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All multimedia devices now incorporate video CODECs that comply with 

international video coding standards such as H.264 / MPEG4-AVC and the new 

High Efficiency Video Coding Standard (HEVC) otherwise known as H.265. 

Although the standard CODECs have been designed to include algorithms with 

optimal efficiency, large number of coding parameters can be used to fine tune their 

operation, within known constraints of for e.g., available computational power, 

bandwidth, consumer QoS requirements, etc. With large number of such 

parameters involved, determining which parameters will play a significant role in 

providing optimal quality of service within given constraints is a further challenge 

that needs to be met. Further how to select the values of the significant parameters 

so that the CODEC performs optimally under the given constraints is a further 

important question to be answered. 

 

This thesis proposes a framework that uses machine learning algorithms to model 

the performance of a video CODEC based on the significant coding parameters. 

Means of modelling both the Encoder and Decoder performance is proposed. We 

define objective functions that can be used to model the performance related 

properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that 

these objective functions can be practically utilised in video Encoder/Decoder 

designs, in particular in their performance optimisation within given operational 

and practical constraints. A Multi-objective Optimisation framework based on 

Genetic Algorithms is thus proposed to optimise the performance of a video codec. 

The framework is designed to jointly minimize the CPU Time, Bit-rate and to 

maximize the quality of the compressed video stream. The thesis presents the use of 

this framework in the performance modelling and multi-objective optimisation of 

the most widely used video coding standard in practice at present, H.264 and the 

latest video coding standard, H.265/HEVC. 

 

When a communication network is used to transmit video, performance related 

parameters of the communication channel will impact the end-to-end performance 

of the video CODEC. Network delays and packet loss will impact the quality of the 

video that is received at the decoder via the communication channel, i.e., even if a 
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video CODEC is optimally configured network conditions will make the experience 

sub-optimal. Given the above the thesis proposes a design, integration and testing 

of a novel approach to simulating a wired network and the use of UDP protocol for 

the transmission of video data. This network is subsequently used to simulate the 

impact of packet loss and network delays on optimally coded video based on the 

framework previously proposed for the modelling and optimisation of video 

CODECs. The quality of received video under different levels of packet loss and 

network delay is simulated, concluding the impact on transmitted video based on 

their content and features.  

 
 
   

Maryam M. Al Barwani, October 2017 
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Applications that benefit from accurate video capture, efficient representation and 

coding, error-free transmission and subjectively optimised display, have been 

growing over the years due to the availability of higher network bandwidth, faster 

processor speed and advanced capture and display technologies. Recent studies 

have shown that coded video data is becoming the major part in consumer internet 

traffic with a predicted share of 90% by 2019. Some of the most extensively used 

applications include real-time video conferencing, video streaming over broadband 

networks and digital TV broadcasting. Most current mobile hand-held devices come 

equipped with a video camera that is able to capture and encode a video stream in a 

standard format. These devices also include video players, which can decode and 

playback video. All above developments continuously demand for more efficient 

video coding algorithms that are able to reduce the bitrate without sacrificing video 

quality or to enable the increase of video resolution, without increasing the bitrate. 

High Efficiency Video Coding (HEVC) also known as H.265 is the most resent 

answer to this consumer demand. The more established video coding standards 

used widely in practice however is, H.264, the Advanced Video Coding standard and 

MPEG-2.  

All advanced video CODECs have many parameters that can be used to control their 

operational characteristics, both at the encoder and decoder ends, enabling the 

possibility of fine tuning their operation for maximum efficiency within 

environments and application scenarios that are bound by various constraints. For 

example the available bandwidth will have an upper limit, the network will be 

subjected to delays and the decoder/display unit may have limitations in processing 

and capabilities. In the design and implantation of international video coding 

standards extreme care has been taken to make the algorithmic performance 

optimal by designing and using (or recommending the use of) the optimal 

algorithms for every possible task within a video CODEC. Therefore nothing much 

can be done to change the algorithms. Yet the encoder, transmission medium and 

decoder have many parameters that can be adjusted for them to be efficiently 

operational under above mentioned constraints. Identifying the values of these 
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parameters that result in the implemented CODECs optimal performance under 

given constraints remains an open research problem of vital importance. 

The first step of parameter based optimisation of a video CODEC is the 

identification of the coding parameters that have a significant impact of its key 

properties, such as, bandwidth, image/video quality, and CPU time, etc. Although 

an experienced user of a video CODEC can guess these parameters with some 

accuracy, when the content of the video is known, a formal scientific approach is 

needed to accurately decide the parameter set, with minimum error from any 

subjectivity in the decision making process by human users. Having obtained these 

parameters it is then possible to model the key properties of the video CODEC 

described above based on the significant parameters. These models can then be 

used to optimise the performance of the video codec when operated under practical 

constraints thus making the parameter based characterisation and modelling, 

practically useful.  

In this research we propose a framework that is based on the fundamentals of 

machine learning that can be used to scientifically determine the significant coding 

parameters of a video CODEC. These parameters are then used to model the 

operational behaviour of the video CODEC for which machine learning algorithms 

are further utilised. We also show that this model can be used to establish the 

foundations of a multi-objective optimisation framework, which can be 

subsequently used for the parameter based optimization of H.264 and H.265 video 

coding standards. Although the experiments conducted are limited to H.264 and 

H.265 standards, the proposed framework can be used in relation to any video 

coding standard.  Once parameters that result in the optimal operation of a video 

codec under constraints have been found using the framework being proposed, the 

coded video can be transmitted over a practical network that often subjects the 

video to delays and packet loss.  The impact is thus the sub-optimal end-to-end 

performance of the CODEC although the CODEC itself was set for optimal 

performance. In this research we analyse the impact of packet loss and network 

delays on the quality of streamed videos transmitted across a network and received 

at the decoder. A detailed investigation of the impact of packet loss and delay for 

transmitting video using the H.264 standard is conducted. How the video quality is 

impacted for videos with different content and motion features is studied, leading to 

useful conclusions and recommendation for future work.   
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 Aim & Objectives 1.1

The aim of the research presented within this thesis is to propose a parameter based 

Multiple Objective Optimization framework for video CODECs, based on the use of 

machine learning and genetic algorithms. In particular the use of the proposed 

framework for optimally coding video under given bit-rate, quality and CPU time 

constraints using H.264 and H.265 standards is demonstrated are the impact of 

transmitting such optimally coded video over real channels with packet loss and 

transmission delays is investigated.  

Following are a list of research objectives to be met: 

 Carry out a background study of H.264 and HEVC video CODECs and a 

complete literature review of existing approaches to multi-objective 

optimisation of video CODECs.  

 Carry out profiling of H.264 and HEVC video CODECs using machine 

learning approaches to identify the coding parameters that have the most 

significant impact on the video compression rate, distortion/quality and 

use of computational power / CPU Time. Based on the significant coding 

parameters, create operational models for the same.  

 Based on the operational models, carry out parameter based, multi-

objective / multi-constraint optimisation of the H.264 and HEVC video 

CODECs, proposing use cases of optimal encoder and decoder 

configurations. 

 Within an end-to-end video coding, transmission and delivery system 

where the CODEC has been configured to act optimally, investigate the 

impact of packet loss and network delays on the delivered video quality.   

 Research Contributions 1.2

The research conducted within the context of this thesis has led to the following 

original contributions: 

1. The proposal of a novel machine learning based approach for the profiling 

of video CODECs that can be used to model the performance of CODECs 

with respect to coded bit-rate, decoded video quality and the computational 

cost of encoding/decoding. 
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2. Performance modelling and parameter based multi-objective optimisation 

of the CODECs of the most widely used video coding standard H.264 and 

the latest video coding standard HEVC. 

3. Investigating the impact of packet-loss and network delay on the decoded 

video quality when optimally coded video data is transmitted over a real 

network. In respect to this, the proposal of a system that can be used to 

transmit video, under varying packet loss and delay settings.  

 
The above contributions have led to the publication of the following 
conference/journal papers: 
 

1. M. Al-Barwani and E. A. Edirisinghe, “A machine learning based framework 

for parameter based multi-objective optimisation of a H.265 video CODEC,” 

2016 IEEE Future Technologies Conference (FTC). pp. 553–559, 2016. 

2. M. Al-Barwani, E. Edirisinghe, "A Machine Learning based Framework for 

Parameter based Multi-Objective Optimisation of Video CODECs", Journal 

of Advances in Science, Technology and Engineering Systems, vol. 2, no. 3, 

pp. 1515-1526 (2017). 

 Thesis Structure 1.3

For clarity of presentation, the remainder of this thesis is organized as follows: 

Chapter 2 provides background knowledge about H.264, HEVC, machine learning 

tools and systems used for the end-to-end delivery of video streaming. Chapter 3 

focuses on the study of literature in Multi-objective optimisation, machine 

learning, video codecs and video steaming. Chapter 4 presents the proposed novel 

machine learning based framework for the analysis of significant coding 

parameters of a H.264 CODEC. Chapter 5 introduces the proposed framework for 

the multi-objective optimisation of a H.264 video CODEC.  Chapter 6 presents a 

machine learning based framework for the profiling, performance modelling and 

the parameter based multi-objective optimisation of a H.265 video CODEC. 

Chapter 7 presents a system that has been designed and integrated to enable the 

simulation of packet loss and network delay, in the end-to-end coding and delivery 

of optimally coded H.264 video streams. Finally chapter 8 concludes the research 

findings of the thesis and proposes possible future work. 
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 Introduction  2.1

This chapter introduces the readers to the research background of this thesis.  The 

chapter initially presents some essential basic concepts on video representation, 

compression and quality evaluation (see section 2.2). It then presents an in-depth 

analysis of the operational aspects of algorithms and systems within the two video 

coding standards to be optimized, i.e. H264 (in section 2.3) and HEVC (in section 

2.4). Understanding the underlying algorithms that are controlled by the 

parameters used within the optimization process, is essential in making informed 

judgements, within the research conducted. In addition section 2.5 covers the 

software implementations, models and toolkits used within this thesis, that carries 

out video coding (JM reference software), performance evaluation (Intel Vtune 

Amplifier XE), optimization (NSGA-II) and machine learning (WEKA). Section 2.6 

presents network modelling and end-to-end video delivery (VideoLAN & OPNET). 

Section 2.7 provides a summary of information presented in this chapter.  

 Video Representation Formats and 2.2

Compression 

Video or visual communications require significant amounts of information 

transmission. Video compression as considered here involves the bit rate reduction 

of the digital video signal carrying visual information [1]. Traditional video-based 

compression, like other information compression techniques, focuses on 

eliminating redundancy and unimportant elements of the source. The degree to 

which the encoder reduces the bit rate is called its coding efficiency, or equivalently 

its inverse is termed the compression ratio, that is, ܿݕ݂݂ܿ݊݁݅ܿ݅݁ ݃݊݅݀݋ = ሺܿ݋݅ݐܽݎ ݊݋݅ݏݏ݁ݎ݌݉݋ሻ−ଵ =  ݁ݐܽݎ ݐܾ݅ ݀݁݀݋ܿ݁݀/݁ݐܽݎ ݐܾ݅ ݀݁݀݋ܿ݊݁
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Compression can be a lossless or lossy operation. Due to the immense volume of 

video information, lossy operations are a key element used in video compression 

algorithms. The loss of information or distortion measure is usually evaluated using 

the mean square error (MSE), mean absolute error (MAE) criteria, or peak signal-

to-reconstruction noise (PSNR) as defined in equations below. 

 

ܧܵܯ = ͳܰܯ + ∑ ∑[ே
௝=ଵ

ெ
௜=ଵ ,ሺ݅ ܫ ݆ሻ − ,ሺ݅ ܫˆ  ݆ሻ]ଶ 

         (Equation 2-1) 

ࡱ࡭ࡹ = ૚ࡺࡹ + ∑ ∑ ࡺ|
૚=࢐

ࡹ
૚=࢏ 𝑰 ሺ࢏, ሻ࢐ − ˆ𝑰 ሺ࢏,  |ሻ࢐

         (Equation 2-2) 

ࡱࡿࡹ = ૛૙ ૚૙ࢍ࢕࢒ ( ૛ࡱࡿࡹ࢔૚ ૛⁄ ) 

                                                                                    (Equation 2-3) 

 Digital video formats 2.2.1

Digital video is a representation of moving visual images in the form of encoded 

digital data. This is in contrast to analog video, which represents moving visual 

images with analog signals. 

 

The ITU Specialist Group has recommended three formats that are used in the ITU 

H.261, H.263, H.264, and ISO MPEG video compression standards. They are the 

Standard Input Format (SIF), Common Interchange Format (CIF), and the low bit 

rate version of CIF called Quarter CIF (QCIF) (see Table ‎2-1). Together, these 

formats describe a comprehensive set of digital video formats that are widely used 

in current digital video applications [1]. 
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Table 2-1 SIF, CIF, and QCIF digital video formats [1]. 

 

 H.246 ADVANCE video coding standard  2.3

H.264 is one of the most  commonly used video coding standards, jointly developed 

by the international standards bodies ITU-T (International Telecommunication 

Union) Video Coding Experts Group (Coders) and ISO/IEC (International 

Organisation for Standardisation / International Electrotechnical Commission) 

Moving Picture Experts Group (MPEG). The standard was first published in 2003. 

It is also known as MPEG-4 Part 10 or AVC for Advanced Video Coding. According 

to [2], H.264 provides better compression effi ciency from earlier standards such as 

MPEG-2 and MPEG-4 with flexibility in compressing, transmitting and storing 

video. It can give better performance and produces an average bitrate reduction of 

about 50% over MPEG-2 for the same video quality. According to [67] and [68], 

compressed video clips take up less transmission bandwidth and less storage space 

compared to older codecs.  The H.264/AVC design consists of a video coding layer 

(VCL) and a network abstraction layer (NAL). VCL performs all the classic signal 

processing tasks and generates bit strings containing coded macroblocks. The main 

goal of the NAL is to adapt those bit strings in a network friendly design objective 

[5]. Integration of network adaptation and video coding can bring the best possible 

performance of a video communication system.  
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H.264 is an industry standard for video compression, which converts digital video 

into a format that takes up less capacity while being stored or transmitted. 

Applications such as digital television, DVD-Video, mobile TV, videoconferencing 

and internet video streaming are important technology in Video compression. The 

standardization of video compression makes it possible for products like encoders, 

decoders and storage media from different manufacturers to inter-operate. An 

encoder converts video into a compressed format and a decoder converts 

compressed video back into an uncompressed format [3] . 

Developing and designing the standard is a challenge to the engineers or 

programmers who interface with an H.264 codec.  H.264 has more options and 

many parameters than any previous standard codec. Getting the right controls and 

parameters is not an easy task for delivery of high compression performance. On the 

other hand, wrong controls and parameters result in poor-quality pictures and/or 

poor bandwidth efficiency [4].  

 Video Coding Concepts 2.3.1

Video coding standards such as H.264/AVC define converting a raw video source 

into a specified bitstream. A typical compliant video coding system consists of 

several modules that perform operations such as motion compensated prediction, 

transform coding, rate control, run-length coding and entropy coding. Although the 

encoded bitstream syntax is specified by a standard, many of the encoder modules 

are left open. In [4], compression involves a complementary pair of systems, a 

compressor (encoder) and a decompressor (decoder). Before transmitting or storing 

video data, the encoder converts the source data into a compressed form and the 

decoder converts the compressed form back into a representation of the original 

video data. The encoder/decoder pair is often described as a CODEC 

enCOder/DECoder. Data compression is achieved by removing redundancy. 

Redundant components are not necessary for faithful reproduction of the data. [4] 

Iain Richardson has contributed a lot to video compression in his books. 

A video CODEC in Figure ‎2-1 encodes a source image or video sequence into a 

compressed form and decodes this to produce a copy or approximation of the source 

sequence.  
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Figure 2-1: A Video CODEC Process. 

 Basic coding structure for H.264/AVC 2.3.2

The typical video coding and decoding process is demonstrated in Figure ‎2-2 [3]. 

The encoder processes an input frame by splitting it into units of a Macroblock with 

16x16 pixels. Macroblocks are organized into slices to represent the regions of a 

given frame to be encoded independently. The first image of a sequence or a 

random access point is typically Intra coded, without using information contained 

in the other pictures. A prediction of the macroblock is formed based on the current 

frame using intra prediction. For the other remaining frames that have already been 

coded and transmitted, inter prediction is used.  A residual is formed by subtracting 

the prediction from the current macroblock. Then the block of residual is 

transformed using a 4x4 or 8x8 integer transform. The transform outputs a set of 

coefficients which is then quantized according to a quantization parameter QP. 

 

In H.264, images in the input video are encoded in units of macroblocks, which are 

blocks of pixels that consist of 16 pixels in the horizontal direction and 16 pixels in 

the vertical direction; when a macroblock is encoded, information about how 

adjacent already-encoded macroblocks were encoded is utilized in order to achieve 

high compression performance [6]. 

 

The quantized transform coefficients are entropy coded and transmitted together 

with the side information for either Intra-frame or Inter-frame prediction. The 

quantized transform coefficients are inverse scaled and inverse transformed in the 

same way as at the decoder side; the decoded prediction residual is added to the 

prediction. The result is then fed into a deblocking filter which provides the decoded 

video as its output [7]. 

 

Source Video Encoder Channel Decoder Output Video 
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Figure 2-2: The H.264 video coding and decoding processes [3]. 

 The H.264/AVC Coding Tools 2.3.3

This section describes Frame types and the tools that make H.264 such a successful 

video coding scheme. Intra coding, motion compensated prediction, transform 

coding, entropy coding and the adaptive de-blocking filter are discussed 

subsequently in the section. 

Frame types 

 
 

Figure 2-3: An example of sequence with I-, B- and P-frames [8].  

The basic principle for video compression is the prediction between adjacent 

frames. There are three types of frames: Intra-frames (I-frames), forward-predicted 

frames (P-frames), and bi-directional predicted frame (B-frames) as explained in 

[8] (see Figure ‎2-3).    
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 I-frame: An Intra predicted frame is self-contained, having no dependency 

outside of that image. The more I-frames contained, the better the quality of 

the video; however, I-frames contain the greatest number of bits and 

therefore use more space on the storage medium. 

 P-frames: Predicted-frames are predicted from the last I frame or P frame 

used as the reference frame. P-frames contain only the data that have 

changed from the reference frame. 

 B-frames: Bidirectional; predicted from two references one in the past and 

one in the future I and P-frames. B-frames contain only the data that have 

changed from the preceding frame or are different from the data in the very 

next frame used as a reference.    

 The H.264/AVC encoder parameters 2.3.4

The efficiency of a coding algorithm is furthermore dependent on various 

parameters used. A significant number of coding options are available through the 

selection of various combinations of a large number of coding parameters. In [2], 

the H.264 CODECs have a large number of coding parameters to select from. The 

selection of coding parameters of a given video sequence as shown in Table ‎2-2, is 

used to achieve the optimum performance of the CODEC.  

These parameters specify input/output control of the encoder, including source 

video and output sequence video file names, and the file format [9]. 

 

Table 2-2: List of coding parameters 

 

Parameter  Meaning  

IntraPeroid  Period of I-frames, i.e. frame will be coded using intra 

slices, every IntraPeriod frame.  

NumberReferenceFrames  Sets maximum number of references stored in the buffer 

for motion estimation and compensation.  

SearchRange  Sets allowable search range for motion estimation.  

RDOptimization  Enables rate distortion optimized mode decision.  

Quantization Parameter Quantization parameter 
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IntraPeriod  

IntraPeriod parameter represents the maximum period of I-coded frames in the 

encoded sequence. IntraPeriod can start with default values 0 which means that the 

first frame is coded as an I-frame and the following frames are coded as P-frames 

[9].  

NumberReferenceFrames  

NumberReferenceFrames is used to set the maximum number of references stored 

in Decoded Buffer for motion estimation and compensation. The number of 

reference frames used for inter motion search ranges from 0-16, the default value is 

1 [9].  

RDOptimization  

RDOptimization is a method used for improving video quality in video compression. 

Rate-distortion optimization can be used to improve quality in any encoding video 

where decisions have to be made that affect both file size and quality 

simultaneously. 

RDOptimization enables the Lagrangian based rate distortion optimized mode 

decision. The mode can take values from 0 to 2: 

0: RD-off  Enable Low Complexity mode (default)  

1: RD-on Enable High Complexity mode  

2: RD-on Enable Fast High Complexity mode (does not support 

FRExt profiles)  

 

SearchRange  

The search window size sets an allowable search range for Motion Estimation. It can 

take either of two values, 16 or 32. The default value is 16 and maximum is 32. If 

Rate Distortion Optimisation is enabled, the search window is centred around 

median predictor, not (0, 0) [9]. 

Quantization parameter (QP) 

 QPISlice 

Sets quantization parameter value for I slices. Allowable values are in the range of 0 

to 51. Default value is 24. 

 QPPSlice 

Sets quantization parameter value for all P slices. Allowable values are in the range 

of 0 to 51. Default value is 24. 

http://en.wikipedia.org/wiki/Video_quality
http://en.wikipedia.org/wiki/Video_compression
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 QPBSlice 

Quantization parameter used for non-stored B slices. Should be in the range [0-51]. 

Default value is 24. 

When QP is low, almost all details are retained; however, as QP is increased, some 

of those details are aggregated so that the bit rate drops, but at the price of some 

increase in distortion and some loss of quality [9]. 

 HEVC video coding standard 2.4

Due to the higher demand for higher resolution videos, in 2010 many proposals 

were submitted both from representatives of industry and academia, which in turn 

led to the development of the so-called High-Efficiency Video Coding (HEVC) 

standard during the next two and a half years. The first edition of HEVC was 

officially finalized in January 2013, and after that, the final aligned specification was 

approved by ITU-T as Recommendation H.265 and by ISO/IEC as MPEG-H, Part 2. 

The H.265/MPEG-HEVC standard was designed to be applicable for almost all 

existing H.264/MPEG-AVC applications, while putting emphasis on high-resolution 

video coding. Since the development process of H.265/MPEG HEVC was also 

driven by the most recent scientific and technological achievements in the field of 

video coding, dramatic bit-rate savings were achieved for substantially the same 

visual quality, when compared to its predecessor H.264/MPEG-AVC  [11], [12]. 

 

Figure ‎2-4 shows a block diagram of a block-based hybrid video encoder with some 

characteristic ingredients of HEVC regarding its novel block partitioning concept.  

In a first step of this new block partitioning approach, each picture in HEVC is 

subdivided into square blocks of the same size, each of which serves as the root of a 

first block partitioning quadtree structure, the coding tree, which are therefore 

referred to as coding tree blocks (CTBs). The CTBs can be further subdivided along 

the coding tree structure into coding blocks (CBs), which are the entities for which 

an encoder has to decide between intra-picture and motion-compensated prediction 

[13].  

 

 

 

http://www.pixeltools.com/rate_control_paper.html#dis
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Figure 2-4  Block diagram of an HEVC encoder with built-in decoder [13] 

 Differences of HEVC from H.264/AVC 2.4.1

The HEVC standard has the ability of saving significant bandwidth over H.264 

encoded content having similar quality. Some of the key differences between H.265 

(HEVC) and H.264 (MPEG 4 AVC) are listed in Table ‎2-3. 
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Table 2-3 H.265 (HEVC) and H.264 (MPEG 4 AVC) [14]. 

Category H.264 H.265 

Names MPEG 4 Part 10 AVC MPEG-H, HEVC, Part 2  

Progression  Successor to MPEG-2 Part Successor to H.264 

Key 

Improvement 

- 40-50% bit rate reduction 

Compared to MPEG-2 with growth 

of HD content delivery over 

network. 

- Support Up to 4K 

(4,096×2,304) 

  

- Supports up to 59.94 fps 

 

- 40-50% bit rate 

reduction at the same 

quality compared to 

H.264. 

- Up to 8K UHDTV 

(8192×4320) 

 

- Supports up to 300 fps 

Compression 

Model 

- Hybrid spatial-temporal 

prediction model 

- 9 directional modes for 

intra prediction 

- Macro Blocks structure 

with maximum size of 16x16 

- Entropy coding is 

CABAC and CAVLC 

- Enhanced hybrid 

spatial-temporal 

prediction model 

-  35 directional modes 

for intra prediction 

 

- Supporting larger block 

structure (64x64)  

- Entropy coding is 

CABAC only 

Drawbacks  Unrealistic for UHD content 

delivery due to high bit rate 

requirements.  

Computationally expensive 

due to larger prediction 

units and expensive Motion 

Estimation. 

 

 

 

 

 

 

 



 

16 
 

Both HEVC intra coding and H.264/AVC intra coding are based on spatial sample 

prediction [13]. Yet, the intra coding methods in HEVC can be elaborated in a 

number of ways.  

1. First of all, the set of supported prediction block sizes is extended up to 

32x32 to be aligned with the HEVC coding structures and to improve 

reconstruction of smooth image areas.  

2. Secondly, the number of available directional modes is extended from 8 to 33 

to improve modelling of directional textures. In HEVC, the whole range of 

directional predictors is made available for both luma and chroma blocks, 

while in H.264/AVC the number of available directional prediction modes for 

chroma is limited to two horizontal and vertical modes.  

3. Another advantage of HEVC is its ability to pad the missing reference 

samples and allow usage of all the prediction modes independent of 

availability of certain reference samples.  

4. The HEVC intra mode coding also uses an approach different from that of 

H.264/AVC. Due to the large number of intra modes in HEVC, the luma intra 

mode is signaled by using three of the most probable modes and the selected 

luma mode is always made available as one of the candidate modes for the 

corresponding chroma blocks. 

The Table ‎2-4 below summarizes key differences of intra prediction in H.264/AVC 

and HEVC. 

Table 2-4 Intra prediction techniques between H.264 and HEVC [13] 

 
  



 

17 
 

  Compression Performance Analysis in HEVC 2.4.2

To conduct HEVC performance evaluations, a well-defined encoder setting and 

testing environment need to be established with HEVC and AVC reference encoder 

software [13]. 

 Encoder Software 2.4.2.1

In the standardization of HEVC, the reference software, named as HM (HEVC 

Test Model, reference software), has been developed as a common SW platform for 

further improvement and study.  

The HM reference software is maintained at two sites [15]. HHI (Heinrich Hertz 

Institute) maintains the main SVN server and BBC (British Broadcasting 

Corporation) maintains the mirroring repository site. 

 HM software repository (main at HHI)[16] 

 HM software repository (mirror at BBC)[17]  

 

 Prediction Structure 2.4.2.2

The performance evaluation defines the following prediction structures. 

 All Intra (AI) 

 Random Access (RA) 

 Low Delay P picture (LDP) 

 Low Delay B picture (LDB) 

 

In these configurations, the QP (Quantization Parameter) value can be modified by 

adding to it a “QP offset” value. That is, CTC defines QP of the first picture (QP of an 

I picture, QPI, with I picture defined below) and the QP of the following pictures are 

derived as QPD (QPICQP offset), with QP offset being determined according to the 

picture type (e.g., P & B pictures, defined below) or a picture temporal ID. An I 

(intra) picture refers to a picture that can be decoded independently without 

requiring prediction data from other decoded pictures. A P (predicted) picture, in 

general, requires picture sample data from one other I, P or B picture to generate 

each predicted sample block. A B (bi-predicted), in general, requires picture sample 

data from two other I, P or B pictures to generate each predicted sample block  [13]. 

 

  

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
http://hevc.kw.bbc.co.uk/svn/jctvc-a124/
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 Test Sequences 2.4.2.3

Test sequences are defined according to the picture size and applications and they 

are classified into six classes (class A to class F).  Class A is the set of sequences with 

higher resolution than 1080p HDTV. The sequences are used to evaluate the coding 

performance of 4K/8K video. To reduce computation time, picture sizes are cropped 

to 2,560 x 1,600 pixels.  

Class B is for coding performance evaluation of 1080p HDTV and the set contains 

HDTV sequences, with a picture size of 1,920 x 1,080 pixels. Classes C and D are the 

set of test sequences with picture sizes of 832 x 480 pixels and 416 x 240 pixels, 

respectively. Test sequences in these two classes are for coding performance 

evaluation of mobile applications.  

Class E is the set of test sequences with a picture size of 1,280 x 720 pixels. It is used 

to evaluate coding performance of low-latency applications such as visual 

communications. CTC, in addition, defines class F sequences for coding 

performance evaluation of non-camera captured content such as video screen 

content, containing, for example, text and computer graphics  [13].  

In addition, the test sequences defined are used for both objective and subjective 

quality performance analysis in [13]. 

 Rate Distortion Curves 2.4.2.4

When evaluating the coding performance of a video codec, a graph of R–D curve 

(Rate–Distortion Curve) is used. R–D curve is generated by plotting the encoded 

results, in terms of bit rate versus the resulting quality, in a graph. The horizontal 

axis denotes the bit rate and the vertical axis denotes a measure of distortion or 

quality of encoded video. In general, a higher compression ratio results in a lower 

bit rate; however, picture quality is generally reduced. Low compression ratio, on 

the other hand, improves picture quality but at the cost of an increase in bit rate. 

Since a high coding efficiency codec can achieve higher quality at lower bit rates, the 

R–D curve moves toward the upper left.  

As an objective measurement of picture quality, PSNR is widely used. PSNR can be 

calculated by the following (Equation ‎2-4). 

ܴܲܵܰ = ͳͲ logଵ଴ (ʹ௕௜𝑡ௗ௘𝑝𝑡ℎ − ͳ)ଶx 𝑊 x ܪ∑ {ܱ௜௜ − ௜}ଶܦ  

        (Equation 2-4) 
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 Tools for Encoding, Decoding, Modelling and 2.5

Optimisation 

 JM Reference Software 2.5.1

Joint Model (JM) is H.264/AVC codec implementation publicly made available by 

the Joint Video Team (JVT) H.264/AVC Reference Software, 2009. The current 

software version is JM 18.6. This software includes means for setting the encoder 

and decoder input parameters and the software package contains a Visual Studio 

workspace. The user has to select the appropriate solution according to his/her 

.NET package. These workspaces include the following projects:  

 lencod H.264/AVC reference encoder  

 ldecod H.264/AVC reference decoder  

 

After selecting the desired project and the appropriate compilation mode, a 

compilation will create the binaries lencod.exe or ldecod.exe in the bin directory [9]. 

Microsoft Visual Studio is a complete set of development tools for building 

ASP.NET Web applications, XML Web Services, desktop applications, and mobile 

applications. Visual Basic, Visual C#, and Visual C++ all use the same integrated 

development environment (IDE), which enables tool sharing and eases the creation 

of mixed-language solutions. In addition, these languages use the functionality of 

the .NET Framework, which provides access to key technologies that simplify the 

development of ASP Web applications and XML Web Services. [18] 

 The Intel® VTune™ Amplifier XE 2.5.2

The Intel VTune Amplifier XE is a commercial application for software performance 

analysis on Windows and Linux operating systems. On Windows systems, the 

VTune Amplifier XE integrates into Microsoft Visual Studio software and has both 

GUI and command line interfaces or can be accessed as a Standalone VTune 

Amplifier XE GUI.  Although AMD and Intel hardware work on basic features, 

Intel-manufactured CPU supports advanced hardware-based sampling. Therefore, 

it provides information on code performance for users developing serial and 

multithreaded applications. Intel VTune provides basic Hotspot analysis to identify 

where and how an application is spending time, determine the most time-
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consuming program units, and detect how they were called. The time taken by the 

instructions is indicative of any stalls in the pipeline during instruction execution. 

The tool can also be used to analyse thread performance [19].  

 WEKA machine learning toolkit 2.5.3

Waikato Environment for Knowledge Analysis [20] (WEKA) is a machine learning 

toolkit introduced by Waikato University, New Zealand. Used for research, 

education and projects, it is open source software written in Java (GNU) Public 

License and it can be run on Windows, Linux and Mac. Data mining tasks are 

implemented using machine learning algorithms.  There are several versions of 

WEKA: a GUI version adds graphical user interfaces, and a book version is 

command-line only. WEKA has the capability to read in ".csv" format files, where 

many databases or spreadsheet applications can save or export data.  Actually, once 

data is loaded into WEKA, the data set can be saved into an ARFF format. Therefore 

a series of operations are performed using WEKA's attribute. Many classification 

methods have been developed with the aid of learning algorithms. All these 

classifiers are basically learning methods and adopt sets of rules. Regression is a 

technique used to predict a value of a numerical class, in contrast to classification, 

which predicts the value of a nominal class. Given a set of attributes, the regression 

builds a model, usually an equation that is used to compute the predicted class value 

[21]. 

Regression analysis is a statistical approach that can be used to investigate the 

relationship between variables; typically, the relationship between a dependent 

variable and one or more independent variables [22]. It is used for many purposes 

like forecasting, predicting and finding the causal effect of one variable on 

another. There are many features of regression analysis that make it a popular tool: 

 Can handle multiple co-related predictor variables 

 Used for continuous and categorical variables 

 Addresses unknown parameters 

 Studies the effect of one predictor variable on a dependent variable 

 Higher-order terms can be used for modelling and data analysis 
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 Function Based Approaches 2.5.3.1

There are a number of statistical software solutions that provide different kinds of 

regression techniques including linear regression. 

Linear regression can be simple linear regression with only one variable or multiple 

linear regressions with multiple explanatory variables.  This research uses linear 

predictor functions for data modelling wherein unknown parameters are estimated 

from the data.  The mathematical technique is to find the straight line that best-fits 

the values of a linear function and plotting it on a scatter graph as data points. If a 

'best fit' line is found, it can be used as the basis for estimating the future values of 

the function by extending it while maintaining its slope. 

As per [23], linear regression is a natural technique to consider as a main method in 

statistics. When the outcome or class is numeric, and all the attributes are numeric, 

the class is expressed as a linear combination of the attributes with predetermined 

weights:  ݔ = ଴ݓ  + ଵܽଵݓ  + ଶܽଶݓ  + ⋯ +  ௞ܽ௞ݓ 

where  ݔ is the class, ܽଵ, ܽଶ, …, ܽ௞ are the attribute values; and ݓ଴, ݓଵ, …, ݓ௞ are 

weights. 

  Ensemble Classifiers 2.5.3.2

 

In [23] it has been demonstrated that whether the learning algorithm is appropriate 

to the problem at hand or not, an obvious approach to making decisions more 

reliable is to combine the output of several different models. Several machine 

learning techniques do this by learning an ensemble of models and using them in 

combination.  

These schemes are called bagging, boosting, and stacking. They are general 

techniques that are able to be applied to classification tasks and numeric prediction 

problems. 

Therefore new methods have arisen for example, shaking up bagging by adding 

random variants of classifiers to improve performance. This realization has led to 

improved procedures. In the past few years methods have been developed that 

combine the performance benefits of committees with comprehensible models. 
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Bagging: Bagging stands for Bootstrap Aggregating, an ensemble method that 

creates separate samples of the training dataset and creates a classifier for each 

sample. The results of these multiple classifiers are then combined. The trick is that 

each sample of the training dataset is different, giving each classifier that is trained 

a subtly different focus and perspective on the problem. 

However, it turns out that bagging produces a combined model that often performs 

significantly better than the single model built from the original training data, and 

is never substantially worse. [23]. Bagging can also be applied to learning schemes 

for numeric prediction—for example, model trees. The only difference is that 

instead of voting on the outcome, the individual predictions, being real numbers, 

are averaged. The bias–variance decomposition is applied to numeric prediction by 

decomposing the expected value [23]. 

The popular base classifiers that can be used with bagging are the following:  

weka.classifiers.trees.REPTree 

This is a fast decision tree learner. It builds a decision/regression tree using 

information gain/variance and prunes it using reduced-error pruning (with back-

fitting).  It only sorts values for numeric attributes once. Missing values are dealt 

with by splitting the corresponding instances into pieces. 

weka.classifiers.trees.RandomForest 

Class for constructing a forest of random trees. The Random-Forest classifier is 

located in WEKA’s trees package  

weka.classifiers.meta.AdditiveRegression 

Meta classifier that enhances the performance of a regression base classifier. Each 

iteration fits a model to the residuals left by the classifier on the previous iteration. 

Prediction is accomplished by adding the predictions of each classifier. Reducing 

the shrinkage (learning rate) parameter helps prevent overfitting and has a 

smoothing effect but increases the learning time. 

weka.classifiers.meta.RandomSubSpace 

This method constructs a decision tree based classifier that maintains the highest 

accuracy on training data and improves on generalization accuracy as it grows in 

complexity. The classifier consists of multiple trees constructed systematically by 

pseudo-randomly selecting subsets of components of the feature vector; that is, 

trees constructed in randomly chosen subspaces. 

  

http://en.wikipedia.org/wiki/Bootstrap_aggregating
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  The Validation Metrics 2.5.3.3

In order to evaluate the accuracy of the prediction models, in the proposed research 

one of the possible objective metrics have been used, namely the Correlation 

Coefficient (CC), the metric popularly used to compare accuracy in modelling. 

To determine the linear relationship between input variables (X) and target 

variables (Y). It takes values between -1 and 1. The Correlation Coefficient is defined 

as follows: 

A positive value of Correlation Coefficient means that the two variables move in the 

same direction with respect to their means. A negative value means they move in 

opposite directions with respect to their means. A value close to 0 means the two 

variables has little linear dependency [24].  

This means, for the predictions of the proposed work in this thesis, the Correlation 

Coefficient should be maintained close to 1 as much as possible, as this would 

facilitate training accurate models.  

 Matlab Optimisation Toolbox 2.5.4

The MATLAB Optimization Toolbox is an application of MATLAB which provides 

algorithms for searching solution spaces for an optimal solution. The Optimization 

Toolbox can be used to either minimise or maximise objectives while satisfying user 

supplied constraints. The MATLAB Optimization Toolbox contains many different 

types of functions for searching for solutions. The function chosen for this thesis 

was the gamultobj Fitness function to optimize [25].  

The multi-objective solver uses a genetic algorithm (gamultobj), available in the 

MATLAB optimisation tool-box R2014b 64-bit. 

According to [26], the optimisation procedure was implemented by a multiobjective 

genetic algorithm (GA). Starting from an initial population of randomly created 

individuals representing candidate solutions, in this scenario a heat exchanger of 

specific configuration and conforming to the design specifications, the GA uses the 

concept of survival of the fittest to produce more desirable individuals in 

subsequent evolutionary generations of the population. The cost value of each 

candidate solution denotes the fitness function of the individual, which is a measure 

of its quality relative to the entire population. 
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The evolution starts from a population of randomly generated individuals and is an 

iterative process, with a new population in each iteration, called a generation. In 

each generation, the fitness of every individual in the population is computed; the 

fitness being the value of the objective function.  

The new generation of candidate solutions is then utilized in the next iteration of 

the algorithm. Commonly, the algorithm terminates when either a maximum 

number of generations has been produced, or a satisfactory fitness level has been 

reached for the population. 

The genetic algorithm uses three main types of rules at each step to create the next 

generation from the current population  [25]. 

 Selection rules select the individuals called parents that contribute to the 

population at the next generation. 

 Crossover rules combine two parents to form children for the next 

generation. 

 Mutation rules apply random changes to individual parents to form children. 

The multi-objective genetic algorithm (gamultiobj) works on a population by using 

a set of operators that can be applied to the population. The initial population is 

generated randomly by default. The next generation of the population is derived 

from the non-dominated rank, which is assigned to each individual using the 

relative fitness, and a distance measure of the individuals in the current generation.   

The multi-objective GA function “gamultiobj” uses a controlled elitist genetic 

algorithm (a variant of NSGA-II [27]). While the elitist GA always favours 

individuals with better fitness value (lower rank), the controlled elitist GA also 

favours individuals that tend to increase the diversity of the population even if they 

have a lower fitness value. In order to ensure the convergence to an optimal Pareto 

front, it is very important to maintain the diversity of population. This is done by 

controlling the elite members of the population as the algorithm progresses, by 

using the options, 'ParetoFraction' and 'DistanceFcn'. The Pareto fraction option 

limits the number of individuals on the Pareto front (elite members) and the 

distance function helps to maintain diversity on a front by favoring individuals that 

are relatively far away on the front. 

The optimization problem intention is minimizing undesirable effects and/or 

maximizing desirable effects. Any or both of these will form the objective of 
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optimization from which the objective function is formulated. An optimization 

problem could be a single objective or MOO. For MOO, the final solution of the 

objective functions will represent a compromise (tradeoffs) between different 

objectives that may be totally conflicting, partially conflicting or non-conflicting 

[28]. 

Maximizing vs. Minimizing 

Global Optimization Toolbox optimization functions minimize the objective or 

fitness function. That is, they solve problems of the form 

min f  (x). 
         x    

If it is required to maximize f(x), –f(x) should be minimised, as the point at which 

the minimum of –f(x) occurs is the same as the point at which the maximum of f(x) 

occurs. 

  An overview of End-to End video streaming 2.6

When video signals are transported over an IP network, they are most often 

compressed. In this context, compression means to reduce the number of bits that 

are required to represent the video image. Video technology users are free to choose 

whether or not to employ compression for their video signals. However, it is 

important to understand that the choice of a compression method can sometimes 

mean the difference between success and failure of a video networking project. 

Today, most communication systems depend on compression technology. So an 

understanding of video and audio compression is important; also, using modern 

video transport systems, including video over IP networks. [29] 

 Overview of video streaming  2.6.1

Streaming video is a method for delivering content over an IP network that can be 

used for a variety of purposes. Streaming is a process for sending video and audio 

content to a user that is watched as the same time, just like watching a network 

broadcast television.  An active network connection requires delivering video 

content to the playback device, and the content is not normally stored after playback 

is complete.  On the other hand, when podcasting and video file–sharing 

technologies are used, the content is stored on the received device as shown in 

Figure ‎2-5. This output can be stored or transmitted over a network. Before the data 
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file can be used, it must be restored to its original size, via a decompression engine. 

Note that a compression engine is often called an encoder, and the decompression 

engine is commonly called a decoder. 

 
 

 
Figure 2-5 Video streaming diagram [29] 

  
Once the video is compressed, the compressed bitstream is then encapsulated into 

IP packets, adding the headers and other data required to comply with a specific 

protocol. A bitstream consists of a sequence of data units called network abstraction 

layer (NAL) units, each of which contains an integer number of bytes. The first bytes 

of a NAL unit produce the NAL unit header, while the rest of the NAL unit contains 

the payload data. There are two classes of NAL units in HEVC — video coding layer 

(VCL) NAL units and non-VCL NAL units. Each VCL NAL unit carries one slice 

segment of coded picture data while the non-VCL NAL units contain control 

information that typically relates to multiple coded pictures. Some NAL units carry 

parameter sets containing control information that apply to one or more entire 

pictures, while other NAL units carry coded samples within an individual picture. 

[13].  

Transport protocols are used to control the transmission of data packets in 

conjunction with IP.  UDP, or User Datagram Protocol, is often used for video and 

other data that is very time sensitive. 
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 Overview of the VideoLAN streaming solution 2.6.2

 

Figure 2-6 VideoLAN streaming solution [30] 

VLC media player  can be used as a server and as a client to stream and receive 

network streams. VLC is able to stream all that it can read [30]. The network on 

which you set up the VideoLAN solution can be as small as one Ethernet 10/100Mb 

switch, hub or direct peer to peer connection (see Figure ‎2-6). 

 EvalVid - A Video Quality Evaluation Tool-set 2.6.3

EvalVid [31] is a framework and tool-set for evaluation of the quality of video 

transmitted over a real or simulated communication networks. It is targeted at 

researchers who want to evaluate their network designs or setups in terms of user 

perceived video quality. As well as measuring QoS parameters of the basic network, 

like loss rates, delays, and jitter, standard video quality metrics like PSNR and a 

subjective video quality evaluation metric of the received video are provided. 

Some useful tools from EvalVid are as follows: 

 MP4-Container, the tool used to produce MP4-files, e.g., MP4Box is 

available.  

 Creating Reference Videos from mp4 ffmpeg is used. 

 Sender and Receiver per RTP/UDP to a specified destination host. mp4trace 

is able to send a hinted mp4-file. And a trace file is generated. 

http://www.videolan.org/vlc
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 Evaluation process is the calculation of the reference PSNR. That is the PSNR 

of the coded and then decoded in relation to the uncoded raw video source. 

 Network simulator using Riverbed Modeler (Opnet) 2.6.4

Since the design of networks is important, the software Opnet is a type of simulation 

tool which designs a network that demonstrates how the infrastructure would look 

if put in place. OPNET is now part of Riverbed, with Network simulator 

Technologies. This simulator provides comprehensive development features, which 

eases the process of designing the real world scenario and simulating the network 

models [32].  

Riverbed Modeler provides a modeling and simulation environment for designing 

communication protocols and network equipment. The simulations run by 

representing real world devices such as configured nodes and links in the designed 

topology, and results are analysed after running. In riverbed, a project can be 

created and edited in project editor, where nodes, links, utilities, subnets and 

application traffic can be included for the study of simulation. This reduces the need 

for time-intensive and expensive real hardware devices. In addition, the modeler 

incorporates audio, video traffic, HTTP, FTP, and email traffic. 

 Summary 2.7

This chapter represented the fundamental background of H.264, HEVC video 

codding standards that are essential in carrying out the optimisation of the 

CODECs. The chapter also presented the software tools and systems used for video 

CODECs, optimisation, performance analysis, modelling, optimisation, network 

simulation and end-to-end video delivery. The understanding of the operational 

aspects of these tools is essential in carrying out the research presented in the 

chapters that follow.  

The following chapter presents the literature review study of the previous research.  

 

  



 

29 
 

 

 Introduction  3.1

The literature review chapter presents an overview of previous research that has 

taken place in relation to the current research study. Many fields are involved in this 

research.  This chapter introduces the reader to the literature of H.264 and HEVC 

Encoders/decoders, optimisation of video coding/decoding and the systems 

associated with the end to end delivery of video; it also explains the tools and 

methods that have been employed within this research. This chapter also provides a 

review of literature on two different approaches to the Optimisation of video 

CODECs, i.e. parameter based and algorithmic based. The two approaches are 

discussed in section ‎3.2. The theory and techniques of multi objective optimisation 

are discussed in section ‎3.3.  Section ‎3.4  presents the literature of H.264 encoder 

and decoder.  Section ‎3.5 presents the literature of High Efficiency Video Coding 

(HEVC), the next generation video coding standard. Furthermore, machine learning 

models are presented in section ‎3.6. The relevant literature on the End-to-End 

delivery of video is presented in section ‎3.7. Finally, a summary is given in 

section ‎3.8 drawing upon a number of conclusions that justifies the novel and 

contributory research conducted within the research context of this thesis.  

 Optimisation of Video Coding  3.2

In the literature, many works have been conducted on Optimisation of video 

compression algorithms. They can be broadly classified into two categories; 

Algorithmic-based Optimisation and Parameter-based Optimisation. The state-of-

the-art of the two optimisation methods is introduced in this chapter in the 

following subsections. Algorithmic based Optimisation focuses on the uses of the 

best possible motion estimation techniques, rate-distortion algorithms, and mode-

prediction algorithms etc., which are essential parts of a video compression system 

for direct performance optimisation of a given video CODEC. In parameter-based 

Optimisation, the key focus is to select values for the massive number of parameters 
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approximately 150 parameters that are associated with a CODEC so that the 

CODEC’s performance will be optimised. No changes are made to the algorithms. 

Choosing the right parameter set is extremely important.  

The algorithm-based optimisation methods focus on the direct performance 

optimisation of a given algorithm. The techniques and algorithms required to 

implement a standard are well-defined. Based on the previous research, it is well 

known that motion estimation is the computational bottleneck of a video encoder. 

In [33] the optimisations include adaptive diamond pattern based motion 

estimation, fast sub-pel motion vector refinement and heuristic Intra prediction. 

Several platform independent optimisations for a real-time H.264 encoder were 

proposed.  

This information is used for further research areas of motion estimation. In this 

research by setting NumberReferenceFrames will Sets maximum number of 

references stored in the buffer for motion estimation and compensation.  And 

SearchRange allowable search range for motion estimation. 

The research conducted by [34], designed a memory optimisation technique for a 

H.264 video decoder and proposed an optimised memory management decoding 

method to reduce memory accessing overhead of the H.264/AVC decoder. 

Improved motion compensation and motion vector prediction modules were 

designed and implemented. Result and analysis showed that the proposed 

methodology does not cause any quality degradation in image PSNR (Peak Signal to 

Noise Ratio) performance and improves memory accessing performance of the 

decoder by reducing memory bottlenecks in a software H.264/AVC decoder.  

The work presented in [35] proposed Rate-Distortion Optimized Distributed Packet 

scheduling of multiple video streams over shared communication resources, which 

enables the multiple senders to coordinate their packet transmission schedules, so 

that the overall video quality across all streams is maximized for the given available 

data rate on the shared channel.  

A joint complexity-distortion optimisation approach for real-time H.264 video 

encoding under a power-constrained environment was proposed in [36]. In this 

paper, the authors proposed Complexity Configurable Motion Estimation (CAME) 

and Complexity Configurable Mode Decision for computation allocation model 

(CAMD) algorithms for H.264 video encoding to allocate the computational 
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resources. Moreover, the proposed algorithms can be easily integrated into any 

existing H.264 encoder as well as other standard video encoders.  

The current research has demonstrated the use of a multi-objective optimisation 

framework based on carrying out investigations related to a H.264 CODEC. 

Through the use of this framework it was demonstrated how optimal configurations 

for the encoder and decoder performance could be obtained. 

 Parameter-based Optimisation 3.2.1

Parameter based optimization approaches have received attention after the 

CODECs were standardised, Video optimisation research has mainly been focused 

around standardization of video CODECs, e.g. H.262, HEVC etc. For H.264 in 

particular, a significant amount of effort has been put into the optimisation of the 

associated algorithms, during the international standardization. However, once a 

CODEC has been standardised, in order to comply with the standardization, the 

algorithms cannot be changed or modified. Hence the standardization of a video 

CODEC stops the opportunity that exists for further optimisation of the algorithms. 

However the presence of a large number of parameters that can be set and will have 

an impact on how the CODEC will perform, provides one an opportunity to further 

optimise, in particular when the operational constraints are known. Parameter 

based optimisation is useful at this stage.  

The work of [37] proposed a novel framework for the multi-objective optimisation 

of a video CODEC based on genetic algorithms. The framework focuses on the 

development of joint complexity-memory-rate-distortion (C-M-R-D) optimisation 

of a H.264 video CODEC. An important aspect of the proposed framework is that it 

jointly considers the optimisation of multiple objectives in both the encoder and 

decoder. The framework in Figure ‎3-1 illustrates the optimisation procedure.  SPSS 

categorical regression was used to create the objective functions and to determine 

the coefficients of each significant polynomial term of the objective. The polynomial 

terms are defined to include all possible combinations of the decision variables. 

These functions were then fed to the NSGA-II optimisation tool along with the 

quantified values of decision variables. A Genetic algorithm has the ability to find 

multiple optimal solutions in a single simulation run.  
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Figure 3-1: Multi-objective Optimisation framework used in [37]. 

The performance of the optimisation framework was used in the H.264/AVC codec 

JM 15.1, made by the Joint Video Team (JVT). The proposed framework is designed 

to jointly minimize the complexity, memory usage bit rate and to maximize the 

quality both on the encoder and decoder, of the compressed video stream, while 

achieving maximum visual quality. According to this paper’s results, the framework 

can produce an optimal coding parameter set for video sequences.  

Comparing to the current thesis machine learning was used to create the objective 

functions rather than SPSS for the determination of significant coding parameters 

of video CODECs. Based on the results conducted it’s concluded that algorithm 

Linear Regression as the best practical solution.  

In [38] the challenge was to determine H.264 parameter settings that result in low 

complexity but still offer high video quality. Two fast algorithms for finding the 

H.264 parameter settings were proposed: the generalized Breiman, Friedman, 

Olshen, and Stone [39] algorithm called GBFOS-basic and the GBFOS-iterative 
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algorithm that take about 1% and 8%, respectively, of the number of tests required 

by an exhaustive search. Both algorithms perform within a maximum PSNR 

difference of 0.71 dB when using the same training and test data set. The 

generalized BFOS algorithm is an extension of an algorithm for optimal pruning in 

tree-structured classification and regression to coding. The x264 encoder has been 

compared with different commercial H.264 (x264 2006). The research concludes 

with the statement: “Choosing the right set of encoder parameters results in 

efficiently coded video while an inappropriate selection of parameters wastes bits, 

sacrifices quality, and takes longer to encode.”  [38]. 

An improvement was proposed in [39] where two algorithms for finding additional 

parameter settings for the GBFOS-basic algorithm were presented. It allows the 

encoder to choose a parameter setting that yields higher PSNR, while satisfying the 

encoding speed constraint. It was demonstrated that the PSNR improved by up to 

0.71 dB and 0.43 dB, respectively. The algorithms were tested on both Linux and 

PocketPC platforms.  

 

[40] developed a power-rate distortion (P-R-D) analysis framework; the paper 

analysed the encoding mechanism of typical video coding systems, and developed a 

parametric video encoding architecture which is scalable in computational 

complexity. The two major contributions in this work were firstly, to develop a 

parametric video encoding architecture which is fully scalable in power 

consumption; secondly, to successfully extend the traditional R-D analysis by 

considering another dimension, the power consumption, and establish the P-R-D 

analysis framework for mobile video encoding and communication under energy 

constraints. The investigation was carried out on the R-D performance of the 

complexity control parameters to establish an analytic P-R-D model. The author 

showed that the power-scalable video encoder is able to find the best configuration 

of complexity control parameters to maximize the video quality. In [41] it was  

observed that this analytical approach cannot be easily extended to other video 

encoders, such as H.264 video coding,  since the video encoding mechanism used by 

such algorithms are more sophisticated. In this work, power-rate distortion (P-R-D) 

optimisation was proposed to minimize energy consumption for delay-tolerant over 

portable video communication applications. Using the proposed P-R-D 

optimisation technology, the energy consumption of video encoding can be 

significantly reduced (by up to 50%), especially in delay-tolerance. 
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A joint power-distortion model has been presented in [42] and analysed from two 

aspects: power consumption and video quality. In other words, how to find out the 

optimized encoding parameters with minimum power consumption? And how to 

calculate the optimized encoding parameters? So that the video quality is best.  The 

framework was developed to solve the joint power and distortion optimisation 

problem, based on the investigation of the power consumption caused by the 

encoding and transmission. Using the proposed model, given any quality level, 

appropriate encoding parameters can be estimated so that the total power 

consumption is minimized. Unlike being given any available power level, the proper 

encoding parameters are also calculated so that the video quality is optimized. The 

analysis method can be easily extended to other video encoder and transmission 

configuration.  

In this thesis it is shown that the proposed framework is flexible on the number of 

objectives that can jointly be optimized. The NSGA-II provides all sets of optimal 

results that jointly minimize CPU Time, bit-rate and maximizes quality. 

One of the most critical issues in portable multimedia devices is to minimize the 

energy consumption and extend the operational lifetime of the system while still 

maintaining the required video quality. [43] Proposed a power-rate-distortion (P-R-

D) model of a video encoding system to maximize its lifetime. An analytic model for 

P-R-D optimisation was proposed to find the optimum trade-off between power 

consumption and video encoding performance in [41]. Unfortunately, these works 

were not being applied on the hardware-based video encoder. As the power 

consumption becomes an important factor in portable devices, a hardware-based 

video encoder is often more suitable than a software-based video encoder to reduce 

the power consumption down to the acceptable level. In [43], the power-rate-

distortion (P-R-D) model was discussed regarding the relations among power 

consumption, bit rate, and distortion of the video encoding process to reduce the 

power consumption of the video code while maintaining the video quality. The 

authors concludes that the proposed P-RD can be utilized by a designer to reduce 

the energy consumption of the video encoding system while maintaining the 

distortion using proper allocation of power to video encoder. 

The study in [44] proposed a novel distortion prediction equation, optimisation of 

quantization parameter QP selection and a joint rate-distortion optimisation for the 

H.264 rate control algorithm. The authors demonstrated the improvement in image 
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quality and a computational saving of at least 34%, which was the recommended 

rate control algorithm in the H.264 reference software JM15.01. The author 

concluded that the algorithm could be implemented for real time applications 

requiring the optimisation of rate-distortion.  

The main contribution in [45]  is the insertion of an encoding parameter capable of 

controlling the encoding complexity and the possibility to select the desired 

encoding speed. The framework implemented was developed through an open 

source software implementation of the H.264/AVC, the x264 encoder. The results of 

the study showed that tight complexity control is attainable in practice, with very 

little loss in RD performance. 

High Efficiency Video Coding (HEVC) is the next generation standard of coding 

being developed, the newest video coding standard of the ITU-T Video Coding 

Experts Group and the ISO/IEC Moving Picture Experts Group [11].  HEVC in [46] 

provides significantly improved compression performance to reduce 50% bit rate 

compared to all existing video coding standards under the same visual quality. The 

paper proposed a hardware-friendly method for RDO of HEVC intra coding.  The 

results of the study show that the proposed RD cost function provides 85.8% area 

reduction and 1260% throughput improvement in hardware design, with slight loss 

of bitrate and PSNR, which is very suitable for real-time encoder application.  

The proposed framework in this thesis a Multi-Objective Optimisation was 

developed to determine the optimum coding parameters for a H.265 video CODEC.  

The literature review reveals that generally two approaches are used in developing 

video coding algorithms. The algorithm base approach used at the development of 

algorithms aim to produce optimal performance. In contrast parameter based 

approaches are useful in optimising the performance of a video codecs which has 

been already finalised. This is important as the algorithm cannot be changed.   

However the focus of this thesis is parameter-based Optimisation due to its 

relevance and nature of research and optimisation methodology adopted in this 

thesis.  It important to understanding and to learn the parameters that can be set on 

a CODEC, parameters have impact on video CODEC performance, these would  

provide one of the opportunity to further optimise, in particular when the 

operational constraints are known. Parameter based optimisation is useful at this 

stage.  
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 Theory of Multi-Objective Optimisation  3.3

An optimization problem could be a single objective or Multi-Objective 

Optimisation MOO. Many real-life scenarios where multiple objectives need to be 

satisfied in the course of optimization. Finding a single solution in such cases is very 

difficult, it may also happen that optimizing one objective leads to some 

unacceptably low value of the other objective(s). In such problems, referred to as 

multiobjective optimization problems (MOOPs). In the remaining part of this 

chapter, the focus on such methods of optimization multiple objectives.  

In the past 15 years, evolutionary multi-objective optimisation EMO has become a 

popular and useful field of research and application. The purpose of multi-objective 

optimisation in a mathematical programming framework is to optimize different 

objective functions subject to a set of constraints.  As the name suggests, a multi-

objective optimisation problem (MOOP) involves optimizing a number of objectives 

simultaneously, which are to be minimized or maximized. The problem becomes 

challenging due to a conflict of objectives, and the optimal solution of an objective 

function is different from that of the other. Instead, there are several solutions 

called feasible solutions where the property of an improvement in an objective from 

one point to the other happens only due to a sacrifice in at least one other objective. 

Moreover, the problem usually has a number of constraints that any feasible 

solution must satisfy [47] and  [48].  The entire decision variable space need not be 

feasible. The set of all feasible solutions is called the feasible region. In other words, 

the feasible region not only contains optimal solutions, but also solutions that are 

non-optimal. In general, optimisation refers to finding the best possible solution to 

a problem given a set of limitations or constraints. Moreover, the problem usually 

has a number of constraints that must be satisfied by any feasible solution. Since 

2002 the multi-objective optimisation problem has been specified in its general 

form. Therefore, the general form of the MOOP may be stated as it appears in [47] 

and [48] as follows: ݁ݖ݅݉݅ݔܽܯ/݁ݖ݅݉݅݊݅ܯ         ௠݂ሺݔሻ,                                            ݉ =  ͳ, ʹ, . . . . . . , ሻݔ𝐽 ሺ݃                       ݋ݐ ݐ݆ܾܿ݁ݑݏ         ;ܯ   ൒  Ͳ;                                ݆ =  ͳ, ʹ, . . . . . . , ሻݔℎ௞ ሺ                            ;ܬ  =  Ͳ;                                  ݇ =  ͳ, ʹ, . . . . . . , ௜ ሺ௅ሻݔ                         ; ܭ    ൑ ൑   ݅ ݔ  = ݅      ,  ሺ௎ሻ݅ ݔ     ͳ, ʹ, . . . . . . , ݊. 
 



 

37 
 

 Multi-Objective Optimisation using Genetic Algorithms 3.3.1

During 1993–1995, a number of different evolutionary algorithm EAs were 

suggested to solve multi-objective optimisation problems. These algorithms 

demonstrated the necessary additional operators for converting a simple EA to a 

MOEA [49]. Over the past decade, a number of multi-objective evolutionary 

algorithms (MOEAs) have been suggested to find multiple Pareto-optimal solutions 

in one single simulation run. Simple evolutionary algorithms EA can be extended to 

maintain a various set of solutions. An EA can be used to find multiple Pareto-

optimal solutions in one single simulation run. The non-dominated sorting genetic 

algorithm (NSGA) proposed in  [50] was one of the first such EAs. In [49] the 

author proposed an improved version of NSGA, which was called NSGA-II.  The 

NSGA-II outperforms two other existing MOEAs: Pareto-archived evolution 

strategy (PAES), strength-Pareto EA (SPEA). NSGA-II has been compared with 

another recently suggested constraint-handling strategy. These results encourage 

the application of NSGA-II to more complex and real-world multi-objective 

optimisation problems [49].   

NSGA-II is also implemented in this thesis in the genetic algorithm It is shown that 

the proposed framework is flexible on the number of objectives that can jointly be 

optimized. Practical use of the proposed framework is described using the six videos 

mathematical formulation. 

The features in [48] stated that the NSGA-II procedure is one of the popularly used 

EMO procedures which attempt to find multiple Pareto-optimal solutions in a 

multi-objective optimisation problem and has the following three features: 

 It uses an elitist principle, 

 It uses an explicit diversity preserving mechanism,  

 It emphasizes non-dominated solutions. 

The optimisation of H.264 and HEVC codecs in this research is carried out using 

implementation of NSGA-II. Two reasons have contributed to proposing to use a 

GA. The first reason is that a GA has the ability to find multiple optimal solutions in 

a single simulation run. The second reason is the presence of a well-established, 

popular, public domain, GA software tool, Non-dominated Sorting Genetic 

Algorithm NSGA-II [49]  that can effectively be utilized in the proposed work.  
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Gamultiobj uses a controlled, elitist genetic algorithm, a variant of NSGA-II [47]. An 

elitist GA always favours individuals with better fitness value (rank). A controlled 

elitist GA also favours individuals that can help increase the diversity of the 

population even if they have a lower fitness value. It is important to maintain the 

diversity of population for convergence to an optimal Pareto front. Diversity is 

maintained by controlling the elite members of the population as the algorithm 

progresses. Two options, ParetoFraction and DistanceFcn, control the elitism. 

ParetoFraction limits the number of individuals on the Pareto front (elite 

members). The distance function, selected by DistanceFcn, helps to maintain 

diversity on a front by favoring individuals that are relatively far away on the front. 

The algorithm stops if the spread, a measure of the movement of the Pareto front, is 

small. 

The literature review above demonstrated studies have been conducted for a 

generalised framework for multi objective optimisation of video CODEC. However 

there is potential for the further improvement and development of these generalised 

frameworks. The research conducted within this thesis will extend the state-of-art 

further and also for the first time carry out multi-objective optimisation of the latest 

video coding standard, HEVC. 

 H.264 Video Coding 3.4

A significant number of research articles have been published, in particular during 

its standardization period, on various aspects of H264 video coding. In  [51] the 

H.264 software encoder engine that was developed by the NTT Cyber Space 

Laboratories were presented. Technologies for fast encoding, high compression 

performance, and reduced encoder operation cost, for video delivery services were 

proposed. The CODEC achieved a 20% reduction in the bitrate of the compressed 

video at the same encoding speed as compared to the original CODEC. The CODEC 

supported the 4:2:2 video formats, which is important for professional use, and 

reduces the cost of online video delivery services.   

According to [52], JM 15.1 reference software and Intel IPP Integrated Performance 

Primitives H.264 codec are compared in terms of execution time and video quality 

of the output decoded sequence. PSNR, motion estimation time, encoding time, 

decoding time and the compression ratio of the H.264 file size encoded output were 
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used. Intel IPP H.264 implementation outperformed the JM 15.1 in all measures 

except for the compression ratio of H.264 file size obtained. The motion estimation 

time, encoding time and decoding time are much less in Intel IPP H.264 compared 

to that of JM 15.1.  

The  research presented in  [53]  conducted an  investigation on the relationship 

between the bit rate and the CAVLC/UVLC decoding complexity. Understanding 

this relationship helped the researchers to choose the best encoding parameters to 

yield the best trade-off between the rate, distortion, and the decoding complexity 

performance. The proposed complexity control scheme of the H.264/AVC encoder 

generated a bit stream that is most suitable for a receiver platform with a 

power/hardware constraint. The experimental results showed that the H.264/AVC 

encoder can generate bit streams according to different entropy decoding 

complexity requirements accurately. It was shown that the resultant bit streams can 

be decoded at much lower complexity at the cost of small PSNR loss. 

In [27] and H.264 decoder model was used to investigate the efficiency of a 

decoding system under various conditions for bitstreams, coding features and 

bitrates. H.264 achieves improved compression efficiency at the cost of increased 

computational complexity. Real-time execution of the H.264 decoding process 

provides a challenge on mobile devices due to low processing capabilities. The 

resulting idle time curves provide a powerful tool for extracting optimal buffer sizes 

and for estimating PSNR values where the decoder performs most efficiently. The 

simulation results obtained allowed for optimizing a decoding system for specific 

application aspects such as quality, memory requirements or core usage [54].  

A novel method was proposed in [55] for  Selective Encryption SE of H.264/AVC 

(CABAC) and HEVC-compressed streams. The authors tackled the main security 

challenge of SE, the limitation of the information leakage through protected video 

streams, and the improvement in the visual distortion induced by SE approaches. 

The technology in [56] discussed was behind the new H.264/MPEG4-AVC 

standard, focusing on the main distinct features of its core coding technology and its 

first set of extensions, known as the fidelity range extensions (FRExt). In addition, 

this article also discusses the current status of adoption and deployment of the 

standard in various application areas.  
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The important differences are as follows:  

 Enhanced motion-compensated prediction and spatial intra prediction 

capabilities  

 Use of 4 × 4 and 8 × 8 (FRExt only) transforms in integer precision  

 Use of a content-adaptive, in-loop, de-blocking filter  

 Use of enhanced entropy coding methods  

It was demonstrated that when used well together, the features of the new design 

provide significant bit rate savings for equivalent perceptual quality relative to the 

performance of prior standards. This is especially true for the High profile related 

coding tools. 

 High Efficiency Video Coding (HEVC)  3.5

High Efficiency Video Coding (HEVC) is the next generation video coding standard 

being developed, the newest video coding standard of the ITU-T Video Coding 

Experts Group and the ISO/IEC Moving Picture Experts Group [57].  

 

In [58], it was shown that HEVC provides significantly improved compression 

performance, i.e. an approximately 50% reduced bit rate as compared to the best 

existing video coding standards, under the same visual quality. The paper proposed a 

hardware-friendly method for RDO of HEVC intra coding. The results of the study 

showed that the proposed RD cost function provides 85.8% area reduction and 

1260% throughput  improvement in hardware design, with slight loss of bitrate  and 

PSNR, which is suitable for real-time encoder application.  

 

A performance comparison of H.265, VP9 and H.264 encoders was presented in 

[12]. According to the experimental results, obtained for a whole test set of video 

sequences by using similar encoding configurations for all three examined 

representative encoders, H.265/MPEG-HEVC was shown to provide significant 

average bit-rate savings of 43.3% and 39.3% relative to VP9 and H.264/MPEG-AVC, 

respectively. 
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In [59], it was shown that for resolutions of up to HD (1920x1080), code 

optimizations including heavy use of single instruction multiple-data (SIMD) 

instructions are sufficient to achieve HEVC real-time software decoding. It was 

further shown that, when it came to decoding UHD video (3840x2160), single 

threaded execution with code optimization was not enough. 

 

According to [60], HEVC has been designed to focus on increasing video resolution 

and increasing the use of parallel processing architectures. Therefore, this approach 

merges all traditional configuration files used in the encoding process into only one 

configuration file without removing any parameters used in the traditional methods. 

The proposed approach in terms of encoding time as opposed to the traditional 

methods reduces the access time by half by reducing the data exchange between the 

configuration files used and without changing the rate-distortion (RD) performance 

or compression ratio. There is no change in the rate-distortion and compression 

ratio. 

 

As per [61], the intra prediction part of the newest video compression standard 

H.265/HEVC was considered. That covers general HEVC dataflow. A series of 

experiments was conducted on different coding configurations and video sequences. 

The statistics presented using each intra prediction mode and the statistics of modes 

becoming part of the most probable mode array obtained in the experiments. The 

obtained statistic data are probably not the objective characteristics of the test video 

sequences, but only the illustration of the current intra coding practice. It is of 

interest to obtain objective statistical data which might contribute to the 

improvement of the existing approach. 

 

An approach [62] compared the video coding standards by means of peak signal-to-

noise ratio (PSNR) and subjective testing results. A joined approach is applied to the 

analysis of designs, including H.262/MPEG-2 Video, H.263, MPEG-4 Visual, 

H.264/MPEG-4 Advanced Video Coding (AVC), and High Efficiency Video Coding 

(HEVC). As per the results, HEVC encoders can achieve equivalent quality as 

encoders that conform to H.264/MPEG-4 AVC when using approximately 50% less 

bitrate on average. The HEVC design is shown to be especially effective for low bit 

rates, high-resolution video content, and low-delay communication applications.  
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High Efficiency Video Coding (HEVC) adopts 35 intra prediction modes with larger 

Coding. Unit CU size to improve the intra encoding efficiency, causing high 

computational complexity. In [63], two fast intra-prediction algorithms are proposed 

to reduce the number of candidate modes for rate-distortion (RD) optimization. By 

improving the RMD and MPM process, the number of candidate modes to do SATD 

calculation and RDO calculation is reduced and computational complexity can be 

reduced. Experimental algorithms show it could save about 27.3% of encoding time 

with negligible performance loss compared to HM14.0.  

 

The HEVC standard aims to provide a doubling in coding efficiency with respect to 

the H.264/AVC high profile, delivering the same video quality at half the bit rate. 

According to [64], complexity-related aspects that were considered in the 

standardization process are described. Furthermore, profiling of reference software 

and optimized software gives an indication of where HEVC may be more complex 

than its predecessors and where it may be simpler. Overall, the complexity of HEVC 

decoders does not appear to be significantly different from that of H.264/AVC 

decoders; this makes HEVC decoding in software very practical on current hardware. 

HEVC encoders are expected to be several times more complex than H.264/AVC 

encoders and will be a subject of research in years to come. 

 

When it comes to transmitting high resolution video such as of resolution 4K, over 

the internet or in broadcast, the 50% bitrate reduction is essential. [65] Shows that 

real-time decoding of 4K video with a frame- level parallel decoding approach using 

four desktop CPU cores is feasible. It has been shown that real-time software 

decoding of 4K 50Hz video with HEVC is feasible on current desktop CPUs using 

four CPU cores. Encoding 4K video in real-time on the other hand remains a 

challenge. Therefore, first use cases of 4K video coded with HEVC are expected to be 

limited to offline encoded material for internet services like video on demand. 

 

[66] presented a new parallelization approach for HEVC decoding named an 

Overlapped Wavefront (OWF). It is based on wavefront processing and improves its 

parallelization efficiency by allowing overlapped execution of consecutive pictures. 

In this strategy the de-coding, steps are performed on a CTB basis rather than on a 

picture basis which improves data locality. The implementation achieves between 

29.6%, 42.4%, and 66.6% higher frame rates compared to previous results and 
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11.3%, 21.0%, and 38.0% higher frame rates compared to Tiles, for 2160p, 1600p, 

and 1080p, respectively. 

Iterative intra prediction search in [67] was proposed for the H.265/HEVC encoder 

to reduce the number of prediction modes for estimation. There was about a 40% 

encoding time reduction for HM 10.1 intra-only coding with negligible bitrate 

increase and PSNR quality degradation. Additional speed-up techniques including 

fast prediction error estimation were offered. 

 

[68] proposed and evaluated a parallelization strategy for the emerging HEVC video 

coding standard.  The strategy is based on entropy slices which allow exploiting 

parallelism in the entropy decoding stage while maintaining high coding efficiency. 

The author approach requires encoding videos with one entropy slice per Largest 

Coding Units LCU row in order to decode multiple LCU rows in a wavefront parallel 

manner. Evaluations were performed on a PC with 12 Intel Xeon cores running at 3.3 

GHz show that it is possible to achieve real-time performance for 1920×1080p50 

(53.1 fps) and 2560×1600 (29.5fps) video resolutions with speedups of 5.2× and 

6.3× compared to sequential execution, respectively. 

 

In [43] HEVC HM software was compared for both the coding performance and the 

coding speed of practical HEVC encoders for high resolution video sequences. [69] 

conducted a comprehensive evaluation of the latest high performance H.265/MPEG-

HEVC encoders, including the open source encoder—x265 and the commercial 

encoder—DivX265, based on default parameters and a new open 4K video database. 

Such comparison shows that the latest HEVC encoders, open source x265 and 

commercial DivX265, have achieved significant progress compared to the reference 

codec HM. However, there is further potential for optimization to address 

outstanding challenges. 

 

In  [70] a general review of new video compression standards HEVC, VP9 [71] and 

Daala [71] were conducted and their compression efficiency was compared. The 

experimental results in [70] showed that the Daala video encoder is still far from 

being competitive. While HM provides 31% better compression rates in key-frame 

only mode and about 40% improvement in inter-coding mode compared to JM, VP9 

is only 18% better than JM in both modes. It is worth mentioning that the VP9 



 

44 
 

encoder does not have an efficient RDO model, so the VP9 encoder itself may 

potentially have better performance. 

The performance evaluation metrics that are used to report HEVC efficiency results 

are mainly based on PSNR, especially for resolutions beyond HDTV. [72] provided 

subjective evaluation results to assess the performance of the current HEVC codec 

for resolutions beyond HDTV, comparing with the objective measured calculated in 

terms of PSNR. 

The HEVC standard is the current state of the art video compression framework. 

The first version was published in 2013. Since then, several open source 

implementations have been developed, among others, the reference software model, 

the videoLAN encoder and the OpenHEVC decoder. HEVC codecs will replace 

H.264 ones inside the consumer electronic devices in the near future. In [73] , the 

open source OpenHEVC decoder has been modified to support parallel decoding at 

the slice level using OpenMP instead of pthreads. The advantage of this unthreaded 

decoder is that it can be used with any architecture, providing it supports OpenMP. 

Tests have been carried out with three different multicore chips and the 

performance results are similar to those obtained with the threaded OpenHEVC 

decoder. 

 Use of machine learning in video coding 3.6

In Chapter-1 it was mentioned that the research presented in this thesis aims to use 

machine learning in the process of developing a multi-objective optimisation 

framework for H264 and HEVC video CODECs. In particular the use of Ensemble 

Learning Approaches is investigated. This section reviews past literature where 

machine learning was used for the purpose of enhancing or investigating the 

performance of video CODECs. Further literature that has investigated the 

capabilities of Ensemble Learning Algorithms as compared many popular single 

learning algorithms is also presented as further justification of the proposed 

research’s intention to make effective use of Ensemble Learning Algorithms. 

In [74] a non-traditional use of machine learning was proposed in the area of video 

encoding and transcoding. Video encoding and transcoding are computationally 

intensive processes and this complexity increases significantly with compression 

standards such as H.264. Video encoders and transcoders have to manage the 

quality vs. complexity tradeoff carefully. The author proposed the use of machine 
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learning in video coding and transcoding to overcome complexity related challenges 

in 1) MPEG-2 to H.264 video transcoding, 2) H.263 to VP6 transcoding, 3) H.264 

encoding and 4) Distributed Video Coding (DVC). The results show that use of 

machine learning significantly reduces the complexity of encoders/transcoders and 

thus can enable efficient video encoding on resource constrained devices such as 

mobile devices and video sensors.  The results also demonstrated that the proposed 

approach is general enough and can be used effectively in high complexity video 

coding and transcoding applications. 

In [74] the use of machine learning to reduce the complexity of macro block mode 

computation from a search operation was proposed. The authors developed a 

methodology based on machine learning that computes the MB coding mode 

instead of searching for the best match thus reducing the complexity of Intra 16x16 

coding by 17 times and Intra 4x4 MB coding by 12.5 times. The proposed approach 

uses simple mean value metrics at the block level to characterize the coding 

complexity of a macro block. The J4.8 classifier is used to build the decision trees. 

The results show that intra MB mode can be determined with over 90% accuracy. 

The approach can also be used for determining MB prediction modes with an 

accuracy varying between 70% and 80%. 

According to [75], ensemble methods are learning algorithms that construct a set of 

classifiers and then classify new data points by taking a vote of their 

predictions.  The concept of combining classifiers is proposed as a new direction for 

the improvement of the performance of individual classifiers. The original ensemble 

method is Bayesian averaging, but more recent algorithms include error-correcting 

output coding, bagging, and boosting. This paper reviews these methods and 

explains why ensembles can often perform better than any single classifier. Some 

previous studies comparing ensemble methods are reviewed, and some new 

experiments are presented. 

The problem of combining classifiers which use different representations of the 

patterns to be classified was studied by [76], developing a common theoretical 

framework for classifier combination and showing that many existing schemes can 

be considered as special cases of compound classification where all the pattern 

representations are used jointly to make a decision.  The two main reasons for 

combining classifiers are efficiency and accuracy.  
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In conducting the above review of literature it was found that the use of machine 

learning in enhancing the performance of video COCECs still remains in its early 

stages, regardless of the revolutionary changes machine learning has already 

resulted in video processing and quality enhancement supported by the recent 

developments ensemble learning systems and deep learning system.  

 End-to-End Video Streaming 3.7

The growth of the Internet has created a vast demand for multimedia 

communications. Video Services account for a very large portion of the network 

traffic.  Transmission of real-time video typically has bandwidth, delay, and loss 

requirements. Therefore the subject of end-to-end video delivery and the associated 

performance analysis has become an area of significant research interest in the 

recent past.  

In [77], the author presented results for evaluating MPEG-4 video quality in the 

presence of packet losses. The results show that a single packet loss in an I-frame 

can already result in a video impairment and significantly degrade the video quality. 

The impact of single packet loss was evaluated with different frequencies as well as 

loss distances within a short period. It was found that more than two times single-

losses in a short period will lead the video quality to be unacceptable.  

[78] used H.264 coded video over best-effort IP networks, using RTP as the real-

time transport protocol. Novel, joint source and channel coding techniques were 

proposed. After a description of the environment, the error-resilience tools of H.264 

and the draft specification of the RTP payload format were introduced. The video 

coding layer has been shown to significantly improve the performance of H.264 in 

the challenging best-effort IP environment. 

The paper [79] focused on video services for 3G networks with provided traces of 

long MPEG- 4 and H.263 encoded videos in the QCIF format resulting in low 

bandwidth video streams. The pre-encoded video sequences are encoded by 

different users and they differ in video settings in terms of codec, quality, format, 

and length.  Compared to earlier traces, the new traces are suitable for the network 

performance evaluation of WLANs.  The peak to mean ratios of the frame sizes of 

the new traces are typically in the range of 15 to 35, whereas a range from 7 to 18 
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was typically observed before. The traces were publicly available at [80] and provide 

instructions for using the traces in network evaluations. 

Another study has attempted to address the problem of Multi-Objective 

Optimisation for Video Streaming. [81] Presented cross-layer optimized video rate 

adaptation and scheduling scheme for wireless video streaming over packetized 

networks aiming for maximum quality of service (QoS) for each user, maximum 

video throughput, and QoS fairness among users for wireless video streaming. The 

proposed framework aims to serve the user with the least remaining playback time, 

highest video quality and the highest video throughput. 

A different approach was introduced in [82] using a pre-roll delay-distortion 

optimisation (DDO) framework while ensuring continuous playback for on-demand 

video streaming over limited bitrate networks using AVC/H.264 encoding. The 

input video is first divided into temporal segments. The system then encodes the 

input video according to the specified relevance-distortion policy, where encoding 

parameters are selected for each temporal segment. The optimal encoding 

parameters are computed using a novel, multi-objective optimisation formulation, 

using linear programming. What was accomplished in this paper is that the 

technique was developed to reduce the waiting time to much lower levels than 

downloading and playing; in addition, by maintaining the relevant quality at a 

suitable level over low bandwidth channels. 

A novel and complete tool-set for evaluating the delivery quality of MPEG video 

transmissions in simulations of a network environment was presented in [83].  The 

proposed integration of EvalVid and NS2 provided a novel generalized and 

comprehensive tool-set for evaluating the video quality performance of network 

designs in a simulated environment. Therefore, for researchers to encode their own 

test video sequences in order to evaluate the delivered video quality in a simulated 

network environment, the proposed QoS assessment framework would be a good 

choice. 

To meet these QoS requirements, researchers have developed a specific multimedia 

mechanism to enhance the performance of video transmission. Therefore, a new 

simulation tool-set called MyEvalvid_RTP to achieve more realistic simulations was 

proposed in [84]. With MyEvalvid_RTP, researchers can evaluate both the video 

delivered quality and the audio delivered quality. 
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The simulation model for H.264 video streaming was developed using OPNET 

Modeler, an advanced network modeling and simulation tool. The simulation 

results show that based on the high level characteristics in the time domain, a H.264 

stream is very similar to an MPEG2 stream. Under stressed network conditions, the 

more advanced H.264 standard shows better results: lower queuing delays and less 

packet-loss as described in [85]. 

A Streaming Video Content Over IEEE 802.16 / WiMAX Broadband Access was 

studied in [86] to simulate bandwidth intensive, delay sensitive, video traffic 

representative of IPTV over WiMAX and ADSL. These video streams are encoded 

using MPEG-2 or MPEG-4 codecs.  The simulation using the OPNET modeler with 

integrated WiMAX support has been adopted. As a result, ADSL showed behavior 

that approached the ideal values for the performance metrics, while WiMAX 

demonstrated promising behavior within the bounds of the defined metrics. 

Analysing the wireless local area network’s performance with streaming H.263 

standard based video under mobility occurred in [87]. Various simulations were 

performed using H.263 video traffic. Study results verified the successful H.263 

video traffic import in OPNET and recommendations included making video clients 

in WLAN somewhat more intelligent by adapting to the variations in network 

resources due to mobility. 

The performance in [88] compared of WiMAX and ADSL by streaming audio and 

video contents. File Transfer Protocol (FTP), Hyper Text Transfer Protocol (HTTP), 

and electronic mail have also been used for comparison. The OPNET Modeler 

versions 15.0 and 16.0 were used to evaluate packet loss, delay, delay jitter, and 

throughput with various design parameters to determine whether WiMAX exhibits 

performance comparable to ADSL. The OPNET Modeler provided a suitable 

environment to design and characterize computer networks.  

Real time video transmission is one of the biggest challenges of communication 

networks. The work in [89] deals with the transmission of video encoded with 

H.264/AVC coding standard through WLAN using an OPNET Modeller (OM). It is 

noted that the OM simulation environment allows for designing the transmission 

systems, which would be difficult to establish in laboratory conditions. 

In [90] introduced a comprehensive toolset for streaming and evaluating video 

streams encoded using the H.265 standard including its scalable extension in 

simulated network environments. A toolset facilitates the transmission and 
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evaluation of HEVC/H.265 and SHVC encoded video on the popular open source 

NCTUns simulator. 

The effect of Packet Drop and Jitter on perceived video quality for various encoded 

video, over Streaming Networks, using tools such as OPNET and EvalVid was 

investigated in [64]. The results helped with choosing an appropriate delay buffer 

size and packet repair techniques for various types of video, which will further help 

to improve the user experience in the field of multimedia as demonstrated in [91]. 

 Summary & Conclusions 3.8

The subject of optimisation of the performance of video CODECs has been 

investigated both within and outside the standardization activities of all video 

CODECs in particular the well-established standard H264 and the latest standard 

HEVC. Whilst algorithmic optimisation has been the key focus of optimisation 

related research activity before and after the standardization of such CODECs, 

parameter based optimization approaches have received attention after the CODECs 

were standardised, in particular during their practical usage under resource 

constrained conditions. 

Machine Learning has found widespread applications in particular in video 

processing and enhancement. However its use within video coding and 

representation has been minimal. The latest advances in machine learning such as 

Ensemble Learning and Deep Learning systems provides the means of utilising 

machine learning for enhancing the performance of video CODECs. 

The literature review conducted in this chapter has shown that there has been no 

attempt to use machine learning for parameter based optimisation of video 

CODECs. Further there has been no attempt to propose approaches and/or 

frameworks for multi-objective optimisation of video CODECs. The research 

conducted within the context of this thesis and presented in chapters 5, 6, 7 and 8 

contributes towards closing this research gap as briefly highlighted in Chapter 1.  

The following chapter demonstrates the Machine Learning based Framework for 

the analysis of significant coding parameters of H.264.  
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 Decoder Introduction 4.1

Applications that benefit from accurate video capture, efficient representation and 

coding, error-free transmission and subjectively optimised display, have been 

growing over the years due to the availability of higher network bandwidth, faster 

processor speed and advanced capture and display technologies. Some of the most 

extensively used applications include real-time video conferencing, video streaming 

over broadband networks and digital TV broadcasting. Most current mobile hand-

held devices come equipped with a video camera that is able to capture and encode 

a video stream in a standard format. 

These devices also include video players which can decode and playback video. Such 

video CODECs have many parameters that can be used to control their operational 

characteristics, both at the encoder and decoder ends, enabling the possibility of 

fine tuning their operation for maximum efficiency within environments and 

application scenarios that are bound by various constraints. For example, the 

available bandwidth will have an upper limit, the network will be subjected to delays 

and the decoder/display unit may have limitations in processing and display 

capabilities. Yet the encoder, transmission and decoder have many parameters that 

can be adjusted for them to be efficiently operational under above mentioned 

constraints. Identifying the values of these parameters that results in the CODECs 

optimal performance under given constraints remains an open research problem of 

vital importance. 
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The first step of parameter based optimisation of a video CODEC is the 

identification of the coding parameters that have a significant impact on its key 

performance related parameters, such as, bandwidth usage, image/video quality, 

and CPU time, etc. Although an experienced user of a video CODEC can guess these 

parameters with some accuracy when the content of the video is known, a formal 

scientific approach is needed to accurately decide the parameter set, with minimum 

subjective error.  

In this chapter a framework that is based on linear regression is proposed for both 

the identification of significant coding parameters and performance modelling. In 

Chapter-5 it is demonstrated how these linear models can be used for multi-

objective optimisation of a H.264 video CODEC using Genetic Algorithms. Together 

Chapters 4 & 5 provides a framework for the multi-objective optimisation of a 

H.264 video CODEC.   

For clarity of presentation this chapter is divided several sections. Apart from this 

section which is an introduction to the research being carried out, section 4.2 

presents an overview of the proposed framework, in particular the experiments 

conducted for the determination of the significant coding parameters and derivation 

of Linear Regression based models for the performance related measures. Section 

4.3 presents a comprehensive analysis of the results of the characterisation and the 

performance modelling of the encoder. Decoder analysis is presented in section ‎4.4. 

Section ‎4.5 investigates the use of other, more sophisticated machine learning 

models such as Ensemble Learning Algorithms, e.g. Bagging, in the performance 

modelling of a H.264 video CODEC in order to justify the conclusion within this 

research to finally use of Linear Regression for performance modelling. Finally 

section ‎4.6 concludes providing a summary of the contributions made. 

 Proposed framework for multi-objective 4.2

optimization 

The primary focus of Chapter 4 and 5 is to propose a framework for Multi-Objective 

Optimisation of a H.264/AVC video CODEC, when working under multiple 

constraints. The MOO framework is intended to minimize the CPU time,  CPU time 

is the total time it takes for the encoder and decoder to finish, Bit-rate and to 
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maximize the quality of the compressed video stream. MOO framework being 

proposed is accomplished by following the three steps below.   

1. Profiling experiments on the encoder and decoder are carried out to 

determine the coding parameters that have a significant impact on each of 

the performance related objectives, namely, rate, and distortion and CPU 

Time. (Chapter-4) 

2. The objective function/ model for each performance objective, subject to 

constraints, based on the above significant parameters is constructed, by 

using a suitable regression procedure. (chapter-4) 

3. These objective functions were then used within a genetic algorithm (GA) 

based multi-objective optimisation framework to determine optimal 

parameter values. The focus of this chapter is the first two steps above, i.e. 

determining the significant coding parameters and establishing the 

corresponding objective functions. (Chapter-5) 

A system level block diagram of the proposed framework is illustrated in Figure 4-1. 

Figure 4-1: Proposed Multi-objective optimisation framework. 
 
 
In a practical multimedia application scenario a device captures a video, encodes it 

and transmits it via a network to another device that decodes and displays the 

content to a viewer. Assuming that the network has bandwidth constraints and the 

device in which the encoder is placed has compute power constraints and the 

potential viewers of content may demand best quality levels, a situation in which the 

proposed MOO framework can be used, arises. The significant number of encoder 

parameters that control the encoders bit rate, quality and computational power 
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requirements can be selected, to ensure the encoder performance is optimal, under 

the given multiple constraints.  

However, this requires the modelling of the encoders bit rate, quality and CPU time, 

based on the large number of selectable encoder parameters. If mathematical 

objective functions can be derived for each of the above, a standard approach to 

optimisation can be used (see Chapter-5). Deriving objective functions, for example 

using mathematical regression, will lead to the determination of the significant 

coding parameters, the key focus of the research presented below. The same 

explanation can be applied to the selection of decoder parameters that results in 

optimal decoder performance.  

Within the research context of this chapter, the data transmission network is 

assumed to be perfect, i.e. no delays, no bit loses, no errors etc. Therefore, the bit 

stream generated by the encoder is transmitted without any loss or alteration to the 

decoder, real-time. The following section proposes the experimental process 

adopted to determine the significant coding parameters for both the encoder and 

decoder. 

 The Profiling Experiments - Determining the 4.2.1
Significant Coding Parameters 

This experiment was carried out using the configuration file published by Dolby 

Laboratories Inc. (2009).  The H264 encoder software JM (Joint Model) reference 

software version 18.6 was used.  In each profiling experiment each video sequence 

(only the use of a set of six popular test video sequences is presented in this chapter) 

was encoded using selected combinations of possible parameter values of initial set 

of encoder parameters. In other words, each encoding instance corresponds to a 

combination of coding parameter values selected from the possible exhaustive set 

that can be determined by varying each parameter within its entire range. For 

example instead of using quantization parameter variations between 1-51 (that is 

the exhaustive set), only two sample values, 17 and 49, were used (for further 

examples see bellow Table ‎4-3. 

For each coding instance above, determined by the combination of the selected 

values of each coding parameter, the distortion (measured as PSNR), bit-rate and 

the number of CPU time were recorded. Subsequently the results were fed into the 

Linear Regression Analysis tool of WEKA  [92] with the coding parameters as the 



 

54 
 

independent variables and rate, distortion and CPU time values (in separate 

experiments) as the dependent variables. A feature selection approach is used to 

remove the insignificant coding parameters, leaving the significant coding 

parameters as coefficients of the regression model. The resulting objective functions 

for the Bit-rate, distortion and CPU time are the final outcomes of the proposed 

research. Separate experiments are performed for each of the sample test videos.  

Table ‎4-1 shows the set of six test video sequences. Claire is a video sequence that 

has a foreground with simple motion and a non-moving area in background. In this 

video a news presenter is appears talking while moving her head, eyes and mouth, 

slowly. The Coastguard video sequence has fast movement on both foreground and 

background regions simultaneously. A boat appears to move fast in the foreground, 

with water showing waves and a second boat appearing after few frames, in the 

background. The Football video sequence has complicated fast motion, with a 

number of players moving very fast, simultaneously in the foreground. The 

Foreman video has minimal movement in the background. The Forman appears 

talking and his head appears to move quiet rapidly.  The Mobile video sequence has 

fast background and foreground movement simultaneously. A calendar appears to 

be moving upward, a ball and a train is moving towards the left side of the scene 

with the camera showing signs of panning. Finally the Tennis table video sequence 

has a slow motion foreground and gentle movement in the background. The players 

hand is moving and the racket is bouncing a ball. The camera is slightly zooming out 

in the few last few frames. Given the above descriptions of the videos it is shown 

that they have different properties and features.  

 

Note that all of the six video sequences are of QCIF resolution (176x144 pixels) and 

of 4:2:2 format. Note that low resolution videos are used in all experiments only to 

save simulation time. Without any restrictions the proposed framework can be used 

in relation to a video sequence of any resolution, in particular HD and full-HD. It is 

noted that the above, six selected video sequences have different properties of object 

motion, both in the foreground and background. Further differences exist in the 

scene content.  
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Table 4-1: Selected frames of video sequences [93], [94]. 

 

 

 

 

 

 

Claire 494 frames Coastguard 300 frames 

 

 

 

 

Football 260 frames  Foreman 300 frames 

 

 

 

 

 

Mobile 300 frames  Tennis 150 frames 

 
 
The CPU time was measured using the Intel VTune Amplifier XE. The experiment 

was performed on a HP computer, running Microsoft Windows 8.1 (64-bit), having 

an Intel Core i5 CPU 4200Y @ 1.40 GHz and 4.00GB RAM. 

The encoder experiment can be outlined as follows: 

1. The Six video sequences are encoded using a finite set of values for each 

encoding parameter and using all parameters defined in the configuration 

file. (See Appendix A.) 

2. The values obtained for the three objectives were recorded for each 

sequence. PSNR, bitrates and CPU time.  

3. Using WEKA feature selection algorithms, a parameter reduction process 

is carried out starting from the initial parameter used in [37] (see 

Table ‎4-2.) that resulting in four of the parameters originally used, being 

selected as significant coding parameters.  
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4. Only the Luminance Y component of the colour videos are used in the 

performance modelling since human eyes are more sensitive to luma 

components than to the chroma components. The PSNR SNR_Y is 

measured in decibels (dB) 

5. The total encoding CPU time in seconds for each video sequence was 

recorded using Intel VTune Amplifier XE  

6. Following are the parameters used, each video contains 3x2x2x3 = 36 

Total Number of Instances as shown in Table ‎4-4. In each experiment one 

parameter will be changed while the rest parameters are fixed. This will 

help to observe the effect all parameters on each Objective. (See Appendix 

B.)          

a. IntraPeriod 

b. SearchRange 

c. Quantization Parameter  

d. NumberReferenceFrames     

7. Then results shown in Table ‎4-4 are then fed in Weka software a machine 

learning tool to generate the linear regression function for each objective. 

Table 4-2: The initial list of parameters used [37] 

Parameter Meaning 

Resolution Image width and height. 

NumberReferenceFrames Used for motion estimation. 

Use FME Fast motion estimation algorithms. 

SearchRange Sets allowable search range for motion 

estimation. 

RDOptimisation Enable rate distortion optimized mode decision. 

SliceGroup Number of slice group to be used. 

IntraPeriod Period of I-frames. 

Quantization Parameter  Sets quantization parameter value. 

DisableThresholding Disable Thresholding of Transform Coefficients. 

 

Table ‎4-3 tabulates the significant coding parameters selected. The significant 

parameters include Intra Period, Search Range, Quantization Parameter and 

Number of Reference Frames.  

The Table ‎4-3 also tabulates the sample values used in our experiments for each 

parameter from within their corresponding value ranges. Note that the four 

parameters are given variable names x(1), x(2), x(3) and x(4). The control variable 
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Intra Period - IP (x(1)), can take values: 0 (means that the first frame is coded as an 

I-frame and subsequent frames are coded as P-frames), 5 and 8. The Search Range - 

SR (x(2)) is assumed to take either of the two values 16 or 32. The control variable 

Quantization Parameter - QP (x(3)) is assumed to take two possible values 17 or 49. 

The Number of Reference Frames – NRF (x(4)) can take values 2, 5 and 8.  

 

Table 4-3: Significant parameters and value used 

Variables Parameters Values 

Range 

Variable Type 

IP= 𝒙ሺ૚ሻ Intra-Period (0,5,8) Numeric 

SR= 𝒙ሺ૛ሻ Search-Range (16, 32) Numeric 

QP= 𝒙ሺ૜ሻ Quantization Parameter (17,49) Numeric 

NRF= 𝒙ሺ૝ሻ Number-Reference-

Frames 

(2,5,8) Numeric 

 
 
Table ‎4-4 presents 36 data instances of the Foreman video sequence that were used 

in the final stage of modelling the PSNR, image quality and CPU time. These are the 

inputs to the linear regression based modelling process that will result in the three 

objective functions. PSNR is measured in decibels (db), Bit-rate in (kbit/s) and CPU 

time in seconds (sec). 
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Table 4-4: selected set of parameters for foreman sequence 

IP 𝒙ሺ૚ሻ 

SR 𝒙ሺ૛ሻ 

QP 𝒙ሺ૜ሻ 

NRF 𝒙ሺ૝ሻ 

PSNR 

in (db) 

Bit-rate 

in (kbit/s) 

CPU time 

in (sec) 

0 16 17 2 44.606 547.62 61.627 

0 16 17 5 44.635 473.74 75.058 

0 16 17 8 44.636 471.7 84.624 

0 16 49 2 22.806 9.63 41.619 

0 16 49 5 23.384 9.09 57.455 

0 16 49 8 23.382 9.28 70.711 

0 32 17 2 44.62 547.1 61.189 

0 32 17 5 44.688 472.77 74.527 

0 32 17 8 44.691 471.59 83.665 

0 32 49 2 22.871 9.98 41.24 

0 32 49 5 23.449 9.21 57.3 

0 32 49 8 23.405 9.38 71.303 

5 16 17 2 45.751 819.97 55.727 

5 16 17 5 45.819 712.66 69.253 

5 16 17 8 45.822 714.2 75.729 

5 16 49 2 23.53 16.77 37.336 

5 16 49 5 23.881 16.44 53.122 

5 16 49 8 23.881 16.51 63.869 

5 32 17 2 45.764 820.33 69.276 

5 32 17 5 45.83 714.45 80.19 

5 32 17 8 45.825 714.3 86.417 

5 32 49 2 23.531 16.78 37.594 

5 32 49 5 23.881 16.44 51.472 

5 32 49 8 23.881 16.5 64.64 

8 16 17 2 44.818 618.74 57.825 

8 16 17 5 44.906 544.33 69.269 

8 16 17 8 44.899 540.87 77.812 

8 16 49 2 22.955 13.09 39.142 

8 16 49 5 23.532 12.67 52.936 

8 16 49 8 23.54 12.73 65.502 

8 32 17 2 44.821 618.66 58.211 

8 32 17 5 44.91 544.98 70.837 

8 32 17 8 44.902 542.31 78.66 

8 32 49 2 22.958 13.12 39.35 

8 32 49 5 23.532 12.67 53.45 

8 32 49 8 23.54 12.73 66.653 
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  The Objective Functions of the H.264/AVC Encoder 4.2.2

Based on the output of the linear regression algorithms applied as explained above, 

the objective functions for distortion (PSNR), Bitrate and CPU time for each video 

sequence are found in (Equation ‎4-1 - 4-18)  for each sequence video.  These 

functions provide one the means to discuss in detail the significance of each 

parameter and how they affect the PSNR, rate and CPU. The following section 

provides an analysis of the experimental results. In particular, the analysis 

considers the test videos separately and discusses the impact of each coding 

parameter given the known properties of the contents of each video. 

 

Following are the obtained models for each video sequence, with f(1) representing 

PSNR, f(2) Bit-rate and f(3) CPU time. It was shown above that these so-called 

dependent parameters depend basically on four independent parameters namely 

x(1), x(2), x(3) and x(4), which are respectively the significant coding parameters 

Intra Period, Search Range, Quantization Parameter and the Number of Reference 

Frames. Ideally in an implementation of a CODEC, especially when Rate-Control 

has been disabled (see Chapter 3), there should not be any dependence of f(1) or f(2) 

or vice-versa. Unfortunately due to the specific implementation adopted of the 

H.264 CODECs Encoder in JM reference software [95], our preliminary 

investigations suggested that there is likely to be a slight dependency between the 

two performance measures. Therefore in the modelling that was carried out we 

introduce two further parameters, i.e.  x(5)  representing PSNR as a parameter and 

x(6) presenting Bit-rate as a parameter. In the modelling of f(1) and f(2) we 

therefore use the four significant parameters x(1)-x(4) and a further parameter, x(5) 

PSNR and x(6) Bitrate.  

Claire Linear Regression Model ݂ሺͳሻ𝑃ௌேோ   =  Ͳ.ͲʹͲͺ ∗ ሺͳሻݔ − Ͳ.͸Ͳ͹ʹ ∗ ሺ͵ሻݔ + Ͳ.Ͳ͵ʹʹ ∗ ሺͶሻݔ + Ͳ.ͲͲ͸ͳ ∗ +ሺ͸ሻݔ ͷ͸.͹ʹ͸͵ 

(Equation 4-1) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ =  Ͷ.͹ͻ͹ͻ ∗ ሺͳሻݔ   −  ͸.ͲͶͶ͵ ∗ ሺ͵ሻݔ   +  ʹͺͷ.ͷʹͲͷ 

(Equation 4-2) ݂ሺ͵ሻா௡௖_்௜௠௘  =  −Ͳ.ͷ͵ʹͻ ∗ ሺͳሻݔ + Ͳ.ͳͷͳͺ ∗ ሺʹሻݔ  − Ͳ.ͳʹʹ͵ ∗ ሺ͵ሻݔ + ͵.Ͷ͹Ͳͳ ∗ +ሺͶሻݔ ͵͵.͸ͷͺ 

(Equation 4-3) 
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Coastguard Linear Regression Model  ݂ሺͳሻ𝑃ௌேோ  =  −Ͳ.ͲͺͲͷ ∗ ሺ͵ሻ ݔ   +  Ͳ.ʹ͹͵͹ ∗ ሺͶሻݔ   +  Ͳ.Ͳͳ͹Ͷ ∗ ሺ͸ሻݔ  +  ʹ͸.ͻͶͷʹ 

(Equation 4-4) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮  =  −͵.ͺͷ͸ʹ ∗ ሺ͵ሻݔ   −  ͳͷ.ͶͳͲͻ ∗ ሺͶሻݔ    +  Ͷͳ.͹Ͷʹͺ ∗ ሺͷሻݔ   −  ͹Ͷͺ.ͺͺʹͷ 

(Equation 4-5) ݂ሺ͵ሻா௡௖_்௜௠௘  =  −Ͳ.͹ͻͻͶ ∗ ሺͳሻݔ − Ͳ.͵ʹͷͷ ∗ ሺʹሻݔ − Ͳ.͹ͻͲͺ ∗ ሺ͵ሻݔ + Ͷ.͸͹Ͷͳ ∗ +ሺͶሻݔ ͹ͷ.͸ͺͺͶ 

(Equation 4-6) 

Football Linear Regression Model  ݂ሺͳሻ𝑃ௌேோ  =  −Ͳ.Ͷ͵͸͹ ∗ ሺ͵ሻݔ   +  Ͳ.ͲͺͲʹ ∗ ሺͶሻݔ   +  Ͳ.ͲͲͶ͹ ∗ ሺ͸ሻݔ   +  Ͷͳ.Ͳ͸͸  
(Equation 4-7) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ =  −͸ͺ.ͶͲ͹ ∗ ሺ͵ሻݔ   −  ͳͷ.ʹͶʹʹ ∗ ሺͶሻݔ   +  ͵Ͷͷʹ.͵͸ͳͷ 

(Equation 4-8) ݂ሺ͵ሻா௡௖_்௜௠௘ =  −Ͳ.͹ʹ͵Ͷ ∗ ሺͳሻݔ   −  ͳ.͵ͺ͸͹ ∗ ሺ͵ሻݔ   +  ͷ.ʹʹͻʹ ∗ ሺͶሻݔ   +  ͳͲ͸.ͲͲʹ͵ 

(Equation 4-9) 

Foreman Linear Regression Model ݂ሺͳሻ𝑃ௌேோ  =  −Ͳ.ͷͻʹ͸ ∗ ሺ͵ሻݔ  +  Ͳ.Ͳ͹ͻͺ ∗ ሺͶሻݔ  +  Ͳ.ͲͲͶ͸ ∗ ሺ͸ ሻݔ  +  ͷʹ.Ͳʹʹͷ 

(Equation 4-10) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ =  ͸.ͺͳ͵͵ ∗ ሺͳሻݔ   −  ͳͺ.ͷͲʹ͵ ∗ ሺ͵ሻݔ   +  ͺͻͲ.Ͳ͵ͳͻ 

(Equation 4-11) ݂ሺ͵ሻா௡௖_்௜௠௘  =  −Ͳ.ͷ͵Ͷ͹ ∗ ሺͳሻݔ + Ͳ.ͳʹͻ͹ ∗ ሺʹሻݔ − Ͳ.ͷ͸Ͷ͸ ∗ ሺ͵ሻݔ + Ͷ.ͲʹͲͳ ∗ +ሺͶሻݔ ͸Ͳ.͵͸ʹ 

(Equation 4-12) 
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Mobile Linear Regression Model ݂ሺͳሻ𝑃ௌேோ = −Ͳ.ͲʹͶͻ ∗ ሺͳሻݔ − Ͳ.͸ͳͻ͵ ∗ ሺ͵ሻݔ + Ͳ.Ͳ͹ͳ͵ ∗ ሺͶሻݔ + Ͳ.ͲͲ͵ͳ ∗ +ሺ͸ሻݔ Ͷͻ.ͷͷͲͶ          
(Equation 4-13) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ =  ͳ͸.ͳ͵ͶͶ ∗ ሺͳሻݔ  −  ͷʹ.ͲͶ͸ͺ ∗ ሺ͵ሻݔ  −  ͳͺ.ͳͳʹͻ ∗ ሺͶሻݔ   +  ʹ͸Ͳʹ.ͳ͵ͺ͵     
(Equation 4-14) ݂ሺ͵ሻா௡௖_்௜௠௘  =  −Ͳ.͸ͳ͸ ∗ ሺ͵ሻݔ   +  Ͷ.͹ʹʹ͹ ∗ ሺͶሻݔ   +  ͸ͻ.ͶͶͺ͹ 

(Equation 4-15) 

Tennis Linear Regression Model ݂ሺͳሻ𝑃ௌேோ =  −Ͳ.Ͷͺ͸ͺ ∗ ሺ͵ሻݔ   +  Ͳ.Ͳ͹ͻͷ ∗ ሺͶሻݔ   +  Ͳ.ͲͲ͵ʹ ∗ ሺ͸ሻݔ   +  Ͷ͹.ͻͺͶ͵  
(Equation 4-16) ݂ሺʹሻࢋ࢚ࢇ࢚࢘࢏࡮ =  −͵ͻ.͹͵ͳͷ ∗ ሺ͵ሻݔ   −  ʹͲ.Ͷ͸ͳ ∗ ሺͶሻݔ   +  ʹͲ͸ͳ.ʹʹͶͶ  
(Equation 4-17) ݂ሺ͵ሻா௡௖_்௜௠௘  =  −Ͳ.͹ͷͷͳ ∗ ሺͳሻݔ   −  Ͳ.ͻͺͺͺ ∗ ሺ͵ሻݔ   +  Ͷ.͵ʹ͵ ∗ ሺͶሻݔ   +  ͹ͺ.ͷʹ͹ 

        (Equation 4-18) 

 Encoder Performance Analysis 4.3

Experimental analysis was conducted separately for the encoder and decoder. The 

Encoder objective functions obtained as a result of the experimental procedure 

presented in (Equation ‎4-1 - 4-18) enables one to discuss the significance of each of 

the coding parameters.  

Table ‎4-5 tabulates the correlation coefficients of the objective functions. They 

range between 0-1. A value closer to 1 represents the fact that the dependant 

variable (in this case Bit-Rate, PSNR or CPU time) can be predicted very accurately 

from the coding parameters that play a role and has thus been included within the 

objective functions. In analysing the objective functions above, higher positive 

coefficients of coding parameters indicate higher positive dependency and higher 

negative coefficients represent higher negative dependency. If a certain parameter is 

not present in the objective function that means that the objective is independent of 

that parameter.  
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Table 4-5: Encoder Correlation Coefficient. 

Video PSNR 

In (db) 

Bit-

rate 

CPU time 

in (sec) 

Claire 1 0.9424 0.9460 

Coastguard 0.9865 0.9865 0.8917 

Football 0.9997 0.9967 0.9849 

Foreman 0.9998 0.9678 0.9746 

Mobile 0.9999 0.9809 0.9588 

Tennis 0.9998 0.9757 0.9883 

 
 
 

A careful analysis of the coding parameters that have non-zero weighting factors in 

the objective functions obtained and a comparison of relative magnitudes of the 

coefficients can lead to a direct correspondence with the properties of the video, for 

e.g., the presence of motion in foreground and background, the speed of movement 

of objects, sudden scene changes, camera pan/tilt/zoom effects and the general 

characteristics of the content of the video as well. For example, the analysis of the 

linear regression equations obtained for Foreman video sequence identifies all four 

parameters to have significant impact on CPU time, namely: 

 IntraPeriod 

 Searchrange 

 Quantization parameter 

 NumberReferenceFrames 

For the same video the following parameters were identified to have a significant 

impact on Bit-rate. 

 IntraPeriod 

 Quantization 

The parameters that are identified to have a significant impact on PSNR are: 

 Quantization parameter 

 NumberReferenceFrames 

A more detailed and video sequence specific analysis can be presented as follows. 
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1. CPU Time Analysis Experiment: 

The objective functions obtained for all six video sequences for CPU time 

indicates that the parameter that has the most significant impact on CPU 

time is the number of reference frames. This is expected due to the need to 

repeat the motion estimation process when NRF increases.  

It has a significant impact in increasing the CPU time. This is expected given 

the computational cost of the motion estimation algorithm implemented 

within H.264. The next significant impact is from the Quantization 

parameter. The impact from search range (SR) and Intra Period (IP) is 

relatively insignificant. For most videos with fast movement of objects (i.e. 

Football and Mobile) there is no impact from the Search Range. This is true 

given the fact that for videos with fast moving objects, best matches will not 

be found quickly, i.e. without having to scan the entire video. All objective 

functions include a similar constant term indicating that a fixed 

computational cost for encoding is present, which is independent of the 

selection of coding parameters. This is expected given the processes that 

exist, which are independent of the coding parameters. 

 

2.  Bit-Rate Analysis Experiment: The parameter that has the most 

significant impact in the bit-rate is distortion or the PSNR value. This is 

expected given the fact that the rate-distortion optimisation happens in a 

combined manner. The number of reference frames (NRF) has a negative 

correlation to the bit rate and is significant. The negative correlation is due to 

the fact that when the number of reference frames increases the chances of 

finding a better match in motion estimation increases, thus reducing the bit 

rate. The significance of it is due to the same reason. As all video sequences 

have various amounts of motion between frames, its bit rate will have an 

impact on the quantization parameter. The quantization parameter (QP) has 

a very important impact on the compression rate of H.264.  

It is noted that in the modelling of Bit-Rate PSNR was used as a fifth 

independent parameter, x(5). However the modelling process has dropped 

x(5) indicating that PSNR has no direct impact on the target Bit-Rate. 
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3.  PSNR Analysis Experiment: The parameter that has the most significant 

impact on PSNR is bit-rate. It is noted that these two parameters are highly 

dependent. The number of reference frames and quantization parameter also 

has an impact on the PSNR for all video sequences. The PSNR results 

tabulated in Table ‎4-5 indicate that the two videos with the least amount of 

movement/changes, namely Mobile and Claire have the best correlation 

coefficients. This is expected due to the stability of the CODEC during the 

encoding of the individual frames of the coded sequence. 

It is noted that target Bit-Rate used as parameter x(6) has a slight direct 

impact on the PSNR obtained. This is indicated by the presence of x(6) in the 

models/equations (see equation-1) of the Bit-Rate with a very low valued 

coefficient as compared to the coefficients of the other four significant coding 

parameters. This demonstrate the issue raised by our preliminary 

investigations about the specific implementation we have adopted in our 

experiments. However in a proper implementation of a CODEC this should 

not be the case (see Chapter-6 for the H.265 implementation we have used.). 

 Decoder Performance Analysis 4.4

To analyse the performance of the decoder, the encoded video sequences should be 

decoded using different combinations of decoder parameters. The process involved 

can be outlined as follows: 

1. The Six encoded video sequences were decoded using a configuration file 

containing input parameters to the JVT H.264/AVC decoder as shown in 

Appendix A. 

2. For each encoded video, the total decoding CPU time is recorded using 

Intel VTune Amplifier XE. 

3. The decoding is conducted under 36 (=3x2x2x3) different value 

combinations of the decoder significant parameters, listed below:            

a. IntraPeriod 

b. SearchRange 

c. Quantization Parameter  

d. NumberReferenceFrames     
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4. The data instances thus gathered is sampled in Table ‎4-6. The full data 

gathered is then fed into WEKA where a machine learning tool generates 

the linear regression function for each objective. The analysis of the 

decoder is limited to decoder parameters that have significant effect on 

only the decoder’s CPU time.  

 The output of Decoded video 4.4.1

A H.264 decoder takes an encoded .264 file as input and outputs a raw YUV video 

stream. As an example of coastguard video  

InputFile = "test.264” is the H.264/AVC coded bitstream file 

OutputFile = "test_dec.yuv” is the Output file, YUV/RGB 

The output in Figure ‎4-2 shows the output video artifact of frame 30 with 

quantization parameter (QP) of 49 that gives very low quality with PSNR of 24.189 

db and 5.83 Bitrate compared to QP 17 that has 43.418 db and 979.02 Bitrate.  

It is noted that the visual quality of the video reduces when quantization parameter 

increased. 

 

Figure 4-2: Sample image of frame 30 at (a) QP= 17 and (b) at QP= 49 

Note that the Decoder parameters have no impact on Bit-rate and PSNR as these 

are determined by the encoder. In the proposed framework the quality and the bit-

rate received by the decoder are the same as the encoder output. 

The CPU time of the decoder is analysed using the same method used at the encoder 

end. For the six given video sequences, experiments were performed in order to find 

(a) (b) 
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out those coding parameters that can significantly influence CPU time. The 

objective functions thus obtained are listed with in (Equation ‎4-19 - 4-24). 

Claire Linear Regression Model  ݂ሺͳሻ஽௘௖_்௜௠௘  =  Ͳ.ͲͲͶ ∗ ሺͳሻݔ  + Ͳ.ͲͲͲͺ ∗ ሺʹሻݔ   − Ͳ.ͲͲ͵ͻ ∗ ሺ͵ሻݔ  + Ͳ.͵͹͵  

(Equation 4-19) 

Coastguard Linear Regression Model  ݂ሺͳሻ஽௘௖_்௜௠௘ =  −Ͳ.ͲͲͶʹ ∗ ሺʹሻݔ   − Ͳ.Ͳͳͳͺ ∗ ሺ͵ሻݔ  + Ͳ.ͺͻͶͷ 

(Equation 4-20) 

Football Linear Regression Model  ݂ሺͳሻ஽௘௖_்௜௠௘  =  Ͳ.ͲͲͳ͸ ∗ ሺͳሻݔ  − Ͳ.Ͳʹʹ ∗ ሺ͵ሻݔ  − Ͳ.ͲͲ͵͵ ∗ ሺͶሻݔ   + ͳ.͵Ͷͷͷ 

(Equation 4-21) 

Foreman Linear Regression Model ݂ሺͳሻ஽௘௖_்௜௠௘  =  −Ͳ.ͲͳͶ͸ ∗ ሺ͵ሻݔ  + Ͳ.ͻ͵ͷ͵ 

(Equation 4-22) 

Mobile Linear Regression Model ݂ሺͳሻ஽௘௖_்௜௠௘ =  Ͳ.ͲͲ͹ͳ ∗ ሺͳሻݔ  − Ͳ.Ͳʹʹ ∗ ሺ͵ሻݔ  − Ͳ.ͲͲͷͻ ∗ ሺͶሻݔ  + ͳ.͵͵ͻ͸ 

(Equation 4-23) 

Tennis Linear Regression Model ݂ሺͳሻ஽௘௖_்௜௠௘  =  −Ͳ.Ͳͳͷͺ ∗ ሺ͵ሻݔ  − Ͳ.ͲͲ͹ʹ ∗ ሺͶሻݔ  + ͳ.Ͳ͵ͲͶ  
(Equation 4-24) 
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Table 4-6: Selected set of decoder parameters for Foreman Sequences. 

IP 𝒙ሺ૚ሻ 

SR 𝒙ሺ૛ሻ 

QP 𝒙ሺ૜ሻ 

NRF 𝒙ሺ૝ሻ 

Decoder 
Time in 

(sec) 
0 16 17 2 0.659 

0 16 17 5 0.659 

0 16 17 8 0.639 

0 16 49 2 0.209 

0 16 49 5 0.205 

0 16 49 8 0.203 

0 32 17 2 0.659 

0 32 17 5 0.635 

0 32 17 8 0.628 

0 32 49 2 0.223 

0 32 49 5 0.207 

0 32 49 8 0.205 

5 16 17 2 0.741 

5 16 17 5 0.721 

5 16 17 8 0.729 

5 16 49 2 0.243 

5 16 49 5 0.237 

5 16 49 8 0.227 

5 32 17 2 0.804 

5 32 17 5 0.857 

5 32 17 8 0.792 

5 32 49 2 0.236 

5 32 49 5 0.227 

5 32 49 8 0.229 

8 16 17 2 0.656 

8 16 17 5 0.646 

8 16 17 8 0.622 

8 16 49 2 0.221 

8 16 49 5 0.213 

8 16 49 8 0.214 

8 32 17 2 0.658 

8 32 17 5 0.637 

8 32 17 8 0.626 

8 32 49 2 0.232 

8 32 49 5 0.213 

8 32 49 8 0.214 
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Table ‎4-7 tabulates the correlation coefficients of the objective functions. The 

Football video sequence has the highest correlation coefficient closely followed by 

mobile. The analysis of the linear regression equations obtained to identify 

parameters that have significant impact on CPU time (Equation ‎4-24) reveals that 

the quantization parameter has the most significant impact. QP has an impact in all 

the video sequences as evidenced by its presence in all objective functions and being 

the parameter having the highest magnitude coefficient. 

 

Table 4-7:  Decoder correlation coefficient 

Video 

Sequences 

CPU time 

in (sec) 

Claire 0.9593 

Coastguard 0.9217 

Football 0.9984 

Foreman 0.9786 

Mobile 0.9958 

Tennis 0.9873 

 

The Encoder and Decoder analysis indicates that the objective functions obtained as 

a result of using the proposed framework is able to accurately define the significant 

coding parameters and further detail the level of significance of each parameter. 

They can also be related to the motion and content information of the videos. 

It is noted that our preliminary investigations revealed that the specific 

implementation of the H.264 CODEC that was used in the above modelling, did not 

suffer from the dependence of f(1) and f(2) on x(6) and x(5) respectively. Therefore 

parameters x(5) and x(6) were not considered during the Decoder performance 

modelling above.  
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 Using Advanced Machine Learning 4.5

Algorithms for the Modelling of an H264 

CODEC 

In sections 4.3 and 4.4 the use of Linear Regression in performance modelling of 

the encoder and decoder were presented. However Linear Regression is a simple 

approach that may not be the most effective approach/method to model the 

performance of a CODEC.  

The recent advances of machine learning algorithms, especially tree based 

algorithms, ensemble learning algorithms etc., provides further possibilities to be 

considered beyond using purely mathematical models. Given this observation, in 

this section we carry our experiments to model the performance of a H264 CODEC 

using advanced machine learning algorithms. The aim is to compare the accuracy of 

performance modelling obtainable via such approaches to the accuracy of 

performance modelling already shown above via the use of Linear Regression based 

modelling.  

WEKA is an ideal platform for investigating the use of different machine learning 

algorithms as it consists of implementations of a large number of data-pre-

processing, classification, modelling and clustering algorithms. It provides a 

graphical user interface for exploring and experimenting with machine learning 

algorithms on datasets.  

The key focus of the experiments conducted in this section is to model the CPU 

utilization via measuring the encoding/decoding times, when the encoder/decoder 

parameters are respectively set to different combinations of possible values, within 

specified practical constraints. After collecting the encoding/decoding times under 

changes to parameter values, different machine learning algorithms can be used to 

model the recorded times. The correlation coefficient between the actual and 

predicted times can be used to determine accuracy of prediction that each model 

can provide. Details of the experiments conducted and an analysis of the results is 

presented in the following sub-sections.   
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 Experiments, results and analysis 4.5.1

Bagging (Bootstrap Aggregating) is an ensemble method that creates separate 

samples of the training dataset and creates a classifier for each sample with the aim 

of reducing variance. Bagging can be used to perform both classification and 

regression depending on the base learner selected. Bagging has been demonstrated 

to be the most effective ensemble learning approach and hence the one used within 

the proposed research context. 

In the experiments conducted the following base classifiers were used with Bagging:  

 REPTree    

 RandomForest   

 AdditiveRegression  

 RandomSubSpace 

The base classifiers are combined with bagging to achieve very high classification 

accuracy / modelling accuracy. 

Table 4-8:  Decoder Correlation coefficient using bagging 

CPU Time Decoder Correlation coefficient 

Videos Linear-

Regression 

REP-Tree Random-

Forest 

Additive-

Regression 

Random-

SubSpace 

Claire 0.9593 0.9877 0.9961 0.9818 0.9773 

Coastguard 0.9217 0.9554 0.9806 0.9302 0.9476 

Football 0.9984 0.9992 0.9991 0.9996 0.9987 

Foreman 0.9786 0.9966  0.996 0.9906 0.9907 

Mobile 0.9958 0.996 0.998 0.9958 0.9959 

Tennis 0.9873 0.997 0.9979 0.994 0.9957 

 

Bagging produces a combined model that often performs significantly better than 

the single model built from the original training data, and is never substantially 

worse. Best performance is achieved by combining both, different feature sets and 

different classifiers. 

Table ‎4-8 tabulates the Decoder correlation coefficients when using Linear 

Regression and Bagging (with four different base classifiers) in the modelling of 

decoder CPU time. The results clearly demonstrate the ability of bagging to improve 
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the modelling accuracy, given the improved values of correlation coefficients 

obtained.  

The performance modelling of the encoder was also carried out using the same 

Bagging based classifiers and compared with the accuracy of the Linear Regression 

method proposed. Results show marginal improvement in most cases over the 

modelling accuracy results obtained with Linear Regression in Table ‎4-9.   

 

It is noted that for the Encoder modelling is performed for not only CPU time but 

also PSNR and Bit-Rate as illustrated in Table ‎4-9.  

 
Table 4-9: Encoder Correlation coefficient with both linear and bagging 

Encoder Correlation coefficient 

Video Objectives Linear 

Regressi

on 

REP-

Tree 

Random-

Forest 

Additive-

Regression 

Random-

SubSpace 

Claire PSNR 1 0.9999 0.9997 1 0.9995 
Bit-Rate  0.9424 0.9969 0.999 0.9977 0.9972 
CPU time 0.946 0.9398 0.9821 0.9699 0.9771 

Coastguard 
 

PSNR 0.9865 0.9985 0.9966 0.9989 0.9983 
Bit-Rate  0.9865 0.9939 0.9984 0.9969 0.9905 

CPU time   0.8917 0.9344 0.9708 0.9307 0.9411 
Football 
 

PSNR 0.9997 0.9998 0.9997 1 0.9997 
Bit-Rate  0.9967 0.9994 0.9997 0.9996 0.9991 

CPU  time  0.9849 0.9793 0.9934 0.9885 0.9828 
Foreman PSNR 0.9998 0.9998 0.9996 0.9999 0.9994 

Bit-Rate  0.9678 0.9971 0.9991 0.9981 0.9962 

CPU  time  0.9746 0.9671 0.9899 0.975 0.9752 

Mobile 
 

PSNR 0.9999 0.9999 0.9998 1 0.9995 

Bit-Rate  0.9809 0.9984 0.9996 0.9993 0.9982 

CPU time   0.9588 0.9673 0.9884 0.9763 0.9749 

Tennis PSNR 0.9998 0.9999 0.9998 1 0.9993 
Bit-Rate  0.9757 0.996 0.9988 0.9988 0.9947 

CPU time  0.9883 0.9782 0.9942 0.9918 0.9927 

 

The encoder/decoder analysis above has shown that bagging produces more 

accurate models. Unfortunately, the bagging technique and its classifiers do not 

generate a mathematical formulation, i.e. an objective function for each objective is 

not produced when using bagging procedures. Therefore this stops us using Bagging 
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as a means to model performance of the CODEC in the optimisation work presented 

in Chapter-5. Therefore, in the CODEC optimisation work presented in chapter-5 

the Linear Regression models developed above will be used. However the work in 

this section has demonstrated that better models exists for the modelling of 

performance of a video CODEC. Though the decision is to use the Linear Regression 

model, Linear regression implements a statistical model that, when relationships 

between the independent variables and the dependent variable are almost linear, 

shows optimal results, therefore the use of Linear Regression is justified based on 

its simplicity and easy to use.  

 Summary & Conclusion 4.6

This chapter proposed a machine learning based approach for the determination of 

significant coding parameters of a H264 video CODEC. In particular, the 

experiments conducted proposed the use of multivariate regression analysis in 

modelling the performance of a CODEC via defining objective functions for CPU 

time (both for the encoder and decoder), PSNR and the bit-rate (for the encoder 

only) of a video CODEC when a given video is being encoded/decoded.  The analysis 

conducted used known information about the content and the motion present in the 

test videos to justify the formation and the nature of the objective functions 

obtained. These objective functions will be used in Chapter-5 for multi-objective 

optimisation of a video CODEC based on Genetic Algorithms. 

The chapter also investigated the potential use of Ensemble Learning algorithms in 

the modelling of a H264 video CODEC. The results concluded that the Ensemble 

Learning algorithm Bagging, when used with a suitable single base classifier 

improves modelling accuracy beyond what can be achieved by a Linear Regression 

model. However the difference in accuracy is marginal that justifies the decision to 

use Linear Regression as the best practical solution.  
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 Introduction 5.1

The study in ‎Chapter 4 has investigated the parameters that have a significant 

impact on the encoder and decoder performance in terms of CPU time. The study 

further resulted in a number of Linear Regression models being developed that can 

effectively be used to accurately model the CODEC’s performance related properties 

such as PSNR, Bit Rate and CPU time.  

 

This chapter presents a framework for multi-objective optimisation of video 

CODECs. Specifically, an optimization scheme is proposed to determine the 

optimum coding parameters for a H.264 AVC video codec in a bandwidth 

constrained environment, which minimises codec time and video distortion. In the 

literature, the contributions to the optimisation of H.264/AVC have focuses on the 

CPU time, power consumption, rate distortion and delay. A considerable research 

gap exists in developing a generalized framework for a parameter based approach 

for optimizing end-to-end video delivery system that is capable of working under 

multiple objectives/constraints. This framework is very useful within present and 

future video delivery systems and video coding.  

 

The encoding/decoding parameters that have a significant impact on the 

performance of the codec are initially obtained through experimental analysis as 

explained in ‎Chapter 4. A mathematical formulation by means of linear regression 

is subsequently used to associate these parameters with the relevant objectives and 

a Multi-Objective Optimization [43]  problem is defined. Solutions to the 

optimization problem are reached through a Non-dominated Sorting Genetic 

Algorithm (NSGA-II). NSGA-II is implemented in the genetic algorithm gamultobj, 

available in the MATLAB optimisation tool-box. It is shown that the proposed 

framework is flexible on the number of objectives that can jointly be optimized. 

Practical use of the proposed framework is described using the six videos 

mathematical formulation. 
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For clarity of presentation this chapter is divided into 5 sections. Apart from this 

section which is an introduction to the research problem, section‎5.2  presents the 

setting of Genetic Algorithm using Matlab Section ‎5.3 presents optimising the 

encoder. Optimising the Decoder is described in Section ‎5.4. Finally section ‎5.5 

concludes with a summary of the chapter. 

 Setting up the Genetic Algorithm  5.2

The proposed optimisation framework was implemented on a HP computer, 

running Microsoft Windows 8.1 (64-bit), having an Intel Core i5 CPU 4200Y @ 1.40 

GHz and 4.00GB RAM. 

The optimization toolbox in MATLAB is used for the implementation of multi-

objective optimization using a Genetic Algorithm. The MATLAB based solver used is 

‘gamultiobj’ and the settings are fixed as shown in Figure ‎5-1. MATLAB’s 

‘gamultiobj’ solver attempts to create a set of Pareto optima for a multiobjective 

minimization.  ‘Gamultiobj’ uses the genetic algorithm for finding local Pareto 

optima. As in the GA function, one may specify an initial population, or have the 

solver generate one automatically. The algorithm is first initialised by defining the 

population size, the total number of generations, the number of variables etc. as 

presented in Table ‎5-1. 
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Table 5-1: ‘gamultobj’ settings used 

gamultobj settings 

Fitness function: function that is to be minimized 
Number of variables: 6 
Population Type: Double Vector  
Creation Function: feasible population 
Population Size: 300 
Initial Population: Default  
Initial Scores: Default  
Selection Function: Tournament  
Tournament size: 5  
Crossover Fraction: 0.25 
Mutation Function: adaptive feasible  
Crossover Function: Intermediate  
Crossover Ratio: 0.23  
Migration Direction: both 
Migration Fraction: Default (0.2)  
Migration Interval: Default (20)  
Distance Measure Function: Default @distancecrowding  
Pareto Front Population Fraction: .7  
Hybrid Function: None 
Maximum Generations: 300 
Time Limit: Default (Infinite)  
Fitness Limit: Default (Infinite)  
Stall Generations: Default (100)  
Function Tolerance: 1e-4 
Constraint tolerance: 1e-3 
Plot functions: Pareto front. 

 

The optimization is executed by clicking Start listed under ‘Run solver and view 

results’ sub-frame (see Figure ‎5-1). A plot appears in a figure window. This plot 

shows the trade-off between the two components off. It is plotted in objective 

function space. 
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Figure 5-1: Setting options for the optimisation task 
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 Optimising the Encoder 5.3

In this study, the objective functions to be optimized, given in ‎Chapter 4 were used 

to optimise the encoder. Three functions are associated with each video namely the 

functions for the PSNR, bit rate and CPU time. These functions are then fed to the 

NSGA-II optimization tool along with the fitness function and number of variables. 

The NSGA-II provides all sets of optimal results that jointly minimize time, bit-rate 

and maximizes quality. Since a single 3D graph is complex to visualize the 

optimality of the results, pairs of graphs where plotted. 

An optimization problem is one requiring the determination of the optimal 

(maximum or minimum) value of a given function, called the objective or fitness 

function, subject to certain defined restrictions, or constraints placed on the 

variables concerned.  

It is noted that the MATLAB Optimization Toolbox’s optimization functions 

minimize the objective or fitness function. That is, they solve problems of the form. min 𝑥݂ ሺݔሻ. 
 

If one requires to maximize f(x), –f(x) should be minimised, as the point at which 

the minimum of –f(x) occurs is the same as the point at which the maximum of f(x) 

occurs. In other words, to achieve optimum performance, the function is maximized 

by minimizing the negative of the function. In encoder (Equation ‎4-1 -4.18) the 

PSNR, i.e. the Quality of the video is to be maximised. So that maximized equation 

is minimized by multiplying the PSNR equation by a negative sign, i.e. creating –

f(x). 

The objective functions depend generally on four parameters expressed as x in the 

MOO problem formulation, which include IntraPeriod, SearchRange, Quantization 

Parameter and NumberReferenceFrames. It was mentioned in Chapter-4 that due 

to a specific implantation issue with regards to the H.264 implementation used in 

the experiments there is a direct dependency of the target Bit-Rate (thus 

represented as a parameter x(6)) on PSNR. Hence in the objective function of 

PSNR, a fifth parameter, x(6) exists. Each pair consists of two objectives functions. 
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In optimising the encoder two-objective, multiple constraint problems were 

considered. Three sets of two-objective (and multiple-constraint) optimisations 

were carried out, namely:  

 PSNR vs. Bit-rate. 

 PSNR vs. CPU.  

  CPU vs. bitrate. 

The following section provides the experimental results and detailed analysis of the 

results. 

 Experimental results and analysis 5.3.1

The results of MOO and Pareto set analysis are presented in Table ‎5-2  and 

Table ‎5-3 and Figure ‎5-2 to Figure ‎5-4 respectively.  The Figure ‎5-2 shows the 

Pareto front or set of non-dominated solutions for Bit-Rate and PSNR, and the 

corresponding numerical values related to the optimal performance points on the 

Pareto curve are tabulated in Table ‎5-2.  

The following summarises and lists the objective function pairs considered in multi-

objective optimisation of the H.264 encoder when coding the Foreman and Football 

sequences. The equation is minimized by multiplying the PSNR equation by a 

negative sign, i.e. creating f=-f. 

A. The Foreman Video 

function f = foreman(x) 
 
 
% PSNR versus Bit-rate 
 
% f(1) represent psnr 
f(1) =  -0.5926 * x(3) + 0.0798 * x(4) + 0.0046 * x(6) +  52.0225;f=-f; 
 
%  f(2) represent bitrate 
f(2) =6.8133 * x(1)  - 18.5023 * x(3)  + 890.0319; 
 
% ------------------------------------------------------------------------- 
  
 
% PSNR versus cpu 
 
% f(1) represent psnr 
f(1)= -0.5926 * x(3) + 0.0798 * x(4) + 0.0046 * x(6) +  52.0225;f=-f; 
  



 

79 
 

% f(2) represent cpu 
f(2) = -0.5347* x(1)+ 0.1297* x(2)- 0.5646 * x(3)+4.0201* x(4)+ 60.362; 
  
  
% ------------------------------------------------------------------------- 
% cpu versus bitrate 
 
% f(1) represent cpu 
f(1) =-0.5347* x(1)+ 0.1297* x(2)- 0.5646* x(3)+4.0201* x(4)+    60.362; 
 
%  f(2) represent bitrate 
f(2) =6.8133 * x(1)  - 18.5023 * x(3)  + 890.0319; 
   
End 
 

B. The Football Video 

function f = football(x) 
 
% PSNR versus Bit-rate 
 
% f(1) represent psnr 
f(1)  = -0.4367* x(3)+ 0.0802 * x(4) + 0.0047 * x(6) + 41.066;f=-f; 
  
% f(2) represent bit-rate 
f(2) = - 68.407  * x(3)  - 15.2422 * x(4)  +   3452.3615; 
  
  
% ------------------------------------------------------------------------- 
 
% PSNR versus cpu 
 
% f(1) represent psnr 
f(1)  =  -0.4367 * x(3) + 0.0802 * x(4) +  0.0047 * x(6) + 41.066;f=-f; 
  
 % f(2) represent cpu 
f(2)  = - 0.7234 * x(1) -1.3867 * x(3) + 5.2292 * x(4) + 106.0023; 
  
% ------------------------------------------------------------------------- 
% cpu versus bitrate 
 
% f(1) represent cpu 
f(1)  = - 0.7234 * x(1)  -1.3867 * x(3) + 5.2292 * x(4) + 106.0023; 
  
% f(2) represent bitrate 
f(2) =- 68.407  * x(3)  - 15.2422 * x(4)  +   3452.3615; 
  
End 
 
Figures 5-2, 5-3 and 5-4 plots the dual-objective Pareto fronts obtained for the 

Foreman video. These plots are generated as output when the ‘gamultobj’ function  
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[96] of MATLAB is run based on the equation pairs listed above. Similar graphs are 

created for ‘Football’ sequence and these are included in Appendix C. 

 

 

Figure 5-2: Pareto front for foreman PSNR in (db) vs. Bit-Rate in (Kbit/s). 

 
Figure 5-3: Pareto front for foreman PSNR in (db) vs. CPU Time in (sec). 
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Figure 5-4: Pareto front for foreman CPU Time in (sec) vs. Bit-Rate in (Kbit/s). 

Note: since the property of Pareto chart that all data must be positive. Negative 

values are ignored. 

The results of the Bit-Rate vs. PSNR (under multiple constraints of parameter 

values) optimization operation are listed in table 5-2 which contains values of both 

objective functions and the relevant values of the parameters that generated optimal 

performance. Note that each parameter has been set within constraint settings, thus 

making the dual-objective optimisation problem being addressed, a multi-objective 

(i.e. dual-objective + multi-constraint) optimisation problem. The list of a sample 

set of optimal feasible solutions with their functional values, have been listed in 

Table ‎5-2. It is noted that the optimal point listed in the table 5-2 is 15 out of 140 

optimal points obtained.  The number of rows in X is the same as the number of 

Pareto solutions. All solutions in a Pareto set are equally optimal.  For more details, 

readers are referred to Appendix D. 

 

 

  



 

82 
 

Table 5-2: The optimal points for foreman PSNR vs. Bit-rate 

 f(1) f(2) X1 X2 X3 X4 X5 X6 

1 -61.4345 1051.543 -
12.3536 

5.948443 -13.2784 18.68428 6.922016 11.36318 

2 -
56.2065 

860.3077 -
15.6062 

6.330999 -4.14033 21.28292 8.077764 6.978926 

3 -59.1944 959.3262 -
14.4197 

5.089091 -9.05509 22.12362 8.069374 8.776518 

4 -
62.8529 

1102.272 -
10.8373 

5.983466 -15.4618 20.18949 7.297968 12.31851 

5 -55.2319 827.3298 -
15.3452 

7.633843 -2.26184 23.04302 10.27598 6.575443 

6 -62.6273 1085.166 -
12.1723 

6.900299 -15.0288 20.62279 7.015222 11.51751 

7 -
58.0206 

919.1406 -
14.9615 

5.98795 -7.08268 22.08793 7.667866 8.319399 

8 -
40.8703 

404.3069 -
13.2207 

14.54251 21.38374 18.91533 11.41972 2.244124 

9 -57.8374 910.0747 -
14.7867 

6.106682 -6.52831 23.847 8.773665 9.403458 

10 -52.579 747.9986 -
15.5328 

6.103938 1.956696 21.12791 7.869598 6.523647 

11 -45.7358 536.7505 -
16.1877 

13.29562 13.13297 18.59521 9.332297 2.607052 

12 -62.8153 1089.791 -
12.1723 

6.900299 -15.2788 21.12279 7.015222 11.51751 

13 -56.6037 872.3414 -
14.9189 

6.229737 -4.53761 23.22131 8.72742 8.51145 

14 -
64.2498 

1160.129 -
8.63146 

7.039144 -17.7765 20.64461 8.871526 9.890705 

15 -64.5445 1179.086 -
6.97241 

7.537578 -18.1901 21.32292 9.585319 8.898466 

 

Table 5-3: Output data describing the results of MOO with GA for Figure ‎5-2 to 

Figure ‎5-4 

Problem  Number 
of 
generati
ons 
 

Size of 
populati
on 
 

Pareto 
fraction 
 

Size of 
non-
dominated 
set 

Function 
count 
 

Average 
distance 

Spread 

PSNR vs. Bit-rate 107 200 0.7 140 21601 0.0043 0.3793 

PSNR vs. CPU 127 200 0.7 140 25601 0.0196 0.3164 

CPU vs. Bit-rate 246 200 0.7 137 49401 0.0442 0.5231 
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Note that once the Pareto front is plotted, MATLAB’s ‘gamultiobj’ 

function workspace can be used to display the number of solutions found on the 

Pareto front and the number of GA generations from which they resulted. The 

number of solutions found on the Pareto front and the number of generations are 

found using the following command line operations as presented in Figure ‎5-5, 

below. Further details about the optimization problem carried out can be 

determined by studying the ‘output’ of the ‘gammultiobj’ function, as indicated by 

Figure ‎5-6. 

Figure ‎5-2 shows the PSNR versus bit rate values in final stage of generations being 

used of the optimization process.  Similarly Figure ‎5-7 Figure ‎5-8 illustrates the 

results. 

 

Figure 5-5: number of solutions and the number of generations. 

 

Figure 5-6: More details about the optimization 

It is noted that in general, Pareto-based multi-objective approaches consider three 

aspects: closeness to the global Pareto front; spread along the Pareto front; number 

of solutions of the non-dominated set. 
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In the Table ‎5-3, population size and Pareto fraction for the GA are set at 200 and 

0.7, respectively, which are considered sufficient to generate search for optimal 

solutions.  The solver will try to limit the number of individuals in the current 

population that are on the Pareto front to 70 percent of the population size since the 

Pareto fraction is set to 0.7.  For example in optimisation on PSNR vs. Bit-Rate, 

when the MOO algorithm of MATLAB, ‘gamultiobj’, is run, after 107 generations 

and 21601 function counts, the GA selected 140 best individuals to be considered as 

non-dominated solutions out of 200 individuals in the population. Average distance 

between individuals was found to be 0.0043, which indicates good convergence of 

the MOO solution. This is due to the fact that it has a distance of less than 0.05 from 

the nearest point in the Pareto set.  

 

From the detailed optimisation results provided in Appendix D, Table D. 1, an 

example optimal point of a H.264 Encoder can be defined as follows: 

IntraPeriod is -14.1153, SearchRange is 4.953125, QP is -9.39187, NRFrames is 

21.66449, PSNR is 8.107256 and Bit-rate is 8.700779. Whereas the optimal values 

for PSNR is -59.357 and Bit-Rate is 967.6315 (see Figure ‎5-7). The figure 5.7 also 

illustrates two further examples of optimal points.  

Similarly, the results showing the Pareto front of non-dominated solutions for 

PSNR vs. CPU is illustrated in Figure ‎5-8 and Bit-rate Vs. CPU time are presented in 

Figure ‎5-9. In each of the two Pareto fronts, two examples each of optimal points 

have been indicated.   
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Figure 5-7: Pareto points 1 PSNR in (db) vs. Bit-rate in (Kbit/s) 

 

Figure 5-8: Pareto points 2 PSNR vs. CPU Time in (sec). 
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Figure 5-9: Pareto points 3 CPU Time in (sec) vs. Bit-Rate 

It is noted that the optimisation procedure described above results in a number of 

optimal solutions. Each optimal solution defines the values of the parameter 

settings one should use to obtain optimal PSNR and Bit-Rate, simultaneously. 

 Optimising the Decoder 5.4

The analysis of the decoder is limited to decoder parameters that have significant 

effect on only the decoder’s CPU time. It is noted that the Decoder parameters have 

no impact on Bit-rate and PSNR as these are determined by the encoder. In the 

proposed framework the quality and the bit-rate received by the decoder are the 

same as the encoder output. Which assumes that the decoder receives all data 

transmitted by encoder, at the same rate. In such cases the decoder totally depends 

on encoder coding parameters.   The NSGA-II tool is once again used to obtain 

optimal parameter combinations, as described above in optimising the encoder 

performance. Figure ‎5-10 and Figure ‎5-11 illustrate graphs Pareto front decoder 

graphs for the Foreman video between Bit-Rate vs. CPU time and PSNR vs. CPU 

time on the way to final generation. In a manner similar to that carried out in 

analysing the encoder performance, optimal decoder operational points can be 

obtained using the same procedure adopted above in the encoder analysis. 
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Figure 5-10: Bit-Rate in in (Kbit/s) vs. CPU Time in (sec) 
 

 

 
Figure 5-11: PSNR in (db) vs. CPU Time in (sec) 
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 Summary and Conclusion 5.5

This chapter presented how the objective functions obtained for the performance 

objectives, PSNR, Bit-Rate and CPU time in Chapter-4 can be used to determine the 

optimal performance configurations of a H.264 encoder and decoder, under 

multiple constraints/objectives. The encoder and decoder optimal configurations 

were obtained using three dual-objective, multiple constrained operational 

conditions, namely PSNR vs. Bit-Rate, CPU time vs. Bit-Rate and CPU time vs. 

PSNR. 

The research carried out in this chapter has demonstrated the use of a genetic 

algorithm based multi-objective optimisation framework based on carrying out 

investigations related to a H.264 CODEC. Through the use of this framework it was 

demonstrated how optimal configurations for the encoder and decoder performance 

could be obtained. Thus for practical purposes one could use this framework to 

determine the optimal coding parameters when the operational constraints and 

objectives are known. 

The MOO framework proposed in Chapters 4 and 5 can also be used in relation to 

any other coding standards. In Chapter-6 we propose to evaluate the use of this 

framework in the MOO of a H.265 CODEC, the CODEC of the latest video coding 

standard.  
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 Introduction 6.1

In Chapters 4 we proposed a framework that is based on the fundamentals of 

machine learning that can be used to scientifically determine the significant coding 

parameters of a H.264 video CODEC. These parameters were then used to model 

the operational behaviour of the H.264 video CODEC for which machine learning 

algorithms were further utilised. We also showed that these models can be used to 

establish the foundations of a multi-objective optimisation framework. Although the 

experiments conducted in Chapters 4 and 5 were limited to the most widely used 

video coding standard H.264, it was argued that the framework proposed can be 

used in relation to any video coding standard.  

High Efficiency Video Coding (HEVC) also known as H.265 is the most resent 

answer to the ever growing consumer demands. In this chapter we use the 

framework proposed in Chapters 4 for the characterisation, modelling and 

parameter based multi-objective optimisation of a H.265 video CODEC. As the 

coding algorithms behind H.265 video CODECs are different as compared to the 

coding algorithms of H.264, H.265 has different parameters and also the impact of 

these parameters on various performance related features can differ significantly 

from that of H.264. Given the above in this chapter we use the proposed parameter 

based multi-objective optimisation framework in the optimisation of a H.265 video 

CODEC. 
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For clarity of presentation this chapter is divided into 6 sections. Apart from this 

section which is an introduction to the research problem, the section ‎6.2 outlines 

the proposed framework for performance modelling and the experiments conducted 

for establishing the framework. Section 6.3 presents a comprehensive analysis of 

the results of the performance modelling of encode and decoder. Multi-Objective 

Optimisation Framework for H.265 is explained in section 6.4. The section 6.5 

presents the results and analysis of Optimisation stages carried out using a Matlab 

based implementation. Finally section 6.6 summarizes the chapter by providing a 

summary of the contribution made. 

 Proposed Framework for Performance 6.2

Modelling 

The proposed framework for a Multi-Objective Optimisation was developed to 

determine the optimum coding parameters for a H.265 video CODEC, when working 

under multiple constraints as shown in  Figure ‎6-1 The MOO framework is intended 

to minimize the CPU time, bit-rate and to maximize the quality of the compressed 

video stream. MOO framework proposed is accomplished by following the steps 

below.  

1. Profiling experiments on the encoder and decoder were carried out to 

determine the coding parameters that have a significant impact on each of the 

objectives/constraints related to rate, distortion and CPU utilization. This was 

achieved by measuring the impact of each parameter (while being varied) on 

each of the above aspects. 

2. Developing the objective function for each objective/ constraint, based on the 

above significant parameters, 

by using a suitable regression procedure. 

3. These objective functions can then be used within a genetic algorithm (GA) 

based multi-objective optimization framework to determine optimal 

parameter values. 

The focus of this section are the first two steps above, i.e. determining the significant 

coding parameters and establishing the corresponding objective functions. These 
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two stages enable the modelling of the performance and are subsequently used in 

section  ‎6.4 for optimisation of the CODEC. 

In a practical multimedia application scenario a device captures a video, encodes it 

and transmits it via a network to another device that decodes and displays the 

content to a viewer. Assuming that the network has bandwidth constraints and the 

device in which the encoder is placed has compute power constraints and the 

potential viewers of content may demand minimal quality levels, a situation in which 

the proposed MOO framework can be used. 

 
 

Figure 6-1: Proposed Multi-objective optimisation framework 

 
The significant number of encoder parameters that control the encoders bit rate, 

quality and computational power requirements can be selected, to ensure the 

encoder performance is optimal, under the given multiple constraints. However this 

requires the modelling of the encoders bit-rate, quality and CPU time, based on the 

large number of selectable encoder parameters. If mathematical objective functions 

can be derived for each of the above, a standard approach to optimisation can be 

used. Deriving objective functions, for example using mathematical regression, will 

need the determination of the significant coding parameters, the key focus of the 

research presented below.  

The same explanation can be applied to the selection of decoder parameters that 

results in optimal decoder performance. Within the research context of this chapter, 

the author assumed that the data transmission network is assumed to be perfect, i.e. 

no delays, no bit loses, no errors etc. Therefore the bit stream generated by the 

encoder is transmitted without any loss or alteration to the decoder in real-time. The 
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following section proposes the experimental process adopted to determine the 

significant coding parameters for both the encoder and decoder. 

 Profiling Experiments/ Determining the Significant 6.2.1
Coding Parameters 

This experiment was carried out using the Random Access (RA) configuration file of 

the Reference software for ITU-T H.265 high efficiency video coding named the 

HEVC test model (HM) version 16.8 as shown in Appendix A. Different resolutions 

can be used in each profiling experiment: 1080p which is representative for (Full 

HD) high definition systems with  resolution of 1920x1080 pixels in a 16:9 aspect 

ratio, 2K Video a display resolution of 2560x1600 pixels with a 16:10 aspect ratio 

and 2160p  (Ultra HD) which is representative for the next generation of high quality 

video. Each video sequence was encoded using a selected combinations of possible  

parameter values of initial set of encoder parameters. 

In other words each encoding instance corresponds to a combination of coding 

parameter values, selected from the possible exhaustive set that can be determined 

by varying each parameter within its entire range. For example instead of using 

quantization parameter variations between 1-51 (that is the exhaustive set), only 

three sample values, 27, 37 and 45, were used (for further examples see Table ‎6-1) 

The table also tabulates the sample values used in our experiments for each 

parameter from within their corresponding value ranges. 

 

  

https://en.wikipedia.org/wiki/Display_resolution
https://en.wikipedia.org/wiki/16:10
https://en.wikipedia.org/wiki/Display_aspect_ratio
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Table 6-1: Settings for the Encoder in HM 

Parameter Meaning Values Range 

SourceWidth  

SourceHeight  

Specifies the width and height of the input 

video. 

 

1920x1080 

2560x1600 

FrameRate Specifies the frame rate of the input video. Depends on 

video 

Internal Bit 

Depth  

Specifies the bit depth used for coding. When 

0, the setting defaults to the value of the 

MSBExtendedBitDepth. 

8  

Coding Unit 

Size/Depth  

Maximum coding unit width in pixel  

Maximum coding unit height in pixel 

64/4 

64/4 

IntraPeriod Period of I-frames. Specifies the intra frame 

period. A value of -1 implies an infinite period. 

(16,32,48) 

GOPSize Specifies the size of the cyclic GOP structure.

  

8 

FastSearch The use of a fast motion search. 1:TZ search 

SearchRange Sets allowable search range for motion 

estimation. 

(64,128) 

Fast 

Encoding  

Fast encoder decision (0 or 1) 

Quantization 

Parameter  

Specifies the base value of the quantization 

parameter. If it is non-integer, the QP is 

switched once during encoding. 

(27,37,45) 

Asymmetric 

Motion 

Partitioning  

Enables or disables the use of asymmetric 

motion partitions. 

1 

Sample 

adaptive 

offset (SAO)  

Enables or disables the sample adaptive offset 

(SAO) filter. 

1 

Rate Control Rate control: enables rate control or not. 0 
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Table ‎6-2 Shows selected sample frames of a set of six video sequences with different 

resolutions. Note that typical resolutions used in conjunction with H.265 video 

coding standard, i.e., 1080p and 2K resolution videos are used in all experiments, to 

carry out the analysis and make the relevant conclusions of this research. However, 

without any restrictions the proposed framework can be used in relation to a video 

sequence of any resolution, in particular HD and full-HD 2K, 4k and beyond. The six 

selected video sequences have different properties of object motion, both in the 

foreground and background. Further differences exist in the scene content. 

 

Table 6-2: Tested Video Sequences 

 

 
 

 

 

YachtRide_1920x1080 Traffic_2560x1600 
 

 
 

 

 

BasketballDrive_1920x1080 Jockey_3840x2160 
 

 
 

 

 

Cactus_1920x1080 YachtRide_3840x2160 
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The experiments were initially conducted on a HP computer, running Microsoft 

Windows 8.1 (64-bit), having an Intel Core i5 CPU 4200Y @ 1.40 GHz and 4.00GB 

RAM. However it was found that coding HD resolution video is an intensive task that 

required for example, if encoded in the computer with the above specification, 10 

hours to encode 50 frames of a 1920x1080 video at QP 37, intra period 48 and 

search range 64. Therefore subsequently a decision was made to make use of a High 

Performance Computing (HPC) facility.   

 

Thus for all the experiments a HPC system using Redhat Enterprise Linux v6, with 

20 cores of Intel Ivy Bridge Xeon E5-2670 containing 64GB RAM was used 

significantly reducing the execution time per experiment.  

 

A sample of 36 data instances of the Cactus video sequence are presented in 

TABLE ‎6-3. These were used in the final stage of modelling the PSNR, Bit-rate and 

CPU time. These are the inputs to the  [20] linear regression based modelling 

process that result in the three objective functions that include the significant 

parameters, Intra Period as ݔଵ, Search Rangeݔଶ, Quantization Parameter ݔଷ and Fast 

Encoding ݔସ. 
The resulting objective functions for Bit-rate, PSNR and CPU time are the final 

outcomes of the performance modelling of the CODEC. Separate experiments are 

performed for each of the sample test videos. For more details see Appendix F. 
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Table 6-3: Selected Set Of Parameters For Cactus Sequence 

𝒙૚ 𝒙૛ 𝒙૜ 𝒙૝ 
Bitrate   
in 
(Kbit/s)  

  PSNR 

in (db)    

CPU Time  

in (sec) 

16 64 27 1 8422.096 36.8076 2000.97 

16 64 37 1 2195.592 32.7418 1612.08 

16 64 45 1 736.12 28.9058 1474.57 

16 128 27 1 8424.696 36.8054 2140.34 

16 128 37 1 2197.152 32.7447 1722.19 

16 128 45 1 735.304 28.9092 1556.66 

16 64 27 0 8414.944 36.8149 2559.02 

16 64 37 0 2196.192 32.7507 2106.38 

16 64 45 0 735.864 28.9111 1925.5 

16 128 27 0 8414.864 36.8149 2778.27 

16 128 37 0 2195.184 32.7516 2287.14 

16 128 45 0 736.728 28.9173 2067.34 

32 64 27 1 6993.976 36.7337 2115.22 

32 64 37 1 1726.648 32.6277 1698.1 

32 64 45 1 561.512 28.7824 1553.63 

32 128 27 1 6991.08 36.7323 2271.37 

32 128 37 1 1725.24 32.6279 1819.83 

32 128 45 1 561.896 28.7877 1634.66 

32 64 27 0 6994.6 36.7419 2684.76 

32 64 37 0 1725.12 32.6325 2198.14 

32 64 45 0 563.04 28.7949 2002.86 

32 128 27 0 6991.312 36.7421 2923.43 

32 128 37 0 1725.536 32.6336 2411.49 

32 128 45 0 561.952 28.7952 2164.01 

48 64 27 1 6914.36 36.7438 2126.42 

48 64 37 1 1722.568 32.6039 1719.68 

48 64 45 1 560.656 28.7335 1556.47 

48 128 27 1 6911.576 36.7428 2295.48 

48 128 37 1 1720.96 32.5996 1867.74 

48 128 45 1 559.032 28.7422 1656.8 

48 64 27 0 6911.616 36.7488 2690.7 

48 64 37 0 1720.944 32.6059 2216.83 

48 64 45 0 562.424 28.742 2018.13 

48 128 27 0 6912.472 36.7515 2962.86 

48 128 37 0 1720.176 32.6066 2437.26 

48 128 45 0 560.872 28.7534 2200.32 
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 The Objective Functions of the HEVC Encoder 6.2.2

Based on the output of the linear regression algorithms applied as explained above, 

the objective functions for the three objectives (for the Cactus video) are found as 

presented in equations (Equation ‎6-3) These functions provide the means to discuss 

in detail the significance of each parameter and how they affect the PSNR, Bit-rate 

and CPU encoding time. The following section provides an analysis of the 

experimental results. In particular the analysis considers the test videos separately 

and discusses the impact of each coding parameter given the known properties of the 

contents of each video. [Note that for each video a different model is generated based 

on the video’s inherent properties.] 

 ݂ሺͳሻࢋ࢚ࢇ࢚࢘࢏࡮ = −ʹʹ.Ͷ͸͸Ͷ ∗ ሺͳሻݔ − ͵ͺ͸.ʹͶͺʹ ∗ ሺ͵ሻݔ + ͳͺͲ͸͸.͸ͳ͸ 

(Equation 6-1) ݂ሺʹሻ𝑃ௌேோ   =  −Ͳ.ͲͲ͵ͻ ∗ ሺͳሻݔ − Ͳ.ͶͶͲͶ ∗ ሺ͵ሻݔ  +  Ͷͺ.ͺ͹͵ 

(Equation 6-2) ݂ሺ͵ሻா௡௖_்௜௠௘ =  ͵.ͻͷ͵͹ ∗ ሺͳሻݔ  +  ʹ.ͷͷͲͳ ∗ ሺʹሻݔ   − ͵͸.ʹͳ͹Ͷ ∗ ሺ͵ሻݔ +  ͷͶͷ.ͳʹ͵ͻ ∗ +ሺͶሻݔ  ʹ͹͸ͺ.Ͳʹͷ 

          (Equation 6-3) 

 Analysis of experimental results 6.3

Experimental analysis was conducted separately for the encoder and decoder and 

can be presented as follows. 

 Encoder Analysis 6.3.1

The Encoder objective functions obtained as a result of the experimental procedure 

presented in section ‎6.2 enables one to discuss the significance of each of the coding 

parameters. Following are the obtained models for each video sequence, with f(1) 

representing PSNR, f(2) rate and f(3) CPU encoding time. 

Table ‎6-4 tabulates the correlation coefficients of the objective functions. They 

range between 0-1. A value closer to 1 represents the fact that the dependant 

variable (in this case Bit-Rate, PSNR or CPU time) can be predicted very accurately 

from the coding parameters that play a role and has been included within the 

objective functions. 
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Table 6-4: Encoder Correlation Coefficient 

Video PSNR 
in (db)   

Bitrate   
In (Kbit/s) 

CPU Time  
in (sec) 

Cactus 0.9989 0.9551 0.988 

YachtRide 0.9981 0.9532 0.9837 

 

In analysing the objective functions (Equation ‎6-3), higher positive coefficients of 

coding parameters indicate higher positive dependency and higher negative 

coefficients represent higher negative dependency. If a certain parameter is not 

present in the objective function that means that the objective is independent of 

that parameter. A careful analysis of the coding parameters that have non-zero 

weighting factors in the objective functions obtained and a comparison of relative 

magnitudes of the coefficients can lead to a direct correspondence with the 

properties of the video, for e.g., the presence of motion in foreground and 

background, the speed of movement of objects, sudden scene changes, camera 

pan/tilt/zoom effects and the general characteristics of the content of the video as 

well. 

For example, the analysis of the linear regression equations obtained for cactus 

video sequence identifies all four parameters to have significant impact on CPU 

time, namely: 

 IntraPeriod 

 Searchrange 

 Quantization parameter 

 Fast Encoding  

For the same video the following parameters were identified to have a significant 

impact on Bit-rate. 

 IntraPeriod 

 Quantization parameter 

The parameters that are identified to have a significant impact on PSNR are: 

 IntraPeriod 

 Quantization parameter 

A more detailed and video sequence specific analysis can be presented as follows. 
 
  



 

99 
 

 Analysis of the CPU Time Experiment 6.3.1.1

The objective functions obtained for all tested video sequences for CPU encoding 

time indicates that the parameter that has the most significant impact on CPU is 

Fast encoder decision. Further in selection of the Intra-Period, more I frames 

(smaller intra period) results in a higher processing time. The next significant 

impact is from the Quantization parameter. The impact from search range SR and 

Intra Period (IP) is relatively insignificant.  

When search range Increases encoding time will slightly increase. These tests has 

no major impact on quality of the video. Disabling FEN will also slightly increase 

encoding time.  However it has no major impact on quality.  

 Analysis of the PSNR Experiment:  6.3.1.2

 
The parameter that has the most significant impact on PSNR is QP.  The PSNR 

results tabulated in TABLE ‎6-4 indicate that the two videos with the least amount of 

movement/changes, namely Cactus and YachtRide have the best correlation 

coefficients. This is expected due to the stability of the CODEC during the encoding 

of the individual frames of the coded sequence. 

 Analysis of the Bit-Rate Experiment: 6.3.1.3

The parameter with the most significant impact is the QP. Lower quantiser result in 

higher bitrate and correspondingly higher visual quality as illustrated in Figure ‎6-2 

(QP) has a very important impact on the compression rate of H.265. 

In cactus both PSNR and Bit-Rate has no impact from the Search Range. This is 

true given the fact that for videos with fast moving objects, best matches will not be 

found quickly, i.e. without having to scan the entire video. All objective functions 

includes a similar constant term indicating that a fixed computational cost for 

encoding is present, which is independent of the selection of coding parameters. 

This is expected given the processes that exist, which are independent of the coding 

parameters. 
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Figure 6-2: PSNR versus Bit-rate at QP 27, 37, 45. 

 Decoder Analysis  6.3.2

The analysis of the decoder is limited to decoder parameters that have significant 

effect on only the decoders  CPU time. Note that the Decoder parameters have no 

impact on Bit-rate and PSNR as these are determined by the encoder. In the 

proposed framework the quality and the bit-rate received by the decoder are the 

same as the encoder output. The CPU time of the decoder is analysed using the same 

method used at the encoder end.  In this section the experiments were performed in 

order to find out those coding parameters that can significantly influence CPU time. 

The objective functions thus obtained are listed within equation (Equation ‎6-4). 

 ஽݂௘௖_்௜௠௘  =  Ͳ.ͲͲʹ͵ ∗ ሺʹሻݔ  − Ͳ.Ͳͺͳͻ ∗ ሺ͵ሻݔ   + Ͳ.ͳͳ͹ͺ ∗ ሺͶሻݔ  +   ͺ.ʹͻʹ 

 

(Equation 6-4) 

Table 6-5: Decoder Correlation Coefficient 

Video Decoding CPU Time 
  in (sec) 

Cactus 0.9509 

YachtRide 0.9263 

 

Table ‎6-5 presents the correlation coefficients of the objective functions. The cactus 

video sequence has the highest correlation coefficient. The analysis of the linear 

regression equations is carried out to identify parameters that have significant 
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impact on CPU time. (Equation ‎6-4) reveals that the Fast Encoding has the most 

significant impact being the highest magnitude coefficient. 

The Encoder and Decoder analyses indicate that the objective functions obtained as 

a result of using the proposed framework are able to accurately define the significant 

coding parameters and further detail the level of significance of each parameter. 

They can also be related to the motion and content information of the videos. More 

importantly these objective functions model the behaviour/properties of the encoder 

and decoder thus allowing them to be used in multi-objective optimisation as 

described in the next section.  

The HM decoder configuration file takes an h.265 file as input and outputs a raw 

YUV video stream as a reconstructed file as shown in Appendix E. The output for 

one example video, YachtRide, illustrated in Figure ‎6-3 shows coding artefacts for 

the video frame 30 of the sequence using a quantization parameter (QP) of 45 that 

gives a very low quality with PSNR of 28.7877 db and a QP 27 that gives a very good 

quality video with PSNR 36.7323 db. When the QP is increased during the encoding 

of the video, the bit rate reduces and the video loses information. The Highlighted 

areas show regions where some artefacts occur between the Original video at frame 

30 and the Encoded video at QP 45.  The blue square in the Original video shows 

the visible windows of a building and the red ellipse shows a big tree. On the other 

hand the blue square and red ellipse in the Encoded video at QP 45 shows the 

artefact of the two mentioned area. Where the windows and the tree are not very 

much clear compared to the original video. 
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Figure 6-3:  The visual artifact with different QP. 

 

 Multi-Objective Optimisation of a H.265 6.4

Video CODEC 

Section ‎6.3 has investigated the parameters that have a significant impact on the 

encoder and decoder performance of a H.265 CODEC. It carried out the modelling 

of the H.265 codec’s performance in terms of bit-rate, PSNR and computational cost 

(i.e. encoding/decoding time). 

This Section presents multi-objective optimisation of a H.265 video CODEC. 

Specifically, an optimization scheme is proposed to determine the optimum coding 

parameters for a H.265 video codec in a bandwidth constrained environment, which 

minimises CODEC time and maximises video Quality.  

In section 6.3 a mathematical formulation by means of regression was used to 

associate the significant coding parameters of a H.265 video CODEC with the 

Original video at frame 30 

Encoded video at QP 27 Encoded video at QP 45 
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relevant performance related objectives.  Solutions to the optimization problem are 

reached through a Non-dominated Sorting Genetic Algorithm (NSGA-II). NSGA-II 

is implemented in the genetic algorithm gamultobj, available in the MATLAB 

optimization tool as described in Chapter-5.  

As mentioned earlier, the framework presented in this chapter aims to obtain a set 

of compression parameters that produces the highest image quality, while satisfying 

the need to minimise bandwidth requirements at the lowest possible computational 

cost.  With the intention of addressing these objectives, a novel multi-objective 

optimisation framework is proposed.  Therefore, the outcome of this framework is a 

set of all feasible solutions that represent the best trade-offs between the above 

mentioned objectives.  

 Implementation 6.4.1

The framework was implemented on a HP computer, running Microsoft Windows 

8.1 (64-bit), having an Intel Core i5 CPU 4200Y @ 1.40 GHz and 4.00GB RAM. 

The Multi-objective Genetic Algorithm Solver in MATLAB “gamultiobj” attempts to 

create a set of Pareto optima for a multi-objective minimization. Additionally the 

solver uses the genetic algorithm for finding local Pareto optima. The algorithm is 

first initialised by defining the population size, the total number of generations, and 

the number of variables. In the proposed framework we want to minimize two 

objectives, each having several decision variables. To achieve optimum 

performance, the fitness function is maximized by minimizing the negative of the 

function.  

 

To make use of the MATLAB ‘gamultiobj’ function, one needs to provide at least two 

input arguments, a fitness function, and the number of variables in the problem. 

The fitness function required is the multi-objective (vector) function that needs 

minimising. The functions of three objectives of each video sequences given in 

equation 6.1 were used to optimise the encoder performance under multiple 

constraints [37]. These functions were then fed to the NSGA-II [25] optimization 

tool along with the fitness function and number of variables. The NSGA-II provides 

all sets of optimal results that jointly minimize CPU time, bit-rate and maximizes 

quality. Since a single 3D graph, is complex to visualize the optimality of the results, 

pairs of graphs where plotted.  The experiment was conducted, and the following 
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setting of parameters for the GA was chosen (see ‎0TABLE ‎6-6). The ‘gamultiobj’ 

function finds a local Pareto front for multiple objective functions using the genetic 

algorithm. To obtain a Pareto front for two objective functions were used each of 

four decision variables. We also impose bound constraints on the decision. 

To finds a Pareto set 𝒙  with the default optimization parameters, options can be 

created with the ‘gaoptimset’ function of MATLAB. 𝒙  = ,࢔࢕࢏࢚ࢉ࢔࢛ࢌࡿࡿࡱࡺࢀ𝑰ࡲሺ࢐࢈࢕࢏࢚࢒࢛࢓ࢇࢍ  ,ࡿࡾ࡭ࢂࡺ ,࡭ ,࢈ ,ࢗࢋ࡭ ,ࢗࢋ࢈ ,࡮ࡸ ,࡮ࢁ   .ሻ࢙࢔࢕࢏࢚࢖࢕
Linear equalities and inequalities and parameter bounds satisfy the following: 

A* 𝒙 ൑ ࢗࢋ࡭ ࢈ ∗ 𝒙 =  ࢗࢋ࢈

LU ൑ 𝒙 ൑  ࡮ࢁ

Variables Bounds Constraints for Upper and Lower bounds used are as follow: ૚૟ ൑ 𝒙૚ ൑ ૝ૡ ૟૝ ൑ 𝒙૛ ൑ ૚૛ૡ ૛ૠ ൑ 𝒙૜ ൑ ૝૞ ૙ ൑ 𝒙૝ ൑ ૚ 

Table 6-6: Optimisation settings 

gamultobj settings 
Fitness function: @function. 

Number of variables: 4 

Bounds Constraints:  lb = [16,64,27,0]  

                                        ub = [48,128,45,1] 

Creation Function: Constraint dependent 

Population Size: 60 

Initial Population: Default  

Crossover Fraction: 0.8 

Mutation Function: Constraint dependent  

Crossover Function: Intermediate  

Crossover Ratio: 0.8  

Pareto Front Population Fraction: 0.35  

Maximum Generations: 300 

Plot functions: Pareto front 
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  Optimising the encoder 6.5

In this study, the objective functions were used to optimise the encoder. The 

functions of three objectives of each video sequences given as (Equation ‎6-3) are 

then fed to the NSGA-II optimization tool along with the fitness function and 

number of variables. The NSGA-II provides all sets of optimal results that jointly 

minimize CPU time, bit-rate and maximizes quality. Since a single 3D graph, is 

complex to visualize the optimality of the results, pairs of graphs where plotted. 

An optimization problem is one requiring the determination of the optimal 

(maximum or minimum) value of a given function, called the objective or fitness 

function, subject to certain defined restrictions, or constraints placed on the 

variables concerned.  

Since the Optimisation minimize the objective function or fitness function. That is, 

they solve problems of the form 

min ݂ሺݔሻ. 
x 

 

If one wants to maximize݂ሺݔሻ, minimize −݂ሺݔሻ, because the point at which the 

minimum of −݂ሺݔሻ occurs is the same as the point at which the maximum of ݂ሺݔሻoccurs. 

To achieve optimum performance, function is maximized by minimizing the 

negative of the function. The PSNR value as a measure of the quality of the video is 

to be maximised. So that the function to be maximized is minimized by multiplying 

the PSNR equation by minus one, ݅. ݁. −݂ሺݔሻ. 

The objective functions depend on four parameters expressed as x in the MOO 

problem formulation, which include Intra-Period, Search-Range, Quantization-

Parameter and Fast Encoding. Each pair consists of two objectives functions. 

For example in Cactus and YachtRide two pairs were obtained independently. 

 PSNR vs. Bit-rate. 

 CPU vs. Bitrate. 

The proposed multi-objective optimisation solution minimises the components of ݂ሺݔሻ subject to identified constraints. 



 

106 
 

 

 Experimental results 6.5.1

This section describes a set of experiments that were designed to test the correct 

functionality of the proposed optimisation framework. As seen in Table ‎6-6, the 

optimisation algorithm was set to generate a population of 300 chromosomes, each 

consisting of four decision variables. 

NSGA-II was used because of its ability to find an optimum set of solutions that is 

close to the Pareto-optimal set. The goal of these simulations was to obtain a set of 

Pareto-optimal solutions for each of the three video Sequences.  

The results of Multi-Objective Optimisation Pareto set analysis are presented in 

Figure ‎6-4 and Figure ‎6-5. The figures show the Pareto front or set of non-

dominated solutions for Bit-Rate vs. PSNR and CPU vs. Bit-Rate. The Pareto front 

illustrated is within a limited range and hence shows that the points lie on a straight 

line. In practice when the range of testing is increased the shape of the curve would 

represent a typical shape of a Pareto curve. The Pareto curve allows one to select 

optimum perfomance points and hence select the corresponding coding parameters 

that resulted in the objective function optimal values for coding the videos.  

 

Figure 6-4: Pareto front for cactus video sequences PSNR in (db) vs. Bit-Rate in 
(Kbit/s). 
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Figure 6-5: Pareto front for cactus video sequences CPU Time in (sec) vs. Bit-Rate in 
(Kbit/s). 

The results of the optimization appear in the following table containing both 

objective function values and the value of the variables. The list of all feasible 

solutions with their functional values, the Pareto front have been illustrated in 

Table ‎6-7. The number of rows in X is the same as the number of Pareto solutions. 

All solutions in a Pareto set are equally optimal.  For more details see Appendix G 

Table 6-7: The optimal points for Cactus PSNR vs. Bit-rate 

  f(1) f(2) x1 x2 x3 x4 

1 
-

36.9201 7278.453 16 64 27 0 

2 
-

36.6212 6984.67 17.65991 65.59725 27.66406 0.025905 

3 
-

28.8721 -382.632 47.6418 118.2422 44.99415 0.997951 

4 
-

30.5614 1223.873 41.08539 107.0511 41.21625 0.755286 

5 -32.204 2800.026 33.97008 94.28146 37.54945 0.402902 

6 
-

35.8094 6208.247 21.04581 71.59679 29.47728 0.095358 

7 -31.579 2126.931 40.52844 106.1184 38.91062 0.494995 

8 - 1807.857 37.79216 101.8517 39.89587 0.521224 
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31.1558 

9 
-

35.1985 5622.217 23.68162 76.01039 30.8412 0.143016 

10 
-

34.7259 5144.716 26.9901 83.80625 31.88502 0.316507 

11 
-

28.8721 -382.632 47.6418 118.2422 44.99415 0.997951 

12 
-

33.1295 3651.057 31.90089 91.30083 35.46647 0.327118 

13 
-

34.1591 4637.964 27.49851 83.34469 33.16743 0.264558 

14 
-

29.9441 652.0496 42.68032 111.0691 42.60394 0.746148 

15 
-

33.5393 4061.154 29.24273 86.94946 34.55934 0.693433 

16 
-

36.9201 7278.453 16 64 27 0.25 

17 
-

29.1627 -93.9621 45.86701 115.8487 44.35001 0.837885 

18 
-

31.4594 2069.315 38.04606 102.0389 39.20418 0.660673 

19 
-

36.1234 6503.75 19.99021 71.19112 28.77362 0.274147 

20 
-

29.8873 584.6452 43.6029 111.2834 42.72479 0.841717 

21 
-

30.3913 1080.419 40.78522 108.4374 41.60511 0.687554 

22 
-

29.6739 389.8275 44.005 111.6657 43.20578 0.46095 

23 -34.839 5303.11 23.88389 77.82799 31.65561 0.392679 

24 
-

30.1757 877.9415 41.48435 109.8443 42.08867 0.626643 

25 
-

28.8772 -368.384 47.1292 116.9709 44.98708 0.24776 

26 -33.67 4173.746 29.35103 85.91427 34.26154 0.168342 

27 
-

36.1568 6550.884 19.05001 68.97729 28.70628 0.05654 

28 
-

36.4119 6783.901 18.56366 68.46437 28.13128 0.166284 

29 
-

31.9862 2575.949 35.70312 97.30352 38.02878 0.592786 

30 
-

32.5238 3089.451 33.49928 93.62668 36.82751 0.519083 

31 -35.346 5782.687 22.05095 74.52345 30.52059 0.11781 

32 
-

31.6959 2283.743 37.67948 101.6304 38.67035 0.669224 

33 
-

35.6817 6085.708 21.59696 72.51968 29.76248 0.105324 

34 
-

32.4242 2993.15 33.97008 94.28146 37.04945 0.402902 

35 -36.81 7181.891 16 64 27.25 0 
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Table 6-8: Output data describing the results of MOO with GA for cactus. 

