Estimating Efficiency Spillovers with State Level Evidence for Manufacturing in the U.S.

³ Anthony Glass^{a,*}, Karligash Kenjegalieva^a, Robin C. Sickles^b

⁴ ^aSchool of Business and Economics, Loughborough University, Leics, LE11 3TU, UK

⁵ ^bDepartment of Economics, Rice University, Houston, U.S., and School of Business and

Economics, Loughborough University, Leics, LE11 3TU, UK

7 Abstract

⁸ Unit specific effects are often used to estimate non-spatial efficiency. We ⁹ extend such estimators to the case where there is spatial autoregressive de-¹⁰ pendence and introduce the concept of spillover efficiency. Intuitively, we ¹¹ present an approach to benchmark how successful units are at exporting and ¹² importing productive performance to and from other units.

13

1

2

6

JEL Classification: C23; C51; D24

¹⁴ Keywords: Spatial Autoregression, Frontier Modeling, Panel Data,

15 Efficiency Spillovers

^{*}Corresponding author- E-mail: A.J.Glass@lboro.ac.uk; Tel: +44 1509 222704; Fax: +44 1509 223910.

16 1. Introduction

The Schmidt & Sickles (1984) (SS) time-invariant efficiency estimator 17 benchmarks the relative performance of the cross-sectional units using the 18 fixed or random effects. The SS estimator was extended to the case of time-19 variant efficiency by Cornwell et al. (1990) (CSS). We extend the non-spatial 20 CSS estimator to the case where there is spatial autoregressive dependence 21 which involves estimating direct (own), indirect (spillover) and total (direct 22 plus indirect) efficiency. We provide a demonstration of our estimator using a 23 cost frontier model for state manufacturing in the U.S.. In the context of our 24 application, cost efficiency spillovers can be interpreted as benchmarking how 25 successful states are at exporting and importing productive performance to 26 and from other states. For example, firms in different states may effectively 27 export and import efficiency to and from one another via competition. 28

²⁹ 2. Deterministic Spatial Autoregressive Cost Frontier Model

A deterministic spatial autoregressive cost frontier model for panel data is given in equation (1). We do not discuss spatial panel data models in detail here but for comprehensive and up-to-date surveys see Baltagi (2011, 2013).

$$C_{it} = \kappa + \alpha_i + \tau_t + TL(h, q, t)_{it} + \lambda \sum_{j=1}^N w_{ij} C_{jt} + z_{it} \phi + \varepsilon_{it}, \qquad (1)$$
$$i = 1, \dots, N; \ t = 1, \dots, T.$$

N is a cross-section of units; T is the fixed time dimension; C_{it} is the logged 34 normalized cost of the *i*th unit; α_i is a fixed effect; τ_t is a time period effect; 35 $TL(h,q,t)_{it}$ represents the technology as the translog approximation of the 36 log of the cost function, where h is a vector of logged normalized input 37 prices, q is a vector of logged outputs and t is a time trend; λ is the spatial 38 autoregressive parameter; w_{ij} is an element of the spatial weights matrix, 39 W; z_{it} is a vector of exogenous characteristics and ϕ is the associated vector 40 of parameters; ε_{it} is an i.i.d. disturbance for i and t with zero mean and 41 variance σ^2 . 42

W is a $(N \times N)$ matrix of known positive constants which describes the spatial arrangement of the cross-sectional units and also the strength of the spatial interaction between the units. All the elements on the main diagonal of W are set to zero. λ is assumed to lie in the interval $(1/r_{min}, 1)$, where r_{min} is the most negative real characteristic root of W and because W is row-normalized 1 is the largest real characteristic root of W.

Equation (1) is estimated using maximum likelihood where the log likelihood function is:

$$\log L = \frac{-NT}{2} \log(2\pi\sigma^2) + T \log|I - \lambda W| - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \sum_{t=1}^{T} (C_{it} - \kappa - \alpha_i - \tau_t - TL(h, q, t)_{it} - \sum_{j=1}^{N} w_{ij} C_{jt} - z_{it} \phi).$$
(2)

We ensure that λ lies in its parameter space, account for the endogeneity 51 of the spatial autoregressive variable and the fact that ε_t is not observed by 52 including the scaled logged determinant of the Jacobian transformation of ε_t 53 to C_t (i.e. $T \log |I - \lambda W|$) in the log-likelihood function. We estimate equa-54 tion (1) by demeaning in the space dimension to circumvent the incidental 55 parameter problem. Lee & Yu (2010), however, show that this leads to a 56 biased estimate of σ^2 when N is large and T is fixed, which we denote σ_B^2 , 57 where the bias is of the type identified in Neyman & Scott (1948). Follow-58 ing Lee & Yu (2010) we correct for this bias by replacing σ_B^2 with the bias 59 corrected estimate of σ^2 , $\sigma_{BC}^2 = T\sigma_B^2/(T-1)$. 60

⁶¹ 3. Marginal Effects and Direct, Indirect and Total Efficiencies

We can rewrite equation (1) as follows where the i subscripts are dropped to denote successive stacking of cross-sections.

$$C_t = (I - \lambda W)^{-1} \kappa \iota + (I - \lambda W)^{-1} \alpha + (I - \lambda W)^{-1} \tau_t \iota + (I - \lambda W)^{-1} \Gamma_t \beta + (I - \lambda W)^{-1} z_t \phi + (I - \lambda W)^{-1} \varepsilon_t,$$
(3)

where ι is an $(N \times 1)$ vector of ones; α is the $(N \times 1)$ vector of fixed effects; Γ_t is an $(N \times K)$ matrix of stacked observations for $TL(h, q, t)_t$; and β is a vector of translog parameters. LeSage & Pace (2009) demonstrate that the coefficients on the explanatory variables in a model with spatial autoregressive dependence cannot be interpreted as elasticities. LeSage & Pace (2009) ⁶⁹ therefore propose the following approach to calculate direct, indirect and to-⁷⁰ tal marginal effects which we present in the context of the *kth* component of ⁷¹ the translog function.

The matrix of direct and indirect elasticities for each unit for the *kth* component of the translog function are given by:

$$(I - \lambda W)^{-1} \begin{bmatrix} \beta_k & 0 & \cdot & 0 \\ 0 & \beta_k & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & \beta_k \end{bmatrix}.$$
 (4)

Since the product of matrices in equation (4) yields different direct and in-74 direct elasticities for each unit, to facilitate interpretation LeSage & Pace 75 (2009) suggest reporting a mean direct elasticity (average of the diagonal 76 elements in equation (4)) and a mean aggregate indirect elasticity (average 77 row sum of the non-diagonal elements in equation (4)). The mean direct 78 effect is the mean effect on a unit's dependent variable following a change in 79 one of its independent variables. The mean aggregate indirect effect is the 80 mean effect on the dependent variable of one unit following a change in one 81 of the independent variables in all the other units. The mean total effect is 82 the sum of the mean direct and mean aggregate indirect effects. We calculate 83 the *t*-statistics for the mean effects using the delta method. 84

Unit specific effects from a deterministic spatial frontier model can be 85 used to calculate time-invariant and time-variant efficiency by applying the 86 non-spatial SS and CSS estimators, respectively, where the efficiencies are 87 comparable to those from a non-spatial deterministic frontier model using 88 the same procedure (see Druska & Horrace (2004) and Glass et al. (2013)). 89 We extend the CSS methodology to the spatial autoregressive case and thus 90 estimate direct, indirect and total efficiencies, which involves recognizing 91 from equation (3) that $(I - \lambda W)^{-1} \alpha = \alpha^{Tot}$, where α^{Tot} is the $(N \times 1)$ vector 92 of total fixed effects. Equivalently using column vector notation: 93

$$(I - \lambda W)^{-1} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \cdot \\ \cdot \\ \alpha_N \end{pmatrix} = \begin{pmatrix} \alpha_{11}^{Dir} + \alpha_{12}^{Ind} + \cdots + \alpha_{1N}^{Ind} \\ \alpha_{21}^{Ind} + \alpha_{22}^{Dir} + \cdots + \alpha_{2N}^{Ind} \\ \cdot + \cdots + \cdots + \cdots \\ \alpha_{N1}^{Ind} + \alpha_{N2}^{Ind} + \cdots + \alpha_{NN}^{Dir} \end{pmatrix} = \begin{pmatrix} \alpha_1^{Tot} \\ \alpha_2^{Tot} \\ \cdot \\ \cdot \\ \alpha_N^{Tot} \end{pmatrix}, \quad (5)$$

where α_{ij}^{Dir} (i.e. where i = j) and α_{ij}^{Ind} (i.e. where $i \neq j$) are direct and

indirect fixed effects, respectively. In the same way we obtain direct and 95 96

indirect fixed effects, respectively. In the same way we obtain direct and indirect residuals, ε_{ijt}^{Dir} and ε_{ijt}^{Ind} , from $(I - \lambda W)^{-1} \varepsilon_t$ in equation (3). Direct cost efficiency, CE_{it}^{Dir} , aggregate indirect cost efficiency, CE_{it}^{AggInd} , and total cost efficiency, CE_{it}^{Tot} , are calculated as follows. 97 98

$$CE_{it}^{Dir} = \exp\left[\min_{i} \left(\delta_{it}^{Dir}\right) - \delta_{it}^{Dir}\right],\tag{6}$$

$$CE_{it}^{AggInd} = \exp\left[\min_{i} \left(\delta_{it}^{AggInd}\right) - \delta_{it}^{AggInd}\right],\tag{7}$$

$$CE_{it}^{Tot} = \exp\left[\min_{i} \left(\delta_{it}^{Dir} + \delta_{it}^{AggInd}\right) - \left(\delta_{it}^{Dir} + \delta_{it}^{AggInd}\right)\right],\tag{8}$$

where $\delta_{it}^{Dir} = \alpha_{ij}^{Dir} + \theta_i^{Dir}t + \rho_i^{Dir}t^2$; $\delta_{it}^{AggInd} = \sum_{j=1}^N \alpha_{ij}^{Ind} + \theta_i^{AggInd}t + \rho_i^{AggInd}t^2$; $\delta_{it}^{Tot} = \delta_{it}^{Dir} + \delta_{it}^{AggInd}$. The θ_i^{Dir} , ρ_i^{Dir} , θ_i^{AggInd} and ρ_i^{AggInd} parameters needed to estimate CE_{it}^{Dir} and CE_{it}^{AggInd} can be obtained by regressing in turn ε_{ijt}^{Dir} 100 101 and $\sum_{j=1}^{N} \varepsilon_{ijt}^{Ind}$ on t and t^2 for each unit. The aggregate indirect efficiency from equation (7) refers to efficiency 102

103 spillovers to the *i*th unit from all the *j*th units. It is also valid to interpret 104 aggregate indirect efficiency as efficiency spillovers to all the ith units from 105 a particular *j*th unit. Since $\alpha_{ij}^{Ind} \neq \alpha_{ji}^{Ind}$ and $\varepsilon_{ijt}^{Ind} \neq \varepsilon_{jit}^{Ind}$, the efficiency spillovers to the *i*th unit from all the *j*th units will not equal the efficiency 106 107 spillovers to all the *i*th units from a *j*th unit. We only consider efficiency 108 spillovers to the ith unit here. 109

To calculate direct and aggregate indirect cost inefficiencies, CIE_{it}^{Dir} and CIE_{it}^{AggInd} , as shares of total cost inefficiency, CIE_{it}^{Tot} , where the shares are denoted by $SCIE_{it}^{Dir}$ and $SCIE_{it}^{AggInd}$, CIE_{it}^{Dir} , CIE_{it}^{AggInd} and CIE_{it}^{Tot} 110 111 112 must be calculated relative to the same unit, where this unit is the best 113 performing unit in the calculation of CE_{it}^{Tot} . Recognizing that CE_{it}^{Tot} can be 114 disaggregated into its direct and aggregate indirect efficiency components: 115

$$CE_{it}^{Tot} = \exp\left[\min_{i} \sum_{CE_{it}^{Tot}} \left(\delta_{it}^{Dir}\right) - \delta_{it}^{Dir}\right] \times \exp\left[\min_{i} \sum_{CE_{it}^{Tot}} \left(\delta_{it}^{AggInd}\right) - \delta_{it}^{AggInd}\right].$$
(9)

Taking logs of equation (9) yields an expression for CIE_{it}^{Tot} :

$$CIE_{it}^{Tot} = \left[\min_{i \ CE_{it}^{Tot}} \left(\delta_{it}^{Dir}\right) - \delta_{it}^{Dir}\right] + \left[\min_{i \ CE_{it}^{Tot}} \left(\delta_{it}^{AggInd}\right) - \delta_{it}^{AggInd}\right], (10)$$

117 from which $SCIE_{it}^{Dir}$ is:

$$SCIE_{it}^{Dir} = \left[\min_{i \ CE_{it}^{Tot}} \left(\delta_{it}^{Dir}\right) - \delta_{it}^{Dir}\right] / CIE_{it}^{Tot}.$$
 (11)

¹¹⁸ $SCIE_{it}^{AggInd}$ can be calculated in a similar manner.

119 4. Application

120 4.1. Data

Our data is for the period 1997-2008 for the contiguous states in the U.S.. 121 We obtained all data from the Annual Survey of Manufactures (ASM) unless 122 otherwise stated and all monetary variables are expressed in 1997 prices using 123 the CPI. The measure of output is value added (q), and the three input prices 124 are the price of capital (h_1) , average annual wage of a production worker 125 (h_2) and the price of energy (h_3) , where all three input prices and C are 126 normalized by the average annual wage of a non-production worker. The data 127 for C is calculated by summing the annual wage bills for production and non-128 production workers, expenditure on new and used capital, and expenditure 129 on fuels and electricity. The ASM only contains manufacturing expenditure 130 on fuels and electricity for the U.S. so this expenditure was allocated to 131 the states using annual shares of U.S. industrial sector energy expenditure, 132 where the state shares were calculated using data from the U.S. Energy 133 Administration. The data for h_3 is from the U.S. Energy Administration 134 and is the price paid by the industrial sector per million Btu. 135

