
Efficient Algorithms for Morphisms over
Omega-Regular Languages
Lukas Fleischer and Manfred Kufleitner

FMI, University of Stuttgart∗

Universitätsstraße 38, 70569 Stuttgart, Germany
{fleischer,kufleitner}@fmi.uni-stuttgart.de

Abstract
Morphisms to finite semigroups can be used for recognizing omega-regular languages. The so-
called strongly recognizing morphisms can be seen as a deterministic computation model which
provides minimal objects (known as the syntactic morphism) and a trivial complementation pro-
cedure. We give a quadratic-time algorithm for computing the syntactic morphism from any
given strongly recognizing morphism, thereby showing that minimization is easy as well. In ad-
dition, we give algorithms for efficiently solving various decision problems for weakly recognizing
morphisms. Weakly recognizing morphism are often smaller than their strongly recognizing coun-
terparts. Finally, we describe the language operations needed for converting formulas in monadic
second-order logic (MSO) into strongly recognizing morphisms, and we give some experimental
results.

1998 ACM Subject Classification F.4.1 Mathematical Logic; F.4.3 Formal Languages

Keywords and phrases Büchi automata, omega-regular language, syntactic semigroup, recogniz-
ing morphism, MSO

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Automata over finite words have a huge number of effective closure properties. Moreover,
many problems such as minimization or equivalence of deterministic automata admit very
efficient algorithms [6, 7]. The situation over infinite words is quite similar, but with the
major difference that many operations are less efficient. There are many different automaton
models for accepting languages of infinite words, the so-called ω-regular languages. Each
of these models has its advantages and disadvantages. For instance, deterministic Büchi
automata are less powerful than nondeterministic Büchi automata [15]. And only very few
automaton models admit efficient minimization algorithms; for example, minimization of
deterministic finite automata can be applied to the lasso automata in [2].

The theory of finite semigroups and automata is tightly connected [11]. Since the
semigroup for a language can be exponentially bigger than its automaton, semigroups have
very rarely been considered in the context of efficient algorithms. There is also an algebraic
approach to ω-regular languages by using morphisms to finite semigroups, see e.g. [9, 15].
Among the many nice properties of this approach are minimal morphisms—the so-called
syntactic morphisms—and easy complementation. As for finite words, the semigroup for an
ω-regular language can be exponentially bigger than its Büchi automaton. However, since
many operations for ω-regular languages are less efficient than for regular languages over

∗ This work was supported by the DFG grants DI 435/5-2 and KU 2716/1-1.

© Lukas Fleischer and Manfred Kufleitner;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Efficient Algorithms for Morphisms over Omega-Regular Languages

finite words, the drawback of this exponential blow-up in size is less serious. This is even
more so when minimizing all intermediate objects.

A typical algorithm for computing the syntactic morphism of a regular language over
finite words is to minimize the (deterministic) automaton defined by the Cayley graph of
a morphism, and then the syntactic morphism is given by the transition semigroup of the
minimal automaton. This approach does not work for infinite words and we therefore give a
direct algorithm for computing the syntactic morphism. Our algorithm is an adaptation of
Hopcroft’s minimization algorithm [6] and its running time is quadratic in the size of the
semigroup. We show that this is rather optimal.

There are two different modes for recognizing omega-regular languages by a morphism
to a finite semigroup: weak and strong recognition. Strong recognition is a special case of
weak recognition. Easy complementation and the computation of the syntactic morphism
only works for strong recognition. We show how to test whether a given weak recognition
is actually strong. Another useful tool for morphisms is the computation of the so-called
conjugacy classes.

As an application, we consider the translation of MSO formulas into strongly recognizing
morphisms. To this end, we show that a powerset construction preserves strong recognition,
and that this construction can be used for computing the image under a length-preserving
morphism. Finally, we give the test results of some translations from MSO to strong
recognition. Deciding the satisfiability of an MSO formula is non-elementary [13] and
therefore, minimization of intermediate objects is usually very helpful for solving some special
cases. This is confirmed by our test results.

2 Preliminaries

Words. Let A be a finite alphabet. The elements of A are called letters. A finite word is a
sequence a1a2 · · · an of letters of A and an infinite word is an infinite sequence a1a2 · · · . The
empty word is denoted by ε. The set of non-empty finite words over A is A+. Let K be a set
of finite words and let L be a set of infinite words. We set KL = {uα | u ∈ K,α ∈ L}, K+ =
{u1u2 · · ·un | n > 1, ui ∈ K} and K∗ = K+ ∪ {ε}. Moreover, if ε 6∈ K we define the infinite
iteration Kω = {u1u2 · · · | ui ∈ K}. A natural extension to K ⊆ A∗ is Kω = (K \ {ε})ω.

Finite semigroups. Let S be a finite semigroup. An element e of S is idempotent if e2 = e.
The set of idempotent elements of S is denoted by E(S) =

{
e ∈ S | e2 = e

}
. For each s ∈ S

the set
{
sk | k > 1

}
of all powers of s is finite and it contains exactly one idempotent element.

A semigroup S is called X-generated if X is a subset of S and every element of S can be
written as a product of elements of X. The right Cayley graph of an X-generated semigroup
S has S as vertices and its labeled edges are the triples of the form (s, a, sa) for s ∈ S and
a ∈ X. The left Cayley graph of S is defined analogously with edges of the form (s, a, as).
The definitions of Cayley graphs depend on the choice of the set X. In the following, when a
surjective morphism h : A+ → S is given, we choose X = h(A) as the set of generators.

Green’s relations are an important tool in the study of finite semigroups. We denote by
S1 the monoid that is obtained by adding a new neutral element 1 to S. For s, t ∈ S let

s R t if there exist q, q′ ∈ S1 such that sq = t and tq′ = s,

s L t if there exist p, p′ ∈ S1 such that ps = t and p′t = s.

These relations are equivalence relations and the equivalence classes of R (resp. L) are
called R-classes (resp. L-classes). The R-classes (resp. L-classes) of a semigroup S can be

L. Fleischer and M. Kufleitner 3

computed in time linear in |S| by applying Tarjan’s algorithm to the right (resp. left) Cayley
graph of S, see [5].

An element (s, e) ∈ S × E(S) is a linked pair if se = s. Two linked pairs (s, e) and (t, f)
are conjugate, written as (s, e) ∼ (t, f), if there exist x, y ∈ S such that sx = t, xy = e and
yx = f . The conjugacy relation ∼ on the set of linked pairs is an equivalence relation, see
e.g. [9]. The equivalence classes of ∼ are called conjugacy classes. A set P of linked pairs is
closed under conjugation if it is a union of conjugacy classes.

Recognition by morphisms. A language L ⊆ Aω is regular (or ω-regular) if it is recognized
by some finite Büchi automaton, see e.g. [3]. The family of regular languages is closed under
Boolean operations, i.e., set union, set intersection and complementation. We now describe
algebraic recognition modes for regular languages. Let h : A+ → S be a morphism onto a
finite semigroup S. For s ∈ S, we set [s] = h−1(s) and for P ⊆ S × S, we set

[P] =
⋃

(s,t)∈P

[s][t]ω

if h is understood from the context. A language L ⊆ Aω is weakly recognized by a morphism
h : A+ → S if there exists a set of linked pairs P ⊆ S×E(S) with L = [P]. If in addition P is
closed under conjugation, then h strongly recognizes L. Another well-known characterisation
of strong recognition is the following, see e.g. [4].

I Proposition 1. Let h : A+ → S be a morphism onto a finite semigroup. Then h strongly
recognizes L if and only if [s][t]ω ∩ L 6= ∅ implies [s][t]ω ⊆ L for all s, t ∈ S.

The syntactic congruence ≡L of a language L ⊆ Aω is defined over A+ as u ≡L v if the
equivalences

(xuy)zω ∈ L⇔ (xvy)zω ∈ L and
z(xuy)ω ∈ L⇔ z(xvy)ω ∈ L

hold for all finite words x, y, z ∈ A∗. Our definition is slightly different but equivalent to
the syntactic congruence introduced by Arnold [1]. The congruence classes of ≡L form the
so-called syntactic semigroup A+/≡L and the syntactic morphism hL : A+ → A+/≡L is the
natural quotient map. If L is regular, the syntactic semigroup of L is finite and hL strongly
recognizes L [1, 9].

Model of computation. Morphisms h : A+ → S are given implicitly through a mapping
f : A→ S with f(a) = h(a) for all a ∈ A. We assume that for finite semigroups S, multipli-
cations can be performed in constant time. Some algorithms only perform multiplications
of the form h(a) · s or s · h(a) where h is a morphism, s is an element of S and a is a
letter. In that case, semigroups can be represented efficiently by their left and right Cayley
graphs. For two elements s, t ∈ S we can check in constant time whether s = t and it is
possible to organize elements of S in a hash map such that operations on subsets of S can
be implemented efficiently. When a set P ⊆ S × S is part of the input, we assume that for
each s, t ∈ S one can check in constant time whether (s, t) ∈ P .

3 Conversion between Büchi automata, weak and strong recognition

In this section, we describe well-known constructions for the conversion between the different
acceptance modes for regular languages. For details and proofs, we refer to [9, 10, 15].

4 Efficient Algorithms for Morphisms over Omega-Regular Languages

3.1 From Büchi automata to strong recognition
In the case of finite words, when proving that each regular language is recognizable by
a morphism onto a finite semigroup, one usually considers the transition semigroup of a
finite automaton. However, when applying the same construction to Büchi automata, the
resulting morphism only weakly recognizes the language. In this section, we describe a
construction to convert a Büchi automaton A = (Q,A, δ, I, F) into a semigroup S and a
morphism h : A+ → S that strongly recognizes L(A).

For states p, q ∈ Q and a finite word u ∈ A+, we write p u−→ q if there exists a sequence
q0a1q1a2q2 · · · qn−1anqn with q0 = p, qn = q and (qi, ai+1, qi+1) ∈ δ for all i ∈ {0, . . . , n− 1}.
If, additionally, qi ∈ F for some i ∈ {0, . . . , n}, we write p u−→

F
q. We now assign to each word

u ∈ A+ a Q×Q matrix h(u) defined by

(h(u))pq =

1 if p u−→ q but not p u−→

F
q

2 if p u−→
F
q

0 otherwise

A routine verification shows that this naturally extends the image of A+ under h to a
semigroup S. We say that a linked pair (R,E) where R = (rpq)p,q∈Q and E = (epq)p,q∈Q is
accepting if there exist states p, q ∈ Q such that rpq > 1 and eqq = 2. One can now verify
that the set P of all accepting linked pairs is closed under conjugation and that [P] = L(A).

