Effects of surface-functionalized aluminum nitride on thermal, electrical, and mechanical behaviors of polyarylene ether nitrile-based composites

Aluminum nitride (AlN) with high thermal conductivity was blended in polyarylene ether nitrile (PEN) to obtain a composite system. A ball milling process could provide AlN particles of smaller size with higher surface silylation for homogeneous particle distribution in polymeric matrix. Thermal, electrical, and mechanical behaviors of the produced composites were characterized to investigate the effects of particles on the performance of PEN-based composites with functionalized AlN. The composite exhibited thermal conductivity of 0.779 W m−1 K−1, a dielectric constant of 7.7, dielectric loss of 0.032, electrical resistivity of 1.39 GΩ.cm, and break strength of 36 N when the fraction of functionalized AlN increased to 42.3 vol%. A fitted equation based on the improved Russell's model could effectively predict a trend for thermal conductivity of the composite systems with consideration of interfacial resistance between AlN and surrounding PEN.