
End to End Multi-Objective
Optimisation of H.264 and

HEVC Codecs

By

Maryam Mohsin Salim Al Barwani

 A Doctoral Thesis

Submitted in partial fulfilment of the
requirements for the award of

Doctor of

Philosophy of

Loughborough University

October 2017

© by Maryam Mohsin Al Barwani (2017)

Supervisor: Prof. Eran Edirisinghe

ii

All multimedia devices now incorporate video CODECs that comply with

international video coding standards such as H.264 / MPEG4-AVC and the new

High Efficiency Video Coding Standard (HEVC) otherwise known as H.265.

Although the standard CODECs have been designed to include algorithms with

optimal efficiency, large number of coding parameters can be used to fine tune their

operation, within known constraints of for e.g., available computational power,

bandwidth, consumer QoS requirements, etc. With large number of such

parameters involved, determining which parameters will play a significant role in

providing optimal quality of service within given constraints is a further challenge

that needs to be met. Further how to select the values of the significant parameters

so that the CODEC performs optimally under the given constraints is a further

important question to be answered.

This thesis proposes a framework that uses machine learning algorithms to model

the performance of a video CODEC based on the significant coding parameters.

Means of modelling both the Encoder and Decoder performance is proposed. We

define objective functions that can be used to model the performance related

properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that

these objective functions can be practically utilised in video Encoder/Decoder

designs, in particular in their performance optimisation within given operational

and practical constraints. A Multi-objective Optimisation framework based on

Genetic Algorithms is thus proposed to optimise the performance of a video codec.

The framework is designed to jointly minimize the CPU Time, Bit-rate and to

maximize the quality of the compressed video stream. The thesis presents the use of

this framework in the performance modelling and multi-objective optimisation of

the most widely used video coding standard in practice at present, H.264 and the

latest video coding standard, H.265/HEVC.

When a communication network is used to transmit video, performance related

parameters of the communication channel will impact the end-to-end performance

of the video CODEC. Network delays and packet loss will impact the quality of the

video that is received at the decoder via the communication channel, i.e., even if a

iii

video CODEC is optimally configured network conditions will make the experience

sub-optimal. Given the above the thesis proposes a design, integration and testing

of a novel approach to simulating a wired network and the use of UDP protocol for

the transmission of video data. This network is subsequently used to simulate the

impact of packet loss and network delays on optimally coded video based on the

framework previously proposed for the modelling and optimisation of video

CODECs. The quality of received video under different levels of packet loss and

network delay is simulated, concluding the impact on transmitted video based on

their content and features.

Maryam M. Al Barwani, October 2017

iv

First of all, I would like to thank Almighty God for all blessing given to me providing

the ability and patience to finish this thesis work.

I would like to thank my supervisor, Prof Eran A. Edirisinghe, for his expert

guidance and continuous encouragement throughout the course of my PhD.

Without his suggestions this work would not have been possible.

I want to extend my gratitude to Mr Salim Al Busaidi my dearest husband, who has

always supported me and helped me overcoming the difficulties without

complaining. I would also like to say a big thank you to my beloved parents,

brothers and sisters for their prayers and care before and during my study at

Loughborough University. My special thanks also go to my children.

I also appreciate the support and friendship provided by the academic and

secretarial staff of the department of Computer Science, Loughborough University.

To all I say thank you.

Finally, I would like to acknowledge the support of the Ministry of Manpower of the

Sultanate of Oman for providing the funding for this research and Loughborough

University UK for providing the required research facilities and support.

v

Abstract .. ii

Acknowledgments ... iv

Table of Contents .. v

List of Figures .. viii

List of Tables .. x

List of Abbreviations .. xii

Chapter 1 Introduction ... 1

 Aim & Objectives .. 3 1.1

 Research Contributions ... 3 1.2

 Thesis Structure .. 4 1.3

Chapter 2 Research Background .. 5

 Introduction .. 5 2.1

 Video Representation Formats and Compression 5 2.2

 Digital video formats ... 6 2.2.1

 H.246 ADVANCE video coding standard 7 2.3

 Video Coding Concepts .. 8 2.3.1

 Basic coding structure for H.264/AVC ... 9 2.3.2

 The H.264/AVC Coding Tools ... 10 2.3.3

 The H.264/AVC encoder parameters ... 11 2.3.4

 HEVC video coding standard .. 13 2.4

 Differences of HEVC from H.264/AVC ... 14 2.4.1

 Compression Performance Analysis in HEVC .. 17 2.4.2

 Tools for Encoding, Decoding, Modelling and Optimisation 19 2.5

 JM Reference Software .. 19 2.5.1

 The Intel® VTune™ Amplifier XE .. 19 2.5.2

 WEKA machine learning toolkit ... 20 2.5.3

 Matlab Optimisation Toolbox ... 23 2.5.4

 An overview of End-to End video streaming 25 2.6

vi

 Overview of video streaming ... 25 2.6.1

 Overview of the VideoLAN streaming solution ... 27 2.6.2

 EvalVid - A Video Quality Evaluation Tool-set ... 27 2.6.3

 Network simulator using Riverbed Modeler (Opnet)28 2.6.4

 Summary ... 28 2.7

Chapter 3 Literature Review .. 29

 Introduction .. 29 3.1

 Optimisation of Video Coding .. 29 3.2

 Parameter-based Optimisation ... 31 3.2.1

 Theory of Multi-Objective Optimisation 36 3.3

 Multi-Objective Optimisation using Genetic Algorithms 37 3.3.1

 H.264 Video Coding ... 38 3.4

 High Efficiency Video Coding (HEVC) 40 3.5

 Use of machine learning in video coding 44 3.6

 End-to-End Video Streaming ... 46 3.7

 Summary & Conclusions .. 49 3.8

Chapter 4 Parameter based Characterisation and Performance

Modelling of a H.264 Video CODEC .. 50

 Decoder Introduction .. 50 4.1

 Proposed framework for multi-objective optimization 51 4.2

 The Profiling Experiments - Determining the Significant Coding 4.2.1

Parameters ... 53

 The Objective Functions of the H.264/AVC Encoder 59 4.2.2

 Encoder Performance Analysis ... 61 4.3

 Decoder Performance Analysis .. 64 4.4

 The output of Decoded video ... 65 4.4.1

 Using Advanced Machine Learning Algorithms for the Modelling 4.5

of an H264 CODEC ... 69

 Experiments, results and analysis ... 70 4.5.1

 Summary & Conclusion ..72 4.6

vii

Chapter 5 Multiobjective Optimisation .. 73

 Introduction ...73 5.1

 Setting up the Genetic Algorithm ... 74 5.2

 Optimising the Encoder .. 77 5.3

 Experimental results and analysis .. 78 5.3.1

 Optimising the Decoder ... 86 5.4

 Summary and Conclusion .. 88 5.5

Chapter 6 A Machine Learning based Framework for Parameter based

Multi-Objective Optimisation of a H.265 Video CODEC 89

 Introduction .. 89 6.1

 Proposed Framework for Performance Modelling 90 6.2

 Profiling Experiments/ Determining the Significant Coding Parameters6.2.1

 92

 The Objective Functions of the HEVC Encoder .. 97 6.2.2

 Analysis of experimental results .. 97 6.3

 Encoder Analysis ... 97 6.3.1

 Decoder Analysis ... 100 6.3.2

 Multi-Objective Optimisation of a H.265 Video CODEC 102 6.4

 Implementation ... 103 6.4.1

 Optimising the encoder ... 105 6.5

 Experimental results .. 106 6.5.1

 Discussion .. 109 6.5.2

 Summary ... 111 6.6

Chapter 7 Impact of Packet Loss & Network Delay on Optimally Coded

Video Streaming .. 112

 Introduction ... 112 7.1

 System Design and Implementation .. 114 7.2

 Tested video sequences.. 116 7.2.1

 Video streaming experimental setup.. 117 7.2.2

 Client - Server communication ... 117 7.2.3

viii

 Experiments, results and analysis ... 118 7.3

 Summary .. 124 7.4

Chapter 8 Conclusions and Future Work .. 126

 Conclusions .. 126 8.1

 Future work .. 129 8.2

References ... 131

Appendices ..140

Appendix A: JM reference encoder / decoder configuration file...................... 140

Appendix B: Selected parameters for encoder / decoder. 142

Appendix C: Pareto Plot ... 148

Appendix D: Optimal points and functional values. ... 149

Appendix E: HEVC HM encoder / decoder configuration file.......................... 156

Appendix F: Selected parameters for encoder / decoder. 159

Appendix G: Optimal points and functional values. ... 161

ix

Figure ‎2-1: A Video CODEC Process. ... 9

Figure ‎2-2: The H.264 video coding and decoding processes [3]. 10

Figure ‎2-3: An example of sequence with I-, B- and P-frames [8]. 10

Figure ‎2-4 Block diagram of an HEVC encoder with built-in decoder [13] 14

Figure ‎2-5 Video streaming diagram [29] .. 26

Figure ‎2-6 VideoLAN streaming solution [30] .. 27

Figure ‎3-1: Multi-objective Optimisation framework used in [37]............................ 32

Figure ‎4-1: Proposed Multi-objective optimisation framework. 52

Figure ‎4-2: Sample image of frame 30 at (a) QP= 17 and (b) at QP= 49 65

Figure ‎5-1: Setting options for the optimisation task .. 76

Figure ‎5-2: Pareto front for foreman PSNR in (db) vs. Bit-Rate in (kbit/s). 80

Figure ‎5-3: Pareto front for foreman PSNR in (db) vs. CPU Time in (sec). 80

Figure ‎5-4: Pareto front for foreman CPU Time in (sec) vs. Bit-Rate in (Kbit/s). 81

Figure ‎5-5: number of solutions and the number of generations.83

Figure ‎5-6: More details about the optimization ...83

Figure ‎5-7: Pareto points 1 PSNR in (db) vs. Bit-rate in (Kbit/s) 85

Figure ‎5-8: Pareto points 2 PSNR vs. CPU Time in (sec). ... 85

Figure ‎5-9: Pareto points 3 CPU Time in (sec) vs. Bit-Rate 86

Figure ‎5-10: Bit-Rate in in (Kbit/s) vs. CPU Time in (sec) .. 87

Figure ‎5-11: PSNR in (db) vs. CPU Time in (sec) ... 87

Figure ‎6-1: Proposed Multi-objective optimisation framework 91

Figure ‎6-2: PSNR versus Bit-rate at QP 27, 37, 45. ... 100

Figure ‎6-3: The visual artifact with different QP. ... 102

Figure ‎6-4: Pareto front for cactus video sequences PSNR in (db) vs. Bit-Rate in

x

(Kbit/s).. 106

Figure ‎6-5: Pareto front for cactus video sequences CPU Time in (sec) vs. Bit-Rate in

(Kbit/s).. 107

Figure ‎6-6: Pareto selected points for Cactus PSNR vs Bit-Rate. 110

Figure ‎6-7: Pareto selected points for Cactus CPU Time vs Bit-Rate. 110

Figure ‎7-1: Block diagram of streaming procedure .. 116

Figure ‎7-2: The effect of different packet loss rates on the PSNR.121

Figure ‎7-3: Impact on PSNR with different levels of delay for Akiyo video. 122

Figure ‎7-4: (a) video frame before streaming (b) received video by client at 6%

Packet loss Rate. (c) The effect of delay at 50 ms. ... 123

xi

Table ‎2-1 SIF, CIF, and QCIF digital video formats [1]. .. 7

Table ‎2-2: List of coding parameters .. 11

Table ‎2-3 H.265 (HEVC) and H.264 (MPEG 4 AVC) [14]. .. 15

Table ‎2-4 Intra prediction techniques between H.264 and HEVC [13] 16

Table ‎4-1: Selected frames of video sequences [93], [94]. ... 55

Table ‎4-2: The initial list of parameters used [37] ... 56

Table ‎4-3: Significant parameters and value used ... 57

Table ‎4-4: selected set of parameters for foreman sequence 58

Table ‎4-5: Encoder Correlation Coefficient. .. 62

Table ‎4-6: Selected set of decoder parameters for Foreman Sequences. 67

Table ‎4-7: Decoder correlation coefficient ... 68

Table ‎4-8: Decoder Correlation coefficient using bagging 70

Table ‎4-9: Encoder Correlation coefficient with both linear and bagging 71

Table ‎5-1: ‘gamultobj’ settings used ... 75

Table ‎5-2: The optimal points for foreman PSNR vs. Bit-rate82

Table ‎5-3: Output data describing the results of MOO with GA for Figure ‎5-2 to

Figure ‎5-4 ..82

Table ‎6-1: Settings for the Encoder in HM ... 93

Table ‎6-2: Tested Video Sequences .. 94

Table ‎6-3: Selected Set Of Parameters For Cactus Sequence 96

Table ‎6-4: Encoder Correlation Coefficient .. 98

Table ‎6-5: Decoder Correlation Coefficient ... 100

Table ‎6-6: Optimisation settings .. 104

Table ‎6-7: The optimal points for Cactus PSNR vs. Bit-rate 107

xii

Table ‎6-8: Output data describing the results of MOO with GA for cactus. 109

Table ‎7-1: Video sequences and their properties ... 117

Table ‎7-2: Select optimal points from Figure ‎5-7 in chapter 5 for foreman video. . 119

Table ‎7-3: Encoded video with different parameter sets for foreman video using

optimal points. .. 119

Table ‎7-4: Packet Loss settings and the resulted PSNR (quality) 120

Table ‎7-5: Impact of packet-delay on the quality of the Akiyo video sequence.......121

Table ‎7-6: Using defaults parameter of H.264 encoder. ... 124

xiii

AVC Advance video coding

AVC Advance video coding

B-frames Bi-directional predicted frame

CABAC Context-Adaptive Binary Arithmetic Coding

CAVLC Context-Adaptive Variable Length Coding

CIF Common Intermediate Format

CODEC COder-DECoder/COMpression-DECompression

CPU Central Processing Unit

dB Decibels

DCT Discrete Cosine Transform

EAs

EMO

Evolutionary algorithms

Evolutionary Multi-Objective Optimisation

FMO Flexible Macro-block Ordering

GA Genetic Algorithm

GHz Gigahertz - 1 billion hertz

HEVC High-Efficiency Video Coding

IEC International Electro technical Commission

I-frames Intra-frames

ISO International Organization for Standardization

ITU-T International Telecommunication Union –Telecommunication

JTC Joint Technical Committee

JVT Joint Video Team

MOEAs Multi-objective evolutionary algorithms

xiv

MOO Multi-objective Optimization

MPEG Moving Picture Experts Group

MSE Mean squared error

NAL Network adaptation layer

NSGA Non-dominated sorting genetic algorithm

OM OPNET Modeler

P-frames Predicted frames

P-R-D Power-rate distortion

PSNR Peak Signal-to-Noise Ratio

QCIF Quarter Common Intermediate Format

QoS Quality of service

QP Quantization Parameter

UHD Ultra-high definition

VCEG Video Coding Experts Group

VCL Video coding layer

WLAN

WEKA

Wireless local area network

Waikato Environment for Knowledge Analysis

1

Applications that benefit from accurate video capture, efficient representation and

coding, error-free transmission and subjectively optimised display, have been

growing over the years due to the availability of higher network bandwidth, faster

processor speed and advanced capture and display technologies. Recent studies

have shown that coded video data is becoming the major part in consumer internet

traffic with a predicted share of 90% by 2019. Some of the most extensively used

applications include real-time video conferencing, video streaming over broadband

networks and digital TV broadcasting. Most current mobile hand-held devices come

equipped with a video camera that is able to capture and encode a video stream in a

standard format. These devices also include video players, which can decode and

playback video. All above developments continuously demand for more efficient

video coding algorithms that are able to reduce the bitrate without sacrificing video

quality or to enable the increase of video resolution, without increasing the bitrate.

High Efficiency Video Coding (HEVC) also known as H.265 is the most resent

answer to this consumer demand. The more established video coding standards

used widely in practice however is, H.264, the Advanced Video Coding standard and

MPEG-2.

All advanced video CODECs have many parameters that can be used to control their

operational characteristics, both at the encoder and decoder ends, enabling the

possibility of fine tuning their operation for maximum efficiency within

environments and application scenarios that are bound by various constraints. For

example the available bandwidth will have an upper limit, the network will be

subjected to delays and the decoder/display unit may have limitations in processing

and capabilities. In the design and implantation of international video coding

standards extreme care has been taken to make the algorithmic performance

optimal by designing and using (or recommending the use of) the optimal

algorithms for every possible task within a video CODEC. Therefore nothing much

can be done to change the algorithms. Yet the encoder, transmission medium and

decoder have many parameters that can be adjusted for them to be efficiently

operational under above mentioned constraints. Identifying the values of these

2

parameters that result in the implemented CODECs optimal performance under

given constraints remains an open research problem of vital importance.

The first step of parameter based optimisation of a video CODEC is the

identification of the coding parameters that have a significant impact of its key

properties, such as, bandwidth, image/video quality, and CPU time, etc. Although

an experienced user of a video CODEC can guess these parameters with some

accuracy, when the content of the video is known, a formal scientific approach is

needed to accurately decide the parameter set, with minimum error from any

subjectivity in the decision making process by human users. Having obtained these

parameters it is then possible to model the key properties of the video CODEC

described above based on the significant parameters. These models can then be

used to optimise the performance of the video codec when operated under practical

constraints thus making the parameter based characterisation and modelling,

practically useful.

In this research we propose a framework that is based on the fundamentals of

machine learning that can be used to scientifically determine the significant coding

parameters of a video CODEC. These parameters are then used to model the

operational behaviour of the video CODEC for which machine learning algorithms

are further utilised. We also show that this model can be used to establish the

foundations of a multi-objective optimisation framework, which can be

subsequently used for the parameter based optimization of H.264 and H.265 video

coding standards. Although the experiments conducted are limited to H.264 and

H.265 standards, the proposed framework can be used in relation to any video

coding standard. Once parameters that result in the optimal operation of a video

codec under constraints have been found using the framework being proposed, the

coded video can be transmitted over a practical network that often subjects the

video to delays and packet loss. The impact is thus the sub-optimal end-to-end

performance of the CODEC although the CODEC itself was set for optimal

performance. In this research we analyse the impact of packet loss and network

delays on the quality of streamed videos transmitted across a network and received

at the decoder. A detailed investigation of the impact of packet loss and delay for

transmitting video using the H.264 standard is conducted. How the video quality is

impacted for videos with different content and motion features is studied, leading to

useful conclusions and recommendation for future work.

3

 Aim & Objectives 1.1

The aim of the research presented within this thesis is to propose a parameter based

Multiple Objective Optimization framework for video CODECs, based on the use of

machine learning and genetic algorithms. In particular the use of the proposed

framework for optimally coding video under given bit-rate, quality and CPU time

constraints using H.264 and H.265 standards is demonstrated are the impact of

transmitting such optimally coded video over real channels with packet loss and

transmission delays is investigated.

Following are a list of research objectives to be met:

 Carry out a background study of H.264 and HEVC video CODECs and a

complete literature review of existing approaches to multi-objective

optimisation of video CODECs.

 Carry out profiling of H.264 and HEVC video CODECs using machine

learning approaches to identify the coding parameters that have the most

significant impact on the video compression rate, distortion/quality and

use of computational power / CPU Time. Based on the significant coding

parameters, create operational models for the same.

 Based on the operational models, carry out parameter based, multi-

objective / multi-constraint optimisation of the H.264 and HEVC video

CODECs, proposing use cases of optimal encoder and decoder

configurations.

 Within an end-to-end video coding, transmission and delivery system

where the CODEC has been configured to act optimally, investigate the

impact of packet loss and network delays on the delivered video quality.

 Research Contributions 1.2

The research conducted within the context of this thesis has led to the following

original contributions:

1. The proposal of a novel machine learning based approach for the profiling

of video CODECs that can be used to model the performance of CODECs

with respect to coded bit-rate, decoded video quality and the computational

cost of encoding/decoding.

4

2. Performance modelling and parameter based multi-objective optimisation

of the CODECs of the most widely used video coding standard H.264 and

the latest video coding standard HEVC.

3. Investigating the impact of packet-loss and network delay on the decoded

video quality when optimally coded video data is transmitted over a real

network. In respect to this, the proposal of a system that can be used to

transmit video, under varying packet loss and delay settings.

The above contributions have led to the publication of the following
conference/journal papers:

1. M. Al-Barwani and E. A. Edirisinghe, “A machine learning based framework

for parameter based multi-objective optimisation of a H.265 video CODEC,”

2016 IEEE Future Technologies Conference (FTC). pp. 553–559, 2016.

2. M. Al-Barwani, E. Edirisinghe, "A Machine Learning based Framework for

Parameter based Multi-Objective Optimisation of Video CODECs", Journal

of Advances in Science, Technology and Engineering Systems, vol. 2, no. 3,

pp. 1515-1526 (2017).

 Thesis Structure 1.3

For clarity of presentation, the remainder of this thesis is organized as follows:

Chapter 2 provides background knowledge about H.264, HEVC, machine learning

tools and systems used for the end-to-end delivery of video streaming. Chapter 3

focuses on the study of literature in Multi-objective optimisation, machine

learning, video codecs and video steaming. Chapter 4 presents the proposed novel

machine learning based framework for the analysis of significant coding

parameters of a H.264 CODEC. Chapter 5 introduces the proposed framework for

the multi-objective optimisation of a H.264 video CODEC. Chapter 6 presents a

machine learning based framework for the profiling, performance modelling and

the parameter based multi-objective optimisation of a H.265 video CODEC.

Chapter 7 presents a system that has been designed and integrated to enable the

simulation of packet loss and network delay, in the end-to-end coding and delivery

of optimally coded H.264 video streams. Finally chapter 8 concludes the research

findings of the thesis and proposes possible future work.

5

 Introduction 2.1

This chapter introduces the readers to the research background of this thesis. The

chapter initially presents some essential basic concepts on video representation,

compression and quality evaluation (see section 2.2). It then presents an in-depth

analysis of the operational aspects of algorithms and systems within the two video

coding standards to be optimized, i.e. H264 (in section 2.3) and HEVC (in section

2.4). Understanding the underlying algorithms that are controlled by the

parameters used within the optimization process, is essential in making informed

judgements, within the research conducted. In addition section 2.5 covers the

software implementations, models and toolkits used within this thesis, that carries

out video coding (JM reference software), performance evaluation (Intel Vtune

Amplifier XE), optimization (NSGA-II) and machine learning (WEKA). Section 2.6

presents network modelling and end-to-end video delivery (VideoLAN & OPNET).

Section 2.7 provides a summary of information presented in this chapter.

 Video Representation Formats and 2.2

Compression

Video or visual communications require significant amounts of information

transmission. Video compression as considered here involves the bit rate reduction

of the digital video signal carrying visual information [1]. Traditional video-based

compression, like other information compression techniques, focuses on

eliminating redundancy and unimportant elements of the source. The degree to

which the encoder reduces the bit rate is called its coding efficiency, or equivalently

its inverse is termed the compression ratio, that is, ܿݕ݂݂ܿ݊݁݅ܿ݅݁ ݃݊݅݀݋ = ሺܿ݋݅ݐܽݎ ݊݋݅ݏݏ݁ݎ݌݉݋ሻ−ଵ = ݁ݐܽݎ ݐܾ݅ ݀݁݀݋ܿ݁݀/݁ݐܽݎ ݐܾ݅ ݀݁݀݋ܿ݊݁

6

Compression can be a lossless or lossy operation. Due to the immense volume of

video information, lossy operations are a key element used in video compression

algorithms. The loss of information or distortion measure is usually evaluated using

the mean square error (MSE), mean absolute error (MAE) criteria, or peak signal-

to-reconstruction noise (PSNR) as defined in equations below.

ܧܵܯ = ͳܰܯ + ∑ ∑[ே
௝=ଵ

ெ
௜=ଵ ,ሺ݅ ܫ ݆ሻ − ,ሺ݅ ܫˆ ݆ሻ]ଶ

 (Equation 2-1)

ࡱ࡭ࡹ = ૚ࡺࡹ + ∑ ∑ ࡺ|
૚=࢐

ࡹ
૚=࢏ 𝑰 ሺ࢏, ሻ࢐ − ˆ𝑰 ሺ࢏, |ሻ࢐

 (Equation 2-2)

ࡱࡿࡹ = ૛૙ ૚૙ࢍ࢕࢒ (૛ࡱࡿࡹ࢔૚ ૛⁄)

 (Equation 2-3)

 Digital video formats 2.2.1

Digital video is a representation of moving visual images in the form of encoded

digital data. This is in contrast to analog video, which represents moving visual

images with analog signals.

The ITU Specialist Group has recommended three formats that are used in the ITU

H.261, H.263, H.264, and ISO MPEG video compression standards. They are the

Standard Input Format (SIF), Common Interchange Format (CIF), and the low bit

rate version of CIF called Quarter CIF (QCIF) (see Table ‎2-1). Together, these

formats describe a comprehensive set of digital video formats that are widely used

in current digital video applications [1].

7

Table 2-1 SIF, CIF, and QCIF digital video formats [1].

 H.246 ADVANCE video coding standard 2.3

H.264 is one of the most commonly used video coding standards, jointly developed

by the international standards bodies ITU-T (International Telecommunication

Union) Video Coding Experts Group (Coders) and ISO/IEC (International

Organisation for Standardisation / International Electrotechnical Commission)

Moving Picture Experts Group (MPEG). The standard was first published in 2003.

It is also known as MPEG-4 Part 10 or AVC for Advanced Video Coding. According

to [2], H.264 provides better compression effi ciency from earlier standards such as

MPEG-2 and MPEG-4 with flexibility in compressing, transmitting and storing

video. It can give better performance and produces an average bitrate reduction of

about 50% over MPEG-2 for the same video quality. According to [67] and [68],

compressed video clips take up less transmission bandwidth and less storage space

compared to older codecs. The H.264/AVC design consists of a video coding layer

(VCL) and a network abstraction layer (NAL). VCL performs all the classic signal

processing tasks and generates bit strings containing coded macroblocks. The main

goal of the NAL is to adapt those bit strings in a network friendly design objective

[5]. Integration of network adaptation and video coding can bring the best possible

performance of a video communication system.

8

H.264 is an industry standard for video compression, which converts digital video

into a format that takes up less capacity while being stored or transmitted.

Applications such as digital television, DVD-Video, mobile TV, videoconferencing

and internet video streaming are important technology in Video compression. The

standardization of video compression makes it possible for products like encoders,

decoders and storage media from different manufacturers to inter-operate. An

encoder converts video into a compressed format and a decoder converts

compressed video back into an uncompressed format [3] .

Developing and designing the standard is a challenge to the engineers or

programmers who interface with an H.264 codec. H.264 has more options and

many parameters than any previous standard codec. Getting the right controls and

parameters is not an easy task for delivery of high compression performance. On the

other hand, wrong controls and parameters result in poor-quality pictures and/or

poor bandwidth efficiency [4].

 Video Coding Concepts 2.3.1

Video coding standards such as H.264/AVC define converting a raw video source

into a specified bitstream. A typical compliant video coding system consists of

several modules that perform operations such as motion compensated prediction,

transform coding, rate control, run-length coding and entropy coding. Although the

encoded bitstream syntax is specified by a standard, many of the encoder modules

are left open. In [4], compression involves a complementary pair of systems, a

compressor (encoder) and a decompressor (decoder). Before transmitting or storing

video data, the encoder converts the source data into a compressed form and the

decoder converts the compressed form back into a representation of the original

video data. The encoder/decoder pair is often described as a CODEC

enCOder/DECoder. Data compression is achieved by removing redundancy.

Redundant components are not necessary for faithful reproduction of the data. [4]

Iain Richardson has contributed a lot to video compression in his books.

A video CODEC in Figure ‎2-1 encodes a source image or video sequence into a

compressed form and decodes this to produce a copy or approximation of the source

sequence.

9

Figure 2-1: A Video CODEC Process.

 Basic coding structure for H.264/AVC 2.3.2

The typical video coding and decoding process is demonstrated in Figure ‎2-2 [3].

The encoder processes an input frame by splitting it into units of a Macroblock with

16x16 pixels. Macroblocks are organized into slices to represent the regions of a

given frame to be encoded independently. The first image of a sequence or a

random access point is typically Intra coded, without using information contained

in the other pictures. A prediction of the macroblock is formed based on the current

frame using intra prediction. For the other remaining frames that have already been

coded and transmitted, inter prediction is used. A residual is formed by subtracting

the prediction from the current macroblock. Then the block of residual is

transformed using a 4x4 or 8x8 integer transform. The transform outputs a set of

coefficients which is then quantized according to a quantization parameter QP.

In H.264, images in the input video are encoded in units of macroblocks, which are

blocks of pixels that consist of 16 pixels in the horizontal direction and 16 pixels in

the vertical direction; when a macroblock is encoded, information about how

adjacent already-encoded macroblocks were encoded is utilized in order to achieve

high compression performance [6].

The quantized transform coefficients are entropy coded and transmitted together

with the side information for either Intra-frame or Inter-frame prediction. The

quantized transform coefficients are inverse scaled and inverse transformed in the

same way as at the decoder side; the decoded prediction residual is added to the

prediction. The result is then fed into a deblocking filter which provides the decoded

video as its output [7].

Source Video Encoder Channel Decoder Output Video

10

Figure 2-2: The H.264 video coding and decoding processes [3].

 The H.264/AVC Coding Tools 2.3.3

This section describes Frame types and the tools that make H.264 such a successful

video coding scheme. Intra coding, motion compensated prediction, transform

coding, entropy coding and the adaptive de-blocking filter are discussed

subsequently in the section.

Frame types

Figure 2-3: An example of sequence with I-, B- and P-frames [8].

The basic principle for video compression is the prediction between adjacent

frames. There are three types of frames: Intra-frames (I-frames), forward-predicted

frames (P-frames), and bi-directional predicted frame (B-frames) as explained in

[8] (see Figure ‎2-3).

11

 I-frame: An Intra predicted frame is self-contained, having no dependency

outside of that image. The more I-frames contained, the better the quality of

the video; however, I-frames contain the greatest number of bits and

therefore use more space on the storage medium.

 P-frames: Predicted-frames are predicted from the last I frame or P frame

used as the reference frame. P-frames contain only the data that have

changed from the reference frame.

 B-frames: Bidirectional; predicted from two references one in the past and

one in the future I and P-frames. B-frames contain only the data that have

changed from the preceding frame or are different from the data in the very

next frame used as a reference.

 The H.264/AVC encoder parameters 2.3.4

The efficiency of a coding algorithm is furthermore dependent on various

parameters used. A significant number of coding options are available through the

selection of various combinations of a large number of coding parameters. In [2],

the H.264 CODECs have a large number of coding parameters to select from. The

selection of coding parameters of a given video sequence as shown in Table ‎2-2, is

used to achieve the optimum performance of the CODEC.

These parameters specify input/output control of the encoder, including source

video and output sequence video file names, and the file format [9].

Table 2-2: List of coding parameters

Parameter Meaning

IntraPeroid Period of I-frames, i.e. frame will be coded using intra

slices, every IntraPeriod frame.

NumberReferenceFrames Sets maximum number of references stored in the buffer

for motion estimation and compensation.

SearchRange Sets allowable search range for motion estimation.

RDOptimization Enables rate distortion optimized mode decision.

Quantization Parameter Quantization parameter

12

IntraPeriod

IntraPeriod parameter represents the maximum period of I-coded frames in the

encoded sequence. IntraPeriod can start with default values 0 which means that the

first frame is coded as an I-frame and the following frames are coded as P-frames

[9].

NumberReferenceFrames

NumberReferenceFrames is used to set the maximum number of references stored

in Decoded Buffer for motion estimation and compensation. The number of

reference frames used for inter motion search ranges from 0-16, the default value is

1 [9].

RDOptimization

RDOptimization is a method used for improving video quality in video compression.

Rate-distortion optimization can be used to improve quality in any encoding video

where decisions have to be made that affect both file size and quality

simultaneously.

RDOptimization enables the Lagrangian based rate distortion optimized mode

decision. The mode can take values from 0 to 2:

0: RD-off Enable Low Complexity mode (default)

1: RD-on Enable High Complexity mode

2: RD-on Enable Fast High Complexity mode (does not support

FRExt profiles)

SearchRange

The search window size sets an allowable search range for Motion Estimation. It can

take either of two values, 16 or 32. The default value is 16 and maximum is 32. If

Rate Distortion Optimisation is enabled, the search window is centred around

median predictor, not (0, 0) [9].

Quantization parameter (QP)

 QPISlice

Sets quantization parameter value for I slices. Allowable values are in the range of 0

to 51. Default value is 24.

 QPPSlice

Sets quantization parameter value for all P slices. Allowable values are in the range

of 0 to 51. Default value is 24.

http://en.wikipedia.org/wiki/Video_quality
http://en.wikipedia.org/wiki/Video_compression

13

 QPBSlice

Quantization parameter used for non-stored B slices. Should be in the range [0-51].

Default value is 24.

When QP is low, almost all details are retained; however, as QP is increased, some

of those details are aggregated so that the bit rate drops, but at the price of some

increase in distortion and some loss of quality [9].

 HEVC video coding standard 2.4

Due to the higher demand for higher resolution videos, in 2010 many proposals

were submitted both from representatives of industry and academia, which in turn

led to the development of the so-called High-Efficiency Video Coding (HEVC)

standard during the next two and a half years. The first edition of HEVC was

officially finalized in January 2013, and after that, the final aligned specification was

approved by ITU-T as Recommendation H.265 and by ISO/IEC as MPEG-H, Part 2.

The H.265/MPEG-HEVC standard was designed to be applicable for almost all

existing H.264/MPEG-AVC applications, while putting emphasis on high-resolution

video coding. Since the development process of H.265/MPEG HEVC was also

driven by the most recent scientific and technological achievements in the field of

video coding, dramatic bit-rate savings were achieved for substantially the same

visual quality, when compared to its predecessor H.264/MPEG-AVC [11], [12].

Figure ‎2-4 shows a block diagram of a block-based hybrid video encoder with some

characteristic ingredients of HEVC regarding its novel block partitioning concept.

In a first step of this new block partitioning approach, each picture in HEVC is

subdivided into square blocks of the same size, each of which serves as the root of a

first block partitioning quadtree structure, the coding tree, which are therefore

referred to as coding tree blocks (CTBs). The CTBs can be further subdivided along

the coding tree structure into coding blocks (CBs), which are the entities for which

an encoder has to decide between intra-picture and motion-compensated prediction

[13].

http://www.pixeltools.com/rate_control_paper.html#dis

14

Figure 2-4 Block diagram of an HEVC encoder with built-in decoder [13]

 Differences of HEVC from H.264/AVC 2.4.1

The HEVC standard has the ability of saving significant bandwidth over H.264

encoded content having similar quality. Some of the key differences between H.265

(HEVC) and H.264 (MPEG 4 AVC) are listed in Table ‎2-3.

15

Table 2-3 H.265 (HEVC) and H.264 (MPEG 4 AVC) [14].

Category H.264 H.265

Names MPEG 4 Part 10 AVC MPEG-H, HEVC, Part 2

Progression Successor to MPEG-2 Part Successor to H.264

Key

Improvement

- 40-50% bit rate reduction

Compared to MPEG-2 with growth

of HD content delivery over

network.

- Support Up to 4K

(4,096×2,304)

- Supports up to 59.94 fps

- 40-50% bit rate

reduction at the same

quality compared to

H.264.

- Up to 8K UHDTV

(8192×4320)

- Supports up to 300 fps

Compression

Model

- Hybrid spatial-temporal

prediction model

- 9 directional modes for

intra prediction

- Macro Blocks structure

with maximum size of 16x16

- Entropy coding is

CABAC and CAVLC

- Enhanced hybrid

spatial-temporal

prediction model

- 35 directional modes

for intra prediction

- Supporting larger block

structure (64x64)

- Entropy coding is

CABAC only

Drawbacks Unrealistic for UHD content

delivery due to high bit rate

requirements.

Computationally expensive

due to larger prediction

units and expensive Motion

Estimation.

16

Both HEVC intra coding and H.264/AVC intra coding are based on spatial sample

prediction [13]. Yet, the intra coding methods in HEVC can be elaborated in a

number of ways.

1. First of all, the set of supported prediction block sizes is extended up to

32x32 to be aligned with the HEVC coding structures and to improve

reconstruction of smooth image areas.

2. Secondly, the number of available directional modes is extended from 8 to 33

to improve modelling of directional textures. In HEVC, the whole range of

directional predictors is made available for both luma and chroma blocks,

while in H.264/AVC the number of available directional prediction modes for

chroma is limited to two horizontal and vertical modes.

3. Another advantage of HEVC is its ability to pad the missing reference

samples and allow usage of all the prediction modes independent of

availability of certain reference samples.

4. The HEVC intra mode coding also uses an approach different from that of

H.264/AVC. Due to the large number of intra modes in HEVC, the luma intra

mode is signaled by using three of the most probable modes and the selected

luma mode is always made available as one of the candidate modes for the

corresponding chroma blocks.

The Table ‎2-4 below summarizes key differences of intra prediction in H.264/AVC

and HEVC.

Table 2-4 Intra prediction techniques between H.264 and HEVC [13]

17

 Compression Performance Analysis in HEVC 2.4.2

To conduct HEVC performance evaluations, a well-defined encoder setting and

testing environment need to be established with HEVC and AVC reference encoder

software [13].

 Encoder Software 2.4.2.1

In the standardization of HEVC, the reference software, named as HM (HEVC

Test Model, reference software), has been developed as a common SW platform for

further improvement and study.

The HM reference software is maintained at two sites [15]. HHI (Heinrich Hertz

Institute) maintains the main SVN server and BBC (British Broadcasting

Corporation) maintains the mirroring repository site.

 HM software repository (main at HHI)[16]

 HM software repository (mirror at BBC)[17]

 Prediction Structure 2.4.2.2

The performance evaluation defines the following prediction structures.

 All Intra (AI)

 Random Access (RA)

 Low Delay P picture (LDP)

 Low Delay B picture (LDB)

In these configurations, the QP (Quantization Parameter) value can be modified by

adding to it a “QP offset” value. That is, CTC defines QP of the first picture (QP of an

I picture, QPI, with I picture defined below) and the QP of the following pictures are

derived as QPD (QPICQP offset), with QP offset being determined according to the

picture type (e.g., P & B pictures, defined below) or a picture temporal ID. An I

(intra) picture refers to a picture that can be decoded independently without

requiring prediction data from other decoded pictures. A P (predicted) picture, in

general, requires picture sample data from one other I, P or B picture to generate

each predicted sample block. A B (bi-predicted), in general, requires picture sample

data from two other I, P or B pictures to generate each predicted sample block [13].

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
http://hevc.kw.bbc.co.uk/svn/jctvc-a124/

18

 Test Sequences 2.4.2.3

Test sequences are defined according to the picture size and applications and they

are classified into six classes (class A to class F). Class A is the set of sequences with

higher resolution than 1080p HDTV. The sequences are used to evaluate the coding

performance of 4K/8K video. To reduce computation time, picture sizes are cropped

to 2,560 x 1,600 pixels.

Class B is for coding performance evaluation of 1080p HDTV and the set contains

HDTV sequences, with a picture size of 1,920 x 1,080 pixels. Classes C and D are the

set of test sequences with picture sizes of 832 x 480 pixels and 416 x 240 pixels,

respectively. Test sequences in these two classes are for coding performance

evaluation of mobile applications.

Class E is the set of test sequences with a picture size of 1,280 x 720 pixels. It is used

to evaluate coding performance of low-latency applications such as visual

communications. CTC, in addition, defines class F sequences for coding

performance evaluation of non-camera captured content such as video screen

content, containing, for example, text and computer graphics [13].

In addition, the test sequences defined are used for both objective and subjective

quality performance analysis in [13].

 Rate Distortion Curves 2.4.2.4

When evaluating the coding performance of a video codec, a graph of R–D curve

(Rate–Distortion Curve) is used. R–D curve is generated by plotting the encoded

results, in terms of bit rate versus the resulting quality, in a graph. The horizontal

axis denotes the bit rate and the vertical axis denotes a measure of distortion or

quality of encoded video. In general, a higher compression ratio results in a lower

bit rate; however, picture quality is generally reduced. Low compression ratio, on

the other hand, improves picture quality but at the cost of an increase in bit rate.

Since a high coding efficiency codec can achieve higher quality at lower bit rates, the

R–D curve moves toward the upper left.

As an objective measurement of picture quality, PSNR is widely used. PSNR can be

calculated by the following (Equation ‎2-4).

ܴܲܵܰ = ͳͲ logଵ଴ (ʹ௕௜𝑡ௗ௘𝑝𝑡ℎ − ͳ)ଶx 𝑊 x ܪ∑ {ܱ௜௜ − ௜}ଶܦ

 (Equation 2-4)

19

 Tools for Encoding, Decoding, Modelling and 2.5

Optimisation

 JM Reference Software 2.5.1

Joint Model (JM) is H.264/AVC codec implementation publicly made available by

the Joint Video Team (JVT) H.264/AVC Reference Software, 2009. The current

software version is JM 18.6. This software includes means for setting the encoder

and decoder input parameters and the software package contains a Visual Studio

workspace. The user has to select the appropriate solution according to his/her

.NET package. These workspaces include the following projects:

 lencod H.264/AVC reference encoder

 ldecod H.264/AVC reference decoder

After selecting the desired project and the appropriate compilation mode, a

compilation will create the binaries lencod.exe or ldecod.exe in the bin directory [9].

Microsoft Visual Studio is a complete set of development tools for building

ASP.NET Web applications, XML Web Services, desktop applications, and mobile

applications. Visual Basic, Visual C#, and Visual C++ all use the same integrated

development environment (IDE), which enables tool sharing and eases the creation

of mixed-language solutions. In addition, these languages use the functionality of

the .NET Framework, which provides access to key technologies that simplify the

development of ASP Web applications and XML Web Services. [18]

 The Intel® VTune™ Amplifier XE 2.5.2

The Intel VTune Amplifier XE is a commercial application for software performance

analysis on Windows and Linux operating systems. On Windows systems, the

VTune Amplifier XE integrates into Microsoft Visual Studio software and has both

GUI and command line interfaces or can be accessed as a Standalone VTune

Amplifier XE GUI. Although AMD and Intel hardware work on basic features,

Intel-manufactured CPU supports advanced hardware-based sampling. Therefore,

it provides information on code performance for users developing serial and

multithreaded applications. Intel VTune provides basic Hotspot analysis to identify

where and how an application is spending time, determine the most time-

20

consuming program units, and detect how they were called. The time taken by the

instructions is indicative of any stalls in the pipeline during instruction execution.

The tool can also be used to analyse thread performance [19].

 WEKA machine learning toolkit 2.5.3

Waikato Environment for Knowledge Analysis [20] (WEKA) is a machine learning

toolkit introduced by Waikato University, New Zealand. Used for research,

education and projects, it is open source software written in Java (GNU) Public

License and it can be run on Windows, Linux and Mac. Data mining tasks are

implemented using machine learning algorithms. There are several versions of

WEKA: a GUI version adds graphical user interfaces, and a book version is

command-line only. WEKA has the capability to read in ".csv" format files, where

many databases or spreadsheet applications can save or export data. Actually, once

data is loaded into WEKA, the data set can be saved into an ARFF format. Therefore

a series of operations are performed using WEKA's attribute. Many classification

methods have been developed with the aid of learning algorithms. All these

classifiers are basically learning methods and adopt sets of rules. Regression is a

technique used to predict a value of a numerical class, in contrast to classification,

which predicts the value of a nominal class. Given a set of attributes, the regression

builds a model, usually an equation that is used to compute the predicted class value

[21].

Regression analysis is a statistical approach that can be used to investigate the

relationship between variables; typically, the relationship between a dependent

variable and one or more independent variables [22]. It is used for many purposes

like forecasting, predicting and finding the causal effect of one variable on

another. There are many features of regression analysis that make it a popular tool:

 Can handle multiple co-related predictor variables

 Used for continuous and categorical variables

 Addresses unknown parameters

 Studies the effect of one predictor variable on a dependent variable

 Higher-order terms can be used for modelling and data analysis

21

 Function Based Approaches 2.5.3.1

There are a number of statistical software solutions that provide different kinds of

regression techniques including linear regression.

Linear regression can be simple linear regression with only one variable or multiple

linear regressions with multiple explanatory variables. This research uses linear

predictor functions for data modelling wherein unknown parameters are estimated

from the data. The mathematical technique is to find the straight line that best-fits

the values of a linear function and plotting it on a scatter graph as data points. If a

'best fit' line is found, it can be used as the basis for estimating the future values of

the function by extending it while maintaining its slope.

As per [23], linear regression is a natural technique to consider as a main method in

statistics. When the outcome or class is numeric, and all the attributes are numeric,

the class is expressed as a linear combination of the attributes with predetermined

weights: ݔ = ଴ݓ + ଵܽଵݓ + ଶܽଶݓ + ⋯ + ௞ܽ௞ݓ

where ݔ is the class, ܽଵ, ܽଶ, …, ܽ௞ are the attribute values; and ݓ଴, ݓଵ, …, ݓ௞ are

weights.

 Ensemble Classifiers 2.5.3.2

In [23] it has been demonstrated that whether the learning algorithm is appropriate

to the problem at hand or not, an obvious approach to making decisions more

reliable is to combine the output of several different models. Several machine

learning techniques do this by learning an ensemble of models and using them in

combination.

These schemes are called bagging, boosting, and stacking. They are general

techniques that are able to be applied to classification tasks and numeric prediction

problems.

Therefore new methods have arisen for example, shaking up bagging by adding

random variants of classifiers to improve performance. This realization has led to

improved procedures. In the past few years methods have been developed that

combine the performance benefits of committees with comprehensible models.

22

Bagging: Bagging stands for Bootstrap Aggregating, an ensemble method that

creates separate samples of the training dataset and creates a classifier for each

sample. The results of these multiple classifiers are then combined. The trick is that

each sample of the training dataset is different, giving each classifier that is trained

a subtly different focus and perspective on the problem.

However, it turns out that bagging produces a combined model that often performs

significantly better than the single model built from the original training data, and

is never substantially worse. [23]. Bagging can also be applied to learning schemes

for numeric prediction—for example, model trees. The only difference is that

instead of voting on the outcome, the individual predictions, being real numbers,

are averaged. The bias–variance decomposition is applied to numeric prediction by

decomposing the expected value [23].

The popular base classifiers that can be used with bagging are the following:

weka.classifiers.trees.REPTree

This is a fast decision tree learner. It builds a decision/regression tree using

information gain/variance and prunes it using reduced-error pruning (with back-

fitting). It only sorts values for numeric attributes once. Missing values are dealt

with by splitting the corresponding instances into pieces.

weka.classifiers.trees.RandomForest

Class for constructing a forest of random trees. The Random-Forest classifier is

located in WEKA’s trees package

weka.classifiers.meta.AdditiveRegression

Meta classifier that enhances the performance of a regression base classifier. Each

iteration fits a model to the residuals left by the classifier on the previous iteration.

Prediction is accomplished by adding the predictions of each classifier. Reducing

the shrinkage (learning rate) parameter helps prevent overfitting and has a

smoothing effect but increases the learning time.

weka.classifiers.meta.RandomSubSpace

This method constructs a decision tree based classifier that maintains the highest

accuracy on training data and improves on generalization accuracy as it grows in

complexity. The classifier consists of multiple trees constructed systematically by

pseudo-randomly selecting subsets of components of the feature vector; that is,

trees constructed in randomly chosen subspaces.

http://en.wikipedia.org/wiki/Bootstrap_aggregating

23

 The Validation Metrics 2.5.3.3

In order to evaluate the accuracy of the prediction models, in the proposed research

one of the possible objective metrics have been used, namely the Correlation

Coefficient (CC), the metric popularly used to compare accuracy in modelling.

To determine the linear relationship between input variables (X) and target

variables (Y). It takes values between -1 and 1. The Correlation Coefficient is defined

as follows:

A positive value of Correlation Coefficient means that the two variables move in the

same direction with respect to their means. A negative value means they move in

opposite directions with respect to their means. A value close to 0 means the two

variables has little linear dependency [24].

This means, for the predictions of the proposed work in this thesis, the Correlation

Coefficient should be maintained close to 1 as much as possible, as this would

facilitate training accurate models.

 Matlab Optimisation Toolbox 2.5.4

The MATLAB Optimization Toolbox is an application of MATLAB which provides

algorithms for searching solution spaces for an optimal solution. The Optimization

Toolbox can be used to either minimise or maximise objectives while satisfying user

supplied constraints. The MATLAB Optimization Toolbox contains many different

types of functions for searching for solutions. The function chosen for this thesis

was the gamultobj Fitness function to optimize [25].

The multi-objective solver uses a genetic algorithm (gamultobj), available in the

MATLAB optimisation tool-box R2014b 64-bit.

According to [26], the optimisation procedure was implemented by a multiobjective

genetic algorithm (GA). Starting from an initial population of randomly created

individuals representing candidate solutions, in this scenario a heat exchanger of

specific configuration and conforming to the design specifications, the GA uses the

concept of survival of the fittest to produce more desirable individuals in

subsequent evolutionary generations of the population. The cost value of each

candidate solution denotes the fitness function of the individual, which is a measure

of its quality relative to the entire population.

24

The evolution starts from a population of randomly generated individuals and is an

iterative process, with a new population in each iteration, called a generation. In

each generation, the fitness of every individual in the population is computed; the

fitness being the value of the objective function.

The new generation of candidate solutions is then utilized in the next iteration of

the algorithm. Commonly, the algorithm terminates when either a maximum

number of generations has been produced, or a satisfactory fitness level has been

reached for the population.

The genetic algorithm uses three main types of rules at each step to create the next

generation from the current population [25].

 Selection rules select the individuals called parents that contribute to the

population at the next generation.

 Crossover rules combine two parents to form children for the next

generation.

 Mutation rules apply random changes to individual parents to form children.

The multi-objective genetic algorithm (gamultiobj) works on a population by using

a set of operators that can be applied to the population. The initial population is

generated randomly by default. The next generation of the population is derived

from the non-dominated rank, which is assigned to each individual using the

relative fitness, and a distance measure of the individuals in the current generation.

The multi-objective GA function “gamultiobj” uses a controlled elitist genetic

algorithm (a variant of NSGA-II [27]). While the elitist GA always favours

individuals with better fitness value (lower rank), the controlled elitist GA also

favours individuals that tend to increase the diversity of the population even if they

have a lower fitness value. In order to ensure the convergence to an optimal Pareto

front, it is very important to maintain the diversity of population. This is done by

controlling the elite members of the population as the algorithm progresses, by

using the options, 'ParetoFraction' and 'DistanceFcn'. The Pareto fraction option

limits the number of individuals on the Pareto front (elite members) and the

distance function helps to maintain diversity on a front by favoring individuals that

are relatively far away on the front.

The optimization problem intention is minimizing undesirable effects and/or

maximizing desirable effects. Any or both of these will form the objective of

25

optimization from which the objective function is formulated. An optimization

problem could be a single objective or MOO. For MOO, the final solution of the

objective functions will represent a compromise (tradeoffs) between different

objectives that may be totally conflicting, partially conflicting or non-conflicting

[28].

Maximizing vs. Minimizing

Global Optimization Toolbox optimization functions minimize the objective or

fitness function. That is, they solve problems of the form

min f (x).
 x

If it is required to maximize f(x), –f(x) should be minimised, as the point at which

the minimum of –f(x) occurs is the same as the point at which the maximum of f(x)

occurs.

 An overview of End-to End video streaming 2.6

When video signals are transported over an IP network, they are most often

compressed. In this context, compression means to reduce the number of bits that

are required to represent the video image. Video technology users are free to choose

whether or not to employ compression for their video signals. However, it is

important to understand that the choice of a compression method can sometimes

mean the difference between success and failure of a video networking project.

Today, most communication systems depend on compression technology. So an

understanding of video and audio compression is important; also, using modern

video transport systems, including video over IP networks. [29]

 Overview of video streaming 2.6.1

Streaming video is a method for delivering content over an IP network that can be

used for a variety of purposes. Streaming is a process for sending video and audio

content to a user that is watched as the same time, just like watching a network

broadcast television. An active network connection requires delivering video

content to the playback device, and the content is not normally stored after playback

is complete. On the other hand, when podcasting and video file–sharing

technologies are used, the content is stored on the received device as shown in

Figure ‎2-5. This output can be stored or transmitted over a network. Before the data

26

file can be used, it must be restored to its original size, via a decompression engine.

Note that a compression engine is often called an encoder, and the decompression

engine is commonly called a decoder.

Figure 2-5 Video streaming diagram [29]

Once the video is compressed, the compressed bitstream is then encapsulated into

IP packets, adding the headers and other data required to comply with a specific

protocol. A bitstream consists of a sequence of data units called network abstraction

layer (NAL) units, each of which contains an integer number of bytes. The first bytes

of a NAL unit produce the NAL unit header, while the rest of the NAL unit contains

the payload data. There are two classes of NAL units in HEVC — video coding layer

(VCL) NAL units and non-VCL NAL units. Each VCL NAL unit carries one slice

segment of coded picture data while the non-VCL NAL units contain control

information that typically relates to multiple coded pictures. Some NAL units carry

parameter sets containing control information that apply to one or more entire

pictures, while other NAL units carry coded samples within an individual picture.

[13].

Transport protocols are used to control the transmission of data packets in

conjunction with IP. UDP, or User Datagram Protocol, is often used for video and

other data that is very time sensitive.

27

 Overview of the VideoLAN streaming solution 2.6.2

Figure 2-6 VideoLAN streaming solution [30]

VLC media player can be used as a server and as a client to stream and receive

network streams. VLC is able to stream all that it can read [30]. The network on

which you set up the VideoLAN solution can be as small as one Ethernet 10/100Mb

switch, hub or direct peer to peer connection (see Figure ‎2-6).

 EvalVid - A Video Quality Evaluation Tool-set 2.6.3

EvalVid [31] is a framework and tool-set for evaluation of the quality of video

transmitted over a real or simulated communication networks. It is targeted at

researchers who want to evaluate their network designs or setups in terms of user

perceived video quality. As well as measuring QoS parameters of the basic network,

like loss rates, delays, and jitter, standard video quality metrics like PSNR and a

subjective video quality evaluation metric of the received video are provided.

Some useful tools from EvalVid are as follows:

 MP4-Container, the tool used to produce MP4-files, e.g., MP4Box is

available.

 Creating Reference Videos from mp4 ffmpeg is used.

 Sender and Receiver per RTP/UDP to a specified destination host. mp4trace

is able to send a hinted mp4-file. And a trace file is generated.

http://www.videolan.org/vlc

28

 Evaluation process is the calculation of the reference PSNR. That is the PSNR

of the coded and then decoded in relation to the uncoded raw video source.

 Network simulator using Riverbed Modeler (Opnet) 2.6.4

Since the design of networks is important, the software Opnet is a type of simulation

tool which designs a network that demonstrates how the infrastructure would look

if put in place. OPNET is now part of Riverbed, with Network simulator

Technologies. This simulator provides comprehensive development features, which

eases the process of designing the real world scenario and simulating the network

models [32].

Riverbed Modeler provides a modeling and simulation environment for designing

communication protocols and network equipment. The simulations run by

representing real world devices such as configured nodes and links in the designed

topology, and results are analysed after running. In riverbed, a project can be

created and edited in project editor, where nodes, links, utilities, subnets and

application traffic can be included for the study of simulation. This reduces the need

for time-intensive and expensive real hardware devices. In addition, the modeler

incorporates audio, video traffic, HTTP, FTP, and email traffic.

 Summary 2.7

This chapter represented the fundamental background of H.264, HEVC video

codding standards that are essential in carrying out the optimisation of the

CODECs. The chapter also presented the software tools and systems used for video

CODECs, optimisation, performance analysis, modelling, optimisation, network

simulation and end-to-end video delivery. The understanding of the operational

aspects of these tools is essential in carrying out the research presented in the

chapters that follow.

The following chapter presents the literature review study of the previous research.

29

 Introduction 3.1

The literature review chapter presents an overview of previous research that has

taken place in relation to the current research study. Many fields are involved in this

research. This chapter introduces the reader to the literature of H.264 and HEVC

Encoders/decoders, optimisation of video coding/decoding and the systems

associated with the end to end delivery of video; it also explains the tools and

methods that have been employed within this research. This chapter also provides a

review of literature on two different approaches to the Optimisation of video

CODECs, i.e. parameter based and algorithmic based. The two approaches are

discussed in section ‎3.2. The theory and techniques of multi objective optimisation

are discussed in section ‎3.3. Section ‎3.4 presents the literature of H.264 encoder

and decoder. Section ‎3.5 presents the literature of High Efficiency Video Coding

(HEVC), the next generation video coding standard. Furthermore, machine learning

models are presented in section ‎3.6. The relevant literature on the End-to-End

delivery of video is presented in section ‎3.7. Finally, a summary is given in

section ‎3.8 drawing upon a number of conclusions that justifies the novel and

contributory research conducted within the research context of this thesis.

 Optimisation of Video Coding 3.2

In the literature, many works have been conducted on Optimisation of video

compression algorithms. They can be broadly classified into two categories;

Algorithmic-based Optimisation and Parameter-based Optimisation. The state-of-

the-art of the two optimisation methods is introduced in this chapter in the

following subsections. Algorithmic based Optimisation focuses on the uses of the

best possible motion estimation techniques, rate-distortion algorithms, and mode-

prediction algorithms etc., which are essential parts of a video compression system

for direct performance optimisation of a given video CODEC. In parameter-based

Optimisation, the key focus is to select values for the massive number of parameters

30

approximately 150 parameters that are associated with a CODEC so that the

CODEC’s performance will be optimised. No changes are made to the algorithms.

Choosing the right parameter set is extremely important.

The algorithm-based optimisation methods focus on the direct performance

optimisation of a given algorithm. The techniques and algorithms required to

implement a standard are well-defined. Based on the previous research, it is well

known that motion estimation is the computational bottleneck of a video encoder.

In [33] the optimisations include adaptive diamond pattern based motion

estimation, fast sub-pel motion vector refinement and heuristic Intra prediction.

Several platform independent optimisations for a real-time H.264 encoder were

proposed.

This information is used for further research areas of motion estimation. In this

research by setting NumberReferenceFrames will Sets maximum number of

references stored in the buffer for motion estimation and compensation. And

SearchRange allowable search range for motion estimation.

The research conducted by [34], designed a memory optimisation technique for a

H.264 video decoder and proposed an optimised memory management decoding

method to reduce memory accessing overhead of the H.264/AVC decoder.

Improved motion compensation and motion vector prediction modules were

designed and implemented. Result and analysis showed that the proposed

methodology does not cause any quality degradation in image PSNR (Peak Signal to

Noise Ratio) performance and improves memory accessing performance of the

decoder by reducing memory bottlenecks in a software H.264/AVC decoder.

The work presented in [35] proposed Rate-Distortion Optimized Distributed Packet

scheduling of multiple video streams over shared communication resources, which

enables the multiple senders to coordinate their packet transmission schedules, so

that the overall video quality across all streams is maximized for the given available

data rate on the shared channel.

A joint complexity-distortion optimisation approach for real-time H.264 video

encoding under a power-constrained environment was proposed in [36]. In this

paper, the authors proposed Complexity Configurable Motion Estimation (CAME)

and Complexity Configurable Mode Decision for computation allocation model

(CAMD) algorithms for H.264 video encoding to allocate the computational

31

resources. Moreover, the proposed algorithms can be easily integrated into any

existing H.264 encoder as well as other standard video encoders.

The current research has demonstrated the use of a multi-objective optimisation

framework based on carrying out investigations related to a H.264 CODEC.

Through the use of this framework it was demonstrated how optimal configurations

for the encoder and decoder performance could be obtained.

 Parameter-based Optimisation 3.2.1

Parameter based optimization approaches have received attention after the

CODECs were standardised, Video optimisation research has mainly been focused

around standardization of video CODECs, e.g. H.262, HEVC etc. For H.264 in

particular, a significant amount of effort has been put into the optimisation of the

associated algorithms, during the international standardization. However, once a

CODEC has been standardised, in order to comply with the standardization, the

algorithms cannot be changed or modified. Hence the standardization of a video

CODEC stops the opportunity that exists for further optimisation of the algorithms.

However the presence of a large number of parameters that can be set and will have

an impact on how the CODEC will perform, provides one an opportunity to further

optimise, in particular when the operational constraints are known. Parameter

based optimisation is useful at this stage.

The work of [37] proposed a novel framework for the multi-objective optimisation

of a video CODEC based on genetic algorithms. The framework focuses on the

development of joint complexity-memory-rate-distortion (C-M-R-D) optimisation

of a H.264 video CODEC. An important aspect of the proposed framework is that it

jointly considers the optimisation of multiple objectives in both the encoder and

decoder. The framework in Figure ‎3-1 illustrates the optimisation procedure. SPSS

categorical regression was used to create the objective functions and to determine

the coefficients of each significant polynomial term of the objective. The polynomial

terms are defined to include all possible combinations of the decision variables.

These functions were then fed to the NSGA-II optimisation tool along with the

quantified values of decision variables. A Genetic algorithm has the ability to find

multiple optimal solutions in a single simulation run.

32

Figure 3-1: Multi-objective Optimisation framework used in [37].

The performance of the optimisation framework was used in the H.264/AVC codec

JM 15.1, made by the Joint Video Team (JVT). The proposed framework is designed

to jointly minimize the complexity, memory usage bit rate and to maximize the

quality both on the encoder and decoder, of the compressed video stream, while

achieving maximum visual quality. According to this paper’s results, the framework

can produce an optimal coding parameter set for video sequences.

Comparing to the current thesis machine learning was used to create the objective

functions rather than SPSS for the determination of significant coding parameters

of video CODECs. Based on the results conducted it’s concluded that algorithm

Linear Regression as the best practical solution.

In [38] the challenge was to determine H.264 parameter settings that result in low

complexity but still offer high video quality. Two fast algorithms for finding the

H.264 parameter settings were proposed: the generalized Breiman, Friedman,

Olshen, and Stone [39] algorithm called GBFOS-basic and the GBFOS-iterative

33

algorithm that take about 1% and 8%, respectively, of the number of tests required

by an exhaustive search. Both algorithms perform within a maximum PSNR

difference of 0.71 dB when using the same training and test data set. The

generalized BFOS algorithm is an extension of an algorithm for optimal pruning in

tree-structured classification and regression to coding. The x264 encoder has been

compared with different commercial H.264 (x264 2006). The research concludes

with the statement: “Choosing the right set of encoder parameters results in

efficiently coded video while an inappropriate selection of parameters wastes bits,

sacrifices quality, and takes longer to encode.” [38].

An improvement was proposed in [39] where two algorithms for finding additional

parameter settings for the GBFOS-basic algorithm were presented. It allows the

encoder to choose a parameter setting that yields higher PSNR, while satisfying the

encoding speed constraint. It was demonstrated that the PSNR improved by up to

0.71 dB and 0.43 dB, respectively. The algorithms were tested on both Linux and

PocketPC platforms.

[40] developed a power-rate distortion (P-R-D) analysis framework; the paper

analysed the encoding mechanism of typical video coding systems, and developed a

parametric video encoding architecture which is scalable in computational

complexity. The two major contributions in this work were firstly, to develop a

parametric video encoding architecture which is fully scalable in power

consumption; secondly, to successfully extend the traditional R-D analysis by

considering another dimension, the power consumption, and establish the P-R-D

analysis framework for mobile video encoding and communication under energy

constraints. The investigation was carried out on the R-D performance of the

complexity control parameters to establish an analytic P-R-D model. The author

showed that the power-scalable video encoder is able to find the best configuration

of complexity control parameters to maximize the video quality. In [41] it was

observed that this analytical approach cannot be easily extended to other video

encoders, such as H.264 video coding, since the video encoding mechanism used by

such algorithms are more sophisticated. In this work, power-rate distortion (P-R-D)

optimisation was proposed to minimize energy consumption for delay-tolerant over

portable video communication applications. Using the proposed P-R-D

optimisation technology, the energy consumption of video encoding can be

significantly reduced (by up to 50%), especially in delay-tolerance.

34

A joint power-distortion model has been presented in [42] and analysed from two

aspects: power consumption and video quality. In other words, how to find out the

optimized encoding parameters with minimum power consumption? And how to

calculate the optimized encoding parameters? So that the video quality is best. The

framework was developed to solve the joint power and distortion optimisation

problem, based on the investigation of the power consumption caused by the

encoding and transmission. Using the proposed model, given any quality level,

appropriate encoding parameters can be estimated so that the total power

consumption is minimized. Unlike being given any available power level, the proper

encoding parameters are also calculated so that the video quality is optimized. The

analysis method can be easily extended to other video encoder and transmission

configuration.

In this thesis it is shown that the proposed framework is flexible on the number of

objectives that can jointly be optimized. The NSGA-II provides all sets of optimal

results that jointly minimize CPU Time, bit-rate and maximizes quality.

One of the most critical issues in portable multimedia devices is to minimize the

energy consumption and extend the operational lifetime of the system while still

maintaining the required video quality. [43] Proposed a power-rate-distortion (P-R-

D) model of a video encoding system to maximize its lifetime. An analytic model for

P-R-D optimisation was proposed to find the optimum trade-off between power

consumption and video encoding performance in [41]. Unfortunately, these works

were not being applied on the hardware-based video encoder. As the power

consumption becomes an important factor in portable devices, a hardware-based

video encoder is often more suitable than a software-based video encoder to reduce

the power consumption down to the acceptable level. In [43], the power-rate-

distortion (P-R-D) model was discussed regarding the relations among power

consumption, bit rate, and distortion of the video encoding process to reduce the

power consumption of the video code while maintaining the video quality. The

authors concludes that the proposed P-RD can be utilized by a designer to reduce

the energy consumption of the video encoding system while maintaining the

distortion using proper allocation of power to video encoder.

The study in [44] proposed a novel distortion prediction equation, optimisation of

quantization parameter QP selection and a joint rate-distortion optimisation for the

H.264 rate control algorithm. The authors demonstrated the improvement in image

35

quality and a computational saving of at least 34%, which was the recommended

rate control algorithm in the H.264 reference software JM15.01. The author

concluded that the algorithm could be implemented for real time applications

requiring the optimisation of rate-distortion.

The main contribution in [45] is the insertion of an encoding parameter capable of

controlling the encoding complexity and the possibility to select the desired

encoding speed. The framework implemented was developed through an open

source software implementation of the H.264/AVC, the x264 encoder. The results of

the study showed that tight complexity control is attainable in practice, with very

little loss in RD performance.

High Efficiency Video Coding (HEVC) is the next generation standard of coding

being developed, the newest video coding standard of the ITU-T Video Coding

Experts Group and the ISO/IEC Moving Picture Experts Group [11]. HEVC in [46]

provides significantly improved compression performance to reduce 50% bit rate

compared to all existing video coding standards under the same visual quality. The

paper proposed a hardware-friendly method for RDO of HEVC intra coding. The

results of the study show that the proposed RD cost function provides 85.8% area

reduction and 1260% throughput improvement in hardware design, with slight loss

of bitrate and PSNR, which is very suitable for real-time encoder application.

The proposed framework in this thesis a Multi-Objective Optimisation was

developed to determine the optimum coding parameters for a H.265 video CODEC.

The literature review reveals that generally two approaches are used in developing

video coding algorithms. The algorithm base approach used at the development of

algorithms aim to produce optimal performance. In contrast parameter based

approaches are useful in optimising the performance of a video codecs which has

been already finalised. This is important as the algorithm cannot be changed.

However the focus of this thesis is parameter-based Optimisation due to its

relevance and nature of research and optimisation methodology adopted in this

thesis. It important to understanding and to learn the parameters that can be set on

a CODEC, parameters have impact on video CODEC performance, these would

provide one of the opportunity to further optimise, in particular when the

operational constraints are known. Parameter based optimisation is useful at this

stage.

36

 Theory of Multi-Objective Optimisation 3.3

An optimization problem could be a single objective or Multi-Objective

Optimisation MOO. Many real-life scenarios where multiple objectives need to be

satisfied in the course of optimization. Finding a single solution in such cases is very

difficult, it may also happen that optimizing one objective leads to some

unacceptably low value of the other objective(s). In such problems, referred to as

multiobjective optimization problems (MOOPs). In the remaining part of this

chapter, the focus on such methods of optimization multiple objectives.

In the past 15 years, evolutionary multi-objective optimisation EMO has become a

popular and useful field of research and application. The purpose of multi-objective

optimisation in a mathematical programming framework is to optimize different

objective functions subject to a set of constraints. As the name suggests, a multi-

objective optimisation problem (MOOP) involves optimizing a number of objectives

simultaneously, which are to be minimized or maximized. The problem becomes

challenging due to a conflict of objectives, and the optimal solution of an objective

function is different from that of the other. Instead, there are several solutions

called feasible solutions where the property of an improvement in an objective from

one point to the other happens only due to a sacrifice in at least one other objective.

Moreover, the problem usually has a number of constraints that any feasible

solution must satisfy [47] and [48]. The entire decision variable space need not be

feasible. The set of all feasible solutions is called the feasible region. In other words,

the feasible region not only contains optimal solutions, but also solutions that are

non-optimal. In general, optimisation refers to finding the best possible solution to

a problem given a set of limitations or constraints. Moreover, the problem usually

has a number of constraints that must be satisfied by any feasible solution. Since

2002 the multi-objective optimisation problem has been specified in its general

form. Therefore, the general form of the MOOP may be stated as it appears in [47]

and [48] as follows: ݁ݖ݅݉݅ݔܽܯ/݁ݖ݅݉݅݊݅ܯ ௠݂ሺݔሻ, ݉ = ͳ, ʹ, , ሻݔ𝐽 ሺ݃ ݋ݐ ݐ݆ܾܿ݁ݑݏ ;ܯ ൒ Ͳ; ݆ = ͳ, ʹ, , ሻݔℎ௞ ሺ ;ܬ = Ͳ; ݇ = ͳ, ʹ, , ௜ ሺ௅ሻݔ ; ܭ ൑ ൑ ݅ ݔ = ݅ , ሺ௎ሻ݅ ݔ ͳ, ʹ, , ݊.

37

 Multi-Objective Optimisation using Genetic Algorithms 3.3.1

During 1993–1995, a number of different evolutionary algorithm EAs were

suggested to solve multi-objective optimisation problems. These algorithms

demonstrated the necessary additional operators for converting a simple EA to a

MOEA [49]. Over the past decade, a number of multi-objective evolutionary

algorithms (MOEAs) have been suggested to find multiple Pareto-optimal solutions

in one single simulation run. Simple evolutionary algorithms EA can be extended to

maintain a various set of solutions. An EA can be used to find multiple Pareto-

optimal solutions in one single simulation run. The non-dominated sorting genetic

algorithm (NSGA) proposed in [50] was one of the first such EAs. In [49] the

author proposed an improved version of NSGA, which was called NSGA-II. The

NSGA-II outperforms two other existing MOEAs: Pareto-archived evolution

strategy (PAES), strength-Pareto EA (SPEA). NSGA-II has been compared with

another recently suggested constraint-handling strategy. These results encourage

the application of NSGA-II to more complex and real-world multi-objective

optimisation problems [49].

NSGA-II is also implemented in this thesis in the genetic algorithm It is shown that

the proposed framework is flexible on the number of objectives that can jointly be

optimized. Practical use of the proposed framework is described using the six videos

mathematical formulation.

The features in [48] stated that the NSGA-II procedure is one of the popularly used

EMO procedures which attempt to find multiple Pareto-optimal solutions in a

multi-objective optimisation problem and has the following three features:

 It uses an elitist principle,

 It uses an explicit diversity preserving mechanism,

 It emphasizes non-dominated solutions.

The optimisation of H.264 and HEVC codecs in this research is carried out using

implementation of NSGA-II. Two reasons have contributed to proposing to use a

GA. The first reason is that a GA has the ability to find multiple optimal solutions in

a single simulation run. The second reason is the presence of a well-established,

popular, public domain, GA software tool, Non-dominated Sorting Genetic

Algorithm NSGA-II [49] that can effectively be utilized in the proposed work.

38

Gamultiobj uses a controlled, elitist genetic algorithm, a variant of NSGA-II [47]. An

elitist GA always favours individuals with better fitness value (rank). A controlled

elitist GA also favours individuals that can help increase the diversity of the

population even if they have a lower fitness value. It is important to maintain the

diversity of population for convergence to an optimal Pareto front. Diversity is

maintained by controlling the elite members of the population as the algorithm

progresses. Two options, ParetoFraction and DistanceFcn, control the elitism.

ParetoFraction limits the number of individuals on the Pareto front (elite

members). The distance function, selected by DistanceFcn, helps to maintain

diversity on a front by favoring individuals that are relatively far away on the front.

The algorithm stops if the spread, a measure of the movement of the Pareto front, is

small.

The literature review above demonstrated studies have been conducted for a

generalised framework for multi objective optimisation of video CODEC. However

there is potential for the further improvement and development of these generalised

frameworks. The research conducted within this thesis will extend the state-of-art

further and also for the first time carry out multi-objective optimisation of the latest

video coding standard, HEVC.

 H.264 Video Coding 3.4

A significant number of research articles have been published, in particular during

its standardization period, on various aspects of H264 video coding. In [51] the

H.264 software encoder engine that was developed by the NTT Cyber Space

Laboratories were presented. Technologies for fast encoding, high compression

performance, and reduced encoder operation cost, for video delivery services were

proposed. The CODEC achieved a 20% reduction in the bitrate of the compressed

video at the same encoding speed as compared to the original CODEC. The CODEC

supported the 4:2:2 video formats, which is important for professional use, and

reduces the cost of online video delivery services.

According to [52], JM 15.1 reference software and Intel IPP Integrated Performance

Primitives H.264 codec are compared in terms of execution time and video quality

of the output decoded sequence. PSNR, motion estimation time, encoding time,

decoding time and the compression ratio of the H.264 file size encoded output were

39

used. Intel IPP H.264 implementation outperformed the JM 15.1 in all measures

except for the compression ratio of H.264 file size obtained. The motion estimation

time, encoding time and decoding time are much less in Intel IPP H.264 compared

to that of JM 15.1.

The research presented in [53] conducted an investigation on the relationship

between the bit rate and the CAVLC/UVLC decoding complexity. Understanding

this relationship helped the researchers to choose the best encoding parameters to

yield the best trade-off between the rate, distortion, and the decoding complexity

performance. The proposed complexity control scheme of the H.264/AVC encoder

generated a bit stream that is most suitable for a receiver platform with a

power/hardware constraint. The experimental results showed that the H.264/AVC

encoder can generate bit streams according to different entropy decoding

complexity requirements accurately. It was shown that the resultant bit streams can

be decoded at much lower complexity at the cost of small PSNR loss.

In [27] and H.264 decoder model was used to investigate the efficiency of a

decoding system under various conditions for bitstreams, coding features and

bitrates. H.264 achieves improved compression efficiency at the cost of increased

computational complexity. Real-time execution of the H.264 decoding process

provides a challenge on mobile devices due to low processing capabilities. The

resulting idle time curves provide a powerful tool for extracting optimal buffer sizes

and for estimating PSNR values where the decoder performs most efficiently. The

simulation results obtained allowed for optimizing a decoding system for specific

application aspects such as quality, memory requirements or core usage [54].

A novel method was proposed in [55] for Selective Encryption SE of H.264/AVC

(CABAC) and HEVC-compressed streams. The authors tackled the main security

challenge of SE, the limitation of the information leakage through protected video

streams, and the improvement in the visual distortion induced by SE approaches.

The technology in [56] discussed was behind the new H.264/MPEG4-AVC

standard, focusing on the main distinct features of its core coding technology and its

first set of extensions, known as the fidelity range extensions (FRExt). In addition,

this article also discusses the current status of adoption and deployment of the

standard in various application areas.

40

The important differences are as follows:

 Enhanced motion-compensated prediction and spatial intra prediction

capabilities

 Use of 4 × 4 and 8 × 8 (FRExt only) transforms in integer precision

 Use of a content-adaptive, in-loop, de-blocking filter

 Use of enhanced entropy coding methods

It was demonstrated that when used well together, the features of the new design

provide significant bit rate savings for equivalent perceptual quality relative to the

performance of prior standards. This is especially true for the High profile related

coding tools.

 High Efficiency Video Coding (HEVC) 3.5

High Efficiency Video Coding (HEVC) is the next generation video coding standard

being developed, the newest video coding standard of the ITU-T Video Coding

Experts Group and the ISO/IEC Moving Picture Experts Group [57].

In [58], it was shown that HEVC provides significantly improved compression

performance, i.e. an approximately 50% reduced bit rate as compared to the best

existing video coding standards, under the same visual quality. The paper proposed a

hardware-friendly method for RDO of HEVC intra coding. The results of the study

showed that the proposed RD cost function provides 85.8% area reduction and

1260% throughput improvement in hardware design, with slight loss of bitrate and

PSNR, which is suitable for real-time encoder application.

A performance comparison of H.265, VP9 and H.264 encoders was presented in

[12]. According to the experimental results, obtained for a whole test set of video

sequences by using similar encoding configurations for all three examined

representative encoders, H.265/MPEG-HEVC was shown to provide significant

average bit-rate savings of 43.3% and 39.3% relative to VP9 and H.264/MPEG-AVC,

respectively.

41

In [59], it was shown that for resolutions of up to HD (1920x1080), code

optimizations including heavy use of single instruction multiple-data (SIMD)

instructions are sufficient to achieve HEVC real-time software decoding. It was

further shown that, when it came to decoding UHD video (3840x2160), single

threaded execution with code optimization was not enough.

According to [60], HEVC has been designed to focus on increasing video resolution

and increasing the use of parallel processing architectures. Therefore, this approach

merges all traditional configuration files used in the encoding process into only one

configuration file without removing any parameters used in the traditional methods.

The proposed approach in terms of encoding time as opposed to the traditional

methods reduces the access time by half by reducing the data exchange between the

configuration files used and without changing the rate-distortion (RD) performance

or compression ratio. There is no change in the rate-distortion and compression

ratio.

As per [61], the intra prediction part of the newest video compression standard

H.265/HEVC was considered. That covers general HEVC dataflow. A series of

experiments was conducted on different coding configurations and video sequences.

The statistics presented using each intra prediction mode and the statistics of modes

becoming part of the most probable mode array obtained in the experiments. The

obtained statistic data are probably not the objective characteristics of the test video

sequences, but only the illustration of the current intra coding practice. It is of

interest to obtain objective statistical data which might contribute to the

improvement of the existing approach.

An approach [62] compared the video coding standards by means of peak signal-to-

noise ratio (PSNR) and subjective testing results. A joined approach is applied to the

analysis of designs, including H.262/MPEG-2 Video, H.263, MPEG-4 Visual,

H.264/MPEG-4 Advanced Video Coding (AVC), and High Efficiency Video Coding

(HEVC). As per the results, HEVC encoders can achieve equivalent quality as

encoders that conform to H.264/MPEG-4 AVC when using approximately 50% less

bitrate on average. The HEVC design is shown to be especially effective for low bit

rates, high-resolution video content, and low-delay communication applications.

42

High Efficiency Video Coding (HEVC) adopts 35 intra prediction modes with larger

Coding. Unit CU size to improve the intra encoding efficiency, causing high

computational complexity. In [63], two fast intra-prediction algorithms are proposed

to reduce the number of candidate modes for rate-distortion (RD) optimization. By

improving the RMD and MPM process, the number of candidate modes to do SATD

calculation and RDO calculation is reduced and computational complexity can be

reduced. Experimental algorithms show it could save about 27.3% of encoding time

with negligible performance loss compared to HM14.0.

The HEVC standard aims to provide a doubling in coding efficiency with respect to

the H.264/AVC high profile, delivering the same video quality at half the bit rate.

According to [64], complexity-related aspects that were considered in the

standardization process are described. Furthermore, profiling of reference software

and optimized software gives an indication of where HEVC may be more complex

than its predecessors and where it may be simpler. Overall, the complexity of HEVC

decoders does not appear to be significantly different from that of H.264/AVC

decoders; this makes HEVC decoding in software very practical on current hardware.

HEVC encoders are expected to be several times more complex than H.264/AVC

encoders and will be a subject of research in years to come.

When it comes to transmitting high resolution video such as of resolution 4K, over

the internet or in broadcast, the 50% bitrate reduction is essential. [65] Shows that

real-time decoding of 4K video with a frame- level parallel decoding approach using

four desktop CPU cores is feasible. It has been shown that real-time software

decoding of 4K 50Hz video with HEVC is feasible on current desktop CPUs using

four CPU cores. Encoding 4K video in real-time on the other hand remains a

challenge. Therefore, first use cases of 4K video coded with HEVC are expected to be

limited to offline encoded material for internet services like video on demand.

[66] presented a new parallelization approach for HEVC decoding named an

Overlapped Wavefront (OWF). It is based on wavefront processing and improves its

parallelization efficiency by allowing overlapped execution of consecutive pictures.

In this strategy the de-coding, steps are performed on a CTB basis rather than on a

picture basis which improves data locality. The implementation achieves between

29.6%, 42.4%, and 66.6% higher frame rates compared to previous results and

43

11.3%, 21.0%, and 38.0% higher frame rates compared to Tiles, for 2160p, 1600p,

and 1080p, respectively.

Iterative intra prediction search in [67] was proposed for the H.265/HEVC encoder

to reduce the number of prediction modes for estimation. There was about a 40%

encoding time reduction for HM 10.1 intra-only coding with negligible bitrate

increase and PSNR quality degradation. Additional speed-up techniques including

fast prediction error estimation were offered.

[68] proposed and evaluated a parallelization strategy for the emerging HEVC video

coding standard. The strategy is based on entropy slices which allow exploiting

parallelism in the entropy decoding stage while maintaining high coding efficiency.

The author approach requires encoding videos with one entropy slice per Largest

Coding Units LCU row in order to decode multiple LCU rows in a wavefront parallel

manner. Evaluations were performed on a PC with 12 Intel Xeon cores running at 3.3

GHz show that it is possible to achieve real-time performance for 1920×1080p50

(53.1 fps) and 2560×1600 (29.5fps) video resolutions with speedups of 5.2× and

6.3× compared to sequential execution, respectively.

In [43] HEVC HM software was compared for both the coding performance and the

coding speed of practical HEVC encoders for high resolution video sequences. [69]

conducted a comprehensive evaluation of the latest high performance H.265/MPEG-

HEVC encoders, including the open source encoder—x265 and the commercial

encoder—DivX265, based on default parameters and a new open 4K video database.

Such comparison shows that the latest HEVC encoders, open source x265 and

commercial DivX265, have achieved significant progress compared to the reference

codec HM. However, there is further potential for optimization to address

outstanding challenges.

In [70] a general review of new video compression standards HEVC, VP9 [71] and

Daala [71] were conducted and their compression efficiency was compared. The

experimental results in [70] showed that the Daala video encoder is still far from

being competitive. While HM provides 31% better compression rates in key-frame

only mode and about 40% improvement in inter-coding mode compared to JM, VP9

is only 18% better than JM in both modes. It is worth mentioning that the VP9

44

encoder does not have an efficient RDO model, so the VP9 encoder itself may

potentially have better performance.

The performance evaluation metrics that are used to report HEVC efficiency results

are mainly based on PSNR, especially for resolutions beyond HDTV. [72] provided

subjective evaluation results to assess the performance of the current HEVC codec

for resolutions beyond HDTV, comparing with the objective measured calculated in

terms of PSNR.

The HEVC standard is the current state of the art video compression framework.

The first version was published in 2013. Since then, several open source

implementations have been developed, among others, the reference software model,

the videoLAN encoder and the OpenHEVC decoder. HEVC codecs will replace

H.264 ones inside the consumer electronic devices in the near future. In [73] , the

open source OpenHEVC decoder has been modified to support parallel decoding at

the slice level using OpenMP instead of pthreads. The advantage of this unthreaded

decoder is that it can be used with any architecture, providing it supports OpenMP.

Tests have been carried out with three different multicore chips and the

performance results are similar to those obtained with the threaded OpenHEVC

decoder.

 Use of machine learning in video coding 3.6

In Chapter-1 it was mentioned that the research presented in this thesis aims to use

machine learning in the process of developing a multi-objective optimisation

framework for H264 and HEVC video CODECs. In particular the use of Ensemble

Learning Approaches is investigated. This section reviews past literature where

machine learning was used for the purpose of enhancing or investigating the

performance of video CODECs. Further literature that has investigated the

capabilities of Ensemble Learning Algorithms as compared many popular single

learning algorithms is also presented as further justification of the proposed

research’s intention to make effective use of Ensemble Learning Algorithms.

In [74] a non-traditional use of machine learning was proposed in the area of video

encoding and transcoding. Video encoding and transcoding are computationally

intensive processes and this complexity increases significantly with compression

standards such as H.264. Video encoders and transcoders have to manage the

quality vs. complexity tradeoff carefully. The author proposed the use of machine

45

learning in video coding and transcoding to overcome complexity related challenges

in 1) MPEG-2 to H.264 video transcoding, 2) H.263 to VP6 transcoding, 3) H.264

encoding and 4) Distributed Video Coding (DVC). The results show that use of

machine learning significantly reduces the complexity of encoders/transcoders and

thus can enable efficient video encoding on resource constrained devices such as

mobile devices and video sensors. The results also demonstrated that the proposed

approach is general enough and can be used effectively in high complexity video

coding and transcoding applications.

In [74] the use of machine learning to reduce the complexity of macro block mode

computation from a search operation was proposed. The authors developed a

methodology based on machine learning that computes the MB coding mode

instead of searching for the best match thus reducing the complexity of Intra 16x16

coding by 17 times and Intra 4x4 MB coding by 12.5 times. The proposed approach

uses simple mean value metrics at the block level to characterize the coding

complexity of a macro block. The J4.8 classifier is used to build the decision trees.

The results show that intra MB mode can be determined with over 90% accuracy.

The approach can also be used for determining MB prediction modes with an

accuracy varying between 70% and 80%.

According to [75], ensemble methods are learning algorithms that construct a set of

classifiers and then classify new data points by taking a vote of their

predictions. The concept of combining classifiers is proposed as a new direction for

the improvement of the performance of individual classifiers. The original ensemble

method is Bayesian averaging, but more recent algorithms include error-correcting

output coding, bagging, and boosting. This paper reviews these methods and

explains why ensembles can often perform better than any single classifier. Some

previous studies comparing ensemble methods are reviewed, and some new

experiments are presented.

The problem of combining classifiers which use different representations of the

patterns to be classified was studied by [76], developing a common theoretical

framework for classifier combination and showing that many existing schemes can

be considered as special cases of compound classification where all the pattern

representations are used jointly to make a decision. The two main reasons for

combining classifiers are efficiency and accuracy.

46

In conducting the above review of literature it was found that the use of machine

learning in enhancing the performance of video COCECs still remains in its early

stages, regardless of the revolutionary changes machine learning has already

resulted in video processing and quality enhancement supported by the recent

developments ensemble learning systems and deep learning system.

 End-to-End Video Streaming 3.7

The growth of the Internet has created a vast demand for multimedia

communications. Video Services account for a very large portion of the network

traffic. Transmission of real-time video typically has bandwidth, delay, and loss

requirements. Therefore the subject of end-to-end video delivery and the associated

performance analysis has become an area of significant research interest in the

recent past.

In [77], the author presented results for evaluating MPEG-4 video quality in the

presence of packet losses. The results show that a single packet loss in an I-frame

can already result in a video impairment and significantly degrade the video quality.

The impact of single packet loss was evaluated with different frequencies as well as

loss distances within a short period. It was found that more than two times single-

losses in a short period will lead the video quality to be unacceptable.

[78] used H.264 coded video over best-effort IP networks, using RTP as the real-

time transport protocol. Novel, joint source and channel coding techniques were

proposed. After a description of the environment, the error-resilience tools of H.264

and the draft specification of the RTP payload format were introduced. The video

coding layer has been shown to significantly improve the performance of H.264 in

the challenging best-effort IP environment.

The paper [79] focused on video services for 3G networks with provided traces of

long MPEG- 4 and H.263 encoded videos in the QCIF format resulting in low

bandwidth video streams. The pre-encoded video sequences are encoded by

different users and they differ in video settings in terms of codec, quality, format,

and length. Compared to earlier traces, the new traces are suitable for the network

performance evaluation of WLANs. The peak to mean ratios of the frame sizes of

the new traces are typically in the range of 15 to 35, whereas a range from 7 to 18

47

was typically observed before. The traces were publicly available at [80] and provide

instructions for using the traces in network evaluations.

Another study has attempted to address the problem of Multi-Objective

Optimisation for Video Streaming. [81] Presented cross-layer optimized video rate

adaptation and scheduling scheme for wireless video streaming over packetized

networks aiming for maximum quality of service (QoS) for each user, maximum

video throughput, and QoS fairness among users for wireless video streaming. The

proposed framework aims to serve the user with the least remaining playback time,

highest video quality and the highest video throughput.

A different approach was introduced in [82] using a pre-roll delay-distortion

optimisation (DDO) framework while ensuring continuous playback for on-demand

video streaming over limited bitrate networks using AVC/H.264 encoding. The

input video is first divided into temporal segments. The system then encodes the

input video according to the specified relevance-distortion policy, where encoding

parameters are selected for each temporal segment. The optimal encoding

parameters are computed using a novel, multi-objective optimisation formulation,

using linear programming. What was accomplished in this paper is that the

technique was developed to reduce the waiting time to much lower levels than

downloading and playing; in addition, by maintaining the relevant quality at a

suitable level over low bandwidth channels.

A novel and complete tool-set for evaluating the delivery quality of MPEG video

transmissions in simulations of a network environment was presented in [83]. The

proposed integration of EvalVid and NS2 provided a novel generalized and

comprehensive tool-set for evaluating the video quality performance of network

designs in a simulated environment. Therefore, for researchers to encode their own

test video sequences in order to evaluate the delivered video quality in a simulated

network environment, the proposed QoS assessment framework would be a good

choice.

To meet these QoS requirements, researchers have developed a specific multimedia

mechanism to enhance the performance of video transmission. Therefore, a new

simulation tool-set called MyEvalvid_RTP to achieve more realistic simulations was

proposed in [84]. With MyEvalvid_RTP, researchers can evaluate both the video

delivered quality and the audio delivered quality.

48

The simulation model for H.264 video streaming was developed using OPNET

Modeler, an advanced network modeling and simulation tool. The simulation

results show that based on the high level characteristics in the time domain, a H.264

stream is very similar to an MPEG2 stream. Under stressed network conditions, the

more advanced H.264 standard shows better results: lower queuing delays and less

packet-loss as described in [85].

A Streaming Video Content Over IEEE 802.16 / WiMAX Broadband Access was

studied in [86] to simulate bandwidth intensive, delay sensitive, video traffic

representative of IPTV over WiMAX and ADSL. These video streams are encoded

using MPEG-2 or MPEG-4 codecs. The simulation using the OPNET modeler with

integrated WiMAX support has been adopted. As a result, ADSL showed behavior

that approached the ideal values for the performance metrics, while WiMAX

demonstrated promising behavior within the bounds of the defined metrics.

Analysing the wireless local area network’s performance with streaming H.263

standard based video under mobility occurred in [87]. Various simulations were

performed using H.263 video traffic. Study results verified the successful H.263

video traffic import in OPNET and recommendations included making video clients

in WLAN somewhat more intelligent by adapting to the variations in network

resources due to mobility.

The performance in [88] compared of WiMAX and ADSL by streaming audio and

video contents. File Transfer Protocol (FTP), Hyper Text Transfer Protocol (HTTP),

and electronic mail have also been used for comparison. The OPNET Modeler

versions 15.0 and 16.0 were used to evaluate packet loss, delay, delay jitter, and

throughput with various design parameters to determine whether WiMAX exhibits

performance comparable to ADSL. The OPNET Modeler provided a suitable

environment to design and characterize computer networks.

Real time video transmission is one of the biggest challenges of communication

networks. The work in [89] deals with the transmission of video encoded with

H.264/AVC coding standard through WLAN using an OPNET Modeller (OM). It is

noted that the OM simulation environment allows for designing the transmission

systems, which would be difficult to establish in laboratory conditions.

In [90] introduced a comprehensive toolset for streaming and evaluating video

streams encoded using the H.265 standard including its scalable extension in

simulated network environments. A toolset facilitates the transmission and

49

evaluation of HEVC/H.265 and SHVC encoded video on the popular open source

NCTUns simulator.

The effect of Packet Drop and Jitter on perceived video quality for various encoded

video, over Streaming Networks, using tools such as OPNET and EvalVid was

investigated in [64]. The results helped with choosing an appropriate delay buffer

size and packet repair techniques for various types of video, which will further help

to improve the user experience in the field of multimedia as demonstrated in [91].

 Summary & Conclusions 3.8

The subject of optimisation of the performance of video CODECs has been

investigated both within and outside the standardization activities of all video

CODECs in particular the well-established standard H264 and the latest standard

HEVC. Whilst algorithmic optimisation has been the key focus of optimisation

related research activity before and after the standardization of such CODECs,

parameter based optimization approaches have received attention after the CODECs

were standardised, in particular during their practical usage under resource

constrained conditions.

Machine Learning has found widespread applications in particular in video

processing and enhancement. However its use within video coding and

representation has been minimal. The latest advances in machine learning such as

Ensemble Learning and Deep Learning systems provides the means of utilising

machine learning for enhancing the performance of video CODECs.

The literature review conducted in this chapter has shown that there has been no

attempt to use machine learning for parameter based optimisation of video

CODECs. Further there has been no attempt to propose approaches and/or

frameworks for multi-objective optimisation of video CODECs. The research

conducted within the context of this thesis and presented in chapters 5, 6, 7 and 8

contributes towards closing this research gap as briefly highlighted in Chapter 1.

The following chapter demonstrates the Machine Learning based Framework for

the analysis of significant coding parameters of H.264.

50

 Decoder Introduction 4.1

Applications that benefit from accurate video capture, efficient representation and

coding, error-free transmission and subjectively optimised display, have been

growing over the years due to the availability of higher network bandwidth, faster

processor speed and advanced capture and display technologies. Some of the most

extensively used applications include real-time video conferencing, video streaming

over broadband networks and digital TV broadcasting. Most current mobile hand-

held devices come equipped with a video camera that is able to capture and encode

a video stream in a standard format.

These devices also include video players which can decode and playback video. Such

video CODECs have many parameters that can be used to control their operational

characteristics, both at the encoder and decoder ends, enabling the possibility of

fine tuning their operation for maximum efficiency within environments and

application scenarios that are bound by various constraints. For example, the

available bandwidth will have an upper limit, the network will be subjected to delays

and the decoder/display unit may have limitations in processing and display

capabilities. Yet the encoder, transmission and decoder have many parameters that

can be adjusted for them to be efficiently operational under above mentioned

constraints. Identifying the values of these parameters that results in the CODECs

optimal performance under given constraints remains an open research problem of

vital importance.

51

The first step of parameter based optimisation of a video CODEC is the

identification of the coding parameters that have a significant impact on its key

performance related parameters, such as, bandwidth usage, image/video quality,

and CPU time, etc. Although an experienced user of a video CODEC can guess these

parameters with some accuracy when the content of the video is known, a formal

scientific approach is needed to accurately decide the parameter set, with minimum

subjective error.

In this chapter a framework that is based on linear regression is proposed for both

the identification of significant coding parameters and performance modelling. In

Chapter-5 it is demonstrated how these linear models can be used for multi-

objective optimisation of a H.264 video CODEC using Genetic Algorithms. Together

Chapters 4 & 5 provides a framework for the multi-objective optimisation of a

H.264 video CODEC.

For clarity of presentation this chapter is divided several sections. Apart from this

section which is an introduction to the research being carried out, section 4.2

presents an overview of the proposed framework, in particular the experiments

conducted for the determination of the significant coding parameters and derivation

of Linear Regression based models for the performance related measures. Section

4.3 presents a comprehensive analysis of the results of the characterisation and the

performance modelling of the encoder. Decoder analysis is presented in section ‎4.4.

Section ‎4.5 investigates the use of other, more sophisticated machine learning

models such as Ensemble Learning Algorithms, e.g. Bagging, in the performance

modelling of a H.264 video CODEC in order to justify the conclusion within this

research to finally use of Linear Regression for performance modelling. Finally

section ‎4.6 concludes providing a summary of the contributions made.

 Proposed framework for multi-objective 4.2

optimization

The primary focus of Chapter 4 and 5 is to propose a framework for Multi-Objective

Optimisation of a H.264/AVC video CODEC, when working under multiple

constraints. The MOO framework is intended to minimize the CPU time, CPU time

is the total time it takes for the encoder and decoder to finish, Bit-rate and to

52

maximize the quality of the compressed video stream. MOO framework being

proposed is accomplished by following the three steps below.

1. Profiling experiments on the encoder and decoder are carried out to

determine the coding parameters that have a significant impact on each of

the performance related objectives, namely, rate, and distortion and CPU

Time. (Chapter-4)

2. The objective function/ model for each performance objective, subject to

constraints, based on the above significant parameters is constructed, by

using a suitable regression procedure. (chapter-4)

3. These objective functions were then used within a genetic algorithm (GA)

based multi-objective optimisation framework to determine optimal

parameter values. The focus of this chapter is the first two steps above, i.e.

determining the significant coding parameters and establishing the

corresponding objective functions. (Chapter-5)

A system level block diagram of the proposed framework is illustrated in Figure 4-1.

Figure 4-1: Proposed Multi-objective optimisation framework.

In a practical multimedia application scenario a device captures a video, encodes it

and transmits it via a network to another device that decodes and displays the

content to a viewer. Assuming that the network has bandwidth constraints and the

device in which the encoder is placed has compute power constraints and the

potential viewers of content may demand best quality levels, a situation in which the

proposed MOO framework can be used, arises. The significant number of encoder

parameters that control the encoders bit rate, quality and computational power

Encoder Profiling

Experiments

Encode video with all

combination of parameters

Optimal solution
NSGA-II

Record all results

corresponding to objectives

Weka, Linear Regression

Objective functions

Significant coding

parameters

53

requirements can be selected, to ensure the encoder performance is optimal, under

the given multiple constraints.

However, this requires the modelling of the encoders bit rate, quality and CPU time,

based on the large number of selectable encoder parameters. If mathematical

objective functions can be derived for each of the above, a standard approach to

optimisation can be used (see Chapter-5). Deriving objective functions, for example

using mathematical regression, will lead to the determination of the significant

coding parameters, the key focus of the research presented below. The same

explanation can be applied to the selection of decoder parameters that results in

optimal decoder performance.

Within the research context of this chapter, the data transmission network is

assumed to be perfect, i.e. no delays, no bit loses, no errors etc. Therefore, the bit

stream generated by the encoder is transmitted without any loss or alteration to the

decoder, real-time. The following section proposes the experimental process

adopted to determine the significant coding parameters for both the encoder and

decoder.

 The Profiling Experiments - Determining the 4.2.1
Significant Coding Parameters

This experiment was carried out using the configuration file published by Dolby

Laboratories Inc. (2009). The H264 encoder software JM (Joint Model) reference

software version 18.6 was used. In each profiling experiment each video sequence

(only the use of a set of six popular test video sequences is presented in this chapter)

was encoded using selected combinations of possible parameter values of initial set

of encoder parameters. In other words, each encoding instance corresponds to a

combination of coding parameter values selected from the possible exhaustive set

that can be determined by varying each parameter within its entire range. For

example instead of using quantization parameter variations between 1-51 (that is

the exhaustive set), only two sample values, 17 and 49, were used (for further

examples see bellow Table ‎4-3.

For each coding instance above, determined by the combination of the selected

values of each coding parameter, the distortion (measured as PSNR), bit-rate and

the number of CPU time were recorded. Subsequently the results were fed into the

Linear Regression Analysis tool of WEKA [92] with the coding parameters as the

54

independent variables and rate, distortion and CPU time values (in separate

experiments) as the dependent variables. A feature selection approach is used to

remove the insignificant coding parameters, leaving the significant coding

parameters as coefficients of the regression model. The resulting objective functions

for the Bit-rate, distortion and CPU time are the final outcomes of the proposed

research. Separate experiments are performed for each of the sample test videos.

Table ‎4-1 shows the set of six test video sequences. Claire is a video sequence that

has a foreground with simple motion and a non-moving area in background. In this

video a news presenter is appears talking while moving her head, eyes and mouth,

slowly. The Coastguard video sequence has fast movement on both foreground and

background regions simultaneously. A boat appears to move fast in the foreground,

with water showing waves and a second boat appearing after few frames, in the

background. The Football video sequence has complicated fast motion, with a

number of players moving very fast, simultaneously in the foreground. The

Foreman video has minimal movement in the background. The Forman appears

talking and his head appears to move quiet rapidly. The Mobile video sequence has

fast background and foreground movement simultaneously. A calendar appears to

be moving upward, a ball and a train is moving towards the left side of the scene

with the camera showing signs of panning. Finally the Tennis table video sequence

has a slow motion foreground and gentle movement in the background. The players

hand is moving and the racket is bouncing a ball. The camera is slightly zooming out

in the few last few frames. Given the above descriptions of the videos it is shown

that they have different properties and features.

Note that all of the six video sequences are of QCIF resolution (176x144 pixels) and

of 4:2:2 format. Note that low resolution videos are used in all experiments only to

save simulation time. Without any restrictions the proposed framework can be used

in relation to a video sequence of any resolution, in particular HD and full-HD. It is

noted that the above, six selected video sequences have different properties of object

motion, both in the foreground and background. Further differences exist in the

scene content.

55

Table 4-1: Selected frames of video sequences [93], [94].

Claire 494 frames Coastguard 300 frames

Football 260 frames Foreman 300 frames

Mobile 300 frames Tennis 150 frames

The CPU time was measured using the Intel VTune Amplifier XE. The experiment

was performed on a HP computer, running Microsoft Windows 8.1 (64-bit), having

an Intel Core i5 CPU 4200Y @ 1.40 GHz and 4.00GB RAM.

The encoder experiment can be outlined as follows:

1. The Six video sequences are encoded using a finite set of values for each

encoding parameter and using all parameters defined in the configuration

file. (See Appendix A.)

2. The values obtained for the three objectives were recorded for each

sequence. PSNR, bitrates and CPU time.

3. Using WEKA feature selection algorithms, a parameter reduction process

is carried out starting from the initial parameter used in [37] (see

Table ‎4-2.) that resulting in four of the parameters originally used, being

selected as significant coding parameters.

56

4. Only the Luminance Y component of the colour videos are used in the

performance modelling since human eyes are more sensitive to luma

components than to the chroma components. The PSNR SNR_Y is

measured in decibels (dB)

5. The total encoding CPU time in seconds for each video sequence was

recorded using Intel VTune Amplifier XE

6. Following are the parameters used, each video contains 3x2x2x3 = 36

Total Number of Instances as shown in Table ‎4-4. In each experiment one

parameter will be changed while the rest parameters are fixed. This will

help to observe the effect all parameters on each Objective. (See Appendix

B.)

a. IntraPeriod

b. SearchRange

c. Quantization Parameter

d. NumberReferenceFrames

7. Then results shown in Table ‎4-4 are then fed in Weka software a machine

learning tool to generate the linear regression function for each objective.

Table 4-2: The initial list of parameters used [37]

Parameter Meaning

Resolution Image width and height.

NumberReferenceFrames Used for motion estimation.

Use FME Fast motion estimation algorithms.

SearchRange Sets allowable search range for motion

estimation.

RDOptimisation Enable rate distortion optimized mode decision.

SliceGroup Number of slice group to be used.

IntraPeriod Period of I-frames.

Quantization Parameter Sets quantization parameter value.

DisableThresholding Disable Thresholding of Transform Coefficients.

Table ‎4-3 tabulates the significant coding parameters selected. The significant

parameters include Intra Period, Search Range, Quantization Parameter and

Number of Reference Frames.

The Table ‎4-3 also tabulates the sample values used in our experiments for each

parameter from within their corresponding value ranges. Note that the four

parameters are given variable names x(1), x(2), x(3) and x(4). The control variable

57

Intra Period - IP (x(1)), can take values: 0 (means that the first frame is coded as an

I-frame and subsequent frames are coded as P-frames), 5 and 8. The Search Range -

SR (x(2)) is assumed to take either of the two values 16 or 32. The control variable

Quantization Parameter - QP (x(3)) is assumed to take two possible values 17 or 49.

The Number of Reference Frames – NRF (x(4)) can take values 2, 5 and 8.

Table 4-3: Significant parameters and value used

Variables Parameters Values

Range

Variable Type

IP= 𝒙ሺ૚ሻ Intra-Period (0,5,8) Numeric

SR= 𝒙ሺ૛ሻ Search-Range (16, 32) Numeric

QP= 𝒙ሺ૜ሻ Quantization Parameter (17,49) Numeric

NRF= 𝒙ሺ૝ሻ Number-Reference-

Frames

(2,5,8) Numeric

Table ‎4-4 presents 36 data instances of the Foreman video sequence that were used

in the final stage of modelling the PSNR, image quality and CPU time. These are the

inputs to the linear regression based modelling process that will result in the three

objective functions. PSNR is measured in decibels (db), Bit-rate in (kbit/s) and CPU

time in seconds (sec).

58

Table 4-4: selected set of parameters for foreman sequence

IP 𝒙ሺ૚ሻ

SR 𝒙ሺ૛ሻ

QP 𝒙ሺ૜ሻ

NRF 𝒙ሺ૝ሻ

PSNR

in (db)

Bit-rate

in (kbit/s)

CPU time

in (sec)

0 16 17 2 44.606 547.62 61.627

0 16 17 5 44.635 473.74 75.058

0 16 17 8 44.636 471.7 84.624

0 16 49 2 22.806 9.63 41.619

0 16 49 5 23.384 9.09 57.455

0 16 49 8 23.382 9.28 70.711

0 32 17 2 44.62 547.1 61.189

0 32 17 5 44.688 472.77 74.527

0 32 17 8 44.691 471.59 83.665

0 32 49 2 22.871 9.98 41.24

0 32 49 5 23.449 9.21 57.3

0 32 49 8 23.405 9.38 71.303

5 16 17 2 45.751 819.97 55.727

5 16 17 5 45.819 712.66 69.253

5 16 17 8 45.822 714.2 75.729

5 16 49 2 23.53 16.77 37.336

5 16 49 5 23.881 16.44 53.122

5 16 49 8 23.881 16.51 63.869

5 32 17 2 45.764 820.33 69.276

5 32 17 5 45.83 714.45 80.19

5 32 17 8 45.825 714.3 86.417

5 32 49 2 23.531 16.78 37.594

5 32 49 5 23.881 16.44 51.472

5 32 49 8 23.881 16.5 64.64

8 16 17 2 44.818 618.74 57.825

8 16 17 5 44.906 544.33 69.269

8 16 17 8 44.899 540.87 77.812

8 16 49 2 22.955 13.09 39.142

8 16 49 5 23.532 12.67 52.936

8 16 49 8 23.54 12.73 65.502

8 32 17 2 44.821 618.66 58.211

8 32 17 5 44.91 544.98 70.837

8 32 17 8 44.902 542.31 78.66

8 32 49 2 22.958 13.12 39.35

8 32 49 5 23.532 12.67 53.45

8 32 49 8 23.54 12.73 66.653

59

 The Objective Functions of the H.264/AVC Encoder 4.2.2

Based on the output of the linear regression algorithms applied as explained above,

the objective functions for distortion (PSNR), Bitrate and CPU time for each video

sequence are found in (Equation ‎4-1 - 4-18) for each sequence video. These

functions provide one the means to discuss in detail the significance of each

parameter and how they affect the PSNR, rate and CPU. The following section

provides an analysis of the experimental results. In particular, the analysis

considers the test videos separately and discusses the impact of each coding

parameter given the known properties of the contents of each video.

Following are the obtained models for each video sequence, with f(1) representing

PSNR, f(2) Bit-rate and f(3) CPU time. It was shown above that these so-called

dependent parameters depend basically on four independent parameters namely

x(1), x(2), x(3) and x(4), which are respectively the significant coding parameters

Intra Period, Search Range, Quantization Parameter and the Number of Reference

Frames. Ideally in an implementation of a CODEC, especially when Rate-Control

has been disabled (see Chapter 3), there should not be any dependence of f(1) or f(2)

or vice-versa. Unfortunately due to the specific implementation adopted of the

H.264 CODECs Encoder in JM reference software [95], our preliminary

investigations suggested that there is likely to be a slight dependency between the

two performance measures. Therefore in the modelling that was carried out we

introduce two further parameters, i.e. x(5) representing PSNR as a parameter and

x(6) presenting Bit-rate as a parameter. In the modelling of f(1) and f(2) we

therefore use the four significant parameters x(1)-x(4) and a further parameter, x(5)

PSNR and x(6) Bitrate.

Claire Linear Regression Model ݂ሺͳሻ𝑃ௌேோ = Ͳ.ͲʹͲͺ ∗ ሺͳሻݔ − Ͳ.͸Ͳ͹ʹ ∗ ሺ͵ሻݔ + Ͳ.Ͳ͵ʹʹ ∗ ሺͶሻݔ + Ͳ.ͲͲ͸ͳ ∗ +ሺ͸ሻݔ ͷ͸.͹ʹ͸͵

(Equation 4-1) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ = Ͷ.͹ͻ͹ͻ ∗ ሺͳሻݔ − ͸.ͲͶͶ͵ ∗ ሺ͵ሻݔ + ʹͺͷ.ͷʹͲͷ

(Equation 4-2) ݂ሺ͵ሻா௡௖_்௜௠௘ = −Ͳ.ͷ͵ʹͻ ∗ ሺͳሻݔ + Ͳ.ͳͷͳͺ ∗ ሺʹሻݔ − Ͳ.ͳʹʹ͵ ∗ ሺ͵ሻݔ + ͵.Ͷ͹Ͳͳ ∗ +ሺͶሻݔ ͵͵.͸ͷͺ

(Equation 4-3)

60

Coastguard Linear Regression Model ݂ሺͳሻ𝑃ௌேோ = −Ͳ.ͲͺͲͷ ∗ ሺ͵ሻ ݔ + Ͳ.ʹ͹͵͹ ∗ ሺͶሻݔ + Ͳ.Ͳͳ͹Ͷ ∗ ሺ͸ሻݔ + ʹ͸.ͻͶͷʹ

(Equation 4-4) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ = −͵.ͺͷ͸ʹ ∗ ሺ͵ሻݔ − ͳͷ.ͶͳͲͻ ∗ ሺͶሻݔ + Ͷͳ.͹Ͷʹͺ ∗ ሺͷሻݔ − ͹Ͷͺ.ͺͺʹͷ

(Equation 4-5) ݂ሺ͵ሻா௡௖_்௜௠௘ = −Ͳ.͹ͻͻͶ ∗ ሺͳሻݔ − Ͳ.͵ʹͷͷ ∗ ሺʹሻݔ − Ͳ.͹ͻͲͺ ∗ ሺ͵ሻݔ + Ͷ.͸͹Ͷͳ ∗ +ሺͶሻݔ ͹ͷ.͸ͺͺͶ

(Equation 4-6)

Football Linear Regression Model ݂ሺͳሻ𝑃ௌேோ = −Ͳ.Ͷ͵͸͹ ∗ ሺ͵ሻݔ + Ͳ.ͲͺͲʹ ∗ ሺͶሻݔ + Ͳ.ͲͲͶ͹ ∗ ሺ͸ሻݔ + Ͷͳ.Ͳ͸͸
(Equation 4-7) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ = −͸ͺ.ͶͲ͹ ∗ ሺ͵ሻݔ − ͳͷ.ʹͶʹʹ ∗ ሺͶሻݔ + ͵Ͷͷʹ.͵͸ͳͷ

(Equation 4-8) ݂ሺ͵ሻா௡௖_்௜௠௘ = −Ͳ.͹ʹ͵Ͷ ∗ ሺͳሻݔ − ͳ.͵ͺ͸͹ ∗ ሺ͵ሻݔ + ͷ.ʹʹͻʹ ∗ ሺͶሻݔ + ͳͲ͸.ͲͲʹ͵

(Equation 4-9)

Foreman Linear Regression Model ݂ሺͳሻ𝑃ௌேோ = −Ͳ.ͷͻʹ͸ ∗ ሺ͵ሻݔ + Ͳ.Ͳ͹ͻͺ ∗ ሺͶሻݔ + Ͳ.ͲͲͶ͸ ∗ ሺ͸ ሻݔ + ͷʹ.Ͳʹʹͷ

(Equation 4-10) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ = ͸.ͺͳ͵͵ ∗ ሺͳሻݔ − ͳͺ.ͷͲʹ͵ ∗ ሺ͵ሻݔ + ͺͻͲ.Ͳ͵ͳͻ

(Equation 4-11) ݂ሺ͵ሻா௡௖_்௜௠௘ = −Ͳ.ͷ͵Ͷ͹ ∗ ሺͳሻݔ + Ͳ.ͳʹͻ͹ ∗ ሺʹሻݔ − Ͳ.ͷ͸Ͷ͸ ∗ ሺ͵ሻݔ + Ͷ.ͲʹͲͳ ∗ +ሺͶሻݔ ͸Ͳ.͵͸ʹ

(Equation 4-12)

61

Mobile Linear Regression Model ݂ሺͳሻ𝑃ௌேோ = −Ͳ.ͲʹͶͻ ∗ ሺͳሻݔ − Ͳ.͸ͳͻ͵ ∗ ሺ͵ሻݔ + Ͳ.Ͳ͹ͳ͵ ∗ ሺͶሻݔ + Ͳ.ͲͲ͵ͳ ∗ +ሺ͸ሻݔ Ͷͻ.ͷͷͲͶ
(Equation 4-13) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ = ͳ͸.ͳ͵ͶͶ ∗ ሺͳሻݔ − ͷʹ.ͲͶ͸ͺ ∗ ሺ͵ሻݔ − ͳͺ.ͳͳʹͻ ∗ ሺͶሻݔ + ʹ͸Ͳʹ.ͳ͵ͺ͵
(Equation 4-14) ݂ሺ͵ሻா௡௖_்௜௠௘ = −Ͳ.͸ͳ͸ ∗ ሺ͵ሻݔ + Ͷ.͹ʹʹ͹ ∗ ሺͶሻݔ + ͸ͻ.ͶͶͺ͹

(Equation 4-15)

Tennis Linear Regression Model ݂ሺͳሻ𝑃ௌேோ = −Ͳ.Ͷͺ͸ͺ ∗ ሺ͵ሻݔ + Ͳ.Ͳ͹ͻͷ ∗ ሺͶሻݔ + Ͳ.ͲͲ͵ʹ ∗ ሺ͸ሻݔ + Ͷ͹.ͻͺͶ͵
(Equation 4-16) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ = −͵ͻ.͹͵ͳͷ ∗ ሺ͵ሻݔ − ʹͲ.Ͷ͸ͳ ∗ ሺͶሻݔ + ʹͲ͸ͳ.ʹʹͶͶ
(Equation 4-17) ݂ሺ͵ሻா௡௖_்௜௠௘ = −Ͳ.͹ͷͷͳ ∗ ሺͳሻݔ − Ͳ.ͻͺͺͺ ∗ ሺ͵ሻݔ + Ͷ.͵ʹ͵ ∗ ሺͶሻݔ + ͹ͺ.ͷʹ͹

 (Equation 4-18)

 Encoder Performance Analysis 4.3

Experimental analysis was conducted separately for the encoder and decoder. The

Encoder objective functions obtained as a result of the experimental procedure

presented in (Equation ‎4-1 - 4-18) enables one to discuss the significance of each of

the coding parameters.

Table ‎4-5 tabulates the correlation coefficients of the objective functions. They

range between 0-1. A value closer to 1 represents the fact that the dependant

variable (in this case Bit-Rate, PSNR or CPU time) can be predicted very accurately

from the coding parameters that play a role and has thus been included within the

objective functions. In analysing the objective functions above, higher positive

coefficients of coding parameters indicate higher positive dependency and higher

negative coefficients represent higher negative dependency. If a certain parameter is

not present in the objective function that means that the objective is independent of

that parameter.

62

Table 4-5: Encoder Correlation Coefficient.

Video PSNR

In (db)

Bit-

rate

CPU time

in (sec)

Claire 1 0.9424 0.9460

Coastguard 0.9865 0.9865 0.8917

Football 0.9997 0.9967 0.9849

Foreman 0.9998 0.9678 0.9746

Mobile 0.9999 0.9809 0.9588

Tennis 0.9998 0.9757 0.9883

A careful analysis of the coding parameters that have non-zero weighting factors in

the objective functions obtained and a comparison of relative magnitudes of the

coefficients can lead to a direct correspondence with the properties of the video, for

e.g., the presence of motion in foreground and background, the speed of movement

of objects, sudden scene changes, camera pan/tilt/zoom effects and the general

characteristics of the content of the video as well. For example, the analysis of the

linear regression equations obtained for Foreman video sequence identifies all four

parameters to have significant impact on CPU time, namely:

 IntraPeriod

 Searchrange

 Quantization parameter

 NumberReferenceFrames

For the same video the following parameters were identified to have a significant

impact on Bit-rate.

 IntraPeriod

 Quantization

The parameters that are identified to have a significant impact on PSNR are:

 Quantization parameter

 NumberReferenceFrames

A more detailed and video sequence specific analysis can be presented as follows.

63

1. CPU Time Analysis Experiment:

The objective functions obtained for all six video sequences for CPU time

indicates that the parameter that has the most significant impact on CPU

time is the number of reference frames. This is expected due to the need to

repeat the motion estimation process when NRF increases.

It has a significant impact in increasing the CPU time. This is expected given

the computational cost of the motion estimation algorithm implemented

within H.264. The next significant impact is from the Quantization

parameter. The impact from search range (SR) and Intra Period (IP) is

relatively insignificant. For most videos with fast movement of objects (i.e.

Football and Mobile) there is no impact from the Search Range. This is true

given the fact that for videos with fast moving objects, best matches will not

be found quickly, i.e. without having to scan the entire video. All objective

functions include a similar constant term indicating that a fixed

computational cost for encoding is present, which is independent of the

selection of coding parameters. This is expected given the processes that

exist, which are independent of the coding parameters.

2. Bit-Rate Analysis Experiment: The parameter that has the most

significant impact in the bit-rate is distortion or the PSNR value. This is

expected given the fact that the rate-distortion optimisation happens in a

combined manner. The number of reference frames (NRF) has a negative

correlation to the bit rate and is significant. The negative correlation is due to

the fact that when the number of reference frames increases the chances of

finding a better match in motion estimation increases, thus reducing the bit

rate. The significance of it is due to the same reason. As all video sequences

have various amounts of motion between frames, its bit rate will have an

impact on the quantization parameter. The quantization parameter (QP) has

a very important impact on the compression rate of H.264.

It is noted that in the modelling of Bit-Rate PSNR was used as a fifth

independent parameter, x(5). However the modelling process has dropped

x(5) indicating that PSNR has no direct impact on the target Bit-Rate.

64

3. PSNR Analysis Experiment: The parameter that has the most significant

impact on PSNR is bit-rate. It is noted that these two parameters are highly

dependent. The number of reference frames and quantization parameter also

has an impact on the PSNR for all video sequences. The PSNR results

tabulated in Table ‎4-5 indicate that the two videos with the least amount of

movement/changes, namely Mobile and Claire have the best correlation

coefficients. This is expected due to the stability of the CODEC during the

encoding of the individual frames of the coded sequence.

It is noted that target Bit-Rate used as parameter x(6) has a slight direct

impact on the PSNR obtained. This is indicated by the presence of x(6) in the

models/equations (see equation-1) of the Bit-Rate with a very low valued

coefficient as compared to the coefficients of the other four significant coding

parameters. This demonstrate the issue raised by our preliminary

investigations about the specific implementation we have adopted in our

experiments. However in a proper implementation of a CODEC this should

not be the case (see Chapter-6 for the H.265 implementation we have used.).

 Decoder Performance Analysis 4.4

To analyse the performance of the decoder, the encoded video sequences should be

decoded using different combinations of decoder parameters. The process involved

can be outlined as follows:

1. The Six encoded video sequences were decoded using a configuration file

containing input parameters to the JVT H.264/AVC decoder as shown in

Appendix A.

2. For each encoded video, the total decoding CPU time is recorded using

Intel VTune Amplifier XE.

3. The decoding is conducted under 36 (=3x2x2x3) different value

combinations of the decoder significant parameters, listed below:

a. IntraPeriod

b. SearchRange

c. Quantization Parameter

d. NumberReferenceFrames

65

4. The data instances thus gathered is sampled in Table ‎4-6. The full data

gathered is then fed into WEKA where a machine learning tool generates

the linear regression function for each objective. The analysis of the

decoder is limited to decoder parameters that have significant effect on

only the decoder’s CPU time.

 The output of Decoded video 4.4.1

A H.264 decoder takes an encoded .264 file as input and outputs a raw YUV video

stream. As an example of coastguard video

InputFile = "test.264” is the H.264/AVC coded bitstream file

OutputFile = "test_dec.yuv” is the Output file, YUV/RGB

The output in Figure ‎4-2 shows the output video artifact of frame 30 with

quantization parameter (QP) of 49 that gives very low quality with PSNR of 24.189

db and 5.83 Bitrate compared to QP 17 that has 43.418 db and 979.02 Bitrate.

It is noted that the visual quality of the video reduces when quantization parameter

increased.

Figure 4-2: Sample image of frame 30 at (a) QP= 17 and (b) at QP= 49

Note that the Decoder parameters have no impact on Bit-rate and PSNR as these

are determined by the encoder. In the proposed framework the quality and the bit-

rate received by the decoder are the same as the encoder output.

The CPU time of the decoder is analysed using the same method used at the encoder

end. For the six given video sequences, experiments were performed in order to find

(a) (b)

66

out those coding parameters that can significantly influence CPU time. The

objective functions thus obtained are listed with in (Equation ‎4-19 - 4-24).

Claire Linear Regression Model ݂ሺͳሻ஽௘௖_்௜௠௘ = Ͳ.ͲͲͶ ∗ ሺͳሻݔ + Ͳ.ͲͲͲͺ ∗ ሺʹሻݔ − Ͳ.ͲͲ͵ͻ ∗ ሺ͵ሻݔ + Ͳ.͵͹͵

(Equation 4-19)

Coastguard Linear Regression Model ݂ሺͳሻ஽௘௖_்௜௠௘ = −Ͳ.ͲͲͶʹ ∗ ሺʹሻݔ − Ͳ.Ͳͳͳͺ ∗ ሺ͵ሻݔ + Ͳ.ͺͻͶͷ

(Equation 4-20)

Football Linear Regression Model ݂ሺͳሻ஽௘௖_்௜௠௘ = Ͳ.ͲͲͳ͸ ∗ ሺͳሻݔ − Ͳ.Ͳʹʹ ∗ ሺ͵ሻݔ − Ͳ.ͲͲ͵͵ ∗ ሺͶሻݔ + ͳ.͵Ͷͷͷ

(Equation 4-21)

Foreman Linear Regression Model ݂ሺͳሻ஽௘௖_்௜௠௘ = −Ͳ.ͲͳͶ͸ ∗ ሺ͵ሻݔ + Ͳ.ͻ͵ͷ͵

(Equation 4-22)

Mobile Linear Regression Model ݂ሺͳሻ஽௘௖_்௜௠௘ = Ͳ.ͲͲ͹ͳ ∗ ሺͳሻݔ − Ͳ.Ͳʹʹ ∗ ሺ͵ሻݔ − Ͳ.ͲͲͷͻ ∗ ሺͶሻݔ + ͳ.͵͵ͻ͸

(Equation 4-23)

Tennis Linear Regression Model ݂ሺͳሻ஽௘௖_்௜௠௘ = −Ͳ.Ͳͳͷͺ ∗ ሺ͵ሻݔ − Ͳ.ͲͲ͹ʹ ∗ ሺͶሻݔ + ͳ.Ͳ͵ͲͶ
(Equation 4-24)

67

Table 4-6: Selected set of decoder parameters for Foreman Sequences.

IP 𝒙ሺ૚ሻ

SR 𝒙ሺ૛ሻ

QP 𝒙ሺ૜ሻ

NRF 𝒙ሺ૝ሻ

Decoder
Time in

(sec)
0 16 17 2 0.659

0 16 17 5 0.659

0 16 17 8 0.639

0 16 49 2 0.209

0 16 49 5 0.205

0 16 49 8 0.203

0 32 17 2 0.659

0 32 17 5 0.635

0 32 17 8 0.628

0 32 49 2 0.223

0 32 49 5 0.207

0 32 49 8 0.205

5 16 17 2 0.741

5 16 17 5 0.721

5 16 17 8 0.729

5 16 49 2 0.243

5 16 49 5 0.237

5 16 49 8 0.227

5 32 17 2 0.804

5 32 17 5 0.857

5 32 17 8 0.792

5 32 49 2 0.236

5 32 49 5 0.227

5 32 49 8 0.229

8 16 17 2 0.656

8 16 17 5 0.646

8 16 17 8 0.622

8 16 49 2 0.221

8 16 49 5 0.213

8 16 49 8 0.214

8 32 17 2 0.658

8 32 17 5 0.637

8 32 17 8 0.626

8 32 49 2 0.232

8 32 49 5 0.213

8 32 49 8 0.214

68

Table ‎4-7 tabulates the correlation coefficients of the objective functions. The

Football video sequence has the highest correlation coefficient closely followed by

mobile. The analysis of the linear regression equations obtained to identify

parameters that have significant impact on CPU time (Equation ‎4-24) reveals that

the quantization parameter has the most significant impact. QP has an impact in all

the video sequences as evidenced by its presence in all objective functions and being

the parameter having the highest magnitude coefficient.

Table 4-7: Decoder correlation coefficient

Video

Sequences

CPU time

in (sec)

Claire 0.9593

Coastguard 0.9217

Football 0.9984

Foreman 0.9786

Mobile 0.9958

Tennis 0.9873

The Encoder and Decoder analysis indicates that the objective functions obtained as

a result of using the proposed framework is able to accurately define the significant

coding parameters and further detail the level of significance of each parameter.

They can also be related to the motion and content information of the videos.

It is noted that our preliminary investigations revealed that the specific

implementation of the H.264 CODEC that was used in the above modelling, did not

suffer from the dependence of f(1) and f(2) on x(6) and x(5) respectively. Therefore

parameters x(5) and x(6) were not considered during the Decoder performance

modelling above.

69

 Using Advanced Machine Learning 4.5

Algorithms for the Modelling of an H264

CODEC

In sections 4.3 and 4.4 the use of Linear Regression in performance modelling of

the encoder and decoder were presented. However Linear Regression is a simple

approach that may not be the most effective approach/method to model the

performance of a CODEC.

The recent advances of machine learning algorithms, especially tree based

algorithms, ensemble learning algorithms etc., provides further possibilities to be

considered beyond using purely mathematical models. Given this observation, in

this section we carry our experiments to model the performance of a H264 CODEC

using advanced machine learning algorithms. The aim is to compare the accuracy of

performance modelling obtainable via such approaches to the accuracy of

performance modelling already shown above via the use of Linear Regression based

modelling.

WEKA is an ideal platform for investigating the use of different machine learning

algorithms as it consists of implementations of a large number of data-pre-

processing, classification, modelling and clustering algorithms. It provides a

graphical user interface for exploring and experimenting with machine learning

algorithms on datasets.

The key focus of the experiments conducted in this section is to model the CPU

utilization via measuring the encoding/decoding times, when the encoder/decoder

parameters are respectively set to different combinations of possible values, within

specified practical constraints. After collecting the encoding/decoding times under

changes to parameter values, different machine learning algorithms can be used to

model the recorded times. The correlation coefficient between the actual and

predicted times can be used to determine accuracy of prediction that each model

can provide. Details of the experiments conducted and an analysis of the results is

presented in the following sub-sections.

70

 Experiments, results and analysis 4.5.1

Bagging (Bootstrap Aggregating) is an ensemble method that creates separate

samples of the training dataset and creates a classifier for each sample with the aim

of reducing variance. Bagging can be used to perform both classification and

regression depending on the base learner selected. Bagging has been demonstrated

to be the most effective ensemble learning approach and hence the one used within

the proposed research context.

In the experiments conducted the following base classifiers were used with Bagging:

 REPTree

 RandomForest

 AdditiveRegression

 RandomSubSpace

The base classifiers are combined with bagging to achieve very high classification

accuracy / modelling accuracy.

Table 4-8: Decoder Correlation coefficient using bagging

CPU Time Decoder Correlation coefficient

Videos Linear-

Regression

REP-Tree Random-

Forest

Additive-

Regression

Random-

SubSpace

Claire 0.9593 0.9877 0.9961 0.9818 0.9773

Coastguard 0.9217 0.9554 0.9806 0.9302 0.9476

Football 0.9984 0.9992 0.9991 0.9996 0.9987

Foreman 0.9786 0.9966 0.996 0.9906 0.9907

Mobile 0.9958 0.996 0.998 0.9958 0.9959

Tennis 0.9873 0.997 0.9979 0.994 0.9957

Bagging produces a combined model that often performs significantly better than

the single model built from the original training data, and is never substantially

worse. Best performance is achieved by combining both, different feature sets and

different classifiers.

Table ‎4-8 tabulates the Decoder correlation coefficients when using Linear

Regression and Bagging (with four different base classifiers) in the modelling of

decoder CPU time. The results clearly demonstrate the ability of bagging to improve

71

the modelling accuracy, given the improved values of correlation coefficients

obtained.

The performance modelling of the encoder was also carried out using the same

Bagging based classifiers and compared with the accuracy of the Linear Regression

method proposed. Results show marginal improvement in most cases over the

modelling accuracy results obtained with Linear Regression in Table ‎4-9.

It is noted that for the Encoder modelling is performed for not only CPU time but

also PSNR and Bit-Rate as illustrated in Table ‎4-9.

Table 4-9: Encoder Correlation coefficient with both linear and bagging

Encoder Correlation coefficient

Video Objectives Linear

Regressi

on

REP-

Tree

Random-

Forest

Additive-

Regression

Random-

SubSpace

Claire PSNR 1 0.9999 0.9997 1 0.9995
Bit-Rate 0.9424 0.9969 0.999 0.9977 0.9972
CPU time 0.946 0.9398 0.9821 0.9699 0.9771

Coastguard

PSNR 0.9865 0.9985 0.9966 0.9989 0.9983
Bit-Rate 0.9865 0.9939 0.9984 0.9969 0.9905

CPU time 0.8917 0.9344 0.9708 0.9307 0.9411
Football

PSNR 0.9997 0.9998 0.9997 1 0.9997
Bit-Rate 0.9967 0.9994 0.9997 0.9996 0.9991

CPU time 0.9849 0.9793 0.9934 0.9885 0.9828
Foreman PSNR 0.9998 0.9998 0.9996 0.9999 0.9994

Bit-Rate 0.9678 0.9971 0.9991 0.9981 0.9962

CPU time 0.9746 0.9671 0.9899 0.975 0.9752

Mobile

PSNR 0.9999 0.9999 0.9998 1 0.9995

Bit-Rate 0.9809 0.9984 0.9996 0.9993 0.9982

CPU time 0.9588 0.9673 0.9884 0.9763 0.9749

Tennis PSNR 0.9998 0.9999 0.9998 1 0.9993
Bit-Rate 0.9757 0.996 0.9988 0.9988 0.9947

CPU time 0.9883 0.9782 0.9942 0.9918 0.9927

The encoder/decoder analysis above has shown that bagging produces more

accurate models. Unfortunately, the bagging technique and its classifiers do not

generate a mathematical formulation, i.e. an objective function for each objective is

not produced when using bagging procedures. Therefore this stops us using Bagging

72

as a means to model performance of the CODEC in the optimisation work presented

in Chapter-5. Therefore, in the CODEC optimisation work presented in chapter-5

the Linear Regression models developed above will be used. However the work in

this section has demonstrated that better models exists for the modelling of

performance of a video CODEC. Though the decision is to use the Linear Regression

model, Linear regression implements a statistical model that, when relationships

between the independent variables and the dependent variable are almost linear,

shows optimal results, therefore the use of Linear Regression is justified based on

its simplicity and easy to use.

 Summary & Conclusion 4.6

This chapter proposed a machine learning based approach for the determination of

significant coding parameters of a H264 video CODEC. In particular, the

experiments conducted proposed the use of multivariate regression analysis in

modelling the performance of a CODEC via defining objective functions for CPU

time (both for the encoder and decoder), PSNR and the bit-rate (for the encoder

only) of a video CODEC when a given video is being encoded/decoded. The analysis

conducted used known information about the content and the motion present in the

test videos to justify the formation and the nature of the objective functions

obtained. These objective functions will be used in Chapter-5 for multi-objective

optimisation of a video CODEC based on Genetic Algorithms.

The chapter also investigated the potential use of Ensemble Learning algorithms in

the modelling of a H264 video CODEC. The results concluded that the Ensemble

Learning algorithm Bagging, when used with a suitable single base classifier

improves modelling accuracy beyond what can be achieved by a Linear Regression

model. However the difference in accuracy is marginal that justifies the decision to

use Linear Regression as the best practical solution.

73

 Introduction 5.1

The study in ‎Chapter 4 has investigated the parameters that have a significant

impact on the encoder and decoder performance in terms of CPU time. The study

further resulted in a number of Linear Regression models being developed that can

effectively be used to accurately model the CODEC’s performance related properties

such as PSNR, Bit Rate and CPU time.

This chapter presents a framework for multi-objective optimisation of video

CODECs. Specifically, an optimization scheme is proposed to determine the

optimum coding parameters for a H.264 AVC video codec in a bandwidth

constrained environment, which minimises codec time and video distortion. In the

literature, the contributions to the optimisation of H.264/AVC have focuses on the

CPU time, power consumption, rate distortion and delay. A considerable research

gap exists in developing a generalized framework for a parameter based approach

for optimizing end-to-end video delivery system that is capable of working under

multiple objectives/constraints. This framework is very useful within present and

future video delivery systems and video coding.

The encoding/decoding parameters that have a significant impact on the

performance of the codec are initially obtained through experimental analysis as

explained in ‎Chapter 4. A mathematical formulation by means of linear regression

is subsequently used to associate these parameters with the relevant objectives and

a Multi-Objective Optimization [43] problem is defined. Solutions to the

optimization problem are reached through a Non-dominated Sorting Genetic

Algorithm (NSGA-II). NSGA-II is implemented in the genetic algorithm gamultobj,

available in the MATLAB optimisation tool-box. It is shown that the proposed

framework is flexible on the number of objectives that can jointly be optimized.

Practical use of the proposed framework is described using the six videos

mathematical formulation.

74

For clarity of presentation this chapter is divided into 5 sections. Apart from this

section which is an introduction to the research problem, section‎5.2 presents the

setting of Genetic Algorithm using Matlab Section ‎5.3 presents optimising the

encoder. Optimising the Decoder is described in Section ‎5.4. Finally section ‎5.5

concludes with a summary of the chapter.

 Setting up the Genetic Algorithm 5.2

The proposed optimisation framework was implemented on a HP computer,

running Microsoft Windows 8.1 (64-bit), having an Intel Core i5 CPU 4200Y @ 1.40

GHz and 4.00GB RAM.

The optimization toolbox in MATLAB is used for the implementation of multi-

objective optimization using a Genetic Algorithm. The MATLAB based solver used is

‘gamultiobj’ and the settings are fixed as shown in Figure ‎5-1. MATLAB’s

‘gamultiobj’ solver attempts to create a set of Pareto optima for a multiobjective

minimization. ‘Gamultiobj’ uses the genetic algorithm for finding local Pareto

optima. As in the GA function, one may specify an initial population, or have the

solver generate one automatically. The algorithm is first initialised by defining the

population size, the total number of generations, the number of variables etc. as

presented in Table ‎5-1.

75

Table 5-1: ‘gamultobj’ settings used

gamultobj settings

Fitness function: function that is to be minimized
Number of variables: 6
Population Type: Double Vector
Creation Function: feasible population
Population Size: 300
Initial Population: Default
Initial Scores: Default
Selection Function: Tournament
Tournament size: 5
Crossover Fraction: 0.25
Mutation Function: adaptive feasible
Crossover Function: Intermediate
Crossover Ratio: 0.23
Migration Direction: both
Migration Fraction: Default (0.2)
Migration Interval: Default (20)
Distance Measure Function: Default @distancecrowding
Pareto Front Population Fraction: .7
Hybrid Function: None
Maximum Generations: 300
Time Limit: Default (Infinite)
Fitness Limit: Default (Infinite)
Stall Generations: Default (100)
Function Tolerance: 1e-4
Constraint tolerance: 1e-3
Plot functions: Pareto front.

The optimization is executed by clicking Start listed under ‘Run solver and view

results’ sub-frame (see Figure ‎5-1). A plot appears in a figure window. This plot

shows the trade-off between the two components off. It is plotted in objective

function space.

76

Figure 5-1: Setting options for the optimisation task

77

 Optimising the Encoder 5.3

In this study, the objective functions to be optimized, given in ‎Chapter 4 were used

to optimise the encoder. Three functions are associated with each video namely the

functions for the PSNR, bit rate and CPU time. These functions are then fed to the

NSGA-II optimization tool along with the fitness function and number of variables.

The NSGA-II provides all sets of optimal results that jointly minimize time, bit-rate

and maximizes quality. Since a single 3D graph is complex to visualize the

optimality of the results, pairs of graphs where plotted.

An optimization problem is one requiring the determination of the optimal

(maximum or minimum) value of a given function, called the objective or fitness

function, subject to certain defined restrictions, or constraints placed on the

variables concerned.

It is noted that the MATLAB Optimization Toolbox’s optimization functions

minimize the objective or fitness function. That is, they solve problems of the form. min 𝑥݂ ሺݔሻ.

If one requires to maximize f(x), –f(x) should be minimised, as the point at which

the minimum of –f(x) occurs is the same as the point at which the maximum of f(x)

occurs. In other words, to achieve optimum performance, the function is maximized

by minimizing the negative of the function. In encoder (Equation ‎4-1 -4.18) the

PSNR, i.e. the Quality of the video is to be maximised. So that maximized equation

is minimized by multiplying the PSNR equation by a negative sign, i.e. creating –

f(x).

The objective functions depend generally on four parameters expressed as x in the

MOO problem formulation, which include IntraPeriod, SearchRange, Quantization

Parameter and NumberReferenceFrames. It was mentioned in Chapter-4 that due

to a specific implantation issue with regards to the H.264 implementation used in

the experiments there is a direct dependency of the target Bit-Rate (thus

represented as a parameter x(6)) on PSNR. Hence in the objective function of

PSNR, a fifth parameter, x(6) exists. Each pair consists of two objectives functions.

78

In optimising the encoder two-objective, multiple constraint problems were

considered. Three sets of two-objective (and multiple-constraint) optimisations

were carried out, namely:

 PSNR vs. Bit-rate.

 PSNR vs. CPU.

 CPU vs. bitrate.

The following section provides the experimental results and detailed analysis of the

results.

 Experimental results and analysis 5.3.1

The results of MOO and Pareto set analysis are presented in Table ‎5-2 and

Table ‎5-3 and Figure ‎5-2 to Figure ‎5-4 respectively. The Figure ‎5-2 shows the

Pareto front or set of non-dominated solutions for Bit-Rate and PSNR, and the

corresponding numerical values related to the optimal performance points on the

Pareto curve are tabulated in Table ‎5-2.

The following summarises and lists the objective function pairs considered in multi-

objective optimisation of the H.264 encoder when coding the Foreman and Football

sequences. The equation is minimized by multiplying the PSNR equation by a

negative sign, i.e. creating f=-f.

A. The Foreman Video

function f = foreman(x)

% PSNR versus Bit-rate

% f(1) represent psnr
f(1) = -0.5926 * x(3) + 0.0798 * x(4) + 0.0046 * x(6) + 52.0225;f=-f;

% f(2) represent bitrate
f(2) =6.8133 * x(1) - 18.5023 * x(3) + 890.0319;

% ---

% PSNR versus cpu

% f(1) represent psnr
f(1)= -0.5926 * x(3) + 0.0798 * x(4) + 0.0046 * x(6) + 52.0225;f=-f;

79

% f(2) represent cpu
f(2) = -0.5347* x(1)+ 0.1297* x(2)- 0.5646 * x(3)+4.0201* x(4)+ 60.362;

% ---
% cpu versus bitrate

% f(1) represent cpu
f(1) =-0.5347* x(1)+ 0.1297* x(2)- 0.5646* x(3)+4.0201* x(4)+ 60.362;

% f(2) represent bitrate
f(2) =6.8133 * x(1) - 18.5023 * x(3) + 890.0319;

End

B. The Football Video

function f = football(x)

% PSNR versus Bit-rate

% f(1) represent psnr
f(1) = -0.4367* x(3)+ 0.0802 * x(4) + 0.0047 * x(6) + 41.066;f=-f;

% f(2) represent bit-rate
f(2) = - 68.407 * x(3) - 15.2422 * x(4) + 3452.3615;

% ---

% PSNR versus cpu

% f(1) represent psnr
f(1) = -0.4367 * x(3) + 0.0802 * x(4) + 0.0047 * x(6) + 41.066;f=-f;

 % f(2) represent cpu
f(2) = - 0.7234 * x(1) -1.3867 * x(3) + 5.2292 * x(4) + 106.0023;

% ---
% cpu versus bitrate

% f(1) represent cpu
f(1) = - 0.7234 * x(1) -1.3867 * x(3) + 5.2292 * x(4) + 106.0023;

% f(2) represent bitrate
f(2) =- 68.407 * x(3) - 15.2422 * x(4) + 3452.3615;

End

Figures 5-2, 5-3 and 5-4 plots the dual-objective Pareto fronts obtained for the

Foreman video. These plots are generated as output when the ‘gamultobj’ function

80

[96] of MATLAB is run based on the equation pairs listed above. Similar graphs are

created for ‘Football’ sequence and these are included in Appendix C.

Figure 5-2: Pareto front for foreman PSNR in (db) vs. Bit-Rate in (Kbit/s).

Figure 5-3: Pareto front for foreman PSNR in (db) vs. CPU Time in (sec).

81

Figure 5-4: Pareto front for foreman CPU Time in (sec) vs. Bit-Rate in (Kbit/s).

Note: since the property of Pareto chart that all data must be positive. Negative

values are ignored.

The results of the Bit-Rate vs. PSNR (under multiple constraints of parameter

values) optimization operation are listed in table 5-2 which contains values of both

objective functions and the relevant values of the parameters that generated optimal

performance. Note that each parameter has been set within constraint settings, thus

making the dual-objective optimisation problem being addressed, a multi-objective

(i.e. dual-objective + multi-constraint) optimisation problem. The list of a sample

set of optimal feasible solutions with their functional values, have been listed in

Table ‎5-2. It is noted that the optimal point listed in the table 5-2 is 15 out of 140

optimal points obtained. The number of rows in X is the same as the number of

Pareto solutions. All solutions in a Pareto set are equally optimal. For more details,

readers are referred to Appendix D.

82

Table 5-2: The optimal points for foreman PSNR vs. Bit-rate

 f(1) f(2) X1 X2 X3 X4 X5 X6

1 -61.4345 1051.543 -
12.3536

5.948443 -13.2784 18.68428 6.922016 11.36318

2 -
56.2065

860.3077 -
15.6062

6.330999 -4.14033 21.28292 8.077764 6.978926

3 -59.1944 959.3262 -
14.4197

5.089091 -9.05509 22.12362 8.069374 8.776518

4 -
62.8529

1102.272 -
10.8373

5.983466 -15.4618 20.18949 7.297968 12.31851

5 -55.2319 827.3298 -
15.3452

7.633843 -2.26184 23.04302 10.27598 6.575443

6 -62.6273 1085.166 -
12.1723

6.900299 -15.0288 20.62279 7.015222 11.51751

7 -
58.0206

919.1406 -
14.9615

5.98795 -7.08268 22.08793 7.667866 8.319399

8 -
40.8703

404.3069 -
13.2207

14.54251 21.38374 18.91533 11.41972 2.244124

9 -57.8374 910.0747 -
14.7867

6.106682 -6.52831 23.847 8.773665 9.403458

10 -52.579 747.9986 -
15.5328

6.103938 1.956696 21.12791 7.869598 6.523647

11 -45.7358 536.7505 -
16.1877

13.29562 13.13297 18.59521 9.332297 2.607052

12 -62.8153 1089.791 -
12.1723

6.900299 -15.2788 21.12279 7.015222 11.51751

13 -56.6037 872.3414 -
14.9189

6.229737 -4.53761 23.22131 8.72742 8.51145

14 -
64.2498

1160.129 -
8.63146

7.039144 -17.7765 20.64461 8.871526 9.890705

15 -64.5445 1179.086 -
6.97241

7.537578 -18.1901 21.32292 9.585319 8.898466

Table 5-3: Output data describing the results of MOO with GA for Figure ‎5-2 to

Figure ‎5-4

Problem Number
of
generati
ons

Size of
populati
on

Pareto
fraction

Size of
non-
dominated
set

Function
count

Average
distance

Spread

PSNR vs. Bit-rate 107 200 0.7 140 21601 0.0043 0.3793

PSNR vs. CPU 127 200 0.7 140 25601 0.0196 0.3164

CPU vs. Bit-rate 246 200 0.7 137 49401 0.0442 0.5231

83

Note that once the Pareto front is plotted, MATLAB’s ‘gamultiobj’

function workspace can be used to display the number of solutions found on the

Pareto front and the number of GA generations from which they resulted. The

number of solutions found on the Pareto front and the number of generations are

found using the following command line operations as presented in Figure ‎5-5,

below. Further details about the optimization problem carried out can be

determined by studying the ‘output’ of the ‘gammultiobj’ function, as indicated by

Figure ‎5-6.

Figure ‎5-2 shows the PSNR versus bit rate values in final stage of generations being

used of the optimization process. Similarly Figure ‎5-7 Figure ‎5-8 illustrates the

results.

Figure 5-5: number of solutions and the number of generations.

Figure 5-6: More details about the optimization

It is noted that in general, Pareto-based multi-objective approaches consider three

aspects: closeness to the global Pareto front; spread along the Pareto front; number

of solutions of the non-dominated set.

84

In the Table ‎5-3, population size and Pareto fraction for the GA are set at 200 and

0.7, respectively, which are considered sufficient to generate search for optimal

solutions. The solver will try to limit the number of individuals in the current

population that are on the Pareto front to 70 percent of the population size since the

Pareto fraction is set to 0.7. For example in optimisation on PSNR vs. Bit-Rate,

when the MOO algorithm of MATLAB, ‘gamultiobj’, is run, after 107 generations

and 21601 function counts, the GA selected 140 best individuals to be considered as

non-dominated solutions out of 200 individuals in the population. Average distance

between individuals was found to be 0.0043, which indicates good convergence of

the MOO solution. This is due to the fact that it has a distance of less than 0.05 from

the nearest point in the Pareto set.

From the detailed optimisation results provided in Appendix D, Table D. 1, an

example optimal point of a H.264 Encoder can be defined as follows:

IntraPeriod is -14.1153, SearchRange is 4.953125, QP is -9.39187, NRFrames is

21.66449, PSNR is 8.107256 and Bit-rate is 8.700779. Whereas the optimal values

for PSNR is -59.357 and Bit-Rate is 967.6315 (see Figure ‎5-7). The figure 5.7 also

illustrates two further examples of optimal points.

Similarly, the results showing the Pareto front of non-dominated solutions for

PSNR vs. CPU is illustrated in Figure ‎5-8 and Bit-rate Vs. CPU time are presented in

Figure ‎5-9. In each of the two Pareto fronts, two examples each of optimal points

have been indicated.

85

Figure 5-7: Pareto points 1 PSNR in (db) vs. Bit-rate in (Kbit/s)

Figure 5-8: Pareto points 2 PSNR vs. CPU Time in (sec).

86

Figure 5-9: Pareto points 3 CPU Time in (sec) vs. Bit-Rate

It is noted that the optimisation procedure described above results in a number of

optimal solutions. Each optimal solution defines the values of the parameter

settings one should use to obtain optimal PSNR and Bit-Rate, simultaneously.

 Optimising the Decoder 5.4

The analysis of the decoder is limited to decoder parameters that have significant

effect on only the decoder’s CPU time. It is noted that the Decoder parameters have

no impact on Bit-rate and PSNR as these are determined by the encoder. In the

proposed framework the quality and the bit-rate received by the decoder are the

same as the encoder output. Which assumes that the decoder receives all data

transmitted by encoder, at the same rate. In such cases the decoder totally depends

on encoder coding parameters. The NSGA-II tool is once again used to obtain

optimal parameter combinations, as described above in optimising the encoder

performance. Figure ‎5-10 and Figure ‎5-11 illustrate graphs Pareto front decoder

graphs for the Foreman video between Bit-Rate vs. CPU time and PSNR vs. CPU

time on the way to final generation. In a manner similar to that carried out in

analysing the encoder performance, optimal decoder operational points can be

obtained using the same procedure adopted above in the encoder analysis.

87

Figure 5-10: Bit-Rate in in (Kbit/s) vs. CPU Time in (sec)

Figure 5-11: PSNR in (db) vs. CPU Time in (sec)

88

 Summary and Conclusion 5.5

This chapter presented how the objective functions obtained for the performance

objectives, PSNR, Bit-Rate and CPU time in Chapter-4 can be used to determine the

optimal performance configurations of a H.264 encoder and decoder, under

multiple constraints/objectives. The encoder and decoder optimal configurations

were obtained using three dual-objective, multiple constrained operational

conditions, namely PSNR vs. Bit-Rate, CPU time vs. Bit-Rate and CPU time vs.

PSNR.

The research carried out in this chapter has demonstrated the use of a genetic

algorithm based multi-objective optimisation framework based on carrying out

investigations related to a H.264 CODEC. Through the use of this framework it was

demonstrated how optimal configurations for the encoder and decoder performance

could be obtained. Thus for practical purposes one could use this framework to

determine the optimal coding parameters when the operational constraints and

objectives are known.

The MOO framework proposed in Chapters 4 and 5 can also be used in relation to

any other coding standards. In Chapter-6 we propose to evaluate the use of this

framework in the MOO of a H.265 CODEC, the CODEC of the latest video coding

standard.

89

 Introduction 6.1

In Chapters 4 we proposed a framework that is based on the fundamentals of

machine learning that can be used to scientifically determine the significant coding

parameters of a H.264 video CODEC. These parameters were then used to model

the operational behaviour of the H.264 video CODEC for which machine learning

algorithms were further utilised. We also showed that these models can be used to

establish the foundations of a multi-objective optimisation framework. Although the

experiments conducted in Chapters 4 and 5 were limited to the most widely used

video coding standard H.264, it was argued that the framework proposed can be

used in relation to any video coding standard.

High Efficiency Video Coding (HEVC) also known as H.265 is the most resent

answer to the ever growing consumer demands. In this chapter we use the

framework proposed in Chapters 4 for the characterisation, modelling and

parameter based multi-objective optimisation of a H.265 video CODEC. As the

coding algorithms behind H.265 video CODECs are different as compared to the

coding algorithms of H.264, H.265 has different parameters and also the impact of

these parameters on various performance related features can differ significantly

from that of H.264. Given the above in this chapter we use the proposed parameter

based multi-objective optimisation framework in the optimisation of a H.265 video

CODEC.

90

For clarity of presentation this chapter is divided into 6 sections. Apart from this

section which is an introduction to the research problem, the section ‎6.2 outlines

the proposed framework for performance modelling and the experiments conducted

for establishing the framework. Section 6.3 presents a comprehensive analysis of

the results of the performance modelling of encode and decoder. Multi-Objective

Optimisation Framework for H.265 is explained in section 6.4. The section 6.5

presents the results and analysis of Optimisation stages carried out using a Matlab

based implementation. Finally section 6.6 summarizes the chapter by providing a

summary of the contribution made.

 Proposed Framework for Performance 6.2

Modelling

The proposed framework for a Multi-Objective Optimisation was developed to

determine the optimum coding parameters for a H.265 video CODEC, when working

under multiple constraints as shown in Figure ‎6-1 The MOO framework is intended

to minimize the CPU time, bit-rate and to maximize the quality of the compressed

video stream. MOO framework proposed is accomplished by following the steps

below.

1. Profiling experiments on the encoder and decoder were carried out to

determine the coding parameters that have a significant impact on each of the

objectives/constraints related to rate, distortion and CPU utilization. This was

achieved by measuring the impact of each parameter (while being varied) on

each of the above aspects.

2. Developing the objective function for each objective/ constraint, based on the

above significant parameters,

by using a suitable regression procedure.

3. These objective functions can then be used within a genetic algorithm (GA)

based multi-objective optimization framework to determine optimal

parameter values.

The focus of this section are the first two steps above, i.e. determining the significant

coding parameters and establishing the corresponding objective functions. These

91

two stages enable the modelling of the performance and are subsequently used in

section ‎6.4 for optimisation of the CODEC.

In a practical multimedia application scenario a device captures a video, encodes it

and transmits it via a network to another device that decodes and displays the

content to a viewer. Assuming that the network has bandwidth constraints and the

device in which the encoder is placed has compute power constraints and the

potential viewers of content may demand minimal quality levels, a situation in which

the proposed MOO framework can be used.

