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Abstract

Image segmentation is one of the fundamental techniques in image analysis. One group of segmentation techniques

is based on clustering principles, where association of image pixels is based on a similarity criterion. Conventional

clustering algorithms, such as k-means, can be used for this purpose but have several drawbacks including dependence

on initialisation conditions and a higher likelihood of converging to local rather than global optima.

In this paper, we propose a clustering-based image segmentation method that is based on the human mental search

(HMS) algorithm. HMS is a recent metaheuristic algorithm based on the manner of searching in the space of online

auctions. In HMS, each candidate solution is called a bid, and the algorithm comprises three major stages: mental

search, which explores the vicinity of a solution using Levy flight to find better solutions; grouping which places a set of

candidate solutions into a group using a clustering algorithm; and moving bids toward promising solution areas. In our

image clustering application, bids encode the cluster centres and we evaluate three different objective functions.

In an extensive set of experiments, we compare the efficacy of our proposed approach with several state-of-the-art

metaheuristic algorithms including a genetic algorithm, differential evolution, particle swarm optimisation, artificial bee

colony algorithm, and harmony search. We assess the techniques based on a variety of metrics including the objective

functions, a cluster validty index, as well as unsupervised and supervised image segmentation criteria. Moreover, we

perform some tests in higher dimensions, and conduct a statistical analysis to compare our proposed method to its com-

petitors. The obtained results clearly show that the proposed algorithm represents a highly effective approach to image

clustering that outperforms other state-of-the-art techniques.

Keywords: Image clustering, metaheuristic algorithms, human mental search, image segmentation.

1 Introduction

Image segmentation is a fundamental task in image processing and analysis. Image segmentation is the process of di-

viding an image into several homogeneous meaningful areas. Pixels associated with a certain area, commonly described

based on features such as colour or texture, exhibit more commonalities than those assigned to different areas. Image seg-

mentation is employed in a variety of applications, such as satellite image analysis [1, 2], colour quantisation [3], tumour

detection [4], food quality evaluation [5], and modelling of microstructures [6], to name a few.

Clustering approaches [7] are among the most commonly employed methods for image segmentation. Here, an image
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is divided into a set of groups (clusters) so that the members of a group share more commonalities than those in different

groups. This is typically achieved by optimising a criterion formulated as maximising the similarity among the members

of a cluster, while ensuring that clusters are distinct from each other.

The k-means algorithm is the most commonly employed clustering algorithm. Here, first k cluster centres are defined

randomly. Then, using a similarity criterion such as Euclidean distance, every pattern is assigned to its closest cluster

centre. After that, the location of every cluster centre is recalculated. The process continues until a stopping condi-

tion is satisfied. K-means is relatively simple but is also dependent on initialisation and converges to the closest local

optimum [8].

Clustering can also be formulated as an optimisation problem. An optimisation problem is the problem of find-

ing the minimum (or maximum) of an objective function in search space. Since many optimisation techniques have

elements (such as initialisation) that introduce randomness, population-based metaheuristic algorithms, which use of mul-

tiple solutions and their collaboration, can be employed for improved performance [8]. Metaheuristic algorithms are also

problem-independent and can thus be used for a broad spectrum of optimisation problems. Using a series of operators,

such algorithms try to direct a set of initially random solutions toward an appropriate area of the search space. Examples

of population-based metaheuristic algorithms include genetic algorithms [9], particle swarm optimisation [10], differential

evolution [11], bee colony algorithms [12], and harmony search [13].

In solving an optimisation problem using a metaheuristic algorithm, three significant issues should be taken into

account: (1) the structure of a solution; (2) the objective function which determines the quality of a solution; and (3) the

operators which cause the initial random solutions in search space to be directed to form better solutions. The operators

have a crucial effect on the efficacy of a metaheuristic algorithm, so that the difference between metaheuristic algorithms

is expressed by their different operators. Many studies have also been conducted to improve the effectiveness of different

operators using new metaheuristic algorithms or extensions of existing algorithms for image segmentation [14–16].

One of the challenges in image clustering, compared with other applications, is that there is a large number of samples.

For example, in a relatively small image of size 256×256, the number of samples (pixels) is 65,536, while an image of size

512×512 comprises 262,144 pixels. In the literature, various work has proposed the use of population-based metaheuristic

algorithms for image clustering. For example, [17] used fuzzy c-means (FCM) and genetic algorithms (GAs) for image

clustering with an objective function based on the total weighted squared error. This method showed a higher efficacy

on satellite images compared with four algorithms including a self-organising map (SOM), a hybrid genetic algorithm

(HGA), FCM, and a combination of SOM and HGA. [18] studied colour image segmentation using a GA and a SOM

where the latter was used as a pre-processing operation to identify the number of clusters and an objective function based

on compactness and separation. The obtained results indicated performance exceeding those of other state-of-the-art

algorithms.

Particle swarm optimisation (PSO) [10, 19] is a population-based algorithm inspired by the social behaviour of birds.

The first PSO-based image clustering algorithm is reported in [20]. Here, the structure of each particle is a single-

dimensional array where every component corresponds to a cluster centre, and an error function was used as objective

function. Tested on four images, in comparison with the ISODATA algorithm, the PSO approach showed a higher effi-

cacy. [21] proposed a chaos-based PSO algorithm for texture image segmentation where the application of chaos prin-
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ciples aims at avoiding local optima. The obtained results indicated that this method was able to outperform standard

PSO. In [22], a bare-bones PSO (BPSO) algorithm was studied for image clustering. This approach does not require pa-

rameter tuning, and good performance in comparison to other algorithms such as k-means and PSO was observed. Other

PSO-based image clustering algorithms include [23–26], while other population-based metaheuristic algorithms such as

differential evolution [27–29], bee colony algorithms [14,30] and harmony search [31] have also been proposed for image

clustering. Although these algorithms have shown satisfactory results in comparison with conventional algorithms, still

better performance is required. Despite the diverse work done in this area, this is still a very active research subject with

the aim of improving the efficacy of image clustering algorithms.

The human mental search (HMS) algorithm [32] is a relatively recent population-based algorithm which has demon-

strated competitive performance for solving optimisation problems. Every solution in HMS is called a bid. The algorithm

has three main operators. The first operator is mental search, which searches the vicinity of a solution using Levy flight.

Levy flight, a type of random walk with varying step size, can simultaneously improve diversification and intensification.

The second HMS operator is grouping which clusters the population with the aim of identifying promising areas in search

space. Finally, the third operator instigates movement of solutions towards these promising areas.

According to the No Free Lunch (NFL) theorem [33] there is no best algorithm for solving an optimisation problem.

This theorem is one of the main motivations for applying various metaheuristic algorithms for problems such as cluster-

ing [27, 30, 31]. The HMS algorithm as a novel metaheuristic yielded satisfactory performance in comparison with other

algorithms such as PSO, harmony search, and artificial bee colony algorithm [32].

Based on the NFL theorem and the competitive performance of HMS, in this paper, we propose a novel effective

method for image clustering using the HMS algorithm. We define the structure of each HMS bid to be an array whose

length equals the number of image clusters. For the optimisation, we investigate three objective functions, where the first

two are based on intra-cluster distance, inter-cluster separation and quantisation error, while the third also incorporates a

mean squared error criterion.

