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Abstract – Engineering Systems maintenance and reliability 

challenges have drawn serious attention of researchers and 

industrialists all over the world due to continuous evolution, 

innovation and complexity of modern technologies deployed in 

manufacturing and production systems. These systems need very 

high reliability and availability due to business, mission and safety 

critical nature of their operations. This paper reviews evolution of 

systems or equipment maintenance strategies practiced over the 

years in complex industrial and manufacturing systems such as oil 

and gas production systems, satellite communication system, 

spacecraft navigational system, nuclear power plants, etc.  The 

paper also examines the current maintenance and reliability 

philosophies, their limitations and highlights major breakthroughs 

and achievements with regards to complex engineering systems 

maintenance. Intelligent maintenance, a novel approach to 

complex engineering systems maintenance and reliability 

sustainment is proposed.  The proposed approach reintegrates 

operation and maintenance phase into system development life 

cycle, adopts advanced engineering tools and methodology in 

developing condition-based predictive maintenance, an intelligent 

maintenance system with resilient, autonomous and adaptive 

capabilities. Application of Neural network approach to multi-

sensor data fusion for condition-based predictive maintenance 

system is briefly presented. 
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I. INTRODUCTION 

Maintenance can basically be seen as a function to keep a tool, 

machine, or system (simple or complex), in a working 

condition by proper usage, repairing broken part or component, 

or replacing  some of the broken parts such that it is available 

and fit for the designed purpose whenever the need arises. This 

primitive definition of maintenance simplifies and links the 

concept of maintenance to ancient farmers and builders when 

they started deploying simple machines to enhance and 

facilitate their nascent professions. Thus the concept of 

maintenance is traceable to the inception of simple tools and 

machines. The evolving nature of maintenance philosophy has 

always been in pari-passu with the ever changing technological 

innovations in designing simple machines and equipment 

which have presently metamorphosed to complex, sophisticated 

and indispensable systems.   In those days, machine and 

equipment designers did not consider the issue of 

maintainability in the course of designing these simple, 

mechanical systems. Emphasis was particularly on durability, 

robustness and simplicity.  

In oil and gas industries, the trend was not different, despite the 

high level of risks associated with processes and operations of 

the systems. The simple production plants were mainly made 

up of mechanical, pneumatic, hydraulic systems and basic 

electrical power generation equipment. This made the impact of 

failure of these systems with regards to volatile nature of the 

processes, very colossal. There were no stringent local and 

international standards and regulatory requirements and their 

compliance were not enforced and followed up by the 

regulatory bodies.  

Inadequate maintenance and safety procedures have always 

been the major cause of catastrophic incidents and accidents in 

the oil and gas industries, for instance, the Piper Alpha gas 

explosion in 1988 [1]. The recent developments and 

technological advances in the oil and gas subsector further 

highlight the need for creative, resilient and adaptive, total-

asset-lifecycle maintenance management solutions [2].  

Effective maintenance practices and techniques reduce the risk 

of catastrophic failures, minimize maintenance costs, maximize 

system availability, increase productivity and enhance or 

sustain reliability of the production system. Maintenance is a 

key cost driver in oil and gas industries, thus an important area 

to focus research and development efforts on [3]. In [4] certain 

objectives, as applied to oil and gas production systems, such 

as prevention of breakdown during operation, identification and 

elimination of systems’ inherent hazards, elimination or 

mitigation of environmental impacts in the course of operations 

are integral part of operational procedure. Other benefits of 

effective maintenance practice are optimization of maintenance 

resources, increase in system availability and productivity and 

slow rate of system degradation. 

Maintainability of engineering systems or equipment is 

basically a concept that should be considered from the 

requirement and design phases to implementation (installation) 

phase of system development. In most industrial systems or 

subsystems, components layout and physical structuring will 

confirm that maintainability was the least considered during the 

design phase of these systems. The concept of maintainability 

should be closely related to the characteristic of system or 

equipment design and installation [4]. It is one of the designed 

parameters for the purpose of minimizing repair time and cost 

of operations and maintenance [5]. 



In line with the emerging nature of modern engineering 

systems, maintenance of these systems should continue to 

inevitably evolve with the same pace with technology to cope 

with complexity and emerging behaviours. This paper fully and 

actively integrates operations and maintenance phase into 

systems development life cycle to model an integrated system 

development life cycle that is capable of facilitating intelligent 

maintenance solution. This maintenance strategy deploys 

model based systems engineering and data analytic approaches 

to develop condition-based predictive maintenance, an 

intelligent and reliability solution. The proposed maintenance 

system utilizes plant information to monitor health condition of 

the system, detect fault at incipient stage, diagnose the failing 

components and predict the remaining useful life of the system 

using failure trajectories of the components. Neural network 

(NN) has been used by researchers recently for multi-sensor 

data fusion (MSDF), estimation and prediction of systems’ 

state. This paper will briefly apply NN technique of data fusion 

to monitor, fuse seventeen temperature sensors data and 

estimate the output temperature of the gas turbine engine - the 

key component of oil and gas processing system. 

 

II. EVOLUTION OF INDUSTRIAL MAINTENANCE 

STRATEGIES IN OIL AND GAS SUBSECTOR 

Maintenance Strategies during industrial history have 

witnessed, according to [6], progressive evolution and it is 

presently an on-going process. Maintenance of simple tools and 

machines has been in existent with mankind ever since man 

began to utilize these basic and primitive tools to enhance their 

farming and building professions. In oil and gas production 

plants, these devices are pneumatic switches, transmitters, 

valves and pumps. They are limited in their functions and 

usefulness. Maintenance of these devices was performed when 

they failed completely, and this rarely happened due to the 

durability and simplicity of the systems. This maintenance 

practice is the called primitive maintenance philosophy. A 

typical example is the unplanned or breakdown maintenance 

which is reactive maintenance program, whereby the system is 

run till it breaks down before the maintenance actions are 

taken. The industrial systems were operated until they failed, at 

which point they were either repaired or replaced; ‘Fix it when 

it fails or breaks’ [6]. Breakdown maintenance was the generic 

maintenance approach, which is described as a reactive 

maintenance where no action is taken to prevent system failures 

or to detect the onset of failures. The primitive maintenance 

approach was on demand basis, mostly when there is 

catastrophic failure [6], [7]. Due to impacts of industrial on 

world economy, this maintenance ideology seems to disappear 

from the scene after the Second World War. [8] 

The need for sophisticated and complex production system 

paved the way for industrial and technological evolution during 

the Second World War. The war drastically change the scenario 

explained above because there was obvious pressure for high 

quality products and services of all types, especially in 

department of defence and energy sector [8]. This situation 

forced the industrialist to reluctantly and weakly integrate 

maintenance concept with production operations. Though not 

completely an isolated activity, the traditional maintenance was 

viewed as a technical matter, which is in conflict with the 

fundamental objectives of most of the organizations. 

The traditional maintenance concept considers immediate 

reduction in maintenance cost with little or no regards to 

system’s reliability and availability. At earlier stages the 

Corrective Maintenance strategy was practiced in the industries 

[9], which later evolved to Preventive Maintenance (PM) [10], 

[11]. PM was a proactive maintenance strategy which focuses 

on taking actions before the failure occurs. This was owed to 

high competitiveness in oil and gas industries. Emergence of 

engineering concepts such as reliability, maintainability, 

availability and cost optimization during operations and 

maintenance phase of system lifecycle were the wake-up calls 

to the management of the industries to reduce equipment 

downtime in order to remain in business. This concern led to 

the thinking that equipment failure could be avoided if certain 

preventive measures are incorporated into the production 

operations. Thus, the concept of preventive or scheduled 

(planned) maintenance was formed, accepted and practiced.  

These traditional maintenance approaches evolved to modern 

maintenance techniques such as Condition Based Maintenance 

(CBM) [3] [7] [12], where the decisions are made based on the 

machine conditions obtained through measurement systems. 

Figure 1.0 shows the evolution of industrial systems 

maintenance practices, indicating how it started with primitive 

“run-to-failure or reactive maintenance philosophy.   

 
Fig 1: Evolution of industrial systems maintenance practices. 

 

A. Breakthroughs and Achievement in Modern 

Maintenance Programs  

Prior to the introduction and integration of computers with 

industrial control applications, manufacturing and production 

operations  between late 1970’s and early 1980’s, the standard 

or prevalent control system consisted of several number of 

single-loop analogue controllers (mostly electromechanical, 

pneumatic and hydraulic), where signals were not readily 

available to operators [13]. Other field devices were relays, 

contactors, pneumatic actuators, valves and pumps. Due to 

obvious limitations of electromechanical and pneumatic control 

systems, there was an urgent necessity to replace this primitive 

system with computer-based control systems to cope with the 

increasing complex, advanced and sophisticated oil and gas 



production plants and innovative processes. Maintenance of 

these systems was a progressive challenge, which was more 

evident as the modern technologies continue to evolve and 

more sophisticated in response to new operational demands in a 

variety of rugged oil and gas industries around the world [2]. 

This affected the designed reliability, resulting in frequent 

unplanned outages, low productivity and increasing rate of 

overall systems degradation.  

The search or quest for effective maintenance practices leads to 

modern maintenance programs which utilize functional and 

operational information from the system and also 

manufacturer’s data to develop maintenance model with 

regards to the condition of the equipment or system and the 

overall life cycle of the system.  

A typical modern maintenance program attempts to optimize 

traditional maintenance practices, incorporate condition 

assessment of the equipment, historical information and other 

best practices. These maintenance programs include: 

Reliability-Centered Maintenance (RCM) which establishes the 

functional requirement and the desired performance standards 

of equipment or system and these are then related to design and 

inherent reliability parameters of the system or equipment [4]. 

Generally, RCM is a systematic approach that seeks to 

harmonize a facility’s equipment and resources with respect to 

operational and maintenance needs such that a high degree of 

system’s reliability and cost-effectiveness are achieved. Risk-

Based Maintenance (RBM) involves planning of an inspection 

on the basis of the information obtained from a risk analysis of 

equipment. The inspection is designed to detect potential 

degradation before fitness-for-service could be threatened [14]. 

Some versions of risk-based maintenance focus firstly on 

equipment, and then its operational context, failure modes, 

probability of failure, consequences and maintenance 

requirements [15]. The primary aim of RBM is optimization of 

maintenance resources. Total Productive Maintenance (TPM), 

was first initiated in Japan as a development or optimization of 

preventive maintenance after passing through various stages of 

iterations [16]. These development stages included integration 

and application of breakdown maintenance, reliability and 

maintainability concept with respect to economic efficiency in 

industrial system design [4]. The TPM aims at overall system 

efficiency. Thus system or equipment efficiency is a function 

of three factors mentioned in [16], [17]: availability or uptime 

of the system, performance efficiency and effectiveness and 

productivity and rate of quality output.  

Another breakthrough in modern maintenance practices is the 

Condition-Based Maintenance (CBM), developed by 

considering current degradation and its evolution [18]. CBM is 

defined as Maintenance carried out according to need as 

indicated by condition monitoring system [3] [7]. CBM 

involves system or equipment critical parameters monitoring to 

detect deviations from the normal system’s operation. CBM 

allows the lowest cost and most effective maintenance program 

by determining the correct activity and resources at the correct 

time [19]. Predictive maintenance (PdM) program is based on 

the actual conditions or trends of the systems or equipment. 

The PdM considers the health state of the system or equipment 

using critical parameters, compares it with the designed or 

reference performance profile, forecasts the future health state 

of the system using observed deviations and issues 

maintenance management decision for effective maintenance 

program and actions. Properly implemented PdM can identify 

most, if not all, factors that limit effectiveness and efficiency of 

the entire production system or plant [12], [18].  

 

B. Limitations of Traditional and Modern Maintenance 

Programs 

The advances and evolution of industrial technologies paved 

the way to the inception of automation of industrial systems, 

thus making the limitations and weakness of the modern 

maintenance paradigms more visible. These necessitated the 

search for effective and adequate maintenance strategies to 

cope with the progressively increasing complexity and 

sophistication of modern industrial systems. The development 

and adoption of effective maintenance practices and techniques 

are driven by the desire to reduce the risk of catastrophic 

failures, minimize maintenance costs, maximize system 

availability, and sustain engineering systems’ reliability [3], 

[20]. 

Apart from high cost of modern and complex industrial systems 

maintenance, other limitations of traditional and modern 

maintenance strategies are as follows; 

 Correlational faults of the system are not addressed 

 Ineffective to deal with novel fault due to emergent 

behaviour of the complex systems 

 Faults are possibly introduced into the systems in the 

course of the maintenance activities 

 Most CBM and PdM programmes add both structural 

and functional complexities to the already complex 

system due to hardware installed or integrated to the 

extant systems. This tends to impact on the cost of 

maintenance and reduce reliability of the system. 

 Little or no integration of process system condition 

monitoring and failure prognosis with extant 

maintenance programmes. 

 Most existing maintenance practices seem to alienate 

operation and maintenance phase of system 

development from the system’s life-cycle.  

 Human factors are not effectively integrated into the 

design of maintenance management system. 

III. SYSTEM DESIGN FOR RELIABILITY AND 

MAINTAINABILITY 

The search for optimal solutions to reliability and maintenance 

challenges in oil and gas industries leads to the discovery that 

system reliability and maintainability (R&M) are design 

parameters which must be considered from concept phase to 

the final phase of System development life-cycle (SDLC). 

Thus, a poorly designed system in terms of R&M makes 

nonsense of any creative and effective maintenance practices. 

Therefore the foundation of effective and adaptive maintenance 



strategy is the design for reliability and maintainability 

(DFR&M). Design for Reliability (DFR) defines the set of 

tools and techniques used to facilitate product and process 

development to ensure that customer’s requirements and 

expectations for reliability are fully met throughout the life of 

the product with lowest possible overall life-cycle costs. Its 

success lies with reliability engineering tools, and effective 

utilization of tools throughout the SDLC.  The traditional 

SDLC model does not consider operations and maintenance 

(O&M) as a phase in the life cycle model. Also each phase 

does not have a clear feedback structure to the previous phase 

nor O&M phase which embodies the purpose and functions of 

the designed product or service. Shown below are the 

traditional SDLC and integrated SDLC models in figures 2 and 

3 respectively. 

 

  

Figure 2: Traditional SDLC Model Figure 3: Integrated SDLC Model 

 

The integrated SDLC deploys model-based systems 

engineering methodology to develop product, the pivot of the 

SDLC which interacts with every phase of the system 

development throughout the life-cycle of the product or service. 

This research focuses on the O&M phase of the SDLC model 

as highlighted in Figure 3 and exploded diagram of DFR&M 

model in Figure 4. 

 
 

Figure 4: Architecture of DFR&M 

Model 

Figure 5: Architecture of CLM  

of smart transmitter  

 

Several approaches have been adopted by designers to ensure 

higher R&M of complex systems. These include 

modularization, redundancy and robust design at components 

level. Maintainability is the probability of performing a 

successful repair action within a given time. It measures the 

ease and speed with which a system can be restored to 

operational status after a failure occurs. Maintainability is a 

function of mean time-to-repair (MTTR), while reliability is a 

function of mean time-to-failure (MTTF), for non-repairable 

components or mean time between failures (MTBF), for 

repairable components. The relationship between system’s 

reliability and maintainability lies with the availability of the 

system as given by the equation below: 

 

Ai =  x 100               (1)  

 

Where Ai is inherent availability, MTBF is a function of 

designed reliability while MTTR is a function of designed 

maintainability. 

 

Reliability, availability and maintainability (RAM or RMA) are 

system design attributes that have significant impacts on the 

sustainment or total life cycle costs (LCC) of a developed 

system. Additionally, the RAM attributes impact the ability to 

perform the intended mission and affect overall mission 

success. The standard definition of reliability is the probability 

of zero failures over a defined time interval (or mission), 

whereas availability is defined as the percentage of time a 

system is considered ready to use when tasked. Maintainability 

is a measure of the ease and rapidity with which a system or 

equipment can be restored to operational status following a 

failure.  

 

A. Modularization of complex system for higher R&M 

Modularization, from engineering perspective, has the 

following advantages [20],[21]; it helps in managing 

complexities, it enhances parallel processing, it eases 

implementation of intelligent maintenance, improves systems 

reliability and availability, and it accommodates future 

uncertainty and change given that systems maintenance 

strategies have close relationship with their designs. Many 

advanced engineering tools and techniques are available for 

structural and functional modularization, such as design 

structure matrix (DSM). The DSM gives a simple, compact, 

and visual representation of a complex system that supports 

creative solutions to decomposition and integration problems 

[22]. The DSM is used to model the structure of complex 

systems or processes, in order to perform system analysis, 

project planning and products development. The DMS lists all 

constituent sub-systems or activities and the corresponding 

information exchange, interactions and dependency patterns   

modularization methods. Modularization techniques that are 

useful in complex system analysis include function structure 

heuristics, DSM [23], modular function deployment (MFD) 

[23], axiomatic design [24], [25] and domain matrix mapping 

(DMM) [26]. Effective implementation modularization 

approaches such as MFD, DSM and DMM facilitates systems 

reliability optimization. In structural decomposition, the level 

decomposition or the size of the subsystems must be strictly 

considered, as this may affect the architectural analysis of the 

results and data structuring during pre-processing stage of data 

analysis. Structural decomposition to components level has 

positive impacts on R&M of the system; that is reduction in 

MTTR and cost of maintenance. Figure 5 shows the 

architecture of components level modularization (CLM) of a 

smart field transmitter commonly used in oil and gas 

production plants. (figure 5 here) 

 



B. Redundancy in Complex system design for Higher 

R&M 

Fault-tolerant or resilient system is the ability of a system to 

continue to perform its designed functions even when some 

components or subsystems have failed. Resilient or fault 

tolerant system is a reliable system. Redundancy is the most 

commonly used approach to achieving fault-tolerant design of 

complex and critical systems. Redundancy is the duplication or 

triplication of critical components or function of the system 

with intension of making the system fault-tolerant and 

maximising reliability of the system. Redundancy could be 

active or standby (may be cold, warm or hot standby). The 

choice of redundancy depends on the criticality of the system. 

For quality product through DFR&M principles, the purpose 

and functions of the product (which embodies criticality – 

business, mission and safety), must be the focal points of the 

designers at every phase of SDLC. This helps the designers to 

define desired reliability from the component, subsystem and to 

the system level, and also facilitates enhanced solutions to 

redundancy allocation and reliability optimization problems. 

The redundancy allocation techniques include exact 

methodology of reliability optimization of series-parallel 

systems using genetic algorithm (GA) [27],  heuristic and meta-

heuristic techniques using a two-phase linear programming 

approach for reliability allocation problem (RAP) [28], a 

variable neighbourhood algorithm (VNA) for RAP in series-

parallel systems [29] and a multi-level redundancy optimization 

in series systems [30]. Khalili and Amiri in [31] proposed an 

efficient epsilon-constraint method for solving multi-objective 

redundancy allocation problems. Mostafa et al in [32] uses 

mixed strategy of redundancy allocation problem that is a 

combination of traditional active and standby strategies, 

Srinivasa Rao and Naikan in [33] combined Markov approach 

with system dynamics simulation approach to study the 

reliability of a repairable system with standby redundancy 

strategy. Thus systems R&M are very important to both 

researchers and industrialists, and there are lots of research and 

development opportunities in the areas. 

 

C. Human Factors/Interface 

A system, irrespective of complexity, interfaces with human for 

completeness and effectiveness. Systems designed by human 

are operated by human and for the benefit of human. In SDLC, 

human factors are very crucial at every phase of the 

product/service life-cycle. For higher availability and 

productivity of any system, human factors must be seriously 

considered during the course of system DFR&M. The diagram 

in Figure 4 and 7 highlight how critical human factors are 

during SDLC. This research is proposing intelligent 

maintenance system which is achieved when human factors are 

effectively interfacing with maintenance procedure/process and 

the complex plant/system.  

 

IV. INTELLIGENT MAINTENANCE AND 

RELIABILITY SUSTAINMENT 

Innovative or intelligent maintenance systems utilize plant 

engineering informatics to monitor the health condition of the 

system, diagnose the failing components or system and predict 

the remaining useful life of the system using failure trajectories 

of the system. The implementation of these systems requires a 

combination of human factors, maintenance procedure/process 

and plant (Plant information) in a creative manner. The 

proposed intelligent maintenance model incorporate innovative 

maintenance solution right from the requirement, specification 

and design phases to the operations/maintenance phase of the 

SDLC as indicated in Figure 3. 

 

A. Condition-based Predictive Maintenance: An 

Intelligent Maintenance Solution 

Condition-based Predictive maintenance (CBPM) approach is 

an intelligent maintenance (IM) philosophy or intelligent 

prognostics system, that monitors the production system’s 

conditions and performances using sensor signals, detect fault 

at the incipient stage, estimate and predict the future state of the 

system. In addition to deployment of advanced engineering 

tools and techniques to modelling and development of 

intelligent maintenance solution, it also advocates incorporation 

of the maintenance system in the product life cycle. Thus 

CBPM is a holistic approach to enterprise asset lifecycle 

optimization and management. The proposed CBPM model 

balances interfaces between human factors, maintenance 

processes and production system to develop optimal and 

effective R&M solution during O&M phase of SDLC. In [20], 

it is stated that the concept of life cycle maintenance was 

introduced to stress the importance of maintaining the products 

in an acceptable functional level during their lifecycle while 

continuously improving them as well as maintenance 

techniques so that existing products can adapt to changes in the 

operational and technological environment.  

 

B. Related Works on Intelligent Maintenance System 

A lot of research and development works had been carried out 

over the years on intelligent maintenance strategies, and it is 

still ongoing due to numerous improvement opportunities yet to 

be explored. A review of past research works on intelligent 

maintenance system shows that it has been on since year 1998 

and in progress with various names such as intelligent 

maintenance system [34], intelligent prognostic system [35], e-

maintenance [36], condition monitoring system [37], condition-

based predictive maintenance system [7], etc. These 

maintenance systems are mostly developed for specific 

assignments; they are not scalable, portable or applicable to 

other systems [35]. For instance, commendable successes have 

been recorded in intelligent maintenance system for 

commercial and military aircrafts, marine vessels and industrial 

machinery health condition monitoring and prognostics using 

advanced engineering principles such as multi-sensor data 

fusion (MSDF) technology.  

 

C. Multisensory Data Fusion for Intelligent Maintenance 

system 

Applications of multisensory data fusion (MSDF) technology 

span a wide range from robotics, automated manufacturing, 

remote sensing and condition-based maintenance of industrial 



  
Fig 6: IM model for Oil and Gas 

Production System 

Fig 7: Compact IM model for 

M&R solution. 

 

systems to military applications such as battlefield surveillance, 

tactical situation assessment and threat assessment. For a 

drivetrain and high capacity industrial gas compressor 

applications, for example, sensor data can be obtained from 

accelerometers, temperature sensors, pressure sensors, flow 

sensors, and vibration sensors. An online condition-monitoring 

system combines these observations in order to identify signs 

of failure, such as abnormal gear wear, shaft misalignment, 

bearing failure and low performance of the system. The use of 

such condition-based monitoring is expected to reduce 

maintenance costs, reduce operational risk and improve safety, 

improve productivity and reliability [37]. MSDF techniques 

can be categorized into probabilistic and statistical methods, 

Least-square and mean square methods and heuristic Methods. 

The heuristic methods include artificial neural network (ANN), 

fuzzy logic and approximate reasoning In this paper, ANN 

technique of MSDF is considered. 

D.  Basic Estimation Fusion Process 

Consider a system with n number of sensors, at the sensor 

node, the following parameters are specified: Zi is the 

observations with, Ri the covariance matrix of the associated 

noises 

x is the variable to be estimated, and 

 is the local estimate of x, with its covariance matrix Pi = 

cov(
 
)  

Thus the estimation error  =  - x 

For unified fusion model:  

zi  = hix + ɳi                (2) 

Where: zi  is the measurement of the i
th

 sensor and ɳi is the 

measurement noise 

A local estimate is considered as an observation of the estimate 

and is given by: 

 = x + (  - x)                (3) 

If the new observation  is actually the estimate of x, the 

standard distributed fusion model is given as: 

  = x + (- x)                (4) 

 

V. ARTIFICIAL NEURAL NETWORK TECHNIQUE 

OF MSDF FOR PREDICTION OF GT 

PERFORMANCE 

The presence of multiple faults in a system such as gas turbine 

(GT) system can make fault identification very complex, 

especially at the incipient stage of a slow developing or 

evolving fault. The introduction of artificial neural network 

(ANN) that mimics the ability of a biological neuron in human 

brains to learn and adapt to the changing environment and 

provides an intelligent solution, especially when there is no 

exact physic-based mathematical models of the GT system are 

available [38-42]. This paper focuses on the supervised 

multilayer perceptron (MLP) feed-forward neural network 

(FFNN) with back propagation learning algorithm.  

  

 
 

Fig 8: simplified model of a 

feedforward neural network (FFNN 
Fig 9: Abstraction of gas processing 

system 

 

In the FFNN model presented above, each neuron in a given 

layer is connected with all neurons in the next layer. The 

connection between ith and jth neurons is given by coefficient 

wij and the threshold coefficient or bias bj. And the output of the 

ith neuron xi is given by the equations: 

Oi  =  bj +                 (5) 

Where bj is bias, Oi is the potential or output of the ith neuron 

and function f(Oi) is the transfer function, given by: 

f(Oi) =                  (6)

       

In a supervised learning, the bias bj and weight coefficient wij 

are varied till the cost function or error J, is minimized or 

equaled to zero. That is, the sum of the squared differences 

between the predicted output and the actual output is the mean 

squared error or the cost function, and it is given by: 

J =  – f(O))
2     

         (7)
 

 

A comprehensive details of the mathematical analysis of multi-

layer perceptron feed forward neural network is found in [41]. 

