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1. Introduction16

The Schmidt & Sickles (1984) (SS) time-invariant efficiency estimator17

benchmarks the relative performance of the cross-sectional units using the18

fixed or random effects. The SS estimator was extended to the case of time-19

variant efficiency by Cornwell et al. (1990) (CSS). We extend the non-spatial20

CSS estimator to the case where there is spatial autoregressive dependence21

which involves estimating direct (own), indirect (spillover) and total (direct22

plus indirect) efficiency. We provide a demonstration of our estimator using a23

cost frontier model for state manufacturing in the U.S.. In the context of our24

application, cost efficiency spillovers can be interpreted as benchmarking how25

successful states are at exporting and importing productive performance to26

and from other states. For example, firms in different states may effectively27

export and import efficiency to and from one another via competition.28

2. Deterministic Spatial Autoregressive Cost Frontier Model29

A deterministic spatial autoregressive cost frontier model for panel data30

is given in equation (1). We do not discuss spatial panel data models in31

detail here but for comprehensive and up-to-date surveys see Baltagi (2011,32

2013).33

Cit =κ+ αi + τt + TL (h, q, t)it + λ
N∑
j=1

wijCjt + zitφ+ εit, (1)

i = 1, . . . ,N ; t = 1, . . . ,T .

N is a cross-section of units; T is the fixed time dimension; Cit is the logged34

normalized cost of the ith unit; αi is a fixed effect; τt is a time period effect;35

TL (h, q, t)it represents the technology as the translog approximation of the36

log of the cost function, where h is a vector of logged normalized input37

prices, q is a vector of logged outputs and t is a time trend; λ is the spatial38

autoregressive parameter; wij is an element of the spatial weights matrix,39

W ; zit is a vector of exogenous characteristics and φ is the associated vector40

of parameters; εit is an i.i.d. disturbance for i and t with zero mean and41

variance σ2.42

W is a (N ×N) matrix of known positive constants which describes the43

spatial arrangement of the cross-sectional units and also the strength of the44
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spatial interaction between the units. All the elements on the main diagonal45

of W are set to zero. λ is assumed to lie in the interval (1/rmin, 1), where46

rmin is the most negative real characteristic root of W and because W is47

row-normalized 1 is the largest real characteristic root of W .48

Equation (1) is estimated using maximum likelihood where the log likeli-49

hood function is:50

logL =
−NT

2
log(2πσ2) + T log |I − λW | − 1

2σ2

N∑
i=1

T∑
t=1

(Cit − κ−

αi − τt − TL (h, q, t)it −
N∑
j=1

wijCjt − zitφ). (2)

We ensure that λ lies in its parameter space, account for the endogeneity51

of the spatial autoregressive variable and the fact that εt is not observed by52

including the scaled logged determinant of the Jacobian transformation of εt53

to Ct (i.e. T log |I − λW |) in the log-likelihood function. We estimate equa-54

tion (1) by demeaning in the space dimension to circumvent the incidental55

parameter problem. Lee & Yu (2010), however, show that this leads to a56

biased estimate of σ2 when N is large and T is fixed, which we denote σ2
B,57

where the bias is of the type identified in Neyman & Scott (1948). Follow-58

ing Lee & Yu (2010) we correct for this bias by replacing σ2
B with the bias59

corrected estimate of σ2, σ2
BC = Tσ2

B/(T − 1).60

3. Marginal Effects and Direct, Indirect and Total Efficiencies61

We can rewrite equation (1) as follows where the i subscripts are dropped62

to denote successive stacking of cross-sections.63

Ct = (I − λW )−1 κι+ (I − λW )−1 α + (I − λW )−1 τtι+

(I − λW )−1 Γtβ + (I − λW )−1 ztφ+ (I − λW )−1 εt, (3)

where ι is an (N × 1) vector of ones; α is the (N × 1) vector of fixed effects;64