In an extensive set of experiments, we compare the efficacy of our proposed approach with several state-of-the-art

metaheuristic algorithms including a genetic algorithm, differential evolution, particle swarm optimisation, artificial bee

colony algorithm, and harmony search, and demonstrate it to exhibit excellent image clustering performance.

The remainder of the paper is organised as follows. Section 2 describes the concept of clustering, while Section 3

introduces the human mental search algorithm. Our proposed algorithm is described in Section 4, while experimental

results are presented in Section 5. Finally, Section 6 concludes the paper.

2 Pattern clustering

The purpose of clustering is to group a set of patterns so that the members of each group have more similarity compared

to intergroup members. Mathematically, clustering is defined as follows. Suppose, we have a set P comprising N d-

dimensional patterns, P = {p1, p2, . . . , pn}. In the context of this paper, a pattern is equivalent to a pixel value. The aim of

clustering is to divide P into K clusters C = {c1, c2, . . . , cK} so that the following conditions are satisfied:

1. Each cluster contains at least one pattern ci , ∅, i = 1 . . .K;
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2. The total number of patterns in all clusters is equal to the total number of patterns in the dataset:
⋃k

i=1 ci = P;

3. Different clusters should not have mutual patterns: ci
⋂

c j = ϕ, i, j = 1 . . .K, i , j.

A criterion needs to be defined to be able to assess the clustering quality. The mean squared error (MSE) is the most

common function for this purpose and defined as

f (P,C) =

K∑
j=1

∑
Pi∈C j

d(pi, c j), (1)

where d(pi, c j) is the distance between pattern pi pattern and its cluster center c j. Several distance criteria can be used to

calculate the dissimilarity between patterns with the Euclidean distance

d(pi, p j) =

√√√ d∑
m=1

(pm
i − pm

j )2, (2)

where pm
i is the m-th dimension of pi, being the most popular one.

The k-means algorithm is the best known and most employed algorithm in data clustering. It proceeds in the following

steps:

Step 1: Randomly select K points as cluster centres;

Step 2: Allocate each pattern to its closest cluster centre. More formally, if C is the set of cluster centres, then each

pattern x is allocated to a cluster centre based on:

arg min
ci∈C

d(x, ci) (3)

where d is the Euclidean distance;

Step 3: Recalculate the position of each cluster centre as the centroid of its allocated patterns as

ci =
1
|S i|

∑
x∈S i

x (4)

where S i is the i-th cluster;

Step 4: Repeat Steps 2 and 3 until convergence (or until a different stopping criterion is met).

3 Human mental search

Human mental search [32] is a recently introduced population-based metaheuristic algorithm for solving optimisation

problems. Every solution in HMS is called a bid and the algorithm is inspired by the manner of searching in a bid space

of online auctions.

Algorithm 1 summarises the HMS algorithm in form of pseudo-code while in the following we describe the algorithm

in more detail.
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Algorithm 1 HMS algorithm pseudo-code.

1: procedure HMS Algorithm
2: // Variables: L: lower bound; U: upper bound, Ml: minimum number of mental processes, Mh: maximum number

of mental processes, Npop: number of bids, Nvar: number of variables, K: number of clusters, iter: current iteration,
MaxIter: maximum number of iterations

3:
4: X = initialise population of Npop bids
5: Calculate the objective function values of bids
6: x∗ = find the best bid in the initial population
7: for i from 1 to Npop do
8: βi = generate integer random number between L and U
9: end for

10: for iter from 1 to MaxIter do
11: // Mental search
12: for i from 1 to Npop do
13: qi = generate integer random number between Ml and Mh

14: end for
15: for i from 1 to Npop do
16: for j from 1 to qi do
17: s = (2 − iter ∗ (2/MaxIter)) ∗ 0.01 ∗ u

v1/βi
∗ (xi − x∗)

18: NS j = Xi + s
19: end for
20: t = find NS with the lowest objective function value
21: if cost(t) < cost(Xi) then
22: Xi = t
23: end if
24: end for
25: // Clustering
26: Cluster Npop bids into K clusters
27: Calculate the mean objective function value of each cluster
28: Select cluster with lowest mean objective function value as the winner cluster
29: winner = select the best bid in the winner cluster
30: // Move bids toward best strategy
31: for i from 1 to Npop do
32: for n from 1 to Nvar do
33: Xi

n = Xi
n + C ∗ (r ∗ winnern − Xi

n)
34: end for
35: end for
36: for i from 1 to Npop do
37: βi = generate random number between L and U
38: end for
39: x+ = find best bid in current bids
40: if cost(x+) < cost(x∗) then
41: x∗ = x+

42: end if
43: end for
44: end procedure

3.1 Creating primary bids

Like other population-based algorithms, HMS commences by creating a set of Npop random candidate solutions. Every

solution is called a bid. In a d-dimensional space, a bid is defined as

bid = [x1, x2, ..., xd]. (5)
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A bid is assessed using an objective function f () that evaluates the quality of a candidate solution:

f (bid) = f (x1, x2, ..., xd). (6)

3.2 Mental search

Mental search is one of the main operators introduced in the HMS algorithm. This operator creates a series of new

solutions around each bid using a random walk in which the step size follows a Levy distribution. Compared to Brownian

motion, use of the Levy distribution allows for improved diversification (due to ‘long jumps’) and intensification (due to

‘small steps’) and is thus more effective in exploring unknown spaces.

A new position is obtained as

NS = bid + S ; (7)

with S is calculated as

S = (2 − iter ∗ (2/MaxIter)) ∗ α ⊕ Levy, (8)

where MaxIter is the maximum number of iterations, iter indicates the current iteration, and α is a random number, while

⊕ signifies element-wise multiplication. (2 − iter ∗ (2/MaxIter)) is a descending factor, starting at 2 and ending towards

0, that considers a larger vicinity of a solution at the beginning and smaller vicinities at the end of the algorithm, thus

yielding high diversification at the beginning and high intensification at the end.

The step size S using a Levy distribution is calculated as

S = (2 − iter ∗ (2/MaxIter)) ∗ α ⊕ Levy = (2 − iter ∗ (2/MaxIter)) ∗ 0.01 ∗
u

v1/β ∗ (xi − x∗), (9)

where x∗ is the best position found so far, and u and v are two random numbers with normal distributions as

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v), (10)

and

σu =

 Γ(1 + β) sin( πβ2 )

Γ[( 1+β
2 )]β2(β−1)/2


1/β

, σv = 1, (11)

where Γ is a standard gamma function.

Figure 1 illustrates the mental search operator for two out of 12 existing bids (black dots) in the search space. The

numbers of new bids created for bid A and B are 4 and 5 respectively (selected randomly). As can be seen, the vicinity

of a solution is searched with the aim of finding better solutions (red and blue dots) and there are some ‘large jumps’.

Finally, each bid is superseded with the best bid created by the mental search operator.
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Figure 1: Example of mental search operator.

3.3 Grouping bids

The second operator in the HMS algorithm is a solution grouping operator using a clustering method. Bid clustering

would cause solutions that are close to each other to be placed in one cluster. Here, the k-means clustering operator is

used for bid clustering. After clustering, the mean objective function value is calculated for each cluster to determine

promising areas in search space; an area with a lower mean objective value is likely a more appropriate area. Figure 2

illustrates the grouping operator. There are 12 bids in the figure, which are divided into three clusters. As can be seen,

there are closer solutions in each cluster. This mechanism is different from most algorithms, which typically use the best

solutions to identify promising areas in search space.

