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Abstract

The primary purposes of a vehicle driver’s seat, is to allow them to complete the driving task
comfortably and safely. Within each class of vehicle (e.g. passenger, commercial, industrial,
agricultural), there is an expected driving position to which a vehicle cabin is designed. This paper
reports a study that compares two driving positions, in relation to Light Commercial Vehicles (LCVs),
in terms of driver performance and driver discomfort. In the ‘elevated’ driving position, the seat is
higher than usually used in road vehicles; this is compared to a standard driving position replicating
the layout for a commercially available vehicle. Itis shown that for a sample of 12 drivers, the
elevated position did not, in general, show more discomfort than the standard position over a 60
minutes driving simulation, although discomfort increased with duration. There were no adverse
effects shown for emergency stop reaction time or for driver headway for the elevated posture
compared to the standard posture. The only body part that showed greater discomfort for the
elevated posture compared to the standard posture was the right ankle. A second experiment

confirmed that for 12 subjects, a higher pedal stiffness eliminated the ankle discomfort problem.

Highlights

e An elevated driving posture does not adversely affect comfort
¢ An elevated driving posture does not adversely affect driver performance

e Accelerator pedal stiffness is associated with ankle discomfort
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1. Introduction

The design of vehicles (e.g. rail vehicles, trams, buses, cars, delivery vehicles, vans) for city use
requires a balance between the benefits of being light and compact, and the benefits of having a large
load capacity. Lightness and compactness can increase fuel economy and manoeuvrability. If it is
possible to shorten the overall space required to accommodate the driver, the vehicle could benefit
from a more compact design. Most current vehicle designs require the driver to sit in a low seat with a
semi-recumbent posture with legs extended towards the front of the vehicle. If the height of the seat
is increased the driving posture can be altered such that the feet are positioned further back, thus
reducing the need for space in front of the driver. Further advantages of this elevated posture include
improved ingress and egress for drivers and/or passengers, and improved visibility. Whilst some
vehicles use an elevated driving posture, there is little evidence to determine the suitability of this

posture for comfort and control of the vehicle.

Rebiffe (1969) explored the posture and position of the driver to best fit the requirements of the driving
task and was able to propose theoretical joint angles of the body for comfort and correct posture.
Porter and Gyi (1998) augmented this theoretical framework with observed driving postures. New
guidelines for optimum postural comfort were developed regarding body angles and inter relationships
between adjacent joint angles. It was noted that even with theoretically optimal postures, not all
people will be comfortable with the whole range of adjustment practically achievable with production

vehicles.

Postural assessment alone is insufficient to determine the overall comfort of a vehicle seat occupant.
Mansfield et al. (2005, 2014) identified factors affecting discomfort that can include the seat shape
itself, the fit of this to the occupant, the materials, the thermal environment, exposure to whole body
vibration (WBV), opportunity for changing posture and the length of time sitting in the same seated
position. These factors can be broken down through numerical analysis of subjective discomfort
ratings in order to predict discomfort under different conditions. During driving, drivers will be exposed

to vibrations from the road surface. Griffin et al. (1982) described how vibration, in combination with a



seated posture increases the level of discomfort, especially during journeys of long duration. In real
driving environments the vibration at the seat surface and backrest are transmitted through the body
and interact with vibration from the steering wheel and pedals to form the sensation of vibration, which
can lead to discomfort with increased vibration dose. EIl Falou et al. (2002) tested sensations of
fatigue for two seat conditions, ‘uncomfortable’ and ‘comfortable’, and found that for both experimental
conditions discomfort of the spine and back increased significantly over the 150-minute trial. Drivers
are required to maintain vigilance over long periods of time during which they are exposed to whole-
body vibration and can become fatigued. Studies of long-term discomfort have shown gradual
increases in discomfort over time, irrespective of how well designed the seat might be. Whilst it is
known that vibration accelerates the onset of discomfort it is currently unclear whether fatigue is also

reflected in driving performance or vigilance.