Following Morrison & Schwartz (1996) we assume a harmonized capital 136 market and the price of capital is approximated by $TX_t PK_t (r_t + \gamma)$. TX_t 137 is the corporate tax rate which we obtain for the U.S. from the OECD tax 138 database; PK_t is the PPI for finished capital equipment; r_t is the long-term 130 lending rate for the manufacturing sector approximated by Moody's Baa 140 corporate bond yield; and γ is the depreciation rate, which following Hall 141 (2005) we assume is 10%. The price of capital will not be correlated with 142 the fixed effects because the price of capital varies over time. The price of 143 capital, however, does not vary in the cross section and was therefore found 144 to be correlated with the time period effects so the time period effects were 145 omitted. 146

We also include a number of z-variables which shift the cost frontier technology. To capture the effect of differences in tax conditions across states

we include the ratio of personal current tax payments to personal income (z_1) . 149 Since the density of economic activity in a state is not meaningful because 150 parcels of land are often not productive, we follow Ciccone & Hall (1996) and 151 control for agglomeration effects by including average county employment 152 density within a state (z_2) . We take account of urban roadway congestion 153 by including urban national highway length shares with a volume-service 154 flow (VSF) ratio: < 0.21; 0.21-0.40; 0.71-0.79; 0.80-0.95; and $> 0.95 (z_3-0.95)$ 155 z_7 , respectively, where we omit the 0.41-0.70 share). A VSF ratio > 0.80 156 indicates that congestion has set in. To capture the effect of the sectoral 157 composition of state output we include as shares of state GDP, agriculture, 158 forestry and fishing GDP (z_8) , service sector GDP (z_9) and government GDP 159 (z_{10}) , all of which we interact with q^{1} . 160

Two states with small manufacturing sectors are highly efficient outliers 161 (Rhode Island and Delaware) and were omitted. We use two specifications 162 of W. The first is a contiguity matrix, W_1 . The second is a matrix weighted 163 by inverse distance between all state centroids denoted W_2 . W_2 therefore 164 resembles the variable which measures the geographical distance between 165 trading partners in gravity models. With the exception of the data for z_1 and 166 z_3 - z_{10} , all the data is logged and mean adjusted. Consequently, the first order 167 coefficients on the time trend, output and input prices can be interpreted as 168 elasticities because at the sample mean the quadratic and cross terms in the 169 translog function are zero. 170

171 4.2. Estimation Results

In Table 1 we present the non-spatial Within model (denoted no spatial dependence, No SD) as well as the marginal effects for the W_1 and W_2 models. We get an indication of whether the z-variables are endogenous by using the non-spatial Within model and the Hausman-Taylor with fixed effects model to perform a Hausman-Wu test. The test accepts the null of no endogeneity bias at the 10% level. For both spatial models an LR test rejects the null that the fixed effects are not jointly significant at the 0.1% level.

¹The tax and income data to calculate z_1 , the county employment data to calculate z_2 and the industry level state GDP data to calculate z_8 and z_{10} was obtained from the Regional Economic Accounts. z_3 - z_7 were calculated using data from Highway Statistics. z_9 is calculated using data from the Regional Economic Accounts for the industries which constitute the service sector in the Annual and Quarterly Services Report.

		No SD	With SD: W ₁ With S			With SD: W_2	2	
Variable		Coef.	Direct	Indirect	Total	Direct	Indirect	Total
			Coef.	Coef.	Coef.	Coef.	Coef.	Coef.
$ln h_1$	β_1	0.408***	0.332***	0.121***	0.453^{***}	0.213***	0.322**	0.535^{**}
1	/~ 1	(6.21)	(5.29)	(3.93)	(5.26)	(3.35)	(2, 77)	(3.13)
In h-	8-	0.406***	0.491***	0.178***	0.650***	0.556***	0.947***	1 404***
111 112	p_2	(5.400	(7.45)	(1.00)	(0.000)	(0.00)	(2.00)	(5 59)
		(5.85)	(7.45)	(4.00)	(6.59)	(8.60)	(3.98)	(5.53)
$\ln h_3$	β_3	0.080^{**}	0.073^{**}	0.027*	0.100^{**}	0.080**	0.121^{**}	0.202^{**}
		(2.77)	(2.74)	(2.45)	(2.73)	(3.10)	(2.59)	(2.90)
$\ln q$	β_4	0.812^{***}	0.798^{***}	0.293^{***}	1.092^{***}	0.778***	1.183^{***}	1.961^{***}
	-	(8.73)	(9.28)	(4.49)	(8.23)	(9.09)	(4.15)	(5.87)
$(\ln h_{\star})^2$	B-	0.185	0.282	0.103	0.386	0.242	0.363	0.605
$(m n_1)$	ρ_5	(0.00)	(1.04)	(0.00)	(1.02)	(0.01)	(0.70)	(0.005
0		(0.60)	(1.04)	(0.99)	(1.03)	(0.81)	(0.79)	(0.81)
$(\ln h_2)^2$	β_6	0.569	0.533	0.196	0.729	0.562	0.856	1.417
		(1.57)	(1.57)	(1.48)	(1.56)	(1.67)	(1.54)	(1.61)
$(\ln h_2)^2$	B-	-0.123*	-0.099*	-0.036	-0.135*	-0 114*	-0.172*	-0.285*
(111.103)	PI	(2 24)	(107)	(1.85)	(107)	(2.26)	(2.01)	(2.16)
(2) 2		(-2.34)	(-1.97)	(-1.85)	(-1.97)	(-2.20)	(-2.01)	(-2.10)
$(\ln q)^2$	β_8	0.005	0.006	0.002	0.008	0.006	0.008	0.014
		(0.53)	(0.75)	(0.73)	(0.75)	(0.70)	(0.67)	(0.69)
$(\ln h_1) \times$	β_9	-0.498	-0.331	-0.119	-0.451	-0.330	-0.499	-0.830
$(\ln h_2)$		(-1.07)	(-0.78)	(-0.75)	(-0.77)	(-0.77)	(-0.76)	(-0.77)
$(\ln h_1)$	BIO	0.246	0.287	0.105	0 392	0.364*	0.559*	0.923*
$(\ln h_1)$ $(\ln h_2)$	P10	(1.46)	(1.80)	(1.69)	(1.70)	(2.26)	(2.02)	(2.20)
$(111 n_3)$	0	(1.40)	(1.80)	(1.08)	(1.79)	(2.30)	(2.02)	(2.20)
$(\ln h_2) \times$	β_{11}	0.088	-0.010	-0.004	-0.014	-0.068	-0.108	-0.176
$(\ln h_3)$		(0.48)	(-0.06)	(-0.06)	(-0.06)	(-0.39)	(-0.39)	(-0.39)
$(\ln h_1) \times$	β_{12}	-0.024	0.000	0.000	0.000	-0.009	-0.014	-0.023
$(\ln q)$		(-0.55)	(0.00)	(0.00)	(0.00)	(-0.22)	(-0.22)	(-0.22)
$(\ln h_2) \times$	B12	0.058	0.023	0.008	0.031	0.031	0.047	0.079
$(\ln n_2)$	P13	(1 14)	(0.50)	(0.47)	(0,40)	(0.67)	(0.64)	(0.66)
(111 q)	0	(1.14)	(0.30)	(0.47)	(0.49)	(0.07)	(0.04)	(0.00)
$(\ln h_3) \times$	β_{14}	0.005	0.009	0.003	0.012	0.014	0.022	0.035
$(\ln q)$		(0.25)	(0.44)	(0.44)	(0.44)	(0.68)	(0.67)	(0.68)
t	β_{15}	-0.028***	-0.021^{***}	-0.008***	-0.028***	-0.016^{***}	-0.024^{***}	-0.040***
		(-10.04)	(-7.50)	(-5.18)	(-7.94)	(-5.96)	(-4.59)	(-5.85)
+2	8	0.001	0.000	0.000	0.000	0.000	0.000	0.000
L	P_{16}	(1.00)	(0.72)	(0.00)	(0.72)	(0.000	(0.000	(0.000
		(1.82)	(0.73)	(0.69)	(0.73)	(-0.32)	(-0.37)	(-0.36)
$\ln h_1 t$	β_{17}	-0.014	-0.028*	-0.010*	-0.038*	-0.036**	-0.055*	-0.090**
		(-1.21)	(-2.41)	(-2.09)	(-2.36)	(-3.19)	(-2.48)	(-2.83)
$\ln h_2 t$	β_{18}	0.030*	0.034^{*}	0.012*	0.046*	0.038 * *	0.058*	0.096^{**}
		(2.18)	(2.57)	(2.25)	(2.53)	(2.89)	(2.43)	(2.69)
ln hat	B10	-0.005	-0.005	-0.002	-0.007	-0.002	-0.004	-0.006
111 103 0	P19	(0.80)	(0.86)	(0.84)	(0.86)	(0.42)	(0.41)	(0.41)
		(-0.89)	(-0.80)	(-0.84)	(-0.80)	(-0.42)	(-0.41)	(-0.41)
$\ln qt$	β_{20}	-0.008***	-0.009***	-0.003***	-0.013***	-0.010***	-0.016***	-0.026***
		(-4.49)	(-5.38)	(-3.61)	(-5.08)	(-5.93)	(-3.46)	(-4.44)
z_1	ϕ_1	1.719^{***}	1.360^{***}	0.496^{**}	1.856^{***}	0.934^{*}	1.387^{*}	2.320*
		(4.32)	(3.62)	(3.16)	(3.64)	(2.35)	(2.29)	(2.39)
ln zo	de	0.562***	0 457***	0.167***	0.625***	0 357***	0.539**	0.895**
111 22	φ_2	(4.08)	(4.47)	(2.40)	(4.41)	(2.24)	(2.84)	(2.17)
	,	(4.98)	(4.47)	(3.49)	(4.41)	(3.34)	(2.64)	(3.17)
z_3	φ_3	0.086	0.120*	0.044*	0.164*	0.115	0.174*	0.288*
		(1.67)	(2.54)	(2.17)	(2.48)	(2.48)	(2.20)	(2.37)
z_4	ϕ_4	0.016	0.054	0.020	0.074	0.052	0.077	0.128
		(0.18)	(0.65)	(0.65)	(0.66)	(0.64)	(0.61)	(0.62)
25	ϕ_{5}	0.222	0.221	0.081	0.301	0.248*	0.377 [´]	0.625
- U	r 0	(1.65)	(1, 74)	(1.61)	(1,73)	(1.96)	(1.78)	(1.80)
~-	<i>d</i> -	0.009	(1.1.1.1.) 0.025*	0.087	0.200*	0.254*	(1.10)	0.629*
~6	φ_6	0.220	0.230**	0.007	0.322	0.204*	0.360*	0.030"
		(1.88)	(2.10)	(1.91)	(2.08)	(2.29)	(2.04)	(2.19)
z_7	ϕ_7	0.213^{*}	0.219^{**}	0.081*	0.300 * *	0.220**	0.333^{*}	0.553^{**}
		(2.53)	(2.86)	(2.43)	(2.81)	(2.86)	(2.45)	(2.70)
28	ϕ_8	1.976*	1.884*	0.693	2.577*	1.806	2.735	4.541
~0	40	(1.07)	(2,00)	(1.83)	(1.00)	(1.88)	(1, 71)	(1.81)
		1 405***	(2.00)	0.500***	1.000***	1 500***	0.010***	0.000
29	ψ_9	1.400	1.440	0.529	1.909	1.520****	2.310	3.830
		(5.40)	(5.57)	(3.79)	(5.34)	(5.96)	(3.57)	(4.58)
z_{10}	ϕ_{10}	-0.482	0.230	0.093	0.323	-0.087	-0.105	-0.192
		(-0.91)	(0.45)	(0.47)	(0.46)	(-0.17)	(-0.13)	(-0.15)
ln azs	φ11	-1.095	-1.125	-0.414	-1.539	-1.176*	-1.798	-2.974*
- 1-0	r 1 1	(-1, 77)	(-1.95)	(-1.80)	(-1.93)	(-2.08)	(-1.84)	(-1.97)
lp. an-	<i>d</i>	0.700***	0.564**	0.207**	0.771***	0 520**	0.803*	1 220**
111 <i>qz</i> 9	ψ_{12}	-0.700	-0.004***	-0.207***	-0.771 ****	-0.529***	-0.003*	-1.332***
		(-3.72)	(-3.33)	(-2.84)	(-3.30)	(-3.07)	(-2.57)	(-2.87)
$\ln qz_{10}$	ϕ_{13}	-1.742***	-2.002***	-0.737***	-2.739***	-1.930^{***}	-2.940***	-4.870^{***}
		(-5.06)	(-6.27)	(-3.81)	(-5.78)	(-5.94)	(-3.57)	(-4.59)
			,				W2	
				0.282***			0.600***	
$\sum_{i=1}^{N} w_{ii} C_{it}$	λ	-		(7.10)			(11.00)	
J - V V T 121 - 121 - 1				(1.10)			(11.99)	
Log-likelihood		_		suu 113			911/1 3/4	

Table 1: Fitted deterministic cost frontier models

The estimates of λ are 0.28 from the W_1 model and 0.61 from the W_2 179 model, both of which are significant at the 0.1% level. This indicates that 180 there is a lot more spatial dependence when we allow spatial interaction be-181 tween all states (W_2) compared to when spatial interaction is limited to con-182 tiguous states (W_1) . This is almost certainly because with W_2 there are more 183 states from which there can be spillovers than there are with W_1 . In both 184 models the direct q, h_1 , h_2 and h_3 parameters are significant at the 0.1% level. 185 These parameters are also positive which indicates that the monotonicity of 186 the cost function is satisfied at the sample mean. The estimates of direct re-187 turns to scale $(1/\beta_4)$ from both spatial models are sensible thereby providing 188 support for the model specifications (1.25 from the W_1 model and 1.29 from 189 the W_2 model indicating increasing returns in both cases). For both spatial 190 models, it is clear that the largest indirect input price or output parameter 191 relates to h_2 . This indicates that there are larger production wage spillovers 192 than there are output, capital price or energy price spillovers. 193

We find that the direct z_2 , z_6 and z_7 parameters are positive and significant at the 5% level or lower in the spatial models. The implication is that state manufacturing cost will be higher in more urbanized states where employment density and urban roadway congestion are higher. The direct z_3 parameter suggests that state manufacturing cost is higher for the least urbanized states, where low traffic levels on urban highways is a more frequently observed phenomenon.

²⁰¹ 4.3. Direct, Aggregate Indirect and Total Efficiencies

Efficiencies from the spatial models which are calculated using equations 202 (6)-(8) are denoted by CE_A in Table 2. To calculate the direct and aggregate 203 indirect inefficiency shares, which are denoted by SCIE in Table 2, we use 204 direct, aggregate indirect and total efficiencies which are based on equation 205 (9) and are denoted by CE_B in Table 2. The sample average CE_A from the 206 non-spatial model and the sample average direct CE_A from the W_1 model 207 are in both cases 0.28, which rises to 0.34 for the W_2 model. The average 208 aggregate indirect (total) CE_A is 0.69 (0.25) for the W_1 model and 0.76 209 (0.32) for the W_2 model. This suggests that direct efficiency is the principal 210 component of total efficiency. Moreover, average total CE_A from the W_1 211 and W_2 models is below average direct CE_A because there is a sufficient 212 amount of aggregate indirect inefficiency, although as we will see this is not 213 always the case for individual states. We can see from Figure 1 that annual 214 aggregate indirect CE_A is considerably greater than annual direct CE_A over 215

Figure 1: Average efficiency scores

the entire sample for both spatial models. We also observe that annual aggregate indirect CE_A for the W_2 model is always greater than that from the W_1 model.

We can see from Table 2 that we observe states where total CE_A is in 219 between direct and aggregate indirect CE_A because there is an insufficient 220 amount of aggregate indirect inefficiency e.g. New York for W_1 and W_2 . Also, 221 Table 2 indicates that, in general, the average direct and average aggregate 222 indirect CE_A rankings are high for several states in the Northeastern region 223 or just outside for both spatial models. The two states with the largest 224 average real GDP and average state manufacturing real GDP over the study 225 period (California and Texas) have the lowest average direct CE_A . In terms 226 of average aggregate indirect CE_A , California and Texas fair much better. 227 A comparison of average direct, average aggregate indirect and average total 228 CE_A for California and Texas indicates that average direct CE_A is the reason 229 for their low average total CE_A . 230

Some of the estimates of average aggregate indirect CE_B are greater than 231 1 and when this is the case average aggregate indirect SCIE is negative. This 232 is because New Jersey and Maryland are the best performing states in each 233 period for the calculation of total CE_B for W_1 and W_2 , respectively, but this 234 is not the case for the calculation of aggregate indirect CE_B . To illustrate, 235 consider the average estimates of direct and aggregate indirect SCIE of 1.40 236 and -0.40 for Vermont from the W_2 model. These estimates indicate that 237 Vermont operates below the direct reference level but above the aggregate 238 indirect reference level. We can therefore conclude that Vermont's relative 230 total inefficiency is all due to its relative direct inefficiency as its aggregate 240 indirect efficiency is higher than Maryland's. 241

State		No SD	With SD: W_1			With SD: W_2		
			Direct	Agg Indirect	Total	Direct	Agg Indirect	Total
New York	CE_A	1.00(1)	0.75(4)	0.91(4)	0.82(3)	0.63(5)	0.99(2)	0.74(5)
	CE_B		0.75(4)	1.09(4)	0.82(3)	0.63(5)	1.16(2)	0.74(5)
	SCIE		1.45	-0.45		1.51	-0.51	
Massachusetts	CE_A	0.97(2)	0.68(5)	0.93(3)	0.76(5)	0.67(4)	0.97(5)	0.77(4)
	CE_B		0.68(5)	1.11(3)	0.76(5)	0.67(4)	1.14(5)	0.77(4)
	SCIE		1.39	-0.39		1.51	-0.51	
Maryland	CE_A	0.94(3)	0.86(2)	0.75(9)	0.78(4)	1.00(1)	0.85(11)	1.00(1)
	CE_B		0.86(2)	0.90(9)	0.78(4)	1.00(1)	1.00(11)	1.00(1)
	SCIE		0.59	0.41		N/A	N/A	
New Jersey	CE_A	0.93(4)	1.00(1)	0.84(8)	1.00(1)	0.78(3)	0.91(8)	0.84(3)
	CE_B		1.00(1)	1.00(8)	1.00(1)	0.78(3)	1.07(8)	0.84(3)
	SCIE		N/A	N/A		1.41	-0.41	
Connecticut	CE_A	0.80(5)	0.81(3)	1.00(1)	0.96(2)	0.78(2)	0.97(4)	0.90(2)
	CE_B		0.81(3)	1.20(1)	0.96(2)	0.78(2)	1.15(4)	0.90(2)
	SCIE		6.46	-5.46		2.40	-0.40	
New Hampshire	CE_A	0.51(6)	0.42(8)	0.87(6)	0.44(7)	0.58(6)	0.97(3)	0.67(6)
	CE_B		0.42(8)	1.04(6)	0.44(7)	0.58(6)	1.15(3)	0.67(6)
	SCIE		1.05	-0.05		1.35	-0.35	
California	CE_A	0.15(27)	0.11(45)	0.69(13)	0.09(45)	0.11(45)	0.74(14)	0.10(45)
	CE_B		0.11(45)	0.82(13)	0.09(45)	0.11(45)	0.88(14)	0.10(45)
	SCIE		0.92	0.08		0.95	0.05	
Vermont	CE_A	0.38(8)	0.44(7)	0.96(2)	0.50(6)	0.56(8)	1.00(1)	0.66(7)
	CE_B		0.44(7)	1.15(2)	0.50(6)	0.56(8)	1.18(1)	0.66(7)
	SCIE		1.20	-0.20		1.40	-0.40	
Texas	CE_A	0.05(46)	0.05(46)	0.66(19)	0.04(46)	0.07(46)	0.73(19)	0.06(46)
	CE_B		0.05(46)	0.80(19)		0.07(46)	0.86(19)	0.06(46)
	SCIE		0.93	0.07		0.95	0.05	

Table 2: Selected average cost efficiencies and inefficiency shares

Note: Rankings are in parentheses where the rankings are in descending order.

242 5. Concluding Remarks

We have extended the non-spatial CSS efficiency estimator to the case where there is spatial autoregressive dependence. A more detailed empirical application of our estimator covering asymmetric efficiency spillovers would be a worthwhile area for further work.

247 Acknowledgments

We thank the Editor, Badi Baltagi, and two anonymous referees for comments and suggestions. The application to state manufacturing was inspired by the participants in the special session dedicated to the memory of Catherine Morrison Paul at the 2012 North American Productivity Workshop.

²⁵² Baltagi, B. H. (2011). Spatial panels. In A. Ullah, & D. E. A. Giles (Eds.),

Handbook of Empirical Economics and Finance. Boca Raton, Florida:
Chapman and Hall, Taylor and Francis Group.

Baltagi, B. H. (2013). Econometric Analysis of Panel Data. 5th Edition.
Chichester, UK: Wiley.

- ²⁵⁷ Ciccone, A., & Hall, R. E. (1996). Productivity and the density of economic
 ²⁵⁸ activity. American Economic Review, 86, 54–70.
- ²⁵⁹ Cornwell, C., Schmidt, P., & Sickles, R. C. (1990). Production frontiers
 ²⁶⁰ with cross-sectional and time-series variation. *Journal of Econometrics*,
 ²⁶¹ 46, 185–200.
- Druska, V., & Horrace, W. (2004). Generalized moments estimator for spatial
 panel data: Indonesian rice farming. American Journal of Agricultural *Economics*, 86, 185–198.
- Glass, A., Kenjegalieva, K., & Paez-Farrell, J. (2013). Productivity growth
 decomposition using a spatial autoregressive frontier model. *Economics Letters*, 119, 291–295.
- Hall, B. (2005). Measuring the returns to R&D: The depreciation problem.
 Annales d'Économie et de Statistique, 79/80, 341–381.
- Lee, L.-F., & Yu, J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. *Journal of Econometrics*, 154, 165–185.
- LeSage, J., & Pace, R. K. (2009). Introduction to Spatial Econometrics. Boca
 Raton, Florida: CRC Press, Taylor and Francis Group.
- Morrison, C. J., & Schwartz, A. E. (1996). State infrastructure and productive performance. *American Economic Review*, 86, 1095–1111.
- Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially
 consistent observations. *Econometrica*, 16, 1–32.
- Schmidt, P., & Sickles, R. C. (1984). Production frontiers and panel data.
 Journal of Business and Economic Statistics, 2, 367–374.