Figure 2: Example of bid grouping operator.

3.4 Moving towards the promising area

After grouping, the area with the lowest mean objective function value is selected as the winner group or the promising

area. Then, the bids in the other groups move towards the best bid in this area. It is worth mentioning that the best bids

among all bids may not belong to the winner group. Bids are updated as

t+1bidn = tbidn + C ∗ (r × twinnern −
tbidn), (12)
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where t+1bidn is the n-th bid element at iteration t + 1, twinnern is the n-th element of the best bid in the winner group, t is

the current iteration, C is a constant number, and r is in [0; 1] derived from a normal distribution.

4 Image clustering using human mental search

In this paper, we propose an image clustering algorithm based on human mental search. For this, two issues to be

determined are the structure of each bid and the objective function which we define in the following, before describing

our proposed method step-by-step and working through an illustrative example.

4.1 Bid structure

In our approach, the structure of each bid is an array which encodes the centres of the clusters. The length of the array

is equal to K with K the number of clusters. The upper and lower bound of each bid are calculated as L = min(I) and

U = max(I) where I is the image. In other words, the upper and lower bound are the minimum and maximum pixel

values.

For illustration, Figure 3 displays a sample image of size 10 × 10.

12 48 53 89 10 14 32 26 86 88
16 14 77 93 12 20 36 43 89 93
19 19 82 99 11 25 40 38 92 94
25 120 94 48 30 18 29 49 94 95
30 114 105 89 19 30 207 199 191 101
43 119 110 93 19 28 202 211 186 192
38 142 98 104 14 13 219 198 232 188
126 163 96 91 98 110 200 190 225 185
94 122 94 99 120 108 217 185 227 192
160 192 210 208 209 212 218 189 230 185

Figure 3: Sample image.

Here, L = min(I) = 10 and U = max(I) = 232. Suppose that the number of clusters is 3. Hence, the length of each

bid is 3 and an example of a bid would be (193, 92, 126).

4.2 Objective functions

Choosing an appropriate objective function is crucial for any population-based metaheuristic algorithm, since such al-

gorithms update candidate solutions based on their quality as established by the objective function. In our work, we

investigate three objective functions:

1. The first objective function [25] combines three factors expressing error, intra-cluster distance, and inter-cluster

distance in a weighted form as

CF1(bid, I) = w1dmax(Z, bid) + w2(zmax − dmin(I, bid)) + w3Je, (13)
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where I is the image, bid is a bid defined as bid = [m1,m2, . . . ,mK] with mi indicating the i-th cluster centre, zmax is

the maximum data value (for an image of bitdepth s, zmax = 2s − 1), and w1, w2, and w3 are user-defined constants.

dmax(Z, bid), the intra-cluster distance, is calculated as

dmax(Z, bid) = max
j=1,...,K

∑
∀pi∈c j

d(pi, bid)
|c j|

, (14)

where K is the number of clusters, |c j| is the number of members of the j-th cluster, and d(pi, bid) is the Euclidean

distance between pi and bid.

The inter-cluster separation dmin(bid), which is based on the minimum average Euclidean distance between a pair

of clusters and should be maximised, is defined as

dmin(bid) = min
∀i, j,i, j

(d(mi,m j)). (15)

The quantisation error Je is calculated as

Je =

∑K
j=1
∑
∀pi∈c j

d(pi, bid)/|c j|

K
. (16)

Following [14], we set w1, w2, and w3 to 0.4, 0.2, and 0.4, respectively.

2. To avoid having to find appropriate values for w1, w2, and w3, the second objective function [22] is defined as

CF2(bid, I) =
dmax(I, bid) + Je

dmin(I, bid)
. (17)

3. The third objective function [14] is defined as

CF3(bid, I) = Je ×
dmax(I, bid)
dmin(I, bid)

× (dmax(I, bid) + zmax − dmin(I, bid) + MS E), (18)

where MS E, the mean squared error, is calculated as

MS E =
1
N

K∑
j=1

∑
∀zp∈C j

d(zp, bid)2, (19)

with N indicating the total number of samples (pixels).

4.3 Proposed algorithm

Our proposed image clustering algorithm proceeds in the following steps:

Step 1: Parameter initialisation: the parameters include the number of clusters for image segmentation K, the number of

bids N, the number of clusters for bid grouping KHMS , the minimum and maximum number of mental searches

Ml and MH .
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Step 2: Create an initial population as

population =



bid1

bid2

...

bidN


, (20)

where bidi = [m1,m2, ...,mK].

Step 3: Calculate the value of the objective function for each bid.

Step 4: Select the bid with the best objective function value.

Step 5: Select a random number between Ml and Mh for each bid to define the number of mental searches for each bid.

Step 6: Mental search operator: create new bids in the vicinity of existing bids using a Levy distribution. This operation

is carried out using Equations (7) and (9).

Step 7: Replacement operator: in case a new bid is better than a previous one it will replace the latter.

Step 8: Bid grouping: the bid population is clustered using the k-means algorithm.

Step 9: Calculate the objective function value for each cluster member.

Step 10: The cluster with the minimum mean objective function value is selected as the winner cluster indicating a promis-

ing area.

Step 11: Other bids move toward the best bid available in the winner group based on Equation (12).

Step 12: Find the best bid bid+ among all bids and if it is better than the previous best bid bid∗ replace bid∗ with it.

Step 13: If the stop condition is not satisfied, go back to Step 3.

4.4 An illustrative example

We illustrate the workings of our proposed algorithm using a simplified example based on the image defined in Figure 3.

As the image size is 10×10, there are 100 samples in the image. Suppose that we want to divide the image into 3 clusters,

i.e. K = 3. In this example, our goal is to minimise the first of the three objective functions, i.e. CF1 as defined in

Equation (13). As parameters, we set N = 12, KHMS = 3, Ml = 2, and Mh = 10.

A randomly created initial population is given in Table 1.
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Table 1: Initial population.

bid objective function value number of mental searches
(120.34, 229.38, 41.76) 39.26 2
(88.59, 127.41, 162.08) 49.52 5
(124.51, 30.15, 222.87) 35.51 2
(109.08, 82.61, 18.05) 52.09 8
(123.96, 188.78, 217.79) 50.38 4
(117.61, 114.31, 197.44) 55.74 2
(36.92, 43.58, 157.33) 55.32 4
(191.46, 190.55, 203.70) 58.66 3
(101.29, 35.81, 15.76) 51.93 7
(41.14, 160.28, 196.78) 50.64 2
(144.16, 47.80, 136.06) 56.42 5
(197.55, 96.06, 146.38) 46.27 7

We calculate the CF1 objective function value for the first bid, i.e. for (120.34, 229.38, 41.76), as

dmax(Z, bid) = max
j=1,...,K

∑
∀pi∈C j

d(pi, bid)
|C j|

= max(4.04, 5.61, 3.37) = 5.61 (21)

D =


∞

109.04

78.58

109.04

∞

187.62

78.58

187.62

∞


(22)

dmin(bid) = min
∀i, j,i, j

(d(mi,m j)) = min(D) = 78.58 (23)

Je =

∑K
j=1
∑
∀pi∈c j

d(pi, bid)/|c j|

K
=

4.0398 + 5.6108 + 3.3658
5

= 4.34 (24)

(25)

and

CF1(bid, I) = w1dmax(Z, bid)+w2(zmax−dmin(I, bid))+w3Je = 0.4×5.61+0.2× (255−78.58)+0.4×4.34 = 39.26. (26)

The objective function values for the other bids are calculated equivalently and are listed in Table 1. From this, we

obtain bid∗ = (124.51, 30.15, 222.87) as the best bid.

