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ABSTRACT 

This study consisted of evaluating the relative performance to a 

selection of the most promising size-reduction techniques. Experiments 

and comparisons were made among these techniques on a series of tested 

problems to determine their relative efficiency, efficiency versus time 

etc. Three main new methods were developed by modifiying and extending 

the previous ones. These methods were also tested and their results are 

compared with the earlier methods. 
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CHAPTER I 

I nt roduct ion 

Redundancy in mathematical programming is defined as a characteristic 

associated with a part of a system which permits deleting that part 

without any consequence for the system as a whole. After eliminating 

the redundant characteristics, the system may reduce to a simpler one 

having the same properties. 

Over the past twenty years, investigations of redundancy in linear and 

integer programs have been made by various authors. In this thesis we 

have selected the most promising size-reduction techniques and conducted 

experiments with these on a series of problems obtained from different 

sources. Secondly, we have extended and improved some of the more 

efficient methods and have compared them with the earlier methods. 

In this chapter, we consider the concept of redundancy, define the forms 

it may take, and discuss its causes as well as its consequences and its 

applications. Finally, we present a survey of the literature and the 

proposed areas of our research. 



1.1 REDUNDANCY 

A I inear programming problem generally consists of an objective function 

which is to be maximised or minimised subject to a set of constra!ints. 

The constraints as well as the objective function are constructed by 

using a set of variables and appropriate coefficients. Consider the 

following LPP: 

Max Z = CX 

S. t. AX < b 

X>O •••• (1.1.1.) 

in which AERmxn , bERm, CERn and X£Rn. Based on the definition presented 

in the next chapter, we may refer to constraints and/or variables as 

being redundant. For example, in the following problem: 

Max xl + 2x -2 x3 

S. t. 3xI + 2x2 + 2x3 < 20 

xl' x2' x3 ~ 0 

x3 turns out to be redundant. 

We divide redundancy into two general categories. The first type, called 

absolute redundancy is associated with constraints and/or variables which 

may be dropped without changing the problem structure in any way. The 

second type, called relative redundancy is associated with constraints 

and/or variables which may be dropped without changing certalin aspects of 

the problem, for example the optimal solution. 

2 



Redundancy often occurs In practice (already noted in Hoffman (1955» 

at various steps in modelling and solving the (programming) problem. 

In the modelling process of an LP problem, a certain amount of abstraction 

from the real system is necessary. It is this process which may cause 

redundancy. "How far should the abstraction go?", "Which aspects should 

be Included and which not?". and so on, naturally, have to be cOl")sidered 

and the decision policy used In dealing with these concepts directly 

affects the inclusion of redundant Information in the model. This 

problem is especially evident as the size of the problem becomes so 

large that the formulator loses sight of the entire problem. Faced 

with such a problem, the formulator often "i"ncludes aspects of the 

problem which may prove redundant. 

Another reason for the occurence of redundancy is the ease of formulation 

in the modelling process. An example of this is the use of deflnltional 

equaltUes "'eg. summing the quanti ties of raw material that go into a 

final product). 

It is useful in the problem formulation stage to keep in mind the method 

that will be used in solving the problem as well as the purpose of 

formulating and solving the problem, since sometimes there is a distinction 

between problem formulators and problem solvers. Some techniques require 

the specification of extra information, which may cause redundancy. 

These techniques including all cutting plane methods so far linear 

(Dantzig-Wolfe decomposition, dual form, Dantzig and Wolfe (1960», integer 

(Gomary (1958», mixed integer (Benders (1962»and. convex nonl inear 

programming (Kelly (1963» and all Branch-and-Bound methods (eg. Garfinkel 

and Nemhauser (1972)~ In parametric programming (eg. Gal (1979» 

redundant constraints may become non redundant and vice-versa (see 

Gal (1975». Further details are Included in Karwan et al (1983). 

3 



A direct consequence of redundancy in LP programs is the increase in 

$i~e. The larger size has two major disadvantages. First, the problem 

may be so large that conventional computer programs may not be able to 

solve the problem. Secondly, the solution process may be more difficult 

and more expensive. The higher cost Is associated with computational 

effort on redundant information which could otherwise be unnecessary. 

Regarding the size of the problem, more storage space will be required 

which may be critical if the problem cannot be solved by an in-core 

code. 

Regardless of the size of the problem, redundant constraints may cause 

degeneracy. This degeneracy In turn may result in degenerate pivot steps 
I 

(ie. steps in which the objective function value does not improve); Such 

occurance for a number of consecutive pivots is called "near cycl ing" 

(see Thompson ~~ (1963)). Although the relation between redundancy 

and cycling is not yet fully understood, Zionts (1965) and Telgen (1980) 

conjecture that cycling is possible only by virtue of redundancy. 

In addition to the computational difficulties caused, redundancy tends 

to conceal certain Information and possibilities, namely knowing that 

something is redundant might lead to a different decision. For example, 

in a production planning problem, If a capacity constraint is redundant, 

it generally indicates excess capacity which might be used In some other 

way. 

The consequences of redundancy are not all disadvantageous. The best 

example of this is transforming an LP problem by adding constraints and 

variables to a transportation problem (see Charnes and Cooper (1961). 

As is well known, the latter problem is much more easily" solved than 

the general LP problem. Other examples of the advantages of redundancy 
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are included in Karwan et ~ (1983). However, it is the author's 

conviction that the disadvantages of redundancy generally outnumber its 

advantages. 

Now, once a problem is formulated, a question will arise, whether it is 

worthwhile to implement the size reduction techniques or not. .Actuaily, 

certain factors such as the costs in implementing such techniques and 

the derived benefits should be determined. However, there is always 

a positive result from identifying redundancy, but there are cases in 

integer programming problems where the presence of redundant constraints 

can accelerate the solution process. The identification of redundancy in 

a problem is ju~t as difficult as solving the linear programming problem 

itself, where it is "easy" in linear constraints, but it is "hard" if 

we have to take into account integrality constraints. 

Size-reduction techniques have other desirable properties when used to 

solve certain I inear programming problems. For example, in Z·lonts (1965) 

certain problems are solved for which an ordinary simplex method computer 

code did not produce correct results (even with repeated runs) because of 

the accumulation of round-off error. In addition to that, size-reduction 

techniques can provide a means for altering (possibly improving) particular 

mathematical programming solution methods. 

The application of size-reduction techniques to mathematical programming 

problems in general depends on the specific goal of the techniques and the 

type of problem. For example, a Branch-and-Bound procedure for solving 

integer linear programming problems may require the LP relaxation to be 

solved many times. Thus, identifying and removing a redundant constraint 

from the original integer linear programming may result in a significant 

decrease in the overall solution time. 
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Another example is an LP problemin which one set of constraints is changed 

regularly and the other set remains the same (eg. Generalised Upper Bound 

(GUB) constraints). Then, it may prove economical to determine whether 

any of the fixed constraints are redundant. This has two advantages. One 

is that the removal of such a redundant constraint has a mUltiple effect 

in reducing the computation. time. Secondly, the modeller may want to 

replace the redundant constraint with other constraints which were left 

out due to the large size of the problem. 

In addition to reducing the size of the problems, the removal of redundant 

constraints may remove the computational complexities associated with 

certain problems. For example, removing the redundant constraints may 

prevent a problem from cycling (see Zionts (1965) and Telgen (1979) for 

more details). 

Other applications include obtaining the lower and upper bounds on variables 

from the problem structure (eg. Will iams' method (1983)). These bounds may 

be of major interest to the problem formulator. 
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1. 2 A SURVEY·OF. ·THE LITERATURE 

A number of interesting results were derived for solvability and the 

geometric properties of a system of linear constraints without considering 

the constraints individually. 

Fourier (1926) and Motzkin (1936) , presented an elimination method which 

solves the LP problem directly. Except for solving very small problems 

or problems of a special structure, the method is rather cumbersome. 

Unl ike the el imination method, Charnes et.!!. (1953), presented the 

ratio-analysis method, which has been used only for problems which possess 

certain structures. 

Wolfe (1955) describes a method to reduce a problem to a "simplest problem 

ins tanda rd form". 

Dantzig (1955) suggests using a prior knowledge of linear programming 

problem to predict the solution. Some constraints can be anticipated 

to be non-binding and (equivalently), certain activities are anticipated 

to be in the optimum solution. The slacks of the non-binding constraints 

and these essential variables can be brought into the basis. The constraints 

in which they are basic, together with the variables, can then be dropped 

from the problem. When the optimum solution is found, these assumptions 

can be checked, and, if they are violated, the constraints reintroduced 

and more iterations taken. If the number of errors in anticipating 

nonbinding constraints is relatively small, great savings are achieved. If 

the variables are known to be present in the optimum solution, then no 

additl:onal iterations need to be made. A similar approach is due to 

Thompson and .,5ethi (1983) (presented in this thesis). Thetr technique 

uses mathematical information to make a prediction about the solution by 
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defining a candidate constraint and checking this prediction at every 

step, Incorporating a modification of the simplex method in which only 

the current candidate constraints are updated. Thompson and 5ethJ' 

(1984), also presented another way to take advantage of the fact that most 

constraints are never candidates. They begin by solving a relaxed linear 

program consisting of the constraints of the original problem which are 

initially candidates. Also they introduce the idea of a probe, that Is, 

a line segment ,joining two vectors for the primal problem, using it to 

identify a most-violated constraint, which is added to the relaxed problem 

which is solved again. Their computational experiments indicate that 

time saving of 50% - 80% over the simplex method could be obtained by this 

method, whlc~they call PAPA, the Pivot and Probe Algorithm. 

From the early 1960's systems were studied from the redundancy point of 

view, since it is hardly disputed that redundancy exists in practical 

mathematical problems. Before proceeding, we note that the redundancy 

discussed by some authors used the terl1lS "trivial" (Boot (1962)), 

"superfluous" (Thompson.!!.!.!.!. (1966)), "irrelevent" (Matthesis (1973)), 

"inessential" (Zeleny (1974)), essentiallyall mean "redundant". 

Balas (1962), identifies nonbinding constraints and extraneous variables 

on the basis of "dominance" relationships among rows and columns. Balinski 

(1961), gives an algorithm to determine all extreme points of the polyhydron 

to identify redundant constraints. Since that path*is quite large 

depending on the order of Introduction of hyperplanes that generate 

the path, and the number of extreme points grows exponentially with the 

size of the problem, and so this approach is very cumbersome for large 

problems. The same basic approach was followed by Shefi (1969) (see also 

Luenberger (1973)), who developed another algorithm for determining all 

extreme points. 

'" Convf.'1. pCllh 
He also proposed certain minimality properties for systems 

~o\ution . 
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of I inear constraints. However, Telgen (19111), later developed a minimal 

representation theory in which Shefi's proposals could be considered as 

special cases. 

Matthelss ((19,73) and (198~» implements a vertex finding algorithm to 

enumerate the vertices associated with a system of linear inequal i ties. 

At each vertex, the active constraints are nonredundant (assuming there 

is no degeneracy). Therefore, when the enumeration process is completed 

the unidentified constraints are labelled as redundant. The number of 

vertices was shown to be significantly less than the number of vertices 

of the original space (see Matthelss and Schmidt (1980». The vertices 

are enumerated by a variant of tbe.simplex method noting active constraints, 

which are nonredundant. This method was not efficient in practice, because 

a large number of vertices had to be processed, each vertex corresponding 

to a basic feasl.ble solution for which the usual simplex tableau had to 

be constructed, the process having to be repeated until no new unlabelled 

vertex was found. 

Greenberg (1975), develops a method for.determining redundant Inequlltles 

and all solutions to convex polyhedra. In his algorithm, he is seeking 

to eliminate the extraneous solutions obtained when using the Motzkin 

method (Motzkin (1936) and Motzkin ~~ (1953» for solving homogeneous 

solutions, which are possible to obtain in some situations, where the 

condition In one his theorems Is necessary but not sufficient, as was 

pointed out in an example by Shermain (1977) Later it was corrected In 

Dyer and Proll (1980). A computational comparison by Dyer and Proll, (1977) 

showed that Mattheiss' method generally outperformed Greenberg's method. 

10 



Boot (1962), was the first published paper related entirely to redundancy. 

His method provides algebraic tests on the solution space which makes it 

possible to determine whether or not a variable is extraneous or a 

constraint is redundant. It is based on checking the feasibility of the 

LP problem obtained when one of the constraints is violated by a small 

amount. If a feasible solution to the peturbed problem can be found, 

then the violated constraint is nonredundant. Otherwise, the constraint 

is redundant. The major disadvantage of this approach is that systems of 

linear constraints have to be checked for feasibility in order to check 

a constraint for redundancy. Therefore, the computations are much too 

laborious, and although the me.thod is interesting, it is too cumbersome 

to be of any general use. Zionts (1965) and Thompson ~~ (1966) gave 

a simplified version of Boot's technique, that instead of violating a 

constraint and eliminating a variable, only sets the slack variable to 

-£ and checks for a feasible solution. But, since there is no known simple 

waY,of checking a constraint set to determine feasibi I ity, this simpl ified 

version still faces the same difficulty. 

Dale O.Cooper (1962), presents four methods for initially reducing the 

size of linear programming problems. One of them determines certain 

variables that will be strictly positive in an optimal solution. The 

reamalining three methods are heuristic in nature, and require making 

i nte 11 i gent guesses as to wh i ch var;i ab 1 es are 1 i ke 1 y to be bas i c or 

nonbasic in an optimal solution. These guesses are subsequently revised 

if they are false. 

Zionts (1965) developed two methods. The first method is called the 
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Geometric Definition method which is of major importance to the concept 

of size-reduction in LP problems. The basic feature of this method is 

the establishment of situations where several simple sign tests on any 

row or column of the simplex tableau show that redundancy can be recognized 

immediately without any fOrther computations. The method may be employed 

at the beginning of a linear porogramming solution porcedure, or it may also 

be employed during the course of solving a linear programming problem. 

The second method is the heuristic method (or convex path method) based on· 

a theoretical development for which certain sufficiency conditions cannot 

always be assumed to hold. The heuristic assumes that these conditions do 

hold. It then fixes certain variables (ie. it avoids removing them from 

the solution basis) on the supposition that they will form part of an 

optimal solution. In a sImilar way, certain other variables are forced 

to remaIn out of the solution basis. In eIther case, whether variables 

are fixed or whether they are forced to remain out, both types of variables 

are completely ignored in subsequent iterations. Once an apparently final 

solution to the problem (either optimal, infeasible or unbounded) has been 

found, the ignored variables are restored. Checks are then performed for 

optImality and feasibIlity and if these are not satisfied, then further 

iterations are taken if necessary. Obviously, If the required sufficiency 

conditions could be guaranteed to hold, the method would not be a heuristic, 

and the further iterations would never be needed. 

The results of the Geometric Definition method were implemented by many 

researchers. Lisy (1971) used these simple sign tests to identify all 

redundant consttftints in an LP problem. Zionts (1972), also extended some 

concepts of redundancy to integer programming. Rubin (1973) extended some 

of the results of Thompson!!~ (1966), to integer programming by 

modifying theorems and· theIr proofs. Gal ((1975) and (1978)) elaborated 

on this approach by adding new rules for identIfying non redundant constraints 
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as well. Telgen (198:1) extended the approach by considering degenerate 

cases including redundant constraints which pass through an extreme 

point. Also, Rubin (1983} developed another version of Telgen's method 

to identify all redundant constraints. Zionts and Wallenius (1980), 

presented a new version based on the same concepts of Zionts (1965), to 

identify all redundant constraints. Karwan~!l (1983) presented full 

details about the above four methods and their comparison in experimental 

tests, and mentions them as Sign Tests methods. 

A number of other researchers have addressed the possibility of redundancy 

by virtue of a structural constraint and nonnegativity constraints on all 

variables. Llewellyn (1964), presented rules (see also Zeleny (1974)) to 

recognise this situation. These rules were generalized by Eckhardt (1971). 

However, Telgen (1979) showed that the rules are valid only for positive 

coefficients and other very special cases. 

A totally different approach was developed by Boneh and Golan (1979). The 

method is based on determining the constraints having the closest distance from 

an interior point in a randomly chosen direction. Such constraints are 

clearly nonredundant. Then, after a large number of trials all constraints 

which have not been hit are declared to~edundant. The latter results 

are not necessarily correct (ie. a nonredunaant constraint may not be hit 

within the given number of trials). Telgen (1981) suggested the use of 

co-ordinate directions instead of randomly chosen directions. We will 

present Boneh and Golan's method In this thesis. 

Lotfi (1981), presented three methods, the first of which is called the 

"Extended Sign Test", which is an improved version of the earlier sign 

test methods. The second method is called "Hybrid" which is combined wi th 

the Extended Sign Test method and Co-ordinate Direction method (the 

improvement of Boneh and Golan's method using Telgen's suggestion). The 
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third method is called "Reduce" and appl ies the Extended Sign test· 

method to both the primal and dual problem while solving the problem. 

Atl three methods are presented in detail in this thesis. 

Brearley ~~ (1975) described the REDUCE option of many commercial 

mathematical programming packages, which is essentially an extension 

of the "Geometric Definition Method" of Zionts (1965), which was developed 

independantly. The extended geometric method is based on a collection of 

theorems which make it possible to compute bounds on primal and dual variables 

from the problem structure. Then, given these bounds, extraneous varlables 

and nonbinding constraints are identified. The process is repeated until no 

further reduction is possible. More details given by Williams (1983) are 

presented in this thesis. 

Klein and Holm (1975) suggest a similar approach utilizing the complementary 

slackness theorem of linear programming in combination with bounds on the 

primal and dual variables to identify extraneous variables and nonbinding 

constraints. In the absence of these bounds, a method is proposed for 

calculating them. The problem however, must have a special structure. 

All coefficients of the matrix must be nonnegative, and all inequalities 

must be less than or equal to (~. The details of the method are presented 

in this thesis. 

A number of papers discussed redundancy in large scale problems. 

Bradley, Brown and Graves' (1983) discussed automatic detection and 

exploitation of structural redundancy in large scale linear programming 

(as well as mixed integer programming) problmes, where such redundancy 

represents an embedded special structure which can give significant insight 

to the model proponent as well as greatly reduce solution effort. Various 

14 



identification techniques for economic application to large problems 

were developed and tested. 

in this thesis. 

The details of these techniques are presented 

Finally, some other papers relate only to the class of (0-1) linear 

programs. Wilson (1983), developed a procedure to reduce the set of 

(0-1) linear inequalities to a smaller set by examining pairs of 

inequalities and then deriving an implicit inequality, based on the 

fact that, any explicity (0-1) linear inequality may be expressed as 

a set of k(k>l) implicit inequalitieswithunit coefficients in the A 

matrix. 

Crowder ~ ~(1983) presented a method which included problem preprocessing 

and constraint generation, to get the optimal solution of sparse large-

scale (0-1) linear programming problems. In problem preprocessing, variables 

could be fixed at either 0 or I, and Inactive constraints could be 

determined. The constraint. generation is performed by generating cutting­

planes which are satisfied by (0-1) solutions of the problems. The details 

of the method are presented in this thesis. 
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1.3 PROPOSED RESEARCH 

The objective of this thesis is to ascertain how successfully Size-reduction 

techniques could be implemented in Commercial Mathematical Programming 

Packages. By studying the most promising techniques, and improving some 

of them, new ones are developed which are more practically efficient and 

economical In their implementation. 

The thesis consists of seven chapters. The present chapter provides an 

introduction to the concept of redundancy, its applications and a survey 

of the literature. 

Chapter 11 Intends to present the definitions, notation, and some common 

theorems which are frequently used by the methods presented in the thesis. 

Nine selected size-reduction techniques to be studied are presented In 

detai I in chapter Ill. 

New improvements to most of these selected methods are presented. 

Chapter IV contains two Improvements in methods for general linear 

programming problems. Chapter V contains an improved method. to reduce 

general integer problems and its implication to the "Dynamic-Presolve" 

procedure, wh i ch is.afeature of the SC I CON I C package. Then, a procedu re 

to reduce subproblems having Special Order Sets (SOS) is presented. 

Chapter VI presents the programming aspects of some of the methods 

presented in chapter I11 and our improvements to methods. A discussion 

and comparison based on the experimental results of our improvements 

methods and the earlier method follows. 

Finally, conclusions and recommendations for future research are discussed 

in chapter VII. 

16 



CHAPTER 11 

In this chapter we present definitions and notation that will be used 

throughout this thesis. as well as some common theorems which are 

frequently used by the methods to be discussed. 

2.1 MATHEMATICAL FOUNDATION AND NOTATION 

We consider the follwing linear programming problem: 

Max z = CX ... (2.1.1) 

S.t. AX< b 

x > 0 ... (2.1.2) 

in which AERmxn. bERm. XERn and CERn• 

We denote S = (SI' ..... S. S l' ..... S ). where the set (Si ... •• Srn) m m+ ffi+n 

contains.; the slack variables of the structural constraints. and the set 

(S l' ••••• S ) contains the slack variables of the nonnegativity m+ m+n 

constraints. 

Adding the slack variables of structural constraints. pre-multlplying by 

the inverse of an appropriate basis. we partition (A • I) into (B : N) 

and redefine the variables (both sla<;:ks and structural variables) as xJ~ 

B 

or 

Xj according to their status (Nfornonbasic and B for basic). yielding the 

equivalent system 

N x 

B 
x 



The matrix B-
1
N is usually referred to as a contracted simplex tableau 

(Dantzig (1963)). 
-1 

We refer to the elements of B N as a •• and denote 
I J 

the "updated right-hand side" elements by bi • 

The feasible region corresponding to the system of linear constraints 

(2.1.2) Is defined as: 

•.• (2.1.3) 

and thorughout it is assumed that the Feasible region exist~, ie; FL ~ t. 

Also we define the set: 

F,(k)= {X~Rn/A.x<b., i ~ k and x_>O } 
L. I - I 

••• (2.1.4) 

where AI denotes to the ith row of A. 

Analogously, we define Fl and F1(k) with the additional restriction 

that x be integral. 

Defln i t Ion 2.1 

The constraint Akx~bk is redundant in LP(lP) if 

The above definition may be utilised for the nonoegativity constraint 

XjLO as well. Note that FL(k) = FL if and only if Akx~bk for all 

xfFL(k); hence an equivalent definition in which 
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.•• (2.1.5) 

makes it easy to see that Akx~bk is redundant in the system of linear 

constraints (2.2), if and only If 

... (2.1.6) 

This definition is especially useful because we may consider every 

variable as a slack (the struc·tural variables are the slacks of their 

nonnegativlty constraints) • 

. 
Now, if Sk • 0, then the constraint is termed weakly redundant, if 
. 
Sk>O it is termed strongly redundant. 

Throughout, we will use the term redundant referring to both strong and 

weak redundancy and will refer to each type explicitly when the need 

arises. The following example clarifies the concepts of strong and 

weak redundancy. Consider 

Xl + x2 < 4 ( 1 ) 

2xI + x2 < 6 (2) 

xl - X < 2- 3 0) 

Xl < 2 - (4) ... (2.1.7) 

- X <-1 
2 -

(5) 

Xl > 0 (6) -
x2 > 0 (]) 

which is presented in Figure 2.1. In the above system of inequalities, 

constraint (3) and the nonnegativity constraint (7) are strongly redundant, 

constraint (2) is weakly redundant. 
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2.0 

FIgure 2.1 Feasible Region for system (2.7) 
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Unti.l now, we have considered mainly the system of I inear constraints 

(2.2). There are other kinds of constraints which are called "non-

redundant" constraints and we subdivide these into two groups of "non-

binding" and "binding" constraints, for which we need to introduce the 

objective function (2.1.1) into the system (2.1.2.) 

Definition 2.2 

A constraint is nonbinding if and only if it is nonredundant and its 

associated slack variable is positive iri every optimal solution. 

Definition 2.3 

A constraint is binding if and only if it is neither redundant "nor 

nonbinding. 

11 'f .. 
A ".bindin9 .:. conshaint i8tU'med SJITIIIJ.1if its associated slack variable 

is zero at every optimal solution; if it is zero in some but not all 

optimal solutions, the constraint is termed "weakly binding". 

For example, suppose the objective in Figure 2.1 is parallel to constraint 

(4) and an increasing factor of Xl' Then, constraint (4) is strongly 

binding, constraints (1) and (5) are weakly binding, while the only non­

binding constraint is the no~negativity constraint (6). 

It should be noted that dropping the redundant constraints does not change 

the feasible region and of course the set of optimal solutions remains the 

same. Dropping the nonbinding constraints increases the feasible solution 

region but not the set of optimal solutions. 
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Looking at the results of redundancy from the dual ity vl~~ point, one 

could see that in any solution to the linear programming problem (and 

thus optimal solutions too) a redundant constraint in the primal problem 

which implies by the complementary slackness theorem (see ego Dantzlg 

(1963)) that the corresponding dual variable equals zero in the optimal 

solution and we can delete such a variable but the feasible region of 

the dual problem will not be increased. We refer to such a variable as 

extraneous. In order to define the extraneous variables mathematically, 

let us present the following notation: 

••• (2.1.8) 

Definition 2.4 

A variable Xj is extraneous in LP(IP) if and only if 

= ~) 

If X. is zero in every optimal solution, then x. is strongly extraneous. 
J J 

If it is zero In some but not all optimal solutions, then it is weakly 

extraneous. Note that the status of a redundant constraint is not changed 

for a different choice of the objective function. However, a different 

choice of the right-hand side may change the status of the extraneity of 

the variable. 

As with non redundant constraints, we refer to variables which are not 

extraneous as nonextraneous, and these may be divided further into free, 

inessential and essential variables. Karwan ~~. (1983) gives further 

details. 
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2.2 SOME COMMON THEOREMS-

The following theorems are frequently used by most methods presented in 

this thesis, to identify the redundancy status of constraints (and variables 

if applied to the dual problem). Therefore, to avoid repetition, we present 

them in this section. For associated theorems (if any), these will be 

discussed as part of a method itself. Also, throughout this thesis we 

will refer to the application of each theorem as a "Test" with its 

corresponding number (eg. by test one we mean the application of theorem 

one). 

Theorem 2.1 Gal (1975) 

A constraint is redundant if and only if its associated 

slack variable sk has the property: 

B 
sk = xr in a basic feasible solution in which a .<0 

rJ-

for all j = 1, •••• , n. 

Theorem 2.2 Zionts (1965), Thompson ~~. (1966) 

A constraint is redundant if its associated slack variable 

Sk has the property: 

N 
Sk = xp in a basic solution in which for some i, b.<O, 

1-

a .. )o for all j = 1, .... , n, j f. p and a. <0. 
IJ- Ip 

Theorem 2.3 Telgen (1979), Zionts and Wallenius (1980) 

A constraint is not redundant if its associated slack 

variable Sk has the property: 

Sk = x~ in a basic feasible solution in which 

a. >0 for all i with b'
l 

= O. 
Ip-
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Theorem 2.4 

Theorem 2.5 

Rubin (1972). Mattheiss (1973) and Gal (1975) 

A constraint is non redundant if its associated slack 

variable is nonbasic in a nondegenerate basic feasible 

solution. 

Telgen (1977) 

A constraint is not redundant if its associated slack 

variable Sk has the property: 

B S - x in some basic feasible solution which 
k r 

b la = min {b./a. la. >O} is unique for some s. r rs I I S IS 

Proofs of these theorems are contained in the appropriate references. 
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CHAPTER I I I 

In this chapter we will present the details of the most promising 

size-reduction techniques. These methods are classified according 

to their main objectives. Namely, Boneh and Golan's, Lotif's 

(Extended Sign Tests, and Hybrid) methods are categorised as one 

group which attempts to Identify redundant (or equivalently non­

redundant constraints). The second group consists of Klein and 

Holm's.Williams'and Lotfi's (Reduce) methods, which attempts to 

identify redundant and nonbinding constraints as well as extraneous 

variables. The third group consists of Thompson and Sethi's method 

which uses a variation of the simplex method. Finally, the fourth 

group consists of the methods of Bradley ~~.and Crowder ~~. 

which attempt to discuss redundancy in large-scale problems. 

3.1 GROUP ONE METHODS 

3.1.1 Boneh and Golan's method 

Boneh (1983), describes a probabillstic method, developed by Boneh 

and Golan which attempts to identify nonredundant constraints. Then, 

after sufficiently many iterations, the remaining unidentified constraints 
. , 

are declared as redundant (possibly erroneously). The method is based 

on the premise that for a given non-empty polyhedral set, the closest 

constraints to an interior point are non-redundant. In order to identify 

such constraints, first an Interior point is determined. Then, a random 

direction is generated and the distance between. the Interior point and 

each constraint (along the random direction) is computed. The constraints 
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with smallest positive distance and the largest negative distance are 

closest constraints to the interior point (one on each side). Hence, 

these constraints are labelled as non-redundant. For the next iteration 

the Interior point is moved uniformly along the random direction (within 

the feasible region) and a new random direction is generated. This 

process is repeated until a certain stopping criterion (eg. certain 

number of iterations) is satisfied. If so, the non_redundant constraints 

identified (accurately) are output along with the remaining constraints 

labelled as redundant (possibly erroneously). 

The algorithm requires two initial steps. In the first step, all the 

cons t ra i nts of Type "~'ar. changed to "~', and the prob 1 em becomes the 

general form: 

A.X>b. 
I - I 

=l, ... ,m ... (3.1.1.1) 

The second initial step, is to determine an interior feasible point for 

the· system (3.1.1), either by generating some arbitrary point XO and 

check for feasibil ity, or generating a random direction and move XO 

along this direction to a.point which satisfies more constraints. 

The basic approach is to evaluate and (if necessary) sort the intersection 

points of a specified straight line in n-dimensional space with each 

and everyone of the constraints. Therefore, if XO£Rn, dERn are the 

interior point and the direction, respectively, the scalar tERl is the 

parameter of the straight line passing through the point XO in the 

direction d, then ti is evaluated by the following equation: 

= (i=l, ... , m+n) ... (3.1.1.2) 

The algorithm has two options for generating straight lines, randomly 
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generated and co-ordinate direction as suggested by Telgen (1981). In 

the co-ordinate direction the above computation in (3.1.1.2) could be 

reduced more. and the equati.on (3.1.1.2) reduces to: 

(I = 1. .. •• m+n) ... (3.1.1.3) 

In both options. the algorithm generates a new interior point Xl as follows: 

... (3.1.1.4) 

where tt' tk are the distances assocJated with the closest cons1:caints ' 

to xO (one on each side) and ~ is a random uniform deviate in the unit 

interval. Clearly. when d is a co-ordinate direction. the equation 

(3.1.1.4) may be updated at each successive iteration. that is • 

... ( 3.1.1.5) 

Now. we present the main steps in Boneh and Golan's method (note that 

Initially all of the constraints are labelled as redundant). 

Step 1: 

Step 2: 

Step 3: 

Generate a random direction dERn with d.~ N{O.l) 
J 

Compute 

= 
A.d 

I 

Determine tk • mln {tilti>O} 

(i-l ..... m+n) 

and t( = m~x {tllti<O} 
I 

(note that b. ~ 0 ~i since xO is not allowed to be a boundary 
I 

point). label constraints k and e as non-redundant. If all 

constraints have been identified as non-redundant. stop. other-

wise go to step 4. 
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Step 4: Generate a random multiplier ~E{O,l)and compute: 

(note that xO is moving along the line xO + td), relabel Xl 

as xO and go to step 5. 

Step 5:· Stop if one or both of the following conditions are met: 

(a) Total number has exceeded lO{mxn) log (m+n) 

(b) The number of consecutive unsuccessful iterations 

(iterations in which no new constraints are identified) 

ismore than 2{m+n). Otherwise go to ·step 1. 

Now we present a numerical example to illustrate the use of Boneh and 

Golan's method. Consider the following system: 

xl + x2 < - (1) 

xl + x2 < 3 (2) -
x, < 2 (3) (3.1.1.6) - ... 

4xl +3x2 < - 12 (4) 

xl > ° (5) 
-' 

x2 > - ° (6) 

Which is shown in Fig. (3.1) 
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Figure 3.1 Feasible Region for System (3.1.1.6) 
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Initial Step (1): Changing the direction of the inequalities (1) 

through (4) and adding the non-negativity constraints. 

we have: 

x -1 - x2 .:: -1 (1) 

-x --l x2 .:: -3 (2) 

-Xl > -2 (3) -
-4x1 - 3x 1 > -12 (4) 

Xl > 0 (5) 

x2 .:: 0 (6) 

Initial Step (2): Let xO = (0.5. 0.5) be an interior feasible point. 

Step (1): 

Step (2): 

Step (3): 

Step (4): 

Step (1): 

Step (2): 

Step (3): 

Step (4): 

The following are two representative iterations of 

the main steps: 

Let d • (0.2. 0.1) 

t ~ (-10. 6.7. 7.5. 7.7. -2.5. -5) 

k = 2. t = -2.5. 
t 

R. = 5: 

constraints 2 and 5 are non-redundant. 

1 0 Let )l ~ 0.7. X • (1.3. 0.9). X = (1.3. 0.9) 

Let d = (0.3. 0.2) 

t • (2.8. -8.0, -2.3, -6.8. 4.3. -4.5) 

tk = 2.8 k ~ 1. tt =-2.3. i =3: 

constraints 1 and 3.are non-redundant 

1 0 Let)l· 0.2, X = (1.7. 0.6), X = (1.7, 0.6) 

The above steps are repeated until a stopping criterion is satisfied 

in which case the remaining unidentified constraints are declared as 

redundant. 
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3.1.2 Lotfi I S Methods 

Lotfi (1981) presented two improvement methods within this group. 

Extended Sign Test Method 

This method is an improved version of the earlier sign test method. The 

method is developed from some modifications (some tests are eliminated 

during the course of testing process) to the earlier sign methods. Since 

there is no new mathematical theory involved, he utilised the theorems 

presented in chapter 11. 