Figure 6-1: Proposed Multi-objective optimisation framework

The significant number of encoder parameters that control the encoders bit rate,

quality and computational power requirements can be selected, to ensure the

encoder performance is optimal, under the given multiple constraints. However this

requires the modelling of the encoders bit-rate, quality and CPU time, based on the

large number of selectable encoder parameters. If mathematical objective functions

can be derived for each of the above, a standard approach to optimisation can be

used. Deriving objective functions, for example using mathematical regression, will

need the determination of the significant coding parameters, the key focus of the

research presented below.

The same explanation can be applied to the selection of decoder parameters that

results in optimal decoder performance. Within the research context of this chapter,

the author assumed that the data transmission network is assumed to be perfect, i.e.

no delays, no bit loses, no errors etc. Therefore the bit stream generated by the

encoder is transmitted without any loss or alteration to the decoder in real-time. The

Encoder Profiling

Experiments

Encode video with all

combination of parameters

Optimal solution
NSGA-II

Record all results

corresponding to objectives

Weka, Linear Regression

Objective functions

Significant coding

parameters

92

following section proposes the experimental process adopted to determine the

significant coding parameters for both the encoder and decoder.

 Profiling Experiments/ Determining the Significant 6.2.1
Coding Parameters

This experiment was carried out using the Random Access (RA) configuration file of

the Reference software for ITU-T H.265 high efficiency video coding named the

HEVC test model (HM) version 16.8 as shown in Appendix A. Different resolutions

can be used in each profiling experiment: 1080p which is representative for (Full

HD) high definition systems with resolution of 1920x1080 pixels in a 16:9 aspect

ratio, 2K Video a display resolution of 2560x1600 pixels with a 16:10 aspect ratio

and 2160p (Ultra HD) which is representative for the next generation of high quality

video. Each video sequence was encoded using a selected combinations of possible

parameter values of initial set of encoder parameters.

In other words each encoding instance corresponds to a combination of coding

parameter values, selected from the possible exhaustive set that can be determined

by varying each parameter within its entire range. For example instead of using

quantization parameter variations between 1-51 (that is the exhaustive set), only

three sample values, 27, 37 and 45, were used (for further examples see Table ‎6-1)

The table also tabulates the sample values used in our experiments for each

parameter from within their corresponding value ranges.

https://en.wikipedia.org/wiki/Display_resolution
https://en.wikipedia.org/wiki/16:10
https://en.wikipedia.org/wiki/Display_aspect_ratio

93

Table 6-1: Settings for the Encoder in HM

Parameter Meaning Values Range

SourceWidth

SourceHeight

Specifies the width and height of the input

video.

1920x1080

2560x1600

FrameRate Specifies the frame rate of the input video. Depends on

video

Internal Bit

Depth

Specifies the bit depth used for coding. When

0, the setting defaults to the value of the

MSBExtendedBitDepth.

8

Coding Unit

Size/Depth

Maximum coding unit width in pixel

Maximum coding unit height in pixel

64/4

64/4

IntraPeriod Period of I-frames. Specifies the intra frame

period. A value of -1 implies an infinite period.

(16,32,48)

GOPSize Specifies the size of the cyclic GOP structure.

8

FastSearch The use of a fast motion search. 1:TZ search

SearchRange Sets allowable search range for motion

estimation.

(64,128)

Fast

Encoding

Fast encoder decision (0 or 1)

Quantization

Parameter

Specifies the base value of the quantization

parameter. If it is non-integer, the QP is

switched once during encoding.

(27,37,45)

Asymmetric

Motion

Partitioning

Enables or disables the use of asymmetric

motion partitions.

1

Sample

adaptive

offset (SAO)

Enables or disables the sample adaptive offset

(SAO) filter.

1

Rate Control Rate control: enables rate control or not. 0

94

Table ‎6-2 Shows selected sample frames of a set of six video sequences with different

resolutions. Note that typical resolutions used in conjunction with H.265 video

coding standard, i.e., 1080p and 2K resolution videos are used in all experiments, to

carry out the analysis and make the relevant conclusions of this research. However,

without any restrictions the proposed framework can be used in relation to a video

sequence of any resolution, in particular HD and full-HD 2K, 4k and beyond. The six

selected video sequences have different properties of object motion, both in the

foreground and background. Further differences exist in the scene content.

Table 6-2: Tested Video Sequences

YachtRide_1920x1080 Traffic_2560x1600

BasketballDrive_1920x1080 Jockey_3840x2160

Cactus_1920x1080 YachtRide_3840x2160

95

The experiments were initially conducted on a HP computer, running Microsoft

Windows 8.1 (64-bit), having an Intel Core i5 CPU 4200Y @ 1.40 GHz and 4.00GB

RAM. However it was found that coding HD resolution video is an intensive task that

required for example, if encoded in the computer with the above specification, 10

hours to encode 50 frames of a 1920x1080 video at QP 37, intra period 48 and

search range 64. Therefore subsequently a decision was made to make use of a High

Performance Computing (HPC) facility.

Thus for all the experiments a HPC system using Redhat Enterprise Linux v6, with

20 cores of Intel Ivy Bridge Xeon E5-2670 containing 64GB RAM was used

significantly reducing the execution time per experiment.

A sample of 36 data instances of the Cactus video sequence are presented in

TABLE ‎6-3. These were used in the final stage of modelling the PSNR, Bit-rate and

CPU time. These are the inputs to the [20] linear regression based modelling

process that result in the three objective functions that include the significant

parameters, Intra Period as ݔଵ, Search Rangeݔଶ, Quantization Parameter ݔଷ and Fast

Encoding ݔସ.
The resulting objective functions for Bit-rate, PSNR and CPU time are the final

outcomes of the performance modelling of the CODEC. Separate experiments are

performed for each of the sample test videos. For more details see Appendix F.

96

Table 6-3: Selected Set Of Parameters For Cactus Sequence

𝒙૚ 𝒙૛ 𝒙૜ 𝒙૝
Bitrate
in
(Kbit/s)

 PSNR

in (db)

CPU Time

in (sec)

16 64 27 1 8422.096 36.8076 2000.97

16 64 37 1 2195.592 32.7418 1612.08

16 64 45 1 736.12 28.9058 1474.57

16 128 27 1 8424.696 36.8054 2140.34

16 128 37 1 2197.152 32.7447 1722.19

16 128 45 1 735.304 28.9092 1556.66

16 64 27 0 8414.944 36.8149 2559.02

16 64 37 0 2196.192 32.7507 2106.38

16 64 45 0 735.864 28.9111 1925.5

16 128 27 0 8414.864 36.8149 2778.27

16 128 37 0 2195.184 32.7516 2287.14

16 128 45 0 736.728 28.9173 2067.34

32 64 27 1 6993.976 36.7337 2115.22

32 64 37 1 1726.648 32.6277 1698.1

32 64 45 1 561.512 28.7824 1553.63

32 128 27 1 6991.08 36.7323 2271.37

32 128 37 1 1725.24 32.6279 1819.83

32 128 45 1 561.896 28.7877 1634.66

32 64 27 0 6994.6 36.7419 2684.76

32 64 37 0 1725.12 32.6325 2198.14

32 64 45 0 563.04 28.7949 2002.86

32 128 27 0 6991.312 36.7421 2923.43

32 128 37 0 1725.536 32.6336 2411.49

32 128 45 0 561.952 28.7952 2164.01

48 64 27 1 6914.36 36.7438 2126.42

48 64 37 1 1722.568 32.6039 1719.68

48 64 45 1 560.656 28.7335 1556.47

48 128 27 1 6911.576 36.7428 2295.48

48 128 37 1 1720.96 32.5996 1867.74

48 128 45 1 559.032 28.7422 1656.8

48 64 27 0 6911.616 36.7488 2690.7

48 64 37 0 1720.944 32.6059 2216.83

48 64 45 0 562.424 28.742 2018.13

48 128 27 0 6912.472 36.7515 2962.86

48 128 37 0 1720.176 32.6066 2437.26

48 128 45 0 560.872 28.7534 2200.32

97

 The Objective Functions of the HEVC Encoder 6.2.2

Based on the output of the linear regression algorithms applied as explained above,

the objective functions for the three objectives (for the Cactus video) are found as

presented in equations (Equation ‎6-3) These functions provide the means to discuss

in detail the significance of each parameter and how they affect the PSNR, Bit-rate

and CPU encoding time. The following section provides an analysis of the

experimental results. In particular the analysis considers the test videos separately

and discusses the impact of each coding parameter given the known properties of the

contents of each video. [Note that for each video a different model is generated based

on the video’s inherent properties.]

 ݂ሺͳሻࢋ࢚ࢇ࢚࢘࢏࡮ = −ʹʹ.Ͷ͸͸Ͷ ∗ ሺͳሻݔ − ͵ͺ͸.ʹͶͺʹ ∗ ሺ͵ሻݔ + ͳͺͲ͸͸.͸ͳ͸

(Equation 6-1) ݂ሺʹሻ𝑃ௌேோ = −Ͳ.ͲͲ͵ͻ ∗ ሺͳሻݔ − Ͳ.ͶͶͲͶ ∗ ሺ͵ሻݔ + Ͷͺ.ͺ͹͵

(Equation 6-2) ݂ሺ͵ሻா௡௖_்௜௠௘ = ͵.ͻͷ͵͹ ∗ ሺͳሻݔ + ʹ.ͷͷͲͳ ∗ ሺʹሻݔ − ͵͸.ʹͳ͹Ͷ ∗ ሺ͵ሻݔ + ͷͶͷ.ͳʹ͵ͻ ∗ +ሺͶሻݔ ʹ͹͸ͺ.Ͳʹͷ

 (Equation 6-3)

 Analysis of experimental results 6.3

Experimental analysis was conducted separately for the encoder and decoder and

can be presented as follows.

 Encoder Analysis 6.3.1

The Encoder objective functions obtained as a result of the experimental procedure

presented in section ‎6.2 enables one to discuss the significance of each of the coding

parameters. Following are the obtained models for each video sequence, with f(1)

representing PSNR, f(2) rate and f(3) CPU encoding time.

Table ‎6-4 tabulates the correlation coefficients of the objective functions. They

range between 0-1. A value closer to 1 represents the fact that the dependant

variable (in this case Bit-Rate, PSNR or CPU time) can be predicted very accurately

from the coding parameters that play a role and has been included within the

objective functions.

98

Table 6-4: Encoder Correlation Coefficient

Video PSNR
in (db)

Bitrate
In (Kbit/s)

CPU Time
in (sec)

Cactus 0.9989 0.9551 0.988

YachtRide 0.9981 0.9532 0.9837

In analysing the objective functions (Equation ‎6-3), higher positive coefficients of

coding parameters indicate higher positive dependency and higher negative

coefficients represent higher negative dependency. If a certain parameter is not

present in the objective function that means that the objective is independent of

that parameter. A careful analysis of the coding parameters that have non-zero

weighting factors in the objective functions obtained and a comparison of relative

magnitudes of the coefficients can lead to a direct correspondence with the

properties of the video, for e.g., the presence of motion in foreground and

background, the speed of movement of objects, sudden scene changes, camera

pan/tilt/zoom effects and the general characteristics of the content of the video as

well.

For example, the analysis of the linear regression equations obtained for cactus

video sequence identifies all four parameters to have significant impact on CPU

time, namely:

 IntraPeriod

 Searchrange

 Quantization parameter

 Fast Encoding

For the same video the following parameters were identified to have a significant

impact on Bit-rate.

 IntraPeriod

 Quantization parameter

The parameters that are identified to have a significant impact on PSNR are:

 IntraPeriod

 Quantization parameter

A more detailed and video sequence specific analysis can be presented as follows.

99

 Analysis of the CPU Time Experiment 6.3.1.1

The objective functions obtained for all tested video sequences for CPU encoding

time indicates that the parameter that has the most significant impact on CPU is

Fast encoder decision. Further in selection of the Intra-Period, more I frames

(smaller intra period) results in a higher processing time. The next significant

impact is from the Quantization parameter. The impact from search range SR and

Intra Period (IP) is relatively insignificant.

When search range Increases encoding time will slightly increase. These tests has

no major impact on quality of the video. Disabling FEN will also slightly increase

encoding time. However it has no major impact on quality.

 Analysis of the PSNR Experiment: 6.3.1.2

The parameter that has the most significant impact on PSNR is QP. The PSNR

results tabulated in TABLE ‎6-4 indicate that the two videos with the least amount of

movement/changes, namely Cactus and YachtRide have the best correlation

coefficients. This is expected due to the stability of the CODEC during the encoding

of the individual frames of the coded sequence.

 Analysis of the Bit-Rate Experiment: 6.3.1.3

The parameter with the most significant impact is the QP. Lower quantiser result in

higher bitrate and correspondingly higher visual quality as illustrated in Figure ‎6-2

(QP) has a very important impact on the compression rate of H.265.

In cactus both PSNR and Bit-Rate has no impact from the Search Range. This is

true given the fact that for videos with fast moving objects, best matches will not be

found quickly, i.e. without having to scan the entire video. All objective functions

includes a similar constant term indicating that a fixed computational cost for

encoding is present, which is independent of the selection of coding parameters.

This is expected given the processes that exist, which are independent of the coding

parameters.

100

Figure 6-2: PSNR versus Bit-rate at QP 27, 37, 45.

 Decoder Analysis 6.3.2

The analysis of the decoder is limited to decoder parameters that have significant

effect on only the decoders CPU time. Note that the Decoder parameters have no

impact on Bit-rate and PSNR as these are determined by the encoder. In the

proposed framework the quality and the bit-rate received by the decoder are the

same as the encoder output. The CPU time of the decoder is analysed using the same

method used at the encoder end. In this section the experiments were performed in

order to find out those coding parameters that can significantly influence CPU time.

The objective functions thus obtained are listed within equation (Equation ‎6-4).

 ஽݂௘௖_்௜௠௘ = Ͳ.ͲͲʹ͵ ∗ ሺʹሻݔ − Ͳ.Ͳͺͳͻ ∗ ሺ͵ሻݔ + Ͳ.ͳͳ͹ͺ ∗ ሺͶሻݔ + ͺ.ʹͻʹ

(Equation 6-4)

Table 6-5: Decoder Correlation Coefficient

Video Decoding CPU Time
 in (sec)

Cactus 0.9509

YachtRide 0.9263

Table ‎6-5 presents the correlation coefficients of the objective functions. The cactus

video sequence has the highest correlation coefficient. The analysis of the linear

regression equations is carried out to identify parameters that have significant

0

5

10

15

20

25

30

35

40

45

0 5000 10000 15000 20000 25000 30000

P
S

N
R

 (
 d

B
)

Bit-rates kbps

Cactus

YachtRide

BasketballDrive

Traffic

101

impact on CPU time. (Equation ‎6-4) reveals that the Fast Encoding has the most

significant impact being the highest magnitude coefficient.

The Encoder and Decoder analyses indicate that the objective functions obtained as

a result of using the proposed framework are able to accurately define the significant

coding parameters and further detail the level of significance of each parameter.

They can also be related to the motion and content information of the videos. More

importantly these objective functions model the behaviour/properties of the encoder

and decoder thus allowing them to be used in multi-objective optimisation as

described in the next section.

The HM decoder configuration file takes an h.265 file as input and outputs a raw

YUV video stream as a reconstructed file as shown in Appendix E. The output for

one example video, YachtRide, illustrated in Figure ‎6-3 shows coding artefacts for

the video frame 30 of the sequence using a quantization parameter (QP) of 45 that

gives a very low quality with PSNR of 28.7877 db and a QP 27 that gives a very good

quality video with PSNR 36.7323 db. When the QP is increased during the encoding

of the video, the bit rate reduces and the video loses information. The Highlighted

areas show regions where some artefacts occur between the Original video at frame

30 and the Encoded video at QP 45. The blue square in the Original video shows

the visible windows of a building and the red ellipse shows a big tree. On the other

hand the blue square and red ellipse in the Encoded video at QP 45 shows the

artefact of the two mentioned area. Where the windows and the tree are not very

much clear compared to the original video.

102

Figure 6-3: The visual artifact with different QP.

 Multi-Objective Optimisation of a H.265 6.4

Video CODEC

Section ‎6.3 has investigated the parameters that have a significant impact on the

encoder and decoder performance of a H.265 CODEC. It carried out the modelling

of the H.265 codec’s performance in terms of bit-rate, PSNR and computational cost

(i.e. encoding/decoding time).

This Section presents multi-objective optimisation of a H.265 video CODEC.

Specifically, an optimization scheme is proposed to determine the optimum coding

parameters for a H.265 video codec in a bandwidth constrained environment, which

minimises CODEC time and maximises video Quality.

In section 6.3 a mathematical formulation by means of regression was used to

associate the significant coding parameters of a H.265 video CODEC with the

Original video at frame 30

Encoded video at QP 27 Encoded video at QP 45

103

relevant performance related objectives. Solutions to the optimization problem are

reached through a Non-dominated Sorting Genetic Algorithm (NSGA-II). NSGA-II

is implemented in the genetic algorithm gamultobj, available in the MATLAB

optimization tool as described in Chapter-5.

As mentioned earlier, the framework presented in this chapter aims to obtain a set

of compression parameters that produces the highest image quality, while satisfying

the need to minimise bandwidth requirements at the lowest possible computational

cost. With the intention of addressing these objectives, a novel multi-objective

optimisation framework is proposed. Therefore, the outcome of this framework is a

set of all feasible solutions that represent the best trade-offs between the above

mentioned objectives.

 Implementation 6.4.1

The framework was implemented on a HP computer, running Microsoft Windows

8.1 (64-bit), having an Intel Core i5 CPU 4200Y @ 1.40 GHz and 4.00GB RAM.

The Multi-objective Genetic Algorithm Solver in MATLAB “gamultiobj” attempts to

create a set of Pareto optima for a multi-objective minimization. Additionally the

solver uses the genetic algorithm for finding local Pareto optima. The algorithm is

first initialised by defining the population size, the total number of generations, and

the number of variables. In the proposed framework we want to minimize two

objectives, each having several decision variables. To achieve optimum

performance, the fitness function is maximized by minimizing the negative of the

function.

To make use of the MATLAB ‘gamultiobj’ function, one needs to provide at least two

input arguments, a fitness function, and the number of variables in the problem.

The fitness function required is the multi-objective (vector) function that needs

minimising. The functions of three objectives of each video sequences given in

equation 6.1 were used to optimise the encoder performance under multiple

constraints [37]. These functions were then fed to the NSGA-II [25] optimization

tool along with the fitness function and number of variables. The NSGA-II provides

all sets of optimal results that jointly minimize CPU time, bit-rate and maximizes

quality. Since a single 3D graph, is complex to visualize the optimality of the results,

pairs of graphs where plotted. The experiment was conducted, and the following

104

setting of parameters for the GA was chosen (see ‎0TABLE ‎6-6). The ‘gamultiobj’

function finds a local Pareto front for multiple objective functions using the genetic

algorithm. To obtain a Pareto front for two objective functions were used each of

four decision variables. We also impose bound constraints on the decision.

To finds a Pareto set 𝒙 with the default optimization parameters, options can be

created with the ‘gaoptimset’ function of MATLAB. 𝒙 = ,࢔࢕࢏࢚ࢉ࢔࢛ࢌࡿࡿࡱࡺࢀ𝑰ࡲሺ࢐࢈࢕࢏࢚࢒࢛࢓ࢇࢍ ,ࡿࡾ࡭ࢂࡺ ,࡭ ,࢈ ,ࢗࢋ࡭ ,ࢗࢋ࢈ ,࡮ࡸ ,࡮ࢁ .ሻ࢙࢔࢕࢏࢚࢖࢕
Linear equalities and inequalities and parameter bounds satisfy the following:

A* 𝒙 ൑ ࢗࢋ࡭ ࢈ ∗ 𝒙 = ࢗࢋ࢈

LU ൑ 𝒙 ൑ ࡮ࢁ

Variables Bounds Constraints for Upper and Lower bounds used are as follow: ૚૟ ൑ 𝒙૚ ൑ ૝ૡ ૟૝ ൑ 𝒙૛ ൑ ૚૛ૡ ૛ૠ ൑ 𝒙૜ ൑ ૝૞ ૙ ൑ 𝒙૝ ൑ ૚

Table 6-6: Optimisation settings

gamultobj settings
Fitness function: @function.

Number of variables: 4

Bounds Constraints: lb = [16,64,27,0]

 ub = [48,128,45,1]

Creation Function: Constraint dependent

Population Size: 60

Initial Population: Default

Crossover Fraction: 0.8

Mutation Function: Constraint dependent

Crossover Function: Intermediate

Crossover Ratio: 0.8

Pareto Front Population Fraction: 0.35

Maximum Generations: 300

Plot functions: Pareto front

105

 Optimising the encoder 6.5

In this study, the objective functions were used to optimise the encoder. The

functions of three objectives of each video sequences given as (Equation ‎6-3) are

then fed to the NSGA-II optimization tool along with the fitness function and

number of variables. The NSGA-II provides all sets of optimal results that jointly

minimize CPU time, bit-rate and maximizes quality. Since a single 3D graph, is

complex to visualize the optimality of the results, pairs of graphs where plotted.

An optimization problem is one requiring the determination of the optimal

(maximum or minimum) value of a given function, called the objective or fitness

function, subject to certain defined restrictions, or constraints placed on the

variables concerned.

Since the Optimisation minimize the objective function or fitness function. That is,

they solve problems of the form

min ݂ሺݔሻ.
x

If one wants to maximize݂ሺݔሻ, minimize −݂ሺݔሻ, because the point at which the

minimum of −݂ሺݔሻ occurs is the same as the point at which the maximum of ݂ሺݔሻoccurs.

To achieve optimum performance, function is maximized by minimizing the

negative of the function. The PSNR value as a measure of the quality of the video is

to be maximised. So that the function to be maximized is minimized by multiplying

the PSNR equation by minus one, ݅. ݁. −݂ሺݔሻ.

The objective functions depend on four parameters expressed as x in the MOO

problem formulation, which include Intra-Period, Search-Range, Quantization-

Parameter and Fast Encoding. Each pair consists of two objectives functions.

For example in Cactus and YachtRide two pairs were obtained independently.

 PSNR vs. Bit-rate.

 CPU vs. Bitrate.

The proposed multi-objective optimisation solution minimises the components of ݂ሺݔሻ subject to identified constraints.

106

 Experimental results 6.5.1

This section describes a set of experiments that were designed to test the correct

functionality of the proposed optimisation framework. As seen in Table ‎6-6, the

optimisation algorithm was set to generate a population of 300 chromosomes, each

consisting of four decision variables.

NSGA-II was used because of its ability to find an optimum set of solutions that is

close to the Pareto-optimal set. The goal of these simulations was to obtain a set of

Pareto-optimal solutions for each of the three video Sequences.

The results of Multi-Objective Optimisation Pareto set analysis are presented in

Figure ‎6-4 and Figure ‎6-5. The figures show the Pareto front or set of non-

dominated solutions for Bit-Rate vs. PSNR and CPU vs. Bit-Rate. The Pareto front

illustrated is within a limited range and hence shows that the points lie on a straight

line. In practice when the range of testing is increased the shape of the curve would

represent a typical shape of a Pareto curve. The Pareto curve allows one to select

optimum perfomance points and hence select the corresponding coding parameters

that resulted in the objective function optimal values for coding the videos.

Figure 6-4: Pareto front for cactus video sequences PSNR in (db) vs. Bit-Rate in
(Kbit/s).

107

Figure 6-5: Pareto front for cactus video sequences CPU Time in (sec) vs. Bit-Rate in
(Kbit/s).

The results of the optimization appear in the following table containing both

objective function values and the value of the variables. The list of all feasible

solutions with their functional values, the Pareto front have been illustrated in

Table ‎6-7. The number of rows in X is the same as the number of Pareto solutions.

All solutions in a Pareto set are equally optimal. For more details see Appendix G

Table 6-7: The optimal points for Cactus PSNR vs. Bit-rate

 f(1) f(2) x1 x2 x3 x4

1
-

36.9201 7278.453 16 64 27 0

2
-

36.6212 6984.67 17.65991 65.59725 27.66406 0.025905

3
-

28.8721 -382.632 47.6418 118.2422 44.99415 0.997951

4
-

30.5614 1223.873 41.08539 107.0511 41.21625 0.755286

5 -32.204 2800.026 33.97008 94.28146 37.54945 0.402902

6
-

35.8094 6208.247 21.04581 71.59679 29.47728 0.095358

7 -31.579 2126.931 40.52844 106.1184 38.91062 0.494995

8 - 1807.857 37.79216 101.8517 39.89587 0.521224

108

31.1558

9
-

35.1985 5622.217 23.68162 76.01039 30.8412 0.143016

10
-

34.7259 5144.716 26.9901 83.80625 31.88502 0.316507

11
-

28.8721 -382.632 47.6418 118.2422 44.99415 0.997951

12
-

33.1295 3651.057 31.90089 91.30083 35.46647 0.327118

13
-

34.1591 4637.964 27.49851 83.34469 33.16743 0.264558

14
-

29.9441 652.0496 42.68032 111.0691 42.60394 0.746148

15
-

33.5393 4061.154 29.24273 86.94946 34.55934 0.693433

16
-

36.9201 7278.453 16 64 27 0.25

17
-

29.1627 -93.9621 45.86701 115.8487 44.35001 0.837885

18
-

31.4594 2069.315 38.04606 102.0389 39.20418 0.660673

19
-

36.1234 6503.75 19.99021 71.19112 28.77362 0.274147

20
-

29.8873 584.6452 43.6029 111.2834 42.72479 0.841717

21
-

30.3913 1080.419 40.78522 108.4374 41.60511 0.687554

22
-

29.6739 389.8275 44.005 111.6657 43.20578 0.46095

23 -34.839 5303.11 23.88389 77.82799 31.65561 0.392679

24
-

30.1757 877.9415 41.48435 109.8443 42.08867 0.626643

25
-

28.8772 -368.384 47.1292 116.9709 44.98708 0.24776

26 -33.67 4173.746 29.35103 85.91427 34.26154 0.168342

27
-

36.1568 6550.884 19.05001 68.97729 28.70628 0.05654

28
-

36.4119 6783.901 18.56366 68.46437 28.13128 0.166284

29
-

31.9862 2575.949 35.70312 97.30352 38.02878 0.592786

30
-

32.5238 3089.451 33.49928 93.62668 36.82751 0.519083

31 -35.346 5782.687 22.05095 74.52345 30.52059 0.11781

32
-

31.6959 2283.743 37.67948 101.6304 38.67035 0.669224

33
-

35.6817 6085.708 21.59696 72.51968 29.76248 0.105324

34
-

32.4242 2993.15 33.97008 94.28146 37.04945 0.402902

35 -36.81 7181.891 16 64 27.25 0

109

Table 6-8: Output data describing the results of MOO with GA for cactus.

Problem Number of
generations

Size of
population

Pareto
fraction

Size of
non-
dominated
set

Function
count

Average
distance

Spread

PSNRvs.
Bit-rate

259 60 0.35 35 13001 0.0149 0.1487

CPU vs.
Bit-rate

220 60 0.35 21 13261 0.0308 0.1050

 Discussion 6.5.2

Multi-objective optimisation (gamultiobj) for tested Cactus video consists of two

objective functions. Figure ‎6-6 shows the PSNR vs. bit rate values in final stage of

generations being used of the optimization process.

The first two output arguments returned by gamultiobj are X, the points on Pareto

front, and FVAL, the objective function values at the values X. A third output

argument, exitFlag, that’s states the reason why gamultiobj stopped. A fourth

argument, OUTPUT, contains information about the performance of the solver. The

fifth argument is POPULATION that contains the population when gamultiobj

terminated and a sixth argument, SCORE that contains the function values of all

objectives for POPULATION when gamultiobj terminated.

Pareto-based multi-objective approaches consider three aspects: closeness to the

global Pareto front; spread along the Pareto front; number of solutions of the non-

dominated set.

In the Table ‎6-8, population size and Pareto fraction for the GA are set at 60 and

0.35, respectively, which are considered sufficient to generate search for optimal

solutions.

At 259 generations and 13001 function counts, the GA selected 35 best individuals

considered as non-dominated solutions out of 60 individuals in the population.

Average distance between individuals is 0.0149, which indicates good convergence

of the MOO solution. Since it has a distance of less than 0.05 from the nearest point

in the Pareto set.

110

Figure 6-6: Pareto selected points for Cactus PSNR vs Bit-Rate.

Figure 6-7: Pareto selected points for Cactus CPU Time vs Bit-Rate.

111

For example the Row 13 in Table ‎6-7 gives a set of parameters that results in an

optimized H.265 CODEC performance. At this operational point the Intra-Period is

27.49851, Search-Range is 83.34469, QP is 33.16743, Fast Encoding is 0.264558.

The optimal values thus obtained are PSNR (X) , -34.1591 dB, Bit-Rate (Y), 4637.964

(see Figure ‎6-6). It is note that under practical conditions all independent parameter

values should be integers, most notably, fast encoding should be set to ‘0’.

Similarly, the results showing the Pareto front of non-dominated solutions for Bit-

rate Vs. CPU time is presented in Figure ‎6-7.

 Summary 6.6

In this chapter we have proposed a machine learning based approach for the

determination of significant coding parameters of a H265 video CODEC. In

particular we have used multivariate regression analysis in defining objective

functions for CPU time, PSNR and the bit-rate of a video CODEC when a given

video is being encoded/decoded. We have been able to use known information

about the content and the motion present in the test videos to justify the formation

of the objective functions. We have shown that these regression equations provide

the means for modelling the performance of a typical H.265 video CODEC. Finally

we have have used these models to optimise the performance of a video CODEC

under multiple constraints. For this purpose we demonstrated the effective use of a

Genetic Algorithm based appriach.

The research conducted in this chapter confirms that the proposed generalised

framework for the performance analysis, modelling and multi-objective

optimisation of a video CODEC previously demonstrated on H.264 as presented in

Chapter 4 and 5, can be applied to any video CODEC including H.265 and provides

a useful contribution to the video coding community who are often faced with the

delima of selecting values for a large number of coding parameters with the

intention of obtaining optimal performance of the CODEC under multiple

performance constraints.

112

 Introduction 7.1

Video streaming is becoming widely adopted in today’s IP based networks. In video

streaming, the video is played out while parts of it is being received and decoded.

Video streaming applications use User Datagram Protocol (UDP), which unlike

Transport Layer Protocol (TCP) used in data transmissions, provides unreliable

transmissions. The UDP protocol is also infamous in terms of the video quality

levels it can practically support in the presence of packet loss, network delay, jitter

and out of order packet delivery. In the case of video transmission in wired

networks in particular, the possibility of packet loss is very likely due to Network

congestion. Losing sequential packets during transmission can result in the loss of

video packets or a delay in their arrival at the destination which can affect the

received video playback.

In order to cater for the above challenges within reasonable practical limits, modern

video CODECs have been equipped with error-concealment algorithms and effective

buffering algorithms that attempts to reduce the ultimate impact of packet loss and

network delay. As these algorithms largely differ from video coding standard-to-

standard and due to specifics of their implementations, the real impact of packet

loss, network delay, jitter and out of order packet delivery cannot be theoretically or

conceptually assessed and can only be assessed by detailed practical means. As

previous researcher studies have focused on investigating the relevant impacts in

detail in particular with regards to H.264 and H.265 standards.

In Chapters 5 a framework for the performance modelling and multi-objective

optimisation of a video CODEC was presented and in particular tested and

evaluated on H.264 (chapters 4 & 5) and H.265 (chapter 6) video CODECs. In the

113

work presented in chapters 5 the focus was on investigating the CODEC’s

performance under encoder/decoder operational constraints, such as limits of

relevant coding parameters of both the encoder/decoder, expected video quality at

the decoder and compression rates applied. No attempt was made to include

network constraints such as packet loss or delay in the modelling processes carried

out and in the subsequent optimisation of the CODEC performance. However in an

end-to-end delivery of video the complete process involves, encoding of the video

content at the encoder under encoder practical constraints and viewer expectations,

transmission of the coded video bit-stream in a practical network under network

losses/constraints and the decoding of the received video under decoder

constraints. Therefore the multi-objective optimisation of end-to-end video delivery

over a network (wired or wireless) should consider encoder, network and decoder

constraints, altogether in performance modelling and optimisation. Due to the large

number of parameters and constraints this introduces to the modelling and

optimisation processes, in this thesis we carry out a detailed investigation as to the

impact of optimised video delivery determined as per the video CODEC

optimisations the thesis has so far investigated (i.e. ignoring network constraints),

under the influence of practical network constraints. In a practical design and

implementation scenario the optimal selection of Encoder and Decoder parameters

can only be determined based on known or deign constraints of the CODEC and the

network. Packet loss and network delays are subject to constant changes due to

network congestion, especially. Therefore using these network parameters in an

end-to-end optimisation becomes meaningless in practice. This is a further reason

that this chapter investigates the impact of packet loss and network delays, in video

coded optimally as per the methods proposed in Chapters 5. The results will provide

a valuable evaluation of more detailed performance and behaviour of video

CODECs.

In addition to the above the practical system that was put together within the

research context of this chapter to simulate the video delivery over wired networks

will provide a platform for future research and the experience thus gathered

documented in detail in chapter will be a contribution to researchers working in this

area in general.

In this chapter, we study the scenario of the Real-time video communication of

stored video. In streaming mode, the video can be played back while parts of it are

114

being downloaded. While streaming if the video data is not received in time, the

video will experience delay which can create annoying artefacts of image/video

quality during playback. Another common issue is that of the loss of video packets

during transmission. When the required video packets are lost before arriving at the

receiver, the quality of the video play out at the receiver is affected. Thus, it is

important to understand the effect of each of these scenarios on the quality of the

received video.

Within the research context of this chapter end-to-end video communication using

two P2P network clients and a server base was configured to stream videos. Packet

loss rate was introduced to simulate packet losses using the Clumsy [97] tool. The

same tool was used to simulate network delay. Furthermore, video quality

evaluation he Evalvid tool has been used to measure the PSNR of the video

streaming service in the work proposed.

For clarity of presentation this chapter is divided into several sections. Apart from

this section that presented the research context and the justification of the research

to be conducted and presented, Section ‎7.2 focuses on the design and

implementation of the simulation environment. Section ‎7.2.2 discusses the video

streaming experiments, presenting results and a detailed analysis. Finally section

7.4 summarises and concludes the research conducted.

 System Design and Implementation 7.2

In this section we present the detailed system design of an end-to-end video

streaming and simulation environment that uses a basic network loss/delay

simulator ‘Clumsy’ [97] and the widely used network simulator, OPNET [98].

Fundamentally there are five steps that need to be followed to design and evaluate a

video streaming system (see Figure ‎7-1):

1. Prior to the streaming the raw video file (YUV-uncompressed) is encoded

using H.264 JM encoder software to generate a bit-stream file. It is noted

that the input file is encoded using an example encoder parameter set that

resulted in an optimal coding of the video (see chapter 5). This stage is

named as the pre-processing stage and is illustrated as a separate functional

block in Figure ‎7-1

115

2. The Bitstream file is then received by the EvalVid tool (see Chapter-3) which

transcode the bit-stream to a MP4 bit stream, producing the video Trace File

[80] EvalVid tool also produces the PSNR before and after MP4 transcoding.

The PSNR ‘before’ transcoding refers to the PSNR of the received H.264 bit-

stream after local decoding and PSNR after refers to the PSNR of the MP4 bit

stream after local decoding. It is noted that it is the PSNR before transcoding

that depicts loss due to H.264 coding. The PSNR after depicts loss due to

MP4 coding. It is noted that the transcoding to MP4 is required as it is only

the MP4 format that is supported by network simulators.

3. After that the experiments performed for testing the effect of packet loss

rates, was conducted using the client and server approach in which one

machine was configured as a client and another was configured as a server

computers are connected with each other using the cross Ethernet cable.

Before transmitting the videos to the client using Mp4 file in VLC, Clumsy

was used to introduce different amounts of packet loss on the server

machine. The streamed video file will then be evaluation using Evalvid Tool

to compare with the PSNR of the reference video. Note that the Trace File is

needed for the purpose of using the OPNET simulator.

4. The coded MP4 bit stream is then sent to the server. A VLC media player

embeds the bit-stream within a network abstraction layer to prepare the bit –

stream for transmission over a wired network. The server incorporates an

additional tool, Clumsy that can incorporate packet loss in the bit stream

and/or delays in buffering the bit stream to the channel. The bit-stream is

then transmitted over the network and received by a further VLC player that

separated the video bit-stream from header information used in effectively

transmitting the video over a network to a given destination.

5. Finally the video bit-stream is received by a second EvalVid tool that

transcodes the video into a H.264 bit-stream. In a practical transmission set

up the H.264 bit stream will then be decoded and will be ready to be

displayed. It is noted that the PSNR due to H.264 encoding/decoding was

measured at the first EvalVid tool. The PSNR due to MP4 coding is measured

at the second EvalVid tool.

116

A video stream application runs on the client computer connected with a server by a

communication medium (the network), e.g., an Ethernet Local Area Network (LAN)

cable for wired communications.

Figure 7-1: Block diagram of streaming procedure

 Tested video sequences 7.2.1

The test sequences that have been used in the experiments conducted include

videos with different characteristics of content and are listed in Table ‎7-1. Each

video has objects with different motion characteristics, e.g. from slow to high

phased movements. As Akiyo video sequence has objects with slow motion

properties, since the background is fixed. Foreman (Qcif) has moderate motion as a

man appears to be talking and the camera seems to move. Football has fast

movement of players. Table 7.1 indicated the different type of videos used their

resolution and number of frames used for the experiments.

YUV File Encoder

Server machine

192.168.0.2

VLC

Bitstream

file

MP4

PSNR

Trace file

Clumsy

Client machine

192.168.0.3

VLC

My EvalVid Tool

PSNR

Compared

EvalVid Tool

OPNET

Simulation

Pre-processing

Input Output

Communication

 Channel

117

Table 7-1: Video sequences and their properties

Video

Sequence

Foreman Akiyo Football Foreman

Resolution 76x144 (QCIF) 352x288 (CIF) 76x144 (QCIF) 1280x720

Total Frames

300 300 260 248

 Video streaming experimental setup 7.2.2

Before starting the experiments, all required components or the video coding and

streaming system were configured and tested using a ping command. The

configurations to be conducted and steps that needs to be taken are as follows;

1. Configure IP Address in both server and client using a class C IP address.

2. Configure firewalls on both client and the streaming servers.

3. Configure packet loss on the server

4. Start VLC streaming of the video content from the server side

5. Record received video using VLC player at the client computer.

 Client - Server communication 7.2.3

A client-server communication system contains three main components specified in

Figure ‎7-1, i.e. the streaming server machine, communication channel and a

receiver client machine.