One method of assessing driver performance is to use the measure of ‘headway’, defined as the
distance from a lead car to a following car. Driving manuals and learner guidance often point towards
a 2-second headway as being the ideal minimum safe distance (Department for Transport, 2007)
when driving in normal conditions e.g. good visibility, dry road conditions. However, in reality the
headway allowed by a driver can be influenced by the traffic density, the characteristics of the driver
(Jonah, 1996), the perceived ability to judge physical situations better than other drivers (van Winsum,
1996), as well as the physical capabilities of the vehicle and circumstantial factors surrounding the
journey e.g. routine vs. urgent journey. In some cases it is not possible to maintain a preferred
headway if the space becomes occupied by other drivers changing lanes, therefore in practice the
headway selected by ‘safe’ drivers is often less than 2 seconds (Rudin-Brown et al., 2004, Simons-
Morton et al., 2005). With both of these studies classifying ‘risky’ driving as headways of <1.5
seconds, a ‘time headway’ of =1.5 seconds in normal driving conditions (replicated in the driving

simulation) was considered as safe for this study.

A second method of assessing driver performance is reaction time. The reaction time (RT) has
important consequences for the design of safe roads and vehicles, and is predicted to be effective in

establishing whether a posture change (the higher hip point) changes the time taken to move between



the accelerator and brake pedal. Green (2000) conducted an analysis of driver perception-brake times
and found that previous study results vary greatly because investigators have used many different
signals, responses and testing conditions. Green continued that when fully aware of the time and
location of the brake signal, drivers could move their foot from the accelerator (A) to the brake (B)
pedal in approximately 0.70-0.75 seconds. Green also noted that times can be affected by driver age,
gender, cognitive load and the urgency of the driving situation. Engstrom et al. (2010) explored the
effects of working memory load and repeated scenario exposure on emergency braking performance.
A driving simulation was set-up whereby a lead car would pull in front of the driver at a predetermined
time in the simulation, accelerate to headway of 1.5 seconds and then suddenly brake. The study
decomposed the reaction time to the time taken to release the A pedal and then the time taken to
switch the foot from the A pedal to the B pedal. The results indicated, firstly, that there was no effect
of working memory load on accelerator-brake reaction time, indicating that this method of
measurement is consistent. Secondly, the accelerator-brake reaction times were between 0.6-0.8
seconds. Decomposing the reaction time to discover the accelerator-brake time requires accurate
data collection and lends itself to a high fidelity driving simulation. Whilst driver performance under
‘normal’ driving conditions is relatively well understood, the interaction of driver posture with

performance is unknown.

This paper considers a study comparing a current production vehicle set up (the standard posture)
with a seat height of 375mm with a new specification driving position with an elevated seat height of
>400mm, the current maximum production hip point. It was hypothesised that the elevated driving
posture would be no worse than the current vehicle in terms of comfort or performance. The
reasoning for this is that the biomechanics of the elevated posture opens up the body angles (hip
angle; knee angle) and moves them closer to their neutral and thus more comfortable position.
Potential weight savings, benefits for visibility and ingress/egress were not investigated in this study.
The current production vehicle is categorised as a ‘small Light Commercial Vehicle (LCV) and was
set up with the production seat and corresponding adjustment slide, a standard pedal arrangement for
the automotive sector and a standard steering system. Assessing comfort in this new elevated driving
position allows this study to explore the range of optimum driving positions with an elevated seat

height, with reference to the pedals and the steering wheel. This comparative experimental study



used a motion platform and driving simulator to study discomfort ratings as well as fatigue effects,

using self-selected headway and reaction time.

2. Methods
2.1. Sampling

12 participants, 6 males and 6 females were recruited from the population of staff and students at
Loughborough University to take part in the trials. The criteria for recruitment were that each
participant held a full UK driving license, had at least 1 full year of driving experience and was
between the ages of 18-65. The age range that was recruited was 20-60 years. The Loughborough

University Ethical Advisory Committee (LUEAC) approved the study.

2.2. Equipment

Two driving rigs were constructed for the study: the first represented a driving position (standard
posture) from a small LCV production vehicle with conventional pedal and steering operations and
actual seat slide adjustment range, as illustrated in Figure 1. The driving rig was set up for Automatic
Transmission with just the accelerator (A) and brake (B) pedals and a fixed steering wheel position.
The seat height for this small LCV production vehicle was 375mm in Z, with the distance to the pedals
from the front edge of the seat ranging from 245mm (foremost position) to 475mm (rearmost position)
in X. The seat base length was 460mm in X, from the front edge of the seat cushion to the point at
which the cushion meets the backrest. The standard posture rig was built using carry over parts from

the vehicle including the seat, steering wheel and pedal set with replicated pedal stiffness.
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Figure 1. Image of seat, pedals and steering wheel used for the ‘standard posture’ condition.

