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Abstract: This article presents a modeling approach to estimate the energy release due to ductile 

crack initiation in conjunction to the energy dissipation associated with the formation and propa-

gation of transient stress waves typically referred to as Acoustic Emission.  To achieve this goal, a 

ductile fracture problem is investigated computationally using the Finite Elements Method based 

on a compact tension geometry under Mode I loading conditions.  To quantify the energy dissipation 

associated with Acoustic Emission, a crack increment is produced given a pre-determined notch size 

in a 3D cohesive-based extended finite element model.  The computational modeling methodology 

consists of defining a damage initiation state from static simulations and linking such state to a 

dynamic formulation used to evaluate wave propagation and related energy redistribution effects.  

The model relies on a custom traction separation law constructed using full field deformation meas-

urements obtained experimentally using the Digital Image Correlation method.  The amount of 

energy release due to the investigated first crack increment is evaluated through three different 

approaches both for verification purposes and to produce an estimate of the portion of the energy 

that radiates away from the crack source in the form of transient waves.  The results presented 

herein propose an upper bound for the energy dissipation associated to Acoustic Emission, which 

could assist the interpretation and implementation of relevant nondestructive evaluation methods 

and the further enrichment of the understanding of effects associated with fracture. 
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1. Introduction 

Acoustic emission (AE) is defined (ASTM E1316-10c) by the sudden redistribution of energy in a 

solid caused by the activation and/or development of one or more localized sources, which are 

typically part of irreversible processes related to deformation and damage across materials including 

fracture, slip activity, twinning, phase transformations, and delaminations (Chung and Kannatey - 

Asibo, 1992; Koslowski et al., 2004; Lamark et al., 2004; Lockner et al., 1991; Lou et al., 2007; 

Mathis et al., 2006; Miguel et al., 2001; Richeton et al., 2006; van Bohemen et al., 2003; 

Vanniamparambil et al., 2015; Wisner et al., 2015).   More specifically, AE is generated when the 

energy stored in a material or structure is released and dissipated in the form of transient elastic 

waves that typically have frequencies in the ultrasonic regime depending on the source size and 

duration of the damage process, as recently demonstrated by the authors (Cuadra et al., 2015).  

In the case of crack initiation, a significant amount of the energy stored in the region near the 

notch/crack tip eventually is expended in the formation of new crack surfaces, which has been 

analytically, experimentally and computationally described in several fracture mechanics formula-

tions (Boyce et al., 2014; Nguyen et al., 2001; Owen et al., 1998; Ravi-Chandar, 2004).  In this 

incremental view of the crack initiation process, the energy release that occurs can further excite 

transient dynamic motion as well as multispectral (e.g. thermal) energy dissipation, which are both 

part of the associated energy redistribution (Döll, 1984; Ernst et al., 1979; Gross et al., 1993; Sharon 
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et al., 1996).  In this context, the experimental work by Döll and Gross et al. suggested that most 

of the stored energy is dissipated as heat and that only a fraction (approximately 3%) of the total 

fracture energy could be associated with AE (Döll, 1984; Gross et al., 1993; Hack et al., 1989).   In 

other investigations, such energy considerations concepts have been applied experimentally to detect 

the fracture process zone size by using energy measures and density of AE events which were used 

to provide critical regions for crack detection (Muralidhara et al., 2013).  Other research efforts 

relied on the use of the AE experimental methodology to characterize the fracture related energy 

release and reported limitations to quantify specific energy amounts e.g. related to stress wave 

propagation, due to inherent restrictions placed for example by the sensors.  Nevertheless, such 

efforts provided empirical relations which were used to describe damage initiation and severity by 

several AE-defined features (Boler, 1990; Bosia et al., 2008; Jungk et al., 2006; King et al., 1981; 

Sause et al., 2012).  The generation of AE from the fracture process has also been described based 

on the different types of produced waves.  For example, in semi-infinite media, Rayleigh waves have 

been estimated to carry about 67% of the energy radiated from the damage source in perfectly 

isotropic materials, while the shear and longitudinal waves contain 26% and 7%, respectively 

(Achenbach, 1973). 

In the context of fracture mechanics, the early studies related to fracture were also based on asso-

ciated energy concepts.  Specifically, the work by Griffith (1921) aimed at describing the energy 

release rate, which in its simplest form may be associated with the rate of change in potential energy 

near the crack, which provided a way to characterize and quantify crack formation.  Griffith’s 

criterion was built upon the condition that sufficiently high applied loads at the continuum scale 
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are related to similar ones at the microscale in order to predict fracture initiation (Anderson, 2005).  

Several investigations followed Griffith’s approach including the work by Rice (1965), in which an 

energy balance for the fracture process was derived for both linear elastic and plastic materials.  

Rice’s investigations were not only an extension of Griffith’s work but provided a broader overview 

of the energy quantities associated with crack formation by defining two concomitant equilibrium 

states before and after crack advance.  Furthermore, this energy balance was not a priori imposed; 

instead it was derived using continuum formulations of the energy at each state, disregarding mi-

crostructural effects at the atomic or meso-scales which are not adequately described by continuum 

mechanics theories.  In addition to the energy balance formulation, Rice (1968) developed a path 

independent integral, known as J-integral, to characterize the energy associated with the fracture 

process.  These findings were later used to construct the so-called HRR singularity (Hutchinson, 

1968; Rice and Rosengren, 1968) by deriving a formulation for the singular stress and strain field at 

the crack tip for a power law hardening material.  The J-integral is not only a measure of the stress 

intensity in ductile materials but it can also be used as a criterion for crack initiation and to some 

extent for crack growth.   

In this article, an attempt is made to quantify the energy associated with AE by considering both 

Rice’s energy balance approach and an energy flux approach frequently used in the field of wave 

mechanics to account for transient effects that are associated with AE.  The main contribution of 

this investigation is therefore a direct estimation, for the first time to the authors’ best knowledge, 

of the amount of energy associated with the generation and propagation of transient elastic waves, 

which are responsible for the dissipation of a portion of the energy that is released due to the 
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formation of a new crack increment in ductile fracture.  To accomplish this goal, a 3D computational 

model that has been calibrated by experimental information is developed and used both for static 

and dynamic calculations. 

2. Methodology 

2.1. Computational model 

The integrated method developed previously by the authors (Cuadra et al. (2015) is utilized in this 

paper to extract experimental parameters that are used as inputs to a 3D computational model 

capable to link static to dynamic simulations.  Furthermore, the approach followed in this article 

differs from prior analytical and computational approaches in the area of AE modeling (Hora et al., 

2013; Sause and Richler, 2015; Uhnáková et al., 2010), primarily because it does not impose a 

damage source for the generation of the fracture-related stress waves.  The geometry investigated is 

that of a Compact Tension (CT) specimen of an aluminum alloy (Al2024) with 6 mm thickness and 

subjected to Mode I loading, as shown in Fig. 1a and Fig. 1b.  The eXtended Finite Element Method 

(XFEM) in ABAQUS (2013) was adopted to model the crack initiation and its concomitant dynamic 

response.  The analysis was carried out using the implicit solver, achieving the use of a single 

computational model that satisfies equilibrium at each time step.  The parameters for the XFEM 

fracture criteria were directly extracted from targeted experiments, as described previously by the 

authors (Cuadra, 2015).  The computational parameters that are directly related to experimental 

inputs include: (i) the XFEM damage initiation criterion, and (ii) the XFEM damage evolution 

related softening curve for crack growth.  In this article, these model parameters were adjusted by 
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comparing numerically computed reaction forces to the load measured by experiments, and by cal-

ibrating FEM nodal displacements and strains in Fig 1b with Digital Image Correlation (DIC)-

defined full field deformation fields.  The initial step in this process consisted of building a phenom-

enological traction-separation law (TSL) using the DIC data, as previously implemented in other 

similar investigations via inverse or optimization methods (e.g. Gain et al., 2011; Shen and Paulino, 

2011; Zhu et al., 2009).  In the methodology applied herein and to minimize inconsistencies, tractions 

and opening displacements were defined near the notch tip.  The selected power law for the TSL 

can be written as (Feih, 2006) 
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where d  represents the separation (opening displacement), while the variables maxs , cd  and a are 

curve fitting variables.  

Furthermore, in order to construct the TSL, a stress-strain curve was necessary.  For this reason, a 

tension test for a dog-bone specimen of the same aluminum 2024 alloy was performed in accordance 

with the procedure described by Moosbrugger (2002).  A continuous piecewise function was then 

defined using the true strain and stress, as follows 
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where the stress s  is in MPa.  The corresponding curve with both logarithmic and nominal values 

is shown in Fig. 1c.  Based on this curve, the Young’s Modulus was calculated from a linear fit, 
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while the Poisson’s ratio was obtained from the ratio of the experimentally calculated full-field 

average transversal and longitudinal strains.  The stress-strain relationship was essential to assign 

the material law in the FEM model, including the elastic and plastic regimes.  In the case of the 

TSL in Fig. 1d, an array of measuring points close and ahead of the crack tip were extracted 

(Cuadra, 2015).  The strain component in the loading direction at these sites was then converted to 

a stress value by neglecting all shear components.  Such array of points was extracted at different 

time instances in order to understand the state of deformation related to crack initiation at several 

stages of loading.  Specifically, an array of fifteen experimentally obtained DIC measurement points 

ahead of the crack tip was used to obtain the crack opening displacement and strain values.  In 

addition, displacement values directly above and below the crack were measured for each point in 

the selected DIC stages in order to calculate the crack opening displacements.  These experimental 

data points were used to fit the three-parameter power law function given in Eq. (1), formulated 

based on the requirement to preserve the fracture energy.  Note that based on the procedure de-

scribed herein, the critical displacement value for crack initiation was determined to be equal to 

80μm. Accordingly, the power law fitting function yielded a tensile strength value of 

max 480MPas = , while the exponent a  was set to 19, for a fracture energy estimate 

0 1490.7 J mG =  (see also Cuadra et al., 2015).   

In order to optimize the state of stress at crack initiation, it was necessary to calibrate the XFEM 

model using the critical displacement for fracture initiation defined in the TSL in Fig. 1c.  Conse-

quently, further DIC analysis and evaluation of the FEM boundary conditions were required.  To 
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this aim, two-point calculations using the DIC data were performed and averaged using neighboring 

points at the plastic wake and at the crack tip as shown in Fig. 2a.  Although displacement values 

were identified in this way, the failure initiation criterion was based on the maximum nominal strain, 

as shown in Fig. 2b.  Furthermore, a mesh convergence study was conducted to investigate the 

effect of mesh size in the load-displacement response of the XFEM model, as shown in Fig. 2c.  After 

identifying the optimum mesh size, the model was calibrated by adjusting the maximum nominal 

strain.  Once mesh convergence was achieved, to calibrate the fracture initiation criterion the state 

during which the crack tunnels to the surface, which is characteristic of a displacement jump and 

occurs at the critical opening displacement of 80 μm, was computed.  This calibration process further 

included the steps of implementing the appropriate boundary conditions and adjusting the maximum 

nominal strain for crack initiation using the values in Table 1.  

This procedure provided a computational model suitable to investigate both the static crack initia-

tion and the subsequent dynamic stress wave generation and propagation. The XFEM model was 

further validated against experimental load-displacement data, as shown in Fig. 2. 

2.2. Energy calculations 

Several approaches were implemented in this article to quantify the various parts involved in the 

energy redistribution due to ductile crack initiation and are presented next. 

2.2.1 Energy balance  

Based on static simulations only, this approach was used herein to estimate the amount of energy 

associated with the formation of the new crack surfaces during the first increment of fracture in a 
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ductile material, which could be also considered an upper bound of the energy dissipation that 

occurs between the equilibrium states before and after crack initiation.  As previously mentioned, 

this approach was first introduced by Rice (1965) and was an extension to the work presented by 

Griffith (1921).  Specifically, Rice described an energy balance approach for crack extension in linear 

elastic and ductile materials, while he further discussed the role of surface energy and work harden-

ing.  This concept is schematically illustrated in Fig. 3 (using actual FEM results from the compu-

tational model introduced in section 2.1 and discussed later in section 3), and demonstrates the 

equilibrium states before (Fig. 3a) and after (Fig. 3c) crack initiation, as well as the transient states 

(Fig. 3b) during which the generated stress waves propagate until equilibrium is reached.  Given 

the schematic representation of the crack initiation process in Fig. 3, the energy dissipation occurring 

due to AE is related to the release of waves visualized in this figure by the out-of-plane velocity 

wavefronts which are produced at the crack initiation location and radiate away from the source as 

a function of time until they completely dissipate.  As shown next, the energy balance approach 

could provide only an upper bound estimate of this energy dissipation, as it does not account for 

any transient effects.  However, for model verification purposes this approach was implemented first 

to evaluate the capability of the computational model to provide quantitative metrics related to the 

energy redistribution that occurs during the first crack increment that occurs in a ductile material. 

Considering a pseudo-static loading process, the energy before crack propagation is described by the 

external work which is equal to the internal stored energy, as described in Eq. (3).   

c el pl
i i ij ijV V
f u dA d dV d dVs e s e

G
= +ò ò ò ,                                         (3) 
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where G  is the surface area (in this model at the pins where Mode I type loading is applied) and V 

is the volume, while f represents the tractions associated to the externally imposed displacement 

.iu  The right hand side of Eq. (3) is composed of the elastic strain energy and plastic dissipation 

terms, for which the assumed strain decomposition is denoted by the subscripts “el” and “pl”, re-

spectively.  Following Rice (1968), this derivation ignores any thermal-mechanical coupling.  After 

an incremental crack growth of size aD  has occurred (shown in Fig. 3c), the energy balance must 

account for an additional term related to the crack extension.  The energy associated to the crack 

formation, denoted here as crackE , is obtained by using Green’s theorem and applying the corre-

sponding boundary conditions, i.e. 

 
b b

el pl c
crack ij ij ij ij i ia aV V

E d dV d dV f u dAs e s e
G

æ ö æ ö÷ ÷ç ç= + - D D÷ ÷ç ç÷ ÷ç çè ø è ø
ó ó
ô ôõ õò ò ò  . (4) 

In Eq. (4), the limits “a” and “b” denote the states before and after energy release due to crack 

growth and “D ” refers to the change in imposed tractions or displacements between the two states. 

Essentially, Eq. (4) represents the difference in the total (mechanical) energy, which refers to the 

external work minus the internal (stored) energy for the two equilibrium states.  Note that as it will 

be also shown next, both elastic and plastic energy terms in Eq. (4) are negative (due to the energy 

release that occurs at crack initiation and statically computed at state “b”).  In addition, the external 

work term is also negative since there is a load drop the moment the crack advances.  Hence, crackE  

in Eq. (4) is positive based on the way the terms in this equation have been arranged.  Furthermore, 

this notation is consistent with the fact that the external work decreases the total energy in this 

ductile fracture process, as it would be shown next.   
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By calculating the difference between the two states, one obtains: 

 
elem elem

b b
el pl
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where “elem(s)” refers to the finite elements so that the internal energy is the sum of the elastic 

strain energy and plastic dissipation in all elements, while extE  is the change in external work done 

in the system calculated from the imposed force/displacement boundary conditions.  It can be ob-

served that Eq. (5) is only valid for two states associated with a single crack growth increment, 

where crackE denotes the corresponding energy associated with the formation of crack including all 

transient portions of energy that in this approach are not explicitly quantified.   

2.2.2 J-integral 

A direct method to estimate the energy release due to ductile crack initiation is the J-integral.  A 

convenient formulation of the J-integral can be obtained by applying Reynolds transport and diver-

gence theorems to a fixed contour with a given area A and a moving contour with a fixed size, G , 

which moves along with the crack.  A 2D representation of the constituents for obtaining the energy 

release is depicted in Fig. 4. 

The J-integral for a 2D case and a crack increment along the horizontal (x-direction) can be ex-

pressed as (Cherepanov, 1967; Rice, 1968) 
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where W is the internal energy density, n is the outer unit normal to the closed contour G , while 

the Kronecker d  represents the crack direction.  The energy release per unit of crack area is evalu-

ated herein for an elastoplastic constitutive model with incremental plasticity in contrast to an 

idealized nonlinear material law.  It is important to note that in Eq. (6) a linear unloading path 

based on the deformation theory of plasticity and steady state crack growth under dynamic loading 

conditions with  negligible kinetic energy are assumed.  Furthermore, the limit of G   to zero allows 

for the line integral to be independent of the shape of the contour itself.  Eq. (6) has also been 

introduced as a surface integral and subsequently derived for the FEM framework by using a smooth 

function, q.  In this case, the energy per unit of crack area can be expressed as (Li et al., 1985) 

 1 2
1 1 1

det
m

j j j
ij i p j

V p cracki k p
faces

u x uq
J W q

x x x
s d w s w
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where { }
p
and subscript “p” represent the quantities evaluated at the Gaussian points, w  is the 

Gaussian weighting factor, m is the number of Gaussian points per element, and x  are the natural 

coordinates (i.e. FEM isoparametric coordinates).  Moreover, the smooth function q, can be repre-

sented in terms of the shape functions IN  and the nodal values by interpolating within an element, 

such that 

 ( )
1

p

i I I
i

q x N q
=

= å  , (8) 

where p is the number of nodes per finite element.  Consequently, the energy per unit of crack area 

is calculated in this study using Eq. (7) for the computational model in order to characterize and 
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quantify its energy state before and after the onset of crack growth under both equilibrium and 

transient dynamic conditions. 

For the Mode I loading assumed in this work the J-integral can be conveniently formulated by 

separating the elastic and plastic displacements, which is valid if unloading does not occur.  Thus, 

in a load-controlled formulation 

 
0 00

P PP
plel

el pl
P P P

J J J dP dP dP
a a a

ddd ¶¶¶
= + = = +

¶ ¶ ¶

ó óó ô ôô ô ôõ õõ
 , (9) 

where eld  and pld  are the elastic and plastic components of the displacement which are assumed to 

follow an additive decomposition, a is the crack length and P the force per unit of length (thickness).  

Intuitively, the elastic part can be related to Linear Elastic Fracture Mechanics using Griffith’s 

formulation of the energy release rate, where elJ G= .  The plastic part can then be derived by 

dimensional analysis assuming that the plasticity is confined to the characteristic length of the 

uncracked ligament, ob , for any medium containing a crack.  A second assumption regarding the 

dimensional integrand states that separation of variables can be applied (Ernst et al., 1979; Merkle 

and Corten, 1974).  Moreover, it was later shown that the geometrical parameters associated to J 

can be estimated empirically for a compact tension specimen (Clarke and Landes, 1979).  Thus, the 

plastic part of J-integral can be written in terms of the plastic work plA  (i.e. the area under the 

nonlinear part of the load-displacement curve), in which case  

 
2 2 2 0.522(1 ) pl plI

n o n

A AK
J

E b b b w

n-
= + + , (10) 
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where w is the specimen’s width and nb  is the specimen’s thickness.  

This analytical form of J-integral can be used to validate the contour integral formulation presented 

in Eq. (7).  This analytical formulation is part of the ASTM E1820 standard, which is used for the 

experimental measurement of fracture toughness.  This calculation relies on an experimental record 

of the load and displacement for a specific crack size with the expectation that no unloading occurs.  

In summary, once the energy release rate is validated for a stationary crack using Eq. (10) then the 

energy difference between the two states before and after crack growth can be defined.  From this 

difference, the associated energy release due to crack initiation can be calculated for a given crack 

increment area since the J-integral is expressed in terms of energy per unit of area.   

To compute the J-integral using the FEM approach in this article, a mesh sensitivity investigation 

was conducted, as shown in Fig. 5.  Two different meshes, one coarse and one fine, were evaluated 

for the same contour calculation size and compared to the analytical expression (Eq.(10)).  The 

results showed excellent agreement for both mesh sizes. To further demonstrate the convergence of 

contour integral calculations, various contour sizes (shown in Fig. 5a) were utilized.  The first 

contour includes only one point, the crack front, and every additional contour is expanding to the 

adjacent finite element nodes.  The integral involved in this approach was transformed from a line 

integral to a surface integral formulation (see also Parks (1977); Shih et al. (1986)).  However, there 

was a limit to the size that could be used since other geometrical features, such as the CT specimen 

pins, could cause divergence of the integral calculation.  Another important factor about the size of 

the contour was to assure that the plastic process zone was completely included in order to account 
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for all dissipation around the crack tip (Brocks et al., 2001; Carka and Landis, 2010). The calcula-

tions for different contour sizes are shown in Fig. 5b.  The corresponding results for all contour sizes 

show that at the eighth contour (C8) the calculation converges.  This result suggested that C8 

comprised most of the plastic zone and can be used to accurately determine the J-integral as a 

function of loading increments.  In order to confirm this convergent result, the integral calculation 

was compared to that of the analytical form using the load-displacement response of the model (Eq. 

(10)).  The results show excellent agreement between the contour integral calculation and the ana-

lytical expression regardless of the mesh size and configuration (Fig. 5c).  The analytical form was 

further utilized to calculate the J-integral for the experimental data obtained using the DIC method.   

All of the above integral calculations were performed using a stationary seam (i.e. duplicating nodes 

on top and bottom crack surfaces) to simulate in accordance with the experimental measurements.  

However, the model is based on an enriched-type crack, as illustrated in Fig. 5d.  Specifically, the 

XFEM model relies on a Heaviside step function and a search algorithm to determine if an element 

is separated, while the location of such separation can be found without the need to explicitly create 

nodes on the mesh of the precrack.  In contrast, the seam methodology uses a stationary crack which 

needs to be predefined before running the FEM analysis.  Therefore, a hybrid methodology which 

takes under consideration the contour integral for a growing enriched crack was necessary to quan-

tify the J-integral as a function of loading increments. 

In Fig. 5e, a comparison between the different analyses using the seam and XFEM crack models is 

shown.  All seam crack methods converged regardless of the analysis type in the FEM formulation.  
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However, the XFEM crack results differ from each other.  Further, the default XFEM method in 

ABAQUS (2013) is also limited to a stationary crack with small strain (i.e. infinitesimal FEM 

formulation) and overestimates the J-integral compared to the seam crack.  Consequently, a user-

defined hybrid methodology to calculate it was necessary.  Such methodology relied in manually 

defining the crack front by specifying nodes close to the enriched crack tip, which were within an 

element as shown in Fig. 5d.  The second step was to set the direction of the energy release using 

the global coordinate system.  This methodology definitely has limitations and, as seen in the results 

of Fig. 5e, still overestimates the energy release, although less than the XFEM default method.  

2.2.3 Energy flux 

Motivated by the fact that the J-integral describes the energy release due to crack initiation but 

does not explicitly account transient energy effects, part of which is also the dissipation that occurs 

because of Acoustic Emission, the concept of energy flux was further explored.  This concept has 

been widely investigated in the fields of Electromagnetism and Acoustics (see Achenbach (1973) 

and Auld (1973)) and relies on the evaluation of the Poynting vector over the boundary of an 

arbitrary control volume inside which the source exists, which therefore represents a measure of the 

rate at which the mechanical energy is transferred. The main idea in this approach is that the energy 

released by the crack source can be evaluated by computing the energy leaving a given volume that 

surrounds the crack tip in a specified time window so that bulk and surface wave effects are allowed 

to propagate while prohibiting incoming waves due, for example, to boundary reflections. This con-

cept is graphically illustrated in Fig. 6, in which the energy radiates from region “1” (inside) to “2” 

(outside a cylindrical surface enclosing the crack tip). 



17 
 

In this scheme, the Poynting vector is represented by the product ⋅ uσ , while the external normal 

to the surface cA  of the cylindrical surface is denoted with n.  Essentially, the energy radiated is 

associated to the tractions (i.e. ⋅ nσ ) and the corresponding velocity vectors, u , for which the 

power balance becomes 
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where AEif  are the tractions related to the AE source and u denotes acceleration.  Following the 

classical derivation of Poynting’s theorem (see Auld (1973), Chapter 5.C), the application of the 

divergence theorem and integration over time allow the energy radiated, RE , to be expressed as 
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i.e. the radiated energy corresponds to the surface integral of the Poynting vector over cA  and over 

time, which is equal to the difference of the total energy over time including the kinetic energy 

(which was ignored in Eq. (4) and Eq. (6), i.e. in the previous two formulations presented in this 

section).  Eq. (12) can be expressed in a finite elements’ approximation scheme, e.g. employing a 

trapezoidal quadrature rule, as 
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å å å   , (13) 

where “i” represents the number of energy rate data points (related to number of time increments 

in the FEM) and “j” is the number of nodes belonging to the effective surface area of each node, 
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effA .  Hence, energy “exits” from the confined area defined by the cylindrical region and is approx-

imated to be equal to the area defined by each finite element (i.e. for a 400 μm mesh size, a 2D area 

of 0.16 mm2 is obtained).  In summary, Eqs. (12) and (13) provide a method to quantify the energy 

from the source which is radiated in a time period of duration t, as the stress waves propagate 

through the volume. In comparison, the energy flux approach does provide the means to directly 

evaluate the energy dissipation via Acoustic Emission and its use is validated in this article by the 

results obtained by the other two approaches.  

3. Results and discussion  

The three methods described previously, were implemented in this work in conjunction with the 

fracture-induced AE model and the corresponding results are presented in this section.  

3.1. Energy balance  

The critical stage for the onset of crack growth was necessary to be defined to link the static to the 

dynamic model in order to accurately simulate the AE source generation and propagation (Cuadra 

et al., 2015).  In addition to providing the conditions for the AE source, such critical stage serves 

as the equilibrium state before crack initiation in a corresponding energy balance approach.  Con-

sequently, the static equilibrium solution right after crack initiation was used to calculate the dif-

ference in total energy related always to the first crack increment. This means that although the 

computational model could be used to simulate crack growth, the focus in this article was only on 

the first crack increment. 
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In equilibrium, the external work is equal to the internal energy (i.e. stored energy).  Computation-

ally although the total energy could be nonzero due to several numerical effects, the equilibrium 

state could still be computed since the FEM formulation solves for the first energy variation to be 

zero.  Specifically, the computational model used in this article contains two mechanisms that could 

create nonzero equilibrium energy states, which include the incremental plasticity and crack growth 

(i.e. stress relaxation due to newly created surfaces) formulations.  Consequently, the onset of crack 

growth can be identified by the results shown in Fig. 7.  A load drop of ~200 N was calculated at 

crack initiation, when a new crack increment of total area Δα equal to 2.32 mm2 was created, as 

shown in Fig. 7a (the insert shows more clearly the load drop in the force versus load line displace-

ment trend line).  The total energy calculation in Fig. 7b shows the onset of plasticity by the amount 

of energy beyond the original zero-energy equilibrium state.  The total energy evolution as a function 

of applied displacement at the pin location of the computational model is also capable to denote the 

onset of crack growth, by the sudden drop in accordance with the explanation provided earlier in 

section 2, related to the work done to create the new crack surfaces.  This drop was calculated to 

be approximately 3.86 mJ.  As explained earlier, this amount of energy is considered to be the crack 

formation energy crackE , as represented in Eq. (5).  This energy drop can be further seen by the 

drop in the elastic strain energy (which is intimately related to the energy dissipation via AE) and 

the increase in plastic dissipation terms shown in Fig. 7c.  As mentioned earlier, the energy drop 

can be considered an upper bound of the energy dissipated via AE since the AE part is only a 

portion of this energy that is distinct and different from the energy expended to form the crack.  

Hence, the crackE  in this approach includes both the energy to form the crack area aD  and the 
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energy that dissipated due to the formation of elastic waves, which justifies the need for additional 

ways to energetically describe the process of the first crack increment formation in a ductile material, 

as shown next. 

3.2. J-integral 

Following the investigation described in section 2.2, the J-integral formulation was applied for two 

crack fronts as shown in Fig. 8a, and two corresponding normal directions, using the XFEM user-

defined approach producing the results shown in Fig. 8b.  After performing a contour size conver-

gence study for each of the four calculations, the evolution of the J-integral showed a sudden drop 

when the crack initiated in all directions.  The change in the J-integral value for the stages before 

and after crack growth was calculated and then multiplied by the newly created crack surface area 

to obtain the final value of the energy release.  The results for the x-direction in CF1 are plotted in 

Fig. 8c to demonstrate this process.  The first drop of the J-integral value was found to be equal to 

1.11 kJ/m2 for a aD = 2.24 mm2 which gives an energy release value equal to 2.48 mJ. This value 

is 35% different from the corresponding estimate provided by the energy balance approach, however 

both methods produce results of the same order of magnitude, which validates the approach fol-

lowed. The advantage of the J-integral approach is that it can be computed for specific directions 

taking specific crack fronts into account and therefore it could be considered an improvement to-

wards estimating the energy release due to the first crack increment.  A further improvement of this 

approach would be to use a computational method to account for e.g. the kinetic energy and include 

it in a J-integral formulation for dynamic conditions, which could then be used to also demonstrate 

the effect of transient behavior due to Acoustic Emission.   
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3.3. Energy flux 

To make the proper calculations for wave propagation due to crack growth, the Poynting vector 

formulation was implemented, as described in Eq. (13).  A model with a refined mesh around the 

crack tip, which excluded the residual stresses was utilized to recalculate the radiated energy from 

the AE source.  Two volumes sizes equal to 384 and 864 mm3 were used, as shown in Fig. 9a.  The 

two volume sizes were sufficiently large to include the crack tip and plastic zone.  In order to 

numerically evaluate the integral in Eq. (13), the normal vector corresponding to each surface was 

approximated to be in the direction of the standard basis vectors of the global coordinate system, 

e.g. the top surface elements have a 0 1 0é ù
ê úë û  direction (i.e. they lie in the direction of the y-axis) 

quantified by their normal vector.  The results of the calculated radiated energy along with the 

energy from the AE source are shown in Fig. 9b and Fig. 9c, respectively.  The energy radiated was 

calculated using the dynamic stresses to account only for the energy associated to the propagating 

stress waves.  The accumulated stresses from the static solution were also included in the calcula-

tions, while the velocity values used included those from the dynamic solution.  It can be seen in 

the results in Fig. 9 that the radiated energy reaches a plateau to a value between 12-14 nJ at 

around 5 μs.  Furthermore, the total energy due to crack initiation is calculated by adding the 

elastic strain energy, plastic dissipation and kinetic energy to the radiated energy as derived in Eq. 

(12).  Based on Fig. 9c, the AE source energy also reaches a plateau at around 5 μs to the value of 

2.24 mJ.  
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It is important to note here that the radiated energy computed by the energy flux approach is a 

more comparable parameter to what the energy dissipation due to AE is, as it corresponds to the 

portion of the energy that is transiently transferred away from the crack source.  As the calculations 

presented in this article demonstrate in Table 2, the energy dissipation that occurs due to Acoustic 

Emission although it is almost negligible compared to other parts of the energy redistribution due 

to the first increment in a ductile fracture process, is however present and can be estimated based 

on a careful consideration of contributing factors to what is referred to as energy release.  From a 

magnitude perspective, it is understood that depending on the size of the crack increment and given 

the properties of the elastoplastic strain accumulation at the crack tip, the amount of energy asso-

ciated with the dissipation via Acoustic Emission would vary.  

4. Concluding remarks 

A computational methodology was introduced to provide an estimate of the energy dissipation that 

occurs in the form of Acoustic Emission during the energy release from the first increment of fracture 

in a ductile material.  To compute this energy dissipation a 3D finite element model was created 

and was calibrated by using full field deformation experimental measurements on a compact tension 

specimen subjected to Mode I loading.  As the energy dissipation that occurs because of Acoustic 

Emission is of transient nature, three different approaches were used to provide estimates for this 

effect.  The first one, called energy balance, accounted for the difference in total energy measured 

numerically by the model, and it was pointed out that it could only provide an upper bound estimate 

as it does not account for any transient effects.  The second one involved the use of the J-integral 

applied for equilibrium states and provided an estimate of the total energy release which agreed 
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with the energy balance approach, however it again could not account for any transient effects using 

the form implemented in this article.  The final approach, called energy flux, was based on the 

Poynting vector. This method was capable to provide both an estimate of the energy release by 

evaluating the steady-state of a transient estimate of the energy release obtained by integrating over 

time for the rate of change to the total energy which in this case included kinetic effects.  This last 

approach was further capable to provide an estimate of the radiated energy through two control 

volumes surrounding the crack tip.  The comparison of the energy flux with the first two approaches 

validated its use in estimating the energy release occurring due to crack initiation, while it further 

provided an estimate of the energy dissipation due to Acoustic Emission.   This investigation showed 

that the dissipation is a small fraction of the total energy redistributions that occurs at the time of 

fracture.   Comments were made regarding the role of the AE source which in this article was the 

first increment of ductile frature, such as its size and elastoplastic strain accumulation in defining 

the magnitude of such energy dissipation.  Although this investigation was theoretical in nature, it 

is believed by the authors to be the first attempt to provide a computational continuum level 

methodology to estimate the specific portion of energy that dissipates due to the release of transient 

elastic waves from direct simulations of crack initiation.  Therefore, it is expected that the presented 

results could assist in the interpretation of relevant nondestructive information as well as in the 

design of next generation of sensing technologies.  
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Fig. 1: (a) Compact Tension (CT) Model geometry; (b) applied boundary and loading conditions; 
(c) material law extracted by performing tension experiments using dog-bone specimens, and (d) 
cohesive-based XFEM traction separation law used in the finite element model 

Fig. 2: (a) DIC and (b) XFEM εyy strain contours at the crack initiation state. (c) Load-
displacement response compared to experimental results 

Fig. 3: Von Mises stress contour plots at the surface and through thickness: (a) before and (c) after 
crack initiation. (b) Wave propagation visualized using out-of-plane velocity contour plots at 
different time instances following crack initiation. 

Fig. 4: Illustration of contours and terms associated with the J-integral approach. 

Fig. 5: (a) Two different contour sizes, C3 and C17 (area of node groups) at the center of the model 
through the thickness. (b) Contour size convergence for integral calculation. (c) Mesh dependence 
study of the contour integral calculation compared to analytical expression. (d) XFEM precrack 
with corresponding mesh. (e) Contour integral results comparison for a seam crack or an XFEM 
model. 

Fig. 6: Schematic of a confined cylindrical volume close to crack tip and generic configuration of 
the Poynting vector. 

Fig. 7: (a) Load drop response due crack growth. (b) Total energy calculation as a function of 
applied displacement that denotes the onset of plasticity. (c) Plastic dissipation and elastic strain 
energy calculations as a function of applied displacement  

Fig. 8: (a) Crack fronts utilized for the J-integral calculations. (b) J-integral values for various 
perpendicular directions to each of the two crack fronts. (c) Detail showing the drop in the J-
integral.  

Fig. 9: (a) Crack-induced emission of energy illustrated by velocity vector plot with zoomed box 
displaying the two calculation volumes. (b) Poynting vector results as radiated and (c) source 
energy. 
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Table 1: Input values for the XFEM model 

Parameter Static 

Normal strain ( )max
ne  3.2 % 

Tangential strain 
( )max
te  10 % 

Shear strain ( )max
se   10 % 

cd  80 μm 
 

   



Table 2: Summary of computed estimates of energy release and Acoustic Emission 

Method/Parameter Static Dynamic 

Energy Balance 3.86 mJ - 

J-integral 2.48 mJ - 

Energy Flux - 2.2 mJ 

Acoustic Emission - 14 nJ 
 


