the torque was 

negligible.  The thrust force and torque may  be reduced using a combination 

of low feed rate and high rotational  speed when drilling in cortical bone within 

the range of the drilling  conditions investigated in this study.   However, care 

must be taken to  avoid bone damage (necrosis) if a very low feed rate with 

high rotational  speed (i.e. very low feed per rotation) is chosen without 

irrigation,  especially when drilling in thick bone. Studies carried out by 

Matthews et al. (1972) and Nam et al.   )2006) define the range for safe drilling.  
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