The second rig was designed to accommodate an elevated seat height and a shorter seat base
length, with adjustability in both the seat height and the distance from the pedals, as illustrated in
Figure 2. The seat height had an adjustment range from 400mm-800mm in Z. The seat base length
was 350mm in X, from the front of the seat cushion to the point at which the cushion meets the
backrest. The distance from the seat to the pedals had an adjustment range between 450mm-850mm
in X. The steering wheel had nominally unlimited adjustment built in with the capability to change the
height of the wheel from the floor in Z, the distance from the driver in X and the angle of the wheel
itself. However, the steering wheel position was not a main focus of this study. The elevated posture
rig was created using the same production steering wheel, however the seat was fabricated from two
existing production seats and the pedal levers were fabricated from available materials with
standardised pedal pads. Resistance was added to the pedals to give drivers tactile feedback when

operating the pedals, comparable to real driving.
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Figure 2. Image of seat and pedals used for the ‘elevated posture’ condition.

For the trial, each rig was mounted on to a Multi Axis Vibration Simulator (MAViS) at Loughborough
University. The simulator has non-simultaneous excursions of 323 mm movement in X; 292mm
movement in Y; 184 mm movement in Z; 34 degrees roll; 34 degrees pitch; 52 degrees yaw. The
simulator was set to use a pre-recorded reproduction of a pavé surface with a seat point vibration total
value magnitude of 0.35 m/s? r.m.s. (weighted r.s.s. of x- y- and z-axis motion). The vibration at the
seat surface and platform was measured for each participant using a standard pad-mounted
accelerometer on the seat surface and accelerometers mounted on the motion platform. The system
settings were adjusted to compensate for the dynamics of the seat-person system so that the seat
surface vibration was always set at the target level. Once the simulator was calibrated the pad was
removed so to not influence discomfort ratings; the vibration at the seat base was kept constant and

monitored throughout.

The driving simulation software (XPI Simulation) allowed both steering and pedal inputs and provided
visual (Samsung 50” 1080p Screen) and audio outputs (Mackie Thump powered loudspeakers) for

the driver. The software recorded and logged the performance over each scenario detailing various



parameters. This included accelerator, brake and steering input (0-1 representing ‘no input’ to ‘fully
depressed/rotated’) as well as the x and y coordinates of the centre of the driver’s vehicle and other
road occupying vehicles in the simulation. The visual field for the driver represented that through the
front windscreen of a vehicle, with the speedometer located at the bottom (Figure 3). A rearview
mirror was represented for the driver however wing mirrors were absent, due to the limited field of
view, and as a result drivers were advised to use the rearview mirror and judge accordingly when
changing lanes. Two screen positions were set (one for each trial) to address the difference in driver
eye height between the standard and elevated driving posture. Having two heights ensured that
drivers eye level matched up with the top third of the screen for both trials. With the one screen
simulation system, the minor differences in eye level (based on anthropometry and seat height) did

not adversely affect the visual feedback being presented on the screen.

Figure 3. Screenshot of typical view in driving simulation — ‘highway with fog’

2.3. Driving Trial

The driving simulation task was to follow a lead car at a safe distance (a distance which driver’s would

judge to be safe, feel comfortable with and self-select in road driving conditions), whose movement



included changes of direction, speed and lane appropriate for normal driving. The driving trial
consisted of six 10-minute scenarios, which included both town and highway driving conditions. In
addition each trial included an adverse weather condition (fog) and also an emergency stop situation
for one of the town and one of the highway driving scenarios. To control for learning effects, the order
of testing was designed so that an identical highway scenario was tested for the first and last 10
minutes of the trial, for each participant, with a randomised order for the 4 scenarios in-between.
Between each driving scenario, drivers remained seated for a few minutes whilst they were asked to
rate their discomfort. Participants completed the trials for both driving postures. Half of the participants
(3 males and 3 females) completed the elevated posture driving trial first and the other 6 participants
completed the standard posture trial first. There was a 7-day gap between the first and second driving

trial for each participant to mitigate learning effects between the two driving postures.

