Loughborough University
Browse
PhysRevE.75.040501.pdf (197.13 kB)

Dynamics in inhomogeneous liquids and glasses via the test particle limit

Download (197.13 kB)
journal contribution
posted on 2014-10-08, 14:30 authored by Andrew ArcherAndrew Archer, Paul Hopkins, Matthias Schmidt
We show that one may view the self-part and the distinct-part of the van Hove dynamic correlation function of a simple fluid as the one-body density distributions of a binary mixture that evolve in time according to dynamical density functional theory. For a test case of soft-core Brownian particles the theory yields results for the van Hove function that agree quantitatively with those of our Brownian dynamics computer simulations. At sufficiently high densities the free energy landscape underlying the dynamics exhibits a barrier as a function of the mean particle displacement, shedding new light on the nature of glass formation. For hard spheres confined between parallel planar walls the barrier height oscillates in phase with the local density, implying that the mobility is maximal between layers, which should be experimentally observable in confined colloidal dispersions.

Funding

A.J.A. and P.H. are grateful for the support of EPSRC, and M.S. thanks the DFG for support through the SFB TR6/D3.

History

School

  • Science

Department

  • Mathematical Sciences

Published in

PHYSICAL REVIEW E

Volume

75

Issue

4

Pages

? - ? (4)

Citation

ARCHER, A.J., HOPKINS, P. and SCHMIDT, M., 2007. Dynamics in inhomogeneous liquids and glasses via the test particle limit. Physical Review E, 75 (4), 040501.

Publisher

© The American Physical Society

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2007

Notes

This article was published in the journal, Physical Review E [© The American Physical Society].

ISSN

1539-3755

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC