Loughborough University
Browse
art%3A10.1186%2Fs40759-017-0028-y.pdf (3.27 MB)

Experimental and computational studies of poly-L-lactic acid for cardiovascular applications: recent progress

Download (3.27 MB)
journal contribution
posted on 2017-08-23, 10:50 authored by Raasti Naseem, Liguo Zhao, Yang LiuYang Liu, Vadim SilberschmidtVadim Silberschmidt
Stents are commonly used in medical procedures to alleviate the symptoms of coronary heart disease, a prevalent modern society disease. These structures are employed to maintain vessel patency and restore blood flow. Traditionally stents are made of metals such as stainless steel or cobalt chromium; however, these scaffolds have known disadvantages. An emergence of transient scaffolds is gaining popularity, with the structure engaged for a required period whilst healing of the diseased arterial wall occurs. Polymers dominate a medical device sector, with incorporation in sutures, scaffolds and screws. Thanks to their good mechanical and biological properties and their ability to degrade naturally. Polylactic acid is an extremely versatile polymer, with its properties easily tailored to applications. Its dominance in the stenting field increases continually, with the first polymer scaffold gaining FDA approval in 2016. Still some challenges with PLLA bioresorbable materials remain, especially with regard to understanding their mechanical response, assessment of its changes with degradation and comparison of their performance with that of metallic drug-eluting stent. Currently, there is still a lack of works on evaluating both the pre-degradation properties and degradation performance of these scaffolds. Additionally, there are no established material models incorporating non-linear viscoelastic behaviour of PLLA and its evolution with in-service degradation. Assessing these features through experimental analysis accompanied by analytical and numerical studies will provide powerful tools for design and optimisation of these structures endorsing their broader use in stenting. This overview assesses the recent studies investigating mechanical and computational performance of poly(l-lactic) acid and its use in stenting applications.

Funding

RN is funded by the British Heart Foundation for her PhD research project (Grant number: FS/15/21/31424; Title: Towards controlling the mechanical performance of polymeric bioresorbable vascular scaffold during biodegradation).

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Mechanics of Advanced Materials and Modern Processes

Volume

3

Pages

1 - 18 (18)

Citation

NASEEM, R. ... et al, 2017. Experimental and computational studies of poly-L-lactic acid for cardiovascular applications: recent progress. Mechanics of Advanced Materials and Modern Processes, 3 (13), pp. 1-18.

Publisher

Springer Nature © The Author(s)

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date

2017-07-21

Publication date

2017-07-25

Notes

This is an Open Access Article. It is published by Springer Nature under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

ISSN

2198-7874

Language

  • en

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC