
3rd Biennial International Conference on Powertrain Modelling and Control (PMC 2016) 
Testing, Mapping and Calibration 

7th-9th September 2016, Loughborough University, UK 

1 
 

Elastodynamics of Piston Compression Rings 

R. Turnbull
1*

, S.R. Bewsher
1
, M. Mohammadpour

1
, R. Rahmani

1
, H. Rahnejat

1
, G. Offner

2 

1 Wolfson School of Mechanical, Electrical and Manufacturing Engineering, 
Loughborough University, UK 

2 AVL List GmbH, Graz, Austria 

* Corresponding author: R.Turnbull@lboro.ac.uk 

 

Abstract 

The piston ring pack accounts for a disproportionate amount of the total engine frictional losses. 
The frictional behaviour of piston rings is significantly affected and governed by its flexible 
dynamics. The dynamically changing shape of the ring determines its contact geometry with the 
cylinder liner and hence affects the frictional losses. The compression ring undergoes a multitude 
of complex motions during the engine cycle prescribed by the gas pressure, contact reaction, ring 
tension, friction between the ring and its groove and inertial forces that excite a plethora of the 
ring’s modal responses. This adversely compromises the functionality of the ring through a 
number of undesired phenomena such as ring flutter, twist, rotation and jump. Therefore, a 
prerequisite for improving the prediction of tribological conditions is an accurate determination 
of the ring’s elastodynamic response. This paper presents a methodology to directly solve the 
governing differential equations of motion for different forms of beam cross-section, where the 
shear and mass centres are not coincident, typical of the complex cross-sections of a variety of 
different piston compression rings. Combined numerical and experimental investigations are 
undertaken to determine the dynamic behaviour of the compression ring. 

Keywords: Compression Ring, Elastodynamics, Incomplete ring, Coupled bending- torsion  

1-Introduction 

Increasingly stringent legislation and directives set emission targets for vehicle manufactures. 
Furthermore, fuel efficiency has progressively become a key commercial attribute.  Another key 
driver in powertrain developments is the customer expectation for increased output power. These 
seemingly contradictory demands point to the common attributes of reduced powertrain losses 
and light weight and compact constructions. Performance improvements in fuel economy, power 
output and emissions have to be realised at minimal cost per vehicle.  

The piston ring pack accounts for a disproportionate amount of the total engine losses (up to 25% 
of the parasitic losses, with the compression ring alone accounting for approximately 5% of the 
total engine losses) [ 1]. This provides the motivation behind this investigation. The frictional 
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behaviour of piston rings is significantly affected by their elastodynamic behaviour (flexible 
modal dynamics) [ 2, 3]. The dynamically changing ring shape alters the contact geometry and 
hence the resulting frictional losses. Therefore, a combined dynamics and tribological study of 
the problem is required, termed as tribo-dynamics.     

The primary function of the compression ring is to act as a seal between the piston ring pack and 
the combustion chamber to reduce power loss and blow-by. To ensure an effective seal, good 
conformity between the ring and cylinder liner is essential. A delicate balance between good 
conformability and excessive friction, heat generation and wear within the contact is critical for 
effective operation. Furthermore, it is essential that the compression ring transfers the surplus 
heat away from the piston to the cylinder wall. Realising the above fundamental requirements 
ensures effective engine performance. 

The compression ring undergoes a multitude of complex motions during the engine cycle, 
prescribed by the applied gas pressure, contact reaction, ring tension, friction between the ring 
and groove and the inertial forces that excite a plethora of the ring’s modal responses. These 
adversely compromise the functionality of the ring through a number of undesired phenomena 
such as ring flutter, twist, rotation and jump [2-4]. 

The dynamic behaviour of the compression ring is a prerequisite for improving its tribological 
performance with the cylinder liner conjunction during the engine cycle, which constitutes the 
focus of the current investigation. The transient nature of the contact conditions provides an 
insight into the mechanisms contributing to frictional losses, thus engine efficiency. The applied 
conditions; ring loading and piston kinematics, as well as ring geometry and topography and bore 
shape are key parameters for the tribological study of the conjunction which require prediction of 
generated contact pressures, film thickness, thus the determination of load carrying capacity and 
friction and errant dynamics’ power losses [5-10]. 

An analytical solution for in-plane motions of a thin circular ring is presented by Lang [11] and 
for out-of-plane motions by Ojalvo [12]. These equations of motion consider the in-plane and 
out-of-plane motions as uncoupled. The solution to the in-plane dynamics is utilised for the 
evaluation of ring friction [ 2, 13] by solving the equations of motion detailed in [11].  The 
investigation was expanded to the detailed effect of compression ring dynamics on friction and 
power loss within the internal combustion engines [14], utilising the out-of-plane solution 
provided in [12]. The solution considered four degrees of freedom and required the cross section 
to be modelled as an equivalent rectangle.  