3.2 From weak recognition to Büchi automata
Suppose we are given a morphism h : A+ → S onto a finite semigroup S that weakly
recognizes a language L, i.e., L = [P] for some set of linked pairs P ⊆ S ×E(S). One can
use the following construction from [10] to obtain a Büchi automaton A with L(A) = L.

The set of states is Q = S1 × E(S), the set of initial states is I = P and the set of
final states is F = {1} × E(S). The transition relation δ consists of all tuples of the form
((s, e), a, (t, e)) ∈ Q×A×Q where h(a)t = s or h(a)t = se.

By combining the constructions from this and the previous subsection, we also obtain a
construction to convert a morphism that weakly recognizes a language L into a morphism
that strongly recognizes L. There are also direct, more efficient constructions, to perform
this conversion, see e.g. [9]. The converse direction is trivial since, by definition, a morphism
h : A+ → S that strongly recognizes a language L also weakly recognizes L.

4 Computing conjugacy classes

When designing an algorithm that takes a set of linked pairs P ⊆ S × E(S) as input, it
is often convenient to assume that P is closed under conjugation. However, this is not
always the case in practice: The input set P might be a proper subset of its closure under
conjugation Q such that [P] = [Q]. In this section, we describe an algorithm to compute
the conjugacy classes efficiently. It justifies the assumption that P is always closed under
conjugation in the following sections, particularly in Section 6.

As a warm-up, we first describe how to compute the set F of linked pairs. The linked
pairs are exactly the pairs of the form (se, e) with s ∈ S and e ∈ E(S). Thus, we first check
for each element e ∈ S whether e2 = e. If the outcome of the check is positive, we perform a
depth-first search in the left Cayley graph of S, starting at element e. For each element s that
is visited, (s, e) is a linked pair. The total running time of this routine is O(|S|+ |A| · |F |).

L. Fleischer and M. Kufleitner 5

An equivalence relation ≡ on the set of linked pairs is called left-stable if for all p ∈ S
and for linked pairs (s, e), (t, f) with (s, e) ≡ (t, f), we have (ps, e) ≡ (pt, f). We define an
equivalence relation ≈ on the set of linked pairs by (s, e) ≈ (t, f) if and only if e L s R t L f
or (s, e) = (t, f). Its relationship to conjugacy is captured in the following Lemma:

I Lemma 2. The conjugacy relation ∼ is the finest left-stable equivalence relation coarser
than ≈.

Proof. It follows directly from the definitions of linked pairs and conjugacy that ∼ is left-
stable. Let (s, e) and (t, f) be linked pairs with (s, e) ≈ (t, f) and (s, e) 6= (t, f). Since
s R t, there exist q, q′ ∈ S1 such that sq = t and tq′ = s. We set x = eq and y = fq′. Now,
sx = seq = sq = t. Moreover, since s L e, there exists p ∈ S1 with ps = e. Thus, we have
xy = eqy = psqy = pty = ptfq′ = ptq′ = ps = e. A similar argument can be used to show
that yx = f . Hence, (s, e) and (t, f) are conjugate, and ∼ is indeed coarser than ≈.

In order to show that ∼ is the finest relation with these properties, we consider an
arbitrary left-stable equivalence relation ' on the set of linked pairs which is coarser than ≈.
We show that (s, e) ∼ (t, f) implies (s, e) ' (t, f). Let x, y ∈ S such that sx = t, xy = e and
yx = f . Then we have ex = xyx = xf and xfy = xyxy = e2 = e, which shows that e R xf .
Furthermore we have xf L f , since yxf = f2 = f . By the definition of ≈, this means that
(e, e) ≈ (xf, f) and since ≈ refines ', it follows that (e, e) ' (xf, f). Left-stability yields
(s, e) = (se, e) ' (sxf, f) = (t, f). J

Since R-classes and L-classes can be computed in time linear in the size of the semigroup,
this allows us to efficiently compute the conjugacy classes as shown in Algorithm 1. We use
a so-called disjoint-set data structure that provides two operations on a partition. Find(s, e)
returns a unique element from the class that contains (s, e), i.e., if (s, e) and (t, f) are in the
same class, we have Find(s, e) = Find(t, f). Union((s, e), (t, f)) merges the classes of (s, e)
and (t, f). To simplify the notation we also introduce an operation Union+(R) for subsets R
of S × S that merges all classes with elements in R. Union+(R) can be implemented using
|R| − 1 atomic Union operations. The partition is initialized with singleton sets {(s, e)} for
all linked pairs (s, e). The second data structure used in the algorithm is a set T ⊆ 2F .

Algorithm 1 Computing conjugacy classes
initialize T with the non-trivial equivalence classes of ≈
for all R ∈ T do Union+(R) end for
while T 6= ∅ do

remove some set R from T

for all a ∈ A do
R′ ← ∅
for all (s, e) ∈ R do R′ ← R′ ∪ {Find(h(a)s, e)} end for
if |R′| > 1 then

Union+(R′)
T ← T ∪ {R′}

end if
end for

end while

To prove the correctness and running time of the algorithm, one can combine Lemma 2
with arguments similar to those given in the correctness and running time proofs of the

6 Efficient Algorithms for Morphisms over Omega-Regular Languages

Hopcroft-Karp equivalence test [7]. We first show that the relation induced by the final
partition is left-stable:

I Lemma 3. Let (s, e) and (t, f) be linked pairs of the same class upon termination, then,
for each a ∈ A, the pairs (h(a)s, e) and (h(a)t, f) are in the same class as well.

Proof. We write Findi(s, e) = Findi(t, f) if (s, e) and (t, f) belong to the same class after
the i-th iteration of the while-loop. The index ∞ is used to describe the situation upon
termination.

Let i be minimal such that for some pairs (s, e), (t, f) and a letter a ∈ A, we have
Findi(s, e) = Findi(t, f) and Find∞(h(a)s, e) 6= Find∞(h(a)t, f). Note that i > 0 because
otherwise, a set containing both (s, e) and (t, f) would be added to T during initializa-
tion. Hence, there exists a pair (s′, e′) with Findi−1(s′, e′) = Findi−1(s, e) and a pair
(t′, f ′) with Findi−1(t′, f ′) = Findi−1(t, f) such that Union+(R) is executed for some set
R ⊇ {(s′, e′), (t′, f ′)}. By choice of i, we have Find∞(h(a)s, e) = Find∞(h(a)s′, e′) and
Find∞(h(a)t, f) = Find∞(h(a)t′, f ′). Since we add the set R to T in iteration i, the
equality Find∞(h(a)s′, e′) = Find∞(h(a)t′, f ′) holds as well, and thus Find∞(h(a)s, e) =
Find∞(h(a)t, f), a contradiction. J

There is of course a dual statement for the pairs (s · h(a), e) and (t · h(a), f).

I Theorem 4. Let F be the set of linked pairs of S. When Algorithm 1 terminates, the
classes of the partition correspond to the conjugacy classes of F . Furthermore, the algorithm
executes at most
|F | − 1 Union operations and
2 |A| (|F | − 1) Find operations.

Proof. By Lemma 3, the relation induced by the final partition is left-stable and throughout
the main algorithm, two classes are only merged when required to establish this property.
Thus, the relation is the finest left-stable equivalence relation coarser than ≈ and, by Lemma 2,
equivalent to the conjugacy relation.

The number of Union operations is bounded by |F | − 1 since each operation reduces
the number of classes in the partitions by 1. Let R1, . . . , Rk be the sets that are added to
T during the execution of the algorithm. Whenever one of the sets Ri is inserted into T ,
|Ri| − 1 Union operations are executed. Thus, we have

k∑
i=1

(
|Ri| − 1

)
6 |F | − 1.

When Ri is removed from T , exactly |A| · |Ri| Find operations are executed in the same
iteration of the while-loop. The total number of Find operations is therefore bounded by

k∑
i=1
|A| · |Ri| 6

k∑
i=1
|A| · (2 |Ri| − 2) 6 2 |A| · (|F | − 1)

where the first inequality follows from the fact that each of the sets Ri contains at least two
elements. J

A sequence of n Union- and m Find-operations can be performed in O(n+m · α(n)) time
where α(n) denotes the extremely slow-growing inverse Ackermann function [14]. Thus,
when considering a fixed-size alphabet, the total running time of our algorithm is “almost
linear” in the number of linked pairs.

L. Fleischer and M. Kufleitner 7

5 Testing for strong recognition

Common decision problems, such as the universality problem or the inclusion problem, are
easy in the case of strong recognition. In the context of weak recognition, the algorithm
presented in this section is a powerful tool to answer a broad range of similar problems.
Given a morphism h : A+ → S onto a finite semigroup S and two sets of linked pairs
P,Q ⊆ S × E(S), it can be used to check whether [P] ⊆ [Q]. In particular, it allows for
testing whether the morphism strongly recognizes a language L = [P] by first computing the
closure Q of P under conjugation and then using the algorithm to test whether [Q] ⊆ [P].

The algorithm maintains two sets R, T ⊆ S × S × S. The former keeps record of the
elements that are added to T during the course of the algorithm. To simplify the presentation,
we define x · a−1 to be the set of all elements p ∈ S1 which satisfy the equation p · h(a) = x.

Algorithm 2 Testing for strong recognition
initialize R and T with the set {(s, e, 1) | (s, e) ∈ P}
while T 6= ∅ do

remove some element (s, x, y) from T

if x = 1 then return “[P] 6⊆ [Q]” end if
if (sx, yxyx) 6∈ Q then

for all a ∈ A, p ∈ x · a−1 do
if (s, p, h(a)y) 6∈ R then add (s, p, h(a)y) to R and to T end if

end for
end if

end while
return “[P] ⊆ [Q]”

The following technical Lemma is crucial for the correctness proof of the algorithm:

I Lemma 5. Let u, v ∈ A+ and let (s, e) and (h(u), h(v)) be linked pairs. Then uvω is
contained in [s][e]ω if and only if there exists a factorization v = v1v2 such that v1 6= ε,
h(uv1) = s and h(v2vv1) = e.