On the server machine, before transmission, raw video files are encoded and

compressed using H.264 encoding technique using the JM Reference software.

Clumsy tool is used for emulating the lossy transmission medium, with packets

being randomly dropped based on the specified percentage of packet loss rate.

Video is streamed using VLC media player after receiving the coded bit-stream from

server. It is noted that the VLC media player has ‘socket’ functionality that enables

communications between two peer-to-peer or client-server computers.

118

The Processes used to start file streaming from the server machine are as follows:

1. Set the packet drop rate in the clumsy tool.

2. In the VLC media player choose the streaming video mp4 file.

3. Choose the protocol used in streaming. Note that UDP was used as a protocol

in the experiments conducted.

4. Enter the IP address of the client (destination host) and the UDP port (1234

in his research). In this research the client address used was 192.168.0.3 and

the port address was 1234.

5. Set transcoding option to H.264.

6. Click Stream to commence streaming the video.

On the client side the receiver component is responsible for the reception and

playback of the streamed video.

For the playback at the client three further steps are required.

1. The VLC media player receives and opens the network stream.

2. In the URL Select enter UDP udp://192.168.0.3:1234 which is the IP address

of the client machine and Enter port number

3. Click play

 Experiments, results and analysis 7.3

The experiments were conducted using the client and server communication

approach in which one machine was configured as a client and another was

configured as a server. In the experiments conducted within the research context of

this thesis, the client computer used was an Asus machine powered by Intel(R)

Core(TM)2 Duo CPU, 2.00GHz, 2.53GHz, 32 bits, x64 processor, 300 GB Hard

Drive is the storage memory. The Server is HP machine powered by Intel(R)

Core(TM)dual CPU 2.00GHz, 2.00GHz, 32 bits, 150GB Hard Drive is the storage

memory.

The ‘Clumsy’ tool was used to introduce different amounts of packet loss. The delay

and packet loss settings were set using the clumsy software before transmitting. The

packet loss values that were used in the experiments conducted are: 1%, 2%, 3%,

119

4%, 5% and 6%. Clumsy drops packets randomly once a percentage drop has been

specified. The delay related experiments were concluded applying the following

values: 20 ms, 30 ms, 50 ms, 80 ms, and 100 ms.

The streaming of the optimally coded video was implemented using a selected set of

optimal points from the Foreman video’s PSNR vs. Bit-rate pareto-optimal graph

illustrated in Figure 5-7, chapter 5. Table ‎7-2 tabulates the selected optimal points.

For example, selecting row-67 IntraPeriod is 13, SearchRange is 10, QP is 20, and

NRFrames is 16. Whereas the optimal values for PSNR was 41.3778, Bit-Rate is

429.7228 as shown in Table ‎7-2. Note that the optimal value of PSNR represents

image quality due to H.264 compression only. In the network simulation to be

carried out as the H.264 bit-stream is transcoded to a MP4 bit stream first, before

transmission, the transmitted video quality will be much lower that the above

optimal value.

Table 7-2: Select optimal points from Figure ‎5-7 in chapter 5 for foreman video.

Row f(1)psnr f(2)Bitrate X1IP X2SR X3QP X4NRF

11 45.7358 536.7505 -16.1877 13.29562 13.13297 18.59521

25 36.2372 305.7522 -7.10057 8.441657 28.96404 16.3452

47 41.4123 430.5598 -12.5901 9.493237 20.19704 16.52902

67 41.3778 429.7228 -12.5433 9.524487 20.25954 16.56418

24 37.0587 327.1868 -7.61426 9.242817 27.6164 16.63976

99 37.3786 333.0412 -8.18074 9.941671 27.09138 16.83673

The Table ‎7-3 present the newly encoded results with coding parameters of the

optimal points rounded-off, used as input encoder parameters. Note that Row-67

coding instance has been selected as the representative instance for all loss

experiments below.

Table 7-3: Encoded video with different parameter sets for foreman video using

optimal points.

Row f(1)psnr f(2)Bitrate X1IP X2SR X3QP X4NRF psnr Bitrate Encoding

Time

11 45.7358 536.7505 16 13 13 16 47.866 835.30 60.058
25 36.2372 305.7522 7 8 29 16 36.976 165.35 30.943
47 41.4123 430.5598 13 9 20 16 42.849 393.51 40.600
67 41.3778 429.7228 13 10 20 16 42.838 393.51 40.054
24 37.0587 327.1868 8 9 28 16 37.059 151.42 28.897
99 37.3786 333.0412 8 10 27 16 37.846 170.37 29.998

120

Table ‎7-4 shows the final result of the PSNR of each video sequence at the receiving

end after server-to-client transmission. Note that for the QCIF Foreman video, the

23.26 dB value quoted is the quality of transmitted MP4 bit-stream at 0% loss. It

should be noted that this value is significantly lower that the optimally coded H.264

bit stream quality, 42.838 dB quoted above, before being transcoded to MP4. In

other words transcoding to Mp4 has created a significant loss of quality in the first

place. When various levels of packet loss in introduced (1%-6%), the results of the

PSNR of the received video generally reduces (when packet loss % is increased)

from 15dB to 14dB, which is s significant reduction in quality. The results of

transmitting other test videos incorporating increasing levels of packet loss also

indicates a significant drop in image quality when packet loss percentage is

increased. It is however noted that in videos with fast motion (e.g. football) the

packet loss significantly reduces image quality. Such videos have significantly

different adjacent frames that result in needing a significantly high percentage of

the bit-stream to be allocated to coding the frame differences and motion

estimations. Therefore loss of information that results from loss of packets could

create more serious problems of the decoder’s ability to reconstruct the frames that

corresponds to the lost frames, as adjacent frames will be very much different and

hence the predictions will be less accurate.

Table 7-4: Packet Loss settings and the resulted PSNR (quality)

Loss % Foreman(Qcif)

Akiyo(Cif)

Football(Qcif)

Foreman(720p)

0% 23.26 dB 36.38 dB 37.01 dB 23.98 dB
1 % 15.52 dB 25.06 dB 15.85 dB 17.19 dB
2% 15.04 dB 23.67 dB 16.24 dB 15.04 dB
3% 15.27dB 24.12dB 15.97 dB 15.77 dB
4% 16.71 dB 24.09 dB 16.04 dB 16.41 dB
5% 16.83dB 27.19 dB 16.09 dB 15.53dB
6% 13.89dB 27.25 dB 16.29 dB 15.50 dB

121

Figure 7-2: The effect of different packet loss rates on the PSNR.

Figure 7-2 illustrates a bar-chart showing how packet loss impacts the video quality

of four different videos. It is seen that the Akiyo video sequence that has the least

motion operates at a high level of quality and as a result indicated larger variations

of quality when the packet loss rate is gradually increase from 1% to 6 %.

To check the effect of packet delay on the quality of video streamed video, the Akiyo

video sequence encoded at optimal encoder settings (chapter 4 and 5) was streamed

while introducing different amounts of delays in milliseconds (ms) using the clumsy

software. Different delay values were used to analyse the impact of delay and the

result obtained are tabulated in Table ‎7-5. It is seen that the PSNR reduces when

the delay is increased from 10 ms to 100 ms as presented in Figure ‎7-3. The results

show a good level of resilience to network delay that is being demonstrated by the

H.264 CODEC for this video with minimal motion.

Table 7-5: Impact of packet-delay on the quality of the Akiyo video sequence

Delay in

(ms)

PSNR

In (db)

10 25.09

20 25.76

30 25.04

50 23.21

80 23.63

100 23.22

0

5

10

15

20

25

30

1 2 3 4 5 6

P
S

N
R

 (
d

B
)

Packet Loss-Rate %

Foreman(Qcif)

Akiyo(Cif)

Football(Qcif)

Foreman(720p)

122

Figure 7-3: Impact on PSNR with different levels of delay for Akiyo video.

The Figure ‎7-4 confidently demonstrates the perceivable image quality loss that

results from both packet loss and packet delay. For all videos the artefacts are more

visible around the areas of motion as it is the residues of video coding (i.e. frame

differences after motion prediction and correction) that dominates most of the bit

stream and hence most affected due to losses or delays in the bit streams. Figure 7.4

(b) also shows that it is in the football sequence with fast motion that the impact of

perceptual quality is highest, as compared to other videos, when subjected to packet

loss. Figure 7.4 (c) illustrates the impact of packet delay. Note that packet delay

creates artefacts that are more spread-out over the frame, rather than confined to

the motion related areas. Note that in the foreman video, due to the camera motion

there is some motion in the background area and this is why artefacts are shown in

the background areas as well.

0

20

40

60

80

100

120

25.09 25.76 25.04 23.21 23.63 23.22

D
e

la
y

s
in

 m
il

li
se

co
n

d
s

(m
s)

PSNR (dB)

Delay

PSNR

123

Figure 7-4: (a) video frame before streaming (b) received video by client at 6%

Packet loss Rate. (c) The effect of delay at 50 ms.

(a) (b)

Foreman (Qcif)

Akiyo (Cif)

Football (Qcif)

Foreman (720p)

(c)

124

Table 7-6: Using defaults parameter of H.264 encoder.

 Foreman(Qcif)

Akiyo(Cif)

Football(Qcif)

Foreman(720p)

PSNR 36.072 dB 40.523 dB 33.396 dB 42.038 dB
0 % 21.66 dB 32.01 dB 36.56 dB 23.36 dB
1 % 14.03 dB 23.18 dB 13.64 dB 15.38 dB

For comparison purposes of the proposed method the results obtained in Table ‎7-6,

shows the streaming of videos encoded with default parameters of H264 encoder in

JM reference software. Packet loss rate % was introduced and how packet loss

impacts the video quality PSNR (dB). In particular the proposed method in this

chapter performed generally better in all experiments. We see that the proposed

approach has a slightly improved compared to the evaluation of the results used in

default parameter.

 Summary 7.4

In this chapter, we have integrated several tools to create a real network between a

client and a server and have transmitted video streams compressed by an optimally

configured H.264 video CODEC as per the research proposed in Chapters 4 and 5. A

packet loss and network delay simulation has been used to introduce network losses

as in a real network and the impact of such loss and delay on video sequences

having different characteristics of content has been investigated. The research

proposed has enabled us to determine the impact of packet loss and network delay

on the transmission / streaming of optimally coded video. It has been shown that

despite the presence of error concealment algorithms the impact on video quality is

significant as high rates of packet loss can severely impact video quality of video’s

specifically having fast motion characteristics. Videos having larger content/object

motion between frames result in a higher amounts of bits being allocated to code

the motion vectors which are vital in a video’s reconstruction at the decoder end.

The loss of such content thus creates significant artefacts that error concealment

algorithms struggle to correct.

We have observed the impact of packet losses on the transmission of video

streaming through end to end devices. Due to different frame sizes and different

percentages of losses and delays, a normal UDP channel has been simulated and the

losses have been introduced to the network using Clumsy which is a tool that can

125

introduce Packet Drop with randomly discard packets and hold the packets to

emulate network delay in both local and Wide Area Networks.

When amount of packet lost is introduced the result shows that Quality or PSNR of

the video decreased compared to the original streamed video. In the video playback

we were able to observe that, the videos were poor at different percentages of losses.

It is also observed that the low motion sequence loses quality survive due to similar

frames, the better the quality of videos received.

In the fact videos are segmented into many smaller packets during transmission

while the packets are dropped randomly, there is high possibility that the video

suffer more losses of the very important I frames. The received video will have

much more artifacts with poor PSNR. The contribution of this chapter will help in

operations such as, high quality videoconferencing and online football videos.

126

 In this chapter we provide a summary and conclusions of the key research

outcomes of this thesis, and describe how these findings have contributed to

meeting the research objectives. After presenting the summary and conclusions in

section 8.1, a number of ideas to further improve the contributions of the research

presented in this thesis are presented and discussed in section 8.2. The proposed

further work can significantly improve the outcomes of the research presented in

this thesis and will enable wider practical impact in the future.

 Conclusions 8.1

The research presented in this thesis has investigated a number of original

contributions made to the research area of optimisation of video codecs. In

particular the optimisations have been performed on multi-objectives, to represent

a generalized framework that can be applied to any video CODEC and provides a

useful contribution to the video coding community who are often faced with the

dilemma of selecting values for a large number of coding parameters with the

intention of obtaining optimal performance of the CODEC under multiple

performance constraints.

The following describes the contributions of the research conducted within the

research context of this thesis:

 The thesis proposes the use of an approach to model the performance of a

video CODEC based on the codecs significant coding parameters and then

subsequently use these models to optimise the CODECs performance under

multiple operational constraints/objectives. A framework for the above is

proposed and a claim is made that this framework can be applied to any

video CODEC in practice in coding any video. Therefore research is

conducted to justify the use of the framework in the optimisation of CODECs

of the most widely used video coding standard at present, H.264 and the

latest video coding standard H.265.

127

 In Chpater-4 a novel approach to determining the significant coding

parameters of a H.264 video CODEC using linear regression was proposed.

As compared to the experimental and trial-and-error approaches used in

previous literature to establish these significant coding parameters the

proposed novel approach ensures a scientific methodology that allows the

detailed analysis of operational constraints of specific coding algorithms

implemented with the standardised CODECs as implemented. The chapter

subsequently used these coding parameters to model the CODECs

performance, in terms of coded bit rate, reconstructed image/video quality

and encoder/decoder computational cost. Five different machine learning

approaches were used for this purpose concluding that more advanced

machine learning approaches such as the ensemble learning algorithms

REPTree has the ability to model performance more accurately than simple

linear regression based modelling. However the simplicity and applicability

of Linear Regression and the closeness of obtained prediction accuracies to

the highest possible accuracy resulted in a decision being made to use linear

regression as the modelling approach that will be recommended for the

proposed framework.

 Chapter-5 proposed the use of a Genetic Algorithm based approach to

optimise the H.264 CODEC modelled in Chapter-4. Bit-rate vs. PSNR, PSNR

vs. computational cost, Computational cost vs.-bit rate optimisations were

carried out under further operational constraints of the parameters used.

Optimal performance graphs, i.e. pareto-optimal-curves were generated

leading to identifying a number of exemplar optimal operational points

under the given constraints and the corresponding parameter values were

established. Thus the outcome of the optimisations conducted in Chapter-5 is

a collection of configurations where one is aware of the coding parameter

that needs to be set in order to obtain optimal CODEC performance.

 In Chapter-6 the use of the framework tested on H.264 in chapters 4 and 5 in

the modelling and optimisation of a H.265 CODEC was presented. The

research conducted and the result obtained justifies the claim that the

proposed parameter based multi-objective optimisation framework can be

used in conjunction with and video CODEC. Due to the nature of the H.265

video CODEC’s design it was found out that different set of parameters

128

operate as the significant coding parameters. Further due to the need of

testing HD video, the computational power needed to carry out the research

had to be extended beyond the use of a PC and into the use of High

Performance Computing facilities.

 In Chapter 4-6 the video CODEC optimisations carried out were limited to

the encoder and decoder only. However in practice encoded video is

transmitted via lossy channels and the decoded video reconstructed will be

subjected to packet loss, network delays etc. which will have an impact of the

reconstructed image/video quality. In appreciation of this fact in Chapter-7 a

framework for the transmission and network simulation of packet loss and

delay were presented by integrating existing technological components. This

simulation system was then used to simulate packet loss and network delay.

The impact they have on the reconstructed video quality of videos having

different motion characteristic were investigated and reasoning for the

artefacts created were given. It was conclude that for a video streaming

application and end-to-end optimal configuration parameter selection is

impossible in practice as the packet-loss and delay results from external

variable factors such as network congestion. Therefore the investigations

carried out in this chapter was of practical importance to research

community who could benefit from the work presented in chapters 4-6 by

understanding the impact that optimally coded video will have when

transmitted over real networks.

The above contributions have resulted in the publication of two papers (see section

1.2). A further publication is planned in the investigation of the impact of network

packet loss and delays on optimally coded video.

129

 Future work 8.2

The research conducted in this thesis was somewhat constrained by the limitations

of the software implementations used for the standard functions such as those used

for modelling the codec performance using machine learning and optimisation.

It was mentioned in Chapter 5 and in Chapter 6 that the MATLAB’s implementation

of the GA based optimisation algorithm deals with all optimisation problems as a

minimisation problem. This required the negation of functions that required

maximisation such as PSNR in the experiments conducted. As a result the PSNR

bit-rate and CPU time values obtained are negative, making it difficult to interpret

the results. A new design and implementation of this algorithm that resolves the

above constrained can be recommended as future work. However this specific

limitation has not had any significant overall impact of the concept being proposed

in this thesis.

A further limitation of the MATLAB’s multi-objective-optimisation function as

implemented is that it was only able to jointly optimise two functions with multiple

operational/parameter constraints. In practice this does not need to be the case and

one should be able to jointly optimise more than two fitness functions. As a result of

the above limitations the optimisations that were carried out were ‘dual’ in nature

having multiple constraints in the parameter setting ranges.

In the optimisation of the H.264 CODEC our extended experiments results

demonstrated that even with the CODEC’s rate-control being turned off, the set bit-

rate had an impact on the PSNR. This can be attributed to secondary reasons such

as coding mode decisions etc. that may affect quality. Therefore in the modelling of

the H.264 CODEC in Chapter-4 both PSNR and bit-rate have been attempted to be

used as modelling parameters. This has only however leaded to the presence of bit-

rate as an independent parameter in the PSNR fitness function, but not PSNR in the

bit-rate fitness function. Realistically under a proper implementation of a CODEC

when rate control is off, one should be able to assume that bit-rate is not a

parameter that can be set and hence should not be used in the modelling. We have

conducted further work since this decision and found out that if the bit-rate is not

used the accuracy of the modelled PSNR slightly reduces. It can be recommended

that therefore bit-rate be removed from the modelling in the future.

130

In extended research conducted within the research context of this thesis, we have

also investigated the use of OPNET in modelling real network conditions such as

packet-loss and delay. Unfortunately within the context of the research this resource

that incurs licensing cost was not available to support the research conducted. In

the future the proposed framework for simulation in Chapter-7 can be replaced by

OPNER allowing a more comprehensive investigation to be carried out.

131

[1] A. Bovik, The Essential Guide to Video Processing. 30 Corporate Drive, Suite

400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego,

California 92101-4495, USA 84 Theobald’s Road, LondonWC1X 8RR, UK:

Academic Press publications, 2009.

[2] T. S. Wiegand G. J. Bjontegaard, G. Luthra, A., “Overview of the H.264/AVC

video coding standard,” Circuits Syst. Video Technol. IEEE Trans., vol. 13, no.

7, pp. 560–576, 2003.

[3] I. Richardson, “An Overview of H.264 Advanced Video Coding,” 2013.

[Online]. Available: http://vcodex.com.

[4] I. E. G. Richardson, The H.264 advanced video compression standard. Wiley

InterScience (Online Service), 2010.

[5] S. Wenger, “H.264/AVC over IP,” Circuits Syst. Video Technol. IEEE Trans.,

vol. 13, no. 7, pp. 645–656, 2003.

[6] N. O. Masaki Kitahara† and Atsushi Shimizu, “Software H.264 Encoder

Engine for Online Video Delivery Service Cost Reduction,” NTT Cyber Sp.

Lab. Yokosuka-shi, 239-0847 Japan, vol. Vol. 9, no. No. 6, 2011.

[7] T. W. and H. S. Ralf Schäfer, “The emerging H.264/AVC standard,” Heinrich

Hertz Institute, Berlin, Ger., 2003.

[8] A. Communications, “An explanation of video compression techniques.,”

White Pap., 2008.

[9] F.-I. H. H. I. Dolby Laboratories Inc. Microsoft Corporation, “H.264/AVC

Reference Software.” Joint Video Team, Germany, 2009.

[10] “Italy, June , Springer: 1-15. Dolby Laboratories Inc.,” FI H Microsoft Corp.,

vol. 2000 SRC, pp. 21–23, 2009.

[11] G. J. Sullivan, J. Ohm, H. Woo-Jin, and T. Wiegand, “Overview of the High

Efficiency Video Coding (HEVC) Standard,” Circuits Syst. Video Technol.

IEEE Trans., vol. 22, no. 12, pp. 1649–1668, 2012.

[12] D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Hadar, “Performance

comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders,”

132

2013 Picture Coding Symposium (PCS). pp. 394–397, 2013.

[13] V. Sze and G. J. S. Budagavi, Madhukar, High E ciency Video Coding

(HEVC): Algorithms and Architectures. Cambridge, USA: Integrated Circuits

and Systems, 2014.

[14] N. Narang, “What is the difference between HEVC (H.265) and H.264

(MPEG-4 AVC).” Future Of Media, Media Concepts, 2013.

[15] Fraunhofer Heinrich Hertz Institute, “High Efficiency Video Coding (HEVC) |

JCT-VC,” Fraunhofer-Gesellschaft, 2016. [Online]. Available:

https://hevc.hhi.fraunhofer.de/. [Accessed: 18-Apr-2017].

[16] F. Heinrich, “svn_HEVCSoftware - Revision 4885: /,” 2016. [Online].

Available: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/.

[Accessed: 18-Apr-2017].

[17] F. Heinrich, “jctvc-a124 - Revision 4885: /.” [Online]. Available:

http://hevc.kw.bbc.co.uk/svn/jctvc-a124/. [Accessed: 18-Apr-2017].

[18] Microsoft, “Introducing Visual Studio,” Microsoft, 2008. [Online]. Available:

https://msdn.microsoft.com/en-us/library/fx6bk1f4(v=vs.90).aspx.

[Accessed: 01-May-2017].

[19] Intel, “Intel® VTuneTM Amplifier XE,” 2013. .

[20] E. F. Mark Hall Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

Ian H. Witte, “The WEKA Data Mining Software,” 2009. [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka/.

[21] M. J. Trilok Chand Sharma, “WEKA Approach for Comparative Study of

Classification Algorithm.,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 2,

no. 4, 2013.

[22] H. S. Norman R. Draper, Applied Regression Analysis. Wiley, 1998.

[23] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., 2011.

[24] R. Pierce, “Correlation,” Math Is Fun, 2017. [Online]. Available:

http://www.mathsisfun.com/data/correlation.html. [Accessed: 20-Jul-2017].

[25] MathWorks, Global Optimization Toolbox User’s Guide, vol. R2013a. The

MathWorks, Inc.3 Apple Hill DriveNatick, MA 01760-2098, 2013.

133

[26] S. Jenaa, P. Patrob, and S. S. Beherac, “Multi-Objective Optimization of

Design Parameters of a Shell &Tube type Heat Exchanger using Genetic

Algorithm,” 2013.

[27] K. K. Mishra, A. Kumar, and A. K. Misra, “A variant of NSGA-II for solving

priority based optimization problems,” in 2009 IEEE International

Conference on Intelligent Computing and Intelligent Systems, 2009, pp.

612–615.

[28] O. A. Ani, H. Xu, Y. Shen, S. Liu, and K. Xue, “Modeling and multiobjective

optimization of traction performance for autonomous wheeled mobile robot

in rough terrain,” J. Zhejiang Univ. Sci. C, vol. 14, no. 1, pp. 11–29, 2013.

[29] W. Simpson, Video Over IP, Second Edition: IPTV, Internet Video, H.264,

P2P, Web TV, and Streaming: A Complete Guide to Understanding the

Technology, Second Edi. Elsevier Inc., 2008.

[30] VideoLAN, “The cross-platform streaming solution - VideoLAN.” [Online].

Available: http://www.videolan.org/vlc/streaming.html. [Accessed: 06-Jul-

2017].

[31] J. Klaue, “EvalVid - A Video Quality Evaluation Tool-set,” 2009. [Online].

Available: http://www2.tkn.tu-berlin.de/research/evalvid/fw.html.

[32] Riverbed, “University Support Center: Riverbed Modeler Aca... | Riverbed

Splash,” 2017. [Online]. Available:

https://splash.riverbed.com/community/product-

lines/steelcentral/university-support-center/blog/2014/06/11/riverbed-

modeler-academic-edition-release. [Accessed: 06-Jul-2017].

[33] J. Lahti, J. K. Juntunen, I. Lehtoranta, and T. D. Hamalainen, “Algorithmic

optimization of H.264/AVC encoder,” in Circuits and Systems, 2005. ISCAS

2005. IEEE International Symposium on, 2005, p. 3463–3466 Vol. 4.

[34] J. Shin-Haeng, P. Jung-Wook, and K. Shin-Dug, “Optimization of Memory

Management for H.264/AVC Decoder,” in Advanced Communication

Technology, 2006. ICACT 2006. The 8th International Conference, 2006,

vol. 1, pp. 65–68.

[35] J. Chakareski and , IEEE, “P. Frossard . "Rate-distortion optimized

distributed packet scheduling of multiple video streams over shared

134

communication resources.,” Multimed., vol. 8, no. 2, pp. 207–218, 2006.

[36] S. Li, L. Yan, W. Feng, L. Shipeng, and G. Wen, “Complexity-Constrained

H.264 Video Encoding,” Circuits Syst. Video Technol. IEEE Trans., vol. 19,

no. 4, pp. 477–490, 2009.

[37] F. Al-Abri, X. Li, E. A. Edirisinghe, and C. Grecos, “A Novel Framework for

Multi-objective Optimization of Video CODECs,” in CyberWorlds, 2009. CW

’09. International Conference on, 2009, pp. 195–202.

[38] R. Vanam, E. A. Riskin, S. S. Hemami, and R. E. Ladner, “Distortion-

Complexity Optimization of the H.264/MPEG-4 AVC Encoder using the

GBFOS Algorithm,” in Data Compression Conference, 2007. DCC ’07, 2007,

pp. 303–312.

[39] R. Vanam, E. A. Riskin, and R. E. Ladner, “H.264/MPEG-4 AVC Encoder

Parameter Selection Algorithms for Complexity Distortion Tradeoff,” in Data

Compression Conference, 2009. DCC ’09., 2009, pp. 372–381.

[40] H. Zhihai, L. Yongfang, C. Lulin, I. Ahmad, and W. Dapeng, “Power-rate-

distortion analysis for wireless video communication under energy

constraints,” Circuits Syst. Video Technol. IEEE Trans., vol. 15, no. 5, pp.

645–658, 2005.

[41] H. Zhihai, C. Wenye, and C. Xi, “Energy Minimization of Portable Video

Communication Devices Based on Power-Rate-Distortion Optimization,”

Circuits Syst. Video Technol. IEEE Trans., vol. 18, no. 5, pp. 596–608, 2008.

[42] P. Wei, L. Yan, and W. Feng, “Joint Power-Distortion Optimization on

Devices with MPEG-4 AVC/H.264 Codec,” in Communications, 2006. ICC

’06. IEEE International Conference on, 2006, vol. 1, pp. 441–446.

[43] K. Jaemoon, K. Jungsoo, K. Giwon, and K. Chong-Min, “Power-rate-

distortion modeling for energy minimization of portable video encoding

devices,” in Circuits and Systems (MWSCAS), 2011 IEEE 54th International

Midwest Symposium on, 2011, pp. 1–4.

[44] C. Fu-Chuang and H. Yi-Pin, “Rate-distortion optimization of H.264/AVC

rate control with novel distortion prediction equation,” Consum. Electron.

IEEE Trans., vol. 57, no. 3, pp. 1264–1270, 2011.

[45] T. A. da Fonseca and R. L. De Queiroz, “Complexity-constrained rate-

135

distortion optimization for h.264/avc video coding,” in Circuits and Systems

(ISCAS), 2011 IEEE International Symposium on, 2011, pp. 2909–2912.

[46] S. Weiwei, F. Yibo, H. Leilei, L. Jiali, and Z. Xiaoyang, “A hardware-friendly

method for rate-distortion optimization of HEVC intra coding,” in VLSI

Design, Automation and Test (VLSI-DAT), 2014 International Symposium

on, 2014, pp. 1–4.

[47] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.

Chichester, England: John Wiley & Sons, 2001.

[48] K. Deb, , Kanpur Indian, and , PIN, “Multi-Objective Optimization Using

Evolutionary Algorithms: An Introduction.,” Technol. Kanpur, vol. 208016,

2011.

[49] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” Evol. Comput. IEEE Trans., vol.

6, no. 2, pp. 182–197, 2002.

[50] K. D. Srinivas, N, “Muiltiobjective Optimization Using Nondominated Sorting

in Genetic Algorithms.,” Evol. Comput., vol. 2, no. 3, pp. 221–248, 1994.

[51] and A. S. Masaki Kitahara†, N. O., “Software H.264 Encoder Engine for

Online Video Delivery Service Cost Reduction." NTT Cyber Space

Laboratories,” 2011. [Online]. Available: NTT Cyber Space Laboratories.

[Accessed: 01-Jan-2014].

[52] K. V. S. Swaroop and K. R. Rao, “Performance analysis and comparison of JM

15.1 and Intel IPP H. 264 encoder and decoder,” in System Theory (SSST),

2010 42nd Southeastern Symposium on, 2010, pp. 371–375.

[53] S. J. K. W. and C. Lee, “H264AVC entropy decoder complexity analysis and its

applications,” J. Vis. Commun. Image Represent., vol. 22, no. 1 SRC-

GoogleScholar FG-0, pp. 61–72, 2011.

[54] F. H. Seitner, R. M. Schreier, M. Bleyer, and M. Gelautz, “A high-level

simulator for the H. 264/AVC decoding process in multi-core systems,” in

Electronic Imaging 2008, 2008, p. 682105.

[55] B. Boyadjis, C. Bergeron, B. Pesquet-Popescu, and F. Dufaux, “Extended

Selective Encryption of H.264/AVC (CABAC)- and HEVC-Encoded Video

Streams,” IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 4, pp. 892–

136

906, Apr. 2017.

[56] D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4 advanced

video coding standard and its applications,” IEEE Communications

Magazine, vol. 44, no. 8. pp. 134–143, 2006.

[57] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the High

Efficiency Video Coding,” Ieee Trans. Circuits Syst. Video Technol., vol. 22,

no. 12, pp. 1649–1668, 2012.

[58] W. Shen, Y. Fan, L. Huang, J. Li, and X. Zeng, “A hardware-friendly method

for rate-distortion optimization of HEVC intra coding,” Technical Papers of

2014 International Symposium on VLSI Design, Automation and Test. pp. 1–

4, 2014.

[59] B. Bross et al., “HEVC real-time decoding,” in SPIE Optical Engineering+

Applications, 2013, p. 88561R–88561R.

[60] A. F. Eldeken, M. M. Fouad, G. I. Salama, and A. A. Youssif, “A New

Implementation of High Resolution Video Encoding Using the HEVC

Standard,” in Intelligent Systems in Cybernetics and Automation Theory,

Springer, 2015, pp. 163–172.

[61] R. I. Chernyak, “Analysis of the Intra Predictions in H. 265/HEVC,” Appl.

Math. Sci., vol. 8, no. 148, pp. 7389–7408, 2014.

[62] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand,

“Comparison of the coding efficiency of video coding standards-including

high efficiency video coding (HEVC),” IEEE Trans. Circuits Syst. Video

Technol., vol. 22, no. 12, pp. 1669–1684, 2012.

[63] L. Gao, S. Dong, W. Wang, R. Wang, and W. Gao, “Fast intra mode decision

algorithm based on refinement in HEVC,” Proc. - IEEE Int. Symp. Circuits

Syst., vol. 2015–July, pp. 517–520, 2015.

[64] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and

implementation analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,

no. 12, pp. 1685–1696, 2012.

[65] B. Bross et al., “HEVC performance and complexity for 4K video,” Proc. 2013

IEEE 3rd Int. Conf. Consum. Electron. - Berlin, ICCE-Berlin 2013, pp. 44–47,

2013.

137

[66] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, V. George, and T. Schierl, “Improving

the parallelization efficiency of HEVC decoding,” Proc. - Int. Conf. Image

Process. ICIP, pp. 213–216, 2012.

[67] M. P. Sharabayko and N. G. Markov, “Iterative intra prediction search for

H.265/HEVC,” 2013 Int. Sib. Conf. Control Commun. SIBCON 2013 - Proc.,

2013.

[68] M. Alvarez-Mesa, C. C. Chi, B. Juurlink, V. George, and T. Schierl, “Parallel

video decoding in the emerging HEVC standard,” 2012 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1545–

1548, 2012.

[69] Q. Huangyuan, L. Song, Z. Luo, X. Wang, and Y. Zhao, “Performance

evaluation of H.265/MPEG-HEVC encoders for 4K video sequences,” Signal

and Information Processing Association Annual Summit and Conference

(APSIPA), 2014 Asia-Pacific. pp. 1–8, 2014.

[70] M. P. Sharabayko, “Next generation video codecs: HEVC, VP9 and DAALA,”

XI Int. Theor. Pract. Conf., vol. 2560, no. 1600, p. 30, 2013.

[71] T. Gilling, The Stream Tone : the future of personal computing? Troubador

Publishing Ltd, 2017.

[72] P. Hanhart, M. Rerabek, F. De Simone, and T. Ebrahimi, “Subjective quality

evaluation of the upcoming HEVC video compression standard,” in Proc.

SPIE, 2012, vol. 8499, p. 84990V.

[73] F. Pescador, M. Chavarrías, M. Garrido, J. Malagón, and C. Sanz, “Real-time

HEVC decoding with OpenHEVC and OpenMP,” in Consumer Electronics

(ICCE), 2017 IEEE International Conference on, 2017, pp. 370–371.

[74] G. F. Escribano, R. Jillani, C. Holder, H. Kalva, J. L. M. Martinez, and P.

Cuenca, “Video Encoding and Transcoding Using Machine Learning,” in

Proceedings of the 9th International Workshop on Multimedia Data Mining:

Held in Conjunction with the ACM SIGKDD 2008, 2008, pp. 53–62.

[75] T. G. Dietterich and , MCS, “Ensemble methods in machine learning.,” Mult.

Classif. Syst. First Int. Work. Italy June Springer 115, vol. 2000, pp. 21–23,

2000.

[76] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,”

138

Pattern Anal. Mach. Intell. IEEE Trans., vol. 20, no. 3, pp. 226–239, 1998.

[77] Q. Dai and R. Lehnert, “Impact of Packet Loss on the Perceived Video

Quality,” in 2010 2nd International Conference on Evolving Internet, 2010,

pp. 206–209.

[78] S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 13, no. 7. pp. 645–656, 2003.

[79] F. H. R. Fitzek, M. Zorzi, P. Seeling, and M. Reisslein, “Video and audio trace

files of pre-encoded video content for network performance measurements,”

Int. Symp. VLSI Technol. Syst. Appl. Proc. Tech. Pap. (IEEE Cat.

No.03TH8672), pp. 245–250, 2004.

[80] Arizona State University, “Video Traces for Network Performance

Evaluation,” 2004. [Online]. Available: http://trace.eas.asu.edu/. [Accessed:

10-Apr-2017].

[81] T. Ozcelebi, M. O. Sunay, M. Tekalp, and M. R. Civanlar, “Cross-layer

optimized rate adaptation and scheduling for multiple-user wireless video

streaming,” Sel. Areas Commun. IEEE J., vol. 25, no. 4, pp. 760–769, 2007.

[82] T. Ozcelebi, A. M. Tekalp, and M. R. Civanlar, “Delay-Distortion Optimization

for Content-Adaptive Video Streaming,” Multimedia, IEEE Trans., vol. 9, no.

4, pp. 826–836, 2007.

[83] C. H. Ke, C. K. Shieh, W. S. Hwang, and A. Ziviani, “An evaluation framework

for more realistic simulations of MPEG video transmission,” J. Inf. Sci. Eng.,

vol. 24, no. 2, pp. 425–440, 2008.

[84] C. Yu, C. Ke, R. Chen, and C. Shieh, “MyEvalvid _ RTP : a Evaluation

Framework for More Realistic Simulations of Multimedia Transmission,” Int.

J., vol. 2, no. 2, pp. 21–32, 2008.

[85] F. Van Der Schueren, J. Doggen, and V. Der Schueren, “Design and

Simulation of a H.264 AVC Video Streaming Model,” Proc. Third Eur. Conf.

Use Mod. Inf. Commun. Technol. ECUMICT 2008, 2008.

[86] W. Hrudey and L. Trajković, “Streaming Video Content Over IEEE 802.16 /

WiMAX Broadband Access,” OPNETWORK 2008, 2008.

[87] and M. A. Abdulghani, Amir M. Arshad, “H.263 Video Transmission in

Wireless Local Area Networks using Opnet,” in ICWN, 2006, pp. 423–429.

139

[88] and L. T. Rajvir Gill, Tanjila Farah, “Comparison of WiMAX and ADSL by

Streaming Audio and Video Content,” 2011, vol. 301136804, pp. 1–38.

[89] L. Sendrei, J. Valiska, and S. Marchevský, “H.264 video transmission over

WLAN in OPNET Modeller,” J. Electr. Eng., vol. 64, no. 2, pp. 112–117, 2013.

[90] T. . Al Hadhrami, J. . Nightingale, Q. . Wang, C. . Grecos, and N. .

Kehtarnavaz, “A simulator tool set for evaluating HEVC/SHVC streaming,”

Proc. SPIE - Int. Soc. Opt. Eng., vol. 9400, pp. 1–10, 2015.

[91] D. J. Mandal and A. P. S. Ghimire, “Effect of Packet Drop and Jitter on

Perceived Video Quality for Various Encoded Video over Streaming Network,”

Int. J. Recent Innov. Trends Comput. Commun., vol. 4, no. 8, pp. 7–11, 2016.

[92] and I. H. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, “The Mining Software An Update.” The WEKA Data

Mining Software: An Update. SIGKDD Explorations, 2009.

[93] V. Coders, “Video Coders - Research and Development on Coding Techniques

for H.264/AVC, MPEG-2 and HVC,” 2010. [Online]. Available:

http://videocoders.com/.

[94] H. Group, “Database: Image & Video Clips,” 2006. [Online]. Available:

http://see.xidian.edu.cn/vipsl/database_Video.html#video.