Table 1 also shows the numbers of mental searches assigned for each bid, which were randomly drawn from [Ml,Mh] =

[2; 10].

We next use the mental search operator on the bids. For the first bid, this gives:

stepsize = 0.01 × step × ((120.34, 229.38, 41.76) − (124.51, 30.15, 222.87)) = (−0.0049, 6.9362,−0.5802) (27)

newbid = ((120.34, 229.38, 41.76) + (2 − iter ∗ (2/max iter)) ∗ stepsize = (120.33, 243.11, 40.61) (28)

while another new bid is calculated for the second mental search of this candidate solution in the same fashion and the

same operations performed to obtain new bids for all other solutions.
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If an improved bid is found it replaces the previous candidate solution leading to a new set of bids that is listed in

Table 2. As can be seen, for all bids the objective function values either improves or stays the same.

Table 2: Population after mental search operations.

bid objective function value assigned cluster
(120.32, 227.14, 39.31) 38.55 1
(60.85, 127.34, 167.64) 47.88 3
(124.51, 30.15, 222.87) 35.51 3
(109.15, 82.59, 19.39) 52.05 1
(123.96, 177.36, 217.78) 48.26 3
(117.58, 113.66, 197.34) 55.58 3
(36.76, 45.37, 157.06) 54.76 3
(191.69, 190.17, 204.04) 58.59 2
(102.50, 36.16, 227.28) 41.31 3
(58.14, 155.05, 197.28) 48.79 3
(232.00, 45.35, 135.09) 37.62 2
(201.04, 82.11, 146.99) 45.36 2

Next, the bids are grouped into KHMS clusters using the k-means algorithm. The result of this is also shown in Table 2

where for each bid the resulting cluster number (1, 2 or 3) is given. As we can see, there are 2 bids in cluster 1, 3 bids in

cluster 2, and 8 bids in cluster 3. The mean objective function values for the three clusters are 45.30, 47.19, and 47.44,

respectively. Yielding the lowest value, cluster 1 is thus the winner cluster.

The best bid in cluster 1 is (120.32, 227.14, 39.31) with an objective function value of 38.55. As can be seen, this bid

is not the best existing bid as there exists one with an objective function value of 35.51. Finally, the other bids will move

toward the winner bid. For example the current bid (36.76, 45.37, 157.06) is updated as

(36.76, 45.37, 157.06) + 2 ∗ ((0.7, 0.3, 0.4) × ((120.32, 227.14, 39.31) − (36.76, 45.37, 157.06)) = (153.74, 154.43, 62.86),

(29)

and the other bids are updated in the same fashion.

This concludes the first iteration of the algorithm and the same process will continue until a stopping criterion is met.

5 Experimental results

In order to evaluate our proposed image clustering algorithm, we ran an extensive set of experiments. The 11 images that

we employed for this purpose, shown in Figure 4, are commonly used for image clustering evaluation: Lenna, House,

Airplane, Peppers, MRI and Caspian Sea, and five images from the Berkeley segmentation dataset [34], namely 12003,

42049, 181079, 198054, and 385028.

We compared our proposed algorithm with a number of population-based clustering algorithms that have been previ-

ously used for image clustering, including genetic algorithm-based clustering (GA), differential evolution-based clustering

(DE), particle swarm optimisation-based clustering (PSO), artificial bee colony algorithm-based clustering (ABC), and

harmony search-based clustering (HS), as well as with the k-means clustering algorithm.

The population size and the number of iterations for all algorithms were set to 30 and 200, respectively, while we

employed the default values for the various parameters which are listed in Table 3. The number of clusters was set to
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Figure 4: The test image dataset.

5 [14]. Each algorithm was run 50 times and in all instances we report the average results over these 50 runs.

Table 3: Parameter settings for all algorithms.

algorithm parameters value
GA crossover probability 0.8

mutation probability 1/(number of thresholds)
DE [11] scaling factor 0.5

crossover probability 0.1
PSO [36] cognitive constant 2

social constant 2
inertia constant 1 to 0

ABC [35] limit ne × dimension of problem
HS [13] harmony memory considering rate 0.9

pitch adjusting rate 0.1
HMS number of clusters 5

C 2

5.1 Objective functions

As mentioned above, we are considering three different objective functions. Table 4 gives the obtained results for the three

objective functions for all images and algorithms.

As we can see from Table 4, our proposed method consistently leads to better objective function values compared to

all other algorithms, confirming its higher efficacy. PSO achieved the best result for Airplane and 12003 based on the CF1

objective function and gives similar CF2 results to HMS for Pepper, Caspian Sean and 42049. ABC shows the best results

for House based on CF3, whereas for this objective function PSO yields the best performance for 181079 and 385028. In

all other cases, our proposed HMS image clustering algorithm provides the best objective function results.

We also investigated the convergence speed for all algorithms. Figure 5 shows plots of the objective function values

against the number of iterations on the Caspian Sea image (other images showed similar results). As can be seen, our

approach leads to faster convergence compared to other algorithms.
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Table 4: Objective function results for all imaged and algorithms. Best results for an image are bolded.

image obj. func. GA DE PSO ABC HS HMS
Lenna CF1 41.3217 40.4814 40.0072 40.3327 41.8099 39.4668

CF2 0.0029 0.0029 0.0027 0.0030 0.0035 0.0025
CF3 0.0169 0.0178 0.0154 0.0172 0.0209 0.0151

Airplane CF1 41.3514 40.9192 40.3716 40.8357 42.3934 40.3755
CF2 0.0054 0.0053 0.0052 0.0054 0.0060 0.0050
CF3 0.0604 0.0605 0.0572 0.0616 0.0688 0.0564

House CF1 41.1792 40.8318 40.2881 40.7807 42.2414 40.283
CF2 0.0078 0.0078 0.0080 0.0080 0.0087 0.0072
CF3 0.1229 0.1125 0.1127 0.0080 0.1304 0.1016

Peppers CF1 40.5179 40.2265 39.433 40.2053 41.2024 39.4218
CF2 0.0061 0.0065 0.0059 0.0068 0.0073 0.0059
CF3 0.0832 0.0879 0.0794 0.0939 0.1082 0.0793

MRI CF1 41.6892 41.4657 41.0394 41.5873 42.5158 41.0383
CF2 0.0049 0.0049 0.0046 0.0051 0.0055 0.0045
CF3 0.0533 0.0497 0.0458 0.0503 0.0565 0.0439

Caspian Sea CF1 40.6117 39.6926 39.1587 39.7193 40.8176 39.0966
CF2 0.0074 0.0075 0.0069 0.0080 0.0082 0.0069
CF3 0.1001 0.1010 0.0945 0.1041 0.1140 0.0903

12003 CF1 39.9983 39.1849 38.5286 39.0516 40.7451 38.5316
CF2 0.0043 0.0044 0.0390 0.0046 0.0050 0.0041
CF3 0.0441 0.0470 4.1915 0.0490 0.0545 0.0041

42049 CF1 39.9849 39.7542 39.1642 39.6533 41.0621 39.1174
CF2 0.0053 0.0054 0.0050 0.0056 0.0063 0.0050
CF3 0.0608 0.0655 0.0614 0.0689 0.0822 0.0587

181079 CF1 40.6500 40.4703 39.6409 40.3181 39.4609 28.1953
CF2 0.0048 0.0050 0.0045 0.0051 0.0055 0.0038
CF3 0.0550 0.0590 0.0515 0.0598 0.0631 0.0578

198054 CF1 39.309 39.5499 38.4583 39.0063 38.4583 28.8709
CF2 0.0046 0.0045 0.0043 0.0045 0.0050 0.0032
CF3 0.0562 0.0561 0.0522 0.0550 0.0637 0.0431

385028 CF1 40.2932 40.391 39.5117 40.1178 39.5117 27.8887
CF2 0.0040 0.0044 0.0040 0.0045 0.0046 0.0032
CF3 0.0421 0.0475 0.0412 0.0476 0.0508 0.0416

Figure 5: Convergence behaviour of all algorithms on Caspian Sea image for CF1 (left), CF2 (middle) and CF3 (right)
objective functions.

5.2 Clustering validity

Clustering validity indices are metrics that indicate clustering quality. In general, they assess two aspects of clustering:

1. Compactness: to the extent possible, samples in a cluster should be similar.

2. Separation: clusters should be clearly separated from each other.

In our experiments, we used the Davies-Bouldin (DB) index [37] which is one of the most commonly employed
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clustering validity indices. The DB index measures the proportion of within-cluster scatter to between-cluster separation.

The scatter within the i-th cluster is calculated as

S i =
1
Ni

∑
x j∈ci

d(x j,mi), (30)

where Ni is the number of samples of the i-th cluster ci, and d(x j,mi) is the Euclidean distance between sample x j and its

cluster centre mi. The between-cluster separation is calculated as

Ri j =
S i + S j

d(mi,m j)
, i , j. (31)

Finally, the DB index is defined as

DB =
1
K

K∑
k=1

Rk, (32)

where Rk = max j=1,2,...,K Ri j and i = 1, 2, ...,K.

Table 5 reports the average DB results over the 50 runs for all three objective functions. As we can see, in 26 out of

33 cases, our proposed approach yields the best (i.e., lowest) DB index.

5.3 Non-parametric statistical analysis

Due to the randomness and variance of population-based metaheuristic algorithms, we also conducted a non-parametric

statistical analysis. The null hypothesis H0 here means that there is no statistical difference between two algorithms, while

the alternative hypothesis H1 indicates a statistically significant difference between the algorithms. The null hypothesis

is the initial statistical claim and if the null hypothesis is rejected the alternative one would be accepted. We utilised two

well-known non-parametric tests, namely the Friedman test and the Wilcoxon signed rank test to compare the different

image clustering algorithms.

The first stage of the Friedman test is rank calculation for which we list the results in Table 6. As is evident, our

proposed algorithm has the lowest average rank with PSO coming second. The chi-squared value and p-value were

evaluated as 110.91 and 2.630e-22 respectively. Given the table of chi-squared distribution, the critical value for the

degree of freedom (6-1=5) and α = 0.05 is equal to 11.070. The chi-squared value is higher which means that H1 is

accepted. In other words, there is a statistical difference between the algorithms. Moreover, the p-value is extremely small

which confirms the rejection of H0.

The result (p-value) of the Wilcoxon signed rank test determines the significance level between two algorithms. If the

p-value is less than 0.05, there would be a significant statistical difference between the algorithms. Table 7 reports the

obtained results of the Wilcoxon test. As can be seen, there is a significant difference between our proposed algorithm

and all other algorithms, with all obtained p-values less than 0.05.
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Table 5: DB index results for all images and all algorithms. The best result for each image is bolded.

image obj. func. GA DE PSO ABC HS HMS
Lenna CF1 0.5511 0.5889 0.5938 0.6383 0.5946 0.5484

CF2 0.5371 0.5253 0.5247 0.5266 0.5212 0.5247
CF3 0.5230 0.5257 0.5238 0.5244 0.5239 0.5242

Airplane CF1 0.5556 0.5479 0.5667 0.5634 0.5447 0.5427
CF2 0.5396 0.536 0.5329 0.5459 0.5212 0.5338
CF3 0.5471 0.5942 0.5597 0.6020 0.5610 0.4942

House CF1 0.4318 0.4286 0.4335 0.4438 0.4587 0.4260
CF2 0.4616 0.4522 0.4836 0.4700 0.4840 0.4399
CF3 0.5161 0.4597 0.5048 0.4700 0.4968 0.4463

Peppers CF1 0.5589 0.5555 0.5470 0.5608 0.5679 0.5320
CF2 0.4771 0.5062 0.4873 0.5012 0.5119 0.4744
CF3 0.4829 0.4854 0.4949 0.4747 0.5302 0.4641

MRI CF1 0.5159 0.5216 0.5159 0.5201 0.5232 0.5144
CF2 0.4487 0.4500 0.4493 0.4499 0.4862 0.4421
CF3 0.4793 0.4595 0.4320 0.4462 0.4645 0.4271

Caspian sea CF1 0.5440 0.5495 0.5520 0.5411 0.5576 0.5363
CF2 0.5575 0.5630 0.5555 0.5546 0.5723 0.5539
CF3 0.5502 0.5562 0.5490 0.5791 0.5471 0.5401

12003 CF1 0.5483 0.5481 0.5567 0.5475 0.5553 0.5473
CF2 0.4953 0.4903 0.4948 0.5116 0.5047 0.4912
CF3 0.4938 0.4986 0.4967 0.5043 0.5342 0.4938

42049 CF1 0.5415 0.5386 0.5347 0.5420 0.5687 0.5258
CF2 0.5017 0.5295 0.5458 0.5079 0.5532 0.5701
CF3 0.4981 0.5148 0.4738 0.4845 0.5591 0.4712

181079 CF1 0.5861 0.5758 0.5723 0.5725 0.5711 0.5675
CF2 0.5531 0.5578 0.5578 0.5534 0.5520 0.5418
CF3 0.5091 0.5092 0.5079 0.5006 0.5088 0.5085

198054 CF1 0.4885 0.4865 0.4800 0.4831 0.4941 0.4793
CF2 0.4757 0.4450 0.4566 0.4777 0.4759 0.4327
CF3 0.4552 0.4671 0.4509 0.4425 0.4710 0.4390

385028 CF1 0.5471 0.5478 0.5420 0.5457 0.5403 0.5483
CF2 0.5998 0.5755 0.5704 0.5700 0.5957 0.5649
CF3 0.5248 0.5013 0.5038 0.5187 0.5081 0.5006

Table 6: Ranks for all algorithms.

algorithm average rank
GA 3.8636
DE 3.8788
PSO 2.3182
ABC 4.1061
HS 5.6061
HMS 1.2273

Table 7: Results of Wilcoxon signed rank test.

p-value
HMS vs. GA 2.0905e-06
HMS vs. DE 5.3525e-05
HMS vs. PSO 2.8234e-04
HMS vs. ABC 3.8488e-06
HMS vs. HS 5.3720e-07
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Table 8: Standard deviations for all images and algorithms. The best result for each image is bolded.