Proof. Let v = a1a2 · · · an with n > 1 and ai ∈ A. If uvω is contained in [s][e]ω, there exists
a factorization uvω = u′v′1v

′
2 · · · such that h(u′) = s and h(v′i) = e for all i > 1. Since u and

v are finite words, there exist indices j > i > 1, powers k, ` > 1 and a position m ∈ {1, . . . , n}
such that u′v′1v′2 · · · v′i−1 = uvka1a2 · · · am and v′iv′i+1 · · · v′j = am+1am+2 · · · anv`a1a2 · · · am.
We set v1 = a1a2 · · · am and v2 = am+1am+2 · · · an. Then v1v2 = v,

h(uv1) = h(uvka1a2 · · · am) = h(u′v′1v′2 · · · v′i−1) = sei−1 = s and
h(v2vv1) = h(am+1am+2 · · · anv`a1a2 · · · am) = h(v′iv′i+1 · · · v′j) = ej−i+1 = e.

To prove the converse direction, consider the factorization uvω = uv1(v2vv1)ω. J

To simplify the proofs of the following two Lemmas, we extend h to a monoid morphism
h1 : A∗ → S1 by setting h1(u) = h(u) for all u ∈ A+ and h1(ε) = 1.

I Lemma 6. If the difference [P] \ [Q] is non-empty, the algorithm returns “[P] 6⊆ [Q]”.

Proof. By the closure properties of regular languages, we know that there exists a word α =
u(a1a2 · · · an)ω ∈ [P] \ [Q]. Let s = h(u) and e = h(a1a2 · · · an). Lemma 5 shows that we can
assume without loss of generality that (s, e) is contained in P . We now prove by induction on

8 Efficient Algorithms for Morphisms over Omega-Regular Languages

the parameter k that upon termination, we have (s, h1(a1a2 · · · ak), h1(ak+1ak+2 · · · an)) ∈ R
for all k ∈ {0, . . . , n}. In particular, by considering the case k = 0, we see that the element
(s, 1, e) is added to R. Since every element added to R is also added to Q, the algorithm
returns “[P] 6⊆ [Q]”.

The base case k = n is covered by the initialization of the set R. Let now k < n,
x = h1(a1a2 · · · ak+1) and y = h1(ak+2ak+3 · · · an). By the induction hypothesis, we know
that the tuple (s, x, y) is added to T during the course of the algorithm. Consider the iteration
when this tuple is removed from T . Because of α 6∈ [Q], we know that (sx, yxyx) 6∈ Q. Thus
the inner loop guarantees that (s, h1(a1a2 · · · ak), h1(ak+1ak+2 · · · an)) is added to R. J

I Lemma 7. If the algorithm returns “[P] 6⊆ [Q]”, the difference [P] \ [Q] is non-empty.

Proof. We construct a word in the difference [P] \ [Q]. For every triple (s, e, 1) that is added
to R during the initialization, we define w[s, e, 1] = ε. If a triple (s, p, h(a)y) is added to R
later, we set w[s, p, h(a)y] = a · w[s, p · h(a), y]. For every (s, x, y) 6∈ R, the word w[s, x, y]
is undefined. If w[s, x, y] is defined, its image under h1 is y and we have (s, xy) ∈ P . Both
properties are easy to prove by induction.

Let (s, 1, y) be the triple that was removed from T immediately before the termination of
the algorithm. Consider an arbitrary word u ∈ [s] and set v = w[s, 1, y]. We have (s, y) ∈ P
and thus uvω ∈ [P]. For every factorization v = v1av2 where v1, v2 ∈ A∗ and a ∈ A, the
word w[s, h1(v1), h1(av2)] is defined as av2 and thus, the tuple (h(uv1a), h(v2vv1a)) is not
contained in Q. In view of Lemma 5, this shows that uvω 6∈ [Q]. J

We are now able to state the main result of this section:

I Theorem 8. Given a morphism h : A+ → S onto a finite semigroup S and two sets of
linked pairs P,Q ⊆ S × E(S), one can check in O(|A| · |S|3) time whether [P] ⊆ [Q].

Proof. The correctness of Algorithm 2 follows from the previous two Lemmas. Since R
contains at most (|S|+1)3 elements when the algorithm terminates, the outer loop is executed
at most (|S|+ 1)3 times. Moreover, for all a ∈ A and s, t ∈ S with s 6= t, the sets s · a−1 and
t · a−1 are disjoint. Thus, each element p ∈ S1 is considered at most |A| · (|S|+ 1)2 times in
the inner loop. If R is implemented as a bit field and T is implemented as a linked list, all
operations take constant time. This shows that the total running time is in O(|A| · |S|3). J

6 Computation of the syntactic morphism

In this section, we present an algorithm to compute the syntactic semigroup for a given
language. The syntactic homomorphism is obtained as a byproduct. One can show that
the syntactic semigroup is the smallest semigroup strongly recognizing a language [1, 9], so
this operation is in some sense analogous to minimization of finite automata. The most
important difference is that our algorithm requires only quadratic time, whereas minimization
is PSPACE-hard in the case of Büchi automata [8, 12].

