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Abstract—Wireless Sensor Networks (WSNs) consist of a large
number of nodes each with limited battery power. As networks
of these nodes are usually deployed unattended, network lifetime
becomes an important concern. This paper proposes a novel,
feasible, dynamic approach for node lifetime estimation that
works for both static and dynamic loads. It covers several
factors that have an impact on node lifetime, including battery
type, model, brand, self-discharge, discharge rate, age and
temperature. The feasibility of the proposed scheme is evaluated
by using the real testbed experiments with two wireless sensor
platforms: Mica2 and N740 NanoSensor, two operating systems:
TinyOS and Contiki, and different brands of alkaline and Nickel-
Metal-Hydride (NiMH) batteries. The deviation of the proposed
estimation is in the range of −3.5% to 2.5%. Three major
contributions are presented in this paper: (1) the impact factors
on node lifetime; (2) lifetime equations for any starting voltage,
ageing, charge cycles and temperatures; (3) the dynamic node
lifetime estimation technique (DNLE), which is proposed and
implemented on real hardware and software platforms in WSNs.

Index Terms—Lifetime, battery capacity, current consumption,
wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have two critical
constraints: the first is that sensor nodes are often

battery powered and thus have limited energy budgets; the
second is that sensor nodes have a large number of nodes and
usually deployed unattended, causing difficulty when replacing
or recharging batteries across the entire network. Therefore,
network lifetime (i.e. time while the network is usefully work-
ing) is an important issue. With accurate lifetime estimation
of the sensor nodes, application designers can prevent service
interruptions for critical applications. Moreover, many protocol
layers, such as the MAC and routing layers, are able to make
intelligent decisions that can help conserve energy and prolong
lifetime.

Two important factors: battery capacity and current con-
sumption are used for node lifetime estimation. In many
studies [1]–[4], quoted capacity and calculations based on data
sheets are usually used for battery capacity and measurements
made for current consumption estimation. Furthermore, a fixed
temperature is normally assumed (e.g., 25 ◦C). This means
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that running a static load program multiple times always
consumes the same energy. However, in reality, programs
will have different energy requirements resulting in different
lifetimes [5]. Furthermore, the non-linear behaviour of the
batteries needs to be taken into account. The challenge is
to find an accurate lifetime estimation technique that covers
temperature, battery age and self-discharge as well as other
impact factors on node lifetime.

This paper proposes Dynamic Node Lifetime Estimation
(DNLE), an approach that includes an investigation of the
impact factors on node lifetime. DNLE has been implemented
on real hardware: Mica2 [6] and N740 NanoSensor [7],
and software platforms: TinyOS [8] and Contiki [9], [10].
Two common types of AA-size batteries: alkaline and NiMH
have been investigated. This paper is organised as follows.
Section II discusses the existing lifetime estimation algorithms.
The impact factors on lifetime are examined in Section III.
Section IV explains the design and implementation of the
proposed method: DNLE. In Section V, an evaluation of DNLE
is presented. Finally, Section VI is the conclusions and future
work.

II. EXISTING LIFETIME ESTIMATION MODELS

The lifetime (Lt) of a sensor node can be considered
to depend on two factors, the capacity of the battery (C)
and current consumption needed by that node (I), which is
expressed as [11]:

Lt =
C

Ik
(1)

where k is the peukert constant, which depends on battery
type [11]–[14]. It is therefore necessary to estimate both
battery capacity and current consumption as well as have a
knowledge of the battery type to determine an estimate of
node lifetime.

A. Battery Capacity Estimation
There are several methods for determining the State of

Charge (SoC) of the battery. This paper focuses the methods
of electrochemical, voltage measurement, load testing and the
electromotive force, which can be applied for alkaline and
NiMH battery capacity estimation.

1) Electrochemical method: Since chemical energy in bat-
tery cells is converted into electrical energy through an
electrochemical reaction, many studies [15], [16] propose
electrochemical models based on the chemical processes that
take place in the battery. These models describe the battery
processes in great detail. However, they are very complex
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and require highly detailed knowledge of the electrochem-
ical process, which makes them difficult to configure and
deploy. An easy and accurate way is provided by measuring
the specific gravity of the electrolyte in the battery using
a hydrometer [11]. The specific gravity varies according to
SoC level. When the SoC level decreases, the density of the
electrolyte becomes lighter and the specific gravity becomes
lower. An example of the relationship between the specific
gravity and SoC is shown in Table I [11].

TABLE I
THE RELATIONSHIP BETWEEN THE SPECIFIC GRAVITY AND SOC [11]

Specific Gravity SoC (%)

1.265 100
1.239 75
1.200 50
1.170 25

<1.110 0

2) Voltage Measurement: Voltage measurement is a popular
method for estimating current capacity, especially for mobile
phone applications. For example, Heyer [17], [18] introduced
a single-meter device for indicating the battery capacity on the
basis of the measured battery voltage. This technique requires
a look-up table in which fixed voltage values are stored and
used in order to indicate SoC. For example, table II provides
the relationship between voltage and SoC for Energizer NiMH
battery [13].

TABLE II
THE RELATIONSHIP BETWEEN OUTPUT VOLTAGE AND SOC [13]

Voltage (V) SoC (%)

1.45 100
1.34 90
1.30 80
1.28 50-70
1.27 40
1.25 30
1.22 20
1.14 10
<1 0

3) The ElectroMotive Force (EMF): The EMF is the inter-
nal driving force of a battery, providing energy to a load. Many
studies [11], [19] found that there is a good linear relationship
between the EMF and the SoC and this relationship does
not change during cycling of the battery. To estimate SoC
based on the EMF, a piecewise linear function is required. The
intervals in voltage and the corresponding SoC are presented
in Table III [11]:

SoC = SoClow +
Vm − Vlow

Vhigh − Vlow
(SoChigh − SoClow) (2)

where Vm is the measured battery voltage value, Vlow and
Vhigh are the specific values from the EMF curve for the
voltages corresponding to the SoClow and SoChigh, e.g., in
Table III, Vlow = 4.08 and Vhigh = 4.24 corresponding to
SoClow = 85 and SoChigh = 100, respectively. Therefore, the
capacity of battery at 4.10V is ≈ 87% of maximum.

TABLE III
THE INTERVALS IN VOLTAGE AND THE CORRESPONDING SOC FOR SONY

US18500G3 LI-ION BATTERY [11]

Interval number Interval Voltage(V) SoC(%)

1 4.08-4.24 85.0-100
2 4.06-4.08 81.7-85.0
3 4.02-4.06 76.7-81.7
4 3.98-4.02 73.4-76.7
5 3.88-3.98 58.4-73.4
6 3.80-3.88 22.0-58.4
7 3.68-3.80 8.7-22.0
8 3.54-3.68 5.4-8.7
9 3.32-3.54 2.1-5.4

10 3.00-3.32 0.5-2.1
11 2.50-3.00 0.0-0.5

4) Load Testing: Battery capacity drops due to many fac-
tors, such as ageing and life cycle. Battery capacity testing
by a load tester serves to determine the actual capacity of the
battery. The load is usually designed to represent the expected
conditions in which the battery may be used. With a battery
load tester, a specific discharge current is applied to the battery
while measuring the voltage drop. This is the most accurate
and reliable battery testing technique [17]. Many battery load
tester products support both alkaline and NiMH batteries, such
as the ZTS MBT-MIL Multi-Battery Tester [20] and Ans-
mann Energy Check LCD Battery Tester [21]. However, these
products automatically initiate a timed pulse load test on the
battery upon detection in a terminal. This load test cannot be
modified. In addition, these testers do not provide information
related to temperature. The Computerised Battery Analyser-III
(CBA-III) [22], a product from the West Mountain Radio, is a
computer calibrated for high accuracy which uses an on-board
microcontroller. A pulse width modulation system is used
for controlling a pair of power MOS FET transistors using
both electronic and software current regulation. The CBA-III
allows for defining the load test from 0.1A to 40A. Moreover,
it provides information about the total amount of energy
stored in a battery (capacity in amp-hours) and graphically
displays and charts voltage versus amp-hours. Furthermore, a
CBA-III supports the temperature measurement of a battery
under test using the external temperature probe. In addition, a
computer can connect to CBA-III via the USB interface on-
board microcontroller for collecting the data.

5) Temperature Effect: Based on the famous Arrhenius
equation, Sheridan et al. [23] proposed the ratio of capacity
at two different temperatures in Kelvin (T1, T2) as:

C(T2)

C(T1)
= exp

�
A · (T2 − T1)

T2 · T1

�
(3)

where A is a constant value obtained by dividing the activation
energy (in J mol−1) with the gas constant (in J mol−1 K−1)
of the battery. The relationship between battery capacity and
lifetime was studied experimentally by Nguyen et al. [2] for
different alkaline battery brands. The effect of temperature
on NiMH battery capacity with different commercial AA-size
NiMH batteries was explored by Pierozynski [24]. His work
reported that the battery capacity is almost equal 96% at room
temperature and it is dropped to 74% at −20 ◦C and 58% at
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−30 ◦C. The model proposed by Park et al. [25] covered the
remaining capacity and the effect of temperature on battery
capacity. From their experiment with rising temperature of
20 ◦C to 60 ◦C, it was observed that the battery capacity
increases around 0.5% of SoC when temperature increases
by 1 ◦C. With decreasing temperature from 20 ◦C to −10 ◦C,
the battery capacity decreases 1.7% of SoC when temperature
decreases 1 ◦C.

B. Current Consumption Estimation

There are several methods for determining the current
consumption of sensor nodes. The existing mechanisms are
hardware-based, software-based and include temperature effect
supply voltage changes.

1) Hardware-based Mechanism: To estimate node current
consumption, many current consumption models [26], [27]
tried to design the special circuits for finding the average
leakage current consumption; however, detailed knowledge of
electrical circuits is required. Oscilloscopes or ammeters are
commercially available for measuring the current draw from
the circuit of sensor nodes with accurate results. Since the
unique characteristics of sensor network applications make it
difficult to measure the power and current consumption of
each sensor node, Jiang et al. [28] developed hardware-based
integrated circuits attached to sensor node boards for mea-
suring the current consumption. This mechanism can capture
phenomena such as per-node fluctuations.

2) Software-based Mechanism: Dunkels et al. [1] proposed
a formula to calculate the energy consumption (E).

E

V
= Iata + Iltl + Ittt + Irtr +

�
Ictc (4)

where V is the supply voltage, Ia and ta are the current draw
of the MCU (Microprocessor Control Unit) and time when the
MCU has been running in active mode; Il and tl are the current
draw and time of the MCU in low power or sleep mode; It
and tt are the current draw and the time of the communication
device in transmit mode; Ir and tr are the current draw and
time of the communication device in receive mode; Ic and tc
are the current draw and time of other components such as
sensors and LEDs. Then, the node current consumption (I)
rate is equal to E

V ·t where t is the time period. In this model,
all current draw, supply voltage and temperature are assumed
as fixed values (e.g., 3V and 25 ◦C as defined in the data
sheet).

3) Temperature and Supply Voltage Effect: The current con-
sumption of electronic circuit is affected by both temperature
and supply voltage [2]. As temperature increases, current draw
is increased. Liao et al. [29] proposed a leakage current model
with temperature as:

I(T ) = Is · exp
�

−α

T − β

�
(5)

where T is the temperature in Kelvin, Is is a constant current
value, α and β are the empirical constants which are decided
by the circuit designs. Later, supply voltage is considered for
leakage calculation as [26]:

I(T, Vdd) = Is(T0, V0) · T 2 · exp
�
α · Vdd + β

T

�
(6)

where T is the temperature in Kelvin, Vdd is the supply
voltage, Is is a constant current at the reference temperature
T0 and supply voltage V0, α and β are the empirical constants
which are decided by the circuit designs. It is assumed that
the constant current (Is) is already known.

C. Lifetime Estimation
The review of some lifetime estimation techniques for real

world WSNs is presented as follows:
1) Based on Voltage Drop Rate: Hao et al. [30] proposed

a technique for lifetime estimation as:

Lt =
Vinit − Vcut

Vrate
(7)

where Vinit is the initial voltage of battery, Vcut is the
cut-off voltage and Vrate is the voltage drop rate. In their
experiments, it is observed that the average voltage drop rates
are 16.5mV/day for Mica2 and 21.5mV/day for MicaZ. With
an initial voltage level of 3.2V and the cut-off voltage of 2.2V,
the estimated lifetime are 60.6 d for a Mica2 and 46.5 d for a
MicaZ.

2) Based on Quoted Capacity and Current Consumption:
Selvig [31] presented a method to estimate the lifetime for
sensor nodes based on CC2430 [32] as:

Lt =
C

I
(8)

where C is the battery capacity in mA h and I is the average
current consumption. In this experiment, the battery capacity
is assumed to be the quoted capacity from vendor and the
average current consumption is measured by an oscilloscope.
Since I= E

V ·t , the software-based technique can be applied for
finding the average current consumption by using (4).

3) Based on Quoted Capacity and Energy Consumption:
Landsiedel and Wehrle [33], proposed an energy monitoring
model, called AEON, for a sensor node as:

Erem = Ecurrent − E (9)

where Ecurrent is the current battery capacity in J, Erem

is the remaining battery capacity in J and E is the energy
consumption which can be obtained by using (4). The initial
value of Ecurrent is the initial capacity of battery in J. The
battery capacity is also assumed to be the quoted capacity
from vendor. For example, a pair of alkaline batteries with
2500mA h of quoted capacity has 27 000 J of the initial
capacity. The lifetime of a node ends if Erem of that node is
empty. This model is implemented on top of AVRORA [34],
a highly scalable sensor node simulator.

D. Summary and Discussion
Many SoC estimation techniques have been explored. Elec-

trochemical methods require highly specific chemical knowl-
edge which makes it difficult for real hardware implemen-
tation. Measuring the specific gravity is the uncomplicated
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way, but it is difficult to apply to sealed batteries [17], [35].
Voltage measurement is an easy and popular method. How-
ever, this measurement technique is not always an accurate
indicator [17], [35]. Moreover, it is impossible to take into
account every point of voltage in order to provide an accurate
SoC indication system. The EMF method is more accurately
implementable for many battery types. However, other factors,
such as temperature and ageing, must be considered. Load
testing is an accurate and reliable battery capacity estimation
technique but the load test equipment is required. The tem-
perature effect proposed by Sheridan et al. is a generic model
which can be applied for many battery types but it is difficult to
find detailed information from a vendor’s specifications, such
as the activation energy and gas of the battery. The model
proposed by Park et al. covered the remaining capacity and
the effect of temperature on battery capacity. However, they
assumed the battery began with full capacity voltage, which
might not apply for NiMH batteries because this battery type
has a relatively high self-discharge rate on the first day after
full charging.

Several mechanisms are used for finding the current draw
of sensor nodes. Although a hardware-based mechanism can
provide accurate results, it is of significantly high cost and
complexity for large scale usage. Moreover, it is difficult to
add to the existing hardware. In contrast, a software-based
mechanism is easy to add to the existing system without addi-
tional per-unit cost. However, fixed voltage and current draw
values are assumed for current consumption calculation using a
software-based technique, which may not be accurate in real-
world deployments as the current draw is usually dynamic,
based on temperature and supply voltage. Temperature and
supply-voltage-effect formulae focus only on the effects of
the leakage current draw. They do not provide methods for
finding the constant current draw.

A lifetime estimation model based on the voltage drop is
suitable for a static load application. However, it is difficult
to be applied in the real deployment since the load of each
sensor is normally dynamic, which leads to dynamic voltage
drop. Moreover, this technique is not always an accurate
indicator [17], [35]. The other two methods are widely used
by many studies. However, thery are based on quoted capacity
and do not take other impact factors on lifetime, such as
temperature and consumption rate, into account.

As a result of accurate node lifetime estimation, the chal-
lenge is to propose a new generic technique for finding the
battery capacity which covers temperature, ageing and self-
discharging as well as other impact factors. Moreover, the
software-based technique for finding the current consumption
should be extended to cover the effect of temperature.

III. THE IMPACT FACTORS ON LIFETIME

Here we analyse the many factors causing the different
lifetime periods, such as battery types, models, brands, self-
discharge, discharge rate, ageing, charge cycles and tempera-
ture.

A. Battery Types, Brands and Models

Table IV [12]–[14] shows the quoted capacity of two AA-
size battery types: alkaline and NiMH, from several brands
and models.

TABLE IV
QUOTED CAPACITY FOR 100mA DISCHARGE TO 0.9V CUT-OFF AT ROOM

TEMPERATURE

Brands Types Models Quoted Capacity
(mA h)

A Alkaline(AA-LR6) A-Alkaline 2750
B Alkaline(AA-LR6) B-Alkaline 2750
C Alkaline(AA-LR6) C-Alkaline 2750
B NiMH(AA-HR6) B-NiMH1300 1430
B NiMH(AA-HR6) B-NiMH2000 2200
D NiMH(AA-HR6) D-NiMH2100 2310
D NiMH(AA-HR6) D-NiMH2500 2750

Based on the vendor data sheet, an AA-LR6 alkaline battery
capacity for discharging at 100mA to 0.9V cut-off is around
2750mA h [13], [14], while NiMH battery capacity is around
110% of the battery models, e.g., D-NiMH2100 model has
2310mA h of quoted capacity. However, only 90% from
quoted capacity can be used for discharging to a cut-off voltage
of 1V for alkaline batteries, while 93% can be used for NiMH
batteries [12]–[14]. From (1), lifetime can be easily estimated
by dividing that battery capacity with the current load and
assuming k = 1. A constant 100mA load generated by the
CBA-III load tester is used for testing a pair of AA batteries
at room temperature (22 ◦C). For NiMH batteries, they are
charged by 500mA charger and they are tested after being
fully charged. The tested batteries are discharged until their
terminal voltages reach the cut-off voltage at 2.0V (of 2
cells). Table V shows the real measurement and estimation
of lifetime. It is obvious that the battery model with high
capacity has longer lifetime than the model with low capacity.
With the same model of alkaline batteries, lifetime values
of different brands have a little difference (±16min). The
differences between estimated lifetime based on vendor data
sheet and real measurement lifetime are around 7 to 15%.
These differences may be caused by other factors, such as self-
discharging, ageing and charge cycles which will be described
in the following subsection.

TABLE V
MEASURED AND ESTIMATED LIFETIME OF 100mA DISCHARGE TO 2.0V

CUT-OFF AT ROOM TEMPERATURE

Batteries Lt (min) Deviation

Measured Estimated (%)

A-Alkaline 1384 1485 7.3
B-Alkaline 1370 1485 8.4
C-Alkaline 1368 1485 8.6
B-NiMH1300 694 796 14.8
B-NiMH2000 1144 1224 7.3
D-NiMH2100 1115 1285 11.5
D-NiMH2500 1410 1530 8.8
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B. Self-discharge

Since alkaline batteries will lose approximately 2% of their
capacity per year when stored at 20 ◦C due to the self-
discharging process [13], [14], there is no significant effect
on capacity for several months for this type of battery. This
means that the starting voltage of alkaline batteries can be
assumed to be 1.5V for each cell. In contrast, NiMH batteries
have significantly high self-discharge of 20% on the first day
and 1-4% per subsequent day. With self-discharging, they lose
capacity and their voltages also drop. To study the relationship
between starting terminal voltage (V t) and lifetime, a CBA-III
load tester with static 100mA load testing runs with a pair of
AA NiMH batteries from two brands, B-NiMH2000 and D-
NiMH2500, on two different starting V t at room temperature
(22 ◦C). Lifetime periods from the starting V t to the minimum
V t (cut-off at 2.0V) are shown in Table VI.

TABLE VI
LIFETIME OF 100mA LOAD WITH TWO AA NIMH BATTERIES

Battery Starting V t Measured Lt
(V) (min)

B-NiMH2000 2.81 1111
2.88 1144

D-NiMH2500 2.71 1197
2.85 1264

From this experiment, it is obvious that high starting V t
gives more lifetime period than low starting V t. Higher
starting V t means the higher battery energy which results
longer lifetime. The proposed lifetime equation for any starting
V t is:

Lt(V t) =

�
−τ · ln

�
V tr
V t

��
+ Lt(V tr) (10)

where τ is the time constant representing capacity affected by
self-discharging and Lt(V tr) is the lifetime of the reference
voltage (V tr). The time constant τ can be obtained by the
following equation [11].

τ =
t

ln
�

V tr1
V tr2

� (11)

where t is the different time period between starting at V tr1
and V tr2 which is Lt(V tr1) − Lt(V tr2). From Table VI,
t of B-NiMH2000 is −33min, while t of D-NiMH2500 is
−67min. V tr1 and V tr2 of B-NiMH2000 are 2.81V and
2.88V, while they are 2.71 and 2.85 V for D-NiMH2500.
Therefore, τ , V tr and Lt(V tr) for B-NiMH2000 are 1341,
2.81, and 1111, while they are 1330, 2.71 and 1197 for D-
NiMH2500. These values are then used for calculating lifetime
(in minutes) with any V t between V tr1 and V tr2 based on
(10). Measured and estimated lifetime of B-NiMH2000 and D-
NiMH2500 batteries with different starting voltages are shown
in Table VII and VIII. The different starting voltages are
caused by the self-discharging periods after full charging (1 h,
2 h, 3 h, 4 h and 5 h).

TABLE VII
MEASURED AND ESTIMATED LIFETIME FOR DIFFERENT STARTING

VOLTAGE OF B-NIMH2000 BATTERIES

Voltage Self-discharge Lt (min) Deviation

(V) time (h) Measured Estimated (%)

2.86 1 1138 1134 -0.3
2.85 2 1133 1130 -0.3
2.84 3 1127 1125 -0.2
2.84 4 1121 1125 0.4
2.83 5 1117 1121 0.3

TABLE VIII
MEASURED AND ESTIMATED LIFETIME FOR DIFFERENT STARTING

VOLTAGE OF D-NIMH2500 BATTERIES

Voltage Self-discharge Lt (min) Deviation

(V) time (h) Measured Estimated (%)

2.79 1 1250 1236 -1.1
2.78 2 1242 1231 -0.9
2.77 3 1235 1226 -0.7
2.76 4 1225 1221 -0.3
2.76 5 1223 1221 -0.1

C. Discharge Rate

The capacity of the battery varies with the rate of discharge.
From the vendor data sheet with the discharge rate of 25mA to
100mA [13], [14], the capacity of the battery increases when
the discharge rate decreases for alkaline batteries, while it de-
creases when the discharge rate decreases for NiMH batteries.
If C in (1) is the capacity of batteries when they are discharged
at 100mA, peukert constant (k) values are 0.96 and 1.004
for alkaline AA-LR6 and NiMH batteries, respectively [13],
[14]. These k constants are for a discharge rate of less than
100mA. For example, if lifetime for a 100mA discharge rate
for alkaline batteries is 25 h (2500mA h capacity), the lifetime
for a 25mA discharge rate will be 114 h (calculated from
2500
250.96 ); and if a lifetime for a 100mA discharge rate for NiMH
batteries is 27.5 h (2750mA h capacity), lifetime for 25mA of
discharge rate will be 108.5 h (calculated from 2750

251.004 ).

D. Ageing

The capacity of batteries will vary depending on their
ageing. Normally, battery packages have a date code on them
indicating the use by date that the batteries can be used
with good capacity (70-80% of quoted capacity) [11], [13].
Therefore, the ageing effect on lifetime is presented as:

Lt(a) = (1− ρ · a) · Lt(new) (12)

where a is the age of the battery in years, ρ is the ageing factor
and Lt(new) is the lifetime of the new battery. For examples,
the capacity of alkaline batteries will reduce 2% per year [13],
[14] when stored at room temperature (20 ◦C). This means that
the lifetime of the device will be reduced 2% (ρ = 0.02) each
year due to the age of the batteries. Therefore, the new AA-
LR6 batteries will give 1350min of lifetime for a device with
100mA load, while they will give 1323min of lifetime when
storing these batteries for one year before using. For NiMH
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batteries, the capacity will drop 6% (ρ = 0.06) per year due
to their ageing when stored at room temperature [12], [13].
Therefore, the new D-NiMH2500 battery will give 1410min
after being fully charged, while they will give 1325min after
being fully charged if they have one year of age.

E. Charge Cycles

The charge cycles factor has an effect on rechargeable
batteries by measuring how many times the batteries have been
recharged. NiMH batteries can deliver 100% capacity for up
to 300 charge cycles, while their capacity will reduce 0.1%
for each charge cycle for more than 300 cycles [12], [13]. As
a result, a decrease of lifetime can be described as:

Lt(c) =

�
Lt(new) if c ≤ 300
(1.3− 0.001c) · Lt(new) otherwise (13)

where c is the number of charge cycles and Lt(new) is
the lifetime of the new battery. For example, the new D-
NiMH2500 battery will give 1410min, while they will give
1269min at 400 charge cycles (c = 400).

F. Temperature

Both battery capacity and current consumption are affected
by temperature. As temperature increases, the current draw is
increased and, consequently, shortens the lifetime of the de-
vice. However for alkaline and NiMH cells, high temperature
can provide increased capacity of battery over the operating
temperature range 0 to 40 ◦C. Therefore, it depends on the ratio
between increased battery capacity and current draw, which
may result in increased or decreased lifetime. Based on (3)
and information contained in vendor data sheets [12]–[14],
[23], the constant A which depends on the activation energy
and gas of the battery can be calculated as Table IX.

TABLE IX
CAPACITY OF DIFFERENT TEMPERATURES AND CONSTANT VALUE FOR

DIFFERENT BATTERIES

Batteries Capacity Capacity A
(mA h@0 ◦C) (mA h@25 ◦C)

A-Alkaline 900 1950 2518.73
B-Alkaline 857 1942 2665.53
B-NiMH2000 1717 2113 677.19
D-NiMH2500 2127 2667 737.11

Based on (6), the leakage current draw at two different
average temperatures in Kelvin (T1, T2) can be defined as:

I(T2)

I(T1)
=

T 2
2

T 2
1

· exp
�
K · (T1 − T2)

T1 · T2

�
(14)

where K is a constant depending on the circuit and Vdd.
It is assumed that Vdd is the same for these two different
temperatures. The real experiments have been conducted for
Mica2 and N740 Nanosensor with a simple static load program
at two different temperatures. The Vdd is static at 3.0V.
Table X shows the measured current draw by an ammeter and
calculated K constant results.

TABLE X
CURRENT DRAW AT DIFFERENT TEMPERATURES AND K VALUE FOR

MICA2 AND N740 MOTES

Sensor Current Current K
(mA@5 ◦C) (mA@25 ◦C)

Mica2 12 18 -1105.43
N740 47 66 -831.94

From (1), (3) and (14), node lifetime with full capacity at
two different temperatures is derived as:

Lt(T2)

Lt(T1)
=

T 2
1

T 2
2

· exp
�
σ ·

�
T2 − T1

T2 · T1

��
(15)

where σ is the A + K values which can be obtained from
Table IX and X and are presented in Table XI.

TABLE XI
RATIO CONSTANT VALUE OF DIFFERENT BATTERIES FOR MICA2 AND

N740 MOTES

Sensor Batteries σ

Mica2 A-Alkaline 1413.30
Mica2 B-Alkaline 1560.10
Mica2 B-NiMH2000 -428.24
Mica2 D-NiMH2500 -368.33
N740 A-Alkaline 1686.80
N740 B-Alkaline 1833.59
N740 B-NiMH2000 -154.74
N740 D-NiMH2500 -94.83

The experiments are conducted to test the temperature effect
on the lifetime of N740 mote with two NiMH batteries: B-
NiMH2000 and D-NiMH2500. A simple program runs on
different temperatures. This program load as measured by
an ammeter at 25 ◦C is 67mA. From Table IX, capacity of
B-NiMH2000 and D-NiMH2500 batteries at 25 ◦C are 2113
and 2667mA h. Therefore, node lifetime at 25 ◦C will be
31.01 h ( 2113

671.004 ) and 39.14 h ( 2667
671.004 ) for B-NiMH2000 and

D-NiMH2500, respectively. However, the experiments run at
temperatures between 19 to 24 ◦C. The results of real lifetime
and estimated lifetime based on (15) including deviation are
presented in Table XII.

TABLE XII
LIFETIME WITH DIFFERENT NIMH BATTERIES AND TEMPERATURES FOR

N740 MOTES

Batteries Temperature Lt (min) Deviation

(◦C) Measured Estimated (%)

B-NiMH2000 20.0 1953 1941 -0.61
B-NiMH2000 21.0 1920 1924 0.21
B-NiMH2000 24.0 1885 1875 -0.53
D-NiMH2500 19.5 2462 2451 -0.45
D-NiMH2500 20.0 2445 2441 -0.16
D-NiMH2500 22.0 2417 2403 -0.58

IV. DNLE DESIGN AND IMPLEMENTATION

This research proposes formulae and processes for dynamic
node lifetime estimation which covers many factors causing
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the different lifetime periods, such as battery type, model,
brand, self-discharge, discharge rate, ageing and temperature.
These formulae do not require detailed electrical and elec-
trochemical knowledge. Moreover, some limitations, such as
memory and arithmetic capabilities, have to be taken into
account for real implementation on sensor nodes. DNLE is
based on the following assumptions for both alkaline and
NiMH batteries. First, batteries from the same pack have the
same performance and behaviour. Second, storing temperature
does not affect the capacity change since the batteries are
always stored at room temperature. Third, for NiMH batteries,
charging method does not affect the capacity change since the
same charger is used in these experiments. Fourth, temperature
during charging does not affect the capacity change since
the batteries are always charged at room temperature. Last,
batteries have suffered fewer than 300 charging cycles.

A. DNLE Design

The following steps are proposed for finding the lifetime of
each node:

1) Step 1: Finding the real battery capacities:
a) Alkaline Batteries: It is sometimes difficult to deter-

mine the battery capacity reduction due to ageing since the
manufacture date is not available. Moreover, some batteries
may have lower capacity than quoted. It can be assumed that
batteries sampled from the same manufactured batch can be
representative of that batch. Each sample pair is tested by the
load testing with static 100mA load in order to find the real
battery capacity with cut-off voltage equal to the minimum
voltage of sensor motes. In these experiments, the cut-off
voltage is 2.2V. After that, the real battery capacity (in mA h)
can be calculated by:

C = Lt · 100 (16)

where Lt is the lifetime of the batteries in hours. For example,
if a pair of alkaline batteries gives 22.5 h of lifetime, the
capacity value is 2250mA h. Instead of using quoted capacity,
a sample average will be assigned as the capacity for batteries
from this batch. The temperature (Tt) when running load
testing is recorded. If Ti is the temperature when a node starts
running, the initial capacity with temperature effect can be
calculated by using (3) with T2 as Ti and T1 as Tt. We refer
to this value as C(Ti).

b) NiMH Batteries: For NiMH batteries, each sample
pair is tested after full charging in a similar way to the
alkaline type. However, since NiMH batteries have signifi-
cantly high self-discharge on the first day, each sample pair
is retested again after letting it 24 h of self-discharge. With
self-discharging, the starting voltage of batteries is different
from being fully charged. The starting voltage of fully charged
batteries is referred as V tf and the starting voltage of batteries
with 24 h of self-discharge is referred as V t24h. The capacities
of two different starting voltages are referred as Cf for the
capacity of fully charged batteries and C24h for the capacity
of 24 h of self-discharge batteries. Then, the battery capacity
of any starting voltage (V t) between V t24h and V tf can be

calculated as:

C(V t) =

�
−τ · ln

�
V t24h
V t

��
+ C(V t24h) (17)

where τ is the constant representing capacity affected by self-
discharging which can be obtained by:

τ =
c

ln
�

V t24h
V tf

� (18)

where c is C24h −Cf . It is assumed that the temperature (Tt)
is the same when running load testing with fully charged and
24 h of self-discharge batteries. If Ti is the temperature when a
node starts running, the initial capacity with temperature effect
can be calculated by using (3) with T2 as Ti and T1 as Tt.
We refer to this value as C(V t, Ti).

2) Step 2: Finding the current consumption every period:
Adapted from (4) proposed by Dunkels et al., the current
consumption at a period can be expressed as:

I = Iata + Iltl + Ittt + Irtr +
�

Ictc (19)

where Ia and ta are the current consumption of the MCU
(Microprocessor Control Unit) and the time when the MCU
has been running in active mode during a period; Il and tl
are the current consumption and time of the MCU in low
power or sleep mode during a period; It and tt are the current
consumption and the time of the radio transceiver in transmit
mode during a period; Ir and tr are the current consumption
and time of the radio transceiver in receive mode during a
period; Ic and tc are the current consumption and time of
other components such as sensors and LEDs during a period.
The calculation as this equation is applied based on device
data sheet with temperature at 25 ◦C. The current consumption
has to be calculated every period. Thus, the average current
consumption (I) for s periods can be computed by using the
Simple Moving Average as:

I(s) = γ · I(s− 1) + (1− γ) · I(s) (20)

where γ is the weighting value = s−1
s , I(s − 1) is average

current consumption of the previous period, and I(s) is the
current consumption at the period s. If T is the temperature
of the current period, the current consumption I(s, T ) and
average current consumption I(s, T ) can be calculated by
using (14) with T2 as T and T1 as 298.15 (25 ◦C is 298.15K).

3) Step 3: Remaining lifetime estimation: The remaining
capacity (Crem) at period s can be obtained by:

Crem(s) = Crem(s− 1)− I(s, T )k (21)

where k is the peukert constant, Crem(s−1) is the remaining
capacity before period s and it is equal to the initial capacity
for the first period. This means that if s = 1, Crem(s − 1)
= C(Ti) for alkaline batteries and Crem(s − 1) = C(V t, Ti)
for NiMH batteries. If T is the temperature of the current
period, the temperature effect on the capacity is calculated
by using (3), with T2 as T and T1 as the temperature of the
previous period. We refer to this value as Crem(s, T ). Finally,
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the remaining lifetime at the current period and temperature
Ltrem(s,T) can be estimated as:

Ltrem(s, T ) =
Crem(s, T )

I(s, T )k
(22)

B. DNLE Implementation
DNLE has been implemented on two real hardware plat-

forms, Mica2 and N740 NanoSensor with operating systems
TinyOS and Contiki respectively. It was assumed that sensor
motes support battery voltage and temperature reading. The
process is as follows:

1) Process 1: Preconfigured and Starting process: Two
AA-LR6 alkaline models (A-Alkaline and B-Alkaline) and
two NiMH models (B-NiMH2000 and D-NiMH2500) are the
batteries used in the experiments. The capacities of these
battery packs are evaluated by using the CBA-III load tester
with static 100mA current at 25 ◦C. Three pairs of batteries
are tested for finding the average values of each battery model.
These average capacities are then used as the preconfigured
values for sensor nodes. All preconfigured values are given
in Table IX, X and XIII. All nodes may automatically obtain
these preconfigured values during the discovery process, but
it is out of scope in this research. When a node starts, it reads
the current temperature and battery starting voltage in order
to calculate the initial battery capacity as described in Step1
of the DNLE design section.

TABLE XIII
PRECONFIGURED CAPACITIES OF BATTERIES

Battery Capacity at 25 ◦C
(mA h)

A-Alkaline 1850
B-Alkaline 1800
B-NiMH2000 1585
D-NiMH2500 1814

2) Process 2: Looping process: We focus on three compo-
nents: MCU, radio transceiver and sensing device, for finding
the current consumption at runtime. The current draw of these
components is configured based on the device data sheet. The
device driver of these components is modified: time stamps
are recorded when the components are turned on, and time
differences are computed when the components are turned off.
These time differences (with the same unit of the period) are
used for the current consumption calculation based on (19).
One minute is used as the time period (Step2 of the DNLE
design section). Since the battery capacity is hours unit, it
needs to be converted to the same unit of the period (e.g.,
2000mA h = 120 000mA min for a period of 1 minute).
Temperature readings are repeated every minute for updating
the current temperature in order to calculate the effect on the
current consumption, average current consumption, remaining
capacity and remaining lifetime as described in Step2 and
Step3 of the DNLE design section.

V. DNLE EVALUATION

This section evaluates the proposed technique on real
testbed experiments with two different hardware platforms

(Mica2 based on CC1000 radio and the ATMega128L [36],
[37], and N740 Nanosensor based on CC2431 [32], [38],
a SoC combining the CC2420 radio with 8051 MCU) and
four battery models: A-Alkaline, B-Alkaline, B-NiMH2000
and D-NiMH2500. The N740 platform is implemented using
Contiki OS, while Mica2 platform is implemented using
TinyOS. Two techniques: Selvig’s method and the DNLE are
investigated. Lifetime estimation is made every minute. For
Selvig’s method, battery capacity is obtained by using quoted
capacity as in Table IV, while the current consumption is
calculated using (19). In these experiments 80% of quoted
capacity is used (as a cut-off voltage of 2.2V) for alkaline
batteries and 91% for NiMH batteries [12]–[14]. Therefore,
usable capacities are 2200mA h for A-Alkaline, 2200mA h for
B-Alkaline, 2102mA h for B-NiMH2000 and 2502mA h for
D-NiMH2500. For DNLE, the processes are as described in
the DNLE design and implementation section. In general, the
current consumption of the sensor node is less than 100mA.
Therefore, the peukert constant values are 0.96 and 1.004 for
the alkaline and NiMH batteries, respectively.

These experiments consist of two nodes, the sender and
the base station. The base station is placed in the normal
room conditions, while the sender is placed in a controlled
environment in order to operate under a static temperature
(10 ◦C and 22 ◦C) as in Fig. 1. Two scenarios: static and
dynamic loads are applied in the experiments.

Base Station Sender

Controlled Environment

Fig. 1. Dynamic Node Lifetime Estimation Experiment

A. Scenario1: Static Load
For static load, the sender sends a fixed sized packet of

50B to the base station every 3 s. Two sensor motes (Node1
and Node2) are used. Node1 runs as the sender for the
first 3 times, while Node2 is the sender for the other 3
times. Lifetime estimation is calculated only at the sender
node. NiMH batteries are given random starting voltages by
a random self-discharging period of 5min to 600min. The
average deviation results for two mote platforms with different
battery models are shown in Table XIV. Since Selvig’s method
does not take some impact factors (such as charging rate,
self-discharging and temperature) into account, the estimated
values are much different from the measured ones around
19.1% to 60.3%. On the other hand, they are in the range
of −3.5% to 2.4% for DNLE.

B. Scenario2: Dynamic Load
In a real deployment, a load of each sensor is normally

dynamic, which may be caused by monitoring events or



IEEE SENSORS JOURNAL, VOL. XX, NO. X, MONTH 2014 9

TABLE XIV
AVERAGE DEVIATION OF STATIC LOAD LIFETIME ESTIMATION TESTBED

RESULTS FOR MICA2 AND N740 MOTES WITH DIFFERENT BATTERIES

Sensor Battery Temp. Estimated Lt Deviation(%)

(◦C) Selvig’s Method DNLE

Mica2 A-Alkaline 22 22.4 -1.0
Mica2 A-Alkaline 10 38.9 -1.4
Mica2 B-Alkaline 22 30.4 -2.5
Mica2 B-Alkaline 10 50.0 -3.5
Mica2 B-NiMH2000 22 60.3 1.5
Mica2 B-NiMH2000 10 33.3 2.4
Mica2 D-NiMH2500 22 53.4 -1.4
Mica2 D-NiMH2500 10 36.6 0.8
N740 A-Alkaline 22 19.1 1.7
N740 A-Alkaline 10 41.1 1.9
N740 B-Alkaline 22 26.3 -0.2
N740 B-Alkaline 10 50.9 -1.3
N740 B-NiMH2000 22 23.5 1.0
N740 B-NiMH2000 10 21.7 2.0
N740 D-NiMH2500 22 41.8 2.1
N740 D-NiMH2500 10 39.5 2.0

the number of neighbour nodes. For dynamic load in this
experiment, the sender sends a packet of a random size of
20B to 50B to the base station every x seconds. The interval
time value (x) was changed randomly every 10min to between
3 s and 6 s. The testbed experiments run at temperatures of 10
and 22 ◦C. Two sensor motes (Node1 and Node2) are used.
Node1 runs as the sender for the first 3 times, while Node2
is the sender for the other 3 times. Lifetime estimation is
calculated only at the sender node. For NiMH batteries, they
have random starting voltages by a random self-discharging
period between 5min to 600min. The average deviation results
for two mote platforms with different battery models are
shown in Table XV. The deviation of Selvig’s method is
18.7% to 57.5%, while it is −2.1% to 2.5% for DNLE.

TABLE XV
AVERAGE DEVIATION OF DYNAMIC LODE LIFETIME ESTIMATION

TESTBED RESULTS FOR MICA2 AND N740 MOTES WITH DIFFERENT
BATTERIES

Sensor Battery Temp. Estimated Lt Deviation(%)

(◦C) Selvig’s Method DNLE

Mica2 A-Alkaline 22 21.0 -1.4
Mica2 A-Alkaline 10 37.8 -1.4
Mica2 B-Alkaline 22 30.6 -1.6
Mica2 B-Alkaline 10 57.5 2.1
Mica2 B-NiMH2000 22 33.9 2.5
Mica2 B-NiMH2000 10 22.4 -1.8
Mica2 D-NiMH2500 22 54.7 -0.6
Mica2 D-NiMH2500 10 32.8 -2.1
N740 A-Alkaline 22 18.7 1.4
N740 A-Alkaline 10 40.5 1.4
N740 B-Alkaline 22 26.0 -0.5
N740 B-Alkaline 10 50.2 -1.7
N740 B-NiMH2000 22 33.6 0.7
N740 B-NiMH2000 10 21.2 1.6
N740 D-NiMH2500 22 41.4 1.8
N740 D-NiMH2500 10 35.9 1.5

VI. CONCLUSIONS AND FUTURE WORK

In this paper, impact factors on node lifetime, such as
battery brand, type, model, self-discharge, charging rate, bat-

tery ageing, charge cycles, and temperature, are investigated
and analysed. Lifetime equations for any starting voltage,
ageing, charge cycles and temperatures are proposed to ex-
plain the effect of the impact factors. Moreover, a dynamic
node lifetime estimation technique, called DNLE is proposed.
The experiments have been conducted on real hardware and
software platforms in WSNs with different battery models.
Two scenarios, dynamic and static loads, are implemented to
evaluate the deviation of DNLE comparing to Selvig’s method.
The estimated values of Selvig’s method are much different
from the measured ones (around 18% to 60%), while they are
close to the measured ones for DNLE (−3.5% to 2.5%) due
to taking some impact factors into account, such as charging
rate, self-discharging and temperature. It can be concluded that
node lifetime can be predicted more accurately using DNLE,
which can be applied for both off-line and on-line lifetime
estimation.

Future work will include battery recovery effects when
nodes employ dynamic duty cycling. Furthermore, the higher
than room temperature and the impact of humidity should be
investigated. In addition, the network lifetime will be further
benefited with the integration of DNLE into the network
routing process.
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