A curved beam solution is provided for a uniform curve bar [15]. Straight beam element models 
have been presented to approximate the geometry of the piston ring [16]. The model utilises 
Timoshenko beam theory and assumes that the shear centre and the mass centre of the cross- 
section are coincident. The dynamic stiffness matrix method has been utilised to approximate a 
solution for the elastodyamics of crankshaft systems [17]. The dynamic stiffness matrix of the 
individual piston ring beam elements can be concatenated as detailed by [18] to construct the 
overall dynamic stiffness matrix of the piston ring system. The dynamic stiffness matrix method 
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embeds and solves the mass and stiffness terms in a frequency-dependent matrix, where the terms 
are all functions of the natural frequency of the system. The solution is derived from Eulerian 
beam theory and assumes that the shear centre and mass centre of the cross section are coincident. 
Coupled solutions to evaluate different forms of complex cross sectioned beam elements have 
been reported, including by Rao and Carnegie [19] who showed that mode coupling resulted in a 
significant influence on the frequency response of the system. 

This paper presents a methodology to directly solve the governing differential equations of 
motion for a beam section. In particular, the method accounts for different forms of beam cross 
sections, where the shear and mass centres are not coincident, typical of the complex cross 
sections of a variety of different piston compression rings. 

2-Numerical Model 

2.1-Direct Integration Method 

A numerical model is created to model the elastodynamics of the piston compression ring. 
Euler’s beam theory is utilized for the modelling of the ring behaviour in bending in its xz and xy 
principal planes, as well as in torsion and axial extension-compression (Figure 1).  

 
Figure 1: The beam element with according coordinate system 

 

The governing differential equations for the beam are discretised and directly solved using a 
central difference finite difference explicit discretisation method. The solution for the ring elastic 
deformation under applied loads is found by performing direct integration in the time domain.  
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All the important degrees of freedom are considered in the current investigation [20]. The Euler 
beam model includes the coupled torsion-bending equations of motion [19]. This coupling occurs 
for beam sections with non-coincident mass and shear centres, typical of the complex cross 
sections of the piston rings (Figure 1). Different forms of cross section are considered by the 
coupling arms 𝑦𝑦𝛼𝛼 and 𝑧𝑧𝛼𝛼 acting along the y and z axes respectively. The values of 𝑦𝑦𝛼𝛼 and 𝑧𝑧𝛼𝛼 are 
obtained by determining the co-ordinate distance between the centre of shear and the centre of 
mass of the beam cross section. Thus:  

𝐸𝐸𝐸𝐸𝑦𝑦𝑦𝑦
𝜕𝜕4∆𝑧𝑧
𝜕𝜕𝑥𝑥4

+ 𝜌𝜌𝜌𝜌 𝜕𝜕2∆𝑧𝑧
𝜕𝜕𝑡𝑡2

− 𝜌𝜌𝜌𝜌𝑦𝑦𝛼𝛼
𝜕𝜕2𝜃𝜃𝑥𝑥
𝜕𝜕𝑡𝑡2

= 0   (1) 

𝐸𝐸𝐸𝐸𝑧𝑧𝑧𝑧
𝜕𝜕4∆𝑦𝑦
𝜕𝜕𝑥𝑥4

+ 𝜌𝜌𝜌𝜌 𝜕𝜕2∆𝑦𝑦
𝜕𝜕𝑡𝑡2

+ 𝜌𝜌𝜌𝜌𝑧𝑧𝛼𝛼
𝜕𝜕2𝜃𝜃𝑥𝑥
𝜕𝜕𝑡𝑡2

= 0     (2) 

𝐺𝐺𝐸𝐸𝑝𝑝
𝜕𝜕2𝜃𝜃𝑥𝑥
𝜕𝜕𝑥𝑥2

− 𝜌𝜌𝐸𝐸𝑝𝑝
𝜕𝜕2𝜃𝜃𝑥𝑥
𝜕𝜕𝑡𝑡2

+ 𝜌𝜌𝜌𝜌𝑦𝑦𝛼𝛼
𝜕𝜕2∆𝑧𝑧
𝜕𝜕𝑡𝑡2

− 𝜌𝜌𝜌𝜌𝑧𝑧𝛼𝛼
𝜕𝜕2∆𝑦𝑦
𝜕𝜕𝑡𝑡2

= 0         (3) 

𝜌𝜌𝜌𝜌 𝜕𝜕2∆𝑥𝑥
𝜕𝜕𝑡𝑡2

− 𝐸𝐸𝜌𝜌 𝜕𝜕2∆𝑥𝑥
𝜕𝜕𝑥𝑥2

= 0     (4) 

   

 

The system of differential equations (1)–(4) are transformed from the Cartesian frame of 
reference into cylindrical coordinates, where the equations of motion of the compression ring are 
best represented. Figure 2 is a schematic representation of the ring cross sections. In order to 
examine the accuracy of the model in the frequency domain, the mid-point of the beam is 
subjected to kinematic excitation (Figure 3). In the integrated tribo-dynamic model, all applied 
forces need to be considered. The material and geometrical properties of the piston ring are 
provided in Table 1. 

Figure 2: Piston ring cross sections 
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Table 1: Compression ring properties 

Elastic modulus (E) 203 GPa 

Shear modulus (G) 78.7 GPa 

Material density (ρ) 7850 kg/m3 

Poisson ratio (v) 0.3 

Ring thickness (b) 1.15 x 10-3 m 

Ring height (h) 3.5 x 10-3 m 

Ring length (L) 300 x 10-3 m 

Cross-sectional area (A) 4.06 x 10-6 m2 

Second area moment of inertia (Jyy) 4.436 x 10-13 m4 

Second area moment of inertia (Jzz) 4.109 x 10-12 m4 

Polar area moment of inertia (Jp) 4.552 x 10-12 m4 

 

Excitation is prescribed as a function of displacement (𝑥𝑥𝑓𝑓) and velocity (𝑣𝑣𝑓𝑓): 

Far Left 

Mid Point 1 

Mid Point 2 

Near Left 

Free Free 

Excitation 

37.5 37.5 37.5 

(All measurements are in mm) 

Figure 3: Schematic of the numerical model 
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𝑥𝑥𝑓𝑓 = 𝑀𝑀2𝜋𝜋𝜋𝜋 cos(2𝜋𝜋𝜋𝜋𝜋𝜋)      (5) 

𝑣𝑣𝑓𝑓 = −𝑀𝑀4𝜋𝜋2𝜋𝜋2 sin(2𝜋𝜋𝜋𝜋𝜋𝜋)           (6) 

where, M is the amplitude of oscillation (m), f is the applied vibration frequency (Hz) and t is 
time (s). 

2.2-Finite Element Analysis 

In order to evaluate the accuracy of the model in the frequency domain, a frequency-amplitude 
sweep is performed. The predictions of the frequency response calculated for the ring dynamics 
are compared with those from a finite element model (FEM), as well as with experimental results 
carried out under the same conditions. The FEM comprises tetrahedral elements with 2,100 
nodes, each with 6 degrees of freedom. The results are obtained in PATRAN/NASTRAN for 
free-free boundary conditions applied to the ring ends. The material and geometric properties 
utilized in the finite element analysis are those listed in Table 1. 

3-Experimental Measurements 

Figure 4 shows the experimental rig with appropriate in-situ constraints, comprising a shaker, 
shaker extension, a force transducer, clamp and a piston compression ring. The clamp is threaded 
directly onto the force transducer which in turn is threaded directly onto the shaker extension and 
thus the shaker itself. This ensures a secure system configuration between the shaker and the 
clamp. The piston compression ring is rigidly mounted onto the clamp by tightening the screw 
set. The contact area between the clamp and the ring is minimised, utilising the configuration 
detailed in Figure 4. The piston ring is positioned both upright and laterally for out-of-plane and 
in-plane vibrations respectively. This is to mitigate the effect of gravity.  
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Figure 4: Experimental setup 

A Laser Doppler vibrometer (LDV) is positioned appropriately in order to measure the vibrations 
of the compression ring as the elastic wave runs through its structure. The LDVs measure the 
velocity of the lateral oscillations of the piston ring through a Doppler shift in the frequency of 
light, scattered by a moving object [21]. Nyquist criterion specifies that a sampling rate of at least 
twice the highest expected response frequency should be used. Baker et al [ 2] noted that the first 
three modal responses were observed during the engine cycle, with the inclusion of the first seven 
modes not altering the results. Therefore, as a benchmark, the first seven modes of the ring up to 
a frequency of 6000 Hz are required in the current investigation. In order to capture the frequency 
range of interest a conservative sampling rate of 32,000 is utilised. A list of instrumentation 
utilised in the experimental investigation is provided in Table 2. 

Table 2: List of instrumentation 

Apparatus Transducer Sensitivity Amplifier Setup Sensitivity 

Vibrometer (lateral 
Displacement) 

200 µm/V 0.02 mm/V 

Force Transducer 3.96 pC/N 1 V/N 

 

LDV 

Shaker 

Shaker Mount 

Piston Compression Ring 

Ring Clamp 
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4-Results and Discussion 

Out-of-plane motion of the ring is considered in the current analysis. Figure 5 shows a 
comparison between the numerical model (minimum and maximum amplitude), those obtained 
by finite element analysis (FEA) and through experimental measurement. A frequency sweep is 
performed in the numerical model and comparisons are made (Figure 5). Reasonable agreement 
is observed between the numerical predictions and measurements. The first monitored modal 
response (experimentally obtained) is at 40 Hz with the numerical model closer to the 
experimental value than that obtained through FEA. The numerical model and FEA predict 
approximately 185 Hz for the second mode, with the measured equivalent being approximately 
100 Hz. The third mode occurs at approximately 400 Hz (experimental), which agrees well with 
the numerical model and the FEA results. 