Problem  Number of 
generations 
 

Size of 
population 
 

Pareto 
fraction 
 

Size of 
non-
dominated 
set 

Function 
count 
 

Average 
distance 

Spread 

PSNRvs.
Bit-rate 

259 60 0.35 35 13001 0.0149 0.1487 

CPU vs. 
Bit-rate 

220 60 0.35 21 13261 0.0308 0.1050 

 

  Discussion 6.5.2

Multi-objective optimisation (gamultiobj) for tested Cactus video consists of two 

objective functions. Figure ‎6-6 shows the PSNR vs. bit rate values in final stage of 

generations being used of the optimization process.  

The first two output arguments returned by gamultiobj are X, the points on Pareto 

front, and FVAL, the objective function values at the values X. A third output 

argument, exitFlag, that’s states the reason why gamultiobj stopped. A fourth 

argument, OUTPUT, contains information about the performance of the solver. The 

fifth argument is POPULATION that contains the population when gamultiobj 

terminated and a sixth argument, SCORE that contains the function values of all 

objectives for POPULATION when gamultiobj terminated.          

Pareto-based multi-objective approaches consider three aspects: closeness to the 

global Pareto front; spread along the Pareto front; number of solutions of the non-

dominated set. 

In the Table ‎6-8, population size and Pareto fraction for the GA are set at 60 and 

0.35, respectively, which are considered sufficient to generate search for optimal 

solutions.   

At 259 generations and 13001 function counts, the GA selected 35 best individuals 

considered as non-dominated solutions out of 60 individuals in the population. 

Average distance between individuals is 0.0149, which indicates good convergence 

of the MOO solution. Since it has a distance of less than 0.05 from the nearest point 

in the Pareto set.  
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Figure 6-6: Pareto selected points for Cactus PSNR vs Bit-Rate. 

 

 
Figure 6-7: Pareto selected points for Cactus CPU Time vs Bit-Rate. 
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For example the Row 13 in Table ‎6-7 gives a set of parameters that results in an 

optimized H.265 CODEC performance. At this operational point the Intra-Period is 

27.49851, Search-Range is 83.34469, QP is 33.16743, Fast Encoding is 0.264558. 

The optimal values thus obtained are PSNR (X) , -34.1591 dB, Bit-Rate (Y), 4637.964 

(see Figure ‎6-6). It is note that under practical conditions all independent parameter 

values should be integers, most notably, fast encoding should be set to ‘0’.   

Similarly, the results showing the Pareto front of non-dominated solutions for Bit-

rate Vs. CPU time is presented in Figure ‎6-7. 

 Summary  6.6

In this chapter we have proposed a machine learning based approach for the 

determination of significant coding parameters  of a H265 video CODEC. In 

particular we have used multivariate regression analysis in defining objective 

functions for CPU time, PSNR and the bit-rate of a video CODEC when a given 

video is being encoded/decoded. We have been able to use known information 

about the content and the motion present in the test videos to justify the formation 

of the objective functions. We have shown that these regression equations provide 

the means for modelling the performance of a typical H.265 video CODEC. Finally 

we have have used these models to optimise the performance of a video CODEC 

under multiple constraints. For this purpose we demonstrated the effective use of a 

Genetic Algorithm based appriach.  

The research conducted in this chapter confirms that the proposed generalised 

framework for the performance analysis, modelling and multi-objective 

optimisation of a video CODEC previously demonstrated on H.264 as presented in 

Chapter 4 and 5, can be applied to any video CODEC including H.265 and provides 

a useful contribution to the video coding community who are often faced with the 

delima of selecting values for a large number of coding parameters with the 

intention of obtaining optimal performance of the CODEC under multiple 

performance constraints.  
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  Introduction 7.1

Video streaming is becoming widely adopted in today’s IP based networks. In video 

streaming, the video is played out while parts of it is being received and decoded. 

Video streaming applications use User Datagram Protocol (UDP), which unlike 

Transport Layer Protocol (TCP) used in data transmissions, provides unreliable 

transmissions. The UDP protocol is also infamous in terms of the video quality 

levels it can practically support in the presence of packet loss, network delay, jitter 

and out of order packet delivery. In the case of video transmission in wired 

networks in particular, the possibility of packet loss is very likely due to Network 

congestion. Losing sequential packets during transmission can result in the loss of 

video packets or a delay in their arrival at the destination which can affect the 

received video playback.  

In order to cater for the above challenges within reasonable practical limits, modern 

video CODECs have been equipped with error-concealment algorithms and effective 

buffering algorithms that attempts to reduce the ultimate impact of packet loss and 

network delay. As these algorithms largely differ from video coding standard-to-

standard and due to specifics of their implementations, the real impact of packet 

loss, network delay, jitter and out of order packet delivery cannot be theoretically or 

conceptually assessed and can only be assessed by detailed practical means.  As 

previous researcher studies have focused on investigating the relevant impacts in 

detail in particular with regards to H.264 and H.265 standards.  

In Chapters 5 a framework for the performance modelling and multi-objective 

optimisation of a video CODEC was presented and in particular tested and 

evaluated on H.264 (chapters 4 & 5) and H.265 (chapter 6) video CODECs. In the 
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work presented in chapters 5 the focus was on investigating the CODEC’s 

performance under encoder/decoder operational constraints, such as limits of 

relevant coding parameters of both the encoder/decoder, expected video quality at 

the decoder and compression rates applied. No attempt was made to include 

network constraints such as packet loss or delay in the modelling processes carried 

out and in the subsequent optimisation of the CODEC performance. However in an 

end-to-end delivery of video the complete process involves, encoding of the video 

content at the encoder under encoder practical constraints and viewer expectations, 

transmission of the coded video bit-stream in a practical network under network 

losses/constraints and the decoding of the received video under decoder 

constraints. Therefore the multi-objective optimisation of end-to-end video delivery 

over a network (wired or wireless) should consider encoder, network and decoder 

constraints, altogether in performance modelling and optimisation. Due to the large 

number of parameters and constraints this introduces to the modelling and 

optimisation processes, in this thesis we carry out a detailed investigation as to the 

impact of optimised video delivery determined as per the video CODEC 

optimisations the thesis has so far investigated (i.e. ignoring network constraints), 

under the influence of practical network constraints. In a practical design and 

implementation scenario the optimal selection of Encoder and Decoder parameters 

can only be determined based on known or deign constraints of the CODEC and the 

network. Packet loss and network delays are subject to constant changes due to 

network congestion, especially. Therefore using these network parameters in an 

end-to-end optimisation becomes meaningless in practice. This is a further reason 

that this chapter investigates the impact of packet loss and network delays, in video 

coded optimally as per the methods proposed in Chapters 5. The results will provide 

a valuable evaluation of more detailed performance and behaviour of video 

CODECs.  

In addition to the above the practical system that was put together within the 

research context of this chapter to simulate the video delivery over wired networks 

will provide a platform for future research and the experience thus gathered 

documented in detail in chapter will be a contribution to researchers working in this 

area in general. 

In this chapter, we study the scenario of the Real-time video communication of 

stored video. In streaming mode, the video can be played back while parts of it are 
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being downloaded. While streaming if the video data is not received in time, the 

video will experience delay which can create annoying artefacts of image/video 

quality during playback. Another common issue is that of the loss of video packets 

during transmission. When the required video packets are lost before arriving at the 

receiver, the quality of the video play out at the receiver is affected.  Thus, it is 

important to understand the effect of each of these scenarios on the quality of the 

received video.  

Within the research context of this chapter end-to-end video communication using 

two P2P network clients and a server base was configured to stream videos.  Packet 

loss rate was introduced to simulate packet losses using the Clumsy [97] tool. The 

same tool was used to simulate network delay. Furthermore, video quality 

evaluation he Evalvid tool has been used to measure the PSNR of the video 

streaming service in the work proposed.  

 

For clarity of presentation this chapter is divided into several sections. Apart from 

this section that presented the research context and the justification of the research 

to be conducted and presented, Section ‎7.2 focuses on the design and 

implementation of the simulation environment. Section ‎7.2.2 discusses the video 

streaming experiments, presenting results and a detailed analysis. Finally section 

7.4 summarises and concludes the research conducted.  

 System Design and Implementation 7.2

In this section we present the detailed system design of an end-to-end video 

streaming and simulation environment that uses a basic network loss/delay 

simulator ‘Clumsy’  [97] and the widely used network simulator, OPNET [98]. 

Fundamentally there are five steps that need to be followed to design and evaluate a 

video streaming system (see Figure ‎7-1): 

1. Prior to the streaming the raw video file (YUV-uncompressed) is encoded 

using H.264 JM encoder software to generate a bit-stream file. It is noted 

that the input file is encoded using an example encoder parameter set that 

resulted in an optimal coding of the video (see chapter 5). This stage is 

named as the pre-processing stage and is illustrated as a separate functional 

block in Figure ‎7-1 
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2. The Bitstream file is then received by the EvalVid tool (see Chapter-3) which 

transcode the bit-stream to a MP4 bit stream, producing the video Trace File 

[80] EvalVid tool also produces the PSNR before and after MP4 transcoding. 

The PSNR ‘before’ transcoding refers to the PSNR of the received H.264 bit-

stream after local decoding and PSNR after refers to the PSNR of the MP4 bit 

stream after local decoding. It is noted that it is the PSNR before transcoding 

that depicts loss due to H.264 coding. The PSNR after depicts loss due to 

MP4 coding. It is noted that the transcoding to MP4 is required as it is only 

the MP4 format that is supported by network simulators.  

3. After that the experiments performed for testing the effect of packet loss 

rates, was conducted using the client and server approach in which one 

machine was configured as a client and another was configured as a server 

computers are connected with each other using the cross Ethernet cable. 

Before transmitting the videos to the client using Mp4 file in VLC, Clumsy 

was used to introduce different amounts of packet loss on the server 

machine. The streamed video file will then be evaluation using Evalvid Tool 

to compare with the PSNR of the reference video. Note that the Trace File is 

needed for the purpose of using the OPNET simulator. 

4. The coded MP4 bit stream is then sent to the server. A VLC media player 

embeds the bit-stream within a network abstraction layer to prepare the bit –

stream for transmission over a wired network. The server incorporates an 

additional tool, Clumsy that can incorporate packet loss in the bit stream 

and/or delays in buffering the bit stream to the channel. The bit-stream is 

then transmitted over the network and received by a further VLC player that 

separated the video bit-stream from header information used in effectively 

transmitting the video over a network to a given destination. 

5. Finally the video bit-stream is received by a second EvalVid tool that 

transcodes the video into a H.264 bit-stream. In a practical transmission set 

up the H.264 bit stream will then be decoded and will be ready to be 

displayed. It is noted that the PSNR due to H.264 encoding/decoding was 

measured at the first EvalVid tool. The PSNR due to MP4 coding is measured 

at the second EvalVid tool. 
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A video stream application runs on the client computer connected with a server by a 

communication medium (the network), e.g., an Ethernet Local Area Network (LAN) 

cable for wired communications.  

 

Figure 7-1: Block diagram of streaming procedure 

 

 Tested video sequences  7.2.1

The test sequences that have been used in the experiments conducted include 

videos with different characteristics of content and are listed in Table ‎7-1. Each 

video has objects with different motion characteristics, e.g. from slow to high 

phased movements. As Akiyo video sequence has objects with slow motion 

properties, since the background is fixed.  Foreman (Qcif) has moderate motion as a 

man appears to be talking and the camera seems to move.  Football has fast 

movement of players. Table 7.1 indicated the different type of videos used their 

resolution and number of frames used for the experiments.  
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Table 7-1:  Video sequences and their properties  

Video 

Sequence  

Foreman Akiyo Football Foreman   

Resolution 76x144 (QCIF)  352x288 (CIF)  76x144 (QCIF) 1280x720   

Total Frames  
 

300 300 260 248 

 

  Video streaming experimental setup 7.2.2

Before starting the experiments, all required components or the video coding and 

streaming system were configured and tested using a ping command. The 

configurations to be conducted and steps that needs to be taken are as follows;  

1. Configure IP Address in both server and client using a class C IP address. 

2. Configure firewalls on both client and the streaming servers. 

3. Configure packet loss on the server 

4.  Start VLC streaming of the video content from the server side    

5. Record received video using VLC player at the client computer.  

 Client - Server communication 7.2.3

A client-server communication system contains three main components specified in 

Figure ‎7-1, i.e. the streaming server machine, communication channel and a 

receiver client machine. 

On the server machine, before transmission, raw video files are encoded and 

compressed using H.264 encoding technique using the JM Reference software. 

Clumsy tool is used for emulating the lossy transmission medium, with packets 

being randomly dropped based on the specified percentage of packet loss rate. 

Video is streamed using VLC media player after receiving the coded bit-stream from 

server. It is noted that the VLC media player has ‘socket’ functionality that enables 

communications between two peer-to-peer or client-server computers.  
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The Processes used to start file streaming from the server machine are as follows:  

1. Set the packet drop rate in the clumsy tool. 

2. In the VLC media player choose the streaming video mp4 file.  

3. Choose the protocol used in streaming. Note that UDP was used as a protocol 

in the experiments conducted.  

4. Enter the IP address of the client (destination host) and the UDP port (1234 

in his research). In this research the client address used was 192.168.0.3 and 

the port address was 1234.  

5. Set transcoding option to H.264. 

6. Click Stream to commence streaming the video. 

On the client side the receiver component is responsible for the reception and 

playback of the streamed video. 

For the playback at the client three further steps are required. 

1.  The VLC media player receives and opens the network stream.  

2. In the URL Select enter UDP udp://192.168.0.3:1234 which is the IP address 

of the client machine and Enter port number 

3. Click play 

 Experiments, results and analysis 7.3

The experiments were conducted using the client and server communication 

approach in which one machine was configured as a client and another was 

configured as a server. In the experiments conducted within the research context of 

this thesis, the client computer used was an Asus machine powered by Intel(R) 

Core(TM)2 Duo CPU, 2.00GHz, 2.53GHz, 32 bits, x64 processor, 300 GB Hard 

Drive is the storage memory. The Server is HP machine  powered by Intel(R) 

Core(TM)dual CPU 2.00GHz, 2.00GHz, 32 bits, 150GB Hard Drive is the storage 

memory. 

The ‘Clumsy’ tool was used to introduce different amounts of packet loss. The delay 

and packet loss settings were set using the clumsy software before transmitting. The 

packet loss values that were used in the experiments conducted are: 1%, 2%, 3%, 
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4%, 5% and 6%. Clumsy drops packets randomly once a percentage drop has been 

specified. The delay related experiments were concluded applying the following 

values: 20 ms, 30 ms, 50 ms, 80 ms, and 100 ms.  

The streaming of the optimally coded video was implemented using a selected set of 

optimal points from the Foreman video’s PSNR vs. Bit-rate pareto-optimal graph 

illustrated in Figure 5-7, chapter 5. Table ‎7-2 tabulates the selected optimal points. 

For example, selecting row-67 IntraPeriod is 13, SearchRange is 10, QP is 20, and 

NRFrames is 16. Whereas the optimal values for PSNR was 41.3778, Bit-Rate is 

429.7228 as shown in Table ‎7-2.  Note that the optimal value of PSNR represents 

image quality due to H.264 compression only. In the network simulation to be 

carried out as the H.264 bit-stream is transcoded to a MP4 bit stream first, before 

transmission, the transmitted video quality will be much lower that the above 

optimal value. 

Table 7-2: Select optimal points from Figure ‎5-7 in chapter 5 for foreman video. 

Row f(1)psnr f(2)Bitrate X1IP X2SR X3QP X4NRF 

11 45.7358 536.7505 -16.1877 13.29562 13.13297 18.59521 

25 36.2372 305.7522 -7.10057 8.441657 28.96404 16.3452 

47 41.4123 430.5598 -12.5901 9.493237 20.19704 16.52902 

67 41.3778 429.7228 -12.5433 9.524487 20.25954 16.56418 

24 37.0587 327.1868 -7.61426 9.242817 27.6164 16.63976 

99 37.3786 333.0412 -8.18074 9.941671 27.09138 16.83673 

 
The Table ‎7-3 present the newly encoded results with coding parameters of the 

optimal points rounded-off, used as input encoder parameters. Note that Row-67 

coding instance has been selected as the representative instance for all loss 

experiments below.   

Table 7-3: Encoded video with different parameter sets for foreman video using 

optimal points. 

Row f(1)psnr f(2)Bitrate X1IP X2SR X3QP X4NRF psnr Bitrate Encoding 

Time 

11 45.7358 536.7505 16 13 13 16 47.866 835.30 60.058 
25 36.2372 305.7522 7 8 29 16 36.976 165.35 30.943 
47 41.4123 430.5598 13 9 20 16 42.849 393.51 40.600 
67 41.3778 429.7228 13 10 20 16 42.838 393.51 40.054 
24 37.0587 327.1868 8 9 28 16 37.059 151.42 28.897 
99 37.3786 333.0412 8 10 27 16 37.846 170.37 29.998 
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Table ‎7-4 shows the final result of the PSNR of each video sequence at the receiving 

end after server-to-client transmission. Note that for the QCIF Foreman video, the 

23.26 dB value quoted is the quality of transmitted MP4 bit-stream at 0% loss. It 

should be noted that this value is significantly lower that the optimally coded H.264 

bit stream quality, 42.838 dB quoted above, before being transcoded to MP4. In 

other words transcoding to Mp4 has created a significant loss of quality in the first 

place. When various levels of packet loss in introduced (1%-6%), the results of the 

PSNR of the received video generally reduces (when packet loss % is increased) 

from 15dB to 14dB, which is s significant reduction in quality. The results of 

transmitting other test videos incorporating increasing levels of packet loss also 

indicates a significant drop in image quality when packet loss percentage is 

increased. It is however noted that in videos with fast motion (e.g. football) the 

packet loss significantly reduces image quality. Such videos have significantly 

different adjacent frames that result in needing a significantly high percentage of 

the bit-stream to be allocated to coding the frame differences and motion 

estimations. Therefore loss of information that results from loss of packets could 

create more serious problems of the decoder’s ability to reconstruct the frames that 

corresponds to the lost frames, as adjacent frames will be very much different and 

hence the predictions will be less accurate.  

Table 7-4: Packet Loss settings and the resulted PSNR (quality) 

Loss % Foreman(Qcif)  
 

Akiyo(Cif)  
 

Football(Qcif)   
 

Foreman(720p)  
 

0% 23.26 dB   36.38 dB 37.01 dB 23.98 dB 
1 % 15.52 dB 25.06 dB  15.85 dB 17.19 dB 
2% 15.04 dB 23.67 dB 16.24  dB 15.04 dB 
3% 15.27dB 24.12dB  15.97 dB 15.77 dB 
4% 16.71 dB 24.09 dB    16.04 dB 16.41 dB 
5% 16.83dB 27.19  dB    16.09 dB 15.53dB 
6% 13.89dB 27.25  dB    16.29 dB 15.50 dB 
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Figure 7-2: The effect of different packet loss rates on the PSNR. 

Figure 7-2 illustrates a bar-chart showing how packet loss impacts the video quality 

of four different videos. It is seen that the Akiyo video sequence that has the least 

motion operates at a high level of quality and as a result indicated larger variations 

of quality when the packet loss rate is gradually increase from 1% to 6 %.  

To check the effect of packet delay on the quality of video streamed video, the Akiyo 

video sequence encoded at optimal encoder settings (chapter 4 and 5) was streamed 

while introducing different amounts of delays in milliseconds (ms) using the clumsy 

software. Different delay values were used to analyse the impact of delay and the 

result obtained are tabulated in Table ‎7-5.   It is seen that the PSNR reduces when 

the delay is increased from 10 ms to 100 ms as presented in Figure ‎7-3. The results 

show a good level of resilience to network delay that is being demonstrated by the 

H.264 CODEC for this video with minimal motion.  

Table 7-5:  Impact of packet-delay on the quality of the Akiyo video sequence 

Delay in 

(ms) 

PSNR  

In (db) 

10 25.09 

20 25.76 

30 25.04 

50 23.21 

80 23.63 

100 23.22 
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Figure 7-3:  Impact on PSNR with different levels of delay for Akiyo video. 

The Figure ‎7-4 confidently demonstrates the perceivable image quality loss that 

results from both packet loss and packet delay. For all videos the artefacts are more 

visible around the areas of motion as it is the residues of video coding (i.e. frame 

differences after motion prediction and correction) that dominates most of the bit 

stream and hence most affected due to losses or delays in the bit streams. Figure 7.4 

(b) also shows that it is in the football sequence with fast motion that the impact of 

perceptual quality is highest, as compared to other videos, when subjected to packet 

loss. Figure 7.4 (c) illustrates the impact of packet delay. Note that packet delay 

creates artefacts that are more spread-out over the frame, rather than confined to 

the motion related areas. Note that in the foreman video, due to the camera motion 

there is some motion in the background area and this is why artefacts are shown in 

the background areas as well.    
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Figure 7-4:  (a) video frame before streaming (b) received video by client at 6% 

Packet loss Rate. (c) The effect of delay at 50 ms. 
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Table 7-6:  Using defaults parameter of H.264 encoder. 

 Foreman(Qcif)  
 

Akiyo(Cif)  
 

Football(Qcif)   
 

Foreman(720p)  
 

PSNR 36.072 dB 40.523 dB 33.396 dB 42.038 dB 
0 %  21.66 dB   32.01 dB 36.56 dB 23.36 dB 
1 % 14.03 dB 23.18 dB  13.64 dB 15.38 dB 
 
 
For comparison purposes of the proposed method the results obtained in Table ‎7-6, 

shows the streaming of videos encoded with default parameters of H264 encoder in 

JM reference software.  Packet loss rate % was introduced and how packet loss 

impacts the video quality PSNR (dB). In particular the proposed method in this 

chapter performed generally better in all experiments. We see that the proposed 

approach has a slightly improved compared to the evaluation of the results used in 

default parameter. 

 Summary  7.4

In this chapter, we have integrated several tools to create a real network between a 

client and a server and have transmitted video streams compressed by an optimally 

configured H.264 video CODEC as per the research proposed in Chapters 4 and 5. A 

packet loss and network delay simulation has been used to introduce network losses 

as in a real network and the impact of such loss and delay on video sequences 

having different characteristics of content has been investigated. The research 

proposed has enabled us to determine the impact of packet loss and network delay 

on the transmission / streaming of optimally coded video. It has been shown that 

despite the presence of error concealment algorithms the impact on video quality is 

significant as high rates of packet loss can severely impact video quality of video’s 

specifically having fast motion characteristics. Videos having larger content/object 

motion between frames result in a higher amounts of bits being allocated to code 

the motion vectors which are vital in a video’s reconstruction at the decoder end. 

The loss of such content thus creates significant artefacts that error concealment 

algorithms struggle to correct. 

We have observed the impact of packet losses on the transmission of video 

streaming through end to end devices. Due to different frame sizes and different 

percentages of losses and delays, a normal UDP channel has been simulated and the 

losses have been introduced to the network using Clumsy which is a tool that can 
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introduce Packet Drop with randomly discard packets and hold the packets to 

emulate network delay in both local and Wide Area Networks.   

When amount of packet lost is introduced the result shows that Quality or PSNR of 

the video decreased compared to the original streamed video.  In the video playback 

we were able to observe that, the videos were poor at different percentages of losses.   

It is also observed that the low motion sequence loses quality survive due to similar 

frames, the better the quality of videos received.  

In the fact videos are segmented into many smaller packets during transmission 

while the packets are dropped randomly, there is high possibility that the video 

suffer more losses of the very important I frames.  The received video will have 

much more artifacts with poor PSNR.  The contribution of this chapter will help in 

operations such as, high quality videoconferencing and online football videos. 
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 In this chapter we provide a summary and conclusions of the key research 

outcomes of this thesis, and describe how these findings have contributed to 

meeting the research objectives. After presenting the summary and conclusions in 

section 8.1, a number of ideas to further improve the contributions of the research 

presented in this thesis are presented and discussed in section 8.2. The proposed 

further work can significantly improve the outcomes of the research presented in 

this thesis and will enable wider practical impact in the future.  

 Conclusions 8.1

The research presented in this thesis has investigated a number of original 

contributions made to the research area of optimisation of video codecs. In 

particular the optimisations have been performed on multi-objectives, to represent 

a generalized framework that can be applied to any video CODEC and provides a 

useful contribution to the video coding community who are often faced with the 

dilemma of selecting values for a large number of coding parameters with the 

intention of obtaining optimal performance of the CODEC under multiple 

performance constraints. 

The following describes the contributions of the research conducted within the 

research context of this thesis: 

 The thesis proposes the use of an approach to model the performance of a 

video CODEC based on the codecs significant coding parameters and then 

subsequently use these models to optimise the CODECs performance under 

multiple operational constraints/objectives. A framework for the above is 

proposed and a claim is made that this framework can be applied to any 

video CODEC in practice in coding any video. Therefore research is 

conducted to justify the use of the framework in the optimisation of CODECs 

of the most widely used video coding standard at present, H.264 and the 

latest video coding standard H.265.  
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 In Chpater-4 a novel approach to determining the significant coding 

parameters of a H.264 video CODEC using linear regression was proposed. 

As compared to the experimental and trial-and-error approaches used in 

previous literature to establish these significant coding parameters the 

proposed novel approach ensures a scientific methodology that allows the 

detailed analysis of operational constraints of specific coding algorithms 

implemented with the standardised CODECs as implemented. The chapter 

subsequently used these coding parameters to model the CODECs 

performance, in terms of coded bit rate, reconstructed image/video quality 

and encoder/decoder computational cost. Five different machine learning 

approaches were used for this purpose concluding that more advanced 

machine learning approaches such as the ensemble learning algorithms 

REPTree has the ability to model performance more accurately than simple 

linear regression based modelling. However the simplicity and applicability 

of Linear Regression and the closeness of obtained prediction accuracies to 

the highest possible accuracy resulted in a decision being made to use linear 

regression as the modelling approach that will be recommended for the 

proposed framework.  

 Chapter-5 proposed the use of a Genetic Algorithm based approach to 

optimise the H.264 CODEC modelled in Chapter-4. Bit-rate vs. PSNR, PSNR 

vs. computational cost, Computational cost vs.-bit rate optimisations were 

carried out under further operational constraints of the parameters used. 

Optimal performance graphs, i.e. pareto-optimal-curves were generated 

leading to identifying a number of exemplar optimal operational points 

under the given constraints and the corresponding parameter values were 

established. Thus the outcome of the optimisations conducted in Chapter-5 is 

a collection of configurations where one is aware of the coding parameter 

that needs to be set in order to obtain optimal CODEC performance.  

 In Chapter-6 the use of the framework tested on H.264 in chapters 4 and 5 in 

the modelling and optimisation of a H.265 CODEC was presented. The 

research conducted and the result obtained justifies the claim that the 

proposed parameter based multi-objective optimisation framework can be 

used in conjunction with and video CODEC. Due to the nature of the H.265 

video CODEC’s design it was found out that different set of parameters 
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operate as the significant coding parameters. Further due to the need of 

testing HD video, the computational power needed to carry out the research 

had to be extended beyond the use of a PC and into the use of High 

Performance Computing facilities.  

 In Chapter 4-6 the video CODEC optimisations carried out were limited to 

the encoder and decoder only. However in practice encoded video is 

transmitted via lossy channels and the decoded video reconstructed will be 

subjected to packet loss, network delays etc. which will have an impact of the 

reconstructed image/video quality. In appreciation of this fact in Chapter-7 a 

framework for the transmission and network simulation of packet loss and 

delay were presented by integrating existing technological components. This 

simulation system was then used to simulate packet loss and network delay. 

The impact they have on the reconstructed video quality of videos having 

different motion characteristic were investigated and reasoning for the 

artefacts created were given. It was conclude that for a video streaming 

application and end-to-end optimal configuration parameter selection is 

impossible in practice as the packet-loss and delay results from external 

variable factors such as network congestion. Therefore the investigations 

carried out in this chapter was of practical importance to research 

community who could benefit from the work presented in chapters 4-6 by 

understanding the impact that optimally coded video will have when 

transmitted over real networks.  

The above contributions have resulted in the publication of two papers (see section 

1.2). A further publication is planned in the investigation of the impact of network 

packet loss and delays on optimally coded video.  
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 Future work 8.2

The research conducted in this thesis was somewhat constrained by the limitations 

of the software implementations used for the standard functions such as those used 

for modelling the codec performance using machine learning and optimisation.  

It was mentioned in Chapter 5 and in Chapter 6 that the MATLAB’s implementation 

of the GA based optimisation algorithm deals with all optimisation problems as a 

minimisation problem. This required the negation of functions that required 

maximisation such as PSNR in the experiments conducted. As a result the PSNR 

bit-rate and CPU time values obtained are negative, making it difficult to interpret 

the results. A new design and implementation of this algorithm that resolves the 

above constrained can be recommended as future work. However this specific 

limitation has not had any significant overall impact of the concept being proposed 

in this thesis. 

A further limitation of the MATLAB’s multi-objective-optimisation function as 

implemented is that it was only able to jointly optimise two functions with multiple 

operational/parameter constraints. In practice this does not need to be the case and 

one should be able to jointly optimise more than two fitness functions. As a result of 

the above limitations the optimisations that were carried out were ‘dual’ in nature 

having multiple constraints in the parameter setting ranges. 

In the optimisation of the H.264 CODEC our extended experiments results 

demonstrated that even with the CODEC’s rate-control being turned off, the set bit-

rate had an impact on the PSNR. This can be attributed to secondary reasons such 

as coding mode decisions etc. that may affect quality. Therefore in the modelling of 

the H.264 CODEC in Chapter-4 both PSNR and bit-rate have been attempted to be 

used as modelling parameters. This has only however leaded to the presence of bit-

rate as an independent parameter in the PSNR fitness function, but not PSNR in the 

bit-rate fitness function. Realistically under a proper implementation of a CODEC 

when rate control is off, one should be able to assume that bit-rate is not a 

parameter that can be set and hence should not be used in the modelling. We have 

conducted further work since this decision and found out that if the bit-rate is not 

used the accuracy of the modelled PSNR slightly reduces. It can be recommended 

that therefore bit-rate be removed from the modelling in the future.  



 

130 
 

In extended research conducted within the research context of this thesis, we have 

also investigated the use of OPNET in modelling real network conditions such as 

packet-loss and delay. Unfortunately within the context of the research this resource 

that incurs licensing cost was not available to support the research conducted. In 

the future the proposed framework for simulation in Chapter-7 can be replaced by 

OPNER allowing a more comprehensive investigation to be carried out.  
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Appendix A: JM reference encoder / decoder configuration 

file. 

A.1. Encoder configuration file. 
########################################################################
################## 
# Files 
########################################################################
################## 
InputFile             = "foreman_qcif.yuv"       # Input sequence 
InputHeaderLength     = 0      # If the inputfile has a header, state it's length in byte here 
StartFrame            = 0      # Start frame for encoding. (0-N) 
FramesToBeEncoded     = 30      # Number of frames to be coded 
FrameRate             = 30.0   # Frame Rate per second (0.1-100.0) 
Enable32Pulldown      = 0      # Enable 'hard' 3:2 pulldown (modifying the inpur data) 
                               # 0 = disabled 
                               # 1 = A, B, Bt|Cb, Ct|Db, D 
                               # 2 = A, B, C, Ct|Db, D 
SEIVUI32Pulldown      = 0      # Enable 3:2 pulldown through VUI and SEI metadata signaling. Five 
methods are supported: 
                               # 0 = disabled 
                               # 1 = A, Bt|Bb, Bt|Cb, Ct|Cb, D 
                               # 2 = A, B, C, C, D 
                               # 3 = At|Ab, Bt|Bb, Bt|Cb, Ct|Cb, Dt|Db 
                               # 4 = A, Bt|Bb, Bt|Cb, Ct|Db, Dt|Db 
                               # 5 = At|Ab, Bt|Bb, Bt|Cb, Ct|Db, Dt|Db 
 
SourceWidth           = 176    # Source frame width 
SourceHeight          = 144    # Source frame height 
SourceResize          = 0      # Resize source size for output 
OutputWidth           = 176    # Output frame width 
OutputHeight          = 144    # Output frame height 
ProcessInput          = 0      # Filter Input Sequence  
Interleaved           = 0      # 0: Planar input, 1: Packed input 
PixelFormat           = 0      # Pixel Format for 422 packed inputs 
                               # 0: UYVY 
                               # 1: YUY2/YUYV 
                               # 2: YVYU 
                               # 3: BGR (Unsupported) 
                               # 4: V210 (Video Clarity) 
 
StandardRange         = 0      # 0: Standard range 1: Full range (RGB input) 
VideoCode             = 1      # Video codes for RGB ==> YUV conversions 
                               # 0 = NULL, 
                               # 1 = ITU_REC709, 
                               # 2 = CCIR_601, 
                               # 3 = FCC, 
                               # 4 = ITU_REC624BG, 
                               # 5 = SMPTE_170M, 
                               # 6 = SMPTE_240M, 
                               # 7 = SMPTE_260M, 
                               # 8 = ITU_REC709_EXACT 
 
TraceFile             = "trace_enc.txt"      # Trace file  
ReconFile             = "test_rec.yuv"       # Reconstruction YUV file 
OutputFile            = "test.264"           # Bitstream 
StatsFile             = "stats.dat"          # Coding statistics file 
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NumberOfViews         = 1                     # Number of views to encode (1=1 view, 2=2 views) 
View1ConfigFile       = "encoder_view1.cfg"   # Config file name for second view 
 
########################################################################
############## 
 
# Encoder Control 
########################################################################
############## 
Grayscale             = 0   # Encode in grayscale (Currently only works for 8 bit YUV 420 input) 
ProfileIDC            = 100 # Profile IDC (66=baseline, 77=main, 88=extended; FREXT Profiles: 100=High, 
110=High 10, 122=High 4:2:2, 244=High 4:4:4, 44=CAVLC 4:4:4 Intra, 118=Multiview High Profile, 
128=Stereo High Profile) 
IntraProfile          = 0   # Activate Intra Profile for FRExt (0: false, 1: true) 
                            # (e.g. ProfileIDC=110, IntraProfile=1  =>  High 10 Intra Profile) 
LevelIDC              = 40  # Level IDC   (e.g. 20 = level 2.0) 
 
IntraPeriod           = 0  # Period of I-pictures   (0=only first) 
IDRPeriod             = 0   # Period of IDR pictures (0=only first) 
AdaptiveIntraPeriod   = 1   # Adaptive intra period 
AdaptiveIDRPeriod     = 0   # Adaptive IDR period 
IntraDelay            = 0   # Intra (IDR) picture delay (i.e. coding structure of PPIPPP... ) 
EnableIDRGOP          = 0   # Support for IDR closed GOPs (0: disabled, 1: enabled) 
EnableOpenGOP         = 0   # Support for open GOPs (0: disabled, 1: enabled) 
QPISlice              = 17  # Quant. param for I Slices (0-51) 
QPPSlice              = 17  # Quant. param for P Slices (0-51) 
 
 
########################################################################
############## 
# Search Range Restriction / RD Optimization 
########################################################################
############## 
 
RDOptimization         = 1 # rdo-optimized mode decision 
                             # 0: RD-off (Low complexity mode) 
                             # 1: RD-on (High complexity mode) 
                             # 2: RD-on (Fast high complexity mode - not work in FREX  

A.2. Decoder configuration file. 

 
This is a file containing input parameters to the JVT H.264/AVC decoder. 
# The text line following each parameter is discarded by the decoder. 
# 
# For bug reporting and known issues see: 
# https://ipbt.hhi.fraunhofer.de 
# 
# New Input File Format is as follows 
# <ParameterName> = <ParameterValue> # Comment 
# 
#####################################################################
##################### 
# Files 
#####################################################################
##################### 
InputFile             = "test.264"       # H.264/AVC coded bitstream 
OutputFile            = "test_dec.yuv"   # Output file, YUV/RGB 
RefFile               = "test_rec.yuv"   # Ref sequence (for SNR) 
WriteUV               = 1                # Write 4:2:0 chroma components for monochrome streams 
FileFormat            = 0                # NAL mode (0=Annex B, 1: RTP packets) 
RefOffset             = 0                # SNR computation offset 
POCScale              = 2                # Poc Scale (1 or 2) 
#####################################################################
##################### 
# HRD parameters 
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#####################################################################
##################### 
#R_decoder             = 500000           # Rate_Decoder 
#B_decoder             = 104000           # B_decoder 
#F_decoder             = 73000            # F_decoder 
#LeakyBucketParamFile  = "leakybucketparam.cfg" # LeakyBucket Params 
#####################################################################
##################### 
# decoder control parameters 
#####################################################################
##################### 
DisplayDecParams       = 0                # 1: Display parameters;  
ConcealMode            = 0                # Err Concealment(0:Off,1:Frame Copy,2:Motion Copy) 
RefPOCGap              = 2                # Reference POC gap (2: IPP (Default), 4: IbP / IpP) 
POCGap                 = 2                # POC gap (2: IPP /IbP/IpP (Default), 4: IPP with frame skip = 1 etc.) 
Silent                 = 0                # Silent decode 
IntraProfileDeblocking = 1                # Enable Deblocking filter in intra only profiles (0=disable, 
1=filter according to SPS parameters) 
DecFrmNum              = 0                # Number of frames to be decoded (-n) 
#####################################################################
##################### 
# MVC decoding parameters 
#####################################################################
##################### 
DecodeAllLayers        = 0                 # Decode all views (-mpr) 
 

 
 

Appendix B: Selected parameters for encoder / decoder. 

Table B . 1: Selected set of parameters for Claire video sequence. 

 

IntraPeriod SearchRange QP NRFrames  PSNR  
Bit-
rate      

CPU 
CPU/ 
Decoder 

0 16 17 2 47.437 162.01 45.551 0.329 

0 16 17 5 47.48 133.98 51.461 0.299 

0 16 17 8 47.495 133.54 60.925 0.301 

0 16 49 2 27.086 5.49 34.866 0.192 

0 16 49 5 27.081 5.59 47.959 0.19 

0 16 49 8 27.114 5.73 57.967 0.186 

0 32 17 2 47.458 161.63 40.422 0.33 

0 32 17 5 47.48 132.3 62.217 0.311 

0 32 17 8 47.488 132.13 66.532 0.313 

0 32 49 2 27.086 5.49 40.79 0.205 

0 32 49 5 27.081 5.59 52.359 0.207 

0 32 49 8 27.114 5.73 59.203 0.189 

5 16 17 2 48.308 292.37 37.451 0.385 

5 16 17 5 48.387 258.33 46.761 0.361 

5 16 17 8 48.385 258.32 55.405 0.359 

5 16 49 2 27.222 14.09 32.66 0.239 

5 16 49 5 27.402 14.22 44.288 0.231 

5 16 49 8 27.412 14.29 53.914 0.229 
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5 32 17 2 48.308 292.37 37.722 0.375 

5 32 17 5 48.387 258.33 47.217 0.354 

5 32 17 8 48.385 258.32 55.22 0.379 

5 32 49 2 27.222 14.09 32.612 0.231 

5 32 49 5 27.402 14.22 44.113 0.228 

5 32 49 8 27.412 14.29 53.695 0.235 

8 16 17 2 47.793 217.02 38.537 0.332 

8 16 17 5 47.846 189.11 48.76 0.313 

8 16 17 8 47.859 189.08 57.1 0.312 

8 16 49 2 27.282 10.54 33.452 0.219 

8 16 49 5 27.483 10.62 45.507 0.216 

8 16 49 8 27.483 10.7 55.077 0.214 

8 32 17 2 47.786 216.93 38.664 0.349 

8 32 17 5 47.848 189.16 50.772 0.353 

8 32 17 8 47.861 189.12 64.002 0.395 

8 32 49 2 27.282 10.54 34.729 0.221 

8 32 49 5 27.483 10.62 52.814 0.225 

8 32 49 8 27.483 10.7 58.264 0.227 

 
 

Table B. 2: Selected set of parameters for Coastguard video sequence. 

 

IntraPeriod SearchRange QP NRFrames  PSNR  Bit-rate    CPU 
CPU/ 
Decoder 

0 16 17 2 43.418 979.02 64.889 0.662 

0 16 17 5 43.27 784.34 88.765 0.624 

0 16 17 8 43.286 785.94 104.393 0.612 

0 16 49 2 24.189 5.83 40.145 0.205 

0 16 49 5 24.291 5.82 51.923 0.194 

0 16 49 8 24.294 5.93 63.185 0.191 

0 32 17 2 43.436 980.48 64.994 0.65 

0 32 17 5 43.252 781.88 83.298 0.617 

0 32 17 8 43.272 783.7 100.209 0.603 

0 32 49 2 24.241 5.9 37.427 0.191 

0 32 49 5 24.322 5.88 52.426 0.19 

0 32 49 8 24.317 5.91 64.159 0.188 

5 16 17 2 44.999 1303.7 60.007 0.735 

5 16 17 5 44.782 1050.44 74.499 0.676 

5 16 17 8 44.772 1048.75 89.988 0.678 

5 16 49 2 24.509 10.35 34.322 0.227 

5 16 49 5 24.669 10.36 47.052 0.224 

5 16 49 8 24.671 10.44 57.41 0.225 

5 32 17 2 32.202 508.26 34.85 0.337 

5 32 17 5 33.264 507.62 46.791 0.33 

5 32 17 8 33.264 507.66 57.392 0.33 
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5 32 49 2 24.509 10.35 34.838 0.228 

5 32 49 5 24.673 10.37 47.723 0.225 

5 32 49 8 24.67 10.43 58.284 0.253 

8 16 17 2 43.662 1041.16 61.839 0.713 

8 16 17 5 43.501 836.26 77.872 0.608 

8 16 17 8 43.49 835.59 93.222 0.631 

8 16 49 2 24.452 8.82 36.108 0.216 

8 16 49 5 24.741 8.62 50.437 0.238 

8 16 49 8 24.743 8.73 61.173 0.226 

8 32 17 2 43.67 1042.05 62.295 0.656 

8 32 17 5 43.503 836.23 78.095 0.615 

8 32 17 8 43.49 836.42 94.709 0.607 

8 32 49 2 24.452 8.82 36.389 0.219 

8 32 49 5 24.739 8.62 49.087 0.217 

8 32 49 8 24.741 8.71 60.517 0.226 

 

Table B. 3: Selected set of parameters for Football video sequence. 

 

IntraPeriod SearchRange QP NRFrames  PSNR  Bit-rate     CPU 
CPU/ 
Decoder 

0 16 17 2 44.109 2242.07 89.723 0.965 

0 16 17 5 44.081 2085.56 109.924 0.96 

0 16 17 8 44.052 2081.78 128.955 0.937 

0 16 49 2 19.663 21.35 47.255 0.247 

0 16 49 5 20.043 19.32 66.317 0.237 

0 16 49 8 20.061 19.43 80.083 0.231 

0 32 17 2 44.076 2237.71 91.363 0.958 

0 32 17 5 44.06 2081.21 112.022 0.938 

0 32 17 8 44.051 2080.76 131.97 0.934 

0 32 49 2 19.712 21.38 47.562 0.245 

0 32 49 5 20.009 18.79 65.294 0.231 

0 32 49 8 20.015 18.96 80.359 0.229 

5 16 17 2 45.49 2358.85 98.877 0.979 

5 16 17 5 45.49 2358.85 98.289 0.977 

5 16 17 8 44.159 2104.87 103.437 0.952 

5 16 49 2 20.398 31.64 43.198 0.291 

5 16 49 5 20.71 29.05 58.097 0.276 

5 16 49 8 20.699 29.01 71.695 0.287 

5 32 17 2 45.557 2552.46 82.586 1.03 

5 32 17 5 45.48 2357.46 101.71 0.997 

5 32 17 8 45.475 2356.23 119.861 0.984 

5 32 49 2 20.386 31.51 44.104 0.29 

5 32 49 5 20.713 29.03 60.011 0.284 

5 32 49 8 20.709 29.02 73.532 0.271 

8 16 17 2 44.154 2261.45 85.64 0.96 
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8 16 17 5 44.159 2104.87 104.012 0.942 

8 16 17 8 44.156 2104.7 121.461 0.945 

8 16 49 2 19.774 24.93 45.184 0.262 

8 16 49 5 20.167 22.02 60.455 0.248 

8 16 49 8 20.151 21.98 73.405 0.244 

8 32 17 2 44.139 2260.79 87.457 0.96 

8 32 17 5 44.166 2106.04 105.85 0.94 

8 32 17 8 44.144 2102.5 124.775 0.947 

8 32 49 2 19.779 24.46 45.784 0.259 

8 32 49 5 20.174 21.92 61.115 0.243 

8 32 49 8 20.158 21.92 75.706 0.244 

 

Table B. 4: Selected set of parameters for Foreman video sequence. 

 

IntraPeriod SearchRange QP NRFrames  PSNR  
Bit-
rate      

CPU 
CPU/ 
Decoder 

0 16 17 2 44.606 547.62 61.627 0.659 

0 16 17 5 44.635 473.74 75.058 0.659 

0 16 17 8 44.636 471.7 84.624 0.639 

0 16 49 2 22.806 9.63 41.619 0.209 

0 16 49 5 23.384 9.09 57.455 0.205 

0 16 49 8 23.382 9.28 70.711 0.203 

0 32 17 2 44.62 547.1 61.189 0.659 

0 32 17 5 44.688 472.77 74.527 0.635 

0 32 17 8 44.691 471.59 83.665 0.628 

0 32 49 2 22.871 9.98 41.24 0.223 

0 32 49 5 23.449 9.21 57.3 0.207 

0 32 49 8 23.405 9.38 71.303 0.205 

5 16 17 2 45.751 819.97 55.727 0.741 

5 16 17 5 45.819 712.66 69.253 0.721 

5 16 17 8 45.822 714.2 75.729 0.729 

5 16 49 2 23.53 16.77 37.336 0.243 

5 16 49 5 23.881 16.44 53.122 0.237 

5 16 49 8 23.881 16.51 63.869 0.227 

5 32 17 2 45.764 820.33 69.276 0.804 

5 32 17 5 45.83 714.45 80.19 0.857 

5 32 17 8 45.825 714.3 86.417 0.792 

5 32 49 2 23.531 16.78 37.594 0.236 

5 32 49 5 23.881 16.44 51.472 0.227 

5 32 49 8 23.881 16.5 64.64 0.229 

8 16 17 2 44.818 618.74 57.825 0.656 

8 16 17 5 44.906 544.33 69.269 0.646 

8 16 17 8 44.899 540.87 77.812 0.622 

8 16 49 2 22.955 13.09 39.142 0.221 

8 16 49 5 23.532 12.67 52.936 0.213 
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8 16 49 8 23.54 12.73 65.502 0.214 

8 32 17 2 44.821 618.66 58.211 0.658 

8 32 17 5 44.91 544.98 70.837 0.637 

8 32 17 8 44.902 542.31 78.66 0.626 

8 32 49 2 22.958 13.12 39.35 0.232 

8 32 49 5 23.532 12.67 53.45 0.213 

8 32 49 8 23.54 12.73 66.653 0.214 

 

Table B. 5: Selected set of parameters for Mobile video sequence. 

 

IntraPeriod SearchRange QP NRFrames  PSNR  Bit-rate    CPU 
CPU/ 
Decoder 

0 16 17 2 43.964 1595.79 70.647 0.943 

0 16 17 5 43.84 1388.74 88.379 1.07 

0 16 17 8 43.836 1384.42 93.805 0.879 

0 16 49 2 19.27 17.37 46.491 0.253 

0 16 49 5 19.623 16.71 64.464 0.233 

0 16 49 8 19.632 17.03 80.494 0.232 

0 32 17 2 43.97 1596.36 70.257 0.936 

0 32 17 5 43.837 1388.67 84.653 0.87 

0 32 17 8 43.833 1383.71 94.541 0.897 

0 32 49 2 19.274 17.41 47.015 0.25 

0 32 49 5 19.604 16.75 64.902 0.232 

0 32 49 8 19.603 17.17 81.148 0.235 

5 16 17 2 45.561 2160.9 65.138 1.013 

5 16 17 5 45.441 1939.38 77.751 0.957 

5 16 17 8 45.452 1933.91 89.416 0.958 

5 16 49 2 19.475 44.22 42.074 0.262 

5 16 49 5 19.719 43.69 56.937 0.249 

5 16 49 8 19.718 43.74 71.303 0.251 

5 32 17 2 45.563 2161.22 65.603 1.02 

5 32 17 5 45.442 1939.3 78.23 0.952 

5 32 17 8 45.451 1933.65 87.185 0.95 

5 32 49 2 19.475 44.22 41.903 0.275 

5 32 49 5 19.715 43.67 63.003 0.287 

5 32 49 8 19.718 43.74 85.226 0.272 

8 16 17 2 44.085 1762.29 79.206 1.056 

8 16 17 5 43.931 1553.74 86.32 0.973 

8 16 17 8 43.93 1550.54 101.151 0.944 

8 16 49 2 19.267 32.94 50.098 0.328 

8 16 49 5 19.637 32.33 63.053 0.272 

8 16 49 8 19.643 32.62 78.31 0.27 

8 32 17 2 44.08 1762.55 71.846 0.996 

8 32 17 5 43.931 1554.45 85.819 0.972 

8 32 17 8 43.946 1550.86 96.688 1.031 
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8 32 49 2 19.265 32.91 49.632 0.308 

8 32 49 5 19.634 32.33 65.116 0.27 

8 32 49 8 19.643 32.66 80.676 0.294 

 

Table B. 6: Selected set of parameters for Tennis video sequence. 

 

IntraPeriod 
SearchRan

ge 
QP NRFrames  PSNR  Bit-rate     CPU 

CPU/ 
Decoder 

0 16 17 2 43.703 1258.3 73.525 0.801 

0 16 17 5 43.669 1061.34 94.295 0.692 

0 16 17 8 43.663 1045.54 97.927 0.662 

0 16 49 2 24.284 8.56 37.576 0.211 

0 16 49 5 24.462 7.96 51.811 0.202 

0 16 49 8 24.475 8.04 62.768 0.2 

0 32 17 2 43.7 1259.82 66.572 0.727 

0 32 17 5 43.655 1062.45 83.713 0.681 

0 32 17 8 43.643 1042.94 99.129 0.665 

0 32 49 2 24.288 8.72 38.227 0.203 

0 32 49 5 24.511 8.02 52.192 0.198 

0 32 49 8 24.518 8.15 62.973 0.199 

5 16 17 2 45.309 1735.94 61.859 0.853 

5 16 17 5 45.066 1443.39 75.479 0.762 

5 16 17 8 45.063 1432.58 89.736 0.763 

5 16 49 2 24.509 15.84 34.586 0.24 

5 16 49 5 24.788 15.43 47.114 0.231 

5 16 49 8 24.791 15.5 57.398 0.233 

5 32 17 2 45.316 1736.75 62.615 0.837 

5 32 17 5 45.071 1443.81 76.39 0.762 

5 32 17 8 45.079 1433.22 91.026 0.765 

5 32 49 2 24.525 15.85 35.106 0.236 

5 32 49 5 24.788 15.48 47.491 0.232 

5 32 49 8 24.791 15.5 57.794 0.229 

8 16 17 2 43.805 1330.59 64.657 0.722 

8 16 17 5 43.798 1128.17 77.083 0.666 

8 16 17 8 43.796 1113.46 91.711 0.659 

8 16 49 2 24.337 12.65 36.02 0.222 

8 16 49 5 24.674 12.23 48.242 0.215 

8 16 49 8 24.682 12.25 58.291 0.217 

8 32 17 2 43.807 1330.7 63.395 0.72 

8 32 17 5 43.796 1129.92 78.35 0.66 

8 32 17 8 43.793 1113.79 93.611 0.656 

8 32 49 2 24.389 12.73 35.961 0.226 

8 32 49 5 24.677 12.16 48.955 0.215 

8 32 49 8 24.692 12.29 58.994 0.229 
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Appendix C: Pareto Plot  

Plot C. 1: Pareto Plot for Football Video. 
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Appendix D: Optimal points and functional values. 

Table D. 1:  Foreman PSNR vs. Bit-rate 

 
 f(1) f(2) X1 X2 X3 X4 X5 X6 

1 -61.4345 1051.543 -
12.3536 

5.948443 -13.2784 18.68428 6.922016 11.36318 

2 -56.2065 860.3077 -
15.6062 

6.330999 -4.14033 21.28292 8.077764 6.978926 

3 -59.1944 959.3262 -14.4197 5.089091 -9.05509 22.12362 8.069374 8.776518 

4 -62.8529 1102.272 -
10.8373 

5.983466 -15.4618 20.18949 7.297968 12.31851 

5 -55.2319 827.3298 -
15.3452 

7.633843 -2.26184 23.04302 10.27598 6.575443 

6 -62.6273 1085.166 -12.1723 6.900299 -15.0288 20.62279 7.015222 11.51751 

7 -58.0206 919.1406 -
14.9615 

5.98795 -7.08268 22.08793 7.667866 8.319399 

8 -40.8703 404.3069 -
13.2207 

14.54251 21.38374 18.91533 11.41972 2.244124 

9 -57.8374 910.0747 -
14.7867 

6.106682 -6.52831 23.847 8.773665 9.403458 

10 -52.579 747.9986 -
15.5328 

6.103938 1.956696 21.12791 7.869598 6.523647 

11 -45.7358 536.7505 -16.1877 13.29562 13.13297 18.59521 9.332297 2.607052 

12 -62.8153 1089.791 -12.1723 6.900299 -15.2788 21.12279 7.015222 11.51751 

13 -56.6037 872.3414 -
14.9189 

6.229737 -4.53761 23.22131 8.72742 8.51145 

14 -64.2498 1160.129 -
8.63146 

7.039144 -17.7765 20.64461 8.871526 9.890705 
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15 -64.5445 1179.086 -
6.97241 

7.537578 -18.1901 21.32292 9.585319 8.898466 

16 -66.0515 1235.996 -
5.41206 

7.705062 -20.6914 21.56395 10.11495 10.11164 

17 -52.0159 723.7014 -
15.9984 

6.64863 3.098449 22.54893 6.529946 6.546711 

18 -49.9581 664.811 -
16.6616 

11.37207 6.037113 18.61657 10.58142 5.989593 

19 -66.8771 1261.795 -
5.34666 

8.862411 -22.0617 21.69734 12.40224 10.74369 

20 -48.8086 629.961 -
16.6281 

10.51147 7.932977 18.45426 8.760134 3.168724 

21 -53.1061 760.4283 -16.219 6.067543 1.032235 20.84594 8.818547 6.91846 

22 -47.1808 569.3852 -
17.9278 

11.0445 10.72836 18.79524 9.431786 3.484754 

23 -39.9426 379.9601 -
12.7207 

15.54251 22.88374 18.41533 11.91972 2.494124 

24 -37.0587 327.1868 -
7.61426 

9.242817 27.6164 16.63976 4.897826 16.04133 

25 -36.2372 305.7522 -
7.10057 

8.441657 28.96404 16.3452 3.363182 16.17345 

26 -60.8736 1022.776 -13.7537 4.488934 -12.2391 19.45727 8.899394 9.896185 

27 -52.3088 743.1749 -15.1332 6.105105 2.364584 20.76614 7.856732 6.612254 

28 -42.4729 450.183 -
14.2049 

15.71193 18.54184 17.9197 12.23217 1.813011 

29 -66.5667 1252.544 -
5.34666 

9.112411 -21.5617 21.50984 11.65224 10.93119 

30 -63.9595 1146.404 -
9.35309 

6.526395 -17.3004 20.57108 8.819923 9.395061 

31 -65.1111 1201.439 -
6.73728 

8.221786 -19.3117 20.10359 10.15224 8.74369 

32 -53.6093 774.305 -16.219 6.067543 0.282235 21.59594 8.818547 6.66846 

33 -45.7263 522.9529 -
18.4339 

13.22389 13.05152 17.92364 10.36744 1.702971 

34 -62.9272 1104.152 -11.2212 5.89914 -15.7047 19.32724 7.166266 12.12836 

35 -61.9056 1068.582 -11.9138 5.740745 -14.0373 18.95198 6.932407 11.34864 

36 -59.9007 984.1579 -14.293 6.654113 -10.3505 21.20375 9.250422 11.4008 

37 -54.9212 826.0167 -
14.4014 

6.006544 -1.84334 22.30417 8.135473 5.752259 

38 -63.7085 1137.851 -
9.51446 

6.425226 -16.8976 20.37749 8.374987 10.0805 

39 -60.1646 992.0274 -
14.2661 

6.427959 -10.766 21.42701 9.083982 11.37609 

40 -49.357 644.4899 -15.9591 8.778352 7.394093 21.23521 8.163604 4.717752 

41 -60.2867 997.1175 -14.1183 6.483588 -10.9866 21.30807 9.221157 11.54389 

42 -66.3597 1240.496 -
6.09666 

9.487411 -21.1867 21.69734 12.58974 10.99369 

43 -41.2395 417.5742 -
12.9707 

14.54251 20.75874 18.91533 11.41972 1.994124 

44 -39.2372 364.6659 -11.2387 8.539053 24.25607 19.16594 4.864439 12.90672 

45 -44.9908 499.4415 -
18.6554 

13.78114 14.24067 17.56389 10.46424 1.235292 

46 -35.4404 283.8393 -
6.41307 

8.707282 30.40154 17.0327 3.550682 16.22033 

47 -41.4123 430.5598 -
12.5901 

9.493237 20.19704 16.52902 4.184431 8.599632 

48 -61.2323 1037.509 -
12.7009 

6.766199 -12.6477 20.88092 7.283359 10.52272 
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49 -63.6132 1124.03 -
10.7364 

7.313068 -16.6005 21.31607 8.043304 11.35472 

50 -52.579 747.9986 -
15.5328 

6.228938 1.956696 21.12791 7.978973 6.523647 

51 -53.3652 767.6557 -16.219 6.067543 0.64161 21.22094 8.568547 6.41846 

52 -45.7335 525.256 -
18.2859 

12.90914 12.98156 17.50248 10.37077 1.566837 

53 -51.0542 698.1843 -
16.5359 

10.60957 4.279656 19.27702 10.2539 6.427399 

54 -38.7187 350.7433 -11.1606 8.023428 25.03732 18.46282 5.786314 13.03172 

55 -43.6302 467.1285 -
16.9797 

12.62711 16.60417 17.8702 9.678931 4.623302 

56 -51.849 721.749 -
15.8581 

6.103254 3.25566 21.58818 7.558033 7.180959 

57 -67.0511 1276.297 -
3.86657 

8.056877 -22.3004 22.16796 10.55502 9.648677 

58 -36.7408 317.6449 -
7.19242 

7.91104 28.28745 17.64824 3.695282 15.88421 

59 -63.8541 1145.035 -
9.07156 

6.619034 -17.1228 20.54222 8.585867 9.874549 

60 -59.706 976.0243 -
14.4896 

6.441999 -9.98331 21.51348 8.924119 10.99764 

61 -53.0171 757.1366 -
15.6909 

6.510954 1.404599 22.49862 6.738583 6.87452 

62 -49.757 659.4709 -
16.3022 

10.86146 6.458069 19.33227 9.371443 4.095178 

63 -54.8345 818.6735 -15.3491 6.338712 -1.79544 21.53799 8.446348 6.376447 

64 -43.1229 460.5956 -15.676 11.86669 17.43735 17.66953 9.023205 5.162115 

65 -40.1952 385.4652 -
12.7623 

14.08301 22.57088 19.16186 11.06051 4.157259 

66 -55.2353 832.6873 -15.157 7.455334 -2.48209 21.41003 8.445503 7.263098 

67 -41.3778 429.7228 -
12.5433 

9.524487 20.25954 16.56418 4.200056 8.537132 

68 -65.006 1197.362 -
6.53882 

7.100078 -19.0182 20.92839 9.671257 9.398466 

69 -35.7037 290.93 -
6.47557 

7.929938 29.99529 17.31786 3.425682 16.17345 

70 -48.6914 625.9527 -16.4971 11.44837 8.197889 18.92573 9.561946 3.633893 

71 -50.9512 691.0506 -16.1419 7.368343 4.810292 21.98412 7.272658 5.429335 

72 -45.001 511.7187 -
16.7857 

13.12843 14.26564 17.77889 10.41123 2.953513 

73 -35.3718 281.7851 -
6.38573 

8.504157 30.52264 17.06786 3.488182 16.31017 

74 -60.4011 1002.974 -13.458 5.332504 -11.06 22.31739 8.082007 9.461304 

75 -48.387 618.9329 -
16.3319 

10.49491 8.638115 18.38385 8.461968 3.566118 

76 -44.6737 491.2763 -
18.4292 

13.46266 14.76531 17.45957 10.74347 1.715946 

77 -63.089 1113.209 -
10.3037 

6.142884 -15.8564 20.26692 7.453958 11.45122 

78 -60.7152 1017.983 -13.7146 4.363934 -11.9657 19.50415 8.899394 9.872747 

79 -57.9944 918.2733 -
14.9615 

6.05045 -7.03581 22.10747 7.667866 8.331118 

80 -42.6076 453.5311 -
14.3924 

15.64943 18.29184 17.73611 12.10717 2.070824 

81 -53.8286 789.1943 -15.242 6.286032 -0.16271 21.06292 8.16361 6.272996 

82 -49.5046 652.2555 -
16.2193 

9.541237 6.878586 19.30253 9.149291 3.913304 
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83 -59.357 967.6315 -14.1153 4.953125 -9.39187 21.66449 8.107256 8.700779 

84 -37.5369 342.2199 -
7.61426 

9.367817 26.8039 16.63976 4.034545 15.3343 

85 -51.3461 705.1991 -
15.9984 

6.14863 4.098449 21.54893 7.529946 7.109211 

86 -59.8845 983.2261 -
14.3555 

6.654113 -10.3232 21.20375 9.250422 11.4008 

87 -49.1219 638.2421 -
16.6008 

11.30834 7.495477 19.09879 9.510134 3.731224 

88 -40.6422 398.9844 -13.1378 15.25484 21.70195 18.40704 11.61396 2.485312 

89 -63.3479 1116.091 -
10.8701 

7.333067 -16.2207 20.81044 7.915725 11.37695 

90 -58.5348 932.9666 -
15.1442 

6.175625 -7.89723 22.49162 7.831635 8.176308 

91 -60.5158 1012.367 -12.682 5.58332 -11.2819 22.13764 8.487475 8.917931 

92 -59.495 975.1789 -
13.3965 

6.56329 -9.53512 22.33441 8.596122 8.631024 

93 -40.4136 393.7299 -
12.8097 

15.24747 22.10673 18.54036 11.79028 2.620046 

94 -64.8572 1183.656 -
7.53031 

8.384754 -18.6425 21.79911 10.78283 10.34106 

95 -65.5753 1213.006 -
6.60513 

8.770345 -19.8882 21.52129 11.00579 10.79263 

96 -39.2749 365.6194 -11.7953 14.5144 23.99958 18.2185 10.6881 4.512272 

97 -47.8296 590.6476 -
17.8318 

11.92816 9.614529 18.69078 9.948486 2.851183 

98 -43.9398 476.6948 -
16.9372 

12.42536 16.10279 18.02288 9.58194 4.697561 

99 -37.3786 333.0412 -
8.18074 

9.941671 27.09138 16.83673 5.676797 14.53848 

100 -64.5171 1174.093 -
7.47872 

8.6379 -18.1067 21.51087 10.74605 10.4292 

101 -65.9466 1227.164 -
6.19306 

8.949956 -20.5016 21.60943 11.1501 10.96584 

102 -46.9021 560.7097 -18.1175 12.67267 11.1274 18.33012 10.19084 2.391024 

103 -42.4088 443.0406 -
14.9327 

15.24097 18.65985 17.99078 11.99562 1.834861 

104 -43.0446 455.1771 -
16.1399 

12.71003 17.55937 17.57732 10.01605 5.458591 

105 -61.9838 1070.895 -11.9138 5.740745 -14.1623 18.99885 6.948032 11.44239 

106 -57.5455 897.0552 -
15.8703 

6.191545 -6.22367 22.47326 7.958208 9.018813 

107 -51.4278 708.3635 -
15.8734 

6.27363 3.973449 21.64268 7.561196 7.140461 

108 -45.4516 515.3661 -
18.3796 

13.00289 13.48156 17.68998 10.9489 1.441837 

109 -41.9432 431.7235 -14.4117 15.57847 19.46339 18.11843 12.29288 1.918175 

110 -64.4714 1167.341 -
8.50646 

7.086019 -18.1202 20.86336 8.871526 9.984455 

111 -56.9005 877.8957 -
15.8597 

6.574965 -5.18425 22.12186 8.006364 8.802045 

112 -48.0335 605.96 -
16.8028 

10.0445 9.165856 17.90462 10.30679 3.031629 

113 -63.5433 1121.717 -
10.7364 

7.328693 -16.4755 21.36294 7.918304 11.44847 

114 -47.4635 582.2955 -17.6271 11.80343 10.14131 18.00028 9.523217 3.107143 

115 -50.6987 682.8548 -
16.1504 

7.600527 5.250128 22.09239 7.584892 5.314675 
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116 -42.2605 438.415 -
14.9327 

15.36597 18.90985 17.99078 11.96437 1.803611 

117 -39.9057 378.5147 -
12.7207 

15.55814 22.96187 18.54033 12.04472 2.369124 

118 -58.241 926.5836 -
14.7398 

6.137932 -7.40331 22.472 8.086165 8.262833 

119 -66.4926 1250.232 -
5.34666 

9.128036 -21.4367 21.50984 11.77724 10.93119 

120 -36.9105 323.4129 -
7.48926 

9.242817 27.8664 16.63976 4.897826 16.04133 

121 -57.4184 893.2207 -15.839 6.254045 -6.00492 22.50451 7.833208 9.018813 

122 -55.5572 843.3902 -
15.0914 

7.032893 -3.03639 21.37213 8.580284 6.494291 

123 -50.4038 672.34 -
17.4576 

10.34873 5.337049 19.08276 11.19782 4.615656 

124 -50.7767 685.9128 -16.041 7.678652 5.125128 22.13926 7.506767 5.345925 

125 -44.4458 485.8949 -
18.1246 

13.25809 15.1683 17.56818 10.70263 2.203556 

126 -65.6614 1215.756 -
6.55404 

8.882469 -20.018 21.63177 11.00906 10.86928 

127 -46.754 555.6583 -18.18 12.56329 11.3774 18.33012 10.25334 2.391024 

128 -55.9329 853.7226 -15.357 6.611018 -3.69264 21.18463 8.252159 6.869291 

129 -67.2567 1282.529 -
3.83103 

8.100692 -22.6242 22.33406 10.61708 9.747597 

130 -65.8622 1224.851 -
6.19306 

8.887456 -20.3766 21.48443 11.1501 10.87209 

131 -44.0267 482.2186 -
16.6766 

12.25434 15.90021 17.66651 9.879495 3.6782 

132 -54.4695 805.1416 -15.617 6.37197 -1.16271 21.66839 8.429235 6.272996 

133 -58.8128 939.4879 -
15.2947 

5.948466 -8.30509 22.93612 7.834999 8.339018 

134 -52.2783 742.0451 -15.1293 6.105105 2.427084 20.84035 7.927044 6.737254 

135 -38.5502 343.4318 -
11.0669 

9.886709 25.46701 19.49407 4.895689 13.87157 

136 -52.1571 730.9261 -
15.5909 

6.39023 2.858048 22.5433 6.871797 6.379436 

137 -54.0592 799.9485 -
14.2576 

5.981345 -0.38146 22.38714 8.03861 5.257371 

138 -56.5326 869.1769 -
15.0439 

6.245362 -4.41261 23.25256 8.72742 8.620825 

139 -46.4227 548.0609 -17.9121 12.55198 11.88666 17.95687 10.49096 2.461255 

140 -38.9992 355.1166 -11.5142 10.54041 24.67075 19.31855 5.690005 11.9468 
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Table D. 2:  Football PSNR vs. Bit-rate 

 
 f(1) f(2) X1 X2 X3 X4 X5 X6 

1 -36.4775 1885.33 7.472893 3.204588 16.11738 30.47397 -5.2426 1.267363 

2 -32.2449 1280.773 8.49622 0.801249 25.40222 28.46694 2.252588 -2.33526 

3 -32.4568 1312.466 8.66175 1.22519 24.9281 28.51551 2.198221 -2.14312 

4 -45.9977 3401.15 13.69205 11.31332 -5.8101 29.43559 8.666342 7.178861 

5 -38.4406 2195.334 8.613387 4.696102 11.61588 30.33814 -2.71451 3.002132 

6 -44.949 3224.616 11.21447 9.111992 -3.32792 29.87751 5.269959 7.132587 

7 -46.153 3425.805 13.64624 11.44334 -6.16621 29.41626 8.722025 7.444209 

8 -44.3379 3136.321 12.48134 9.658321 -1.98379 29.63779 6.054117 6.099451 

9 -44.7087 3186.178 11.5581 8.944934 -2.77137 29.9015 5.153976 7.315548 

10 -39.0368 2287.446 9.777756 5.256761 10.26269 30.36808 -1.59636 3.614672 

11 -31.9953 1243.542 8.41577 1.078318 25.96185 28.39798 2.302892 -2.26828 

12 -50.6029 4162.976 14.83888 17.27334 -16.5953 27.85814 11.77781 11.81266 

13 -36.859 1943.26 7.889711 3.636809 15.25939 30.52399 -4.50985 1.865606 

14 -36.3511 1862.047 7.472893 3.048338 16.42988 30.59897 -5.3676 1.267363 

15 -43.9579 3101.694 11.81599 8.273249 -1.27723 28.73857 6.778175 6.224843 

16 -43.5962 2988.416 12.19382 9.243413 -0.07866 30.79123 5.345989 5.607564 

17 -37.6786 2079.815 8.849303 4.031209 13.33136 30.21795 -3.48742 2.327964 

18 -37.3771 2035.324 7.243515 3.641932 14.00105 30.13132 -4.57905 1.883168 

19 -49.9333 4057.62 14.92436 15.10836 -15.0547 27.85595 10.85719 12.53578 

20 -44.7755 3204.31 13.96271 11.42298 -2.97145 29.60989 7.050213 7.901733 

21 -32.3899 1296.782 8.66175 1.22519 25.1156 28.70301 2.448221 -2.14312 

22 -44.9682 3237.038 13.06579 10.85335 -3.43296 29.53396 9.403721 7.312109 

23 -49.7401 4004.632 15.50685 16.46084 -14.4703 28.7097 11.68406 11.14078 

24 -37.3771 2035.324 6.993515 3.641932 14.00105 30.13132 -4.32905 1.883168 

25 -43.8751 3079.829 12.19099 8.585749 -1.02723 29.05107 6.778175 6.521718 

26 -45.0921 3251.281 13.31579 10.79085 -3.68296 29.72146 9.403721 7.249609 

27 -29.325 834.0135 7.036586 0.778055 32.01901 28.08148 0.827641 -2.21941 

28 -48.6552 3796.485 13.04058 12.33094 -11.7561 30.1844 10.06162 7.343364 

29 -45.5101 3335.033 12.96494 10.42979 -4.75736 29.04863 7.094452 7.835925 

30 -43.8512 3032.184 12.32519 8.640334 -0.68755 30.65241 5.875436 5.674094 

31 -30.7033 1049.282 7.147182 2.194388 28.87483 28.06939 1.240755 -0.90525 

32 -44.6105 3167.171 11.7456 9.194934 -2.52137 30.0265 5.153976 7.503048 

33 -46.396 3454.317 12.61741 10.15662 -6.6521 29.72634 7.419611 8.710368 

34 -50.5212 4148.907 14.8549 17.19593 -16.4001 27.90538 11.76017 11.74601 

35 -38.8174 2252.786 9.176463 4.814283 10.76374 30.39327 -1.97474 3.06312 

36 -32.9816 1386.757 8.172756 3.145232 23.79022 28.7483 1.974047 -0.17016 

37 -48.0992 3694.802 12.64145 11.98521 -10.3863 30.70773 9.925277 7.39236 

38 -38.7014 2221.917 8.863387 4.696102 11.11588 30.83814 -2.21451 3.502132 

39 -42.0986 2745.807 15.3284 10.19653 3.429355 30.96421 3.743763 9.96376 

40 -30.5713 1016.449 7.458158 1.245734 29.25545 28.51521 1.077295 -1.22203 

41 -37.914 2120.114 7.416195 3.677159 12.7694 30.09611 -2.56258 2.281574 

42 -40.347 2482.565 14.96893 10.0964 7.361436 30.58766 3.391094 9.059862 

43 -39.5634 2361.579 14.64233 9.982671 9.145299 30.51922 2.680758 9.254929 

44 -31.8404 1198.989 8.547355 1.364297 26.45106 29.12539 2.501441 -2.18588 

45 -43.3808 2934.945 12.53757 9.743413 0.546341 31.49435 5.439739 5.857564 

46 -48.5484 3779.383 13.54058 12.58094 -11.5061 30.1844 10.06162 7.843364 

47 -29.4755 843.4941 7.161586 0.778055 31.76901 28.58148 0.827641 -1.96941 

48 -39.1943 2295.974 9.777756 5.881761 10.01269 30.93058 -1.40886 4.302172 

49 -33.0908 1403.858 8.172756 2.895232 23.54022 28.7483 2.974047 -0.17016 

50 -43.5245 2975.607 12.34927 8.766206 0.0991 30.83385 5.854595 6.150291 
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51 -45.9696 3361.778 13.7656 11.18984 -5.51388 30.68922 8.574731 7.326088 