Let S be a finite semigroup, let h : A+ → S be a surjective morphism and let P be a
set of linked pairs that is closed under conjugation. To make the following notation more
readable, we define Q to be the maximal subset of S × S such that [P] = [Q].

I Lemma 9. Let u, v ∈ A+. Then uvω ∈ [P] if and only if (h(u), h(v)) ∈ Q.

Proof. Suppose that uvω ∈ [P]. By Proposition 1 we have [h(u)][h(v)]ω ⊆ [P] = [Q]. Since
Q is maximal, the pair (h(u), h(v)) is contained in Q. The converse implication is trivial. J

L. Fleischer and M. Kufleitner 9

We now define a equivalence relation ∼= on S by s ∼= t if for all z ∈ S, we have

(z, s) ∈ Q⇔ (z, t) ∈ Q and
(s, z) ∈ Q⇔ (t, z) ∈ Q.

Moreover, let ≡ be the coarsest congruence on S that refines ∼=, i.e., s ≡ t if xsy ∼= xty for all
x, y ∈ S1. We denote by [s]≡ the equivalence class {t ∈ S | t ≡ s} of an element s ∈ S. The
relation ≡ is closely related to the syntactic congruence, as confirmed by the following result:

I Proposition 10. The quotient semigroup S/≡ is isomorphic to A+/≡L.

Proof. We first define a morphism g : A+ → S/≡ by setting g(u) = [h(u)]≡ for all u ∈ A+.
Let now u, v ∈ A+. By Lemma 9, we have h(u) ≡ h(v) if and only if hL(u) = hL(v). Thus,
g ◦ h−1

L is a semigroup isomorphism. J

The computation of the syntactic semigroup requires two steps:
1. Compute the partition induced by the equivalence relation ∼=.
2. Refine the partition until the underlying equivalence relation becomes a congruence.
The first step can be performed in time quadratic in the size of the semigroup. For the
second step, we can adapt Hopcroft’s minimization algorithm for finite automata [6]. For
C ⊆ S and a ∈ A, we define

C · a−1 = {s ∈ S | s · h(a) ∈ C} and a−1 · C = {s ∈ S | h(a) · s ∈ C} .

The full algorithm is shown in Algorithm 3. It relies on the Split routine that is usually
implemented as part of a partition refinement data structure, see e.g. [6] for details. Its
semantics is shown in Algorithm 4. In addition to modifying the partition, that routine also
updates a set T ⊆ 2S that is used in the main algorithm.

Algorithm 3 Computing the syntactic semigroup
initialize a partition with a single class S
for all s ∈ S do

Split({t ∈ S | (s, t) ∈ Q})
Split({t ∈ S | (t, s) ∈ Q})

end for
initialize T with the non-trivial classes of the partition
while T 6= ∅ do

remove some set C from T

for all a ∈ A do
Split(C · a−1) . Refine the partition and update T
Split(a−1 · C) . Refine the partition and update T

end for
end while

The next Lemma shows that upon termination, the equivalence relation induced by the
partition is indeed a congruence:

I Lemma 11. If, upon termination, the elements s and t belong to the same class of the
partition, then, for each a ∈ A, the elements h(a)s and h(a)t are in the same class as well.

10 Efficient Algorithms for Morphisms over Omega-Regular Languages

Algorithm 4 The Split operation to refine a partition P
procedure Split(X)

for all C ∈ P do
C1 ← C ∩X, C2 ← C \X
if C1 6= ∅ and C2 6= ∅ then
P ← (P \ {C}) ∪ {C1, C2}
if C ∈ T then

T ← (T \ {C}) ∪ {C1, C2}
else

if |C1| 6 |C2| then T ← T ∪ {C1} else T ← T ∪ {C2} end if
end if

end if
end for

end procedure

Proof. Suppose that h(a) · s and h(a) · t belong to different classes. These elements are split
either during the initialization or in the main loop. In either case, a set C that contains
either h(a) · s or h(a) · t is added to T . When this set is removed from T , the operation
Split(a−1 · C) asserts that s and t lie in different classes as well. A dual argument holds in
the right-sided case. J

There is of course a dual statement for the elements s · h(a) and t · h(a).

I Theorem 12. The syntactic morphism can be computed in O(|S|2 + |A| · |S| log |S|) time.

Proof. Let us first argue that Algorithm 3 is correct. The partition is initialized with the
equivalence classes of ∼=. A class is only split when it is necessary to restore the left-stability
or right-stability. Upon termination, the relation induced by the partition is a congruence, as
stated in Lemma 11. Thus, it is the coarsest congruence that refines ∼= and hence equivalent
to ≡.

For the analysis of the running time, we assume that the operation Split(X) can be
implemented in time linear in |X|. Then the initialization clearly takes O(|S|2) time. We
denote by C1, . . . , Ck the sets that are added to T during the course of the algorithm. Let
s ∈ S and let ns = {i | 1 6 i 6 k, s ∈ Ci} be the number of sets Ci containing s. At any
point in time, there is at most one set in T that contains s. If such a set C is removed
from T and another set C ′ with s ∈ C ′ is added to T at a later point in time, we have that
|C ′| 6 |C| /2. Thus, the inequality ns 6 log |S| holds for all s ∈ S and we have

k∑
i=1

∑
a∈A

(∣∣Ci · a−1∣∣+
∣∣a−1 · Ci

∣∣) =
∑

s∈S,a∈A

(
ns·h(a) + nh(a)·s

)
6 2 |A| · |S| log |S|.