The diagram in Figure 8 shows a simplified model of a 

feedforward neural network (FFNN) with seventeen 

temperature sensors data to input layer, the hidden layer, v with 

bias = bj and the output layer, Y, with bias = bj. The output yk is 

the firing temperature of the GT that drives power turbine.  

 

A. Condition-Based Predictive Maintenance of Gas 

Processing system 

Overview of oil and gas processing systems 

Oil and gas operations involve flowing or pumping of crude oil 

with entrained gas from oil reservoirs beneath the earth under 

very high pressure, (in most cases), to the wellheads and 

transporting the crude oil from wellhead to the production 

facility. The production operations remove the entrained gas 



(the associated petroleum gas (APG)) from the crude oil (mixed 

with water in some cases), which is further treated to remove 

basic sediment and water from the oil. The clean oil is then 

transported to refineries for further processes while the APG is 

processed for Natural Gas Liquid/Liquefied Natural Gas 

(NGL/LNG) extraction. This research paper is focusing on gas 

processing system which involves compression, heating, 

cooling and separation of various hydrocarbon components. 

The system is made up of trains of high capacity gas 

compressors, driven by gas turbine (GT) engines. The GTs are 

the pivot of these operations because they drive the gas 

compressors and their exhaust gas is used as heating medium  

for NGL or LNG extraction processes. 

A single train of gas compression system comprises of gas 

generator (GG), combustion chamber (CC), GT, power turbine 

(PT) and gas compressor (mostly rotary or centrifugal 

compressor). See Figure 9.  

 

B. Analysis of the Results 

In this paper, performance of the GT is considered. Seventeen 

thermocouple temperature sensors are used to monitor firing 

temperature of the GT, one of the critical parameters of system 

which affects many system variables and is affected by other 

variables as well. For example, as the load of the driven system 

increases, the fuel flow increases, leading to increase in firing 

temperature of the gas turbine [43]. The speed of the 

compressor, gas turbine, power turbine and the firing 

temperature depend on the fuel flow and quality of fuel 

(constituents of fuel, wet/dirty fuel) and compressor discharge 

pressure of the GG. Sensor data from this system was collected 

periodically over a period of thirty days. The data was 

preprocessed and normalized using z–score and min-max 

normalization techniques. In this research paper, FFNN with 

back propagation model is used to predict the firing 

temperature of the GT engine, with seventeen sensor data set as 

inputs to the model and the target output. The results of this 

analysis are shown in Figure 10 indicates that ANN regression 

model can be used to predict performance of GT engine using 

exhaust gas temperature sensors. The mean squared error 

(MSE) of the prediction is as low as 0.00884. 

 

VI. CONCLUSION 

This paper has provided an overview of evolution of 

maintenance philosophies in oil and gas industries and different 

maintenance techniques in various phases of this progression 

have also been discussed extensively. These evolutionary 

trends are being enforced by progressive and inevitable 

advances and innovations in technologies and competition in 

energy sector. It has also been pointed out that among the few 

reasons the sector is experiencing persistent maintenance 

challenges are: 1) inability of the industries to integrate 

innovation in line with applicable, advanced technologies into 

the maintenance strategies, 2) inability of the industries to 

analyze the entire system with regards to complexity and 

emergent behaviours due to high level of interactions among 

the subsystems. And also, traditional and modern maintenance 

techniques practiced in oil and gas industries have not 

integrated maintenance programs effectively into the total 

lifecycle of the production system. 

These gaps, other maintenance and reliability challenges in oil 

and gas sectors, identified by this paper are being considered in 

this research. Most of the modern maintenance practices have 

made commendable efforts to close some of these gaps with 

obvious levels of contradictions and compromise. The 

innovative maintenance system is aiming at closing these gaps, 

by proposing a model of intelligent maintenance and reliability 

solutions, which considers human factors from concept phase 

to the final phase of SDLC. FFNN technique of MSDF for 

estimation and prediction of GT engine firing temperature is 

also presented. FFNN is very effective in fusing multiple 

sensor data with prediction mean square error (MSE) as low as 

0.00884. 
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Fig 10: Result of MSDF of GT Firing temperature sensors data using FFNN 
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