Before the driving trial, a short fitting trial was conducted with each participant, based on methods
used by Porter and Gyi (2002) and Jones (1969), to obtain the preferred driving position for the seat
and steering wheel position for both driving postures. The fitting trial was an iterative process based
on the adjustment of components of the driving rig. For the new driving posture, the first component
was the seat height, which was initially set at 60% of each driver’s leg length. Each participant sat on
the seat and set the height to their optimum comfort level, which was defined as the position where
comfort could not be improved with further adjustment of the seat height. The distance from the seat
to the pedals was determined by adjustment of the pedals in the fore-aft direction. The pedals began
in the position furthest away from the seat and were brought towards the driver on a fully adjustable
and lockable slide to the preferred position. The driver was asked to operate the pedals to obtain a
feel for the optimum location. The third component for adjustment was the steering wheel position,
which started in its furthest point away from the driver. The steering wheel had adjustment in overall
height, distance from the driver and also the angle of the wheel itself. The driver was asked to take
hold of the steering wheel and move it to their optimum position, where it was then locked into place.
After all three components had been adjusted, the driver was asked if any or all of them needed
further adjustment to improve comfort. If they did, the process was followed once more until the driver

was satisfied with their settings.
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For the standard posture trial, the seat height and the steering wheel dimensions and adjustment
ranges were fixed to the specification of the small LCV benchmark vehicle. The seat position, relative
to the pedals, was adjusted on a pre-set adjustment slide to the participants preferred position in
relation to the pedal set, replicating actual seat slide adjustment. The participant was asked to confirm

once more that the seat position was in the best place for their comfort.

For each condition, once set in their preferred position, each participant was given 5 minutes on a
Highway driving simulation scenario to familiarise themselves with the motion of the platform and the
driving simulation software. After this trial run, participants were given a further opportunity to adjust

their final driving position (before the trial began) to ensure that the ideal position was selected.

2.3.1. Discomfort

At the beginning of the first driving scenario and after each of the six subsequent 10-minute
scenarios, each participant completed a body discomfort assessment, based on that used by Porter
and Gyi (2002). The assessment collected data on 13 body parts on a 6-point comfort scale (1 not
uncomfortable; 2 slightly uncomfortable; 3 fairly uncomfortable; 4 uncomfortable; 5 very
uncomfortable; 6 extremely uncomfortable). The assessments were administered once the driving
scenario was completed and the motion platform was no longer in motion. The scale verbal anchors

were taken from I1ISO 2631-1 (Figure 4).
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Figure 4. Body map used for subjective ratings of discomfort, and verbal anchors.

2.3.2. Driver Performance

The driving simulator outputs that were chosen to be used for this study were so based on the ease of
incorporating them in to a real driving simulation, replicating manoeuvers which drivers might do on a
day to day basis. The driving simulator logged driver and lead-car road position at 30 samples per
second; this allowed calculation of continuous headway. The analysis used headway for the highway
scenario, which was used for the first (0-10 minutes) and the last scenarios (50-60 minutes), for both
driving postures. Besides the lead car, no traffic was present for the town driving scenarios and so the
highway scenario was therefore chosen based on the presence of more road traffic, which was

negotiated through lane changes and overtaking and presented a more realistic driving experience.

The literature suggests that an effective method of breaking down reaction time can be to split the
action in to a number of steps, the key one being the transfer of the operating foot from the A pedal to

the B pedal (Green, 2000; Engstrom et al, 2010). For this study, reaction time was defined as the time

12



(seconds) taken from the emergency stop instruction, to initial contact with the brake pedal in
response. This method was chosen to understand the effects of biomechanically moving the
operating foot from the A pedal to the B pedal, if any, when sat in an elevated driving posture and
immersed in a driving task. Pilot work showed that the simulator immersed drivers in the task
effectively and so towards the end of a 10-minute driving scenario, their attention was very much on
negotiating their driving around the route. This was found from pilot participants reporting mental
fatigue from the driving task. The simulation system logged the accelerator and brake input across the
10-minutes (0-1) as well as the time at which the emergency stop command was issued. The data
provided the time at which the accelerator pedal had no input (no depression of pedal) and the
subsequent time at which the brake pedal had input (pedal depression) in hundredths of a second
values. The emergency stop was presented to the driver both visually, with a large UK Highway Code
standardised ‘STOP’ sign flashing on the screen and audibly, with a pre-recorded and synchronized
voice instructing the driver to stop. This occurred during two of the driving scenarios (one town and
one highway). Before the trial, participants were briefed that they would encounter an emergency
stop situation and the nature of this instruction, (to brake hard until the vehicle came to a complete
stop); however they were not briefed on exactly when this would be. The emergency stop instruction
triggered at 9.5 minutes in to the driving scenarios and so it was impossible to know exactly where
drivers would be on the route when this occurred and thus whether they were using the accelerator or
brake pedal at this time. The mitigation for this was having this feature in highway driving as it is a
constant piece of road where speed can be managed for the most part by managing the compression
of the accelerator. This helped to ensure that drivers would have at least one scenario where the

reaction time was truly from the accelerator to the brake pedal.

3. Results
3.1.Sampling

Descriptive statistics for the sample are detailed in Table 1 (age/gender) and Tables 2 and 3
(anthropometry). The sample had an equal spread (6 males and 6 females) with an age range from
19-60, with a leg length range (crucial dimension in seat set up) from Japanese female 31st percentile

(JF31) to American male 95th percentile (AM95).
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Table 1. Descriptive statistics from the participant sample (n=12)

Participant Age Gender

1 23 Male

2 19 Female

3 32 Male

4 25 Female

5 39 Male

6 31 Female

7 30 Male

8 60 Female

9 50 Male

10 57 Female

11 44 Male

12 36 Female

Table 2. Anthropometric data from the male participant sample (n=6)

Dimension (mm) P1 P3 P5 P7 P9 P11
Stature 1820 1833 1824 1849 1723 1731
Sitting Height 942 958 953 967 906 906
Shoulder Width 437 419 428 453 443 424
Sitting Hip Width 391 369 458 414 449 406
Knee Height 548 564 554 535 514 522
Popliteal Length 479 488 520 493 500 505
Seat Height 440 417 416 430 390 440
Leg Length 1040 1129 1066 1157 1027 984
Foot Length 280 275 270 265 265 260

14



Table 3. Anthropometric data from the female participant sample (n=6)

Dimension (mm) P2 P4 P6 P8 P10 P12
Stature 1600 1645 1700 1682 1639 1680
Sitting Height 870 880 920 851 876 874
Shoulder Width 400 370 380 389 382 375
Sitting Hip Width 381 373 337 335 399 429
Knee Height 492 515 521 503 490 502
Popliteal Length 470 470 450 492 448 476
Seat Height 390 430 450 401 375 380
Leg Length 883 901 967 975 947 939
Foot Length 220 230 260 250 230 235

3.2. Discomfort

The body discomfort assessments provided 7 discomfort ratings for each participant, for each of the
13 body parts. All comparisons used the paired-samples t-test technique, chosen as a parametric test

for 1 sample, under two different conditions (standard and elevated posture).

For the elevated posture, there was a significant increase in discomfort ratings between the first (0
minutes) and last (60 minutes) for the neck, t(11) = -3.63, p<.005 (mean change from 1.2 to 2.3); left
shoulder, t(11) = -2.55, p<.05 (1.2 to 1.8); upper back, t(11) = -3.45, p<.005 (1.3 to 2.0) and right
ankle, t(11) = -3.95, p<.005 (1.3 to 2.8). The neck, upper back and right ankle for the elevated posture
increased by at least one increment on the scale, indicating that these body parts were affected most
after 60-minutes. For the standard posture there was a significant increase in discomfort in the left
shoulder, t(11) = -2.57, p<.05 (mean change from 1.1 to 1.6); right shoulder , t(11) = -2.45, p<.05 (1.1
to 1.8); upper back, t(11) = -3.45, p<.005 (1.1 to 1.8); middle back, t(11) = -2.60, p<.05 (1.0 to 1.7)

and buttocks, t(11) = -2.35, p<.05 (1.0 to 1.3).
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Results showed that differences in discomfort observed between the standard and elevated posture
at the end of the trial (60 minutes) were significant only for the right ankle (t(11) = 3.98, p<.005) with

the elevated posture having the higher discomfort ratings (Figure 5).
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Figure 5. Discomfort ratings measured at 60 minutes for the two postures (mean and standard

deviation).

