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Abstract 21 

Biodiesel produced from microalgae has been extensively studied due to its potentially 22 

outstanding advantages over traditional transportation fuels. In order to facilitate its 23 

industrialisation and improve the process profitability, it is vital to construct highly accurate 24 

models capable of predicting the complex behaviour of the investigated biosystem for process 25 

optimisation and control, which forms the current research goal. Three original contributions 26 

are described in this paper. Firstly, a dynamic model is constructed to simulate the 27 

complicated effect of light intensity, nutrient supply and light attenuation on both biomass 28 

growth and biolipid production. Secondly, chlorophyll fluorescence, an instantly measurable 29 

variable and indicator of photosynthetic activity, is embedded into the model to monitor and 30 

update model accuracy especially for the purpose of future process optimal control, and its 31 

correlation between intracellular nitrogen content is quantified, which to the best of our 32 

knowledge has never been addressed so far. Thirdly, a thorough experimental verification is 33 

conducted under different scenarios including both continuous illumination and light/dark 34 

cycle conditions to testify the model predictive capability particularly for long-term operation, 35 

and it is concluded that the current model is characterised by a high level of predictive 36 

capability. Based on the model, the optimal light intensity for algal biomass growth and lipid 37 

synthesis is estimated. This work, therefore, paves the way to forward future process design 38 

and real-time optimisation. 39 

 40 

Keywords: biodiesel production; dynamic modelling; chlorophyll fluorescence; model 41 

predictive capability; light/dark cycle; nitrogen limiting. 42 
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Introduction 44 

Microalgae are considered to be a promising feedstock for the production of  renewable 45 

biofuels which would contribute to meeting the ever-increasing global demand for energy 46 

(Mata, Martins, and Caetano 2010). Compared to plant-based biofuel precursors, including 47 

both food crops such as corn or sugarcane and non-food plants, e.g. jatropha, microalgae 48 

display superior growth rates and shorter generation time, can utilise wastewater as a nutrient 49 

source, do not compete for arable land with food crops, and are expected to have low 50 

environmental impacts etc. (Sheehan et al. 1998; Schenk et al. 2008; Brennan and Owende 51 

2010). Furthermore, the metabolic reaction networks in microalgae have been extensively 52 

researched over the last decades, resulting in the successful identification and genetic 53 

modification of a variety of microalgae species capable of synthesising different sustainable 54 

biofuels including biodiesel, bioethanol, biohydrogen, bioisoprene, and biohydrocarbons 55 

(Adesanya et al. 2014; Matos et al. 2013; Eroglu and Melis 2010). 56 

Amongst these, a major focus has been placed on the production of algal lipid, which can 57 

contribute up to 70 wt% of dry cell weight and is readily converted into biodiesel, already 58 

used as a fossil fuel substitute (Brennan and Owende 2010; Wen et al. 2016). To facilitate the 59 

commercialisation of this process, comprehensive studies have been conducted with the aim 60 

to enhance both the biomass growth rate and biolipid productivity. For example, the effects of 61 

modifying key operating conditions e.g. light intensity, temperature, pH and nutrient supply, 62 

have been thoroughly investigated with the conclusion that biolipid synthesis can be 63 

remarkably stimulated under nitrogen limiting conditions (Converti et al. 2009; Scott et al. 64 

2010). Different biomass cultivation methods (e.g. autotrophic, heterotrophic and 65 

mixotrophic) have been widely explored and their respective advantages and limitations have 66 

been discussed in detail (S. J. Yoo, Kim, and Lee 2014; Wang et al. 2016; Purkayastha et al. 67 

2017). In addition, recent studies conducted life cycle assessments and process scale-up 68 
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experiments which revealed that the biolipid content in large scale processes is often reduced 69 

by over 60% (rarely reaching 30 wt%), significantly decreasing the process profitability and 70 

rendering it economically unviable at present (Wen et al. 2016; Purkayastha et al. 2017; Park 71 

and Li 2015). 72 

To resolve this severe challenge, it is necessary to implement rigorous process control and 73 

optimisation regimes, which can achieve dense biomass concentrations as well as high 74 

biolipid productivities simultaneously (Bernard, Mairet, and Chachuat 2015; del Rio-75 

Chanona, Zhang, and Vassiliadis 2016). To this end it is crucial to construct highly accurate 76 

models capable of simulating the dynamic behaviour of the underlying bioprocess and to 77 

identify easily measurable state variables. Meanwhile, developing robust dynamic 78 

optimisation algorithms for highly nonlinear biosystems is also regarded an important 79 

prerequisite for this work to be accomplished successfully. So far, different models have been 80 

developed to simulate the effect of key operating conditions on both microalgae growth and 81 

biofuel production (Adesanya et al. 2014; Dongda Zhang et al. 2015; Cakmak et al. 2012). 82 

Specific variables including pH, dissolved oxygen, chlorophyll fluorescence (Y(II)) or light 83 

irradiation have been used to monitor the process performance and design control schemes (C. 84 

Yoo et al. 2015; Keymer, Pratt, and Lant 2013; S. J. Yoo, Kim, and Lee 2014; Bernard, 85 