image obj. func. GA DE PSO ABC HS HMS
Lenna CF1 7.61e-01 2.45e-01 1.30e-01 1.98e-01 4.03e-01 1.82e-07

CF2 1.14e-04 7.54e-05 1.17e-05 1.07e-04 2.04e-04 4.38e-07
CF3 1.69e-03 6.73e-04 7.67e-05 1.12e-03 2.45e-03 5.13e-06

Airplane CF1 3.86e-01 2.84e-01 2.44e-04 1.39e-01 5.83e-01 1.53e-03
CF2 2.16e-04 1.19e-04 2.55e-04 1.00e-04 3.44e-04 8.13e-06
CF3 2.35e-03 8.72e-04 4.84e-04 1.25e-03 4.21e-03 1.31e-04

House CF1 6.37e-01 3.01e-01 1.87e-02 1.70e-01 5.50e-01 2.69e-03
CF2 6.43e-04 2.22e-04 4.65e-04 2.94e-04 5.57e-04 1.60e-05
CF3 8.05e-03 7.07e-03 1.05e-02 2.94e-04 1.12e-02 5.72e-04

Peppers CF1 7.27e-01 2.61e-01 2.46e-02 2.46e-01 4.32e-01 4.48e-03
CF2 2.41e-04 1.90e-04 6.31e-05 3.47e-04 5.08e-04 5.81e-06
CF3 2.44e-03 2.89e-03 3.86e-04 8.24e-03 1.17e-02 1.08e-04

MRI CF1 5.75e-01 2.09e-01 2.27e-03 1.24e-01 4.39e-01 1.17e-03
CF2 3.00e-04 1.50e-04 4.75e-05 1.47e-04 2.33e-04 1.86e-06
CF3 8.31e-03 1.67e-03 3.42e-04 3.24e-03 3.05e-03 5.02e-05

Caspian sea CF1 3.02e-01 2.67e-01 8.93e-02 2.14e-01 3.98e-01 1.61e-03
CF2 3.62e-04 1.75e-04 4.09e-05 3.69e-04 4.40e-04 1.01e-05
CF3 4.20e-03 1.74e-03 9.27e-04 3.53e-03 2.32e-03 1.97e-04

12003 CF1 6.07e-01 2.51e-01 6.37e-04 1.43e-01 8.29e-01 2.17e-03
CF2 2.71e-04 1.20e-04 2.95e-04 2.24e-04 2.54e-04 6.17e-06
CF3 3.20e-03 1.88e-03 5.52e-02 2.36e-03 3.50e-03 4.99e-06

42049 CF1 4.46e-01 2.78e-01 7.92e-02 2.32e-01 5.88e-01 3.73e-03
CF2 2.73e-04 1.34e-04 3.40e-05 2.42e-04 4.71e-04 7.14e-06
CF3 1.50e-03 2.06e-03 7.41e-04 5.14e-03 6.29e-03 1.52e-04

181079 CF1 5.79e-01 2.45e-01 4.32e-05 1.45e-01 5.88e-01 1.58e-04
CF2 2.49e-04 2.74e-04 4.77e-05 1.84e-04 3.49e-04 1.79e-06
CF3 4.80e-03 3.78e-03 9.57e-04 2.53e-03 7.17e-03 5.59e-05

198054 CF1 6.60e-01 3.60e-01 2.60e-04 3.70e-01 5.97e-01 8.47e-05
CF2 2.78e-04 7.51e-05 1.81e-04 8.38e-05 3.17e-04 1.84e-06
CF3 5.67e-03 1.61e-03 2.27e-03 2.26e-03 4.79e-03 6.49e-05

385028 CF1 5.17e-01 4.12e-01 5.35e-04 3.25e-01 4.40e-01 5.44e-05
CF2 5.86e-05 2.47e-04 2.62e-04 1.76e-04 3.57e-04 1.45e-06
CF3 3.10e-03 3.17e-03 3.73e-03 2.77e-03 4.13e-03 7.72e-05

5.4 Stability analysis

Due to the randomness of metaheuristic algorithms, each run of an algorithm will generate a different result. A lower

dispersion among multiple runs of an algorithm hence indicates a more stable algorithm. We therefore analyse the stability

of the evaluated techniques and employ the standard deviation

S T D =

√√√ M∑
i=1

(xi − µ)2

M
, (33)

where M is the number of runs (M = 50 in our experiments), xi is the objective function value obtained for the i-th run

and µ is the mean objective function value for the algorithm.

Table 8 lists the obtained results. As can be seen, in all but 4 cases, our proposed method yields the lowest standard

deviation, which demonstrates that our approach is more stable in comparison with other metaheuristic-based image

clustering techniques.
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5.5 Comparison with conventional clustering-based methods

In addition to comparing our proposed HMS-based algorithm to image clustering based on other metaheuristic optimisation-

based approaches, we also compared its performance to conventional clustering-based methods, namely k-means, fuzzy

c-means, and Gaussian mixture model (GMM). We perform this, employing the CF3 objective function for HMS and

using the DB index as evaluation criterion. The results are given in Table 9 which shows that our approach clearly out-

performs the other algorithms in most cases. We also performed a Wilcoxon signed rank test to compare the methods;

Table 10 confirms that our HMS algorithm is statistically significantly better than the other approaches.

Table 9: DB index results of conventional clustering-based methods and HMS.

image k-means fuzzy c-means GMM HMS
Lenna 0.5427 0.5151 0.5468 0.5242
Airplane 0.5395 0.5198 0.5983 0.4942
House 0.4613 0.4967 0.9548 0.4463
Peppers 0.4984 0.4922 0.5959 0.4641
MRI 0.4639 0.4574 0.5165 0.4271
Caspian sea 0.5442 0.5240 0.8163 0.5401
12003 0.5001 0.4987 0.5559 0.4938
42049 0.5674 0.5124 0.6493 0.4712
181079 0.5435 0.5162 0.6248 0.5085
198054 0.4798 0.4437 0.5119 0.4390
385028 0.5287 0.5182 0.5374 0.5006

Table 10: Results of Wilcoxon signed rank test between HMS and conventional clustering-based methods.

algorithms p-value
HMS vs. k-means 9.7656e-04
HMS vs. fuzzy c-means 0.0322
HMS vs. GMM 9.7656e-04

5.6 Search ability in high dimensions

The curse of dimensionality is a well-known problem that can occur when employing optimisation-based algorithms,

since increasing the dimensionality of a problem exponentially expands the search space. In our image clustering problem,

dimensionality primarily relates to the number of clusters (image regions) for which the algorithm tries to identify the best

configuration.

In Table 11 we hence report results with different numbers of clusters, namely K = {5, 10, 15}. As can be seen from

there, under all settings our proposed algorithm outperforms all other approaches. Only in 5 out of the 33 cases, one of the

other algorithms gives a better clustering result, while this happens only once each for the more difficult cases of K = 10

and K = 15 indicating that our approach scales better with regards to the dimensionality of the problem compared to other

techniques.

