Loughborough University
Browse
UKACC_FINAL.pdf (343.67 kB)

Dynamic decision making in lane change: game theory with receding horizon

Download (343.67 kB)
conference contribution
posted on 2016-07-04, 12:46 authored by Fanlin Meng, Jinya Su, Cunjia LiuCunjia Liu, Wen-Hua ChenWen-Hua Chen
Decision making for lane change manoeuvre is of practical importance to guarantee a smooth, efficient and safe operation for autonomous driving. It is, however, challenging. On one hand, the behaviours of ego vehicle and adjacent vehicles are dependent and interactive. On the other hand, the decision should strictly guarantee safety during the whole process of lane change with uncertain and incomplete information in a dynamic and cluttered environment. To this end, the concept of Receding Horizon Control (RHC) is integrated into game theory in conjunction with reachability analysis tool, resulting in RHC based game theory. Specifically, the decision of each game relies on not only uncertain information at current step but also the future information calculated by reachability analysis. The decision is repeatedly made with the advent of new information using the concept of RHC. As a result, safety can be guaranteed during the whole process of lane change in a dynamic environment. Case study is conducted to demonstrate the advantages of the proposed approach. It is shown that the proposed RHC based game theory approach incorporating uncertain information can provide a safer and real-time decision.

Funding

This work is jointly supported by the UK Engineering and Physical Sciences Research Council (EPSRC) Autonomous and Intelligent Systems programme under the grant number EP/J011525/1 with BAE Systems as the leading industrial partner.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

11th UKACC International Conference on Control

Citation

MENG, F. ... et al, 2016. Dynamic decision making in lane change: game theory with receding horizon. IN: Proceedings of the 11th UKACC International Conference on Control, 31st August-2nd September 2016, Belfast.

Publisher

© IEEE

Version

  • AM (Accepted Manuscript)

Acceptance date

2016-05-16

Publication date

2016

Notes

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ISBN

9781467398916

Language

  • en

Location

Belfast

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC