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Colloidal suspensions transform between fluid and disordered solid states as parameters such as
the colloid volume fraction and the strength and nature of the colloidal interactions are varied.
Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical
rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scien-
tific challenge and an opportunity for designing suspensions for specific applications. In this paper,
we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with
modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry,
and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction
in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In con-
trast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered
by microphase demixing of the species into dense regions of immobile smaller colloids surrounded
by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic consid-
erations. These results point to a new route for tailoring nanostructured colloidal solids through
judicious combination of interparticle interaction and size distribution. Published by AIP Publishing.

https://doi.org/10.1063/1.5007038

I. INTRODUCTION

The formation of colloidal gels is a ubiquitous process
in nature,'? the control of which is crucial to a diverse range
of technologies, including those related to the ceramics, food
processing, and pharmaceuticals industries. The phase behav-
ior and rheological properties of colloidal suspensions fur-
ther make them a fertile ground for investigating fundamental
issues in soft materials. In particular, as colloidal suspensions
are among the simplest and most accessible systems for the
study of ergodic to non-ergodic transformations, they have
served as important models for addressing theoretical ques-
tions regarding glass and gel transitions. Mixing different col-
loidal species greatly expands the possible structure-property
relationships realized by colloidal suspensions. From paints
and advanced ceramics®™ to the protein combinations that
ensure clarity of the human eye lens,® mixtures provide essen-
tial control of the microstructure and rheology of suspensions.
Recent work on gel formation focusing on mixtures with differ-
entinter-species interactions has observed interesting contrasts
with the properties of the gels formed by single-species suspen-
sions.”” Another avenue for creating mixtures is by varying
the size distribution of colloids, such as by introducing a binary
mixture of sizes. However, research investigating the role of
such size distributions as a parameter in gel formation has been
limited.!0-12
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Most attention on polydisperse colloidal suspensions has
focused on binary mixtures in which the intrinsic colloidal
interactions are essentially hard-sphere-like. In this case,
entropically driven depletion effects that create short-range
attraction between the larger colloids represent the dominant
interaction. The implications of this attraction have been stud-
ied in detail in theory, simulation, and experiment.'>2* For
example, when the size ratio of the colloids, x = R; /Ry, where
R; and Ry are the radii of the larger and smaller particles,
respectively, is sufficiently large, « > 5, these entropic effects'*
make suspensions unstable with a number of possible conse-
quences, including spinodal decomposition and the formation
of coexisting fluid phases,'®!%20 crystallization of the larger
colloids,!>13:122 and gel formation by the larger colloids due
to arrested phase separation.'>!?32* To the extent that intrin-
sic interactions between the colloids (e.g., residual screened
Coulombic repulsion, van der Waals attraction, or chemically
specific surface interactions) in such binary mixtures have been
considered, they have typically been treated as perturbations
that modify the depletion-dominated phase behavior.->>-3%

In this paper, we explore a complementary perspective in
which the colloids have a tunable intrinsic short-range attrac-
tion that can drive a fluid-gel transition even in monodisperse
suspensions and ask how the additional influence of a modest
binary size disparity modifies the suspension phase behavior,
microstructural dynamics, and rheology.!®!! Studying such

Published by AIP Publishing.
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mixtures with a combination of rheometry, x-ray photon corre-
lation spectroscopy (XPCS), and molecular dynamics simula-
tions, we obtain a picture connecting the microscopic behavior
of the suspensions and their macroscopic mechanical response.
We unexpectedly find that the gel formation does not follow
a simple mixing law but instead is markedly enhanced in the
mixtures over that of the corresponding monodisperse suspen-
sions. Notably, the microscopic signature of the gelation is
the dynamic arrest of the smaller species, in contrast to the
expectations from thermodynamic calculations or depletion-
induced gelation considerations. This observation opens a new
strategy employing size disparity and colloidal interactions in
tandem to control rheology and phase behavior of colloidal
suspensions.

Il. RESULTS

The experiments employed octadecyl-coated silica
nanocolloids in decalin.’’”~*" Decalin is a marginal solvent for
the hydrocarbon chains so that at high temperature, the chains
form a brush corona on the particle surfaces that leads effec-
tively to a hard repulsion and stabilizes the suspensions.* (See
Appendix A for details regarding sample preparation and other
experimental procedures.) When the temperature is decreased
below the theta temperature, 79 = 307 K, the octadecyl chains
prefer to interpenetrate, creating a short-range attractive well
between the colloids, extending ~1 nm from the surface, with
a depth U(T) that increases roughly linearly with decreas-
ing temperature, U(T) = —Akg(T — Ty), where A ~ 30.3841
As a consequence of this attraction, when the suspensions
are cooled to a sufficiently low temperature, they undergo a
transformation from a fluid state with a viscosity matching
that expected for a suspension of hard spheres to a disordered
gel state with solid-like mechanical properties.* A number
of studies have characterized various properties of this trans-
formation in monodisperse suspensions including the phase
boundary as a function of colloid volume fraction, the struc-
ture of the fluid and gel states, and the linear and nonlinear
rheology of the gels.?”* Recent work by our group and others
has further investigated the temporal evolution of the rheology
and particle-scale dynamics, using a combination of rheometry
and XPCS, to identify quantitative relationships between the
macroscopic mechanical behavior and microscopic motions in
the gels.*>#

Here, we use this set of tools in conjunction with simu-
lations to explore gel formation in suspensions of bidisperse
mixtures of these colloids. The mixtures contained colloids
of radii Rz ~ 16 nm and Ry ~ 8 nm (i.e., k ~ 2), with a
size polydispersity of approximately 10%. Two series of mix-
tures were studied. In each series, the sum of the small-colloid
volume fraction ¢g and large-colloid volume fraction ¢; was
fixed at ¢7 = ¢s + ¢, and the relative concentration of the
smaller colloids was parameterized by ¢ = ¢g/¢r. In one
series, ¢ = 0.45 and in the other, ¢ = 0.30.

To characterize the fluid-gel transition in the suspensions,
we performed measurements of the complex shear modulus,
G*(w)=G'(w) +i G"(w). Figure 1(a) shows the storage mod-
ulus G’'(w) and dissipation factor, D(w) = G”(w)/G’(w), at
w = 1 57! for three suspensions with ¢7 = 0.45 on heating at a
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FIG. 1. Storage modulus G’ (solid symbols) and dissipation factor D (open
symbols) at w = 1 s7! of suspensions of mixtures of octadecyl silica colloids
in decalin with radii of 8 nm and 16 nm (x = 2) as a function of temperature
(or equivalently, as a function of the magnitude of the attractive well depth
U) on heating at 0.1 K/min. The sum of the total volume fraction of colloids
was fixed at (a) ¢7 = 0.45 or (b) ¢7 = 0.30, and results are shown at different
relative concentration, ¢ = ¢g/¢r, of the smaller colloids, ¢ =0 (blue squares),
¢ =0.5 (red circles), and ¢ = 1 (green triangles).

ramp rate of 0.1 K/min from low temperatures where the sus-
pensions are gels to high temperatures where the short-range
attraction vanishes and the suspensions become fluid. In each
case, the modulus decreases precipitously and the dissipation
factor increases, marking a gel-fluid transition whose posi-
tion in temperature is insensitive to heating rate over a large
range (0.05-1 K/min). We identify the melting point of the
gels with the temperature 7* at which D = 1.*3 Consistent with
previous studies,>’" the gel transition in monodisperse sus-
pensions of the smaller colloids, 7*(c = 1) ~ 285.5 K, is slightly
higher than that of suspensions of the larger colloids, 7(c =0)
~ 284 K. Remarkably, for the symmetric mixtures, ¢ = 0.5,
T* does not interpolate between these transition temperatures
but is significantly higher, 7%(c = 0.5) = 290 K. Figure 1(b)
shows results of equivalent measurements at ¢7 = 0.30, which
display the same trend except with 7™ at all ¢ shifted lower, as
expected for suspensions with lower overall concentration.>”
We note that this non-monotonic trend is robust against the pre-
cise definition of the gel temperature. For example, rheology
studies of the gelation time of octadecyl-silica suspensions
following rapid cooling have shown that the time required
for gelation appears to diverge continuously for increasingly
shallow quenches, and this divergence point has been iden-
tified as an alternative definition of the gel temperature.*?
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FIG. 2. Gel transition temperature as a function of the fraction ¢ of small
colloids. Solid circles are for mixtures with ¢7 = 0.45, and open squares
are for mixtures with ¢7 = 0.30. The dashed (solid) line between ¢ = 0 and
1 indicates the putative behavior for ideal mixing in the case of ¢7=0.45
(@7 = 0.30).

Measurements on the suspensions with ¢7 = 0.45 indicate
that this divergence temperatures at ¢ = 0.5 lies several degrees
above the corresponding temperature in the monodisperse
suspensions, consistent with the trends in Fig. 2.

We stress that the modest size asymmetry of the mixtures,
k = 2, 1s far below that expected to cause phase separation due
to depletion effects, and calculations for hard-sphere mixtures
at these total concentrations and size ratio indicate well-mixed
binary liquids.*®*” Consistent with the absence of large-scale
phase separation, the samples are visibly homogeneous and
optically translucent in both the fluid and gel phases. Figure 2
shows T for several values of ¢, illustrating that enhancement
of the gel point spans a range of mixing ratios.

In order to gain information regarding the microscopic
mechanisms leading to this enhanced gel formation, we con-
ducted x-ray photon correlation spectroscopy (XPCS) exper-
iments on the suspensions. (See Appendix A for details
regarding the experimental procedures.) Figure 3 shows the
small-angle x-ray scattering (SAXS) intensity /(Q) for the sus-
pension with ¢ = 0.5 and ¢7 = 0.45 at temperatures above and
below T*. The intensity includes two peaks in the measured Q
range. Similar features were observed in /(Q) for mixtures with
c=0.5and ¢r = 0.30, as shown in Fig. 4(a). For comparison,
Figs. 5(a) and 5(b) display /(Q) for monodisperse suspensions
of large and small colloids (¢ = 0 and ¢ = 1) above and below
T* at ¢ = 0.45 and 0.30, respectively. Based on /(Q) for the
monodisperse suspensions and the measured form factors of
the two colloids, we identify the two peaks in 7(Q) of the mix-
tures with peaks in the interparticle structure factor S(Q) cor-
responding to near-neighbor correlations. Specifically, the first
peak at Q = 0.18 nm™! results from near-neighbor correlations
of the larger colloids, and the second peak at Q = 0.32 nm™!
reflects near-neighbor correlations between the smaller col-
loids. In principle, one also expects a third peak in S(Q) of
the mixtures near Q = 0.25 nm™! corresponding to the cross
term from near-neighbor correlations between a large and
a small colloid. Given the miscibility of the two colloidal
species when they behave as hard spheres, we believe such
a peak should be present in S(Q) of the mixtures, at least
at T > T*. However, calculations of the structure factor of
hard-sphere mixtures indicate that the third peak correspond-
ing to large-small particle correlations is masked in /(Q) by a
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FIG. 3. (a) Scattering intensity of a binary mixture (c = 0.5,k =2, ¢ = 0.45)
of silica nanocolloids in the high-temperature fluid phase (7 = 303 K, dashed
line) and low-temperature gel phase (T = 288 K, solid line). (b) Non-
ergodicity parameter fp in the gel phase determined with XPCS at T =288 K
(AT ~ -2 K).

minimum in the form factor,*” which would explain its absence
in Figs. 3(a) and 4(a).*8

Nevertheless, comparisons of changes in /(Q) upon gel
formation in the mixtures versus monodisperse suspensions
reveal differences in the microscopic mechanisms underlying
gelation in each case. In particular, as seen in Fig. 5(a), at
¢1 =0.45, the monodisperse suspensions show remarkably lit-
tle change in /(Q) over the measured Q range as a result of gel
formation, consistent with earlier studies.*>*%30 In contrast,
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800 T

600 AN

g 400 ) 4

200 .

0.6 : oo |

0.4 ° =

0.3—..00‘. ‘ ‘ 7

0.1 0.2 ; 0.3 0.4
Q(hm’)

FIG. 4. (a) Scattering intensity of a binary mixture (¢ = 0.5, k =2, ¢7 = 0.3)
of silica nanocolloids in the high-temperature fluid phase (T = 298 K,
dashed line) and low-temperature gel phase (7' =283 K, solid line). (b) Non-
ergodicity parameter fp in the gel phase determined with XPCS at T =283 K
(AT = -2 K).
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FIG. 5. (a) Scattering intensities of monodisperse suspensions with (a)
¢r = 0.45 and (b) ¢7 = 0.30 in the high-temperature fluid phase (dashed
lines) and low-temperature gel phase (solid lines). The blue curves corre-
spond to suspensions of larger colloids (¢ = 0), and the red curves correspond
to suspensions of smaller colloids (¢ = 1).

the peaks in 7(Q) of the mixture at ¢7 = 0.45 become sharper
and the low-Q intensity increases on cooling into the gel phase,
indicating an increase in large length-scale heterogeneity and
an enhancement of near-neighbor correlations among same-
sized colloids. Similarly, the peaks become sharper in the
mixture with ¢7 = 0.30 upon gelation, as seen in Fig. 4(a),
although at this lower concentration, both the mixtures and
the monodisperse suspensions display increases in the low-
Q intensity on cooling into the gel phases. (Indeed, we note
that the low-Q scattering becomes particularly pronounced
in the small-colloid suspension with Rg = 8 nm, as seen in
Fig. 5(b), a feature we speculate results from distinct features
of the gel structure due to the larger range of attraction rela-
tive to particle radius in this case.) These changes are evidence
that the particle attractions trigger micro-phase separation in
the mixtures and further that this de-mixing drives the gelation,
pre-empting the percolation driven “equilibrium gelation” that
has been documented in the monodisperse suspensions.*>+°
Recent theoretical work on colloid mixtures with a binary size
distribution and repulsive interactions,”! as well as work on
mixtures of same-sized colloids that are unstable to demixing
due to asymmetric attractive interactions,” has revealed similar
micro-phase separation.

Figure 6 displays the XPCS intensity autocorrelation
function g(Q, t) at three wave vectors measured on a mix-
ture with ¢ = 0.5 and ¢7 = 0.45 in the gel state at 7 = 288 K
(an undercooling of AT =T — T* = =2 K). Consistent with
earlier XPCS studies on monodisperse suspensions,*>** in the
gel phase, g2(Q, ) has a terminal relaxation that is described
by a compressed-exponential line shape,

2200.0)=1+b (fpexp [ -(T1F)) (1)

where b is the Siegert factor, which we determined from a
separate measurement on a static silica aerogel sample to vary

2
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FIG. 6. XPCS intensity autocorrelation function of a binary mixture (¢ = 0.5,
¢r =0.45, k=2) of silica nanocolloids at T=288 K (AT ~ -2 K) for three
wave vectors, Q = 0.07 nm~! (red circles), 0.19 nm™' (blue triangles), and
0.31 nm™! (black squares). The solid lines show the results of fits using
Eq. (1) with g = 1.5.

fromb ~0.31 at Q =0.04 nm™' to b ~ 0.29 at Q = 0.4 nm™".
The solid lines in Fig. 6 are the results of fits to the data using
Eq. (1), which gives 8 ~ 1.5 and a decay rate I that varies
with wave vector as I' ~ Q. Such compressed-exponential
correlation functions (8 > 1) with I' ~ Q are signatures of
slow, hyperdiffusive motion that has been widely observed
with XPCS and dynamic light scattering on colloidal gels and
other disordered soft solids and that has been identified with
long length-scale strain motion in response to heterogeneous
stress relaxation.”>>> In particular, these dynamics are not
thought to be related to local, diffusive structural relaxation
of the particles. Due to the sensitivity of the gels to radiation
damage, we did not study extensively the behavior of this slow
relaxation, which has been investigated in detail elsewhere,*?
but instead focused on characterizing accurately the plateau
value of g>(Q, t) prior to the terminal decay, quantified in
Eq. (1) by the non-ergodicity parameter f, a feature we could
measure reliably with x-ray exposures below those that cause
measurable damage.

Specifically, fp is a measure of the plateau amplitude of
the electric field autocorrelation function, g;(Q, t), which is
related to g, by the Siegert relation, go = 1 + bg%. The elec-
tric field autocorrelation function is in turn equivalent to the
coherent intermediate scattering function F.(Q, t), with each
particle pair weighted by the product of their x-ray form fac-
tors. The fact that the measured amplitudes of the decay of
22(0, t) are less than b implies a partial decay in the corre-
lation function, and hence a degree of colloidal motion, on
time scales that are too short to access in the measurement,
as illustrated schematically in Fig. 7. Such multi-step decays
are generic for many colloidal gels. In monodisperse con-
centrated gels, the magnitude of fp displays peaks in Q that
track those in the static structure factor.>**3->6-5% This corre-
spondence reflects the relationship between the constraints to
collective localized motion in the dynamically arrested, non-
ergodic state and the spatial correlations of the colloids in the
gel, and one can further extract a characteristic localization
length from the Q-dependence of fp.**-8

Figure 3(b) shows an example of fp for ¢ = 0.5 and
¢r = 0.45 in the gel state at T = 288 K (AT ~ -2 K). Inter-
estingly, fo tracks some but not all of the features in S(Q).
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FIG. 7. Putative picture of a multi-step decay in the intensity autocorrelation
function of a colloidal gel. The black squares are the data for the mixture
(c =05, ¢r = 045,k =2) at Q =0.31 nm~! from Fig. 6. The solid line
is a simple exponential decay representing schematically the dynamics at
short delay times, smoothly connected with a plateau region followed by the
compressed-exponential form that describes the measured terminal relaxation.

Specifically, the non-ergodicity parameter displays a peak
coincident with the second peak in /(Q) corresponding to
correlations between the smaller colloids but is negligible in
the region of the first peak in /(Q) corresponding to corre-
lations between the larger colloids. This finding is true also
for ¢7 = 0.30, as seen in Fig. 4(b), which displays fp for
¢ =0.5 and ¢7 = 0.30 at AT =~ -2 K. In contrast to the non-
ergodicity parameter for monodisperse gels, the results in Figs.
3(b) and 4(b) indicate a striking dynamic heterogeneity in the
mixtures. Specifically, we hypothesize that they imply that gel
formation in the mixtures results from the structural arrest of
the smaller particles while the larger particles remain mobile,
exactly the opposite scenario from depletion-driven gelation
of binary mixtures!

To test this hypothesis and to elucidate further the micro-
scopic processes driving dynamic arrest in binary colloidal
mixtures with short-range attraction, we conducted molecular
dynamics simulations of colloids with total volume fraction
¢1 = 0.30 evenly divided by volume fraction between spheres
with average radii R;, = 160 and Rs = 80, where o is a
characteristic simulation length scale. Several sets of simula-
tions were performed with varying polydispersities about these
averages. The particles experienced pairwise interactions that
combined two contributions (see Appendix A for details): (i)
a hard repulsive potential that diverged on contact and that
decayed steeply with increasing separation in a Yukawa form
with energy scale € and with decay length € = 0/10 and (ii) a
tunable short-range attraction modeled as a thin Gaussian well
of width o and depth that increased linearly with the temper-
ature below Ty = €/kg. This combination of terms mimics
the potential of the octadecyl-silica nanocolloids in the exper-
iment, while providing a smooth analytic form that facilitates
the simulations. We found that modifying the precise shape
of the potential did not qualitatively change the simulation
results.

Figures 8(a)-8(c) display the self-intermediate scatter-
ing function Fy(Q, ) for the large and small particles at
Q =0.575/0 calculated from their trajectories at a set of tem-
peratures in a simulation with 3% polydispersity on both the
large and small species. At the highest temperature shown,

J. Chem. Phys. 148, 044902 (2018)
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FIG. 8. Molecular dynamics simulation results of a binary mixture of colloids
(¢ = 0.3, ¢ =0.5, k = 2) with a short-range attraction strength that increases
linearly with decreasing temperature. (a)—(c) display the self-intermediate
scattering function F¢(Q, ) for the large (red dashed lines) and small (green
solid lines) particles at Q = 0.575/0 at three temperatures traversing the
ergodic-to-nonergodic transition in the mixture; (a) 0.717T g, (b) 0.65T ¢, and
() 0.62T . (d) shows an image of the instantaneous particle positions at a high
temperature in the ergodic fluid phase. (e) shows an example of the particle
positions at a temperature below the transition.

T =0.71T¢ [Fig. 8(a)], Fs(Q, t) decays quickly in a manner
consistent with liquid-state dynamics. As expected for liquids,
Fs(Q, t) of the smaller particles decays more rapidly than
that of the larger particles due to the smaller particles’ greater
mobility. Consistent with these dynamics, the microstructure
resembles that of homogeneously mixed fluid, as illustrated in
Fig. 8(d), which displays an image showing the instantaneous
particle positions at this temperature.

At slightly lower temperatures, however, the microstruc-
ture and dynamics change dramatically. The change in dynam-
ics is illustrated in Figs. 8(b) and 8(c), which show F (0, t) at
T =0.65T g and T =0.62T g, respectively. Due to the increasing
interparticle attractions, the particle dynamics at these tem-
peratures are slowed considerably. Moreover, the slowing is
much more pronounced among the smaller particles. Even-
tually, these dynamics become too slow to conduct proper
averaging on the time scale of the simulations. Thus, the simu-
lations mirror the experiments in that non-ergodicity is driven
by dynamic arrest of the smaller particles. The microstruc-
tural origin of this arrest is illustrated in Fig. 8(e), which
shows an image of the instantaneous particle positions at
T = 0.65Ty. The system has undergone phase separation in
which the arrested smaller particles have formed monodis-
perse, high-density regions that are interspersed among lower-
density regions populated predominantly by the mobile larger
particles.

lll. DISCUSSION

These simulation and XPCS results together reveal the
microscopic processes leading to gel formation in the binary
mixtures of colloids with short-range attraction. Specifically,
while the particles of two sizes are miscible when their inter-
actions are hard-sphere-like or only weakly attractive, for
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stronger attraction, they become immiscible. Hence, as a result
of increasing attraction, the smaller particles segregate into
dense regions where they undergo dynamical arrest that halts
the phase separation. In the simulations, this arrest is accom-
panied by the formation of local crystalline order, as seen in
Fig. 8(e). In the experiments, no evidence of crystal formation
is apparent in /(Q). We believe that this difference between
the simulations and experiments in the local order of the small
colloids at low temperature is a consequence of the different
polydispersity in the small-colloid population in the two cases.
Due to the higher polydispersity in the experiments, the locally
dense regions of smaller colloids remain amorphous, and we
associate their dynamical arrest with formation of a dense gel
or attractive glass phase that imparts mechanical rigidity to the
system.*

To understand the mechanisms driving this gel-formation
scenario, comparison with gel formation in monodisperse sus-
pensions of colloids with short-range attraction is instructive.
In the case of monodisperse suspensions, the introduction of
attractive interactions makes the system unstable to liquid-
gas phase separation (see Appendix B). The ensuing spinodal
decomposition is a path to gelation, as the colloids can con-
dense into percolating regions that vitrify, thereby arresting
the phase separation.' In the case of a mixture, a second
instability with respect to compositional demixing is also pos-
sible, and indeed the partitioning of the smaller colloids into
dense regions indicates that the system is unstable to com-
position fluctuations, while the samples’ optical translucency
suggests that any instability does not result in large-scale phase
separation.

Demixing as a route to bigel formation has been shown
experimentally in binary mixtures of same-sized colloids
(k = 1) in which the inter-species attraction is weaker than the
intra-species attraction.” These results were further supported
by thermodynamic perturbation theory (TPT) calculations of
the mixture instability to compositional demixing.’ Interest-
ingly, we have performed comprehensive TPT calculations
(details given in Appendix B) that do not identify compo-
sitional demixing as the dominant instability for bidisperse
mixtures with a moderate size ratio (« = 2) and otherwise sym-
metric interactions. Rather, the spinodal boundary of the binary
mixtures in this case corresponds solely to a condensation-type
instability at a thermodynamic level. These calculations hence
indicate that the mechanisms promoting the demixing seen
in the experiments and simulations are not captured by such
a mean-field model, likely as a consequence of fluctuations
due to subtle entropic packing effects. Specifically, because
the range of attraction is the same for the large and small col-
loids on an absolute scale, the range divided by the particle
radius is larger for the smaller particles. We speculate that
this difference could lead to more configurations among the
smaller particles in which many small particles are in each
others’ attractive wells that ultimately give an advantage to
the de-mixing and dynamic arrest.

IV. CONCLUSION

The unexpected behaviour of weakly attractive binary
mixtures presented here illustrates how tuning the miscibility
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of mixtures through their interparticle interactions can lead
to new routes for controlling the rheology and phase behav-
ior of suspensions. The findings suggest several directions to
explore this theme further. For instance, while the study here
focused on the colloid size ratio x = 2, an interesting question
is how the gel formation behavior evolves as this ratio is var-
ied. Specifically, how do the miscibility of the two sizes and
the role of each species in dynamic arrest change on increas-
ing the ratio toward « = 5, where depletion effects dominate?
Also, how does the gel formation process change as the ratio
is tuned toward the monodisperse case, k = 1, where previous
work has shown that gelation in these nanocolloidal suspen-
sions with short-range attraction is driven by percolation*>4%?
Finally, while the details of the process we have uncovered
are particular to the mixtures studied here, this enhancement
of the fluid-gel transition temperature resembles findings in
other multicomponent fluid systems. For example, binary mix-
tures of molecular glass formers can display a glass transition
temperature 7', that is higher than that expected from an ideal
mixing law>%% and in some cases is even higher than T, of
either pure component.%! Also, enhanced aggregation upon
binary mixing of eye-lens proteins with short-range attraction
has been implicated in some forms of cataract.®> Thus, the
phenomena illustrated by these nanocolloidal mixtures poten-
tially serve as a model for understanding fluid-solid transitions
in a range of multicomponent disordered materials.
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APPENDIX A: MATERIALS AND METHODS
1. Sample preparation

Silica nanocolloids with average radii of 8 and 16 nm
(with 10% polydispersity), as determined by SAXS on dilute
suspensions, were prepared using the Stober method of base-
catalyzed hydrolysis and condensation of tetraethyl orthosili-
cate.%>%* The octadecyl surface functionalization followed the
method of van Helden, Jansen, and Vrij.®> Suspensions of each
species of colloid were prepared by dispersing a known mass
of dried silica powder in decalin by gentle stirring, and these
suspensions were then combined at temperatures well above
T* to form initially homogeneous binary mixtures with the
desired particle concentrations.

2. XPCS

Experiments were conducted at Sector 8-ID-I of the
Advanced Photon Source using 7.35 keV x-rays. Details
regarding the beamline and measurement procedures have
been presented elsewhere.%%%’ Samples were contained in
sealed stainless-steel holders with sample thickness 0.5 mm
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and with polyimide windows for transmission scattering. The
coherent scattering intensity, recorded by a direct-illuminated
CCD area detector, was measured over the range of wave-
vector magnitudes 0.04 nm™' < Q < 0.40 nm~'. Time-
resolved series of scattering intensities /(Q, t") were analyzed
to determine the intensity time-autocorrelation function,

{(Q. 1) 1(Q.1" +1))
Q. HKIQ, 1" +1))

where the brackets indicate a time average over time ¢’ and an
ensemble average over equivalent detector pixels at the same
wave-vector magnitude Q to assure proper ensemble averag-
ing for the non-ergodic gels. Exposure times of 0.25 s were
employed, and the beam was shuttered between exposures to
reduce sample irradiation. The total exposure in any measure-
ment was limited to 12.5 s (i.e., 50 CCD images) to avoid
measurable effects of radiation damage on g»(Q, t). The result-
ing range of delay times, limited at short times by the CCD
frame rate, was approximately 2.1 s < ¢ < 100 s. As mentioned
above, this range was not always adequate to cover the slow
terminal relaxation of g»(Q, t) in the gel state but was suffi-
cient to determine accurately the plateau value and hence the
non-ergodicity parameter fp.

820,10 = (A1)

3. Rheometry

Measurements of the frequency-dependent complex shear
modulus were performed using a stress-controlled rheometer
(Anton-Paar MCR 300) in a cone-plate geometry with a fre-
quency of w = 1 s7! and a strain amplitude, y = 0.3%, that was
well within the linear viscoelastic regime. The rheometer was
equipped with a Peltier device for temperature control, which
was calibrated against the thermometry employed in the XPCS
experiments. The cup-shaped bottom plate was fashioned with
a reservoir containing a 50% ethylene glycol/water solution
around the tool to prevent the evaporation of the decalin,
making the samples stable in the rheometer for several days.

4. Molecular dynamics simulations

Simulations were conducted using the HOOMD-Blue
package.?®%° The simulation system was composed of approx-
imately 4000 small particles (Rs = 80-) and 500 large particles
(Rp, = 160), where o is a characteristic simulation length
scale, maintained at volume fraction ¢ = 0.3 in a cubic simula-
tion box with periodic boundary conditions. Simulations were
performed for several values of particle size polydispersities.
As the particles were of the same material, their characteristic
masses were Mg = m and M; = 8m. The interparticle poten-
tial was the sum of a repulsive Yukawa potential U ., and an
attractive Gaussian well U, of the form

€ exp [—(r,-j - Aij)/f]

Urep(ry) = p—— ifry < reut 83, (A2)
0 otherwise
(rj —A)?|
Uan(ry) = Uo(T) exp [—ZT if rjj < reur + A ’
0 otherwise

(A3)
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where € =kpTy is the characteristic energy scale, Uy(T)
=10(kgT — €) is the temperature-dependent strength of the
attractive Gaussian potential, & = 0/10 is the range of the
Yukawa potential, A; = R; + R; is the contact separation of
a given pair of particles (with i, j € {S, L}), and r.,, = 3.50
is the cutoff for both the Yukawa and the Gaussian poten-
tials. Thus, the corresponding characteristic simulation time
scale was T = \mo2/e. Particle trajectories were calculated
by integrating the equations of motion using a time step of
At = 0.0057. The simulations proceeded by cooling slowly
from a high initial temperature, 7 = 0.8Ty, where the par-
ticles remained well mixed and freely diffusing, stopping in
increments of AT = 0.03Ty to explore the dynamics. Dur-
ing the temperature ramps between set points, which lasted
1 x 10° steps, the system evolved in the canonical (NVT)
ensemble using a Nosé-Hoover thermostat to couple the sys-
tem to a heat bath. After reaching each target temperature,
further 1 x 10° integration steps in the NVT ensemble were
performed, after which the system evolved in the microcanon-
ical (NVE) ensemble for 2 x 107 steps during which data
were acquired. Eventually, at some temperature, the struc-
tural dynamics became extremely slow so that equilibration on
these time scales was impossible, and the system became effec-
tively nonergodic. The self-part of the Van Hove correlation
function Gy(r, t) was calculated for the small and large parti-
cle populations from the distribution of mean-square particle
displacements at various time intervals . The normalized, self-
part of intermediate scattering function Fs(Q, ¢t) for the small
and large particles was then obtained via the spatial Fourier
transform of these correlation functions.

APPENDIX B: THERMODYNAMIC PERTURBATION
THEORY

Here we employ perturbation theory’® to calculate
thermodynamic predictions for the stability of the binary
octadecyl-coated nanocolloidal mixture. In particular, we are
interested in determining whether thermodynamic perturba-
tion theory (TPT) predicts an instability that is dominated
by density or composition fluctuations, i.e., a principally
condensation- or demixing-type instability. The nature of the
instability can be ascertained from the eigenvalues of the

stability matrix
F_ fVV fV)Cj|’ (Bl)

" fo S

f _ 1 62f
s Jvy — 2
T 2 o2

where f,, = % gzx
derivatives of the reduced Helmholtz free energy f with respect
to the overall specific volume v = 1/p = V/(Ns+Nr) and com-
position as measured by the molar fraction of small colloids
x = Ng/(Ns + Np) at fixed temperature 7.

Thermodynamic stability is bound by the spinodal sur-
face, as given by det[F] = 0, and the relative significance
of composition and density fluctuations is measured by the
angle

, etc., are the second

@ = arctan ( (B2)

Jox )
fvv - A ’
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where A_ is the smallest eigenvalue of the stability matrix.%’!
A predominantly demixing-type instability is indicated by
a — 0, while @« — =+7/2 suggests a condensation-type
instability.

The free energy is found by assuming that the silica
nanocolloids are well approximated as hard, spherically sym-
metric spheres and modeling the attractive octadecyl surface
layers as short-ranged, pairwise potentials. The mixture’s free
energy f =9 +f¥ is then calculated as a perturbation f¥ about
the known binary hard-sphere mixture f°.

1. Colloidal hard-sphere reference

The reference free energy f° is the sum of the ideal free
energy f19, which can be computed directly from the ideal
partition function for a multi-component gas, and the hard-
sphere free energy fMS. A mixture of hard spheres obeys
the Boublik-Mansoori-Carnahan-Starling-Leland equation of
state and has a well-known analytical form for the hard-sphere
free energy.’>"4

2. Attractive perturbation

The hard-sphere repulsive potential is perturbed by an
attractive short-ranged potential U l.l; (r) between pairs of col-
loids i, j € {S, L}. In the molecular dynamics simulations,
the attraction is modeled as a spherically symmetric Gaussian
well. In the TPT calculations, we use the even simpler pairwise
square-well,

—Ujj ifo-,~<r<0',~+/l,~
AGER S SN 6 )
J 0 otherwise

with i, j € {S, L} for interaction ranges 1;;, effective diameters
oij = R; + R;, and well depths u;;.

In the molecular dynamics simulations presented above,
the well depth varied linearly with the temperature in an iden-
tical manner for both large and small colloids. Here, we use a
generalized linear form: u;(T) = w;j (ue — vkgT), in which e
defines the characteristic energy scale of the attractive well, w;;
controls the strength of pairwise interactions between different
species, and the dimensionless numbers u and v set the relative
importance of the attractive and thermal energies. In the TPT
calculations, thermal energy is given in units of €. Likewise,
we choose the radius of the larger colloids Ry, = 2Rs = 16 nm
as the characteristic length scale, and introduce the non-
dimensional length scales R; = R;/Ry, & = (R,- +Rj) /Rz,
and /7.,']' = /1,']/RL.

The first-order term in the expansion of the free energy is
the sum over all pairs of convolutions of the perturbation poten-
tials U; and unperturbed partial radial distribution functions

gg of the reference hard-sphere mixture,

2

P

2kgT &=
where x; = N;/(Ng + Np) for i €{S, L}. The unperturbed par-
tial radial distribution functions gg for binary hard-spheres
are found through the Percus-Yevick approximation for the
Ornstein-Zernike equation, which produces analytical forms
in reciprocal space of the total correlation functions. These

fF=

XiXj / gy () Uy (ndr, (B4)
1
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depend on the direct correlation functions,”> which are known
for binary mixtures of hard spheres.*’-’® Strong oscillations in
the inverse Fourier transform of the total correlation functions
can arise due to the hard-sphere discontinuities. To remedy
such oscillations, the discontinuity is removed by subtracting
the contact value everywhere beyond the contact point in real
space, after adding its Fourier transform to the reciprocal space
function prior to the inverse transformation.”> Additionally,
the Grundke-Henderson correction is applied to the Percus-
Yevick approximations for gg., since their values and slopes

are otherwise under-predicted at the contact point.”’~7°

3. TPT results

In the bidisperse mixture of octadecyl-coated silica col-
loids, we experimentally observe that the colloidal gels form
at higher temperatures than either pure suspensions and that
the smaller colloids demix, undergoing dynamic arrest while
the larger particles remain mobile. To give context for this
behaviour, we present TPT predictions for four cases of binary
mixtures. The first three cases (1-3) are binary mixtures of
monodisperse suspensions, in which intra- and inter-species
interactions are asymmetric. TPT calculations of these three
cases show that a region exists on the spinodal surface for
which composition fluctuations are dominant, indicating that
the suspensions are unstable to demixing. In fact, case 1 essen-
tially reproduced the results of Varrato et al.” However, in the
fourth case, we consider a bidisperse mixture with otherwise
symmetric interactions that corresponds to our experimental
system, for which we find that TPT does not predict the demix-
ing instability that occurs experimentally. The details for these
four cases are as follows:

1. A monodisperse suspension, in which the attractive

potentials are independent of temperature and the inter-
species well depth is reduced compared to the intra-
species depth. For all pairs, the effective diameter is
0 = 2 (corresponding to 16 nm radius particles in con-
tact) and the interaction range, /iij = 1/16, is set by
a species-independent thickness of the octadecyl chain
coatings, A;; = 1 nm. For this example, the intra-species
attraction is w;; = 1, while the inter-species attraction is
halved to w;; = 1/2. The attraction is made independent
of temperature by setting u = 1 and v = 0.
Figure 9(a) shows that a portion of the spinodal surface,
T*(c, ¢7), can exhibit demixing-type instabilities with
a = 0. Interestingly, as was experimentally observed
for our octadecyl-coated nanocolloids and for the DNA-
coated colloids of Varrato et al.” we find that at suffi-
ciently high volume fractions, an initially homogeneous
symmetric mixture of ¢ ~ 0.5 is most unstable toward
demixing.

2. A monodisperse suspension, in which the interspecies
well depth is reduced compared to the intra-species depth
with linear temperature dependence. This is the same as
case 1, except possessing a linear temperature depen-
dence to account for the roughly linear increase in attrac-
tion with decreasing temperature. To match molecular
dynamics simulations, we set u = v = 10. Increasing v
from zero causes the spinodal curves to rise more quickly
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at small ¢7 and then more slowly at large ¢, as shown
in Fig. 9(b). Additionally, the temperature dependence
diminishes the spinodal maximum of the symmetric mix-
ture (¢ = 0.5) with respect to the pure suspensions but does
not erase it completely.

A monodisperse suspension, in which the interspecies
interaction range is reduced compared to the intra-
species range with a linear temperature dependence.
For all pairs, the effective diameter is & = 2 and the
well depth is w;; = 1, while the range is 4; = 1/16 for
intra-species attraction but only A;x; = 1/32 for inter-
species attraction. Temperature dependence is linear with
u=v=10.

Just as in the previous case 2, demixing-type instabili-
ties are possible in this case. Figure 9(c) shows that a
portion of the spinodal surface can exhibit demixing-
type instabilities with @ = 0 around a symmetric com-
position at sufficiently high volume fractions. As in
case 2, the interactions favour intra-species over cross-
species attraction, which increases the significance of

0.4

J. Chem. Phys. 148, 044902 (2018)

1.4

FIG. 9. Spinodal surfaces, T*(c, ¢7),

scaled by To = €/kgT, and stability

parameter « predicted by TPT for four

cases of binary mixtures. The first three

1.0 [(a)—(c)] are monodisperse systems with

binary interactions, while the fourth (d)

is a bidisperse suspension with sym-

metric interactions. (a) A monodisperse

0875 suspension with binary well depths
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dependence (u=v=10) and binary

well depths (w;;=1 and w;x;=1/2).

0.4 Well ranges are constant (1;; =1/16).

(¢) A monodisperse suspension with

binary interaction ranges (1;=1/16

02 and /Nl,-# =1/32). Well depth is species

12 independent (w;=1) and linearly

dependent on temperature (u=v = 10).

(d) Bidisperse suspension with radii

Rr=1 and Rg=1/2 and otherwise

symmetric interactions. Attraction is

species independent (w;;=1 and iij

0.4 =1/16) and temperature dependent
(u=v=10).
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composition fluctuations relative to density fluctuations
on the stability.

A bidisperse suspension with otherwise symmetric inter-
actions and linear temperature dependence. These TPT
calculations correspond most closely to the experimen-
tal system discussed in the main text. In contrast to
the monodisperse examples, the mixture is binary but
the interactions remain symmetric. Thus, both large
(R, =1) and small (Rg=1/2) colloids have equal well
depths w;;=1, equal interaction ranges Zij =1/16 for
all pairs (¥i, j) and linear temperature dependence with
u=v=10.

In this case, the instability boundary, shown in Fig. 9(d),
is markedly different than cases 1 through 3. There is
no region of the spinodal surface that is primarily con-
trolled by demixing-type instabilities. Instead, density
fluctuations dominate everywhere on the surface. From
a thermodynamic perspective, this is sensible since the
interactions are symmetric and there is nothing to favour
intra-species over inter-species interactions. Likewise,
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even in the absence of temperature dependence (results
not shown), TPT does not predict a region dominated
by demixing-type instabilities on the spinodal surface.
These TPT predictions stand in stark contrast to the
experimental and computational results presented in the
main text, which are more indicative of microphase de-
mixing than a condensation-type instability, suggesting
a more complicated transition involving fluctuations in
particle packing that cannot be incorporated in the TPT
approach.
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