Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints

The single lap joint is the most studied type of adhesive joint in the literature. However, the joint strength prediction of such joints is still a controversial issue as it involves a lot of factors that are difficult to quantify such as the overlap length, the yielding of the adherend, the plasticity of the adhesive and the bondline thickness. The most complicated case is that where the adhesive is brittle and the overlap long. In any case, there is still a problem that is even more difficult to take into account which is the durability. There is a lack of experimental data and design criteria when the joint is subjected to high, low or variable temperature and/or humidity. The objective of this work is to carry out and quantify the various variables affecting the strength of single lap joints in long term, especially the effect of the surface preparation. The Taguchi method is used to decrease the number of experimental tests. The effect of material, geometry, surface treatment and environment is studied and it is shown that the main effect is that of the overlap length. In order to quantify the influence of the adhesive (toughness and thickness), the adherend (yield strength and thickness), the overlap, the test speed, the surface preparation and durability on the lap shear strength, the experimental design technique of Taguchi was used in the present study. An experimental matrix of eighteen tests was designed and each test was repeated three times. The influence of the eight previously-mentioned variables could be assessed using the statistical software Statview®. In this paper a simple predictive equation is proposed for the design of single lap joints.