3.3. Driver Performance

The driver performance was measured in terms of both ‘time headway’, defined as the time it would
take the driven vehicle at its current speed to travel the distance from the centre of the driven vehicle
to the centre of the lead vehicle and the ‘reaction time’, defined as the time taken from the emergency
stop visual trigger to the operation of the brake pedal. This data was extracted and analysed using a

one-way repeated measures ANOVA test.

3.3.1 Headway

For the standard posture, the mean ‘time headway’ reduced from 2.0 seconds to 1.7 seconds over the
duration of the trial. By the end of the trial (60 minutes), the mean headway for the elevated posture

was 1.5 seconds, compared with the standard posture of 1.7 seconds (Figure 6). Differences between

16



headway at 60 minutes were significant for the elevated posture, showing a shorter headway

compared with the first 10 minutes of driving (F(1,11) = 5.17, p<.05).
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Figure 6. Comparison of headway (seconds) for first scenario (10 minutes) and final scenario (60

minutes) for the elevated and standard posture (mean and standard deviation).

3.3.2. Reaction Time

Mean reaction time was slightly shorter for the elevated posture in both the highway and town driving
scenarios, although these differences were not significant (Figure 7). In the highway driving, the mean
reaction time for the elevated posture was 0.82 seconds, compared with 0.84 seconds for the
standard posture. In the town driving, the mean reaction time for the elevated posture was 0.75

seconds, compared with 0.94 seconds for the standard posture.
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Figure 7. Comparison of reaction time (seconds) for emergency stop in the highway and town

scenarios for the elevated and standard posture (mean and standard deviation).

4. Verification Trial

A key finding from the main trial was that there was a significant difference in discomfort for the right
ankle between the standard and elevated driving postures. It was identified that there was a
difference between the two driving rigs relating to the force needed to operate the pedals, with more
pedal stiffness for the standard posture right (40N) compared with that of the elevated posture rig
(20N). As a result it was important to explore this further by addressing the stiffness of the pedals and
matching them for both rigs in a verification trial. Comparisons were made using the independent-

samples t-test technique, chosen as a parametric test for 2 samples, under the same conditions.

A trial was designed for an independent sample of 12 participants, 6 males and 6 females, and was
completed in the elevated posture only. The task of the driving simulation was to follow the lead car in
front and replicate the movement and maneuverability of that car, following the same experimental
design as the main trial. The driving trial consisted of five 10-minute scenarios, which included both
town and highway driving conditions and was 10 minutes (1 scenario) shorter in length than the
previous trial. The main trial showed that significant differences in discomfort fatigue effects were
observed after 50 minutes of driving, indicating that 50 minutes was sufficient time to collect

adequate ankle discomfort data. The ftrial still included an adverse weather condition (fog) and also an
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emergency stop situation on both the town and highway driving scenarios. To control for learning
effects, the order of testing was designed so that the identical highway scenario was tested for the
first and last 10 minutes of the trial, for each participant, with a randomised order for the 3 scenarios
in-between. The Mann-Whitney test technique was used to analyse the data, as a non-parametric
equivalent of the paired t-test for independent samples (12 participants from main trial and 12

independent participants for the verification).

The pedal force (i.e. spring stiffness) was increased from 20N to 40N to meet that of the standard
posture driving rig in the main trial, which itself was set to replicate the benchmark production vehicle.
Figure 8 shows the right ankle discomfort scores recorded at the beginning (0 minutes) and end of the

trial (50 minutes) were comparable with those recorded in the first trial.
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Figure 8. Comparison of discomfort ratings for the right ankle measured at 0 and 50 minutes for the

original (soft) pedal and modified (firm) pedal stiffness (mean and standard deviation).