Mairet, and Chachuat 2015). We recently proposed a state-of-the-art real-time optimisation 86 

strategy for long-term bioprocess optimisation which incorporates parameter re-estimation 87 

into economic model predictive control and was demonstrated to be highly effective 88 

compared to traditional offline optimisation methods (del Rio-Chanona, Zhang, and 89 

Vassiliadis 2016).  90 

Despite these achievements, it is important to note that the employed models must also have a 91 

high predictive capability so that they can accurately determine the optimal operating 92 

conditions for biomass growth and biofuel synthesis. In order to effectively implement real-93 
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time process optimisation, it is necessary to embed variables that can be measured instantly 94 

(e.g. Y(II)), allowing continuous calibration of the model and minimising deviations from 95 

experimental or operational data. However, much less effort has been devoted to these areas 96 

to date. For instance, whilst mathematical models specific to biolipid synthesis have been 97 

proposed in the past, their predictive capabilities have rarely been evaluated. In some cases, it 98 

was necessary to use different sets of parameter values when applying the models to simulate 99 

different experiments, even if the experiments were conducted under similar conditions.  100 

Meanwhile, instantly measurable variables that can reflect biomass growth and biolipid 101 

synthesis activities, particularly chlorophyll fluorescence (Y(II)) which is widely used to 102 

represent the photosynthetic activity of  microalgae cells, have never been included in these 103 

models. Thus, these limitations prevent their further application for process optimisation.  104 

Consequently, to close this gap, the present study aims to construct a highly accurate dynamic 105 

model suitable for the real-time control and optimisation of a long-term microalgal biodiesel 106 

production process. In particular, the instantly measurable variable, chlorophyll fluorescence, 107 

will be embedded into the current model, and the model predictive capability will be verified 108 

under different operating conditions. Furthermore, the model simulation results will be used 109 

to identify the primary limiting factors for biodiesel production.  110 

2. Materials and modelling methodology 111 

2.1 Experiment setup 112 

Nannochloropsis oceanica IMET1 was provided by Dr. Jian Xu from the Qingdao Institute of 113 

Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, and maintained in 114 

seawater supplemented with modified F/2 medium. The 500 mL bubble column bioreactor (5 115 

cm diameter) was supplied with 100 mL/min of filtered air, supplemented with 2% (v/v) CO2, 116 

as described by Pan et al. (2016). The pre-culture was prepared in the photobioreactor (PBR) 117 

with sufficient nutrients and under continuous illumination with white fluorescent light (140 118 
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μmol m-2 s-1) for 4 days, followed by  inocculation into new PBRs at an initial biomass 119 

concentration of ~0.18 mg mL-1. In total, four batch experiments were carried out with 120 

different initial nitrate concentrations and light intensities as shown in Table I, and a constant 121 

ambient temperature of 25 ± 1 ºC.  122 

2.2 Analytical methods 123 

Biomass concentrations (mg mL-1) were determined as described previously (Zhu and Lee 124 

1997). Cells were harvested by centrifugation and pellets were washed twice with 0.5 M 125 

NH4HCO3 and dried at 60 ºC to constant weight. Nitrate concentrations in the medium were 126 

measured using a UV/VIS spectrophotometer with a pre-drawn standard curve for the nitrate-127 

related light absorption (Chi et al. 2016). The fluorescence parameter Y(II), which reflects the 128 

effective photosynthesis capacity of photosynthesis system II, was calculated using a 129 

chlorophyll fluorometer (Water-PAM WALZ, Germany) based on the method described by 130 

Yao et al. (2012). Light intensity was measured on an Optometer P9710 with a 131 

photosynthetically active radiation detector (Gigahertz Optik Corporation, Germany). 132 

Biomass intracellular nitrogen content was determined using an elemental analyser (Vario EL 133 

cube, Elementar Analysensysteme GmbH Germany). The yields of the transesterified fatty 134 

acid methyl esters (FAMEs) were quantified by gas chromatography using the internal 135 

standard glyceryl triheptadecanoate (Liu et al. 2015).  136 

2.2 Model construction 137 

In order to construct an accurate dynamic model, an understanding of the underlying kinetic 138 

mechansims is essential. The synthesis of the biolipid fraction is mediated by the intracellular 139 

nitrogen concentration (nitrogen quota) and sufficiency in light intensity, and its production is 140 

dependent on the biomass concentration which is affected by the nitrate concentration in the 141 

culture (Li et al. 2008; Scott et al. 2010). Therefore, all of these variables should be included. 142 
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Furthermore, chlorophyll fluorescence (Y(II)) is also embedded into the dynamic model due 143 

to its importance for future real-time process monitor and control.  144 

2.2.1 Algal biomass growth 145 

Eq. 1 is commonly used to estimate the algal biomass growth rate. The first term on the right 146 

represents biomass growth, whilst the second term represents biomass decay. Previous 147 

research concluded that the specific biomass growth rate (𝜇0) depends on both light intensity 148 

and nitrate concentration, whilst the  biomass decay rate (𝜇𝑑) is a function of temperature 149 

only (D. Zhang et al. 2015). As the temperature was fixed in this study, 𝜇𝑑  reduces to a 150 

constant. To model the effect of nitrate concentration on biomass growth, the Droop model 151 

was Eq. 2, as it is predominantly applied under nutrient limiting conditions (del Rio-Chanona 152 

et al. 2017; Adesanya et al. 2014).  153 

𝑑𝑋

𝑑𝑡
= 𝜇0 ∙ 𝑋 − 𝜇𝑑 ∙ 𝑋                                                                                                                             (1) 154 

𝜇0 = 𝜇𝑚(𝐼) ∙ (1 −
𝑘𝑞

𝑞
)                                                                                                                         (2) 155 

where 𝑋 is biomass concentration (g L-1), 𝑢0 is specific growth rate (h-1), 𝑢𝑑 is specific decay 156 

rate (h-1), 𝑢𝑚(𝐼) denotes the effect of light intensity (𝐼) on biomass growth, 𝑘𝑞 is minimum 157 

nitrogen quota (mg g-1), and 𝑞 is nitrogen quota (mg g-1).  158 

2.2.2 Nitrate consumption 159 

Whilst nitrates are essential for biomass growth, high nitrate concentrations can severely 160 

supress the accumulation of biolipid (Mata, Martins, and Caetano 2010). Consequently, the 161 

nitrate consumption rate was modelled using an adopted form of the the Monod model (Eq. 162 

3), commonly used to simulate nutrient consumption (Dongda Zhang et al. 2016; Fouchard et 163 

al. 2009).  164 

𝑑𝑁

𝑑𝑡
= −𝜇𝑁 ∙

𝑁

𝑁 + 𝐾𝑁
∙ 𝑋                                                                                                                        (3) 165 
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where 𝑁 is culture nitrate concentration (mg L-1), 𝐾𝑁 is half-velocity coefficient (mg L-1), and 166 

𝑢𝑁 is maximum specific nitrate uptake rate (mg g-1 h-1).  167 

2.2.3 Nitrogen quota 168 

Intracellular nitrogen content, also termed nitrogen quota, is one of the key variables and 169 

predominantly determines both biomass growth and biolipid synthesis. Previous research has 170 

concluded that higher nitrogen quota can result in a higher biomass growth rates, whilst lower 171 

nitrogen quota can stimulate the synthesis of biolipid (Sharma, Schuhmann, and Schenk 172 

2012). As nitrate is only consumed by algal cells, based on a mass balance, the nitrate 173 

consumption rate must be equal to the accumulation of intracellular nitrogen (Eq. 4). This 174 

equation can then be transformed to Eq. 5, to calculate the accumulation rate of nitrogen 175 

quota. 176 

𝑑(𝑋 ∙ 𝑞)

𝑑𝑡
= −

𝑑𝑁

𝑑𝑡
= 𝜇𝑁 ∙

𝑁

𝑁 + 𝐾𝑁
∙ 𝑋                                                                                                  (4) 177 

𝑑𝑞

𝑑𝑡
= 𝜇𝑁 ∙

𝑁

𝑁 + 𝐾𝑁
− 𝜇𝑚(𝐼) ∙ (1 −

𝑘𝑞

𝑞
) ∙ 𝑞                                                                                       (5) 178 

2.2.4 Fatty acid methyl ester (FAME) production 179 

The kinetic mechanism of biolipid (fatty acids) synthesis has been illustrated in recent works 180 

(Gnansounou and Raman 2016). It is demonstrated that all the CO2 fixed through 181 

photosynthesis is converted to sugar initially. Then, a portion of sugar is converted into fatty 182 

acids, and this reaction rate is proportional to the nitrogen quota. Meanwhile, fatty acids can 183 

also be consumed to produce functional carbon molecules (e.g. membranes), of which the 184 

reaction rate increases with the increasing nitrate uptake rate. Inspired from this mechanism, 185 

Eq. 6 is constructed in this study to simulate total fatty acid production (𝑋 ∙ 𝑆). This equation 186 

is then transformed to Eq. 7 to simulate the accumulation rate of intracellular fatty acid (𝑆). 187 

𝑑(𝑋 ∙ 𝑆)

𝑑𝑡
= (𝜃′ ∙ 𝑞) ∙ 𝜇𝑚(𝐼) ∙ (1 −

𝑘𝑞

𝑞
) ∙ 𝑋 − 𝛾′ ∙ 𝜇𝑁 ∙

𝑁

𝑁 + 𝐾𝑁
∙ 𝑋                                               (6) 188 
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𝑑𝑆

𝑑𝑡
= 𝜇𝑚(𝐼) ∙ (𝜃

′ ∙ 𝑞 − 𝑆) ∙ (1 −
𝑘𝑞

𝑞
) − 𝛾′ ∙ 𝜇𝑁 ∙

𝑁

𝑁 + 𝐾𝑁
                                                             (7) 189 

where 𝜃′ and 𝛾′ are kinetic constants for biolipid synthesis and consumption, respectively, 190 

and 𝑆 is intracellular fatty acids content (wt%). 191 

Moreover, since the current study aims to simulate biodiesel production, FAMEs rather than 192 

fatty acids are chosen for model construction. The benefit of modelling FAME production 193 

instead of lipid content in cells is that FAME is the final product – biodiesel. Therefore, in the 194 

current study, FAME production after lipid transesterification was measured directly and 195 

described in Section 2.2. Because FAME comes from biolipid through transesterification, its 196 

synthesis rate can be approximated by modifying Eq. 7 into Eq. 8 (Gnansounou and Raman 197 