[95] K. S. and G. S. Alexis Michael Tourapis, Athanasios Leontaris, “H. 264/14496-

10 AVC reference software manual,” 2009.

[96] MathWorks, “Find Pareto front of multiple fitness functions using genetic

algorithm - MATLAB gamultiobj,” 2007. [Online]. Available:

https://uk.mathworks.com/help/gads/gamultiobj.html. [Accessed: 17-Sep-

2017].

[97] Jagtt, “clumsy, an utility for simulating broken network for Windows Vista /

Windows 7 and above.” 2016.

[98] Riverbed, “OPNET Technologies – Network Simulator | Riverbed,” 2017.

[Online]. Available:

https://www.riverbed.com/gb/products/steelcentral/opnet.html. [Accessed:

06-Jul-2017].

140

Appendix A: JM reference encoder / decoder configuration

file.

A.1. Encoder configuration file.
##
##################
Files
##
##################
InputFile = "foreman_qcif.yuv" # Input sequence
InputHeaderLength = 0 # If the inputfile has a header, state it's length in byte here
StartFrame = 0 # Start frame for encoding. (0-N)
FramesToBeEncoded = 30 # Number of frames to be coded
FrameRate = 30.0 # Frame Rate per second (0.1-100.0)
Enable32Pulldown = 0 # Enable 'hard' 3:2 pulldown (modifying the inpur data)
 # 0 = disabled
 # 1 = A, B, Bt|Cb, Ct|Db, D
 # 2 = A, B, C, Ct|Db, D
SEIVUI32Pulldown = 0 # Enable 3:2 pulldown through VUI and SEI metadata signaling. Five
methods are supported:
 # 0 = disabled
 # 1 = A, Bt|Bb, Bt|Cb, Ct|Cb, D
 # 2 = A, B, C, C, D
 # 3 = At|Ab, Bt|Bb, Bt|Cb, Ct|Cb, Dt|Db
 # 4 = A, Bt|Bb, Bt|Cb, Ct|Db, Dt|Db
 # 5 = At|Ab, Bt|Bb, Bt|Cb, Ct|Db, Dt|Db

SourceWidth = 176 # Source frame width
SourceHeight = 144 # Source frame height
SourceResize = 0 # Resize source size for output
OutputWidth = 176 # Output frame width
OutputHeight = 144 # Output frame height
ProcessInput = 0 # Filter Input Sequence
Interleaved = 0 # 0: Planar input, 1: Packed input
PixelFormat = 0 # Pixel Format for 422 packed inputs
 # 0: UYVY
 # 1: YUY2/YUYV
 # 2: YVYU
 # 3: BGR (Unsupported)
 # 4: V210 (Video Clarity)

StandardRange = 0 # 0: Standard range 1: Full range (RGB input)
VideoCode = 1 # Video codes for RGB ==> YUV conversions
 # 0 = NULL,
 # 1 = ITU_REC709,
 # 2 = CCIR_601,
 # 3 = FCC,
 # 4 = ITU_REC624BG,
 # 5 = SMPTE_170M,
 # 6 = SMPTE_240M,
 # 7 = SMPTE_260M,
 # 8 = ITU_REC709_EXACT

TraceFile = "trace_enc.txt" # Trace file
ReconFile = "test_rec.yuv" # Reconstruction YUV file
OutputFile = "test.264" # Bitstream
StatsFile = "stats.dat" # Coding statistics file

141

NumberOfViews = 1 # Number of views to encode (1=1 view, 2=2 views)
View1ConfigFile = "encoder_view1.cfg" # Config file name for second view

##
##############

Encoder Control
##
##############
Grayscale = 0 # Encode in grayscale (Currently only works for 8 bit YUV 420 input)
ProfileIDC = 100 # Profile IDC (66=baseline, 77=main, 88=extended; FREXT Profiles: 100=High,
110=High 10, 122=High 4:2:2, 244=High 4:4:4, 44=CAVLC 4:4:4 Intra, 118=Multiview High Profile,
128=Stereo High Profile)
IntraProfile = 0 # Activate Intra Profile for FRExt (0: false, 1: true)
 # (e.g. ProfileIDC=110, IntraProfile=1 => High 10 Intra Profile)
LevelIDC = 40 # Level IDC (e.g. 20 = level 2.0)

IntraPeriod = 0 # Period of I-pictures (0=only first)
IDRPeriod = 0 # Period of IDR pictures (0=only first)
AdaptiveIntraPeriod = 1 # Adaptive intra period
AdaptiveIDRPeriod = 0 # Adaptive IDR period
IntraDelay = 0 # Intra (IDR) picture delay (i.e. coding structure of PPIPPP...)
EnableIDRGOP = 0 # Support for IDR closed GOPs (0: disabled, 1: enabled)
EnableOpenGOP = 0 # Support for open GOPs (0: disabled, 1: enabled)
QPISlice = 17 # Quant. param for I Slices (0-51)
QPPSlice = 17 # Quant. param for P Slices (0-51)

##
##############
Search Range Restriction / RD Optimization
##
##############

RDOptimization = 1 # rdo-optimized mode decision
 # 0: RD-off (Low complexity mode)
 # 1: RD-on (High complexity mode)
 # 2: RD-on (Fast high complexity mode - not work in FREX

A.2. Decoder configuration file.

This is a file containing input parameters to the JVT H.264/AVC decoder.
The text line following each parameter is discarded by the decoder.

For bug reporting and known issues see:
https://ipbt.hhi.fraunhofer.de

New Input File Format is as follows
<ParameterName> = <ParameterValue> # Comment

###
#####################
Files
###
#####################
InputFile = "test.264" # H.264/AVC coded bitstream
OutputFile = "test_dec.yuv" # Output file, YUV/RGB
RefFile = "test_rec.yuv" # Ref sequence (for SNR)
WriteUV = 1 # Write 4:2:0 chroma components for monochrome streams
FileFormat = 0 # NAL mode (0=Annex B, 1: RTP packets)
RefOffset = 0 # SNR computation offset
POCScale = 2 # Poc Scale (1 or 2)
###
#####################
HRD parameters

142

###
#####################
#R_decoder = 500000 # Rate_Decoder
#B_decoder = 104000 # B_decoder
#F_decoder = 73000 # F_decoder
#LeakyBucketParamFile = "leakybucketparam.cfg" # LeakyBucket Params
###
#####################
decoder control parameters
###
#####################
DisplayDecParams = 0 # 1: Display parameters;
ConcealMode = 0 # Err Concealment(0:Off,1:Frame Copy,2:Motion Copy)
RefPOCGap = 2 # Reference POC gap (2: IPP (Default), 4: IbP / IpP)
POCGap = 2 # POC gap (2: IPP /IbP/IpP (Default), 4: IPP with frame skip = 1 etc.)
Silent = 0 # Silent decode
IntraProfileDeblocking = 1 # Enable Deblocking filter in intra only profiles (0=disable,
1=filter according to SPS parameters)
DecFrmNum = 0 # Number of frames to be decoded (-n)
###
#####################
MVC decoding parameters
###
#####################
DecodeAllLayers = 0 # Decode all views (-mpr)

Appendix B: Selected parameters for encoder / decoder.

Table B . 1: Selected set of parameters for Claire video sequence.

IntraPeriod SearchRange QP NRFrames PSNR
Bit-
rate

CPU
CPU/
Decoder

0 16 17 2 47.437 162.01 45.551 0.329

0 16 17 5 47.48 133.98 51.461 0.299

0 16 17 8 47.495 133.54 60.925 0.301

0 16 49 2 27.086 5.49 34.866 0.192

0 16 49 5 27.081 5.59 47.959 0.19

0 16 49 8 27.114 5.73 57.967 0.186

0 32 17 2 47.458 161.63 40.422 0.33

0 32 17 5 47.48 132.3 62.217 0.311

0 32 17 8 47.488 132.13 66.532 0.313

0 32 49 2 27.086 5.49 40.79 0.205

0 32 49 5 27.081 5.59 52.359 0.207

0 32 49 8 27.114 5.73 59.203 0.189

5 16 17 2 48.308 292.37 37.451 0.385

5 16 17 5 48.387 258.33 46.761 0.361

5 16 17 8 48.385 258.32 55.405 0.359

5 16 49 2 27.222 14.09 32.66 0.239

5 16 49 5 27.402 14.22 44.288 0.231

5 16 49 8 27.412 14.29 53.914 0.229

143

5 32 17 2 48.308 292.37 37.722 0.375

5 32 17 5 48.387 258.33 47.217 0.354

5 32 17 8 48.385 258.32 55.22 0.379

5 32 49 2 27.222 14.09 32.612 0.231

5 32 49 5 27.402 14.22 44.113 0.228

5 32 49 8 27.412 14.29 53.695 0.235

8 16 17 2 47.793 217.02 38.537 0.332

8 16 17 5 47.846 189.11 48.76 0.313

8 16 17 8 47.859 189.08 57.1 0.312

8 16 49 2 27.282 10.54 33.452 0.219

8 16 49 5 27.483 10.62 45.507 0.216

8 16 49 8 27.483 10.7 55.077 0.214

8 32 17 2 47.786 216.93 38.664 0.349

8 32 17 5 47.848 189.16 50.772 0.353

8 32 17 8 47.861 189.12 64.002 0.395

8 32 49 2 27.282 10.54 34.729 0.221

8 32 49 5 27.483 10.62 52.814 0.225

8 32 49 8 27.483 10.7 58.264 0.227

Table B. 2: Selected set of parameters for Coastguard video sequence.

IntraPeriod SearchRange QP NRFrames PSNR Bit-rate CPU
CPU/
Decoder

0 16 17 2 43.418 979.02 64.889 0.662

0 16 17 5 43.27 784.34 88.765 0.624

0 16 17 8 43.286 785.94 104.393 0.612

0 16 49 2 24.189 5.83 40.145 0.205

0 16 49 5 24.291 5.82 51.923 0.194

0 16 49 8 24.294 5.93 63.185 0.191

0 32 17 2 43.436 980.48 64.994 0.65

0 32 17 5 43.252 781.88 83.298 0.617

0 32 17 8 43.272 783.7 100.209 0.603

0 32 49 2 24.241 5.9 37.427 0.191

0 32 49 5 24.322 5.88 52.426 0.19

0 32 49 8 24.317 5.91 64.159 0.188

5 16 17 2 44.999 1303.7 60.007 0.735

5 16 17 5 44.782 1050.44 74.499 0.676

5 16 17 8 44.772 1048.75 89.988 0.678

5 16 49 2 24.509 10.35 34.322 0.227

5 16 49 5 24.669 10.36 47.052 0.224

5 16 49 8 24.671 10.44 57.41 0.225

5 32 17 2 32.202 508.26 34.85 0.337

5 32 17 5 33.264 507.62 46.791 0.33

5 32 17 8 33.264 507.66 57.392 0.33

144

5 32 49 2 24.509 10.35 34.838 0.228

5 32 49 5 24.673 10.37 47.723 0.225

5 32 49 8 24.67 10.43 58.284 0.253

8 16 17 2 43.662 1041.16 61.839 0.713

8 16 17 5 43.501 836.26 77.872 0.608

8 16 17 8 43.49 835.59 93.222 0.631

8 16 49 2 24.452 8.82 36.108 0.216

8 16 49 5 24.741 8.62 50.437 0.238

8 16 49 8 24.743 8.73 61.173 0.226

8 32 17 2 43.67 1042.05 62.295 0.656

8 32 17 5 43.503 836.23 78.095 0.615

8 32 17 8 43.49 836.42 94.709 0.607

8 32 49 2 24.452 8.82 36.389 0.219

8 32 49 5 24.739 8.62 49.087 0.217

8 32 49 8 24.741 8.71 60.517 0.226

Table B. 3: Selected set of parameters for Football video sequence.

IntraPeriod SearchRange QP NRFrames PSNR Bit-rate CPU
CPU/
Decoder

0 16 17 2 44.109 2242.07 89.723 0.965

0 16 17 5 44.081 2085.56 109.924 0.96

0 16 17 8 44.052 2081.78 128.955 0.937

0 16 49 2 19.663 21.35 47.255 0.247

0 16 49 5 20.043 19.32 66.317 0.237

0 16 49 8 20.061 19.43 80.083 0.231

0 32 17 2 44.076 2237.71 91.363 0.958

0 32 17 5 44.06 2081.21 112.022 0.938

0 32 17 8 44.051 2080.76 131.97 0.934

0 32 49 2 19.712 21.38 47.562 0.245

0 32 49 5 20.009 18.79 65.294 0.231

0 32 49 8 20.015 18.96 80.359 0.229

5 16 17 2 45.49 2358.85 98.877 0.979

5 16 17 5 45.49 2358.85 98.289 0.977

5 16 17 8 44.159 2104.87 103.437 0.952

5 16 49 2 20.398 31.64 43.198 0.291

5 16 49 5 20.71 29.05 58.097 0.276

5 16 49 8 20.699 29.01 71.695 0.287

5 32 17 2 45.557 2552.46 82.586 1.03

5 32 17 5 45.48 2357.46 101.71 0.997

5 32 17 8 45.475 2356.23 119.861 0.984

5 32 49 2 20.386 31.51 44.104 0.29

5 32 49 5 20.713 29.03 60.011 0.284

5 32 49 8 20.709 29.02 73.532 0.271

8 16 17 2 44.154 2261.45 85.64 0.96

145

8 16 17 5 44.159 2104.87 104.012 0.942

8 16 17 8 44.156 2104.7 121.461 0.945

8 16 49 2 19.774 24.93 45.184 0.262

8 16 49 5 20.167 22.02 60.455 0.248

8 16 49 8 20.151 21.98 73.405 0.244

8 32 17 2 44.139 2260.79 87.457 0.96

8 32 17 5 44.166 2106.04 105.85 0.94

8 32 17 8 44.144 2102.5 124.775 0.947

8 32 49 2 19.779 24.46 45.784 0.259

8 32 49 5 20.174 21.92 61.115 0.243

8 32 49 8 20.158 21.92 75.706 0.244

Table B. 4: Selected set of parameters for Foreman video sequence.

IntraPeriod SearchRange QP NRFrames PSNR
Bit-
rate

CPU
CPU/
Decoder

0 16 17 2 44.606 547.62 61.627 0.659

0 16 17 5 44.635 473.74 75.058 0.659

0 16 17 8 44.636 471.7 84.624 0.639

0 16 49 2 22.806 9.63 41.619 0.209

0 16 49 5 23.384 9.09 57.455 0.205

0 16 49 8 23.382 9.28 70.711 0.203

0 32 17 2 44.62 547.1 61.189 0.659

0 32 17 5 44.688 472.77 74.527 0.635

0 32 17 8 44.691 471.59 83.665 0.628

0 32 49 2 22.871 9.98 41.24 0.223

0 32 49 5 23.449 9.21 57.3 0.207

0 32 49 8 23.405 9.38 71.303 0.205

5 16 17 2 45.751 819.97 55.727 0.741

5 16 17 5 45.819 712.66 69.253 0.721

5 16 17 8 45.822 714.2 75.729 0.729

5 16 49 2 23.53 16.77 37.336 0.243

5 16 49 5 23.881 16.44 53.122 0.237

5 16 49 8 23.881 16.51 63.869 0.227

5 32 17 2 45.764 820.33 69.276 0.804

5 32 17 5 45.83 714.45 80.19 0.857

5 32 17 8 45.825 714.3 86.417 0.792

5 32 49 2 23.531 16.78 37.594 0.236

5 32 49 5 23.881 16.44 51.472 0.227

5 32 49 8 23.881 16.5 64.64 0.229

8 16 17 2 44.818 618.74 57.825 0.656

8 16 17 5 44.906 544.33 69.269 0.646

8 16 17 8 44.899 540.87 77.812 0.622

8 16 49 2 22.955 13.09 39.142 0.221

8 16 49 5 23.532 12.67 52.936 0.213

146

8 16 49 8 23.54 12.73 65.502 0.214

8 32 17 2 44.821 618.66 58.211 0.658

8 32 17 5 44.91 544.98 70.837 0.637

8 32 17 8 44.902 542.31 78.66 0.626

8 32 49 2 22.958 13.12 39.35 0.232

8 32 49 5 23.532 12.67 53.45 0.213

8 32 49 8 23.54 12.73 66.653 0.214

Table B. 5: Selected set of parameters for Mobile video sequence.

IntraPeriod SearchRange QP NRFrames PSNR Bit-rate CPU
CPU/
Decoder

0 16 17 2 43.964 1595.79 70.647 0.943

0 16 17 5 43.84 1388.74 88.379 1.07

0 16 17 8 43.836 1384.42 93.805 0.879

0 16 49 2 19.27 17.37 46.491 0.253

0 16 49 5 19.623 16.71 64.464 0.233

0 16 49 8 19.632 17.03 80.494 0.232

0 32 17 2 43.97 1596.36 70.257 0.936

0 32 17 5 43.837 1388.67 84.653 0.87

0 32 17 8 43.833 1383.71 94.541 0.897

0 32 49 2 19.274 17.41 47.015 0.25

0 32 49 5 19.604 16.75 64.902 0.232

0 32 49 8 19.603 17.17 81.148 0.235

5 16 17 2 45.561 2160.9 65.138 1.013

5 16 17 5 45.441 1939.38 77.751 0.957

5 16 17 8 45.452 1933.91 89.416 0.958

5 16 49 2 19.475 44.22 42.074 0.262

5 16 49 5 19.719 43.69 56.937 0.249

5 16 49 8 19.718 43.74 71.303 0.251

5 32 17 2 45.563 2161.22 65.603 1.02

5 32 17 5 45.442 1939.3 78.23 0.952

5 32 17 8 45.451 1933.65 87.185 0.95

5 32 49 2 19.475 44.22 41.903 0.275

5 32 49 5 19.715 43.67 63.003 0.287

5 32 49 8 19.718 43.74 85.226 0.272

8 16 17 2 44.085 1762.29 79.206 1.056

8 16 17 5 43.931 1553.74 86.32 0.973

8 16 17 8 43.93 1550.54 101.151 0.944

8 16 49 2 19.267 32.94 50.098 0.328

8 16 49 5 19.637 32.33 63.053 0.272

8 16 49 8 19.643 32.62 78.31 0.27

8 32 17 2 44.08 1762.55 71.846 0.996

8 32 17 5 43.931 1554.45 85.819 0.972

8 32 17 8 43.946 1550.86 96.688 1.031

147

8 32 49 2 19.265 32.91 49.632 0.308

8 32 49 5 19.634 32.33 65.116 0.27

8 32 49 8 19.643 32.66 80.676 0.294

Table B. 6: Selected set of parameters for Tennis video sequence.

IntraPeriod
SearchRan

ge
QP NRFrames PSNR Bit-rate CPU

CPU/
Decoder

0 16 17 2 43.703 1258.3 73.525 0.801

0 16 17 5 43.669 1061.34 94.295 0.692

0 16 17 8 43.663 1045.54 97.927 0.662

0 16 49 2 24.284 8.56 37.576 0.211

0 16 49 5 24.462 7.96 51.811 0.202

0 16 49 8 24.475 8.04 62.768 0.2

0 32 17 2 43.7 1259.82 66.572 0.727

0 32 17 5 43.655 1062.45 83.713 0.681

0 32 17 8 43.643 1042.94 99.129 0.665

0 32 49 2 24.288 8.72 38.227 0.203

0 32 49 5 24.511 8.02 52.192 0.198

0 32 49 8 24.518 8.15 62.973 0.199

5 16 17 2 45.309 1735.94 61.859 0.853

5 16 17 5 45.066 1443.39 75.479 0.762

5 16 17 8 45.063 1432.58 89.736 0.763

5 16 49 2 24.509 15.84 34.586 0.24

5 16 49 5 24.788 15.43 47.114 0.231

5 16 49 8 24.791 15.5 57.398 0.233

5 32 17 2 45.316 1736.75 62.615 0.837

5 32 17 5 45.071 1443.81 76.39 0.762

5 32 17 8 45.079 1433.22 91.026 0.765

5 32 49 2 24.525 15.85 35.106 0.236

5 32 49 5 24.788 15.48 47.491 0.232

5 32 49 8 24.791 15.5 57.794 0.229

8 16 17 2 43.805 1330.59 64.657 0.722

8 16 17 5 43.798 1128.17 77.083 0.666

8 16 17 8 43.796 1113.46 91.711 0.659

8 16 49 2 24.337 12.65 36.02 0.222

8 16 49 5 24.674 12.23 48.242 0.215

8 16 49 8 24.682 12.25 58.291 0.217

8 32 17 2 43.807 1330.7 63.395 0.72

8 32 17 5 43.796 1129.92 78.35 0.66

8 32 17 8 43.793 1113.79 93.611 0.656

8 32 49 2 24.389 12.73 35.961 0.226

8 32 49 5 24.677 12.16 48.955 0.215

8 32 49 8 24.692 12.29 58.994 0.229

148

Appendix C: Pareto Plot

Plot C. 1: Pareto Plot for Football Video.

149

Appendix D: Optimal points and functional values.

Table D. 1: Foreman PSNR vs. Bit-rate

 f(1) f(2) X1 X2 X3 X4 X5 X6

1 -61.4345 1051.543 -
12.3536

5.948443 -13.2784 18.68428 6.922016 11.36318

2 -56.2065 860.3077 -
15.6062

6.330999 -4.14033 21.28292 8.077764 6.978926

3 -59.1944 959.3262 -14.4197 5.089091 -9.05509 22.12362 8.069374 8.776518

4 -62.8529 1102.272 -
10.8373

5.983466 -15.4618 20.18949 7.297968 12.31851

5 -55.2319 827.3298 -
15.3452

7.633843 -2.26184 23.04302 10.27598 6.575443

6 -62.6273 1085.166 -12.1723 6.900299 -15.0288 20.62279 7.015222 11.51751

7 -58.0206 919.1406 -
14.9615

5.98795 -7.08268 22.08793 7.667866 8.319399

8 -40.8703 404.3069 -
13.2207

14.54251 21.38374 18.91533 11.41972 2.244124

9 -57.8374 910.0747 -
14.7867

6.106682 -6.52831 23.847 8.773665 9.403458

10 -52.579 747.9986 -
15.5328

6.103938 1.956696 21.12791 7.869598 6.523647

11 -45.7358 536.7505 -16.1877 13.29562 13.13297 18.59521 9.332297 2.607052

12 -62.8153 1089.791 -12.1723 6.900299 -15.2788 21.12279 7.015222 11.51751

13 -56.6037 872.3414 -
14.9189

6.229737 -4.53761 23.22131 8.72742 8.51145

14 -64.2498 1160.129 -
8.63146

7.039144 -17.7765 20.64461 8.871526 9.890705

150

15 -64.5445 1179.086 -
6.97241

7.537578 -18.1901 21.32292 9.585319 8.898466

16 -66.0515 1235.996 -
5.41206

7.705062 -20.6914 21.56395 10.11495 10.11164

17 -52.0159 723.7014 -
15.9984

6.64863 3.098449 22.54893 6.529946 6.546711

18 -49.9581 664.811 -
16.6616

11.37207 6.037113 18.61657 10.58142 5.989593

19 -66.8771 1261.795 -
5.34666

8.862411 -22.0617 21.69734 12.40224 10.74369

20 -48.8086 629.961 -
16.6281

10.51147 7.932977 18.45426 8.760134 3.168724

21 -53.1061 760.4283 -16.219 6.067543 1.032235 20.84594 8.818547 6.91846

22 -47.1808 569.3852 -
17.9278

11.0445 10.72836 18.79524 9.431786 3.484754

23 -39.9426 379.9601 -
12.7207

15.54251 22.88374 18.41533 11.91972 2.494124

24 -37.0587 327.1868 -
7.61426

9.242817 27.6164 16.63976 4.897826 16.04133

25 -36.2372 305.7522 -
7.10057

8.441657 28.96404 16.3452 3.363182 16.17345

26 -60.8736 1022.776 -13.7537 4.488934 -12.2391 19.45727 8.899394 9.896185

27 -52.3088 743.1749 -15.1332 6.105105 2.364584 20.76614 7.856732 6.612254

28 -42.4729 450.183 -
14.2049

15.71193 18.54184 17.9197 12.23217 1.813011

29 -66.5667 1252.544 -
5.34666

9.112411 -21.5617 21.50984 11.65224 10.93119

30 -63.9595 1146.404 -
9.35309

6.526395 -17.3004 20.57108 8.819923 9.395061

31 -65.1111 1201.439 -
6.73728

8.221786 -19.3117 20.10359 10.15224 8.74369

32 -53.6093 774.305 -16.219 6.067543 0.282235 21.59594 8.818547 6.66846

33 -45.7263 522.9529 -
18.4339

13.22389 13.05152 17.92364 10.36744 1.702971

34 -62.9272 1104.152 -11.2212 5.89914 -15.7047 19.32724 7.166266 12.12836

35 -61.9056 1068.582 -11.9138 5.740745 -14.0373 18.95198 6.932407 11.34864

36 -59.9007 984.1579 -14.293 6.654113 -10.3505 21.20375 9.250422 11.4008

37 -54.9212 826.0167 -
14.4014

6.006544 -1.84334 22.30417 8.135473 5.752259

38 -63.7085 1137.851 -
9.51446

6.425226 -16.8976 20.37749 8.374987 10.0805

39 -60.1646 992.0274 -
14.2661

6.427959 -10.766 21.42701 9.083982 11.37609

40 -49.357 644.4899 -15.9591 8.778352 7.394093 21.23521 8.163604 4.717752

41 -60.2867 997.1175 -14.1183 6.483588 -10.9866 21.30807 9.221157 11.54389

42 -66.3597 1240.496 -
6.09666

9.487411 -21.1867 21.69734 12.58974 10.99369

43 -41.2395 417.5742 -
12.9707

14.54251 20.75874 18.91533 11.41972 1.994124

44 -39.2372 364.6659 -11.2387 8.539053 24.25607 19.16594 4.864439 12.90672

45 -44.9908 499.4415 -
18.6554

13.78114 14.24067 17.56389 10.46424 1.235292

46 -35.4404 283.8393 -
6.41307

8.707282 30.40154 17.0327 3.550682 16.22033

47 -41.4123 430.5598 -
12.5901

9.493237 20.19704 16.52902 4.184431 8.599632

48 -61.2323 1037.509 -
12.7009

6.766199 -12.6477 20.88092 7.283359 10.52272

151

49 -63.6132 1124.03 -
10.7364

7.313068 -16.6005 21.31607 8.043304 11.35472

50 -52.579 747.9986 -
15.5328

6.228938 1.956696 21.12791 7.978973 6.523647

51 -53.3652 767.6557 -16.219 6.067543 0.64161 21.22094 8.568547 6.41846

52 -45.7335 525.256 -
18.2859

12.90914 12.98156 17.50248 10.37077 1.566837

53 -51.0542 698.1843 -
16.5359

10.60957 4.279656 19.27702 10.2539 6.427399

54 -38.7187 350.7433 -11.1606 8.023428 25.03732 18.46282 5.786314 13.03172

55 -43.6302 467.1285 -
16.9797

12.62711 16.60417 17.8702 9.678931 4.623302

56 -51.849 721.749 -
15.8581

6.103254 3.25566 21.58818 7.558033 7.180959

57 -67.0511 1276.297 -
3.86657

8.056877 -22.3004 22.16796 10.55502 9.648677

58 -36.7408 317.6449 -
7.19242

7.91104 28.28745 17.64824 3.695282 15.88421

59 -63.8541 1145.035 -
9.07156

6.619034 -17.1228 20.54222 8.585867 9.874549

60 -59.706 976.0243 -
14.4896

6.441999 -9.98331 21.51348 8.924119 10.99764

61 -53.0171 757.1366 -
15.6909

6.510954 1.404599 22.49862 6.738583 6.87452

62 -49.757 659.4709 -
16.3022

10.86146 6.458069 19.33227 9.371443 4.095178

63 -54.8345 818.6735 -15.3491 6.338712 -1.79544 21.53799 8.446348 6.376447

64 -43.1229 460.5956 -15.676 11.86669 17.43735 17.66953 9.023205 5.162115

65 -40.1952 385.4652 -
12.7623

14.08301 22.57088 19.16186 11.06051 4.157259

66 -55.2353 832.6873 -15.157 7.455334 -2.48209 21.41003 8.445503 7.263098

67 -41.3778 429.7228 -
12.5433

9.524487 20.25954 16.56418 4.200056 8.537132

68 -65.006 1197.362 -
6.53882

7.100078 -19.0182 20.92839 9.671257 9.398466

69 -35.7037 290.93 -
6.47557

7.929938 29.99529 17.31786 3.425682 16.17345

70 -48.6914 625.9527 -16.4971 11.44837 8.197889 18.92573 9.561946 3.633893

71 -50.9512 691.0506 -16.1419 7.368343 4.810292 21.98412 7.272658 5.429335

72 -45.001 511.7187 -
16.7857

13.12843 14.26564 17.77889 10.41123 2.953513

73 -35.3718 281.7851 -
6.38573

8.504157 30.52264 17.06786 3.488182 16.31017

74 -60.4011 1002.974 -13.458 5.332504 -11.06 22.31739 8.082007 9.461304

75 -48.387 618.9329 -
16.3319

10.49491 8.638115 18.38385 8.461968 3.566118

76 -44.6737 491.2763 -
18.4292

13.46266 14.76531 17.45957 10.74347 1.715946

77 -63.089 1113.209 -
10.3037

6.142884 -15.8564 20.26692 7.453958 11.45122

78 -60.7152 1017.983 -13.7146 4.363934 -11.9657 19.50415 8.899394 9.872747

79 -57.9944 918.2733 -
14.9615

6.05045 -7.03581 22.10747 7.667866 8.331118

80 -42.6076 453.5311 -
14.3924

15.64943 18.29184 17.73611 12.10717 2.070824

81 -53.8286 789.1943 -15.242 6.286032 -0.16271 21.06292 8.16361 6.272996

82 -49.5046 652.2555 -
16.2193

9.541237 6.878586 19.30253 9.149291 3.913304

152

83 -59.357 967.6315 -14.1153 4.953125 -9.39187 21.66449 8.107256 8.700779

84 -37.5369 342.2199 -
7.61426

9.367817 26.8039 16.63976 4.034545 15.3343

85 -51.3461 705.1991 -
15.9984

6.14863 4.098449 21.54893 7.529946 7.109211

86 -59.8845 983.2261 -
14.3555

6.654113 -10.3232 21.20375 9.250422 11.4008

87 -49.1219 638.2421 -
16.6008

11.30834 7.495477 19.09879 9.510134 3.731224

88 -40.6422 398.9844 -13.1378 15.25484 21.70195 18.40704 11.61396 2.485312

89 -63.3479 1116.091 -
10.8701

7.333067 -16.2207 20.81044 7.915725 11.37695

90 -58.5348 932.9666 -
15.1442

6.175625 -7.89723 22.49162 7.831635 8.176308

91 -60.5158 1012.367 -12.682 5.58332 -11.2819 22.13764 8.487475 8.917931

92 -59.495 975.1789 -
13.3965

6.56329 -9.53512 22.33441 8.596122 8.631024

93 -40.4136 393.7299 -
12.8097

15.24747 22.10673 18.54036 11.79028 2.620046

94 -64.8572 1183.656 -
7.53031

8.384754 -18.6425 21.79911 10.78283 10.34106

95 -65.5753 1213.006 -
6.60513

8.770345 -19.8882 21.52129 11.00579 10.79263

96 -39.2749 365.6194 -11.7953 14.5144 23.99958 18.2185 10.6881 4.512272

97 -47.8296 590.6476 -
17.8318

11.92816 9.614529 18.69078 9.948486 2.851183

98 -43.9398 476.6948 -
16.9372

12.42536 16.10279 18.02288 9.58194 4.697561

99 -37.3786 333.0412 -
8.18074

9.941671 27.09138 16.83673 5.676797 14.53848

100 -64.5171 1174.093 -
7.47872

8.6379 -18.1067 21.51087 10.74605 10.4292

101 -65.9466 1227.164 -
6.19306

8.949956 -20.5016 21.60943 11.1501 10.96584

102 -46.9021 560.7097 -18.1175 12.67267 11.1274 18.33012 10.19084 2.391024

103 -42.4088 443.0406 -
14.9327

15.24097 18.65985 17.99078 11.99562 1.834861

104 -43.0446 455.1771 -
16.1399

12.71003 17.55937 17.57732 10.01605 5.458591

105 -61.9838 1070.895 -11.9138 5.740745 -14.1623 18.99885 6.948032 11.44239

106 -57.5455 897.0552 -
15.8703

6.191545 -6.22367 22.47326 7.958208 9.018813

107 -51.4278 708.3635 -
15.8734

6.27363 3.973449 21.64268 7.561196 7.140461

108 -45.4516 515.3661 -
18.3796

13.00289 13.48156 17.68998 10.9489 1.441837

109 -41.9432 431.7235 -14.4117 15.57847 19.46339 18.11843 12.29288 1.918175

110 -64.4714 1167.341 -
8.50646

7.086019 -18.1202 20.86336 8.871526 9.984455

111 -56.9005 877.8957 -
15.8597

6.574965 -5.18425 22.12186 8.006364 8.802045

112 -48.0335 605.96 -
16.8028

10.0445 9.165856 17.90462 10.30679 3.031629

113 -63.5433 1121.717 -
10.7364

7.328693 -16.4755 21.36294 7.918304 11.44847

114 -47.4635 582.2955 -17.6271 11.80343 10.14131 18.00028 9.523217 3.107143

115 -50.6987 682.8548 -
16.1504

7.600527 5.250128 22.09239 7.584892 5.314675

153

116 -42.2605 438.415 -
14.9327

15.36597 18.90985 17.99078 11.96437 1.803611

117 -39.9057 378.5147 -
12.7207

15.55814 22.96187 18.54033 12.04472 2.369124

118 -58.241 926.5836 -
14.7398

6.137932 -7.40331 22.472 8.086165 8.262833

119 -66.4926 1250.232 -
5.34666

9.128036 -21.4367 21.50984 11.77724 10.93119

120 -36.9105 323.4129 -
7.48926

9.242817 27.8664 16.63976 4.897826 16.04133

121 -57.4184 893.2207 -15.839 6.254045 -6.00492 22.50451 7.833208 9.018813

122 -55.5572 843.3902 -
15.0914

7.032893 -3.03639 21.37213 8.580284 6.494291

123 -50.4038 672.34 -
17.4576

10.34873 5.337049 19.08276 11.19782 4.615656

124 -50.7767 685.9128 -16.041 7.678652 5.125128 22.13926 7.506767 5.345925

125 -44.4458 485.8949 -
18.1246

13.25809 15.1683 17.56818 10.70263 2.203556

126 -65.6614 1215.756 -
6.55404

8.882469 -20.018 21.63177 11.00906 10.86928

127 -46.754 555.6583 -18.18 12.56329 11.3774 18.33012 10.25334 2.391024

128 -55.9329 853.7226 -15.357 6.611018 -3.69264 21.18463 8.252159 6.869291

129 -67.2567 1282.529 -
3.83103

8.100692 -22.6242 22.33406 10.61708 9.747597

130 -65.8622 1224.851 -
6.19306

8.887456 -20.3766 21.48443 11.1501 10.87209

131 -44.0267 482.2186 -
16.6766

12.25434 15.90021 17.66651 9.879495 3.6782

132 -54.4695 805.1416 -15.617 6.37197 -1.16271 21.66839 8.429235 6.272996

133 -58.8128 939.4879 -
15.2947

5.948466 -8.30509 22.93612 7.834999 8.339018

134 -52.2783 742.0451 -15.1293 6.105105 2.427084 20.84035 7.927044 6.737254

135 -38.5502 343.4318 -
11.0669

9.886709 25.46701 19.49407 4.895689 13.87157

136 -52.1571 730.9261 -
15.5909

6.39023 2.858048 22.5433 6.871797 6.379436

137 -54.0592 799.9485 -
14.2576

5.981345 -0.38146 22.38714 8.03861 5.257371

138 -56.5326 869.1769 -
15.0439

6.245362 -4.41261 23.25256 8.72742 8.620825

139 -46.4227 548.0609 -17.9121 12.55198 11.88666 17.95687 10.49096 2.461255

140 -38.9992 355.1166 -11.5142 10.54041 24.67075 19.31855 5.690005 11.9468

154

Table D. 2: Football PSNR vs. Bit-rate

 f(1) f(2) X1 X2 X3 X4 X5 X6

1 -36.4775 1885.33 7.472893 3.204588 16.11738 30.47397 -5.2426 1.267363

2 -32.2449 1280.773 8.49622 0.801249 25.40222 28.46694 2.252588 -2.33526

3 -32.4568 1312.466 8.66175 1.22519 24.9281 28.51551 2.198221 -2.14312

4 -45.9977 3401.15 13.69205 11.31332 -5.8101 29.43559 8.666342 7.178861

5 -38.4406 2195.334 8.613387 4.696102 11.61588 30.33814 -2.71451 3.002132

6 -44.949 3224.616 11.21447 9.111992 -3.32792 29.87751 5.269959 7.132587

7 -46.153 3425.805 13.64624 11.44334 -6.16621 29.41626 8.722025 7.444209

8 -44.3379 3136.321 12.48134 9.658321 -1.98379 29.63779 6.054117 6.099451

9 -44.7087 3186.178 11.5581 8.944934 -2.77137 29.9015 5.153976 7.315548

10 -39.0368 2287.446 9.777756 5.256761 10.26269 30.36808 -1.59636 3.614672

11 -31.9953 1243.542 8.41577 1.078318 25.96185 28.39798 2.302892 -2.26828

12 -50.6029 4162.976 14.83888 17.27334 -16.5953 27.85814 11.77781 11.81266

13 -36.859 1943.26 7.889711 3.636809 15.25939 30.52399 -4.50985 1.865606

14 -36.3511 1862.047 7.472893 3.048338 16.42988 30.59897 -5.3676 1.267363

15 -43.9579 3101.694 11.81599 8.273249 -1.27723 28.73857 6.778175 6.224843

16 -43.5962 2988.416 12.19382 9.243413 -0.07866 30.79123 5.345989 5.607564

17 -37.6786 2079.815 8.849303 4.031209 13.33136 30.21795 -3.48742 2.327964

18 -37.3771 2035.324 7.243515 3.641932 14.00105 30.13132 -4.57905 1.883168

19 -49.9333 4057.62 14.92436 15.10836 -15.0547 27.85595 10.85719 12.53578

20 -44.7755 3204.31 13.96271 11.42298 -2.97145 29.60989 7.050213 7.901733

21 -32.3899 1296.782 8.66175 1.22519 25.1156 28.70301 2.448221 -2.14312

22 -44.9682 3237.038 13.06579 10.85335 -3.43296 29.53396 9.403721 7.312109

23 -49.7401 4004.632 15.50685 16.46084 -14.4703 28.7097 11.68406 11.14078

24 -37.3771 2035.324 6.993515 3.641932 14.00105 30.13132 -4.32905 1.883168

25 -43.8751 3079.829 12.19099 8.585749 -1.02723 29.05107 6.778175 6.521718

26 -45.0921 3251.281 13.31579 10.79085 -3.68296 29.72146 9.403721 7.249609

27 -29.325 834.0135 7.036586 0.778055 32.01901 28.08148 0.827641 -2.21941

28 -48.6552 3796.485 13.04058 12.33094 -11.7561 30.1844 10.06162 7.343364

29 -45.5101 3335.033 12.96494 10.42979 -4.75736 29.04863 7.094452 7.835925

30 -43.8512 3032.184 12.32519 8.640334 -0.68755 30.65241 5.875436 5.674094

31 -30.7033 1049.282 7.147182 2.194388 28.87483 28.06939 1.240755 -0.90525

32 -44.6105 3167.171 11.7456 9.194934 -2.52137 30.0265 5.153976 7.503048

33 -46.396 3454.317 12.61741 10.15662 -6.6521 29.72634 7.419611 8.710368

34 -50.5212 4148.907 14.8549 17.19593 -16.4001 27.90538 11.76017 11.74601

35 -38.8174 2252.786 9.176463 4.814283 10.76374 30.39327 -1.97474 3.06312

36 -32.9816 1386.757 8.172756 3.145232 23.79022 28.7483 1.974047 -0.17016

37 -48.0992 3694.802 12.64145 11.98521 -10.3863 30.70773 9.925277 7.39236

38 -38.7014 2221.917 8.863387 4.696102 11.11588 30.83814 -2.21451 3.502132

39 -42.0986 2745.807 15.3284 10.19653 3.429355 30.96421 3.743763 9.96376

40 -30.5713 1016.449 7.458158 1.245734 29.25545 28.51521 1.077295 -1.22203

41 -37.914 2120.114 7.416195 3.677159 12.7694 30.09611 -2.56258 2.281574

42 -40.347 2482.565 14.96893 10.0964 7.361436 30.58766 3.391094 9.059862

43 -39.5634 2361.579 14.64233 9.982671 9.145299 30.51922 2.680758 9.254929

44 -31.8404 1198.989 8.547355 1.364297 26.45106 29.12539 2.501441 -2.18588

45 -43.3808 2934.945 12.53757 9.743413 0.546341 31.49435 5.439739 5.857564

46 -48.5484 3779.383 13.54058 12.58094 -11.5061 30.1844 10.06162 7.843364

47 -29.4755 843.4941 7.161586 0.778055 31.76901 28.58148 0.827641 -1.96941

48 -39.1943 2295.974 9.777756 5.881761 10.01269 30.93058 -1.40886 4.302172

49 -33.0908 1403.858 8.172756 2.895232 23.54022 28.7483 2.974047 -0.17016

50 -43.5245 2975.607 12.34927 8.766206 0.0991 30.83385 5.854595 6.150291

155

51 -45.9696 3361.778 13.7656 11.18984 -5.51388 30.68922 8.574731 7.326088

52 -48.73 3820.37 15.28693 14.01487 -11.9946 29.68795 8.912524 9.576443

53 -45.1586 3269.67 13.2656 10.50234 -3.88888 29.43922 10.44973 7.076088

54 -33.6989 1479.399 8.463538 2.136994 22.26739 29.50476 1.622442 -1.95022

55 -33.5721 1466.107 8.713538 1.886994 22.51739 29.25476 0.872442 -1.45022

56 -29.6697 906.0785 6.97849 1.362589 31.10999 27.43319 0.540795 -2.27302

57 -37.7427 2086.461 9.302428 3.937459 13.20636 30.34295 -3.23742 2.218589

58 -39.468 2360.649 14.14233 10.02955 9.270299 30.01922 2.680758 9.098679

59 -42.7302 2850.179 15.54297 9.214795 1.928137 30.85408 4.299619 6.74947

60 -32.6484 1323.364 8.66175 1.72519 24.6156 29.20301 2.448221 -2.14312

61 -40.9222 2545.081 16.19168 10.90483 6.231085 31.55915 2.515952 9.852289

62 -41.7911 2690.691 15.3284 10.19653 4.179355 31.21421 3.993763 9.96376

63 -31.0167 1086.542 7.927211 0.586649 28.22214 28.55414 2.538579 -3.13348

64 -37.0027 1959.784 8.279241 3.413084 14.97098 30.73423 -4.11581 2.062218

65 -46.8006 3513.287 13.12145 10.70273 -7.54667 29.87231 7.4741 9.200665

66 -35.8944 1822.187 9.504408 3.346 17.26152 29.48169 2.627699 0.434286

67 -38.9598 2263.79 9.017728 4.968743 10.51598 30.78331 -1.88838 3.682996

68 -36.1528 1830.373 7.727838 3.207878 16.88863 30.61813 -4.6503 1.389986

69 -42.9549 2868.208 13.42035 10.09287 1.527483 31.46943 4.868724 6.82764

70 -41.462 2634.286 16.35077 11.17283 4.964207 31.3924 2.901758 9.825541

71 -31.534 1150.983 9.029628 3.08456 27.17183 29.0401 1.835831 1.057088

72 -40.1885 2459.696 15.13868 11.49852 7.713934 30.50601 1.442659 9.493625

73 -38.504 2201.146 8.630251 4.86196 11.4963 30.49346 -2.52863 2.728588

74 -45.4341 3321.163 12.93564 10.34783 -4.57096 29.12209 7.038619 7.73691

75 -42.6212 2822.825 15.10176 10.51848 2.260147 31.15867 3.995779 9.21031

76 -31.3811 1147.088 7.891467 0.614726 27.36757 28.41717 1.50664 -2.6622

77 -36.7409 1890.004 8.139711 4.136809 15.75939 31.77399 -3.50985 1.865606

78 -49.2852 3889.609 15.16146 14.30183 -13.1355 30.26558 12.24716 11.83458

79 -43.0257 2890.152 15.94925 8.740139 1.294125 31.07701 4.383636 6.906738

80 -39.8524 2378.873 15.69479 10.08547 8.660807 31.55903 2.267746 7.986729

81 -50.358 4096.634 15.73775 17.03272 -15.8508 28.86953 11.59578 11.62122

82 -43.3808 2934.945 12.53757 10.74341 0.546341 31.49435 5.439739 5.857564

83 -29.7943 921.147 8.552211 0.508524 30.86276 27.55414 1.163579 -0.80535

84 -39.9364 2407.928 13.65972 10.26825 8.368972 30.96255 2.788331 8.925284

85 -30.2148 932.8002 7.458158 1.245734 30.25545 29.51521 1.077295 -1.22203

86 -46.5609 3465.273 12.34439 11.50624 -6.94409 30.31798 8.259984 6.576571

87 -34.782 1634.979 10.67865 2.64746 19.894 29.94928 2.029911 0.389116

88 -32.8266 1365.189 8.66175 1.22519 24.1156 28.70301 3.448221 -2.14312

89 -35.1468 1703.793 10.08189 4.845273 18.99149 29.48511 1.86939 2.064646

90 -34.2058 1544.355 9.297726 2.413966 21.22988 29.89946 2.786377 2.752421

91 -50.1768 4073.039 15.50685 16.46084 -15.4703 28.7097 11.68406 11.14078

92 -33.4663 1445.755 8.312296 2.454434 22.7932 29.35218 3.07614 0.012247

93 -47.3186 3593.443 12.89397 10.71626 -8.72077 29.88281 7.924028 10.1401

94 -34.9848 1692.023 9.178645 3.77246 19.269 29.01178 1.904911 1.451616

95 -40.164 2427.515 15.10788 12.60335 7.957913 31.52231 1.33089 9.591937

96 -33.903 1514.162 8.312296 3.454434 21.7932 29.35218 3.07614 0.012247

97 -48.3032 3706.759 14.89758 12.50785 -10.7099 31.37591 7.519003 9.327469

98 -42.545 2766.723 15.85541 10.83148 2.737111 32.69876 2.142264 11.03649

99 -49.9213 4028.227 15.73775 18.03272 -14.8508 28.86953 12.59578 11.62122

100 -49.0522 3827.828 13.54159 13.98729 -12.4609 31.29093 10.61108 7.451975

101 -30.5713 1016.449 7.458158 0.245734 29.25545 28.51521 1.077295 -1.22203

102 -30.231 989.554 8.552211 0.508524 29.86276 27.55414 1.163579 -0.80535

103 -32.7494 1340.037 9.704497 3.244689 24.39564 29.09634 2.298761 0.737607

104 -34.4555 1610.903 9.797726 2.413966 20.47988 28.89946 2.786377 3.252421

156

105 -41.0899 2548.175 17.24958 11.50976 6.00554 32.36837 2.303531 10.76083

106 -49.4936 3896.235 14.54159 13.98729 -13.4609 31.29093 10.61108 8.451975

107 -33.4019 1420.041 8.36287 2.703519 23.03573 29.95073 0.655456 -1.37027

108 -41.3129 2582.379 16.99958 11.50976 5.50554 32.36837 2.553531 11.76083

109 -33.8433 1488.448 7.36287 1.703519 22.03573 29.95073 2.655456 -0.37027

110 -46.9976 3533.68 12.34439 11.50624 -7.94409 30.31798 9.259984 6.576571

111 -39.4204 2310.466 14.69479 10.08547 9.660807 31.55903 2.267746 8.986729

112 -47.8355 3646.608 12.89397 11.71626 -9.72077 30.88281 7.924028 10.1401

113 -49.5078 3949.248 14.42436 16.10836 -13.8047 29.35595 10.85719 12.53578

114 -29.155 792.1889 8.036586 0.340555 32.51901 28.58148 1.577641 -0.46941

115 -41.9114 2733.132 14.55084 9.845033 3.746521 30.37236 3.339621 9.717591

116 -45.7965 3342.156 14.64624 11.44334 -5.16621 30.41626 9.722025 7.444209

117 -31.2618 1111.646 7.605536 2.317119 27.76567 28.95574 -0.0873 -0.25798

118 -29.155 792.1889 7.036586 0.340555 32.51901 28.58148 2.577641 -0.46941

119 -47.191 3560.837 14.16223 10.14255 -8.35029 30.3593 7.779259 9.284617

120 -41.8753 2704.077 16.10541 10.33148 3.987111 31.19876 4.142264 10.28649

121 -49.0665 3866.957 13.83846 13.78416 -12.7265 29.91593 10.6267 9.2801

122 -35.4438 1724.445 7.421234 4.270633 18.48388 30.40831 0.142011 2.340608

123 -29.6672 845.3537 7.036586 1.340555 31.51901 29.58148 1.577641 -1.46941

124 -42.1831 2754.955 15.09724 11.51611 3.252407 31.15817 4.999219 8.206612

125 -49.696 3975.145 15.38185 15.21084 -14.2203 29.5222 12.55906 11.14078

126 -50.2511 4079.327 15.83888 17.27334 -15.5953 28.85814 11.77781 12.81266

127 -40.8715 2513.972 15.99958 11.50976 6.50554 32.36837 2.553531 10.76083

128 -41.47 2664.725 15.55084 9.845033 4.746521 30.37236 5.339621 8.717591

129 -41.3387 2632.562 14.5777 10.55663 5.13054 30.75899 2.616031 9.854581

130 -40.573 2495.011 18.24958 11.50976 7.00554 31.36837 2.303531 10.76083

131 -43.8254 2994.568 12.34927 8.766206 -0.4009 31.83385 5.854595 6.650291

132 -48.4368 3762.281 13.04058 13.33094 -11.2561 30.1844 11.06162 7.343364

133 -34.796 1658.397 9.797726 3.413966 19.72988 29.14946 3.286377 1.752421

134 -34.6331 1612.762 9.297726 2.413966 20.22988 29.89946 2.786377 0.752421

135 -43.4994 2948.535 12.32519 8.640334 0.312453 31.65241 6.875436 6.674094

136 -35.8852 1792.852 7.421234 4.270633 17.48388 30.40831 0.142011 3.340608

137 -50.6029 4162.976 13.83888 17.27334 -16.5953 27.85814 11.77781 11.81266

138 -35.6637 1756.957 11.08189 4.845273 17.99149 30.48511 1.86939 2.064646

139 -34.4395 1574.748 8.797726 2.413966 20.72988 30.14946 2.286377 1.752421

140 -38.3496 2138.267 8.863387 5.696102 12.11588 31.83814 -1.21451 4.502132

157

Appendix E: HEVC HM encoder / decoder configuration file.

E.1. Encoder configuration file.

#======== File I/O =====================
BitstreamFile : rand.bin
ReconFile : rand.yuv
FrameRate : 120 # Frame Rate per second
FrameSkip : 0 # Number of frames to be skipped in input
SourceWidth : 1920 # Input frame width
SourceHeight : 1080 # Input frame height
FramesToBeEncoded :50 # Number of frames to be coded
#======== Profile ================
Profile : main

#======== Unit definition ================
MaxCUWidth : 64 # Maximum coding unit width in pixel
MaxCUHeight : 64 # Maximum coding unit height in pixel
MaxPartitionDepth : 4 # Maximum coding unit depth
QuadtreeTULog2MaxSize : 5 # Log2 of maximum transform size for
 # quadtree-based TU coding (2...6)
QuadtreeTULog2MinSize : 2 # Log2 of minimum transform size for
 # quadtree-based TU coding (2...6)
QuadtreeTUMaxDepthInter : 3
QuadtreeTUMaxDepthIntra : 3

#======== Coding Structure =============
IntraPeriod : 32 # Period of I-Frame (-1 = only first)
DecodingRefreshType : 1 # Random Accesss 0:none, 1:CRA, 2:IDR, 3:Recovery
Point SEI
GOPSize : 8 # GOP Size (number of B slice = GOPSize-1)
Type POC QPoffset QPfactor tcOffsetDiv2 betaOffsetDiv2 temporal_id
#ref_pics_active #ref_pics reference pictures predict deltaRPS #ref_idcs reference idcs
Frame1: B 8 1 0.442 0 0 0 2 3 -8 -12 -16 0
Frame2: B 4 2 0.3536 0 0 1 2 3 -4 -8 4 1
4 4 1 1 0 1
Frame3: B 2 3 0.3536 0 0 2 2 4 -2 -6 2 6 1
2 4 1 1 1 1
Frame4: B 1 4 0.68 0 0 3 2 4 -1 1 3 7 1 1
5 1 0 1 1 1
Frame5: B 3 4 0.68 0 0 3 2 4 -1 -3 1 5 1 -2
5 1 1 1 1 0
Frame6: B 6 3 0.3536 0 0 2 2 3 -2 -6 2 1 -
3 5 0 1 1 1 0
Frame7: B 5 4 0.68 0 0 3 2 4 -1 -5 1 3 1 1
4 1 1 1 1
Frame8: B 7 4 0.68 0 0 3 2 4 -1 -3 -7 1 1 -2
5 1 1 1 1 0

#=========== Motion Search =============
FastSearch : 1 # 0:Full search 1:TZ search
SearchRange : 64 # (0: Search range is a Full frame)
BipredSearchRange : 4 # Search range for bi-prediction refinement
HadamardME : 1 # Use of hadamard measure for fractional ME
FEN : 1 # Fast encoder decision

158

FDM : 1 # Fast Decision for Merge RD cost

#======== Quantization =============
QP : 37 # Quantization parameter(0-51)
MaxDeltaQP : 0 # CU-based multi-QP optimization
MaxCuDQPDepth : 0 # Max depth of a minimum CuDQP for sub-LCU-level
delta QP
DeltaQpRD : 0 # Slice-based multi-QP optimization
RDOQ : 1 # RDOQ
RDOQTS : 1 # RDOQ for transform skip

#=========== Deblock Filter ============
LoopFilterOffsetInPPS : 1 # Dbl params: 0=varying params in SliceHeader,
param = base_param + GOP_offset_param; 1 (default) =constant params in PPS, param =
base_param)
LoopFilterDisable : 0 # Disable deblocking filter (0=Filter, 1=No Filter)
LoopFilterBetaOffset_div2 : 0 # base_param: -6 ~ 6
LoopFilterTcOffset_div2 : 0 # base_param: -6 ~ 6
DeblockingFilterMetric : 0 # blockiness metric (automatically configures
deblocking parameters in bitstream). Applies slice-level loop filter offsets
(LoopFilterOffsetInPPS and LoopFilterDisable must be 0)

#=========== Misc. ============
InternalBitDepth : 8 # codec operating bit-depth

#=========== Coding Tools =================
SAO : 1 # Sample adaptive offset (0: OFF, 1: ON)
AMP : 1 # Asymmetric motion partitions (0: OFF, 1: ON)
TransformSkip : 1 # Transform skipping (0: OFF, 1: ON)
TransformSkipFast : 1 # Fast Transform skipping (0: OFF, 1: ON)
SAOLcuBoundary : 0 # SAOLcuBoundary using non-deblocked pixels (0:
OFF, 1: ON)

#============ Slices ================
SliceMode : 0 # 0: Disable all slice options.
 # 1: Enforce maximum number of LCU in an slice,
 # 2: Enforce maximum number of bytes in an 'slice'
 # 3: Enforce maximum number of tiles in a slice
SliceArgument : 1500 # Argument for 'SliceMode'.
 # If SliceMode==1 it represents max. SliceGranularity-sized blocks
per slice.
 # If SliceMode==2 it represents max. bytes per slice.
 # If SliceMode==3 it represents max. tiles per slice.

LFCrossSliceBoundaryFlag : 1 # In-loop filtering, including ALF and DB, is across
or not across slice boundary.
 # 0:not across, 1: across

#============ PCM ================
PCMEnabledFlag : 0 # 0: No PCM mode
PCMLog2MaxSize : 5 # Log2 of maximum PCM block size.
PCMLog2MinSize : 3 # Log2 of minimum PCM block size.
PCMInputBitDepthFlag : 1 # 0: PCM bit-depth is internal bit-depth. 1:
PCM bit-depth is input bit-depth.
PCMFilterDisableFlag : 0 # 0: Enable loop filtering on I_PCM samples. 1:
Disable loop filtering on I_PCM samples.

159

#============ Tiles ================
TileUniformSpacing : 0 # 0: the column boundaries are indicated by
TileColumnWidth array, the row boundaries are indicated by TileRowHeight array
 # 1: the column and row boundaries are distributed
uniformly
NumTileColumnsMinus1 : 0 # Number of tile columns in a picture minus 1
TileColumnWidthArray : 2 3 # Array containing tile column width values in
units of CTU (from left to right in picture)
NumTileRowsMinus1 : 0 # Number of tile rows in a picture minus 1
TileRowHeightArray : 2 # Array containing tile row height values in units
of CTU (from top to bottom in picture)

LFCrossTileBoundaryFlag : 1 # In-loop filtering is across or not across tile
boundary.
 # 0:not across, 1: across

#============ WaveFront ================
WaveFrontSynchro : 0 # 0: No WaveFront synchronisation
(WaveFrontSubstreams must be 1 in this case).
 # >0: WaveFront synchronises with the LCU above and to the
right by this many LCUs.

#=========== Quantization Matrix =================
ScalingList : 0 # ScalingList 0 : off, 1 : default, 2 : file read
ScalingListFile : scaling_list.txt # Scaling List file name. If file is not exist, use
Default Matrix.

#============ Lossless ================
TransquantBypassEnableFlag : 0 # Value of PPS flag.
CUTransquantBypassFlagForce: 0 # Force transquant bypass mode, when
transquant_bypass_enable_flag is enabled

#============ Rate Control ======================
RateControl : 0 # Rate control: enable rate control
TargetBitrate : 1000000 # Rate control: target bitrate, in bps
KeepHierarchicalBit : 2 # Rate control: 0: equal bit allocation; 1: fixed
ratio bit allocation; 2: adaptive ratio bit allocation
LCULevelRateControl : 1 # Rate control: 1: LCU level RC; 0: picture level
RC
RCLCUSeparateModel : 1 # Rate control: use LCU level separate R-
lambda model
InitialQP : 0 # Rate control: initial QP
RCForceIntraQP : 0 # Rate control: force intra QP to be equal to initial
QP

DO NOT ADD ANYTHING BELOW THIS LINE ###
DO NOT DELETE THE EMPTY LINE BELOW ###

160

Appendix F: Selected parameters for encoder / decoder.

Table F. 7: Selected set of parameters for YachtRide video
sequence.

 𝒙૚ 𝒙૛ 𝒙૜ 𝒙૝ Bitrate PSNR
Encodin
g Total
Time

Decode
r Total
Time

16 64 27 1 18405.06 39.6021 2124.89 7.29

16 64 37 1 4018.464 33.9397 1650.27 5.94

16 64 45 1 1086.758 30.2936 1493.54 5.37

16 128 27 1 18390.74 39.591 2263.67 7.31

16 128 37 1 4017.139 33.9394 1753.74 5.33

16 128 45 1 1087.45 30.296 1549.16 5.44

16 64 27 0 18352.42 39.6041 2763.36 6.9

16 64 37 0 4011.59 33.9482 2171.72 5.42

16 64 45 0 1088.794 30.3024 1935.59 5.14

16 128 27 0 18363.71 39.6095 2993.42 6.71

16 128 37 0 4000.243 33.9522 2322.22 5.38

16 128 45 0 1087.718 30.3146 2036.14 5.2

32 64 27 1 17405.78 39.5309 2249.58 6.67

32 64 37 1 3622.118 33.8531 1746.47 5.23

32 64 45 1 921.0048 30.1981 1554.49 5.01

32 128 27 1 17429.05 39.5282 2434.96 6.85

32 128 37 1 3621.715 33.857 1864.24 5.7

32 128 45 1 924.7296 30.2019 1626.98 5.21

32 64 27 0 17384.99 39.5382 2893.21 7.07

32 64 37 0 3616.147 33.8585 2277.76 5.61

32 64 45 0 921.5616 30.2083 2026.42 5.31

32 128 27 0 17390.11 39.5397 3168.09 7.73

32 128 37 0 3597.85 33.8582 2465.63 5.53

32 128 45 0 921.888 30.2196 2131.71 5.05

48 64 27 1 17374.54 39.5327 2271.23 6.95

48 64 37 1 3615.149 33.8601 1763.31 5.46

48 64 45 1 911.0208 30.1996 1573.14 4.8

48 128 27 1 17379.99 39.5343 2472.95 6.89

48 128 37 1 3608.371 33.8575 1886.85 5.26

48 128 45 1 911.8656 30.2041 1635.8 4.93

48 64 27 0 17345.11 39.5417 2930.57 6.74

48 64 37 0 3605.664 33.8625 2321.1 5.42

48 64 45 0 908.9856 30.215 2031.22 5.08

48 128 27 0 17351.25 39.5417 3217.08 6.82

48 128 37 0 3594.547 33.8557 2494.55 5.84

48 128 45 0 912.4224 30.2111 2155.85 5.01

161

Table F. 8: Selected set of parameters for Basketball video
sequence.

 𝒙૚ 𝒙૛ 𝒙૜ 𝒙૝ Bitrate PSNR
Encoding
Total
Time

Decoder
Total
Time

16 64 27 1 5550.168 38.2859 2280.43 6.8

16 64 37 1 1481.584 34.7351 1826.42 5.69

16 64 45 1 548.64 31.2064 1643.7 5.28

16 128 27 1 5549.152 38.2857 2614.58 6.66

16 128 37 1 1478.816 34.7349 2068.29 5.7

16 128 45 1 543.608 31.2079 1806.35 5.15

16 64 27 0 5534.288 38.3075 3001.27 6.6

16 64 37 0 7973.1 36.3127 2419.69 5.7

16 64 45 0 547.176 31.2211 2157.9 5.24

16 128 27 0 5527.608 38.3064 3527.54 6.63

16 128 37 0 1479.464 34.7655 2839.84 5.57

16 128 45 0 3142.3 32.6593 2467.7 5.16

32 64 27 1 25051.2 39.6721 2437.06 6.64

32 64 37 1 1360.616 34.6565 1951.98 5.5

32 64 45 1 498 31.1013 1742.78 5.21

32 128 27 1 5130.408 38.2381 2806.42 6.8

32 128 37 1 7621.2 36.455 2223.24 5.5

32 128 45 1 494.864 31.0901 1927.68 5.05

32 64 27 0 25051.2 39.6721 3145.93 6.78

32 64 37 0 1355.232 34.6668 2551.2 6.33

32 64 45 0 496.56 31.1192 2267.28 5.99

32 128 27 0 5109.248 38.2581 3747.96 7.01

32 128 37 0 1355.432 34.6826 3033.73 5.72

32 128 45 0 495.92 31.1208 2620.51 5.5

48 64 27 1 28912 39.4279 2464.21 7.66

48 64 37 1 1362.488 34.6352 1968.15 5.55

48 64 45 1 499.056 31.0794 1751.28 4.97

48 128 27 1 5174.104 38.2385 2848.61 6.52

48 128 37 1 1357.912 34.6272 2261.67 5.63

48 128 45 1 495.6 31.0706 1953.02 4.97

48 64 27 0 5159.32 38.2557 3181.37 6.77

48 64 37 0 1360.032 34.6548 2572.77 5.42

48 64 45 0 499.256 31.094 2275.11 5.38

48 128 27 0 5151.264 38.256 3805.04 6.6

48 128 37 0 1358.008 34.6602 3071.05 5.45

48 128 45 0 496.528 31.0773 2660.61 5.69

Appendix G: Optimal points and functional values.

162

Table G. 1 Cactus CPU vs. Bit-rate

 f(1) f(2) x1 x2 x3 x4

1 1646.09 -66.3645 33.58072 119.8237 44.9932 0.127074

2 1509.326 284.8627 17.83136 117.8421 44.99995 0.000133

3 1932.2 -242.308 41.29528 125.2825 45 0.570891

4 1720.201 -123.024 36.07405 121.3606 44.99487 0.237864

5 1541.762 176.3311 22.71379 117.8431 44.99694 0.02402

6 1813.105 -174.881 38.33283 123.2134 44.99774 0.383433

7 1631.618 -37.0107 32.28606 119.4465 44.99251 0.111635

8 1687.581 -98.0855 34.97661 120.6841 44.99414 0.1891

9 1604.952 12.60939 30.04791 118.7651 44.99423 0.082253

10 1561.601 116.4379 25.39167 118.0715 44.99625 0.039877

11 1525.612 259.4696 18.96479 118.1118 44.99976 0.020516

12 1767.712 -153.442 37.40122 122.3822 44.99642 0.310719

13 1834.722 -198.094 39.3427 123.8576 44.9991 0.412839

14 1621.06 -10.2551 31.08336 119.2486 44.9932 0.101961

15 1509.326 284.8627 17.83136 117.8421 44.99995 0.000133

16 1583.464 67.7079 27.58712 118.2408 44.99471 0.063166

17 1538.525 207.6281 21.28295 118.0657 44.99914 0.027565

18 1881.706 -209.279 39.83987 124.3604 44.99914 0.493074

19 1670.614 -82.2557 34.27538 120.3385 44.99394 0.164665

20 1552.845 147.935 24.02689 117.9865 44.99408 0.033968

21 1727.486 -127.922 36.26434 121.503 44.99648 0.249289

Table G. 2: YachtRide PSNR vs. Bit-rate

 f(1) f(2) x1 x2 x3 x4

1 -39.4109 16336.39 16 64 27 1

2 -30.0599 -739.003 24.07144 85.33057 44.98965 0.692503

3 -31.6552 2174.09 23.45643 81.80078 41.92058 0.695639

4 -39.1046 15777.1 16.48506 65.03705 27.58924 0.852184

5 -34.0909 6621.855 20.86016 76.51778 37.23467 0.686398

6 -30.0599 -739.003 24.32144 85.83057 44.98965 0.942503

7 -38.7728 15171.24 17.09727 65.71336 28.22753 0.911814

8 -34.2337 6882.537 20.83355 76.28863 36.96003 0.823895

9 -34.7439 7814.167 20.03402 75.18035 35.97852 0.815328

10 -35.0596 8390.733 20.31216 74.49128 35.37108 0.847724

11 -31.2437 1422.713 23.2127 83.17009 42.71219 0.890661

12 -33.5976 5721.055 21.65859 77.42823 38.1837 0.59808

13 -33.793 6077.834 21.68704 76.34333 37.80782 0.705027

14 -33.9455 6356.335 20.65741 77.17123 37.51441 0.707122

15 -34.4261 7233.916 20.33019 75.58433 36.58984 0.761759

16 -32.0974 2981.675 22.96716 80.98078 41.06976 0.734344

163

17 -35.8391 9814.151 19.33463 72.51462 33.87145 0.744205

18 -37.4569 12768.23 18.16254 68.77927 30.7592 0.917268

19 -33.1794 4957.461 21.68115 79.02861 38.98818 0.8981

20 -30.5489 153.913 23.98381 84.75702 44.04892 0.902898

21 -33.4197 5396.253 21.39733 78.5669 38.5259 0.855767

22 -39.0207 15623.87 16.68619 64.96955 27.75066 0.984518

23 -39.222 15991.4 16.65926 64.48988 27.36346 0.910749

24 -32.4248 3579.39 22.63017 80.61827 40.44004 0.764943

25 -33.3245 5222.376 21.61679 78.08601 38.70908 0.792001

26 -36.5524 11116.71 20.16747 71.71133 32.49915 0.885192

27 -38.2545 14224.78 16.43471 66.98899 29.22467 0.947739

28 -31.7688 2381.642 23.78256 80.93746 41.70192 0.761986

29 -38.403 14495.97 16.78202 66.61411 28.93896 0.858204

30 -36.3577 10761.05 19.10031 72.01675 32.87385 0.861075

31 -30.1721 -534.074 24.00161 85.1333 44.77375 0.695595

32 -35.6106 9396.866 20.09797 73.51787 34.31108 0.848809

33 -39.4109 16336.39 16 64 27 1

34 -32.9996 4629.141 22.69956 80.43833 39.33408 0.832135

35 -37.0806 12081.21 18.41843 69.53805 31.48301 0.823904

36 -31.0648 1096.052 23.6633 83.14687 43.05634 0.69672

37 -36.6463 11288.05 18.42743 70.53262 32.31864 0.940064

38 -30.7882 590.8891 23.68367 84.04552 43.58855 0.814179

39 -32.0204 2840.917 22.52694 81.37293 41.21805 0.889274

40 -38.705 15047.42 17.12621 65.68833 28.35799 0.901741

41 -35.4252 9058.383 20.25373 73.76446 34.66768 0.819758

42 -34.819 7951.341 19.96356 74.47459 35.834 0.849

43 -36.8706 11697.69 19.01097 70.03006 31.88706 0.593025

44 -36.1488 10379.62 19.41217 71.90513 33.27571 0.934589

45 -32.6596 4008.282 21.68115 79.02861 39.98818 0.8981

46 -30.266 -362.704 24.94322 84.96834 44.5932 0.698181

47 -37.9665 13698.83 17.626 67.29745 29.77878 0.963314

48 -30.5797 210.1753 24.07144 85.33057 43.98965 0.692503

49 -37.1351 12180.64 19.6568 70.54018 31.37825 0.581954

50 -31.5776 2032.496 21.96716 80.98078 42.06976 0.734344

Table G. 3: YachtRide CPU vs. Bit-rate

 f(1) f(2) x1 x2 x3 x4

1 -4378.88 22547.08 -0.26978 1.983814 20.45677 -11.4804

2 -259.438 17240.74 0.496243 2.83517 26.04723 -3.92037

3 -462.411 17502.19 0.4585 2.793222 25.77177 -4.29286

4 -9021.72 30797.81 0.210769 -5.14158 11.76428 -20.1804

5 -1006.15 18082.15 0.539287 2.033017 25.16076 -5.27922

6 -3674.46 21736.31 -0.11083 1.985091 21.31095 -10.1955

164

7 -5268.97 24460.36 -0.03277 -0.38111 18.44105 -13.1737

8 -1792.57 19471.75 0.408045 2.778826 23.69676 -6.75843

9 -6095.92 24801.85 -0.03356 -0.67371 18.08127 -14.6302

10 573.7071 16528.86 0.496243 2.83517 26.79723 -2.42037

11 -2677.17 19704.14 0.272639 3.94169 23.45193 -8.31

12 -6520.16 27751.99 0.105996 -1.44807 14.97317 -15.613

13 558.4105 16554.4 0.496348 2.823104 26.77031 -2.44892

14 -6514.49 26611.02 0.093101 -2.0199 16.17524 -15.5033

15 -7893.23 30349.06 0.101818 -3.86481 12.23705 -18.197

16 -9021.72 30797.81 0.210769 -5.14158 11.76428 -20.1804

17 -5053.7 23304.1 0.076986 0.992593 19.65921 -12.7094

18 -7524 29128.96 0.168035 -4.65398 13.52248 -17.4522

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Aim & Objectives
	1.2 Research Contributions
	1.3 Thesis Structure

	Chapter 2 Research Background
	2.1 Introduction
	2.2 Video Representation Formats and Compression
	2.2.1 Digital video formats

	2.3 H.246 ADVANCE video coding standard
	1.
	1.1.
	1.2.
	1.
	2.
	3.
	3.1.
	3.2.
	2.3.1 Video Coding Concepts
	2.3.2 Basic coding structure for H.264/AVC
	2.3.3 The H.264/AVC Coding Tools
	2.3.4 The H.264/AVC encoder parameters

	2.4 HEVC video coding standard
	2.4.1 Differences of HEVC from H.264/AVC
	2.4.2 Compression Performance Analysis in HEVC
	2.4.2.1 Encoder Software
	2.4.2.2 Prediction Structure
	2.4.2.3 Test Sequences
	2.4.2.4 Rate Distortion Curves

	2.5 Tools for Encoding, Decoding, Modelling and Optimisation
	2.5.1 JM Reference Software
	2.5.2 The Intel® VTune™ Amplifier XE
	2.5.3 WEKA machine learning toolkit
	2.5.3.1 Function Based Approaches
	2.5.3.2 Ensemble Classifiers
	2.5.3.3 The Validation Metrics

	2.5.4 Matlab Optimisation Toolbox

	2.6 An overview of End-to End video streaming
	2.6.1 Overview of video streaming
	2.6.2 Overview of the VideoLAN streaming solution
	2.6.3 EvalVid - A Video Quality Evaluation Tool-set
	2.6.4 Network simulator using Riverbed Modeler (Opnet)

	2.7 Summary

	Chapter 3 Literature Review
	3.1 Introduction
	3.2 Optimisation of Video Coding
	3.2.1 Parameter-based Optimisation

	3.3 Theory of Multi-Objective Optimisation
	3.3.1 Multi-Objective Optimisation using Genetic Algorithms

	3.4 H.264 Video Coding
	3.5 High Efficiency Video Coding (HEVC)
	3.6 Use of machine learning in video coding
	3.7 End-to-End Video Streaming
	3.8 Summary & Conclusions

	Chapter 4 Parameter based Characterisation and Performance Modelling of a H.264 Video CODEC
	4.1 Decoder Introduction
	4.2 Proposed framework for multi-objective optimization
	4.2.1 The Profiling Experiments - Determining the Significant Coding Parameters
	4.2.2 The Objective Functions of the H.264/AVC Encoder

	4.3 Encoder Performance Analysis
	4.4 Decoder Performance Analysis
	4.4.1 The output of Decoded video

	4.5 Using Advanced Machine Learning Algorithms for the Modelling of an H264 CODEC
	4.5.1 Experiments, results and analysis

	4.6 Summary & Conclusion

	Chapter 5 Multiobjective Optimisation
	5.1 Introduction
	5.2 Setting up the Genetic Algorithm
	5.3 Optimising the Encoder
	5.3.1 Experimental results and analysis

	5.4 Optimising the Decoder
	5.5 Summary and Conclusion

	Chapter 6 A Machine Learning based Framework for Parameter based Multi-Objective Optimisation of a H.265 Video CODEC
	6.1 Introduction
	6.2 Proposed Framework for Performance Modelling
	6.2.1 Profiling Experiments/ Determining the Significant Coding Parameters
	6.2.2 The Objective Functions of the HEVC Encoder

	6.3 Analysis of experimental results
	6.3.1 Encoder Analysis
	6.3.1.1 Analysis of the CPU Time Experiment
	6.3.1.2 Analysis of the PSNR Experiment:
	6.3.1.3 Analysis of the Bit-Rate Experiment:

	6.3.2 Decoder Analysis

	6.4 Multi-Objective Optimisation of a H.265 Video CODEC
	6.4.1 Implementation

	6.5 Optimising the encoder
	6.5.1 Experimental results
	6.5.2 Discussion

	6.6 Summary

	Chapter 7 Impact of Packet Loss & Network Delay on Optimally Coded Video Streaming
	7.1 Introduction
	7.2 System Design and Implementation
	7.2.1 Tested video sequences
	7.2.2 Video streaming experimental setup
	7.2.3 Client - Server communication

	7.3 Experiments, results and analysis
	7.4 Summary

	Chapter 8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future work

	References
	Appendices
	Appendix A: JM reference encoder / decoder configuration file.
	A.1. Encoder configuration file.
	A.2. Decoder configuration file.

	Appendix B: Selected parameters for encoder / decoder.
	Table B . 1: Selected set of parameters for Claire video sequence.
	Table B. 2: Selected set of parameters for Coastguard video sequence.
	Table B. 3: Selected set of parameters for Football video sequence.
	Table B. 4: Selected set of parameters for Foreman video sequence.
	Table B. 5: Selected set of parameters for Mobile video sequence.
	Table B. 6: Selected set of parameters for Tennis video sequence.

	Appendix C: Pareto Plot
	Plot C. 1: Pareto Plot for Football Video.

	Appendix D: Optimal points and functional values.
	Table D. 1: Foreman PSNR vs. Bit-rate
	Table D. 2: Football PSNR vs. Bit-rate

	Appendix E: HEVC HM encoder / decoder configuration file.
	E.1. Encoder configuration file.

	Appendix F: Selected parameters for encoder / decoder.
	Table F. 7: Selected set of parameters for YachtRide video sequence.
	Table F. 8: Selected set of parameters for Basketball video sequence.

	Appendix G: Optimal points and functional values.
	Table G. 1 Cactus CPU vs. Bit-rate
	Table G. 2: YachtRide PSNR vs. Bit-rate
	Table G. 3: YachtRide CPU vs. Bit-rate