52 -48.73 3820.37 15.28693 14.01487 -11.9946 29.68795 8.912524 9.576443 

53 -45.1586 3269.67 13.2656 10.50234 -3.88888 29.43922 10.44973 7.076088 

54 -33.6989 1479.399 8.463538 2.136994 22.26739 29.50476 1.622442 -1.95022 

55 -33.5721 1466.107 8.713538 1.886994 22.51739 29.25476 0.872442 -1.45022 

56 -29.6697 906.0785 6.97849 1.362589 31.10999 27.43319 0.540795 -2.27302 

57 -37.7427 2086.461 9.302428 3.937459 13.20636 30.34295 -3.23742 2.218589 

58 -39.468 2360.649 14.14233 10.02955 9.270299 30.01922 2.680758 9.098679 

59 -42.7302 2850.179 15.54297 9.214795 1.928137 30.85408 4.299619 6.74947 

60 -32.6484 1323.364 8.66175 1.72519 24.6156 29.20301 2.448221 -2.14312 

61 -40.9222 2545.081 16.19168 10.90483 6.231085 31.55915 2.515952 9.852289 

62 -41.7911 2690.691 15.3284 10.19653 4.179355 31.21421 3.993763 9.96376 

63 -31.0167 1086.542 7.927211 0.586649 28.22214 28.55414 2.538579 -3.13348 

64 -37.0027 1959.784 8.279241 3.413084 14.97098 30.73423 -4.11581 2.062218 

65 -46.8006 3513.287 13.12145 10.70273 -7.54667 29.87231 7.4741 9.200665 

66 -35.8944 1822.187 9.504408 3.346 17.26152 29.48169 2.627699 0.434286 

67 -38.9598 2263.79 9.017728 4.968743 10.51598 30.78331 -1.88838 3.682996 

68 -36.1528 1830.373 7.727838 3.207878 16.88863 30.61813 -4.6503 1.389986 

69 -42.9549 2868.208 13.42035 10.09287 1.527483 31.46943 4.868724 6.82764 

70 -41.462 2634.286 16.35077 11.17283 4.964207 31.3924 2.901758 9.825541 

71 -31.534 1150.983 9.029628 3.08456 27.17183 29.0401 1.835831 1.057088 

72 -40.1885 2459.696 15.13868 11.49852 7.713934 30.50601 1.442659 9.493625 

73 -38.504 2201.146 8.630251 4.86196 11.4963 30.49346 -2.52863 2.728588 

74 -45.4341 3321.163 12.93564 10.34783 -4.57096 29.12209 7.038619 7.73691 

75 -42.6212 2822.825 15.10176 10.51848 2.260147 31.15867 3.995779 9.21031 

76 -31.3811 1147.088 7.891467 0.614726 27.36757 28.41717 1.50664 -2.6622 

77 -36.7409 1890.004 8.139711 4.136809 15.75939 31.77399 -3.50985 1.865606 

78 -49.2852 3889.609 15.16146 14.30183 -13.1355 30.26558 12.24716 11.83458 

79 -43.0257 2890.152 15.94925 8.740139 1.294125 31.07701 4.383636 6.906738 

80 -39.8524 2378.873 15.69479 10.08547 8.660807 31.55903 2.267746 7.986729 

81 -50.358 4096.634 15.73775 17.03272 -15.8508 28.86953 11.59578 11.62122 

82 -43.3808 2934.945 12.53757 10.74341 0.546341 31.49435 5.439739 5.857564 

83 -29.7943 921.147 8.552211 0.508524 30.86276 27.55414 1.163579 -0.80535 

84 -39.9364 2407.928 13.65972 10.26825 8.368972 30.96255 2.788331 8.925284 

85 -30.2148 932.8002 7.458158 1.245734 30.25545 29.51521 1.077295 -1.22203 

86 -46.5609 3465.273 12.34439 11.50624 -6.94409 30.31798 8.259984 6.576571 

87 -34.782 1634.979 10.67865 2.64746 19.894 29.94928 2.029911 0.389116 

88 -32.8266 1365.189 8.66175 1.22519 24.1156 28.70301 3.448221 -2.14312 

89 -35.1468 1703.793 10.08189 4.845273 18.99149 29.48511 1.86939 2.064646 

90 -34.2058 1544.355 9.297726 2.413966 21.22988 29.89946 2.786377 2.752421 

91 -50.1768 4073.039 15.50685 16.46084 -15.4703 28.7097 11.68406 11.14078 

92 -33.4663 1445.755 8.312296 2.454434 22.7932 29.35218 3.07614 0.012247 

93 -47.3186 3593.443 12.89397 10.71626 -8.72077 29.88281 7.924028 10.1401 

94 -34.9848 1692.023 9.178645 3.77246 19.269 29.01178 1.904911 1.451616 

95 -40.164 2427.515 15.10788 12.60335 7.957913 31.52231 1.33089 9.591937 

96 -33.903 1514.162 8.312296 3.454434 21.7932 29.35218 3.07614 0.012247 

97 -48.3032 3706.759 14.89758 12.50785 -10.7099 31.37591 7.519003 9.327469 

98 -42.545 2766.723 15.85541 10.83148 2.737111 32.69876 2.142264 11.03649 

99 -49.9213 4028.227 15.73775 18.03272 -14.8508 28.86953 12.59578 11.62122 

100 -49.0522 3827.828 13.54159 13.98729 -12.4609 31.29093 10.61108 7.451975 

101 -30.5713 1016.449 7.458158 0.245734 29.25545 28.51521 1.077295 -1.22203 

102 -30.231 989.554 8.552211 0.508524 29.86276 27.55414 1.163579 -0.80535 

103 -32.7494 1340.037 9.704497 3.244689 24.39564 29.09634 2.298761 0.737607 

104 -34.4555 1610.903 9.797726 2.413966 20.47988 28.89946 2.786377 3.252421 
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105 -41.0899 2548.175 17.24958 11.50976 6.00554 32.36837 2.303531 10.76083 

106 -49.4936 3896.235 14.54159 13.98729 -13.4609 31.29093 10.61108 8.451975 

107 -33.4019 1420.041 8.36287 2.703519 23.03573 29.95073 0.655456 -1.37027 

108 -41.3129 2582.379 16.99958 11.50976 5.50554 32.36837 2.553531 11.76083 

109 -33.8433 1488.448 7.36287 1.703519 22.03573 29.95073 2.655456 -0.37027 

110 -46.9976 3533.68 12.34439 11.50624 -7.94409 30.31798 9.259984 6.576571 

111 -39.4204 2310.466 14.69479 10.08547 9.660807 31.55903 2.267746 8.986729 

112 -47.8355 3646.608 12.89397 11.71626 -9.72077 30.88281 7.924028 10.1401 

113 -49.5078 3949.248 14.42436 16.10836 -13.8047 29.35595 10.85719 12.53578 

114 -29.155 792.1889 8.036586 0.340555 32.51901 28.58148 1.577641 -0.46941 

115 -41.9114 2733.132 14.55084 9.845033 3.746521 30.37236 3.339621 9.717591 

116 -45.7965 3342.156 14.64624 11.44334 -5.16621 30.41626 9.722025 7.444209 

117 -31.2618 1111.646 7.605536 2.317119 27.76567 28.95574 -0.0873 -0.25798 

118 -29.155 792.1889 7.036586 0.340555 32.51901 28.58148 2.577641 -0.46941 

119 -47.191 3560.837 14.16223 10.14255 -8.35029 30.3593 7.779259 9.284617 

120 -41.8753 2704.077 16.10541 10.33148 3.987111 31.19876 4.142264 10.28649 

121 -49.0665 3866.957 13.83846 13.78416 -12.7265 29.91593 10.6267 9.2801 

122 -35.4438 1724.445 7.421234 4.270633 18.48388 30.40831 0.142011 2.340608 

123 -29.6672 845.3537 7.036586 1.340555 31.51901 29.58148 1.577641 -1.46941 

124 -42.1831 2754.955 15.09724 11.51611 3.252407 31.15817 4.999219 8.206612 

125 -49.696 3975.145 15.38185 15.21084 -14.2203 29.5222 12.55906 11.14078 

126 -50.2511 4079.327 15.83888 17.27334 -15.5953 28.85814 11.77781 12.81266 

127 -40.8715 2513.972 15.99958 11.50976 6.50554 32.36837 2.553531 10.76083 

128 -41.47 2664.725 15.55084 9.845033 4.746521 30.37236 5.339621 8.717591 

129 -41.3387 2632.562 14.5777 10.55663 5.13054 30.75899 2.616031 9.854581 

130 -40.573 2495.011 18.24958 11.50976 7.00554 31.36837 2.303531 10.76083 

131 -43.8254 2994.568 12.34927 8.766206 -0.4009 31.83385 5.854595 6.650291 

132 -48.4368 3762.281 13.04058 13.33094 -11.2561 30.1844 11.06162 7.343364 

133 -34.796 1658.397 9.797726 3.413966 19.72988 29.14946 3.286377 1.752421 

134 -34.6331 1612.762 9.297726 2.413966 20.22988 29.89946 2.786377 0.752421 

135 -43.4994 2948.535 12.32519 8.640334 0.312453 31.65241 6.875436 6.674094 

136 -35.8852 1792.852 7.421234 4.270633 17.48388 30.40831 0.142011 3.340608 

137 -50.6029 4162.976 13.83888 17.27334 -16.5953 27.85814 11.77781 11.81266 

138 -35.6637 1756.957 11.08189 4.845273 17.99149 30.48511 1.86939 2.064646 

139 -34.4395 1574.748 8.797726 2.413966 20.72988 30.14946 2.286377 1.752421 

140 -38.3496 2138.267 8.863387 5.696102 12.11588 31.83814 -1.21451 4.502132 
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Appendix E: HEVC HM encoder / decoder configuration file. 

E.1. Encoder configuration file. 

 
#======== File I/O ===================== 
BitstreamFile                 : rand.bin 
ReconFile                     : rand.yuv 
FrameRate                     : 120         # Frame Rate per second 
FrameSkip                     : 0           # Number of frames to be skipped in input 
SourceWidth                   : 1920  # Input  frame width 
SourceHeight                  : 1080   # Input  frame height 
FramesToBeEncoded             :50         # Number of frames to be coded 
#======== Profile ================ 
Profile                       : main 
 
#======== Unit definition ================ 
MaxCUWidth                    : 64         # Maximum coding unit width in pixel 
MaxCUHeight                   : 64         # Maximum coding unit height in pixel 
MaxPartitionDepth             : 4           # Maximum coding unit depth 
QuadtreeTULog2MaxSize         : 5           # Log2 of maximum transform size for 
                                            # quadtree-based TU coding (2...6) 
QuadtreeTULog2MinSize         : 2           # Log2 of minimum transform size for 
                                            # quadtree-based TU coding (2...6) 
QuadtreeTUMaxDepthInter       : 3 
QuadtreeTUMaxDepthIntra       : 3 
 
#======== Coding Structure ============= 
IntraPeriod                   : 32       # Period of I-Frame ( -1 = only first) 
DecodingRefreshType           : 1           # Random Accesss 0:none, 1:CRA, 2:IDR, 3:Recovery 
Point SEI 
GOPSize                       : 8           # GOP Size (number of B slice = GOPSize-1) 
#        Type POC QPoffset QPfactor tcOffsetDiv2 betaOffsetDiv2 temporal_id 
#ref_pics_active #ref_pics reference pictures     predict deltaRPS #ref_idcs reference idcs  
Frame1:  B    8   1        0.442    0            0              0           2                3         -8 -12 -16             0 
Frame2:  B    4   2        0.3536   0            0              1           2                3         -4  -8   4             1       
4        4         1 1 0 1 
Frame3:  B    2   3        0.3536   0            0              2           2                4         -2  -6   2 6           1       
2        4         1 1 1 1 
Frame4:  B    1   4        0.68     0            0              3           2                4         -1   1   3 7           1       1        
5         1 0 1 1 1 
Frame5:  B    3   4        0.68     0            0              3           2                4         -1  -3   1 5           1      -2        
5         1 1 1 1 0 
Frame6:  B    6   3        0.3536   0            0              2           2                3         -2  -6   2             1      -
3        5         0 1 1 1 0 
Frame7:  B    5   4        0.68     0            0              3           2                4         -1  -5   1 3           1       1        
4         1 1 1 1 
Frame8:  B    7   4        0.68     0            0              3           2                4         -1  -3  -7 1           1      -2        
5         1 1 1 1 0 
 
#=========== Motion Search ============= 
FastSearch                    : 1           # 0:Full search  1:TZ search 
SearchRange                   : 64          # (0: Search range is a Full frame) 
BipredSearchRange             : 4           # Search range for bi-prediction refinement 
HadamardME                    : 1           # Use of hadamard measure for fractional ME 
FEN                           : 1           # Fast encoder decision 



 

158 
 

FDM                           : 1           # Fast Decision for Merge RD cost 
 
#======== Quantization ============= 
QP                            : 37          # Quantization parameter(0-51) 
MaxDeltaQP                    : 0           # CU-based multi-QP optimization 
MaxCuDQPDepth                 : 0           # Max depth of a minimum CuDQP for sub-LCU-level 
delta QP 
DeltaQpRD                     : 0           # Slice-based multi-QP optimization 
RDOQ                          : 1          # RDOQ 
RDOQTS                        : 1           # RDOQ for transform skip 
 
#=========== Deblock Filter ============ 
LoopFilterOffsetInPPS         : 1           # Dbl params: 0=varying params in SliceHeader, 
param = base_param + GOP_offset_param; 1 (default) =constant params in PPS, param = 
base_param) 
LoopFilterDisable             : 0           # Disable deblocking filter (0=Filter, 1=No Filter) 
LoopFilterBetaOffset_div2     : 0           # base_param: -6 ~ 6 
LoopFilterTcOffset_div2       : 0           # base_param: -6 ~ 6 
DeblockingFilterMetric        : 0           # blockiness metric (automatically configures 
deblocking parameters in bitstream). Applies slice-level loop filter offsets 
(LoopFilterOffsetInPPS and LoopFilterDisable must be 0) 
 
#=========== Misc. ============ 
InternalBitDepth              : 8           # codec operating bit-depth 
 
#=========== Coding Tools ================= 
SAO                           : 1           # Sample adaptive offset  (0: OFF, 1: ON) 
AMP                           : 1           # Asymmetric motion partitions (0: OFF, 1: ON) 
TransformSkip                 : 1           # Transform skipping (0: OFF, 1: ON) 
TransformSkipFast             : 1           # Fast Transform skipping (0: OFF, 1: ON) 
SAOLcuBoundary                : 0           # SAOLcuBoundary using non-deblocked pixels (0: 
OFF, 1: ON) 
 
#============ Slices ================ 
SliceMode                : 0                # 0: Disable all slice options. 
                                            # 1: Enforce maximum number of LCU in an slice, 
                                            # 2: Enforce maximum number of bytes in an 'slice' 
                                            # 3: Enforce maximum number of tiles in a slice 
SliceArgument            : 1500             # Argument for 'SliceMode'. 
                                            # If SliceMode==1 it represents max. SliceGranularity-sized blocks 
per slice. 
                                            # If SliceMode==2 it represents max. bytes per slice. 
                                            # If SliceMode==3 it represents max. tiles per slice. 
 
LFCrossSliceBoundaryFlag : 1                # In-loop filtering, including ALF and DB, is across 
or not across slice boundary. 
                                            # 0:not across, 1: across 
 
#============ PCM ================ 
PCMEnabledFlag                      : 0                # 0: No PCM mode 
PCMLog2MaxSize                      : 5                # Log2 of maximum PCM block size. 
PCMLog2MinSize                      : 3                # Log2 of minimum PCM block size. 
PCMInputBitDepthFlag                : 1                # 0: PCM bit-depth is internal bit-depth. 1: 
PCM bit-depth is input bit-depth. 
PCMFilterDisableFlag                : 0                # 0: Enable loop filtering on I_PCM samples. 1: 
Disable loop filtering on I_PCM samples. 
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#============ Tiles ================ 
TileUniformSpacing                  : 0                # 0: the column boundaries are indicated by 
TileColumnWidth array, the row boundaries are indicated by TileRowHeight array 
                                                       # 1: the column and row boundaries are distributed 
uniformly 
NumTileColumnsMinus1                : 0                # Number of tile columns in a picture minus 1 
TileColumnWidthArray                : 2 3              # Array containing tile column width values in 
units of CTU (from left to right in picture)    
NumTileRowsMinus1                   : 0                # Number of tile rows in a picture minus 1 
TileRowHeightArray                  : 2                # Array containing tile row height values in units 
of CTU (from top to bottom in picture) 
 
LFCrossTileBoundaryFlag             : 1                # In-loop filtering is across or not across tile 
boundary. 
                                                       # 0:not across, 1: across  
 
#============ WaveFront ================ 
WaveFrontSynchro                    : 0                # 0:  No WaveFront synchronisation 
(WaveFrontSubstreams must be 1 in this case). 
                                                       # >0: WaveFront synchronises with the LCU above and to the 
right by this many LCUs. 
 
#=========== Quantization Matrix ================= 
ScalingList                   : 0                      # ScalingList 0 : off, 1 : default, 2 : file read 
ScalingListFile               : scaling_list.txt       # Scaling List file name. If file is not exist, use 
Default Matrix. 
 
#============ Lossless ================ 
TransquantBypassEnableFlag : 0                         # Value of PPS flag. 
CUTransquantBypassFlagForce: 0                         # Force transquant bypass mode, when 
transquant_bypass_enable_flag is enabled 
 
#============ Rate Control ====================== 
RateControl                         : 0               # Rate control: enable rate control 
TargetBitrate                       : 1000000           # Rate control: target bitrate, in bps 
KeepHierarchicalBit                 : 2                # Rate control: 0: equal bit allocation; 1: fixed 
ratio bit allocation; 2: adaptive ratio bit allocation 
LCULevelRateControl                 : 1                # Rate control: 1: LCU level RC; 0: picture level 
RC 
RCLCUSeparateModel                  : 1                # Rate control: use LCU level separate R-
lambda model 
InitialQP                           : 0                # Rate control: initial QP 
RCForceIntraQP                      : 0                # Rate control: force intra QP to be equal to initial 
QP 
 
### DO NOT ADD ANYTHING BELOW THIS LINE ### 
### DO NOT DELETE THE EMPTY LINE BELOW ### 
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Appendix F: Selected parameters for encoder / decoder. 

Table F. 7: Selected set of parameters for YachtRide video 
sequence. 

 𝒙૚ 𝒙૛ 𝒙૜ 𝒙૝ Bitrate      PSNR     
Encodin
g Total 
Time  

Decode
r Total 
Time 

16 64 27 1 18405.06 39.6021 2124.89 7.29 

16 64 37 1 4018.464 33.9397 1650.27 5.94 

16 64 45 1 1086.758 30.2936 1493.54 5.37 

16 128 27 1 18390.74 39.591 2263.67 7.31 

16 128 37 1 4017.139 33.9394 1753.74 5.33 

16 128 45 1 1087.45 30.296 1549.16 5.44 

16 64 27 0 18352.42 39.6041 2763.36 6.9 

16 64 37 0 4011.59 33.9482 2171.72 5.42 

16 64 45 0 1088.794 30.3024 1935.59 5.14 

16 128 27 0 18363.71 39.6095 2993.42 6.71 

16 128 37 0 4000.243 33.9522 2322.22 5.38 

16 128 45 0 1087.718 30.3146 2036.14 5.2 

32 64 27 1 17405.78 39.5309 2249.58 6.67 

32 64 37 1 3622.118 33.8531 1746.47 5.23 

32 64 45 1 921.0048 30.1981 1554.49 5.01 

32 128 27 1 17429.05 39.5282 2434.96 6.85 

32 128 37 1 3621.715 33.857 1864.24 5.7 

32 128 45 1 924.7296 30.2019 1626.98 5.21 

32 64 27 0 17384.99 39.5382 2893.21 7.07 

32 64 37 0 3616.147 33.8585 2277.76 5.61 

32 64 45 0 921.5616 30.2083 2026.42 5.31 

32 128 27 0 17390.11 39.5397 3168.09 7.73 

32 128 37 0 3597.85 33.8582 2465.63 5.53 

32 128 45 0 921.888 30.2196 2131.71 5.05 

48 64 27 1 17374.54 39.5327 2271.23 6.95 

48 64 37 1 3615.149 33.8601 1763.31 5.46 

48 64 45 1 911.0208 30.1996 1573.14 4.8 

48 128 27 1 17379.99 39.5343 2472.95 6.89 

48 128 37 1 3608.371 33.8575 1886.85 5.26 

48 128 45 1 911.8656 30.2041 1635.8 4.93 

48 64 27 0 17345.11 39.5417 2930.57 6.74 

48 64 37 0 3605.664 33.8625 2321.1 5.42 

48 64 45 0 908.9856 30.215 2031.22 5.08 

48 128 27 0 17351.25 39.5417 3217.08 6.82 

48 128 37 0 3594.547 33.8557 2494.55 5.84 

48 128 45 0 912.4224 30.2111 2155.85 5.01 
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Table F. 8: Selected set of parameters for Basketball video 
sequence. 

 𝒙૚ 𝒙૛ 𝒙૜ 𝒙૝ Bitrate      PSNR    
Encoding 
Total 
Time  

Decoder 
Total 
Time 

16 64 27 1 5550.168 38.2859 2280.43 6.8 

16 64 37 1 1481.584 34.7351 1826.42 5.69 

16 64 45 1 548.64 31.2064 1643.7 5.28 

16 128 27 1 5549.152 38.2857 2614.58 6.66 

16 128 37 1 1478.816 34.7349 2068.29 5.7 

16 128 45 1 543.608 31.2079 1806.35 5.15 

16 64 27 0 5534.288 38.3075 3001.27 6.6 

16 64 37 0 7973.1 36.3127 2419.69 5.7 

16 64 45 0 547.176 31.2211 2157.9 5.24 

16 128 27 0 5527.608 38.3064 3527.54 6.63 

16 128 37 0 1479.464 34.7655 2839.84 5.57 

16 128 45 0 3142.3 32.6593 2467.7 5.16 

32 64 27 1 25051.2 39.6721 2437.06 6.64 

32 64 37 1 1360.616 34.6565 1951.98 5.5 

32 64 45 1 498 31.1013 1742.78 5.21 

32 128 27 1 5130.408 38.2381 2806.42 6.8 

32 128 37 1 7621.2 36.455 2223.24 5.5 

32 128 45 1 494.864 31.0901 1927.68 5.05 

32 64 27 0 25051.2 39.6721 3145.93 6.78 

32 64 37 0 1355.232 34.6668 2551.2 6.33 

32 64 45 0 496.56 31.1192 2267.28 5.99 

32 128 27 0 5109.248 38.2581 3747.96 7.01 

32 128 37 0 1355.432 34.6826 3033.73 5.72 

32 128 45 0 495.92 31.1208 2620.51 5.5 

48 64 27 1 28912 39.4279 2464.21 7.66 

48 64 37 1 1362.488 34.6352 1968.15 5.55 

48 64 45 1 499.056 31.0794 1751.28 4.97 

48 128 27 1 5174.104 38.2385 2848.61 6.52 

48 128 37 1 1357.912 34.6272 2261.67 5.63 

48 128 45 1 495.6 31.0706 1953.02 4.97 

48 64 27 0 5159.32 38.2557 3181.37 6.77 

48 64 37 0 1360.032 34.6548 2572.77 5.42 

48 64 45 0 499.256 31.094 2275.11 5.38 

48 128 27 0 5151.264 38.256 3805.04 6.6 

48 128 37 0 1358.008 34.6602 3071.05 5.45 

48 128 45 0 496.528 31.0773 2660.61 5.69 

 
 

Appendix G: Optimal points and functional values. 
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Table G. 1  Cactus CPU vs. Bit-rate 

 

  f(1) f(2) x1 x2 x3 x4 

1 1646.09 -66.3645 33.58072 119.8237 44.9932 0.127074 

2 1509.326 284.8627 17.83136 117.8421 44.99995 0.000133 

3 1932.2 -242.308 41.29528 125.2825 45 0.570891 

4 1720.201 -123.024 36.07405 121.3606 44.99487 0.237864 

5 1541.762 176.3311 22.71379 117.8431 44.99694 0.02402 

6 1813.105 -174.881 38.33283 123.2134 44.99774 0.383433 

7 1631.618 -37.0107 32.28606 119.4465 44.99251 0.111635 

8 1687.581 -98.0855 34.97661 120.6841 44.99414 0.1891 

9 1604.952 12.60939 30.04791 118.7651 44.99423 0.082253 

10 1561.601 116.4379 25.39167 118.0715 44.99625 0.039877 

11 1525.612 259.4696 18.96479 118.1118 44.99976 0.020516 

12 1767.712 -153.442 37.40122 122.3822 44.99642 0.310719 

13 1834.722 -198.094 39.3427 123.8576 44.9991 0.412839 

14 1621.06 -10.2551 31.08336 119.2486 44.9932 0.101961 

15 1509.326 284.8627 17.83136 117.8421 44.99995 0.000133 

16 1583.464 67.7079 27.58712 118.2408 44.99471 0.063166 

17 1538.525 207.6281 21.28295 118.0657 44.99914 0.027565 

18 1881.706 -209.279 39.83987 124.3604 44.99914 0.493074 

19 1670.614 -82.2557 34.27538 120.3385 44.99394 0.164665 

20 1552.845 147.935 24.02689 117.9865 44.99408 0.033968 

21 1727.486 -127.922 36.26434 121.503 44.99648 0.249289 
 

 

Table G. 2: YachtRide  PSNR vs. Bit-rate 

 

  f(1) f(2) x1 x2 x3 x4 

1 -39.4109 16336.39 16 64 27 1 

2 -30.0599 -739.003 24.07144 85.33057 44.98965 0.692503 

3 -31.6552 2174.09 23.45643 81.80078 41.92058 0.695639 

4 -39.1046 15777.1 16.48506 65.03705 27.58924 0.852184 

5 -34.0909 6621.855 20.86016 76.51778 37.23467 0.686398 

6 -30.0599 -739.003 24.32144 85.83057 44.98965 0.942503 

7 -38.7728 15171.24 17.09727 65.71336 28.22753 0.911814 

8 -34.2337 6882.537 20.83355 76.28863 36.96003 0.823895 

9 -34.7439 7814.167 20.03402 75.18035 35.97852 0.815328 

10 -35.0596 8390.733 20.31216 74.49128 35.37108 0.847724 

11 -31.2437 1422.713 23.2127 83.17009 42.71219 0.890661 

12 -33.5976 5721.055 21.65859 77.42823 38.1837 0.59808 

13 -33.793 6077.834 21.68704 76.34333 37.80782 0.705027 

14 -33.9455 6356.335 20.65741 77.17123 37.51441 0.707122 

15 -34.4261 7233.916 20.33019 75.58433 36.58984 0.761759 

16 -32.0974 2981.675 22.96716 80.98078 41.06976 0.734344 
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17 -35.8391 9814.151 19.33463 72.51462 33.87145 0.744205 

18 -37.4569 12768.23 18.16254 68.77927 30.7592 0.917268 

19 -33.1794 4957.461 21.68115 79.02861 38.98818 0.8981 

20 -30.5489 153.913 23.98381 84.75702 44.04892 0.902898 

21 -33.4197 5396.253 21.39733 78.5669 38.5259 0.855767 

22 -39.0207 15623.87 16.68619 64.96955 27.75066 0.984518 

23 -39.222 15991.4 16.65926 64.48988 27.36346 0.910749 

24 -32.4248 3579.39 22.63017 80.61827 40.44004 0.764943 

25 -33.3245 5222.376 21.61679 78.08601 38.70908 0.792001 

26 -36.5524 11116.71 20.16747 71.71133 32.49915 0.885192 

27 -38.2545 14224.78 16.43471 66.98899 29.22467 0.947739 

28 -31.7688 2381.642 23.78256 80.93746 41.70192 0.761986 

29 -38.403 14495.97 16.78202 66.61411 28.93896 0.858204 

30 -36.3577 10761.05 19.10031 72.01675 32.87385 0.861075 

31 -30.1721 -534.074 24.00161 85.1333 44.77375 0.695595 

32 -35.6106 9396.866 20.09797 73.51787 34.31108 0.848809 

33 -39.4109 16336.39 16 64 27 1 

34 -32.9996 4629.141 22.69956 80.43833 39.33408 0.832135 

35 -37.0806 12081.21 18.41843 69.53805 31.48301 0.823904 

36 -31.0648 1096.052 23.6633 83.14687 43.05634 0.69672 

37 -36.6463 11288.05 18.42743 70.53262 32.31864 0.940064 

38 -30.7882 590.8891 23.68367 84.04552 43.58855 0.814179 

39 -32.0204 2840.917 22.52694 81.37293 41.21805 0.889274 

40 -38.705 15047.42 17.12621 65.68833 28.35799 0.901741 

41 -35.4252 9058.383 20.25373 73.76446 34.66768 0.819758 

42 -34.819 7951.341 19.96356 74.47459 35.834 0.849 

43 -36.8706 11697.69 19.01097 70.03006 31.88706 0.593025 

44 -36.1488 10379.62 19.41217 71.90513 33.27571 0.934589 

45 -32.6596 4008.282 21.68115 79.02861 39.98818 0.8981 

46 -30.266 -362.704 24.94322 84.96834 44.5932 0.698181 

47 -37.9665 13698.83 17.626 67.29745 29.77878 0.963314 

48 -30.5797 210.1753 24.07144 85.33057 43.98965 0.692503 

49 -37.1351 12180.64 19.6568 70.54018 31.37825 0.581954 

50 -31.5776 2032.496 21.96716 80.98078 42.06976 0.734344 
 

 

Table G. 3: YachtRide CPU vs. Bit-rate 

 
 f(1) f(2) x1 x2 x3 x4 

1 -4378.88 22547.08 -0.26978 1.983814 20.45677 -11.4804 

2 -259.438 17240.74 0.496243 2.83517 26.04723 -3.92037 

3 -462.411 17502.19 0.4585 2.793222 25.77177 -4.29286 

4 -9021.72 30797.81 0.210769 -5.14158 11.76428 -20.1804 

5 -1006.15 18082.15 0.539287 2.033017 25.16076 -5.27922 

6 -3674.46 21736.31 -0.11083 1.985091 21.31095 -10.1955 
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7 -5268.97 24460.36 -0.03277 -0.38111 18.44105 -13.1737 

8 -1792.57 19471.75 0.408045 2.778826 23.69676 -6.75843 

9 -6095.92 24801.85 -0.03356 -0.67371 18.08127 -14.6302 

10 573.7071 16528.86 0.496243 2.83517 26.79723 -2.42037 

11 -2677.17 19704.14 0.272639 3.94169 23.45193 -8.31 

12 -6520.16 27751.99 0.105996 -1.44807 14.97317 -15.613 

13 558.4105 16554.4 0.496348 2.823104 26.77031 -2.44892 

14 -6514.49 26611.02 0.093101 -2.0199 16.17524 -15.5033 

15 -7893.23 30349.06 0.101818 -3.86481 12.23705 -18.197 

16 -9021.72 30797.81 0.210769 -5.14158 11.76428 -20.1804 

17 -5053.7 23304.1 0.076986 0.992593 19.65921 -12.7094 

18 -7524 29128.96 0.168035 -4.65398 13.52248 -17.4522 
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