2016). 198 

𝑑𝑓

𝑑𝑡
= 𝜇𝑚(𝐼) ∙ (𝜃 ∙ 𝑞 − 휀 ∙ 𝑓) ∙ (1 −

𝑘𝑞

𝑞
) − 𝛾 ∙ 𝜇𝑁 ∙

𝑁

𝑁 + 𝐾𝑁
                                                          (8) 199 

where 𝜃, 𝛾, and 휀 are modified parameters taking into account the complex effects of lipid 200 

synthesis and transesterification conversion, and 𝑓 is FAME yield (wt%). 201 

2.2.5 Chlorophyll fluorescence (Y(II)) 202 

Chlorophyll fluorescence (Y(II)) is used to estimate the efficiency of the microalgal 203 

Photosystem II (PSII), as it represents the ability of microalgae to use absorbed quanta and 204 

gives a realistic reflection of the physiological state of microalgae cells. Whilst the biolipid 205 

synthesis is not directly linked to the status of YII), it provides a precise reflection in the 206 

change of nitrogen quota and is highly consistent with biolipid accumulation. Therefore, it is 207 

vital to embed Y(II) into the current model, so that it can be used to monitor model deviations 208 

and calibrate the model for future real-time process optimisation using instant chlorophyll 209 

fluorescence measurements. 210 

To date, no research has quantified the correlation between Y(II) and nitrogen quota. 211 

Nonetheless, it was found that an exponential relationship between photosynthesis rate and 212 
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chlorophyll content exists in algae (Béchet, Shilton, and Guieysse 2013). As Y(II) represents 213 

the efficiency of PSII which is directly related to photosynthesis rate and the nitrogen quota 214 

can have a notable effect on the intracellular chlorophyll content (Li et al. 2008), it is 215 

proposed to use Eq. 9 to simulate the change of Y(II) with respect to nitrogen quota. 216 

Y(II) =
exp[𝜏 ∙ 𝑞]

exp[𝜏 ∙ 𝑞] + 𝛿
+ 𝜑                                                                                                                   (9) 217 

where 𝜏, 𝛿 and 𝜑 are kinetic parameters in this equation. 218 

2.2.6 Simulation of light intensity 219 

The effect of light intensity on biomass growth has been well studied and is commonly 220 

simulated by the Aiba model (Eq. 10) (Béchet, Shilton, and Guieysse 2013). Furthermore, 221 

photons in a PBR are either absorbed by microalgal biomass or scattered by bubbles, causing 222 

the local light intensity to diminish along the light transmission direction in the reactor. To 223 

take this light attenuation into account, a modified form of the Lambert-Beer law has been 224 

proposed and has been widely utilised in recent studies, as shown in Eq. 11 (Dongda Zhang et 225 

al. 2016). 226 

𝑢𝑚(𝐼) = 𝑢𝑀 ∙
𝐼 

𝐼 + 𝑘𝑠 +
𝐼2

𝑘𝑖

                                                                                                                  (10) 227 

𝐼(𝑧) = 𝐼0 ∙ exp[−(𝛼 ∙ 𝑋 + 𝛽) ∙ 𝑧]                                                                                                     (11) 228 

where 𝑢𝑀 is maximum specific growth rate (h-1), 𝐼 is light intensity (μmol m-2 s-1), 𝑘𝑠 and 𝑘𝑖 229 

are light saturation term (μmol m-2 s-1) and light inhibition term (μmol m-2 s-1)  for cell growth, 230 

respectively, 𝐼0 is incident light intensity (μmol m-2 s-1), 𝛼 is cell absorption coefficient (m2 g-231 

1), 𝛽 is bubble scattering coefficient (m-1), 𝑧 is the distance from light source (m), and 𝐿 is the 232 

width of the PBR (m). 233 

However, when adding light attenuation into the current model, the model complexity is 234 

significantly increased due to the presence of both spatial and temporal dimensions. Thus, in 235 
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order to simplify the model complexity for future use in control and optimisation, the 10-step 236 

Trapezoidal rule (Eq. 12) is applied to eliminate the spatial dimension and the reactor is 237 

assumed to be a column with a square cross section. The area of the square is equal to that of 238 

the original circle, giving a width of 4.4 cm. This simplification was demonstrated to yield 239 

high accuracy in recent studies (del Rio-Chanona et al. 2017; del Rio-Chanona, Zhang, et al. 240 

2015) 241 

𝑢𝑚(𝐼) =
𝑢𝑀
20
∙∑

(

  
 𝐼𝑖=0

𝐼𝑖=0 + 𝑘𝑠 +
𝐼𝑖=0
2

𝑘𝑖

+ 2 ∙

𝐼
𝑖=
𝑛∙𝐿
10

𝐼
𝑖=
𝑛∙𝐿
10
+ 𝑘𝑠 +

𝐼
𝑖=
𝑛∙𝐿
10

2

𝑘𝑖

+
𝐼𝑖=𝐿

𝐼𝑖=𝐿 + 𝑘𝑠 +
𝐼𝑖=𝐿
2

𝑘𝑖
)

  
 9

𝑛=1

          (12) 242 

where 𝐼𝑖 is local light intensity at a distance of 𝑖 =
𝑛∙𝐿

10
 from the reactor exposure surface. 243 

2.3 Parameter estimation 244 

Due to the high complexity of the dynamic model, it is vital to employ a robust parameter 245 

estimation method to identify the model parameter values in this study. Unreliable values can 246 

severely prevent the applicability of the dynamic model for real-time bioprocess control and 247 

optimisation. Therefore, a nonlinear least-squares optimisation problem is formulated. A high 248 

order orthogonal collocation method over finite elements in time is chosen to discretise and 249 

transform the current model into a nonlinear programming problem (NLP). The optimal 250 

values of model parameters are estimated by solving the NLP using IPOPT, the state-of-the-251 

art interior point nonlinear optimisation solver (Wächter and Biegler 2005). This parameter 252 

estimation procedure is programmed in the Python optimisation environment Pyomo (Hart et 253 

al. 2012). Once the parameters are estimated, the model’s simulation results are calculated in 254 

Mathematica® 10. 255 

2.4 Sensitivity analysis 256 

Sensitivity analysis was developed to estimate the effect of model parameters on the system 257 

performance, and has been widely used to identify the most influential parameters that affect 258 
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the process dynamics (Fouchard et al. 2009). A normalised sensitivity (𝑆𝑖) is presented in 259 

Eq. 13. It measures the proportional change of the system’s performance (𝑐𝑖 , e.g. FAME 260 

production) with respect to the proportional change of a model parameter (𝑝𝑗). A positive 261 

sensitivity indicates that increasing 𝑝𝑗  can result in an increase in 𝑐𝑖 , whilst a negative 262 

sensitivity suggests that increasing 𝑝𝑗 will diminish the system’s performance. Moreover, a 263 

greater sensitivity also shows a more significant effect of the parameter on the system. In this 264 

research, sensitivity analysis is carried out in Mathematica® 10 to explore the effects of 265 

model kinetic parameters on both cells growth and FAME production.  266 

                                                                       𝑆𝑖 =
𝜕𝑐𝑖/𝑐𝑖
𝜕𝑝𝑖/𝑝𝑖

                                                                    (13) 267 

3 Results and discussion 268 

3.1 Results of parameter estimation 269 

The values of the model parameters are listed in Table II, and the model fitting results are 270 

presented in Fig. 1 and Fig. 2. These figures show that our model provides a good 271 

representation of the underlying dynamic behaviour of the biosystem, indicating that the 272 

kinetic hypothesis and simplifications used in this study are valid. From Table II, it is 273 

observed that both the specific biomass decay rate and the bubble scattering coefficient equal 274 

0, suggesting that they have negligible effects on the system. This can be attributed to the fact 275 

that in all the conducted experiments, biomass concentration kept increasing until the end of 276 

the study, disguising the effect of cell decay. Similarly, light attenuation is predominantly 277 

governed by cell absorption, and therefore the imperceptible impact of bubble scattering on 278 

light transmission is estimated to be 0.  279 

The fluctuation of nitrogen quota and FAME yield at the beginning of the experiments in the 280 

two figures (Fig. 1(c), (d), and Fig. 2(c), (d)) can be attributed to the consumption of 281 

intracellularly stored nitrogen for cell growth and its subsequent replenishment through 282 
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nitrate uptake. At the start of the culture, the nitrogen quota (Fig. 1(c) and Fig. 2(c)) decreases 283 

significantly as it is consumed by algae biomass growth. This is followed the rapid uptake 284 

and conversion of culture nitrate into intracellularly stored nitrogen, resulting in the nitrogen 285 

quota to start to increase after a short period. However, as the total amount of nitrate in the 286 

culture is limited, once it is exhausted, the nitrogen quota keeps decreasing with the 287 

increasing algae biomass concentration. Similarly, as biolipid synthesis (hence FAME 288 

production) is severely inhibited under high nitrogen quota conditions (Mata, Martins, and 289 

Caetano 2010), the yield of FAME (Fig. 1(d) and Fig. 2(d)) increases when nitrogen quota 290 

drops, and decreases when nitrogen quota increases.  291 

Confidence intervals are computed through the parameter estimation procedure. The 292 

covariance matrix for the estimated parameters is approximated by the inverse of the reduced 293 

Hessian at the optimal solution. Confidence intervals are then obtained from the trace of this 294 

approximated covariance matrix following standard procedures (del Rio-Chanona, 295 

Dechatiwongse, et al. 2015). However, as a result of the high nonlinearity and complexity of 296 

modelling metabolic kinetics, the assumption of computing the confidence intervals from the 297 

above framework may not hold. For this reason, the confidence intervals presented in Table II 298 

must be understood as theoretical values. 299 

3.2 Sensitivity analysis results  300 

The results from the sensitivity analysis are presented in Fig. 3. These show that for all state 301 

variables, a critical point exists around the 32nd hour before and after which the sensitivity of 302 

variables with respect to the parameters changes dramatically. Based on the model, this point 303 

is estimated to be the time when the nitrate in the culture has been fully consumed. Thus, the 304 

sharp change of the parameter sensitivities indicates a rapid shift of metabolic reaction 305 

mechanisms inside biomass for its growth and synthesis of metabolites. Biomass 306 

concentration (Fig. 3(a)) and nitrogen quota (Fig. 3(c)) are found to be sensitive to the same 307 
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parameters, in particular 𝑢𝑀, 𝑘𝑞, 𝑘𝑠, and 𝛼, and their sensitivities are in a mild range of±0.8, 308 

suggesting a greater stability compared to nitrate concentration and FAME production.  309 

Initially, whilst the nitrogen quota can be replenished by culture nitrate, both biomass 310 

concentration and nitrogen quota are predominantly governed by the light intensity (𝑘𝑠, 𝛼) 311 

and the maximum specific growth rate (𝑢𝑀). As 𝑢𝑀 represents the maximum growth rate that 312 

cells can reach under nutrient sufficient conditions, it is expected that higher values of 𝑢𝑀 313 

correspond to faster cell growth, resulting in denser biomass concentrations. Similarly, a 314 

reduced algal biomass absorption coefficient (𝛼) results in an increase in the local light 315 

intensity experienced by the cells, whilst a lower light saturation term (𝑘𝑠) suggests that the 316 

light capacity for cells to grow is lower. Hence, biomass shows positive sensitivity to 𝑢𝑀 and 317 

negative sensitivities to 𝛼  and 𝑘𝑠 . As higher biomass growth rates correspond to higher 318 

nitrogen quota consumption rates, it is unsurprising that the sensitivity of nitrogen quota with 319 

respect to these parameters is opposite in sign to that of biomass concentration.  320 

Furthermore, nitrogen quota is highly sensitive to 𝑢𝑁 which reflects how rapidly the cells can 321 

absorb nitrate and replenish their intracellular nitrogen storage. Consequently, once the 322 

culture nitrate is exhausted, the sensitivity of this term drops significantly and its effect on the 323 

nitrogen quota becomes negligible. At this point, the primary limiting factor for biomass 324 

growth is switched to the availability of intracellularly stored nitrogen. Therefore, 𝑘𝑞 325 

commences to show greater effects on both biomass concentration and nitrogen quota, whilst 326 

the sensitivity of 𝑢𝑀 , 𝑘𝑠 , and 𝛼 keeps decreasing. As 𝑘𝑞  represents the minimum nitrogen 327 

quota required by the cells to survive, a higher value of 𝑘𝑞 suggests that cells can consume 328 

less of the stored nitrogen for growth and need a higher nitrogen quota for maintenance. Thus, 329 

it shows negative sensitivity to biomass concentration but positive sensitivity to nitrogen 330 

quota. In addition, Fig. 3(a) shows that the biomass concentration is insensitive to the light 331 
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inhibition term ( 𝑘𝑖 ), suggesting that the current experiments were not subject to 332 

photoinhibition.  333 

The sensitivity analysis reveals that both nitrate concentration and FAME production are 334 

highly sensitive to the model parameters (up to ±6.0), as a very small change (1%) of specific 335 

parameters, e.g. 𝜃, 𝛾, and 𝑢𝑁, can cause a dramatic change (up to 6%) on these variables. 336 

However, it is notable that the high sensitivities of these variables are attributed to different 337 

causes. The nitrate consumption rate only depends on a few parameters (𝑢𝑁 and 𝐾𝑁, Eq. 5), 338 

hence, the nitrate concentration is not substantially affected by microalgal metabolic reaction 339 

kinetics. This is also proven by its weak sensitivity (except 𝑢𝑁 which directly represents the 340 

algal nitrate uptake rate) during the first 20 hours (shown in Fig. 3(b)) whilst nitrate is still 341 

available in the culture. Subsequently, as the nitrate concentration approaches 0, its 342 

sensitivity diverges sharply. However, this phenomenon is more probably caused by 343 

mathematical noise (i.e. 𝜕𝑁/𝑁 → ∞ when 𝑁 → 0, based on the definition of sensitivity, Eq. 344 

13) instead of a biological reason.  345 

In contrast, the sensitivities of FAME can be attributed to its complicated synthesis 346 

mechanisms. As biolipids constitute between 10% and 45% wt biomass, its production can be 347 

affected by the same factors that influence biomass growth. Therefore, from Fig. 3(d) it is 348 

found that the trends of the sensitivities of FAME with respect to both 𝑢𝑀 and 𝛼 are equal to 349 

those for biomass concentration. In addition, as biolipid can be converted to other metabolites 350 

and its consumption rate is proportional to the nitrate uptake rate, it is easy to see that 𝑢𝑁 has 351 

a negative impact on FAME production when the culture is nitrate available (shown in Fig. 352 

3(d)). Moreover, based on Eq. 8, 𝜃 and 𝛾 can be considered as the reaction kinetic constants 353 

for FAME synthesis and consumption, respectively. Thus, as presented in Fig. 3(d), these two 354 

parameters possess the highest sensitivities to FAME production, and become particularly 355 
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influential when the culture nitrate concentration approaches 0 and biolipid starts to 356 

accumulate. 357 

Overall, the current sensitivity analysis demonstrates that the synthesis of FAME is more 358 

sensitive to the underlying biochemical reaction kinetics and experimental operating 359 

conditions than biomass growth or nitrogen quota accumulation,. Hence, in order to improve 360 

FAME production, it is vital to implement advanced process optimisation strategies which 361 

guarantee optimal cultivation conditions for FAME synthesis.  362 

3.3 Limiting factors for FAME synthesis  363 

Recent studies have concluded that light attenuation is one of the primary limiting factors for 364 

biomass cultivation and bioproduct production (D. Zhang et al. 2015; Béchet, Shilton, and 365 

Guieysse 2013). Similar results are obtained in the present work.  Fig. 4(a) shows that over 366 

the course of the cultivation an increase in biomass concentration causes the local light 367 

intensity in the PBR to decrease rapidly, resulting in the majority of the reactor volume to be 368 

immersed in the dark zone where cells cannot grow (local growth rate drops to 0, shown in 369 

Fig. 4(b)). Both the local biomass growth rate and FAME production rate decrease with 370 

increasing biomass concentration inside the light zone where algal cells can receive 371 

illumination for their growth (Fig. 4(b) and Fig. 4(c)). This is caused by light attenuation and 372 

lack of nitrogen quota. 373 

As illustrated already in the model construction section (Eq. 7), the synthesis of biolipid 374 

requires both illumination and nitrogen quota. During the initial experimental period when 375 

nitrate is still available, local light intensity is the primary limiting factor for biolipid 376 

synthesis. For example, at a biomass concentration of 0.7 g L-1, the local biolipid synthesis 377 

rate decreases along the light transmission direction, indicating that light attenuation limits its 378 

production (Fig. 4(c)). However, after nitrate is consumed, the nitrogen quota decreases 379 

significantly in order to maintain the rapid growth of biomass (Fig. 4(b), x-axis between 0 380 
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and 0.01). As biolipid synthesis rate is proportional to nitrogen quota, its synthesis rate is also 381 

reduced dramatically (Fig. 4(c)) even when there is sufficient light for biomass growth (Fig. 382 

4(a) and Fig. 4(b), x-axis in between 0 to 0.01). This clearly suggests that the primary 383 

limiting factor for FAME production has been switched to nitrogen quota. Similarly, because 384 

biomass growth is also related to nitrogen quota, the lack of nitrogen quota also causes a 385 

lower cell growth rate when biomass concentration increases from 1.5 g L-1 to 2.5 g L-1 as 386 

shown in Fig. 4(b). 387 

Furthermore, based on the current simulation result, the effect of light intensity and nitrogen 388 

quota on FAME production is presented in Fig. 4(d). This shows, that the FAME production 389 

rate always increases with increasing nitrogen quota, whilst an optimal value exists for light 390 

intensity as intense illumination can damage the essential proteins for algal photosynthesis 391 

and carbon fixation. Based on the model, the optimal light intensity is identified to be 392 

96 μmol m-2 s-1, falling within the range of optimal light intensities reported in other 393 

publications (D. Zhang et al. 2015). In addition, attention should be paid to the fact that both 394 

the local biomass growth rate and the FAME production rate shown in Fig. 4 represent 395 

instantaneous values, as the location of individual algal cells change continuously as a result 396 

of mixing. Hence, cells at different locations in the reactor share the same average growth 397 

rate and biolipid synthesis rate over time. 398 

3.4 Model predictive capability validation  399 

To estimate the optimal operating conditions for long-term bioprocess optimisation, besides 400 

accurately representing a known experiment, the model must possess great predictive 401 

capability when simulating unknown processes. For this reason, the predictive capability of 402 

the constructed model is investigated through two scenarios. In the first scenario, the model is 403 

used to predict the dynamic performance of a continuous illumination batch experiment 404 

lasting for 11 days (252 hours). In the second scenario, the model is applied to predict a 405 
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light/dark cycle batch experiment lasting for one week (168 hours). It is worth emphasising 406 

that due to the frequent change of light intensity, the second system becomes more complex 407 

and has a higher uncertainty compared to the first scenario. Both light intensity and initial 408 

nitrate concentration in these two experiments are different from those used for model 409 

construction. The detailed operating conditions of these experiments are listed in Table I.  410 

Fig. 5 and Fig. 6 present the model prediction results. Specific to the light/dark (14h: 10h) 411 

cycle experiment, biomass specific growth rate is slightly modified due to the significant 412 

impact of cell respiration on biomass growth in this case. The average specific biomass 413 

growth rate is assumed to be 85% of that under continuous illumination conditions 414 

(Edmundson and Huesemann 2015). The figures demonstrate that the current model is 415 

capable of accurately predicting the complex behaviour of long-term microalgal FAME 416 

production processes under different operating conditions, which indicates its great potential 417 

for future process control and optimisation applications. More importantly, as microalgae 418 

based bioprocesses are generally carried out under outdoor conditions for large scale 419 

production, it is impossible to provide continuous illumination for FAME production when 420 

scaling up this process.  421 

During future research, we will implement an online optimal control strategy which measures 422 

experimental parameters (e.g. nutrients and biomass concentration) in real-time, whilst the 423 

model is adjusted to best represent the system under consideration. Through this framework, 424 

optimal inputs (e.g. nutrient supply) can be computed and implemented in an ongoing process 425 

(e.g. economic model predictive control). However, for this strategy to be possible, the model 426 

must be able to display solid predictive capabilities and robustness to model parameters. 427 

These have been clearly shown in the work above, particularly regarding to the second 428 

scenario, demonstrating its applicability for future process real-time optimisation and scale-429 

up design. 430 
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Conclusions 431 

In the current research, a mathematical model was constructed to simulate the growth and 432 

biodiesel production from Nannochloropsis oceanica. By conducting a sensitivity analysis, it 433 

was found that biolipid synthesis is more sensitive to the operating parameters of the system 434 

than cell growth. Therefore, in order to maintain high biomass concentrations as well as high 435 

biolipid productivities in long-term processes, it is vital to precisely estimate the nitrogen 436 

dosing requirements and implement advanced process optimisation strategies. This 437 

emphasises the importance of constructing a highly accurate dynamic model characterised by 438 

good predictive capability as presented in this study. During future work, this model will be 439 

incorporated into a state-of-the-art process real-time control framework, such as economic 440 

model predictive control, to optimise the operating conditions for semi-continuous (fed-batch) 441 

and continuous biodiesel production processes, in particularly under light/dark cycle 442 

circumstances.  443 
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Table I: Operating conditions of current experiments 596 

 Experiment 1 Experiment 2 

Incident light intensity, μmol m-2 s-1 80  160  

Initial nitrate concentration, mg L-1 35.0  24.6  

Initial biomass concentration, g L-1 0.18  0.17  

Initial FAME yield, wt% 12.0  11.2  

Initial nitrogen quota, wt% 8.0  7.9  

Initial chlorophyll fluorescence 0.561 0.555 

Operation time, day 11 11 

 Experiment 3 Experiment 4 

Incident light intensity, μmol m-2 s-1 120  140, (light/dark (14h:10h)) 

Initial nitrate concentration, mg L-1 46.8  15.2 

Initial biomass concentration, g L-1 0.18  0.18 

Initial FAME yield, wt% 12.0  11.7 

Initial nitrogen quota, wt% 8.0  8.2 

Initial chlorophyll fluorescence 0.561 0.571 

Operation time, day 11 7 

 597 

 598 

 599 
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Table II: Model parameter estimation result 601 

Parameter Value Parameter Value 

𝑢𝑀, h-1 0.359±0.014 𝜃  6.691±2.247 

𝑢𝑑, h-1 0.0±0.000 𝛾  (7.53±2.25)×10-3 

𝑘𝑞, mg g-1 1.963±0.283 휀  0.010±0.0004 

𝑢𝑁, mg g-1 h-1 2.692±0.641 𝜏  1.376±0.139 

𝐾𝑁, mg L-1 0.80±0.029 𝛿  9.904±3.013 

𝑘𝑠, μmol m-2 s-1 91.2±1.727 𝜑  -0.456±0.011 

𝑘𝑖, μmol m-2 s-1 100.0±0.290 𝛽, m-1 0.0±0.009 

𝛼, m2 g-1 196.4±21.6   

 602 

 603 

 604 
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Figure 1: Comparison of model simulation results and real experimental data (Experiment 1). 606 

Line: model simulation results, point: real experimental data. (a): biomass concentration; (b): 607 

nitrate concentration; (c): nitrogen quota; (d): FAME yield; (e): chlorophyll fluorescence. 608 

 609 

  610 
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Figure 2: Comparison of model simulation results and real experimental data (Experiment 2). 611 

Line: model simulation results, point: real experimental data. (a): biomass concentration; (b): 612 

nitrate concentration; (c): nitrogen quota; (d): FAME yield; (e): chlorophyll fluorescence. 613 

 614 

 615 

 616 
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Figure 3: Sensitivity analysis of different variables on model parameters. (a): sensitivity of 618 

biomass concentration; (b): sensitivity of nitrate concentration; (c): sensitivity of nitrogen 619 

quota; (d): sensitivity of FAME yield. 620 
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Figure 4: Effects of light attenuation and nitrogen quota on biomass growth and FAME 624 

production. (a): local light intensity; (b): local biomass growth rate; (c): local FAME 625 

production rate; (d): effect of light intensity and nitrogen quota on FAME production. Fig. 626 

4(d) is obtained by Eq. 5, 8, 10, and 11, instead of the entire dynamic model. 627 
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Figure 5: Comparison of model prediction results and real experimental data (Experiment 3). 631 

Line: model predication results, point: real experimental data. (a): biomass concentration; (b): 632 

nitrate concentration; (c): nitrogen quota; (d): FAME yield; (e): chlorophyll fluorescence. 633 
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Figure 6: Comparison of model prediction results and real experimental data (Experiment 4). 637 

Line: model predication results, point: real experimental data. (a): biomass concentration; (b): 638 

nitrate concentration; (c): nitrogen quota; (d): FAME yield; (e): chlorophyll fluorescence; (f): 639 

incident light intensity. 640 
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Graphical Table of Contents: A robust kinetic model was constructed to simulate the dynamic 644 

behaviour of green microalgae biomass growth and biolipid (precursor of biodiesel) 645 

production; correlation between chlorophyll fluorescence, an instantly measurable variable 646 

and indicator of photosynthetic activity, and intracellular nitrogen content, which directly 647 

affects biolipid synthesis rate, is quantified for the first time; through experimental 648 

verification, the current model is characterised by a high level of predictive capability, and 649 

the optimal light intensity for algal biomass growth and lipid synthesis is estimated. 650 
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