For both trials the right ankle discomfort increased between the first (0 minutes) and last (60 minutes
and 50 minutes respectively) mean discomfort score. There were significant differences in the right
ankle discomfort data between the main trial (M = 2.83, SD = 1.40) and the verification trial (M = 1.50,

SD = 0.80); t (17.44) = 2.86, p = .01 (two-tailed) with 9 out of 12 participants rating the ankle
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discomfort lower for the verification trial with 3 tied ratings. The results from the verification ftrial
therefore indicate that low pedal force and the consequent lack of support for the foot was likely to be

the cause of the ankle discomfort.

5. Discussion

5.1. Discomfort

The results indicate that the elevated posture showed fewer statistically significant increases in
discomfort after 60 minutes of driving, in comparison with the standard posture. However, the
magnitude of the discomfort changes for each body zone was similar for both postures, with the
exception of the right ankle. The right ankle showed a higher level of discomfort for the elevated
posture, which was explained and explored with the verification trial. The fundamental design of the
elevated posture, with the angle from which the legs interact with the pedals becoming steeper,
means that the seat length needs to be shorter to ensure easier maneuverability of the legs for pedal
operation. With this design, the weight of the occupant primarily shifts towards the front edge of the
seat (beneath the thighs) as opposed to the weight distribution being at the back of the seat surface
(beneath the buttocks of the occupant) in a conventional set up. Although several participants raised
concerns over the shorter seat base length for the elevated posture, the fatigue effects indicated that
there was no significant increase in buttock discomfort when compared to the standard posture. This
finding indicates that the shorter seat base length had no detrimental effects to the occupant seating
comfort for this one-hour trial, despite the weight distribution being shifted forward for the occupant. In
a conventional seated posture, the curve of the lumbar spine is flattened and changes shape from
that of a standing posture with a healthy ‘S’ shape spine. This increases pressure in the posterior part
of the inter-vertebral discs and within the nucleus itself, making it vulnerable to long-term damage.
The elevated posture packages occupants in a more upright position in the seat, keeping the back
closer to the ‘S’ shape as observed in standing. The results of this study showed that whilst there was
no significant changes in discomfort for the elevated posture below the upper back, for the standard
posture there were significant changes in discomfort across the trial for both the middle back and the
buttocks. This suggests that over time the lower portion of the back and buttocks are affected more by
discomfort in driving, and that the elevated posture could go some way to relieving this commonly

experienced problem.
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Every body part, for both postures, had an increased discomfort score between 0 and 60 minutes,
indicating that fatigue effects occurred and fell in line with the expectation for long duration testing

(Griffin et al, 1982; Gyi and Porter, 1999; El Falou et al, 2002).

5.2.Driver Performance

5.2.1. Headway

This study shows that drivers had a consistently shorter headway across the duration of the 60minute
trial, for both postures. These findings support those of Van Winsum (1996) who concluded that when
drivers were able to judge the intensity of braking levels, they drove with consistently shorter
headways. They also observed that both driving behavior and physical limitations contribute to self-
selecting an appropriate headway. This finding also indicates adaptation of the driver, possibly due to
increasing familiarity and confidence with the driving simulator. Participants reported that being
higher on the road in the elevated posture gave a greater feeling of control when driving and this
could explain the increased confidence being reflected in a reduced headway in comparison to the

standard posture.

The mean self-selected headway by the end of the driving trial was 1.7 seconds and 1.5 seconds for
the standard posture and the elevated posture, respectively. The Highway Code (Department for
Transport, 2007) guidance advises drivers to allow at least a two-second gap between them and the
vehicle in front, which is considered the minimum safe distance. Lee (1976), in a study of braking
based on information about time-to-collision, stated that the safe time headway is dependent on
various factors and uses 2-seconds as a reference. However, Treiterer and Nemeth (1970) and von
Buseck et al (1980) reported actual highway headways (based on road data) of between 1 and 2
seconds, which gives a much more lenient range on the guidance for safe headway and corresponds
with the self-selected headways observed from this study. Furthermore, Simons-Morton et al (2005)
classify ‘risky’ driving as headways of <1.0 seconds, whereas Rudin-Brown et al (2004) defined

headway as being too short at <1.5 seconds, which are both shorter than the mean headway
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observed at the end of driving. The literature led to a safe ‘time headway’' classification of 21.5

seconds in normal driving conditions, which was observed in this study.