Consequently, the total running time of the while-loop is in O(|A| · |S| log |S|), assuming that
T is implemented efficiently, e.g. as a linked list. J

If the alphabet A is fixed and the semigroup S becomes large, the running time is dominated
by the initialization. However, the following result implies that the algorithm we presented
is quite optimal.

I Proposition 13. Let k ∈ N and let λ ∈ R be a strictly positive number. One cannot
compute the syntactic morphism in time O(|A|k · |S|2−λ).

L. Fleischer and M. Kufleitner 11

Proof. We assume that there exists a deterministic algorithm and a constant c > 1, such that
every input of size n = |S| and m = |A| /2 can be minimized in time T (n,m) 6 c ·mk · n2−λ.
Since c, k and λ are constant, there exists an integer m ∈ N with 2λm > 16c ·mk. Consider
an alphabet A = {1, . . . , 2m} satisfying this condition.

We define A1 = {1, . . . ,m} and A2 = {m+ 1, . . . , 2m}, S1 = (2A1 \ {∅}) × {∅} and
S2 = {∅} × (2A2 \ {∅}). The set S = S1 ∪ S2 forms a semigroup with the multiplication

(X1, X2) · (Y1, Y2) =
{

(∅, X2 ∪ Y2) if X1 = Y1 = ∅
(X1 ∪ Y1, ∅) otherwise

Furthermore, let h : A+ → S be defined by h(a) = ({a} , ∅) for all a ∈ A1 and h(b) = (∅, {b})
for all b ∈ A2. Let F be the set of linked pairs of S. It is easy to verify that S1 × S2 ⊆ F .
Moreover, two tuples (s, e), (t, f) ∈ S1 × S2 are conjugate if and only if (s, e) = (t, f). The
number of conjugacy classes of S is at least |S1| · |S2| > 2m−1 · 2m−1 = 4m−1. The size of S
is n = |S1|+ |S2| 6 2m + 2m = 2m+1.

Consider the execution of the algorithm on input h and P = F . Since [P] = Aω,
the algorithm returns the trivial semigroup. We denote by (s1, e1), (s2, e2), . . . , (s`, e`) the
sequence of linked pairs for which the algorithm checks whether (si, ei) ∈ P . We have
` 6 T (n,m) 6 c ·mk · n2−λ < 4c ·mk · 22m−λm = 16c ·mk · 2−λm · 4m−1 < 4m−1 and thus,
there is a conjugacy class C such that (si, ei) 6∈ C for all i ∈ {1, . . . , `}. Since the algorithm
is deterministic, the execution sequence on input Q = P \ C is the same, and the algorithm
returns, again, the trivial semigroup consisting of one element. However, [Q] 6= Aω and thus,
the algorithm is incorrect. J

One can also show that, independent of the alphabet size, it is impossible to compute the
syntactic morphism in time O(|S|2−λ). However, the proof is a bit more involved [4].

7 Language operations on morphisms

One of the merits of strong recognition is that complementation is easy. If a morphism
h : A+ → S onto a finite semigroup S strongly recognizes a language L ⊆ Aω, it also strongly
recognizes the complement Aω \ L. As in the case of finite words, we can use direct products
for unions and intersections.

Another operation on languages which is of particular interest when it comes to converting
MSO formulas to strongly recognizing morphisms are so-called length-preserving morphisms.
Suppose we are given alphabets A, B and a length-preserving morphism π : A+ → B+,
i.e., π(a) ∈ B for all a ∈ A. We naturally extend this morphism to infinite words by setting
π(a1a2 · · ·) = π(a1)π(a2) · · · and to languages L ⊆ Aω by setting π(L) = {π(α) | α ∈ L}.

I Proposition 14. Let π : A+ → B+ be a length-preserving morphism, let S be a finite
semigroup and let h : A+ → S be a surjective morphism that strongly recognizes a language
L ⊆ Aω. Then there exist a semigroup T of size 2|S| and a morphism g : B+ → T that
strongly recognizes π(L).

Proof. We first define T to be the set 2S of all subsets of S and extend it to a semigroup
by defining an associative multiplication X · Y = {xy | x ∈ X, y ∈ Y }. The morphism
g : B+ → T is uniquely defined by g(a) = h(π−1(a)) for all a ∈ B.

