Evaluating leakage from radial lip seals affected by bearing area of shaft topography

This paper investigates the influence of shaft surface topography upon seal leakage, when using different surface finishing and manufacturing techniques. A hydrodynamic model is used to determine the generated pressure distribution within the seal-shaft contact. Pertinent statistical parameters are selected to distinguish between the various shaft surface topographies, which can contribute to an effectively sealed conjunction. Results obtained from the hydrodynamic model shows the creation of multiple cavitated regions caused by the deep valleys. This leads to thinner film thickness on the surface plateau and therefore lower predicted leakage rates. The distribution of peaks and valleys is shown to be a factor in differentiating contact performance.