Whilst minimising discomfort has become a fundamental concern in the development of car seats,
safety remains of paramount importance when packaging a driver. As an unexplored driving posture,
with a change in the fundamental mechanics of sitting, it is essential to understand how drivers
physically interact with the environment around them in this elevated posture. This finding indicates
that drivers maintain the ability to control the vehicle safely whilst packaged in an elevated driving
posture, which is comparable to both the literature and to the results observed of those same drivers

in a conventional set-up.

5.2.2. Reaction Time

These reaction times are comparable to those observed for the accelerator-brake reaction time in the
study by Engstrom et al. (2010), who showed that the accelerator-brake reaction times observed were
between 0.6 - 0.8 seconds. Although there is no evidence that the elevated posture increases the
reaction time, the trend of a shorter reaction time for the elevated posture could indicate that it is
easier to switch operation between the A and B pedal during driving, compared with the standard
posture. This finding helps to understand the biomechanics of this posture further in terms of comfort,
design and safety. As an unexplored posture, and with the knowledge that more of the occupant’s
weight is shifted towards the front edge of the seat and the feet, it was unknown as to whether
conventional pedal operation could be utilised. These findings indicate that drivers can comfortably
operate a conventional pedal set up (switching between pedals) and that they can do so safely (in a
time comparable to the literature, comparable to drivers in the conventional driving posture and
without any functional issues). For the design of this posture, this shows that changing the
biomechanics of the driver resulting in a space saving in the vehicle is possible to do without

adversely affecting the comfort and control of the driver.
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6. Conclusions

This study confirms that drivers were able to find a comfortable driving position for vehicle
performance in the elevated posture (>400mm). Drivers were subjected to a 60-minute driving
simulation, during which the levels of discomfort were comparable and not significantly worse than
those experienced in the standard posture under the same conditions. In both postures drivers
experienced fatigue effects throughout the duration of the trial and significant differences were
observed in the upper body zones, especially in the back and shoulders with more discomfort
reported at the end of the trials. Ankle pain was associated with the force (spring stiffness) in the

accelerator pedal and was mitigated by appropriate pedal modification.

The results showed that the self selected headway for the elevated posture was comparable and not
significantly different to that of the standard posture, whilst falling in line with safe distances as cited in
the literature. The study showed that the reaction time for the elevated posture was comparable and
not significantly different to that of the standard posture, and the accelerator-brake reaction times

were comparable to those previously reported.

It is concluded that the elevated driving posture did not adversely affect the driver discomfort or

performance for the tests conducted in this study.

6.1. Limitations

For the reaction time test, the emergency stop instruction triggered at 9.5 minutes in to the pre-
programmed driving scenarios making it difficult to assume drivers were operating the A pedal at this
point.. For the trial, this is why highway driving was chosen for this test. However, given that local
driving often leads to more unexpected events than motorway driving, it would be beneficial to
examine reaction time in town driving scenarios. For headway, highway driving scenarios were used.
The limitation of the software programmed for this study was that besides the lead car, no traffic was
present for the town driving scenarios and so it didn’t reflect real world driving as much as the traffic

incorporated highway scenarios did.
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The visual field of the driver changed from standard to elevated driving posture, an angle which was
determined by their anthropometry and elevated posture seat height (self-selected). Two screen
heights were set based on the driving posture (standard or elevated), judged to be a good fit for the
sample of drivers used. However, the limitations of the equipment and the laboratory space meant
that specific screen height adjustment could not be offered from driver to driver, which therefore made

it difficult to ensure that the drivers’ visual angles were identical between postures.

Studies have shown that whilst some seats can be considered uncomfortable after 15 minutes, others
that were considered comfortable become uncomfortable after about one hour (Porter et al, 2003).
Previous research has also implemented a range of trial durations from 60-seconds to 135 minutes
(Kolich, 2003a; Gyi and Porter, 1999) with findings demonstrating that trial duration (temporal factors)
greatly influence driver overall discomfort, with significant changes in discomfort occurring at
approximately 80 to 110 minutes of driving (Gyi and Porter 1999). This study was designed for a 60-
minute exposure to the driving task with vibration, limited by time restraints and participant availability.
More long-term trials would be beneficial to understand the temporal effects further under driving in an

elevated posture.
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