Let us now verify that g strongly recognizes π(L). Consider a linked pair (s, e) and two
infinite words α, β ∈ g−1(s)(g−1(e))ω. By Proposition 1, it suffices to show that α ∈ π(L)
implies β ∈ π(L). If α is contained in π(L), we can conclude by Ramsey’s theorem that

12 Efficient Algorithms for Morphisms over Omega-Regular Languages

Table 1 Experimental results for different parameter values

ϕk ψk χk

|S| |F | |P | |S| |F | |P | |S| |F | |P |

k = 2 4 5 1 12 15 10 7 14 11
k = 3 8 22 1 43 50 41 11 26 15
k = 4 16 74 1 148 163 146 17 61 30
k = 5 32 232 1 539 570 537 41 227 85
k = 6 64 710 1 1863 1926 1861 105 716 184

there exists a linked pair (t, f) of S with t ∈ s, f ∈ e and h−1(t)(h−1(f))ω ∩ L 6= ∅. By
assumption, h strongly recognizes L and thus, we have h−1(t)(h−1(f))ω ⊆ L. Since we know
that there exists an infinite word uv1v2 · · · ∈ π−1(β) such that h(u) = t and h(vi) = f for all
i > 1, this immediately yields uv1v2 · · · ∈ L and hence β ∈ π(L). J

8 Experimental results

In order to test the algorithms and constructions in practice, we implemented the conversion
of MSO formulas into strongly recognizing morphisms. The constructions described in
Section 7 are used to recursively convert the formulas, and all intermediate results are
minimized using the algorithm from Section 6. For details on MSO logic over infinite words
and its connexion to regular languages, we refer to [15, 16]. The conversion to strongly
recognizing morphisms instead of Büchi automata has the advantage that all intermediate
objects can be minimized efficiently. Table 1 shows the size of the computed syntactic
semigroup S, the number of linked pairs F and the size of the accepting set P (which is
closed unter conjugation) for the following three families of MSO formulas with parameter
k > 1 and free second-order variables Xk+1 = X1, X2, . . . , Xk:

ϕk = ∀x
k∧
i=1
∃y (x < y ∧ y ∈ Xi)

ψk = ∀x∀y (y = x+ 1)→
k∧
i=1

(x ∈ Xi → y ∈ Xi+1)

χk = ∀x
k∧
i=1

(x ∈ Xi → ∃y (x < y ∧ (y ∈ Xi−1 ∨ y ∈ Xi+1)))

All computations were made on a Intel Core i5-3320M with 4GiB of RAM. The execution
time was less than three seconds for each formula.

9 Summary and Outlook

We described several algorithms for weakly recognizing morphisms and strongly recognizing
morphisms over infinite words. Our tests indicate that strongly recognizing morphisms, when
combined with the minimization algorithm presented in Section 6, are a practical alternative
to automata-based models when it comes to deciding properties of MSO formulas.

Some of the algorithms leave room for optimization. In particular, it would be interesting
to see whether there is a linear-time algorithm to compute conjugacy classes and whether
the running time of the algorithm described in Section 5 can be improved to O(|A| ·

∣∣S2
∣∣).

L. Fleischer and M. Kufleitner 13

References
1 A. Arnold. A syntactic congruence for rational ω-languages. Theoretical Comput. Sci.,

39:333–335, 1985.
2 H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational ω-languages.

In MFCS 94, Proceedings, volume 802 of LNCS, pages 554–566. Springer, 1994.
3 V. Diekert and P. Gastin. First-order definable languages. In J. Flum, E. Grädel, and

T. Wilke, editors, Logic and Automata: History and Perspectives, Texts in Logic and Games,
pages 261–306. Amsterdam University Press, 2008.

4 L. Fleischer and M. Kufleitner. Efficient Algorithms for Morphisms over Omega-Regular
Languages. CoRR, abs/1509.06215, 2015.

5 V. Froidure and J.-E. Pin. Algorithms for computing finite semigroups. In F. Cucker and
M. Shub, editors, Foundations of Computational Mathematics, pages 112–126. Springer,
1997.

6 J. Hopcroft. An n logn algorithm for minimizing states in a finite automaton. In Z. Kohavi
and A. Paz, editors, Theory of Machines and Computations, pages 189–196. Academic
Press, New York, 1971.

7 J. Hopcroft and R. Karp. A linear algorithm for testing equivalence of finite automata.
Technical report, Dept. of Computer Science, Cornell Univ., December 1971.

8 A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In 13th Annual Symposium on Switching and Automata
Theory, pages 125–129. IEEE Computer Society, 1972.

9 D. Perrin and J.-É. Pin. Infinite words, volume 141 of Pure and Applied Mathematics.
Elsevier, 2004.

10 J.-P. Pécuchet. Varietés de semisgroupes et mots infinis. In STACS 86, volume 210 of
LNCS, pages 180–191. Springer, 1986.

11 M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of
Research and Development, 3:114–125, 1959. Reprinted in E. F. Moore, editor, Sequential
Machines: Selected Papers, Addison-Wesley, 1964.

12 A. P. Sistla, M. Y. Vardi, and P. L. Wolper. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Comput. Sci., 49(2-3):217–237,
1987.

13 L. J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, TR 133, M.I.T., Cambridge, 1974.

14 R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–
225, Apr. 1975.

15 W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, chapter 4, pages 133–191. Elsevier, 1990.

16 W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors,
Handbook of Formal Languages, volume 3, Beyond Words, pages 389–455. Springer, Berlin,
1997.

	Introduction
	Preliminaries
	Conversion between Büchi automata, weak and strong recognition
	From Büchi automata to strong recognition
	From weak recognition to Büchi automata

	Computing conjugacy classes
	Testing for strong recognition
	Computation of the syntactic morphism
	Language operations on morphisms
	Experimental results
	Summary and Outlook