The superiority of our approach is also confirmed in Tables 12 and 13 which give the results of the Friedman and

Wilcoxon test for K = 10 and K = 15 respectively. Both tests confirm that the proposed HMS algorithm performs

statistically significantly better than the other metaheuristics (with the exception of HMS vs. PSO for K = 10).
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Table 11: Obtained results for different numbers of clusters. The best results for each case are bolded.

image K GA DE PSO ABC HS HMS
Lenna 5 0.0169 0.0178 0.0154 0.0172 0.0209 0.0151

10 0.0271 0.0323 0.0353 0.0617 0.0619 0.0222
15 0.0349 0.0548 0.0463 0.1212 0.1087 0.0348

Airplane 5 0.0604 0.0605 0.0572 0.0616 0.0688 0.0564
10 0.0894 0.1110 0.1310 0.1204 0.1486 0.0775
15 0.1239 0.1793 0.1107 0.2692 0.2688 0.0974

House 5 0.1229 0.1125 0.1127 0.0080 0.1304 0.1016
10 0.2981 0.3062 0.2780 0.5316 0.4275 0.2023
15 0.3400 0.6739 0.4209 1.0115 1.0126 0.3260

Peppers 5 0.0832 0.0879 0.0794 0.0939 0.1082 0.0793
10 0.1564 0.1664 0.1292 0.2140 0.2505 0.1104
15 0.3665 0.2109 0.2998 0.4263 0.4255 0.1363

MRI 5 0.0533 0.0497 0.0458 0.0503 0.0565 0.0439
10 0.0831 0.1064 0.0658 0.1227 0.1416 0.0657
15 0.1604 0.1431 0.1575 0.2851 0.2785 0.0817

Caspian sea 5 0.1001 0.1010 0.0945 0.1041 0.1140 0.0903
10 0.2886 0.2562 0.2745 0.3417 0.4807 0.2046
15 0.5903 1.0795 0.4828 2.0182 2.0531 0.6128

12003 5 0.0441 0.0470 4.1915 0.0490 0.0545 0.0041
10 0.0791 0.0844 0.0658 0.1516 0.1207 0.0590
15 0.1229 0.1499 0.1095 0.2627 0.2025 0.0830

42049 5 0.0608 0.0655 0.0614 0.0689 0.0822 0.0587
10 0.0985 0.1244 0.0853 0.1617 0.1390 0.0783
15 0.1426 0.1739 0.1414 0.4123 0.4626 0.0990

181079 5 0.0550 0.0590 0.0515 0.0598 0.0631 0.0578
10 0.0896 0.1250 0.0956 0.1764 0.1756 0.0875
15 0.1494 0.1594 0.1423 0.1875 0.2710 0.1179

198054 5 0.0562 0.0561 0.0522 0.0550 0.0637 0.0431
10 0.1131 0.1517 0.0974 0.1847 0.1767 0.0982
15 0.2263 0.2616 0.1729 0.3315 0.3740 0.1522

385028 5 0.0421 0.0475 0.0412 0.0476 0.0508 0.0416
10 0.0626 0.0900 0.0599 0.0989 0.1125 0.0599
15 0.1143 0.1430 0.0871 0.2491 0.2139 0.0114

Table 12: Results of Friedman tests for K = 10 and K = 15

algorithm average rank K = 10 average rank K = 15
GA 2.82 2.91
DE 3.64 3.64
PSO 2.50 2.27
ABC 5.36 5.55
HS 5.55 5.45
HMS 1.13 1.18
chi-squared 33.79 47.94
p-value 7.5068e-09 3.6620e-09

Table 13: Results of Wilcoxon signed rank tests for K = 10 and K = 15.

p-value K = 10 p-value K = 15
HMS vs. GA 9.7565e-04 0.0049
HMS vs. DE 9.7565e-04 9.7565e-04
HMS vs. PSO 0.0059 0.0420
HMS vs. ABC 9.7565e-04 9.7565e-04
HMS vs. HS 9.7565e-04 9.7565e-04
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5.7 Parameter settings

Like every metaheuristic algorithm, HMS also has some parameters which in turn affect the performance of the algorithm.

While in the experiments above, we have selected default values for the HMS parameters, in our next experiment we

investigated the behaviour of our algorithm with respect to the two main parameters of the algorithm, namely the number

of clusters for bid grouping KHMS , and the number of mental searches.

Our analysis is inspired by [32, 38], and we selected two images, House and Peppers, and the CF3 objective function

for this purpose. The House image was chosen as here, for the CF3 function, HMS did not provide the best result, while

for Peppers our approach yielded the best performance.

5.7.1 Number of clusters for grouping bids

As mentioned in [32], more local optima might require a higher number of clusters. Figure 6 illustrates the effect of the

number of clusters on the mean objective function value. As can be seen, by increasing the number of clusters for the

House image, the mean objective function value decreases, while similar results, though on a smaller scale, are observed

for the Pepper image. This indicates that the number of clusters can have a considerable effect on the efficacy of the

algorithm and lead to improved clustering performance.

Figure 6: Number of clusters for bid grouping vs. mean objective function value for House (left) and Peppers (right)

5.7.2 Number of mental searches

As mentioned, the number of mental searches is randomly selected between the user-defined lower (L) and upper (H)

limit. We therefore asses the algorithm’s sensitivity to different settings of this interval. The results are given in Figure 7.

As can be observed from there, an increased number of mental searches will in general lead to better image clustering

performance.

Figure 7: Effect of the number of mental searches on the mean objective function value for House (left) and Peppers
(right)
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5.8 Image segmentation performance

Last not least, we evaluated the performance of our proposed algorithm in terms of image segmentation quality. Clearly

this is crucial, since image clustering is primarily employed for the purpose of segmentation. For this, we used three

unsupervised and two supervised image segmentation criteria from the literature. While unsupervised criteria do not

require a manually-segmented ground truth images, this is necessary for supervised criteria. As only the images of the

Berkeley segmentation dataset come with such a ground truth, the experiments for supervised criteria were conducted

only on these images, i.e. images 12003, 42049, 181079, 198054, and 385028.

The Borsotti criterion (BOR) [39] is an unsupervised segmentation metric derived from the number, the variance, and

the area of segmented image regions, with a lower BOR indicating better segmentation performance. Tables 14 shows the

BOR results for all algorithms on the test image set. As we can see, for 8 of the 11 images, our HMS approach affords the

best BOR results. This is further confirmed in the calculated rankings of the algorithms, which is also given in Table 14.

Table 14: BOR results for all images and all algorithms. Best results are bolded.

image GA DE PSO ABC HS HMS
Lenna 0.0210 0.0204 0.0197 0.0205 0.0220 0.0196
Airplane 0.0208 0.0204 0.0196 0.0205 0.0196 0.0190
House 0.0188 0.0174 0.0182 0.0197 0.0191 0.0169
Peppers 0.0282 0.0287 0.0274 0.0300 0.0301 0.0275
MRI 0.0158 0.0130 0.0130 0.0132 0.0142 0.0128
Caspian Sea 0.0299 0.0304 0.0286 0.0291 0.0301 0.0292
12003 0.0359 0.0358 0.0360 0.0362 0.0377 0.0358
42049 0.0149 0.0147 0.0141 0.0152 0.0160 0.0140
181079 0.0561 0.0571 0.0548 0.056 0.0554 0.0551
198054 0.0710 0.0761 0.0704 0.0692 0.0704 0.0691
385028 0.0674 0.0679 0.0670 0.0671 0.0677 0.0663
average rank 4.45 4.00 2.23 4.09 4.82 1.41

Another unsupervised criterion used to evaluate image segmentation performance is Levine and Nazif’s interclass

contrast (LNIC) [40]. This criterion calculates the sum of region contrasts weighted by their areas, with a higher LNIC

value signifying better performance. Table 15 summarises the obtained LNIC results for all algorithms. As we can see,

our proposed approach yields the best result in 9 of the 11 cases and is clearly ranked first among the 6 approaches.

Table 15: LNIC results for all images and all algorithms. Best results are bolded.

image GA DE PSO ABC HS HMS
Lenna 0.2391 0.2368 0.2368 0.2381 0.2405 0.2596
Airplane 0.1241 0.1207 0.1229 0.1242 0.1211 0.1243
House 0.1715 0.1834 0.1731 0.1703 0.1743 0.1785
Peppers 0.2592 0.2590 0.2597 0.2609 0.2598 0.2599
MRI 0.6202 0.6260 0.6254 0.6226 0.6236 0.6283
Caspian Sea 0.2134 0.2131 0.2132 0.2122 0.2120 0.2139
12003 0.2607 0.2607 0.2602 0.2606 0.2591 0.2616
42049 0.2492 0.2505 0.2513 0.2411 0.2531 0.2577
181079 0.2343 0.2437 0.2344 0.2387 0.2401 0.2885
198054 0.4381 0.4345 0.4319 0.4310 0.4376 0.5207
385028 0.2022 0.2032 0.2028 0.2060 0.2048 0.2572
average rank 4.14 3.73 4.23 4.09 3.64 1.18

Levine and Nazif also proposed an intra-class uniformity criterion (LNIU) [40], which is based on the sum of nor-
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malised standard deviations of the image regions. A higher LNIU value indicates better segmentation performance. For 8

of the 11 images, the proposed HMS algorithm achieves the best LNIU result and is thus also ranked first overall.

Table 16: LNIU results for all images and all algorithms. Best results are bolded.

image GA DE PSO ABC HS HMS
Lenna 0.0329 0.0323 0.0314 0.0322 0.0338 0.0586
Airplane 0.0333 0.0354 0.0341 0.0343 0.0335 0.0392
House 0.0228 0.0265 0.0233 0.0236 0.0233 0.0256
Peppers 0.0395 0.0399 0.0398 0.0392 0.0392 0.0399
42049 0.0353 0.0356 0.0346 0.0359 0.0364 0.0359
12003 0.0526 0.0529 0.0521 0.0534 0.0534 0.0535
181079 0.0486 0.0506 0.0489 0.0497 0.0489 0.0819
198054 0.0592 0.0550 0.0591 0.0552 0.0578 0.0936
385028 0.0515 0.0501 0.0506 0.0506 0.0519 0.0820
MRI 0.0322 0.0321 0.0321 0.0320 0.0325 0.0324
Caspian Sea 0.0384 0.0390 0.0389 0.0388 0.0388 0.0390
average rank 4.46 3.32 4.46 4.05 3.32 1.41

The two supervised criteria we evaluated are the variation of information and the probabilistic Rand index. The vari-

ation of information (VoI) [41] computes the information shared between a ground truth and an automatic segmentation

by calculating the information that is lost or gained when changing from one to the other. A lower VoI value relates to a

better segmentation. Table 17 lists the VoI results for the tested Berkeley images and all algorithms. Impressively, for all

five images our proposed algorithm gives the best result.

Table 17: VoI results for Berkeley images and all algorithms. Best results are bolded.

image GA DE PSO ABC HS HMS
12003 3.6610 3.6636 3.6662 3.6643 3.6648 3.6593
42049 2.7690 2.7628 2.7478 2.8080 2.7547 2.7395
181079 3.2142 3.1147 3.2087 3.1713 3.1619 2.9003
198054 2.3013 2.2529 2.3399 2.3463 2.2985 1.9726
385028 3.8303 3.8159 3.8045 3.8070 3.8160 3.5326
average rank 4.60 3.00 4.00 4.60 3.80 1.00

The probabilistic Rand index (PRI) [42] calculates the ratio of pairs of pixels whose labellings are consistent between

the computed and the ground truth segmentations, with a higher PRI indicating better performance. Table 18 gives

the PRI results for all algorithms and shows that for all images our HMS method yields the best segmentation, clearly

outperforming the other algorithms.

Table 18: PRI results for Berkeley images and all algorithms. Best results are bolded.

image GA DE PSO ABC HS HMS
12003 0.6329 0.6306 0.6320 0.6355 0.6360 0.6371
42049 0.6670 0.6664 0.6594 0.6692 0.6610 0.6696
181079 0.5968 0.5989 0.5982 0.5925 0.5973 0.6013
198054 0.7206 0.7207 0.7234 0.7262 0.7264 0.7374
385028 0.6028 0.6015 0.6024 0.6052 0.6066 0.6161
average rank 4.4 4.6 4.6 3.4 3 1
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6 Conclusions

In this paper, we have proposed a novel algorithm for image clustering based on the human mental search (HMS) algo-

rithm. Our HMS approach to image clustering encodes the cluster centres as candidate solutions, and we investigate three

objective functions to asses the quality of solutions.

To demonstrate the potential and effectiveness of the proposed algorithm, an extensive set of experiments are provided

based on a variety of measures that include objective function criteria, a clustering validity index, non-parametric statistical

analysis, stability analysis, and – importantly – several image segmentation metrics. In addition, the proposed algorithm

is compared with five other metaheuristics algorithms (a genetic algorithm, differential evolution, particle swarm opti-

misation, artificial bee colony algorithm, and harmony search) as well as to three conventional clustering-based methods

(k-means, fuzzy c-means, and Gaussian mixture model). The experimental results demonstrate that our approach clearly,

and statistically, outperforms other algorithms confirming our HMS image clustering algorithm to yield a powerful tool

for image segmentation. We have also shown our approach to be more robust and to provide faster convergence compared

to other methods, as well being able to achieve further improvements through optimising the parameters of the algorithm.

The proposed algorithm applies k-means to cluster the population in each iteration. k-means is a time-consuming

task, especially as it is applied in each iteration. Investigating mechanisms with lower computational burden will be

considered in futuristic research. While in this paper we only investigated segmentation of greyscale images, it is clearly

straightforward to extend our algorithm to colour images, while other planned future work includes the combination of our

approach with local search operators to further improve its performance, the application of alternative objective functions

to improve segmentation, and to incorporate a mechanism for automatic determination of the number of clusters (image

regions).
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[41] M. Meilǎ, Comparing clusterings: an axiomatic view, 22nd International Conference on Machine Learning, pp.

577-584, 2005.

[42] C. Pantofaru, M. Hebert, A comparison of image segmentation algorithms, Robotics Institute, 336, 2005.

26


	Introduction
	Pattern clustering
	Human mental search
	Creating primary bids
	Mental search
	Grouping bids
	Moving towards the promising area

	Image clustering using human mental search
	Bid structure
	Objective functions
	Proposed algorithm
	An illustrative example

	Experimental results
	Objective functions
	Clustering validity
	Non-parametric statistical analysis
	Stability analysis
	Comparison with conventional clustering-based methods
	Search ability in high dimensions
	Parameter settings
	Number of clusters for grouping bids
	Number of mental searches

	Image segmentation performance

	Conclusions