Γt is an (N ×K) matrix of stacked observations for TL (h, q, t)t; and β is a65

vector of translog parameters. LeSage & Pace (2009) demonstrate that the66

coefficients on the explanatory variables in a model with spatial autoregres-67

sive dependence cannot be interpreted as elasticities. LeSage & Pace (2009)68
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therefore propose the following approach to calculate direct, indirect and to-69

tal marginal effects which we present in the context of the kth component of70

the translog function.71

The matrix of direct and indirect elasticities for each unit for the kth72

component of the translog function are given by:73

(I − λW )−1


βk 0 · 0
0 βk · ·
· · · ·
0 0 · βk

 . (4)

Since the product of matrices in equation (4) yields different direct and in-74

direct elasticities for each unit, to facilitate interpretation LeSage & Pace75

(2009) suggest reporting a mean direct elasticity (average of the diagonal76

elements in equation (4)) and a mean aggregate indirect elasticity (average77

row sum of the non-diagonal elements in equation (4)). The mean direct78

effect is the mean effect on a unit’s dependent variable following a change in79

one of its independent variables. The mean aggregate indirect effect is the80

mean effect on the dependent variable of one unit following a change in one81

of the independent variables in all the other units. The mean total effect is82

the sum of the mean direct and mean aggregate indirect effects. We calculate83

the t-statistics for the mean effects using the delta method.84

Unit specific effects from a deterministic spatial frontier model can be85

used to calculate time-invariant and time-variant efficiency by applying the86

non-spatial SS and CSS estimators, respectively, where the efficiencies are87

comparable to those from a non-spatial deterministic frontier model using88

the same procedure (see Druska & Horrace (2004) and Glass et al. (2013)).89

We extend the CSS methodology to the spatial autoregressive case and thus90

estimate direct, indirect and total efficiencies, which involves recognizing91

from equation (3) that (I − λW )−1 α = αTot, where αTot is the (N×1) vector92

of total fixed effects. Equivalently using column vector notation:93

(I − λW )−1


α1

α2

·
·
αN

 =


αDir
11 + αInd

12 + · · + αInd
1N

αInd
21 + αDir

22 + · · + αInd
2N

· + · + · · + ·
· + · + · · + ·

αInd
N1 + αInd

N2 + · · + αDir
NN

 =


αTot
1

αTot
2

·
·

αTot
N

 , (5)

where αDir
ij (i.e. where i = j) and αInd

ij (i.e. where i 6= j) are direct and94
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indirect fixed effects, respectively. In the same way we obtain direct and95

indirect residuals, εDir
ijt and εIndijt , from (I − λW )−1 εt in equation (3).96

Direct cost efficiency, CEDir
it , aggregate indirect cost efficiency, CEAggInd

it ,97

and total cost efficiency, CETot
it , are calculated as follows.98

CEDir
it = exp

[
min

i

(
δDir
it

)
− δDir

it

]
, (6)

CEAggInd
it = exp

[
min

i

(
δAggInd
it

)
− δAggInd

it

]
, (7)

CETot
it = exp

[
min

i

(
δDir
it + δAggInd

it

)
−
(
δDir
it + δAggInd

it

) ]
, (8)

where δDir
it = αDir

ij +θDir
i t+ρDir

i t2; δAggInd
it =

∑N
j=1 α

Ind
ij +θAggInd

i t+ρAggInd
i t2;99

δTot
it = δDir

it + δAggInd
it . The θDir

i , ρDir
i , θAggInd

i and ρAggInd
i parameters needed100

to estimate CEDir
it and CEAggInd

it can be obtained by regressing in turn εDir
ijt101

and
∑N

j=1 ε
Ind
ijt on t and t2 for each unit.102

The aggregate indirect efficiency from equation (7) refers to efficiency103

spillovers to the ith unit from all the jth units. It is also valid to interpret104

aggregate indirect efficiency as efficiency spillovers to all the ith units from105

a particular jth unit. Since αInd
ij 6= αInd

ji and εIndijt 6= εIndjit , the efficiency106

spillovers to the ith unit from all the jth units will not equal the efficiency107