 
Figure 5: Frequency sweep responses (predictions and measurements) 

 

A frequency sweep is undertaken in the experiments between 10 Hz and 500 Hz to allow the 
identification of the mode shapes. A conservative time period of 20 seconds is utilised for the 
frequency sweep in order to ensure the contributions of each mode are fully captured. The 
frequency amplitude plot from the LDV output is shown in Figure 6. Numerical and FEA results 
are shown in the amplitude-frequency plot. 
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Figure 6: Amplitude-frequency plot (predictions and measurement) 

 

Figure 7 is a continuous wavelet time-frequency (CWT) spectrum of the experimental results of 
figure 6. Figure 7 (a) depicts the frequency response between 10 Hz and 500 Hz, whereas Figure 
7 (b) is that between 300 Hz and 500 Hz, ensuring that the higher frequencies are identified. The 
current investigation is focused on the out-of-plane motion of the ring. However, in practice the 
motions are entirely coupled, evident by the presence of the in-plane frequencies in the 
experimental results. The 250 Hz resonant frequency is caused by the in-plane motion of the ring, 
demonstrating the effect of coupling. The numerical predictions show close prediction of the 
frequencies when compared for both the 40 Hz and 480 Hz contributions, with that at 40 Hz 
being the dominant modal response. Both the numerical and FEA results calculate approximately 
180 Hz for the second out-of-plane mode, within an acceptable degree of accuracy with the 
experimental results. 
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Figure 7. Continuous wavelet spectrum for (a) 10 Hz - 500 Hz and (b) 300 Hz - 500Hz 

 

5- Concluding Remarks 

The developed numerical model predicts the modal response of the thin compression ring with 
good degree of conformance to that obtained using FEA, which requires a much larger 
computational effort. The results have a reasonably good level of agreement with experimental 
measurements of the modal response of the ring, mainly for out-of-plane excitation of the ring, 
close to free-free boundary conditions. The development of the current approach is critical to the 

(b) 

(a) 
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development of a combined tribo-dynamic analysis of the piston ring pack; representing the 
complex motions of the ring. The study needs to be extended to in situ conditions of the ring 
within a cylinder, subjected to friction, ring tension and applied variable radial gas and contact 
pressures. This will constitute the future extension of the current research. 
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Nomenclature 

A  Cross-sectional area        m2 

b  Thickness of compression ring      m 

E  Young’s modulus of elasticity      N/m2 

f  Applied vibration frequency       Hz 

𝐹𝐹𝑥𝑥𝑖𝑖  Force acting on an element in x direction for the ith element   N 

𝐹𝐹𝑦𝑦𝑖𝑖  Force acting on an element in y direction for the ith element   N 

𝐹𝐹𝑧𝑧𝑖𝑖  Force acting on an element in z direction for the ith element   N 

G  Shear modulus         N/m2 

h  Height of the compression ring      m 

Jyy  Second area moment of inertia      m4  

Jzz  Second area moment of inertia      m4  

Jp  Polar area moment of inertia       m4  

L  Length of the compression ring      m 

M  Amplitude of oscillation       m 

𝑀𝑀𝑥𝑥
𝑖𝑖   Moment acting on an element in x direction for the ith element  Nm 
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𝑀𝑀𝑦𝑦
𝑖𝑖   Moment acting on an element in y direction for the ith element  Nm 

𝑀𝑀𝑧𝑧
𝑖𝑖   Moment acting on an element in z direction for the ith element  Nm 

t  Time          s 

v  Poisson’s ratio         - 

vf  Excitation velocity        m/s 

x, y, z   Cartesian coordinates        - 

xf  Excitation displacement       m 

𝑦𝑦𝛼𝛼  y component of the shear centre and mass centre coupling arm  m 

𝑧𝑧𝛼𝛼  z component of the shear centre and mass centre coupling arm  m 

Greek Symbols 

∆xi   Deflection in x for the ith element      m 

∆yi   Deflection in y for the ith element      m 

∆zi   Deflection in z for the ith element      m 

θxi   Rotation in x for the ith element      rad 

θyi   Rotation in y for the ith element      rad 

θzi   Rotation in z for the ith element      rad 

ρ  Material density        kg/m3 
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