spillovers to all the ith units from a jth unit. We only consider efficiency108

spillovers to the ith unit here.109

To calculate direct and aggregate indirect cost inefficiencies, CIEDir
it and110

CIEAggInd
it , as shares of total cost inefficiency, CIETot

it , where the shares111

are denoted by SCIEDir
it and SCIEAggInd

it , CIEDir
it , CIEAggInd

it and CIETot
it112

must be calculated relative to the same unit, where this unit is the best113

performing unit in the calculation of CETot
it . Recognizing that CETot

it can be114

disaggregated into its direct and aggregate indirect efficiency components:115

CETot
it = exp

[
min

i CETotit

(
δDir
it

)
− δDir

it

]
× exp

[
min

i CETotit

(
δAggInd
it

)
− δAggInd

it

]
.

(9)
Taking logs of equation (9) yields an expression for CIETot

it :116

CIETot
it =

[
min

i CETotit

(
δDir
it

)
− δDir

it

]
+

[
min

i CETotit

(
δAggInd
it

)
− δAggInd

it

]
, (10)
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from which SCIEDir
it is:117

SCIEDir
it =

[
min

i CETotit

(
δDir
it

)
− δDir

it

]
/CIETot

it . (11)

SCIEAggInd
it can be calculated in a similar manner.118

4. Application119

4.1. Data120

Our data is for the period 1997-2008 for the contiguous states in the U.S..121

We obtained all data from the Annual Survey of Manufactures (ASM) unless122

otherwise stated and all monetary variables are expressed in 1997 prices using123

the CPI. The measure of output is value added (q), and the three input prices124

are the price of capital (h1), average annual wage of a production worker125

(h2) and the price of energy (h3), where all three input prices and C are126

normalized by the average annual wage of a non-production worker. The data127

for C is calculated by summing the annual wage bills for production and non-128

production workers, expenditure on new and used capital, and expenditure129

on fuels and electricity. The ASM only contains manufacturing expenditure130

on fuels and electricity for the U.S. so this expenditure was allocated to131

the states using annual shares of U.S. industrial sector energy expenditure,132

where the state shares were calculated using data from the U.S. Energy133

Administration. The data for h3 is from the U.S. Energy Administration134

and is the price paid by the industrial sector per million Btu.135

Following Morrison & Schwartz (1996) we assume a harmonized capital136

market and the price of capital is approximated by TX tPKt (rt + γ). TX t137

is the corporate tax rate which we obtain for the U.S. from the OECD tax138

database; PKt is the PPI for finished capital equipment; rt is the long-term139

lending rate for the manufacturing sector approximated by Moody’s Baa140

corporate bond yield; and γ is the depreciation rate, which following Hall141

(2005) we assume is 10%. The price of capital will not be correlated with142

the fixed effects because the price of capital varies over time. The price of143

capital, however, does not vary in the cross section and was therefore found144

to be correlated with the time period effects so the time period effects were145

omitted.146

We also include a number of z-variables which shift the cost frontier147

technology. To capture the effect of differences in tax conditions across states148
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we include the ratio of personal current tax payments to personal income (z1).149

Since the density of economic activity in a state is not meaningful because150

parcels of land are often not productive, we follow Ciccone & Hall (1996) and151

control for agglomeration effects by including average county employment152

density within a state (z2). We take account of urban roadway congestion153

by including urban national highway length shares with a volume-service154

flow (VSF) ratio: < 0.21; 0.21-0.40; 0.71-0.79; 0.80-0.95; and > 0.95 (z3-155

z7, respectively, where we omit the 0.41-0.70 share). A VSF ratio > 0.80156

indicates that congestion has set in. To capture the effect of the sectoral157

composition of state output we include as shares of state GDP, agriculture,158

forestry and fishing GDP (z8), service sector GDP (z9) and government GDP159

(z10), all of which we interact with q.1160

Two states with small manufacturing sectors are highly efficient outliers161

(Rhode Island and Delaware) and were omitted. We use two specifications162

of W . The first is a contiguity matrix, W1. The second is a matrix weighted163

by inverse distance between all state centroids denoted W2. W2 therefore164

resembles the variable which measures the geographical distance between165

trading partners in gravity models. With the exception of the data for z1 and166

z3-z10, all the data is logged and mean adjusted. Consequently, the first order167

coefficients on the time trend, output and input prices can be interpreted as168

elasticities because at the sample mean the quadratic and cross terms in the169

translog function are zero.170

4.2. Estimation Results171

In Table 1 we present the non-spatial Within model (denoted no spatial172

dependence, No SD) as well as the marginal effects for the W1 and W2 models.173

We get an indication of whether the z-variables are endogenous by using the174

non-spatial Within model and the Hausman-Taylor with fixed effects model175

to perform a Hausman-Wu test. The test accepts the null of no endogeneity176

bias at the 10% level. For both spatial models an LR test rejects the null177

that the fixed effects are not jointly significant at the 0.1% level.178

1The tax and income data to calculate z1, the county employment data to calculate
z2 and the industry level state GDP data to calculate z8 and z10 was obtained from the
Regional Economic Accounts. z3-z7 were calculated using data from Highway Statistics.
z9 is calculated using data from the Regional Economic Accounts for the industries which
constitute the service sector in the Annual and Quarterly Services Report.
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Table 1: Fitted deterministic cost frontier models
No SD With SD: W1 With SD: W2

Variable Coef. Direct Indirect Total Direct Indirect Total
Coef. Coef. Coef. Coef. Coef. Coef.

ln h1 β1 0.408*** 0.332*** 0.121*** 0.453*** 0.213*** 0.322** 0.535**
(6.21) (5.29) (3.93) (5.26) (3.35) (2.77) (3.13)

ln h2 β2 0.406*** 0.481*** 0.178*** 0.659*** 0.556*** 0.847*** 1.404***
(5.85) (7.45) (4.00) (6.59) (8.60) (3.98) (5.53)

ln h3 β3 0.080** 0.073** 0.027* 0.100** 0.080** 0.121** 0.202**
(2.77) (2.74) (2.45) (2.73) (3.10) (2.59) (2.90)

ln q β4 0.812*** 0.798*** 0.293*** 1.092*** 0.778*** 1.183*** 1.961***
(8.73) (9.28) (4.49) (8.23) (9.09) (4.15) (5.87)

(ln h1)2 β5 0.185 0.282 0.103 0.386 0.242 0.363 0.605
(0.60) (1.04) (0.99) (1.03) (0.81) (0.79) (0.81)

(ln h2)2 β6 0.569 0.533 0.196 0.729 0.562 0.856 1.417
(1.57) (1.57) (1.48) (1.56) (1.67) (1.54) (1.61)

(ln h3)2 β7 -0.123* -0.099* -0.036 -0.135* -0.114* -0.172* -0.285*
(-2.34) (-1.97) (-1.85) (-1.97) (-2.26) (-2.01) (-2.16)

(ln q)2 β8 0.005 0.006 0.002 0.008 0.006 0.008 0.014
(0.53) (0.75) (0.73) (0.75) (0.70) (0.67) (0.69)

(ln h1)× β9 -0.498 -0.331 -0.119 -0.451 -0.330 -0.499 -0.830
(ln h2) (-1.07) (-0.78) (-0.75) (-0.77) (-0.77) (-0.76) (-0.77)
(ln h1)× β10 0.246 0.287 0.105 0.392 0.364* 0.559* 0.923*
(ln h3) (1.46) (1.80) (1.68) (1.79) (2.36) (2.02) (2.20)
(ln h2)× β11 0.088 -0.010 -0.004 -0.014 -0.068 -0.108 -0.176
(ln h3) (0.48) (-0.06) (-0.06) (-0.06) (-0.39) (-0.39) (-0.39)
(ln h1)× β12 -0.024 0.000 0.000 0.000 -0.009 -0.014 -0.023
(ln q) (-0.55) (0.00) (0.00) (0.00) (-0.22) (-0.22) (-0.22)
(ln h2)× β13 0.058 0.023 0.008 0.031 0.031 0.047 0.079
(ln q) (1.14) (0.50) (0.47) (0.49) (0.67) (0.64) (0.66)
(ln h3)× β14 0.005 0.009 0.003 0.012 0.014 0.022 0.035
(ln q) (0.25) (0.44) (0.44) (0.44) (0.68) (0.67) (0.68)
t β15 -0.028*** -0.021*** -0.008*** -0.028*** -0.016*** -0.024*** -0.040***

(-10.04) (-7.50) (-5.18) (-7.94) (-5.96) (-4.59) (-5.85)

t2 β16 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(1.82) (0.73) (0.69) (0.73) (-0.32) (-0.37) (-0.36)

ln h1t β17 -0.014 -0.028* -0.010* -0.038* -0.036** -0.055* -0.090**
(-1.21) (-2.41) (-2.09) (-2.36) (-3.19) (-2.48) (-2.83)

ln h2t β18 0.030* 0.034* 0.012* 0.046* 0.038** 0.058* 0.096**
(2.18) (2.57) (2.25) (2.53) (2.89) (2.43) (2.69)

ln h3t β19 -0.005 -0.005 -0.002 -0.007 -0.002 -0.004 -0.006
(-0.89) (-0.86) (-0.84) (-0.86) (-0.42) (-0.41) (-0.41)

ln qt β20 -0.008*** -0.009*** -0.003*** -0.013*** -0.010*** -0.016*** -0.026***
(-4.49) (-5.38) (-3.61) (-5.08) (-5.93) (-3.46) (-4.44)

z1 φ1 1.719*** 1.360*** 0.496** 1.856*** 0.934* 1.387* 2.320*
(4.32) (3.62) (3.16) (3.64) (2.35) (2.29) (2.39)

ln z2 φ2 0.562*** 0.457*** 0.167*** 0.625*** 0.357*** 0.539** 0.895**
(4.98) (4.47) (3.49) (4.41) (3.34) (2.84) (3.17)

z3 φ3 0.086 0.120* 0.044* 0.164* 0.115* 0.174* 0.288*
(1.67) (2.54) (2.17) (2.48) (2.48) (2.20) (2.37)

z4 φ4 0.016 0.054 0.020 0.074 0.052 0.077 0.128
(0.18) (0.65) (0.65) (0.66) (0.64) (0.61) (0.62)

z5 φ5 0.222 0.221 0.081 0.301 0.248* 0.377 0.625
(1.65) (1.74) (1.61) (1.73) (1.96) (1.78) (1.89)

z6 φ6 0.228 0.235* 0.087 0.322* 0.254* 0.385* 0.638*
(1.88) (2.10) (1.91) (2.08) (2.29) (2.04) (2.19)

z7 φ7 0.213* 0.219** 0.081* 0.300** 0.220** 0.333* 0.553**
(2.53) (2.86) (2.43) (2.81) (2.86) (2.45) (2.70)

z8 φ8 1.976* 1.884* 0.693 2.577* 1.806 2.735 4.541
(1.97) (2.00) (1.83) (1.99) (1.88) (1.71) (1.81)

z9 φ9 1.465*** 1.440*** 0.529*** 1.969*** 1.520*** 2.316*** 3.836***
(5.40) (5.57) (3.79) (5.34) (5.96) (3.57) (4.58)

z10 φ10 -0.482 0.230 0.093 0.323 -0.087 -0.105 -0.192
(-0.91) (0.45) (0.47) (0.46) (-0.17) (-0.13) (-0.15)

ln qz8 φ11 -1.095 -1.125 -0.414 -1.539 -1.176* -1.798 -2.974*
(-1.77) (-1.95) (-1.80) (-1.93) (-2.08) (-1.84) (-1.97)

ln qz9 φ12 -0.700*** -0.564** -0.207** -0.771*** -0.529** -0.803* -1.332**
(-3.72) (-3.33) (-2.84) (-3.30) (-3.07) (-2.57) (-2.87)

ln qz10 φ13 -1.742*** -2.002*** -0.737*** -2.739*** -1.930*** -2.940*** -4.870***
(-5.06) (-6.27) (-3.81) (-5.78) (-5.94) (-3.57) (-4.59)

W1 W2∑N
j=1wijCjt λ − 0.282***

(7.10)
0.609***
(11.99)

Log-likelihood − 899.03 904.34

Note: *, **, *** denote statistical significance at the 5%, 1% and 0.1% levels, respectively. SD denotes spatial dependence.
t−statistics are in parentheses.
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The estimates of λ are 0.28 from the W1 model and 0.61 from the W2179

model, both of which are significant at the 0.1% level. This indicates that180

there is a lot more spatial dependence when we allow spatial interaction be-181

tween all states (W2) compared to when spatial interaction is limited to con-182

tiguous states (W1). This is almost certainly because with W2 there are more183

states from which there can be spillovers than there are with W1. In both184

models the direct q, h1, h2 and h3 parameters are significant at the 0.1% level.185

These parameters are also positive which indicates that the monotonicity of186

the cost function is satisfied at the sample mean. The estimates of direct re-187

turns to scale (1/β4) from both spatial models are sensible thereby providing188

support for the model specifications (1.25 from the W1 model and 1.29 from189

the W2 model indicating increasing returns in both cases). For both spatial190

models, it is clear that the largest indirect input price or output parameter191

relates to h2. This indicates that there are larger production wage spillovers192

than there are output, capital price or energy price spillovers.193

We find that the direct z2, z6 and z7 parameters are positive and sig-194

nificant at the 5% level or lower in the spatial models. The implication is195

that state manufacturing cost will be higher in more urbanized states where196

employment density and urban roadway congestion are higher. The direct197

z3 parameter suggests that state manufacturing cost is higher for the least198

urbanized states, where low traffic levels on urban highways is a more fre-199

quently observed phenomenon.200

4.3. Direct, Aggregate Indirect and Total Efficiencies201

Efficiencies from the spatial models which are calculated using equations202

(6)-(8) are denoted by CEA in Table 2. To calculate the direct and aggregate203

indirect inefficiency shares, which are denoted by SCIE in Table 2, we use204

direct, aggregate indirect and total efficiencies which are based on equation205

(9) and are denoted by CEB in Table 2. The sample average CEA from the206

non-spatial model and the sample average direct CEA from the W1 model207

are in both cases 0.28, which rises to 0.34 for the W2 model. The average208

aggregate indirect (total) CEA is 0.69 (0.25) for the W1 model and 0.76209

(0.32) for the W2 model. This suggests that direct efficiency is the principal210

component of total efficiency. Moreover, average total CEA from the W1211

and W2 models is below average direct CEA because there is a sufficient212

amount of aggregate indirect inefficiency, although as we will see this is not213

always the case for individual states. We can see from Figure 1 that annual214

aggregate indirect CEA is considerably greater than annual direct CEA over215
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Figure 1: Average efficiency scores

the entire sample for both spatial models. We also observe that annual216

aggregate indirect CEA for the W2 model is always greater than that from217

the W1 model.218

We can see from Table 2 that we observe states where total CEA is in219

between direct and aggregate indirect CEA because there is an insufficient220

amount of aggregate indirect inefficiency e.g. New York for W1 and W2. Also,221

Table 2 indicates that, in general, the average direct and average aggregate222

indirect CEA rankings are high for several states in the Northeastern region223

or just outside for both spatial models. The two states with the largest224

average real GDP and average state manufacturing real GDP over the study225

period (California and Texas) have the lowest average direct CEA. In terms226

of average aggregate indirect CEA, California and Texas fair much better.227

A comparison of average direct, average aggregate indirect and average total228

CEA for California and Texas indicates that average direct CEA is the reason229

for their low average total CEA.230

Some of the estimates of average aggregate indirect CEB are greater than231

1 and when this is the case average aggregate indirect SCIE is negative. This232

is because New Jersey and Maryland are the best performing states in each233

period for the calculation of total CEB for W1 and W2, respectively, but this234

is not the case for the calculation of aggregate indirect CEB. To illustrate,235

consider the average estimates of direct and aggregate indirect SCIE of 1.40236

and −0.40 for Vermont from the W2 model. These estimates indicate that237

Vermont operates below the direct reference level but above the aggregate238

indirect reference level. We can therefore conclude that Vermont’s relative239

total inefficiency is all due to its relative direct inefficiency as its aggregate240

indirect efficiency is higher than Maryland’s.241

10



Table 2: Selected average cost efficiencies and inefficiency shares
State No SD With SD: W1 With SD: W2

Direct Agg Indirect Total Direct Agg Indirect Total
New York CEA 1.00(1) 0.75(4) 0.91(4) 0.82(3) 0.63(5) 0.99(2) 0.74(5)

CEB 0.75(4) 1.09(4) 0.82(3) 0.63(5) 1.16(2) 0.74(5)
SCIE 1.45 -0.45 1.51 -0.51

Massachusetts CEA 0.97(2) 0.68(5) 0.93(3) 0.76(5) 0.67(4) 0.97(5) 0.77(4)
CEB 0.68(5) 1.11(3) 0.76(5) 0.67(4) 1.14(5) 0.77(4)
SCIE 1.39 -0.39 1.51 -0.51

Maryland CEA 0.94(3) 0.86(2) 0.75(9) 0.78(4) 1.00(1) 0.85(11) 1.00(1)
CEB 0.86(2) 0.90(9) 0.78(4) 1.00(1) 1.00(11) 1.00(1)
SCIE 0.59 0.41 N/A N/A

New Jersey CEA 0.93(4) 1.00(1) 0.84(8) 1.00(1) 0.78(3) 0.91(8) 0.84(3)
CEB 1.00(1) 1.00(8) 1.00(1) 0.78(3) 1.07(8) 0.84(3)
SCIE N/A N/A 1.41 -0.41

Connecticut CEA 0.80(5) 0.81(3) 1.00(1) 0.96(2) 0.78(2) 0.97(4) 0.90(2)
CEB 0.81(3) 1.20(1) 0.96(2) 0.78(2) 1.15(4) 0.90(2)
SCIE 6.46 -5.46 2.40 -0.40

New Hampshire CEA 0.51(6) 0.42(8) 0.87(6) 0.44(7) 0.58(6) 0.97(3) 0.67(6)
CEB 0.42(8) 1.04(6) 0.44(7) 0.58(6) 1.15(3) 0.67(6)
SCIE 1.05 -0.05 1.35 -0.35

California CEA 0.15(27) 0.11(45) 0.69(13) 0.09(45) 0.11(45) 0.74(14) 0.10(45)
CEB 0.11(45) 0.82(13) 0.09(45) 0.11(45) 0.88(14) 0.10(45)
SCIE 0.92 0.08 0.95 0.05

Vermont CEA 0.38(8) 0.44(7) 0.96(2) 0.50(6) 0.56(8) 1.00(1) 0.66(7)
CEB 0.44(7) 1.15(2) 0.50(6) 0.56(8) 1.18(1) 0.66(7)
SCIE 1.20 -0.20 1.40 -0.40

Texas CEA 0.05(46) 0.05(46) 0.66(19) 0.04(46) 0.07(46) 0.73(19) 0.06(46)
CEB 0.05(46) 0.80(19) 0.07(46) 0.86(19) 0.06(46)
SCIE 0.93 0.07 0.95 0.05

Note: Rankings are in parentheses where the rankings are in descending order.

5. Concluding Remarks242

We have extended the non-spatial CSS efficiency estimator to the case243

where there is spatial autoregressive dependence. A more detailed empirical244

application of our estimator covering asymmetric efficiency spillovers would245

be a worthwhile area for further work.246
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