Now, we present the details of the various steps: 

Initial Step: Determine a basic solution and let H· {ili ·1, ••• , m+n}. 

Step (1): 

Step (2): 

H is a set containing the indices of all variables. The 

first m elements correspond to the original constraints 

and the next n elements, the non-negativity constraints. 

Check all the basIc variables x~ = Sk k~H for the property 

a •• < 0, j • 1, ••• , n. If this holds, then constraint k 
IJ -

is redundant, (Theorem 2.1); remove k from H and drop row i. 

B Determine the set Q = {flx i = Sk and bi ·O}. If Q. ~, then 

all non-basic variables x~ = Sk are slacks of non-redundant 

constraints (Theorem 2.4); remove these k from H and go to 

step (5). Otherwise continue with step (3). 
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Step (3): 

Step (4): 

Step (5): 

Step (6): 

Step (]): 

B Check all the basic variables xi • Sk' i ~ Q for the property 

a •. > 0, j = I, ••• , m, j r p and a
l
• p <0. If this holds, then 

IJ -

S = X N is a slack of a non~redundant constraint (Theorem 2.2); q p 

remove q from H. 

N For every non-basic varaible xp • Sk kEH. Check the property 

a. > 0 for all I~Q. If this holds, then constraint k Is 
Ip -

non-redundant (Theorem 2.3); remove k from H. 

If H a ~,stop. Otherwise find the row with the lowest 

index k, such that x~ = Sr and r~H. I f no such row is found 

continue" with step 7. In row k. find the column p with 

ak = max ak •• Determine the minimum quotient 
p j J 

bt/ak = mln {bl/a l la. >Q}. 
PiP IP··' 

If this quotient Is unique, then, Sq is the s lack of 

a non-redundant constraint (Theorem 2.5); remove q from H. 

Further, If q = r (le. the unique quotient is in the current 

objective row), then repeat step 5. Otherwise continue with 

step (6). 

Perform a simplex pivot on a and drop row t if the con-basic 
tp 

variable in column p was a slack of a redundant constraint. 

Go to step (1). 

N 
Introduce a non-basic variable Xj = Sk with kEH into the 

basis and then go to step (1). 

Now, we present the following numerical example: 
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T 
0 

The problem is as follows: 

= 

Xl - x2 < - 2 (1) 

2x -1 x2 
< - 7 (2) 

xl < - 2 (3) 

-x + 2x2 < 4 (4) 1 -
2x2 

< 5 (5) -
xl + x2 < 4 (6) -
xl > 0 (7) -

x2 > 0 (8) -

Initial Step: A basic feasible solution is given by (5
7

,58) = (0,0) 

and the corresponding contracted tableau TO is: 

RH5 

51 -1 2 

52 2 7 

53 0 2 

54 -1 2 4 

55 0 2 5 

56 4 

with index set H = (1, 2, 3, 4,5, 6, 7, 8). 
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Step (2): 

Step (5): 

Step (6): 

Step (1): 

Step (2): 

Step (5): 

Step (6): 

Q = a, 57 and Sa are slacks of non-redundant constraints, 

H = (1, 2, 3, 4, 5, 6); 

Select 51 as the slack of the objective function. In column 

1, there is a tie for the minimum quotient; 

Pivoting on a
31 

we get tableau T1: 

RHS 

-1 -1 o 

-2 3 

o 2 

2 6 

o 2 5 

-1 2 

51 is a slack of redundant constraint, drop row 1, H = (2,3,4,5,6); 

Q = ~, 53 is a slack of a non-redundant constraint, H· (2,4,5,6); 

Select 52 as the slack of the objective function. In column 2, 

the pivot element a62 = is unique; 56 is a slack of a non­

redundant constraint, H : (2,4,5). 

Pivot on a62 to obtain tableau T2: 



T2 = 

T3 = 

RHS 

S2 -1 -1 

S7 0 2 

S4 3 -2 2 

Ss 2 -2 

Sa -1 2 

Step (1): S2 is a slack of a redundant constraint, drop row 1, 

H - (4,5); 

Step (5): Select S4 as the slack of the objective function. In column 

1, the pivot element a41 = 2 is unique, Ss is a slack of a 

non-redundant constraint, H = (4); 

Step (6): Pivoting on a41 , we get tableau T3: 

S5 S6 RHS 

S7 -0.5 1.5 

S4 -1.5 0.5 

S3 0.5 -1 0.5 

Ss 0.5 0 2.5 

Step (5): S4 is still the slack of the objective function. In column 2, 

the minimum quotient is unique arid is in the row containing S4' 

Hence, S4 is a slack of a non-redundant constraint, H - $; stop. 



Hybrid Method 

Considering the major dlfflciences for the co-ordinate direction 

method, there Is no guarantee that the remaining unidentified constraints 

are actually redundant, and the extended sign test method results in more 

extreme points to be determined in order to Identify non-redundant constraints. 

Therefore, a Hybrid method (Lotfi (1981)) was developed which consists 

of two parts. In the first part, the co-ordinate direction method, Is 

used to identify some of the non-redundant constraints. In the second 

part, the extended sign test method Identifies the remaining constraints. 

Each part requires a different initial solution. The co-ordinate 

direction method requires an interior point, whereas the extended sign 

test method needs a basic feasible solution. Therefore, one solution 

is obtained from.another by using sensitivity analysis to overcome this 

d i ff i cu I ty. 

Once a basic feasible solution for the system 

AX < b 
•.. (3.1.2.1) 

x > 0 

has been found,perturb the above system by two vectors (El' E2) containing 

small positive values, Then an Interior feasible solution is obtained 

by letting 

o A 

X = S + E2 
.•• (3.1.2.2) 

A 

where S denotes the values of the slacks of the non-negativity constraints 

in a basic feasible solutIon to (3.1.2.1). 



Compute the change in the right-hand side ~S as follows: 

and 
... 0.1.2.4) 

Then a basic feasible solution to (3.1.2.1) Is simply: 

. 
S + ~S . .. 0.1.2.5) 

Now, we present the details of the steps for the Hybrid method as 

follows: 

Initial Step: let H " {II i = I, .•• , m+n}, where H is the set of 

Step 1: 

Step 2: 

Step 3: 

indices for all variables. Store AX ~ b, and compute 

~b and store it. Find XO and go to step 1. 

Retrieve AX ~ b, put it in proper form; 

Using xO as the starting Interior feasible solution; perform 

the co-ordinate direction method for a pre-specified number 

of iterations. Remove the indices of Identified constraints 

from H. If H • '~,. stop, all constraints are non-redundant. 

Otherwise continue with step (3). 

Retrieve the tableau and ~b, update the right-hand side and 

go to step (4). 

Step 4: Apply the extended sign test method to classify the constraints 

starting with the above tableau. Continue until H .~. Then, 
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stop and output the status of all constraints. 

The first part of the above algorithm requires a stopping criterion as 

in the co-ordinate direction method. It is suggested that one co-ordinate 

direction Iteration seems to be a reasonable upper limit to the number of 

such Iterations. 

Now, to illustrate the use of the Hybrid method, consider the same numerical 

example presented for Boneh and Golan's method. 

As before, H = (1,2,3,4,5,6). Adding the slacks, the initial contracted 

tableau is: 

55 56 RH5 

51 -1 

52 3 
TO: 

53 0 2 

54 4 3 12 

wl th El ( • 01 , .01, .01, .01) T and E2 ( . 01 , T 
= = • 01) , 

(.01, .03, T flb = • 02, .08) • 

The perturbed problem is tableau Tl which is feasible. 
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T 1 : 

RHS 

SI -1 0.99 

S2 2.97 

S3 0 1.98 

S4 4 3 11.92 

Store ~b and the above tableau for later use. o T X = (.01, .01) since 

slacks of non-negativity constraints are zero. Now begin with part one 

of the algorithm. 

Step (1): 

Step (2): 

Step (3): 

x -1 x2 
> -1 (1) 

-xl - x2 > -3 (2) -
-x 1 > -2 (3) 

-4x 1 - 3x 2 
> -12 (4) 

xl > 0 (5) -
x2 > 0 (6) 

Using one iteration of the co-ordinate direction method, 

constraints one, three, five and six are identified as 

non-redundant. H = (2,4). 

Retrieve Tl and ~b and update Tl by adding 

-1 the right-hand sides (in this instance B 

matrix. The updates tableau is TO. 
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T2 : 

T3: 

The contracted tableau is T
2

: 

$s $6 RH5 

51 -1 t 

52 3 

53 0 2 

$4 4 3 12 

Taking 52 as tlie slack of the objective function and pivoting on a = 1, 
31 

obtaining T
3

• 

53 56 RH5 

51 3 

52 -1 

53 0 2 

54 -4 3 4 

5elect the· second column for pivoting. In this column, there 

is a unique pivot in the row containing 52. Thus, 52 is a slack 

of a non-redundant constraint, H = (4). 50 select $4 as the slack 

of the objective function and pivot on a22 = 1 to get T4 which 

implies 54 is a slack of a redundant constraint. Then H = ~, 
so the algorithm stops. 



$1 2 

$6 -1 

T 4: 

$S 

$4 -1 

S 
2 

-1 

0 

-3 

41 

RHS 

2 
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3.2 Group Two Methods 

As mentioned earlier, the objective of the methods in group two is to 

identify extraneous variables and non-binding constraints. Before 

presenting the detai·ls of these methods we restate our (primal) linear 

programming problem as: 

max ex 

S.t. AX < b 

X > 0 

Then, the dual problem associated wi·th system (3.2.1) is 

min Wb 

S.t. WA- ~ e 

W ~ 0 

'" (3.2.1) 

•.• (3.2.2) 

where A- is an (nxm) matrix transposed from the original matrix A. e 

and X are n vectors, band Ware m vectors. 

3.2.1 Klein and Holm's Method 

Klein and Holm's method utilises the complementary slackness theorem 

(eST) of linear programming (see for example, Jarvis and Balaraa (1977)) 

in combination with bounds on the primal and duals variables. Such bounds 

are di rectly avai lable in problems wi th bounded vadilbles and some 

probl.ems with special structure, ie. problems with posit.ive. coefficients 

and problems with Leontief structure (for details see Klein and Holm: (1975)). 
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In order to present the mathematical theory used In this method, , we 

define the following notation. Let pos(.) and neg(.) denote two operators 

which select the posiitl,ve and negative elements of,a matrix or vector. 

For example, If v Is a vector then pos(v) Is a vector which contains 

the positive elements of v and zeros for non-positive elements of v, 

le. v = pos(v) + neg(v). Let A(I.) and A(.J) denote the Ith row and 

jth column of the matrix A, respectively. Finally, let "J., X
U and w~, W

u 

be lower and upper bounds on the optimal sqlutions. X* and w* of (3.2.1) 

and (3.2.2) respectively. 

" 

The following two theorems and associated corollarles,establlsh sufficient 

conditions for Identifying extraneous variables and non-binding constraints. 

the reader may refer to the reference for the proofs. 

Theorem (3.1) 

If there exists column Index sets Rand T, and vectors P>O and q>O such 

that 

••• (3.2.1.1) 

then there exists a column Index t~T such that Xt Is extraneous (le. It 

has a value of zero for every optimal solution of (3.2.1) • . ' 

Coroll ary (3.1) 

If there exlst,column Indices rand t such that 

C, - Ct > wUpos (A(.r) - A(.t» + w~'neg (A.r) - A(.t) ... (3.2.1.2) 

then xt Is extraneous. 
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R. 
Note that when w = 0 then (3.2;L2)reduces to: 

C - C > wU pos(A(.r) - A(.t» re t 

Theorem (3.2) 

'" (3.2.1.3) 

If there exist row index sets K and L and vectors P>O and q>O such that 

.•• (3.2.1.4) 

then there exists a row Index k'K such that constraint k is non-binding. 

Corollary (3.2) 

If there exist row indices rand t such that 

br - bt > pos(A(r.) - A(t.»xu + neg(A(r.) - A(t.»)- •. ' (3.2.1.5) 

Note that in the system (3.2;1) )- = 0 resulting in (3.2.I:S)reduces to 

br - bt > pos(A(r.) - A(t.»xu .• , (3.2.1.6) 

Klein and Holm's algorithm searches by making pairwise comparisons through 

rows and columns of system (3.2.1) to find row and column indices 

satisfying conditions (3.2.1.3) and (3.2.1.6). Clearly, these conditions 

are sufficient, but not necessary for'iaentifying extraneous variables and 

non-binding constraints. The effectiveness of the approach depends g~eatly 

on the tightness of the required bounds on variables in systems (3.2.1) 

and (3.2.2). 

1.1. 



Theorem (3.3) 

If A>O, b>O and c>O then 

(a) 

(b) 

j=l, ... ,n •.• (3.2.1.7) 

is an upper bound on the optimal value of the structural variables 

in system (3.2.1). 

i) 

I I ) 

I I I) 

u 
{c./a •. } (3.2.1.8) wl : max i:l, . . . , m ... 

. J I J 
J;a IJ >0 

u 
(lib I) 1: c.x~ 1=1, (3.2.1.9) wl : . .. .. , m ... 

jfk J J 

where K Is the set of column Indices corresponding to the 

K largest values of c.x~ and K : min (m,n) 
J J 

w~ : (lIb.) m I n 
I I k~M 

I : I , .... , m ••• (3.2.1.10) 

where M is the set of row indices which correspond to strictly 

positive rows, le. 

M=U1aIJ>0, j:I, •.• ,n} 

The following steps represent the details of Kleln and Holm's algorithm: 

Initial Step: Determine the upper bounds for both primal and dual 

variables. 

Step (I): Let j = I, and set the logical variable IRD : o. 
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Step (2): 

Step (3): 

Step (4): 

Step (5): 

Step (6): 

Step (7): 

Step (8): 

Let t be the index of the smallest element of C; 

Let r be the Index of j-th largest element of C; 

If condition (3.2.1.3) is satisfied go to step (6); 

If there are more columns to be compared with Ct set 

j = j + I and go to step (3) otherwise continue with step (8). 

Delete column t from the problem, set IRD = 1 and go to 

step (8). 

Remove Ct temporarily, if no more columns are left, go to 

step (8), otherwise continue with step (1). 

Let = 1 and set the logical variable IRD = O. 

Step (9): Let t be the index of smallest element of b; 

Step (10): Let r be the index of the i-th largest element of b; 

Step (11): If condition (3.2.1.5) holds !io to step (13). 

Step (12): If there are more rows to be compared with bt set i=i+l and 

go to step (10); otherwise continue with step (14). 

Step (13): Delete row r from the problem, set IRD=1 and go to step (1). 

Step (14): Remove bt temporarily, if no more rows left go to step (15). 

Otherwise continue with step (8). 

Step (15): If IRD:O stop, no more reduction is possible. Otherwise 

continue with Step (10). 



Now, we present a numerical example (taken from Klein and Holm (1975» to 

Illustrate the above algorithm. Consider the following system: 

Initial Step: 

Steps 2 - 4: 

Steps 9 - 11: 

Steps 9 - 11: 

Steps 9 - 11: 

max. 23x1 + 23x2 + 22x3 + 18x4 + Xs 
S. t. 

22x1 + 18x2 + x3 "" 23x1 < - 6 (1) 

17x2 + 22x
3 

+ Ilx
5 

< - 6 (2) . 

15xl + 21xS < - 13 (3) 

23x1 + 14x2 + 14xS < 14 (4) 

3x4 < - 18 (5) 

x.>O j=I, ••• ;5 
J 

Clearly, the lower bounds on both primal and dual variables 

are zero. 

Xu = (0.27, 0.33, 0.27, 0.26, 0.55) 

Wu = (4.16, 1.35, 1.53, 1.64, 1.40) 

t " 5, r = 3: condition (3.2.1.6) holds, 

row 5 is e I imimated. 
J 

t = 1, r = 5: condition (3.2.1.6) holds, 

row 5 is eliminated. 

t ~ 1, r = 4: cond it ion (3.2.1.6) ho I ds, 

row 4 is eliminated 

t = 1, r :3: condition (3.2.1.6) holds, 

row 3 is eliminated. 
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Steps 2 - 4: t = 4, r = 1: cond I t ion (3. 2. 1 • 2) ha I d s 

column 4 is eliminated. 

No further reduction Is possible, the problem reduces to: 

s. t. 

22x1 + 18x2 + x3 < 6 

17x3 + 22X3 < 6 

Xj > 0 j = 1,2,3 

(1) 

(2) 

As Kleln and Holm point out, further reductions may be achieved If the 

bounds are updated after each reduct Ion. For Instance" in the above 

example the lower bound and the previous upper bounds, column 2 can be 

eliminated (condition (3.2.1.2». Computational results are reported in 

Kleln and Holm (1975) and (1976» for LPPs with posl,tive coefficients. 



3.2.2 William$~ Method 

The second technique in this group is proposed by Will lams (1983). 

Williams~ method is similar to an earlier algorithm developed by Zionts 

(1965) called "The Extended Geometric Method". The extended geometric 

method is based on a collection of theorems which makes It possible to 

compute bounds on primal and dual variables from the structure of the 

problem. Then, according to' these bounds extraneous variables and non-

binding constraints are identified and dropped. The tightening of the 

bounds on all remaining variables" continues unti I no further reduction 

is possible in which case a simplex pivot is performed. The above 

process continues until optlmality Is achieved. 

Willlams~ modification to the above alogrithm consists of eliminating the 

simplex pivot step and adding other steps which remove singleton columns 

and rows (defined as columns or rows with exactly one noo-zero entry 

excluding the cost coefficients and right-hand sides). In order to 

present the mathemat i ca I theory used in Wi II i amt" method we wi 11 ut i I i se 

the teminology implemented in the previous section. To reiterate, 

consider the system (3.2.1) and denote the lower and upper bounds on x. , 
J 

b 1 d u '1 '1 y Xj an xj' J = , ••• , n. respect I ve y. Similarly, denote the lower 

and upper bounds on.the dual variables wi (system (3.2.2)) by wi and w~, 

i:l, ••• ,m. We will frequently refer to the w,' s as shadow prices, and 

refer to their associated bounds as shadow price bounds. Also, for each 

of the primal constraints we introduce the concept of "activity level". 

For each row, the lower activity (L i ) and upper activity (U I) are given 

as 
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L. ? 0 
£ I: u 

i = I , (3.2.2.1) = a .. x. + a .. Xj ... , m. ... 
I IJ J <0 IJ J :a .. > j : a I j I J 

I: u 
+ I: R-

i = I , (3. 2. 2. 2) Ui = aij x. a •. Xj ... , m ... 
J j :alj <0 IJ 

J : a •. >0 
IJ 

Similarly, for each column j we define the "imputed cost" and denote its 

lower and upper values by Pj and Q
j 

respectively. The lower and upper 

imputed costs are given as: 

+ I: R-
a .. w. 

I J J o 

j=l, ... , n .•. (3.2.2.3) 

j:l, ... , n .•• (3.2.2.4) 

Now, we present the mathematical theory implemented in Williamc' method. 

Initially, for all of the variables (primal as well as the dual) the 

lower bounds are set to zero (because of the non-negativity constraints) 

and the upper bounds at a sufficiently large real number M. Since all of 

the tests in this method have their dual counterparts we will describe the 

tests In pairs with the primal test followed by the dual test: 

Primal Test One (PI): A singleton row may be replaced by a simple bound. 

According to the nature of a •. a new simple bound 
I J 

t -u of X'. or x is given to x. as follows: 
J j J 

b. 
I 

x~ 
_R- -R- R-

= x. if a I j <0 and x. -- > x. (3.2.2.5) J J J J ... 
a •. 

IJ 
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bl 
If a >0 -u < and x

J 
:: -' Ij a .. ••• (3.2.2.6) 

I J 

Also, the sIngleton row must have the orIgInal shadow prtce bounds (O.M). 

The reason Is that, tIghter shadow prIce bounds IndIcate that sIngleton 

columns may have been removed temporarIly. It should be noted that If the 

new bound obtaIned by test PI IS'cfe!>1i strict thal'l the existing value, the 

row ~Ill be found redundant according to test P2 below: 

Dual Test One (01): A sIngleton column. may be replaced by a shadow 

prIce according to the nature of a lJ a new shadow 

prIce bound w~ or w~ Is gIven to wl as follows: 

and ~ ••• (3.2.2.7) 

••• (3.2.2.8) 

SImilarly, the sIngleton colum~ must have the original primal bounds 

(~,M). The reason Is that tIghter prImal bounds Indicate that sIngleton 

rows may be removed remporarlly. As with the primal bounds, when the 

new shadow price bound Is less strict than the exIsting value, Xj will 

be set to one of the bounds according to test 02 (below) and the above 

test not applied. 

Primal Test Two (P2): A constraint taken In conjunctIon with primal 

bounlls.may demonstrate a "redundant" or infeasible 

constraint. According to the values of lower 

activity (L I) and upper actIvIty (U I), the 

followIng actIons are taken: 
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LI > bl and u • M constraint i(and hence model) Infeasible wl 
> bl 

u u I from objective LI and wl < M subtract wl times constraint 

and remove constraint I 

UI < bl and 9. wl • 0 constraint I I s redundant. remove constraint I. 

UI < bl and w' > I 0 subtract w; times constraint I from objective 

and remove constraint I. 

Dual Test Two (02): A column taken In conjunction with shadow price 

P
J 

> C. and x~ = 0 
J J 

P. > C. and x9. ? 0 
J J I 

QJ < CJ and u M xJ = 

QJ < Cj 
and' u < M xJ 

bounds may demonstrate that the corresponding 

variable can be set nt one of Its bounds. By 

comparing PJ and QJ with CJ' the following actions 

are taken: 

x
J 

is extraneous. remove column J. 

set x. 
J 

to its lower bound and substitute out. 

variable (and hence model) unbounded. x. 
J 

set x
J to Its upper bound and substitute out. 

PrImal Test Three (P3): A constraint together with primal bounds on 

some of the variables may imply bounds on 

other varIables. The new bounds are readily 

computed by using the lower and upper actIvities • 

••• (3.2.2.9) 

••• (3.2.2.10) 



It should be noted that the new bounds Xj and XJ may be less strict 

than the existing value In whIch case they are ignored. Moreover, the 

new bounds may result In the followIng actIons to be taken: If ~j s xj 

or xj, or xj = xi or xi set variable xJ at the common value and substItute 

fo r It. 

Dual Test Three(D3): A column together wIth bounds on some of the 

shadow prIce bounds. The new bounds are readIly 

computed by using the lower and upper Imputed costs, 

.•• (3.2.2.11) 

••• (3.2.2.12) 

SImilarly, these new bounds may be less strIct than the exIstIng values In 

whIch case they are Ignored. Also, the new bounds may result In the 

11 I I k I f - 1 u -u - u 1 -1 fo ow ng act on to be ta en: wl a wl or wl ' or w
l 

• wI or wl set 

wl to this common value and use as a multiple of the constraint to subtract 

from the objective function., 

The above six tests may be implemented for reducing the size of the problem 

by making successive passes over the model. Oneach pass the columns of the 
• 

model are examined sequentlally. For each column: Tests P3 (except for 

first pass), 02, 01, 03 are applied In this order. At the end of each pass, 

Tests P2, PI are applied In this order. However, performing-these tests 

. ~Ithout any systematic-approach may prove dlsadvantageous.The reason Is, In 

~ a loose sense tIghtening the-boundS on prImal va~lables and dual variables 

simultaneously have opposite effects on the model. In order to resolve 

the dilemma over whether to relax or tIghten the bounds a two phase procedure 

Is suggested. In the flest phase, primal bounds are tIghtened and shadow 



price bounds are relaxed. In the second phase, primal bounds are relaxed,: 

and shadow price bounds are tightened. A phase of the procedure terminates 

when two successive passes yield no simplification. Furthermore, when 

singleton columns replaced by shadow price bounds or constraints with 

non-zero shadow prices removed by subtracting from the objective, It is 

ultimately necessary to restore them. This is to ensure that the variables 

are at their optimal values, and the model will not reduce any further. The 

whole procedure is repeated In part two, however, singleton columns are not 

replaced by shadow price bounds and constraints with non-zero shadow prices 

are not subtracted from the objective function. 

In order to illustrate the use of Williams~ method, we present a numerical 

example (taken from Will lams (1983)). Consider 

max- 2x1 + 3x2 - x3 - x4 

S.t. 

RI : xl + x
2 

+ x - x4 < 4 .~ u 
3 w. w. 

I I 

R2: -x - x + x - x4 < 0 M 1 2 3 

0 M 
R3: xl + x4 < 3 

0 M 

£ 
0 0 0 0 0 M x. 

J 

u 
M M M M x. 

J 

Part 1: 

Phase 1: Pass 1: P
3 

> C3, x3 is extraneous; remove x3 

U2 < b2, R2 is redundant;· remove R2 
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Pass 2: 

Pass 3: 

Pass 4: 

x~ is tightened to 3. 

singleton column x2;,replaced by ~ = 3 

u 
x4 tightened to 3. 

Ul < b., 
I 

multiply RI by ~ • 3 and subtract from the 

object i ve, remove RI' 

The model is now 5~4 + 12 w~ 
u max w 

I u 

R3 x4 ~ 3 0 M 

~ 
0 x. 

J 

u 
3 x. 

J 

3, and substituted. 

The model is now: max 27 

S.t. nothing 

Clearly the remaining two passes and Phase two will 

not have any changes. Then, the algorithm enters the 

second part. The singleton column x2 and constraint 

RI (which was removed with non-zero shadow price) are 

restored. Now the model is: 

3~2 - 3 w~ u max w. 
I I 

RI x2 ~ 10 0 M 

R, 
x. 0 

J 

u 
M x. 

J 



Part 2: 

Phase 2; Pass 1: 

Pass 2: 

u 
Singleton row RI' replaced by x2 - 10. 

u = x2 =10, and substituted. 

Other passes and phases are completed with no action. 

The solution: Xl = 10, x2 = 10, x3= 0, x4 • 3, objective = 27. 
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3.2.3 Reduce Method 

The third method in this group is proposed by Lotfi (1981). which 

identified non-binding and/or non-redundant constraints by applying 

tests one and two to the primal problem. Then, the dual counterparts of 

these theorm are used to identify extraneous variables. The use of the 

tests one and two was illustrated in previous method. To present the 

application of these tests to the dual problem, given a basic feasible 

N solution,. the non-basic variable Xj is extraneous if 

(i = 1, ••• , m) and z j - c J > 0 .•. (3.2.3.1) 

where z. - c. is the reduced cost. The correctness of the above test 
J J 

may be illustrated by noting that the j-th dual constraint is redundant. 

The dual counterpart of test two, however, is somewhat different. Recall 

that test two would identify a redundant constraint one pivot away from 

test one. In fact, the simplex method works towards attaining dual 

feasibil ity. Therefore, a violated dual constraint may satisfy the 

condition as well. That is, in a basic feasible s6lution with 

ai .<0, i ;. r, a .>0 andz. - c. < 0 
J- rJ J J 

the basic variable x
B 

is extraneous. The proof of the above is the r 

same as that of test two, pivoting on a rj will give the condition proposed 

in (3.2.3.1). 

In addition .. to the above two tests for identifying the extraneous variables 

one may identify such variables in a special-type impl ici t equal ity, 

baving non-negative entries and a zero right-hand side. Then, a variable 



with a positive entry In this row is extraneous. That is. if 

then 

a .. >O j=l ..... n 
IJ-

wi th b. = 0 
I 

The proof of this test Is rather simple: 

... (3.2.3.3) 

There are many algorithms to Implement the above tests. and in each 

algorithm. more than one course of action may be Implemented at certain 

tests. For example. suppose that condition (3.2.3.2) Is satisfied at 

certain tableau. then the course of action which ,ts adopted in this 

method. is to mark the variables appropriatly when they were identified 

and drop the row (column) when the variable entered (left) the basis. 

Now. we-present the details of the Reduce method in algorithmic form: 

Initial Step: Determine a basic feasible solution. 

Step (1): 

Step (2): 

are the sets of indices of slack variables in rows and 

columns still remaining in the problem. 

If the current solution is optimal go to step (8). Otherwise 

continue with step (2). 

For every row I with x~ = Sk and k,H. check the property 

a
ij 

> 0 for all j and b l • 0 

If this holds remove all r with Sr 

drop a 11 such co I umns. 

N = x. 
J 

and a .. >O.'frGlm G 
I J 



Step (3): 

Step (4): 

Step (5): 

Step (6): 

Step (7): 

Drop row I and remove k from H. 

B For every row i with xi s Sk and kfH, check the property: 

a i j < 0 f or all j. 

If this holds, then drop all these rows and remove the 

indices of their slacks from H. 

For every row with x~ = Sk and kEH, check the property 

a •. > 0 
IJ 

N If this holds, then mark xp as the slack of a non-binding 

constraint. 

N For every column j with Xj = Sr and rfG, check the property 

a I. ) 0 
J -

for alii, and z - c. ) 0 
j J 

If this holds, then drop column j and remove r from G. 

For every column j with x~ • Sk and k(G, check the property 

a .. < 0 
IJ -

I F r a .>0 and z. - c. < O. 
rJ J J -

If this holds, then mark Sq B : xr as extraneous. 

Determine the non-basic variable X~ • Sk' kEG with the most 

negative reduced cost Zj - cj . If no such variable exists 

go to step (8). Otherwise compute: 

a . = min {b./al.la .. >O} 
r J I I J I J 

and perform a simplex pivot on 

co 1 umns still rema i n i ng in the 
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a . updating the rows and 
rJ 

problem. Then, drop the row 



and/or the column if the respective variables have been 

marked and remove their indlices from G and H. Update G 

and H for the indices. 

5tep (8): If no rows or col'umns have been removed, stop. Otherwise 

update the right-hand sides for the rows and Zj - cj for 

the columns which were dropped, then stop. 

It should be noted that steps 2 - 6 may be repeated untIl no further 

changes are made. In chapter VI we will present the results of this 

method on the tested problems. 

Now, we will illustrate the use of the above algorithm by the following 

numerical example. Consider 

max xl - 2x2 + x3 + SX4 - 4xS 

S. t. 

xl + x2 + x3 < 10 ( 1 ) -
x2 - x3 + x4 + Xs < 12 (2) -

xl + x4 < 3 (3) -

adding slack varia&les, the tableau for the initial basic feasible 

so I ut ion is: 

54 5
S 56 57 58 

z -1 2 -1 -S 4 0 

51 0 0 10 

52 0 -1 12 

53 0 0 0 3 
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with H = {1,2,3}, G : {4,5,6,7,8}. 

Step (5): S5 and S8 are extraneous variables, drop columns 2 and 5: 

G • {4,6,?}; 

Step (6): Mark Sl as extraneous (denoted by (*)); 

Step (7): The pivot element is a3~ = 1. The updated reduced tableau is: 

z 

*Sl 

S2 

S7 

Step (3): 

Step (5): 

Step (?): 

S4 S6 S3 RHS 

4 -1 5 15 

0 10 

-1 -1 -1 9 

0 3 

withH:{1,2,?} and G = {4,6,3} 

Row 2 is non-binding: drop row 2, H: {1,7}; 

S4 arid S3 are extraneous, drop column 1 and 4 and 

H: G· {6}; 

Pivoting on a13 = 1, getting the optimal solution as 

S6 = 10, S7 = 3, S2 = 19, with Z = 25. 
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3.3 Group Three Methods 

The method in this group Is presented by Thompson and Sethi (1983) which 

is unlike other methods. They attempt to solve LPP's by defining certain 

constraints called "non-candidate constraints" as those which never contain 

a potential pivot element during the course of solving a linear program. 

Keeping these constraints in updated form Is of no value. A "Candidate 

Constraint" is one that, for at least one pivot step, contains a potential 

point. 

The method Is merely a modtfication of the standard simplex method In which 

only constraints which currently are candidates are updated, taking _ 

advantage of the fact that only some of the candidate constraints will be 

binding at the optimum solution. Therefore, no new theoretical results 

are needed to establish the correctness of the approach. Hence, in order 

to present the method, we restate the linear programming problem as: 

Max CX 

S.t. AX < b ... (3.3.1) 

X~O 

without loss of generality, assume that b > O. Adding slack variables 

to AX ~ b and using matrix notation below: 
i 

-C 

[: A 
... (3.3.2) 

Any instance of the above problem may be obtained by choosing a proper 

basis B and mUltiplying the right-hand side vector b by B- 1 
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That B -1 -1 is, x = B b, hence Z = CBB b which may be written as: 

o -1 
B 

o 

b ••. (3.3.3) 

Therefore multiplying the left side of equation (3.3.2) by this same 

matrix or 

o -1 
B 

-C 

o A 

o 

= 
o -1 

B 

... (3.3.4) 

which gives the desired matrix form of the syste~ (3.3.2) after any 

iterations as 

o -1 
B 

Z 

x = ... (3.3.5) 

S 

Note that the system (3.3.5) Is a full tableau of the simplex method 

which is required by Thompson and Sethi's method. For the purpose of 

simpl icity, redefine the above system. Let x . = S " n+, i:l, ... , m. 

are of proper dimension. 

system (3.3.1) as 

-1 Also, Let y = B b, then we may rewrite the o 
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m+n 
C B- 1b max Z + L (Z. - C.) x. -

J J J - B 
j -I 

S. t. m+n 

L YI·x. = YIO i = 1 , ... , m ... (3.3.6) 
j :1 

J J 

Associated with system (3.3.6), the superscript (k) will denote the k-th 

iteration of the problem (eg. x(k) denotes the solution at k-th iteration). 

Because this method utilises the maximum objective rule, the pivot 

element In every column with a non-negative reduced cost must be identified. 

The set of variables with a negative reduced cost is represented by: 

}k) = OIZj - C
j 

< 0, j:l, ... , m+n} ..• (3.3.]) 

Clearly, if j(k) = $ the optimal solution has been found. 

The set of leaving basic variables Is found by the usual minimum quotient 

rule, ie. 

R(k) {·I (k)/ (k) 
- 1 y.O y .. 

I IJ 
i a l, ... ,m} 

.•. (3.3.8) 

Now, we may define the set of "Candidate constrai'nts" at iteration k 

as 

Then, the set of non-candidate constraints at iteration k is 

-(k) 
S 
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To determine the pivot element when J(k) # 0, the following computation 

must be performed 

Y
(k)/y(k) 
10 Ij (e. - Z.) 

J J 
... (3.3.11) 

which Increases the objective function by S(k) • 

As mentioned before, a permanent non-candidate constraint need not be 

updated at all during the course of the solution. At each i,teratlon the 

set of non-candidate constraints S(k) is not updated with the hope that they 

wl.1I never become violated. Obviously because the choice of pivot row i is 

by the minimum ratio rule (3.3.8) and (3.3.11), no non-candidate constraint 

at step k Is ever violated at step k+l. However, such constraints may be 

violated In subsequent Iterations. All that needs to be done to prevent 

such infeasiblllties from occurlng Is to update the right-hand side vector 

(call this partial pivoting) for a given pivot element YIJ~ In other words,. 

Y6k+l ) may be computed from Y6k) and a constraint I is violated If 

y~~) <0. In this case, the pivot step Is not performed, Instead the i-th 

constraint would be violated, a new pivot element is identified and the above 

process is repeated. When no constraint is violated for a given choice of 

a pivot element, a simplex pivot is performed, but the non-candidate 

constraints are not updated. This 'procedure Is repeated unti I /k) = 0, 

which implies that optlmallty Is achieved. 

It should be noted that in 

unboundedness. (ie. y .< 0, rJ-

t I h R(k) f cons ruct ng t e set J ,one may ace 

rcS(k-I». However, this unboundedness may 

be false since a non-candidate constraint, say' could contain a positive 

entry In column j if updated. Therefore, when the above condition occurs, 

the non-candidate constraints are updated one at a time until either a pivot 

element if found or there is no such constraint left, and the problem Is 

indeed unbounded. 
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Now, we present the details of the method In algorithmic form: 

Step (1): 

Step (2): 

Step (3): 

Step (4): 

Step (5): 

Step (6): 

Step (7): 

Step (8): 

Find /O! if J(O): ~, stop, the solution is optimal. Otherwise 

find s(O), let k = 0 and go to step (2). 

Find (i, j) the row and column of the pivot element obtained 

from (3. 3. 11) . 

Pivot on Yij In the tableau restricted to the rows In S(k). 

If the solution is optimal update the right-hand side Yio' 

tfS(k) and stop. Otherwise continue with step (5). 

Identify the non-candidate constraints in the updated tableau, 

remove them from S(k) to get s(k+l). 

Find (i ,j), the row and column of the pivot element by (3.3.11) 

in the tableau restricted to S(k+l). 

Do a partial pivot on Y6k ) restricted to S(k+1) to get 

(k+l) d (k+1) 
YO an x • 

U (k+l) (k) se x to see if any constraint ifS is violated. If 

not, replace k by k+l and go to step (3). Otherwise, continue 

wl th step (9). 

Step (9): Update the violated constraint and put in the current tableau. 

Add its index to S(k) and go to step (5). 
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To Illustrate the use of the above algorithm, we will present a numerical 

example. Consider the problem: 

max 2x1 + 2x2 + 3x
3 

S.t. 
2x 1 + x2 + x3 < 9 -

x2 
+ 2x

3 
< 6 -

-Xl + 2x . - x3 < 5 2 -
-x 1 + 3x2 + x3 < 12 

Xl , x2 , x3 > 0 -

after adding the slack variables, the following initial tableau: 

X5 x6 x 7 I RHS 
-----.------.----------- ,----.------ . ---- ------------, .. _'- ." .. -'------------------1--'-

o 0 0 I 0 z -2 -5 -3 o 

2 o o o 9 

o 2 o o o 6 

-1 2 -1 o o o 5 

-1 3 o o o 12 

The potential candidates for entering into the basis are J(O) = {1,2,3} 

with the candidate constraints. st~) = {1,3,2}. 

From equation (3.57) 

updating constraints 

denoted by a (*)): 

the pivot element is Y32 = 2. 

. (0) ( d' In S to get non-can Idate 
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constraints are 



XI x2 x3 x4 Xs x6 x
7 

RH5 
-----. ,._-_ ... _-- --.. ----------

z -4.S 0 -S.S 0 0 2.S 0 12.S 

x4 2.S 0 I.S 0 -O.S 0 6.S 

Xs O.S 0 2.S 0 -O.S 0 3.S 

*x 2 -O.S -O.S 0 0 O.S 0 2.S 

*xI -I 3 0 0 0 12.0 

and the incoming variables for this tableau are J(I) = {1,3}, with 

cand i date constra i.nts 5 (I) = {1,2}. 

The pivot element with the maximum objective function change is Y23 = 2.S. 

SO, we perform a partial pivot In the right-hand side to check for any 

violations. 

X(I) __ 14 
3 ., 

Since no constraint will be violated we perform a pivot only on 5(1) and 

the X-row. 

XI x2 x3 x4 Xs x6 x
7 

.. '. RHS 

Z -3.4 0 0 0 2.2 1.4 0 20.2 

x4 2.2 0 0 -0.6 -0.2 0 4.4 

*x3 
0.2 0 0 0.4 0.2 0 1.4 

*x7 -I 3 -1 0 0 0 12.0 



Now there is only one incoming variable x and one candidate constraint. , 
The pivot element is y" = 2.2, so we do a partial pivot, X~2)= 2.0. 

Since no constraint will be violated we perform a pivot on y", updating 

only the first row. 

x, x2 x3 x4 x5 x6 x
7 

RHS 

---------------_._---

Z 0 0 0 , • 5 1.3 1., 0 27.0 

x, 0 0 0.45 -0.27 -0.09 0 2.0 

*x3 
-2 0 0 0.4 0.5 0 1.4 

*x2 -0.5 -0.5 0 0 0.5 0 2.5 

*x 
7 

-, 3 0 0 0 , 2. 0 

The above solution is optimal so we perform the final update on the 

right hand side 



3.4 Group Four Methods 

As mentioned earlier, the objective of the methods In group four is to 

consider redundancy in larger-scale mathematical programming problems. 

3.4.1 Bradley .=.! .!.!..Method 

Bradley.=.!.!.!.. (1983) discussed an automated method for the exploitation 

of structural redundancy in a large-scale mathematical programming models. 

Their work deals primari Iy with row facro.risation methods (eg. McBride 

(1973) and Graves and McBride (1976» to identify the best embedded 

structure'.in any particular model. These structures are considered 

in increasing order of maximum row Identification complexity. The efficient 

polynomial algorithms are operationally defined here as low-order polynomial 

in terms of intrinsic problem dimension (eg. number of rows, columns and non-

zero elements), and not in terms of the total volume of model information. 

(eg. total number of bits in all coefficients). The efforts of Bradley 

~.!.!.. are devoted to two issues: analysis of the LP, and solving it 

efficiently. The analysis is confined to reductions that do not change 

the feasible region. The analysis can also be called "O r thogonal" In that 

the reduction tests are made on the current problem with no pivotal 

transformations actually performed. 

The analysis is appl ied to a fully ranged,; and bounded I inear program. 

Min Lc.x. 
J J 

S. t. r. < L 
1-

R. x. < 
J -

a •. x. 
1 J J 

x. < 
J 

< 

u x. 
J 

r l V. (ranged constraints) 
1 

Vj (simple upper bounds) 

0.4.1.1) 



Some range s and bounds may be m I ss I ng (that is + ClOor - 00) • 

Bradley ~~. presented a number of reduction analyses. Simple 

reduction tests are applied on the LP model. The same reduction tests 

have been reported by Brearley, Mltra and Williams (1975). 

The elimination of an equation and column with a non-zero coefficient 

in the equation Is discussed in the transformation reduction analysis. 

In particular, transformation reduction can generate a "reduced, equivalent 

LP" which is actually denser, and not necessarily as well-scaled as its 

progenitor. 

Determining the set of Generalised Upper Bound (the set of rows for which 

each column has at most one non-zero coefficient restricted to the rows) 

have been dlcsussed. An effective method to find maximal GUB sets was 

developed by Brearley ~~. (1975). Also, Brown and Thomen (1980) have 

developed bounds on the size of the maximum GUB set which are sharp and 

easily computed. 

Heuristic identification methods are presented, where an extension of 

GUB can be used to achieve NET ("Pure Network Rows" are a set of rows 

for which each column has at most two non-zero coefficients (restricted 

to those rows) are +1 and -1) factorisations. First GUB set is 

determined (Brearley ~~. (1975), Brown and Thomen (1980». Then 

second GUB set i,s found"from an e.Ugi~le subset of remaining rows, such 

that its row members must process non-zero coefficients of opposite sign 

in each column for which the prior GUB set has a non-zero coefficient. 
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Brown and Wright (1980) developed a method for direct NET factorisation 

of Implicit network rows. With the same procedure by simple screening 

of admissible candidate rows, can be identified pure NET rows. 

This heuristic Is designed to perform network facotrisation of a signed 

matrix (0,1 entries only). It Is a deletion heuristic which Is, feasibility 

seeking. The measure of infeasibility at any point is a matrix penalty 

computed as the sum of individual row penalties. The algorithm is two­

phased, one pass and non-backtracking. The first phase yields a feasible 

set of rows, while the second phase attempts to improve the set by 

reincluding rows prevlousl~ excluded. Each iteration in Phase either 

deletes a row or reflects it (multipl ies it bY. -1) and guarantees that 

the matrix penalty will be reduced. Thus, the number of iterations in 

phase 1 Is bounded by the initial value of the matrix penalty, which is 

polynomially bounded. The details of the method .are included in Bradley 

~~. (1983). 



3.4.2 Crowder et al. Method 

Crowder et ~.(1983) presented a method incorporated in PIPX (an 

experimental software package that they designed to solve pure (0-1) 

programming proplems.), which Includes automatic problem preprocessin3 

and constraint generation. Problem pre-processing inspects the user-

supplied formulation of a (0-1) linear program and improves on the 

associated linear programming formulation by "tightening" the constraint 

set, "spotting" variables that can be fixed at either 0 or 1, and 

"determining" constraints of the problem that are rendered inactive. 

constraint generation essentially generates cutting-planes that are satisfiec 

by (0-1) solutions of the problem and that chop off part of the feasible 

set of the linear programming relaxation and utll ises the Branch.-anal ... · . 

Bound strategy to find good integer solutions quickly. This procedure 

is used repeatedlyandlutillses information contained in the reduced costs 

associated with the optimal solution of the linear programming relaxation 

to fix variables to 0 or 1. 

Crowder ~~. attempted to establish the usefulness of these method­

oligical advances - when combined with clever Branch-and Bound strategies 

for automatic solution of sparse large-scale (0-1) linear programming 

problems. 

The following problem has been considered 

mln ex 

s. t. AX < b 

x. = 0 or 1 for j -1, ... , n 
J 
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where A = (a ij ) is mxn matrix, with aij • 0, ±1, Vi,j, band c are vectors 

of length m and n, respectively. 

Problem Preprocessing 

(I) Constraint Classification: 

The inequalities of the problem (3.4.2.1) are classified into two 

types: type (1) constraints are special ordered set constraints, 

ie constraints of the type 

x.<I-IHI 
J 

••• (3.4.2.2) 

where Land H are disjoint index sets and IHI denotes the cardinality of 

the set H. Clearly x. 
J 

: 1 for some j , implies xk = o for all k(L, k ~ j, 

and xk = for all kEH, while Xj = 0 for some j~H implies xk = 1 for all 

k~H, k r. j , and xk = 0 for a 11 kEL. Type (2) constraints a re all other 

constraints of problem (3.4.2.1) • 

(11) Variable Fixing and Blatant Infeasibility check: 

Suppose, for notational simplicity, that type (2) constraint of 
• 

(3.1j..2.1)is written as: 

L a.x·+L a.x. < b 
HP J J j~N J J 

••• (3.4.2.3) 

where P and N are the index sets of coefficients· with positiv.e and negative 

values respectively. If 

a.>b 
J 

••• (3.4.2.4) 



holds, then constraint (3.4.2.3) does not have a feasible:solution and 

the overall problem (3.4.2.1), of which (3.4.2.3) Is but one constraint, 

is blatantly Infeasible. On the other hand if 

a. <b 
J 

... 0.4.2.5) 

holds, the constraint (3.4.2.3) Is inactive because every possible (0-1) 

vector x satisfies it. Such an inequaltiy can be dropped from the constraint 

set of (3.4.2.1) because It does not exclude any (0-1) solution. Let 

.1fP and suppose that 

... 0.2.4.6) 

holds, then Xj = 0 in every feasible (0-1) solution to (3.4.2.1) and 

we can fix variable Xj at the value 0 and drop it from the problem (3.4.2.1). 

Likewise, if for some j~N we have 

-a. 
J 

> b - L 
k~N 

... (3.2.4.7) 

then x. = 1 holds in every feasible (0-1) solution to (3.4.2.3). We can 
J 

fi~ variable x. at value 1, adjust the right-hand side vector b of (3.4.2.1) 
J 

and drop the variable x. from the problem 0.4.2.1). If a variable 
J 

that is fixed at value 1 also appears in a type (1) constraint with a 

positive coefficient, the remaining variables in this special ordered 

set are fixed as discussed In the previous section; a similar argument 

holds if a variable that is fixed at value o appears also in a type (1) 

constral,nt with a negative coefficient. Al I type (2) constraints of 

problem (3.4 .. 2.1) are examined one at a time in the order in which they 

appear in the formulation. 
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3.4.2.1.3 Coefficient Reduction 

Consider an arbitrary linear inequality in the form 

r 
I 
j = 1 

a.x. > b 
J J 

••• (3.4.2.8) 

where all aj for j:l, "', r are positive. If we have ak>b for 

some' kE{1 I'" ,r}, then we can replace ak by b and the inequality 

r 

bXk + I > b, ••• (3.4.2.9) 

j=l, j;lk 

has the same solution set in terms of (0-1) solutions as (3.4.2.8) 

but fewer real solutions in the unlt-hypercube. Thus (3.4.2.9) is a 

"tighter" inequal ity that (3.4.2.8) for the associated I inear programming 

relaxation. Of course, the constraints of (3.4.2.1) are not always of 

the form (3.4.2.8), but using the substitution x: :: 1 - x. where 
J J 

necessary, we can bring every constraint of (3.4.2.1) into this form, 

apply this reasoning and check each coefficient of each type (2) 

constraint for a possible coefficient reduction. 

Constraint Generation 

The constraint generation procedure is the second computational phase 

of PIPX, to produce and solve a linear programming problem with a better 

optimal continuous objective function value. The real measure of the 

effectiveness of the constraint generation procedure is determined by 

how much it cl oses the "gap" between the optimal I inear program relaxation 

objective function value and the optimal (0-1) objective function value. 
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In a large-scale (0-1) programmIng problem with a sparse matrix A 

and with no apparant specIal structure,lt is reasonable to expect that 

the Intersection of the m knapsack polytopes P~ (*CONV{X(Rnlalx<b., 
-I 

Xj~O or 1 for J=I, ••• , n}) provide a fairly good approximation to the 
m I 

(0-1) polytope P1 (~n Pr) over which to minImise a linear objective 
1=1 

function. On the other hand, If the matrIx is dense, then the different 

rowS of A interact and cutting planes from individual" rows of A, while 

certainly valid and .In,,:some instances useful, cannot be expected to 

produce the same impressive results that would come from sparse large-

scale (0-1) problems with no apparent special structure. This is the 

first difference between Crowder ~~. method and the traditional 

cutting-planes described In the text books on Integer programs. The 

second difference, I s the I nequa II ties that Crowder ~~. generate 

preserve the sparsity of the constraint matrix; on the other hand, the 

traditional cutting planes are typically rather dense and as Integer 

programming folklore has It - lead to explosive storage requirement. 

Crowder et at. modified the standard Branch-and Bound algorithm to 

facilitate the search, by computing the upper bound on the optimal 

solution and measuring the gap between the continuous optimal solution 

and the optImal (0-1) objective value to provide a good way of guiding 

to Mathematical Integer Programming Software to find Integer solutions, -

and finally using the continuous reduced cost implication to fix the 

variables in the current Branch-and-Bound tree. 

Finally, Crowder ~~. mentioned that there are some computational 

difficulties In their constraint Identification procedure because 

of the computer storage requirements. The other difficulty Is the 

design and implementation of an effective and efficient interface 
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between the computational procedure and the mathematical software for 

solving linear and integer programming problems. 

(*CONV.The convexlfied solution). 



I M PRO V E MEN T S 

AND 
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CHAPTER IV 

In the previous chapter'we presented the mast promising size-reduction 

techniques. While the results of some of these techniques will be 

presented in chapter VI, we suggest here some changes which result in 

improving the performance of these techniques. 

In this chapter, we present the details of two extended methods which 

have evolved from the previous ones. The. first lJlethod called "Extended 

Reduce" is an improved version of the earlier Reduce method, in order to 

identify extraneous variables as well as redundant constraints. The 

second one is called "Extended-Williamil'. Procedure" for linear and integer 

programs, which is an extended version of Williamc' procedure. 

Before we proceed with the details of each method, and to avoid any 

repetition in the terminology and notations, we restate our (primal) 

linear programming problem as: 

max 

S.t 

z • CX 

AX < b 

X > b 

and the dual problem associated with the above system is: 

... (4.1) 

min Y = Wb ... (4.2) 

s. t. W~ > c 

W > 0 

where A is an mxn matrix, A' is the transpose of A, C and X are n vectors, 

band Ware m vectors. 



4.1 Extended Reduce Method 

As mentioned before, the Extended-Reduce method is an improved version 

of the earlier Reduce method presented in chapter Ill. The method is 

to identify extraneous variables and redundant constraints. Also, 

redundant constraints are identified by implementing a modified version 

of the co-ordinate direction method a~certain steps if necessary. Based 

on the following modifications involving more efficient tests from some 

theorems present"ed in chapter lion both primal and dual, together with a 

modified version of the coordinate direction method, the Extended 

Reduce method is developed. 

We utilise the same notation developed in chapter 11 and in Boneh and 

Golan's method presented in chapter 11 I. Namely, we use the constructed 

tableau A(mxn) and denote its elements by a .•• The updated right-hand 
I J 

side vector is denoted by b(mxl) and its associated elements by b.. The 
I 

reduced cost vector is denoted by Z - C (lxn) and its associated elements 

Also, the vector of basic variables is x~ and that of non­
J 

N basic variables is x
j

. 

The results from experiments on Extended Sign Tests, Hybrid and Reduce 

methods, presented in chapter VI, show that test two and its dual test 

are unhelpful and expensive (in terms of computation times), hence they 

are not considered here. On the other hand, test one and its dual test 

as.well as step two of Reduce method (le. a constraint having non-negative 

entries and a zero right hand side; then a variable with a positive entry 

in this row is extraneous) are found most useful. Test five is found 

most efficient when it is used as part of the simplex step. 
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We especially attempt to make use of this test to identify redundant 

constraints, by implementing the modified version of the co-ordinate 

direction method with it. 

The results of the co-ordinate direction method from experiments on 

the Hybrid method seems very efficient :(in terms of computations time). 

However, identifying non-negativity constraints as redundant tells us 

very little about their variables, since their values may turn out equal 

to zero or not. Also, the existence of extraneous variables in the problem 

may affect the results by classifying some redundant constraints as non-

redundant and this occurs because of perturbing the problem where 

extraneous variables could have small positive values in an interior 

feasible point. Secondly, when the direction from the interior feasible 

point to all constraints is along one of the extraneous variables, difficultie~ 

can also arise. To explain this, let US consider the following example: 

max Xl - x2 + 2x
3 

s.t. 

Xl + x2 
< 2 RI 

~xl + 3x2 + x3 ~ 2.5 R2 

Xl + x2 + x3 < 2 R3 

by perturbation of the p~oblem, the interior feasible point is 

(0.01, 0.01, 0.01). Clearly x2 is extraneous, but i:f the direction 

from the interior feasible point to all constraints moves along x2 ' R 
Z 

is classified as non-redundant, which it is in fact redundant. 

As a result of the above difficulties, we modify the co-ordinate direction 

method to be used with test five and only when the pivot ratio is not 

unique, in order to identify redundant constraints before we perform a 
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simplex iteration. First we consider only the structural constraints 

having the same pivot ratio' value, and positive coefficient corresponding 

to the varlabl,e, which has been taken as a current direction. Second, 

in order to be sure that the direction is not along any of the extraneous 

variables, perform the test along the next pivot column, which is 

easy to identify by simply updating the objective function. Third, in 

order to be sure that none of the extraneous variables could have any 

positive number, we start with the boundary point instead of the interior 

point, and we perturb only the slacks of non-negativity constraints which 

are in the basis, and all other variables must have zero value. 

Given a boundary or interior feasible point XO, the distance ti between 

° any constraint and X along the j-th direction is given as follows: 

t. • 
1 

b - A XO 
i I 

a .. 
IJ 

a .. >0 
IJ 

... (4.1.1) 

where i is the constraint index having the same pivot ratio value; of 

course Ai is the i-th constraint of the original problem (4.1). 

Therefore, if the i-th constraint has a minimum value ti' then the other 

constraints classify as redundant. Moreover, the i-th constraint 

becomes a pivot row for the simplex iteration. 

As a result of tests, such modification is computationally beneficial, 

since it is less expensive (in terms of computations time) to identify 

redundant constraints, where great saving in time and storage space have 

been achieved, since the total number of arithmetic operations to 
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compute (4.1.1) reduces from (m+n)(2n+2) for computing equation (3.1.1.3) 

to at most m(2n+2). Furthermore, there is no need to convert the original 

matrix problem into the form of ">". Finally, the number of simplex 

Iterations to reach the optimum solution could be reduced, and that is 

due to the right choice of pivot constraint (when the pivot ratio Is not 

unique). 

Now, we present the Extended-Reduce method in algorithmic steps: 

Initial Step: ! B N 
Let H • {k Sk = xI} and G = {r! Sr : xj } where Hand G 

Step (1): 

Step (2): 

Step (3): 

Step (4): 

are the set of indices of the slack variables In rows 

and columns still remaining in the problem. 

Store AX~b, find a basic feasible solution to the system 

(4.1). 

If all Zj - cj ~ 0, stop. Otherwise continue with step 2. 

N For every column j with Xj = Sand rfG, check the property: 
r 

a •. > 0 for all i and %. - c. > 0 
IJ - J J -

If this holds, drop column j and remove r from G. 

For every row B 
with xi = Sk and kfH, check the property: 

a.. < 0 for all j 
I J -: 

If this holds, drop row I and remove k from H. 

B For every row I with xi = Sk and kfH, check the property: 

aij > 0 for all j and bi : 0 
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Step (S): 

Step (6): 

Step (]): 

If thIs holds, drop all columns with a .. >O and remove all 
IJ 

their indices from G. Then drop row i and remove k from H. 

Determine the non-basic variable S = x~ with the most 
r J 

negative reduced cost Zp - Cp. Compute: 

bt/a t = mln {b./a. la. >O} p I I Ip Ip 

If the above ratio is unique then,S k = x~,.kEH is a slack 

of a non-redundant constraint, and go to step 7. Otherwise 

continue with step 6. 

Determine the latest boundary or Interior feasible point, 

and the next pivot column j. Among only constraints having 

the same ratio. value, determine the constraint with minimum 

t i • Drop the other constraints from the problem, and their 

indices from H. 

Perform a simplex pivot iteration, and update the table. 

If no rows or columns have been removed, stop. Otherwise 

go to step 1. 

Now, to illustrate the use of our extended reduce method, we consider 

the following numerical example: 

max 

s. t. 

xl + x2 + Xs < -
2x

3 + 2x4 + Xs < 4 -
-x + x3 + x4 < 4 1 -
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Xl + 4x4 - X S 
< 8 

Xl + x2 + x3 + 3x4 < 6 

Xj > 0 for all j. 

Initial Step: In what follows. we label the slack variables as SI 

through Ss and Xl through Xs as $6 through s10 respectively. 

The constructed tableau is: 

b 

SI 

2 2 4 

-1 4 

4 -1 8 

6 

The index sets H = {1.2.3.4.S} and G = {6.7.8.9.10} 

Step (2): S8 is extraneous. we drop column 3. G = {6.7.9.10} 

Step (S): The pivot ratio is chosen for cotumn four (with most 

negative Z4 - C4 = -3), and It is not unique. 

Step (6): The next pivot column j = 1 (Z, - Cl = -1). 



XO = (0.01. O. O. 1.99. 0) 

ts = 0.02 

3 

Therefore constraint S is non-redundant. constraints 2 and 

4 are redundant. 

Step (7): After pivoting on aS4 = 2. we get the following updated 

tab le: 

S6 S7 Ss S10 b 
--_. __ ._--------_ .. _------- - ~-------

z. - C
j J 

SI 

S3 
T 1 : 

S9 

Step (2): 

s.tep (3): 

-1 2 3 -6 
-----,'_ .•. _--_ .. ----

Q] 

- 4 - 1 2 

3 3 

1 1 2 

3 3 3 3 

H = {1.3.9} G = {6.7.S.10} 

S7 and S10 are extraneous. we drop columns 2 and S. 

G - {6.S} 

Row 3 redundant. we drop row 3. H:{1.9} 
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Step (5): 

Step (7): 

Step (1): 

The pivot ratio on column one is .chosen (with most negative 

Zl- Cl = -1), and It is unique. 

After pivoting on all' we get the following updated table: 

SI S5 I b 
... ---.----.- '-----'-1------

-1 

3 

I 

3 

and H : {6,9}, 

i 

i 
3 

G:{1,5} 

All z. - c. > 0, the solution is optimum, stop. 
J J -

The test results of Extended-Reduce method are presented in chapter VI. 
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4.2 Extended Williams Procedure 

Unlike the previous improved method, the size of linear (and integer) 

programming problems has been reduced prior to applying the simplex 

method. The procedure presented here is an extended version of Williams' 

procedure achieved by combining another test based on theorem (3.1) 

presented in Holm', and Klein's method in chapter Ill, in order to 

identify extraneous variables. More suggestions have been made to reduce 

the course of process ing. Based on the above:;, we developed "Extended 

Wi 11 i ams Procedure". 

In order to present the mathematical theory used in the extended procedure 

we will utilise the same terminology implemented in WilliamS' procedure 

and Holm and Klein's method presented in chapter 11 I. initially, for all 

the variables (primal and dual) , the lower bounds are set to zero (because 

of the non-negativity constraints) and the upper bounds a~ a sufficiently 

large real number. 

As a result of testing Willlams' procedure presented in chapter VI, the 

structure of the tested problem (redundancy and degeneracy) is affected 

on its reduction processing, and that is due to unsuccessful tightening 
, 

of the bounds of primal and,dual variables. Then, the required conditions 

in test 02 to fix variables at their bounds are affected and not easy to 

hold. The results show that most of the variables having non.zero 

coefficients in all constraints with zero lower bounds in shadow prices 

are not fixed to their bounds. To demonstrate this, consider the following 

example 
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max Z = xl + ..• 

s. t. 

xl + < 5 RI -
-xl + < 8 R2 

Suppose that = 0 the optimal solution, R. R. W IIII ams'" xl at and wl = w2 = o. 

procedure is unable to fix such a variable at its lower bounds zero, 

such variables may affect the whole procedure of size reduction. 

Holm and Klein (1975) identify extraneous variables by paitwise 

comparisons between variables, based on theorem (3.1) presented in 

chapter Ill, which we may restate as a test as follows: 

If there exists column indIces rand j such that 

pos(A(.r) - A(.j)) + w"R. neg(A(.r) - A(.j)) 

then x. Is extraneous. 
J 

The basic idea of the above test is from the Complementary Slackness 

Theorem, ie. a varIable x~ = 0 whenever c. - wOA(.j) < 0 where XO 
J J 

and wO are the optimal solution to (4.1) and (4.2), repsectively. 

However, as the test covers most of the situations, and the pairwlse 

and 

(4.2.1) 

comparison needs a little more processing, we decided to combine such 

a test with Williams' procedure, in a way to reduce the pairwise 

comparisons time processing in the whole procedure, by not repeating 

the pairwise comparisons processing in each pass, if neither any 

singleton columns are replaced by shadow price bounds nor any constraints 

removed nor any shadow price bounds tightened. 
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In fact. we are using the same names for tests as in the original 

Williams' procedure. such as test PI. test 01 ••••• etc (see Williams' 

procedure In chapter Ill) in presenting the algorithmic steps of Extended 

Williams procedure. As in Wllliams' procedure all the tests are implemented 

in the same systematic approach. and our procedure also has two phases. to 

resolve the dilemma over whether to r~!~x or tighten the bounds on primal 

and dual variables. On the other hand. as a result of testing Williams' 

procedure. we suggest. fir$Zc a phase of the procedure is terminated when 

one pass yields no simplification. Second. there is no need to repeat 

the whole procedure processing in part two. If neither singleton columns 

are replaced by shadow price bounds nor constraints with non-zero lower 

shadow price bounds are removed by subtracting from the objective function. 

We now present the details of our extended procedure in an al'gorithmic 

form. The following logical variables are used as switc~es for various 

steps 

PART = F for part 

• T for part 2 

PHASE • F for phase 

= T for phase 2 

PSACT = T changes made during the current pass 

=Fetherwise 

PROSC = T changes made either by replacing singleton column or removing 

constraint with non-zero shadow price bounds 

• F otherwise 
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Initial Step 

Step (1): 

Step (2): 

Step (3): 

Step (4): 

Step (5): 

Set all logical variables to F, all lower bounds 

(primal and dual) to zero and all upper bounds to 

a large real number M. 

Let K = 1 

Let j be the k-th index of smallest element of C; 

Compute xJ and xj (equations 3.2.2.9 - 10) 

If x~ > xj or xj, or xj < x~ or xj, the model is infeasible, 

stop 

I f x~ : 
J 

u -u -u x
J
' or x., or x. 

J J 
= x~ or -~ set to this common J x j ' Xj 

value, substitute out, set PSACT = T and go to step 2. 

Step (6): 

Step (?): 

Step (8): 

Step (9): 

If PHASE if T, go to step 8. 

If the new primal bounds are more strict than existing values, 

update these bounds and set PSACT = T. Otherwise go to step 9. 

If the new primal bounds are more strict than existing values, 

restore the initial bounds to x .• 
J 

Compute Pj and Q
j 

(equations 3.2.2.3 - 4). 

Step (10): Perform test 02, if changes made set PSACT = T, and go to 

step 2. Otherwise, continue with step 11. 
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Step (11): 

Step (12): 

Step (13): 

Step (14): 

Step (15): 

Step (16): 

Step (17): 

Step (18): 

Step (19): 

If PART is T, go to step 13. Otherwise, continue with step 

12. 

Perform test 01, if changes made, set PSACT • PROSC • T, 

and go to step 23. Otherwise continue with step 13. 

C -£ ompute wl and w~ (equations 3.2.2.11 - 12) 

or w~ < w~ or w;, the model is either 

unbounded or infeasible, stop. 

If w~ = w~ or w~, or w~ = w~ or w~ mUltiply the constraint 

by this common value, subtract from the objective function, 

remove the constraint i, set PSACT = PROSC • T, then go to 

step 19. 

If PHASE is F, go to step 18. 

If the new shadow price bounds are more strict than 

existing values, update these bounds, and set P9ACT = T. 

Otherwi se fo to step 19. 

If the new shadow price bounds are more strict than existing 

values, restore the initial bounds to the dual variables. 

Let L=O. 
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Step (20): 

Step (21): 

Step (22): 

Step (23): 

Step (24): 

Step (25): 

Step (26): 

Step (27): 

Step (28): 

Step (29): 

Step (30): 

Step (31): 

If there are no more columns to be compared with c., go 
J 

to step 23. Otherwise, set L = L+l, and continue with 

step 21. 

Let r be the L-th Index of largest element of C 

If condition (4.2.1) Is satisfied, remove column j, set 

PSACT = T, and go to step 24. Otherwise go to step 20. 

Compute LI and U, (equations 3.2.2.1 - 2). 

If there are no more columns left (le. K equals N), go to 

step 25. Otherwise set k • k+l and go to step 2. 

Perform test P2, If changes made, set PSACT • T, moreover 

if removed constraints have non-zero shadow price bounds 

set PROSC = T. 

Perform test PI, If change made, set PSACT = T. 

If PSACT is F, go to step 29. 

Set PSACT = F and go to step 1. 

If PHASE is F, set PHASE = T and go to step 1. 

If PART is T, stop. 

If PROSC = T, restore all singleton columns and constraints 
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with non-zero shadow price bounds subtracted from the objective 

function, set PART = T, PHASE = F and go to step 1. Otherwise, 

stop. 

To illustrate the use of the above algorithm, let us consider the following 

numerical example taken from Willlams (1983), after modification. Without 

affecting the feasibility or the optimal solution, further reductions are 

found, where Will lams' procedure failed to reduce its size: 

2~1 + 3x2 
+ x . wJ/, u max 3 I wl 

S. t. 
RI -x + 1 x2 + x3 + x4 - 2x 

S 
< 4 0 M 

R2 -xl - x2 + x3 + x4 - Xs < 0 M -
R3 xl + x4 + ,xS ~3 0 M 

J/, 
0 0 0 0 0 x. 

J 

u 
M M M M M x. 

J 
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Solution: 

PART ONE 

PHASE ONE 

PASS (1) 

PASS (2) 

PASS (3) 

PASS (4) 

PASS (5) 

PASS (6) 

PHASE TWO 

PASS (1) 

PASS (2) 

PART TWO 

PHASE ONE 

PASS (1) 

STOP 

X4 extraneous 

X3 extraneous 

constraint 2 redundant 

u 
X = 3. 
5 

Lower shadow price bound on constraint I is 3. 

constraint I redundant 

XI extraneous 

constraint 3 redundant 

nothing 

u 
X2 = 10.0 

X2 = 10.0 and the problem solved. 

The results of the Extended Willlams' procedure are presented In chapter VI. 



CHAPTER V 

In the previous chapter, two reduction methods are presented, mainly 

for Linear programs. In this chapter extended techniques are presented 

mainly for integer programs. 

The requirement that the variables must take integer values is a mathematical 

extenSion of Linear programming, which is known as Pure Integer Programming. 

There are many ways of solving such problems, however, there is only 

one method which purports to be applicable to all such problems and 

is sometimes presented as a simple extension to cope with integer variables 

in the LP algorithm of commercial packages - the so-called "Branch-and-Bound" 

algorithm. 

As the problem size increases, the amount of work needed to produce 

an integer optimum solution may increase exponentially, where, subproblems 

are generated and the number of branches increases as the number of 

integer variables increases in the problem. In general, there are unnecessary 

variables and rows in a model formulation which increase the number 

of branches and the solution time. Therefore, reducing the size of 

the problems by removing unnecessary variables and rows will reduce 

the number of branches required in order to solve the problems, using 

Branch-and-Bound algorithm efficiently. 

In this chapter, we present a preprocessing reduction procedure for 

general integer linear programming problems, and discuss its implications 

for Dynamic-Presolve which is a feature of the SCICONIC package. Also, 

reductions to subproblems having Special Order Sets (SOS) will be presented. 
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Before we proceed with the details, to avoid repetition we state our 

(primal) integer 1 inear programming problem as follows: 

n 
Max Z = 1: c.x. 

j=l J J 

s.t. 
1: a .. x. ( b'

l I J J 
1=1 , ... ,m 

x. ) 0 and integers 
J -

...(5.1) 

and for each variable there are finite integer lower and upper bounds 

... (5.2) 

5.1 Preprocessing Reduction Procedure for ILPP's 

A preprocessing technique is developed to reduce the size of general 

ILPP's using the primal bounds to fix variables at their bounds and 

identify extraneous variables and redundant constraints prior to applying 

the simplex and Branch-and-Bound algorithms. 

In order to present the mathematical theory used in our procedure, 

we use the same termlnologies as in "Holm and Klein's" and "Williams'" 

methods presented in Chapter I I I. 

With integer variables it is generally advantageous to tighten the bounds 

rather than relax them since it may be possible to tighten the bound 

to the next appropriate integer value. The bounds have been tightened 

in our procedure in a fashion similar to that of Williams' techniques, 

that is, a constraint together with bounds on some variables may imply 

-u u bounds on another variable (equations 3.2.2.9-10), and If Xj ( xj ' the 

upper bound u -u x. is replaced by [x + E.J. 
J 

-R, t R, If x.)x., the lower bound x. 
J J J 

is replaced -R. 
by [x.-~J+l, where E is a small 

J 
positive number. Should 

-R, -u 
Xj be equal to xj ' the variable Xj may be fixed at this common value 

and removed from the problem by replacing bi by (bi-a ij xj ) for all 

i and adding the constant CjXj to the objective function. 
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However, Brearley et al. [1975] and Wi II iams [1983] Identify constraint 

in a system (5.1) as redundant if Ui i bl provided that it does not 

have a nonzero lower shadow price. Williams [1978] mentioned that, 

in integer problems, if a constraint has a positive slack it does not 

necessarily represent a "free good" (i.e., in one sense it is not worth 

anything) and may therefore have a positive economic value (see Wllliams 

[1978], Ch. 10). 

Rubin [1972], extended the results of test one to apply to integer problems, 

by presenting the following theorem: 

Theorem Rubin [1972] 

If row i is a structural constraint having 

a.. (0 for a 11 J. and B. ) 0 
I J - I -

.•. (5.1.1) 

then it is redundant in IP. 

Since no simplex iterations have been performed during the course of 

our procedure, all rows are structural constraints, therefore, we decided 

to use the above test to identify redundant constraints. 

As a result of the above test, many redundant constraints could not 

be identified, because condition (5.1.1) was not satisfied. We decided 

to implement Holmand Kleln's test, presented in chapter 11 I, in order 

to identify redundant constraints by palrwise comparisons between constraints, 

based on theorem (3.2), (condition 3.2.1.6). However, as the palrwlse 

comparisions need more time processing, we combined and performed this 

tes tin a way to reduce the pa I rwl se compa r isons time process i ng as 

much as we can, such as terminating the test as soon as the right-hand 

side of (3.2.1.6) becomes greater than or equal to the left-hand side. 
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,', t ~ • ....;.,. 

, 
• 

In our procedure we construct formulae using 

only primal bounds to fix the variables at their bounds, as follows: 

Case (a): IfkEP,and 

a ik ) bi - (E a ij xj + Ea ij xj) ••• (5.1.2) 

j€P jEN 
jtk 

holds, then xk=O at every feasible solution to (5.1) 

Case (b): If k€ N, and 

x~) 
J 

••• (5.1.3) 

holds, then xk = x~ at every feasible solution to (5.1) 

where P and N are the index sets of coefficients with positive and negative 

values, respectively. The correctness of the above two cases comes 

from the feasibility of the system (5.1). 

The above two formulae need good tightened bounds to fix more variables, 

therefore one may identify extraneous variables by the dual test to 

condition (5.1.1), which may be stated in the following corollary: 

Corollary: 

If column j is not a slack of a structural constraint and has 

a •. ) 0 for all i and c.(O 
I J - J-

••• (5.1.4) 

then Xj is extraneous in a system (5.1) 
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The correctness of the above corollary is from the validity of its duality. 

Now, let us present our procedure in algorithmic steps: 

Initial Step: Set PASS = 1, PSACT = F 

Step 1: let j =1, 

Step 2: If condition (5.1.4) is satisfied, remove column j, set PSACT=T 

and go to step 9. Otherwise continue with step 3. 

Step 3: If any of conditions (5.1.2-3) is satisfied, update the problem, 

remove column j, set PSACT = T and go to step 9. Otherwise, 

continue with step 4. 

Step 4: If PASS = 1, go to step 8. Otherwise, continue with step 5. 

Step 5: Compute -R. -u (equations 3.2.2.9-10) ; x. and x. 
J J 

Step 6: -R. u -u -u 
( R. -R. the problem is infeasible, I f x. ) x. or xj , or x. x. or x j' stop. 

J J J J 

Step 7: I f the new bounds are more strict than existing values, update 

these bounds, set PSACT = T, and if the lower and upper bounds 

on x. are equal, set x. to this common value, update the problem, 
J J 

remove column j, then go to step 9. Otherwise, continue with 

step 8. 

Step 8: Compute L. (equation 3.3.3.1); 
I 

Step 9: If no more col umns left, continue with step 10. Otherwi se, 

set j=j+l and go to step 2. 

Step 10 : let k = 1, 

Step 11 : let i be the k-th index of largest element of b; 

Step 12 : If condition (5.1.1) is satisfied, remove row i , set PSACT=T 

and go to step 17. Otherwise, continue with step 13 •. 

Step 13: let L = 1, 

Step 14: let t be the L-th index of smallest element of b; 

Step 15: If condition (3.2.1.6) is satisfied, remove row i, set PSACT=T 

and go to step 17. Otherwise, continue with step 16. 
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Step 16: If there are no more rows to be compared with bi , go to step 17. 

Otherwise, set L=L+l and go to step 14. 

Step 17: If there are no more rows left, go to step 18. Otherwise, 

set k=k+l and go to step 11; 

Step 18: If PASS = 1, set PASS = PASS + 1, PSACT = F and go to step 1. 

Otherwise, if PSACT = T, set PASS = PASS +1, PSACT = F and 

go to step 1. Otherwise, stop. 

Now, we present the following numerical example to demonstrate our procedure: 

Max 2 xl + 3x2 

s. t. 

Xl + x2 

-x - X2 1 

xl 

2 xl 

So I ut ion: 

Pass 1 : 

Pass 2: 

- x 3 -x4 

+x -2 
3 )(4 ( 

+ X -3 x4 i 

+ x4 
( 

+ x3- 2x4 i 

o ( 

u 3, u 
xl = x4 

x(3) = 0 

X(4) = 3 

Constraint 

x(l) = 0 

x(2) = 10 

Stop 
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x. 10 for all j, and integers 
J -

= 3 
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5.l The implication of implementing Preprocessing Reduction Procedure 

to "Dynamic-Presolve" 

Integer problems can be solved by the SCICONIC Package (an algorithmic 

advanced Mathematical Programming Package), by call ing the command "GLOBAL", 

and wi th the parameter "PRESOLVE" a Dynami c-Preso I ve is performed on 

each sub-problem in the Branch-and-Bound search. It attempts to reduce 

the discrepancy between the linear solution to each sub-problem and 

the true optimum for which we are searching, and makes the current sub-problem 

easier to solve by fixing continuous variables at their lower bounds 

and tightening the bounds on the variables. 

Unfortunately, the Dynamic-Presolve technique becomes less powerful 

when a branching decision is made on a variable with negative coefficients 

in many or all constraints. Implementing our preprocessing reduction 

procedure within the Dynamic-Presolve technique on each sub-problem, 

could make the whole hybrid processing more powerful in making the current 

sub-problem much easier to solve, and saving more work in less CPU time. 

To show how our procedure, works and could improve the processing of 

the Dynamic-Presolve technique, let us consider the following example: 

Example: 

Suppose at a certain subproblem the integer variables XI' Xl and x3 

wi th lower bounds zero and upper bounds 3, appear in the following constraints: 

RI: lX I + 4Xl - x 
3 

( 7 

Rl: -5x I + lXl - x 3 
( 

and at some branch, we might make the branching decision x
J 

) l. 
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Now as far as we know, Dynamic-Presolve technique is unsuccessful in 

tightening the bounds of these variables, but our procedure may continue 

the processing by fixing xl to 3, tightening the upper bound of x2 to 2, 

then removing constraint two, making the current sub-problem much easier 

to solve than implemented only the Dynamic-Presolve technique. 

5.3 Reduction techniques for Special Order Sets. 

Special Ordered5eh (SOS) are sets of variables with an explicitly or 

implicity given order and a specified additional condition. They were 

introduced by Beale and Tomlin [19701, as a practical device for efficiently 

handling special cl~sses of non convex optimization problems by Branch-

and-Bound with LP relaxation and are now implemented In most commercial 

codes for mathematical programming. There are two types: 

Type 1 (5051 set), where only one variable in the set can have a nonzero 

value. If the variables Xj are not 0-1, indicator 0-1 variables 61 •••• 6n 

are introduced and linked to the x. variables. Type 2 (5052 set), where 
J 

up to two adjacent variables in the set can have nonzero values. The 

model is slightly more complicated, and the problem can be subdivided 

into two sub-problems by choosing a suitable value of j, say r, in a 

suitable reference row. So in 5051 • in one branch 6.=0 for all j r 
J 

and in the other I) • = 0 for all j ( r, wh i 1 e 5052: either 6.= 0 for 
J J 

all j ) r, or I) • = 0 for all j ( r. 
J 

The strategy of fixing several variables to zero simultaneously is one 

reason for the success of the special ordered set (SOS) branching rule 

(see Beale and Tomlin [19701, Forrest et.al.[19741, Gauthier and Ribiere 

[19771 and Tomlin (19701)on integer programs with multiple choice constraints. 
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In fact. in implementing Branch-and-Bound strategies for SOS in commercial 

codes for MP. the members of an SOS must form a monotonic ascending 

or descending sequence which is defined by weights w. and maintained 
J 

throughout the whole branching process. Otherwise. there is no suitable 

way developed to determine the branching point. Determining an average 

weight w: 

o 0 w = E w. x./E x. 
J J J 

... (5.3.1) 

where xO are the values of the set variables in the optimal solution 

of the LP relaxation. the branching point r is then defined either by 

We present some techniques to identify which variables of an SOS set 

could have zero values or nonzero values. in order to reduce the sub-problem. 

even if the SOS set does not have a suitable reference row. 

Suppose (x 1 •••••• xn) is an SOS set. and they are a part of the problem. 

appearing in the following constraints: 

Ea .. x. + 
I J J 

jEP 

x. ( b. 
J I 

..• (5.3.2) 

where P and N are the index set of coefficients with positive and negative 

values. respectively. 

The following tests may be. used to reduce the SOS set in a sub-problem: 

(i) If-Y-j 

•.• (5.3.3) 

then x. = 0 in every feasible solution at SOSI set. 
J 

(I I) If 3 a un i que j 3 

... (5.3.4) 
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then: 

u (a) - x. = Xj in every feasible solution at 5051 set. 
J 

(b) - x. will take a nonzero value qxU (qi1) in every feasible solution, 
J 

, u 
and either x. 1 or x.c.' could take a nonzero value (l-q)x at 

J- J+ 

5052. Moreover, if all variables are integers, one may use conditions 

(5.1.2-3) to fix xj _1 and xj +1 at their values. 

Now,we present the following examples to demonstrate our tests: 

Example (1): 

Suppose (x l ,x2 ,x
3

,x4) are 5051 and form a part of the problem, 

and appear in the following constraint: 

with bounds of 2. 

Implementing our tests may fix xl = x3 = x4 = 0 and x2 = 2. 

Example (2): 

Suppose (x 1,x2,x
3

,x4) are 5052 and form a part of the problem, 

and appear in the following constraint: 

4xl - 2x2 + x3 + x4 i -

with bounds of 2, and all are integers. 

Implementing our tests may fix Xl = x4 = 0 and x2 ' x3 to nonzero values. 

Note: It was not possible to test all the procedures of this Chapter ........ 
within the Sciconic computer code because the modular capability of 

the LP code does not extend to the Branch and Bound part. 
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CHAPTER VI 

Programming the Methods and Experimental Results 

Some of the size-reduction techniques presented in chapter I11 and all 

the el<ten'de'dmethods presented in chapters IV and V have been programmed 

and tested on the Prime Computer System at Loughborough University. 

In this chapter, we present some important basic techniques in programming 

the size-reduction techniques. The structural tested problems, the results 

and discussion of the results will be the subject of the remainder of this 

chapter. 

6.1 Programming the Methods 

The FORTRAN 66 computer language was used for programming the methods, 

following adviee from staff at SCICON Computer. Services Ltd. 

The SCICONIC package is an algorithmically advanced Mathematical Programming 

Package developed by SCICON. Its purpose is to provide the mathematical 

programmer with a conven.ient and cost-effective way to solve I inear, integer 

and non-linear programming problems. In particular SCICON developed SATL 

Sciconic Algorithmic Tools library) which allows the user to assemble 

modules of SCICONIC to his own specification. 

We bui It programs in the form of a sub-routine called "SUBROUTINE USER" 

which was loaded into a space already designated for a trivial subroutine 

called "USER" in the package. Then we applied this subroutine as a 

preprocessor after loading and converting the input data file, and before 

executing the main LP algorithm (for more details see appendices). 
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Sciconic stores non-zero elements of the data matrix in column order. 

All the non-zero matrix column elements are stored in an element pool 

"array POOL" (the element pool is based on an idea of Kalan (1977»· 

which only contains unique values; individual matrix elements may be 

accessed from the pool via the arrays of pointers. This enables the input 

data to be stored in a very compact form, taking the maximum advantage of 

matrix sparsity and any non-uniqueness of the matrix elements. Matrix 

entries are accessed from the POOL by two parallel arrays, the entries 

within which are stored by columns. If the column has a cost row and/or 

an upper bound, then there is an additional entry in the parallel arrays. 

For certain manipulations, In some tests (such as singleton row "Wi II iams' 

procedure", the number of non-zero elements and their signs in each row 

"sign tests" and in order to perform the pairwise comparison columns "Holm 

and KI e in's method"). it is conven i ent to have the elements eas i I y access i b I e 

in row order as well as in column order. Therefore, some additional storage 

arrays were created to store the elements of the matrix in a different way. 

This would letus build the programs using one dimensional arrays instead of 

using two dimensional arrays as some problems occured in the storage methods 

with the two dimensional arrays. The one dimensional arrays are packed 

to save as much space as possible. 

We can explain how we managed to store the matrix in one chmensional arrays, 

by considering the following example. 
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Max. Xl + 2x2 + 4x3 + 10x4 + X5 

s. t. 

RI Xl + x2 + x3 + x4 + x5 < 25 -
R2 2x

1 
+ x4 = 10 

R3 x2 + x3 + x5 < 5 -
R4 2x

1 + 4x3 + x5 > 15 -
R5 BX3 + x4 < 10 -

Let there be three arrays ROWELL "rea 1", I ROWNO "i nteger" and I ROWMK 

"integer". IROWMK has a dimension of 512, the other two have dimensions 

of B192 (equivalent to 16 X 512). IROWNO is created as follows: 

I ROWNO (1) tell us how many non-zero elements are in RI, 

I ROWNO (2), (3), tell us the columns in which the non-zeros occur. So 

I ROWNO (1) • 5, I ROWNO (2) = 1 , I ROWNO (3) • 2, I ROWNO (4) • 3, 

I ROWNO (5) • 4, I ROWNO (6) = 5. 

The next i tem,.i n I ROWNO name I y I ROWNO (7) tells us how many non-zeros 

occur in R2 and IROWNO (B), (9), ... tell us where they are. The procedure 

then repeats for R3, R4 and R5. 

Tha actual values of coefficients are now stored in the corresponding 

positions of array ROWELL: 
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RI: ROWELL (2) = 1.0, ROWELL 0) • 1.0, ROWELL (4) • 1.0, 

ROWELL (5) = 1.0, ROWELl (6) = 1.0 

R2: ROWELL (8) = 2.0, ROWELL (9) • 1.0 

R3: ROWELL (11) = 1.0, ROWELL (12) = 1.0, ROWElL (13) .1.0 

R4: ROWELL (15) = 2.0, ROWELL (16) = 4.0, ROWELL (17) = 1.0 

R5: ROWELL (19) • 8.0, ROWELL (20) = 1.0. 

ROWELL (I), 0), (10), (14) and (18) are not used (but could be set to 

indicate 1, 0, - 1 for!, =.! If required). 

The third array· I ROWMK tell us where the set of Information In one row 

actually begins in I ROWNO. Hence IROWMK(I) = 1, IROWMK(2) = 7, I ROWMK(3) = 10, 

IROWMK(4) = 14 and IROWMK(5) • 18. 

For certain other purposes it is also convenient to store the columns of 

data in a similar way to aid testing. Again we have three arrays ICOLNO, 

ICOLMK and COLELL which perform similar roles for columns as the IROWNO, 

I ROWMK nad ROWELL performed (repsectively) for rows. However, these fit 

in more naturally with existing SCICONIC storage. They are set as follows: 

ICOLNO(I) = 3, ICOLNO(2) = 1, ICOLNO(3) • 2, ICOLNO(4) • 4 

ICOLNO(5) = 2, ICOLNO(6) • 1, ICOLNO(7l =3 

ICOLNO(8) = 4, ICOLNO(9) • 1, ICOLNO(10) .3, ICOLNO(II) ,. 4 

ICOLNO(12) ,. 5 
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ICOLNO(13) = 3, ICOLNO(14) = I, ICOLNO(15) -2, ICOLNO(16) = 5 

ICOLNO(17) = 4, ICOLNO(18) = I, ICOLNO(19) = 3, ICOLNO(20) = 4, ICOLNO(21) = 5. 

ICOLMK(1) • I, ICOLMK(2) = 5, ICOLMK(3) = 8, ICOLMK(4) = 13, ICOLMK(5) = 17. 

COLELL(2) = 1. 0, COLELL(3) ~ 2.0, COLELL(4) = 2.0 

COLELL(6) = 1 .0, COLELL( 7l = 1. 0, 

COLELL(9) = 1. 0, COLELL(lO)= 1. 0, COLELL( 11) = 4.0, COLELL(12) = 8.0 

COLELL(14) = 1. 0, COLELL(15) = 1. 0, COLELL(16) = 2.0 

COLELL( 18) = 1.0, COLELL(19) = 1. 0, COLELL(20) = 1. 0, COLELL(21) = 5·0. 

An impo(ltant point .should be noticed that, when we make a deletion or any 

change we must update both types of stored data. 

Now, we discuss how simplex operations interact with this type of storage 

in our programs. If we look at the row storage, we can find pivot elements 

etc. and start the simplex operations. There might be a problem when we 

update coefficients as often a zero becomes non-zero and will need to be 

stored. In fact this is straightforward because the trick is that iROWMK 

tells us where row data starts and we can move around these values. 

Obviously, we need a duplicate copy of I ROWMK, I ROWNO, ROWELL calling them 

JROWMK, JRWONO, ROWELJ for tableau 2. 

Let row 3 be first pivot row, we set JRWOMK(3) = I, then adjust the elements 

of row 3, store them In positions 2,3,4 .•. and set up JROWNO, ROWELJ. Now 

we update another roweg. row 1, row 2, etc. We now proceed towards a 

feasible solution or perturbation method or whatever is required. 
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When performing simplex we might wish to update part of the column arrays 

so that we can find pivot points more easily. But the column arrays can 

always be created from the row arrays If necessary. 

With the above way an efficient method of .. storage and carrying out of all 

tests is achieved. 

Now, two important points have to be mentioned: 

In programming the methods, care was taken to minimize the effects of the 

round-off errors on the results of some methods (eg. the simplex pivot, 

classifiying some redundant constraintsas non-redundant). We solved the 

above problem by considering any number with an absolute value less than 

-8 or equal to the relative zero 10 as zero. 

As most of the methods required an Initial basic feasible solution, and 

some difficulties arise in getting it due to the techniques used by SCICONIC 

package, we considered the linear programming problems as being re-expressed 

wi th constra ints of type "'::'. 

In order to understand the specifics such as memory space requirements 
. 

and the order of operations,:we now present four miscellaneous points of 

the programming process used for some methods. 

(a) In sign tests (Extended sign tests, Hybrid, Reduce and extended Reduce 

and extended reduce methods), we stopped the given test before the 

entire row or column was scanned. For example, we stopped the process 

of test two as soon as a second negative entry was found. The minimum 

quotient to perform a simplex pivot as well as updating the tableau 



I 

were written in the program. Cycling problems could occur, but 

our problems do not generally contain such cases. Consequently, 

we did not Implement a check for Identifying such cases. The 

computational effort for this process is negligible and does not 

affect the results reported in this chapter. 

(b) In the extended reduce method we propose to stop the tests if the 

amount of the Identification is less than 10% of the number of rows 

and columns during the pass (unless on the first pass). 

(c) In Williams' and extended Williams procedures we utilised the 

lower bounds of shadow prices at zero, and at some sufficiently 

positive large real number for the upper bounds of the shadow 

prices. The bounds on the prim~l variables were also initialised 

at zero or at some sufficiently large real number if they had not 

been set already in the problem file. 

(d) As the extended Williams procedure and preprocessing reduction 

procedure for integer problems implements Klein and Holms' tests 

in which the pairwise comparisons between rows and columns are 

performed, we order the cost coefficents and the right-hand side 

values before starting the test processing and only the values of 

the right-hand side are re-ordered If there is any change in their 

values during the preprocessing reduction procedure. While, in 

programming the pairwise comparisons between columns the original 

cost coefficients are stored In ascending order, and the updated 

cost coefficients are not used in this pairwise test. Also, the~.Qlumns 

1 1 ? 
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chosen in the comparisons should not have any non-zero elements corresponding 

to "redundant" constraints with non-zero shadow prices which are removed 

from the problem. 

6.2 Performance of Method 

Karwan ~~. reported computational tests on most of the common size 

reduction techniques (the methods of Zionts and Wallenius, Telgen, Gal, 

Rubin, Boneh and Golan, Mattheiss, Holm and Klein, Williams, Thompson and 

Sethi as well as Lotfl's Improvements. i.e. Extended Sign tests, Hybrid and 

Reduce methods) in a comprenenslve experiment to determine the relative 

performance of the various tests. 

As our objective study is to ascertain how successfully, size-reduction 

techniques could be Implemented in mathematical programming packages, and 

to avoid any repetition of the results of the performance of the methods, 

we concentrated our experiments onthe methods which we extended (ie. Reduce 

method and Will iams' procedure). These are described in detail In the tables 

of results later In this chapter. However, Boneh and Golan's, Holm and 

Klein~, Extended sign tests and Hybrid methods are discussed briefly in this 

chapter. The performance of these methods Is also discussed in more detail 

in Karwan ~ 2.!.. (1983). 

In order to evaluate the performance of the methods, items such as the 

relative time, number of iterations, the structure of the tested problem 

in hand, size, degeneracy and other factors, if known, were noted.; A comparison 

In terms of CPU time was made to solve the tested problems with and without 

the reduction methods Implemented. 

, " 



A number of problems used were obtained from different sources and most 

cif them have been modified after changing "'::' and "." to "<" in order to 

ensure the problem still has a feasible all-slack selution. The 

characteristics of these problems are presented in table 6.1 for testing 

all reduction methods except the pre-processing reduction procedure for 

integer problems for which the characteristics of the tested problems are 

presented in table 6.6. 



Characteristics of the tested problems 

Problem Dimension I No of non-zero Starting No. of CPU time (**) Source 
No. Row Column , elements Percent Simplex (sec) 

I Degenerate (*) Iterations 

! 
20 30 r 76 0 24 2.0 Farm Planning. Williams, N (1967) ! 

: 
2 27 48 169 0 21 4.0 Production Planning. Williams, N 

( 1967) 

3 17 40 191 0 5 3. 1 Mixing Problem. Will i ams, N (1967) 

4 45 37 140 40 12 3.3 Tischer, H. J (1968) 

5 30 44 139 0 21 4.8 AHMED, A. N ( 1977) 

6 35 50 136 14 25 4.8 SCICON Ltd, Company 

7 46 63 217 0 26 4.8 AHMED, A. N ( 1977) 

8 59 79 281 13 60 10.0 Brunei University. Private 
Commun i cat ion. 

9 40 94 941 0 14 6.0 Chvatal, V (1984) 

10 21 115 900 0 8 5.8 Oil Company 

11 56 125 416 0 36 17.8 Brunei University. Private 
Comminication 

12 64 133 415 0 12 6.8 London School of Economics. 
Private Communication 



Problem 
No. 

13 

14 

15 

16 

17 

18 

19 

Mean 

Dimens ion· 
Row Col umn 

90 

100 

100 

140 

180 

200 

230 

137 

130 

140 

180 

249 

290 

300 

78.95 120.21 

No of non-zero· 
elements 

463 

380 

471 

890 

830 
. ". , .. 

1010 

1070 

Starting 
Percent 
Degenerate (*) 

o 
55 

o 

o 

60 

65 

27 

14.42 

No. of 
Simplex 
I terat Ions 

13 

20 

25 

27 

108 

161 

158 

40.84 

CPU time (**) 
(sec) 

7.0 

8.8 

7.3 

22.0 

35.0 

45.0 

57.0 

13.44 

Source 

Oil Company 

Brunei University. Private 
Communication 

SCICON Ltd, Company 

SCICON Ltd, Company 

Brunei University. Private 
Communication 

Brunei University. Private 
Communication 

Brunei University. Private 
Communication 

The starting percent degenerate, a measure of a problems' degeneracy, is the percentage of starting "Right-hand 
side" vector entries that are zero. 

(**) Average CPU time to get an optimal solution by a series of runs is considered to take into account variations in 
timing caused by the business of the Prime Computer System 

-
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6.2.1 Boneh and Golan's method 

As mentioned earlier, this method attempts to identify the non-redundant 

constraints and labels the remaining unidentified constraints as 

redundant (possibly with some errors). The method, as originally suggested 

by Boneh, would stop after a certain number of iterations. The results 

show that more than 90% of the non-negativity constraints and more than 

70% of the structural constraints are identified as non-redundant. The 

method did very well in Identifying almost all the non-redundant constraints 

especially in terms of computation time, since it did not require any 

simplex pivots. 

The existence of extraneous variables in the problems affects the results 

by classifying some redundant constraints as non-redundant. This occured 

because of perturbing the problem where extraneous variables could have 

small positive values Inan interior feasible point. Also, the above 

results can arise when the direction from the interior feasible point 

to all constraints is along one of the extraneous variables. 

Also, as we mentioned.above· most of the non-negativity constraints are 

labelled as non-redundant, and that tells us very little about their 

variables since their values may turn out to be equal to zero or not. 

We believe that such a method with its design and purpose is not useful 

for Implementation in mathematical programming packages as a size-reduction 

technique. Therefore, we modified this method and implemented it in our 

extended reduce method to Identify redundant constraints instead of non­

redundant constraints, which becomes more helpful. 
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6.2.2 Klein and Holm's method 

This method attempted to identify extraneous variables and non-binding 

constraints by consecutive pairwise comparisons of columns and rows. As 

the tested problems.were different from the ones in the other methods in 

that they all had non-negative A matrix for this method, consequently we 

could not solve all the tested problems presented in table 6.1, using 

this method. 

The efficiency of this method depends on the rate of degeneracy and the 

number of variables with non-positive cost cdefficients. First, because 

of the non-negativity condition on the A matrix, any variable with a 

negative cost coefficient is extraneous. Secondly, in the non-negative 

constraints with a zero right-hand side, every positive entry corresponds 

to an extraneous variable. These variables and constraints may be 

dropped immediately, and therefore lower average execution times apply. 

The results show that this method Is not efficient in terms of size reduction 

rate and the computation time used, and that is due to the weakness in 

tightening the bounds on both primal and dual. Therefore, we believe 

this method is not helpful to be implemented alone as a reduction method 

in mathematical programming packages. We combined their tests in our 

improvements methods, within which they become more helpful in their 

reductions (see extended Williams procedure,chapter 4 and preprocessing 

reduction procedure for integer problems, chapter 5). 

6.2.3 Extended Sign Test Method 

As we mentioned earlier the extended sign test method Is an improved 

version of the sign test (Zionts and Wallenius, Telgen, Gal and Rubin) 



methods. A full comparative efficiency of each test and the extended sign 

method is reported In Ka rwan ~ 2.!.. (1983). 

The results show that test three Is not performed well in both degenerate 

and non-degenerate problems, In terms of nuumber of identifications. Although, 

test four performed very well in identifying a large number of the non-negatlvit~ 

constraints as non-redundant, it is not helpful for reducing the problem 

size, as we mentioned before regarding Boneh and Golan's method. The 

performance of test five is efficient in terms of number of identifications. 

The method identified more than 70% of the non-redundant constraints but not 

more than 40% of the redundant constraints in the early iterations (an 

iteration is a, series of tests between two pivots of the simplex algorithm). 

The method becomes less powerful as the number of Iterations increases, 

since the number of unsuccessful iterations (an iteration which didn't 

identify any constraints at its tests) increases and therefore more wasteful 

execution time is used. 

6.2.4 Hybrid Method 

This method is an improvemen't on the sign test methods, and consists of 

two parts. In the first part, one iteration is performed using the co­

ordinate direction method to identify some non-redundant constraints. In 

the second part, theE.S.,T.:, method is used to determine the status 

of the remaining constraints. 

The results show that the performance of this method is better than the 

extended sign test method in terms of the execution times. The efficiency 

of the method is due to the power of the first part which identified more than 
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65% of the total constraints at an average execution time about 10% 

of the total testing time. However, in the second part of the method 

the number of iterations is less than the number of iterations performed 

in the extended sign tests method. The unsuccessful iterations and the 

method of identifying redundant constraints In the Hybrid method have the 

same characteristics as In the extended sign test method. 

6.2.5 Reduce Method 

The Reduce method reduces the problem size (when possible) While solving the 

problem. The reductions are achieved by identifying redundant as well as 

non-binding constraints and extraneous variables. The results of this 

method are presented in table 6.2 

As can be seen from table 6.2, the size reduction ranges between zero 

(problem 9) and 99% (problem 17) and the overall size reduction is 58.21%. 

The times range between -14% le. 14% more execution time used (problem 13) 

and 90% (problem 17) and the overall reduction is 34.53% (about 51. less 

than in the simplex methods). The reasons which affect the success of the 

reduce method are the extra execution time due to repeating the processing 

of the tests (steps 2 - 6) with no more identifications, the unhelpful 

tests (step 4 and step 6), and more unhelpful. iterations (the iteration with 

fewer number of identification, comparing with the size of the reduced 

problem). Also, the number of iterations of the reduced problem is about 

15% lower. Finally, the structure of the problemsat hand have greatly 

affected the results of the reduce method. 
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oblem 

(20x30) 

(27x48) 

(17x40) 

( 45x37) 

(30x44) 

(35x50) 

( 46x63) 

(59x79) 

(40x94) 

(21xl15) 

(56x125) 

(64xI33) 

(90x137) 

(100x130) 

(100x140) I 
(140xI80) I 

I ( 180x249) I 
(200x290) 

I 
! 
I 

(230x300) 
I 
I 
I 
I 

In I 

Table 6.2 

Results of the Reduce Method 

Dimension 
Row Col umn 

17 23 

17 25 

17 14 

17 14 

29 25 

24 29 

38 35 

49 42 

40 94 

21 32 

20 40 

59 106 

89 126 

49 48 

33 30 

123 137 •. 
29 16 

175 68 

130 128 

51.37 54.32 

'Size (mxn) 
Actual Reduced 

600 391 

1296 425 

680 238 

1665 238 

1320 1015 

1750 696 

2898 1330 

4661 2058 

3760 3760 

2415 672 

7000 800 

8512 6254 

12330 11214 

13000 2352 

14000 990 

25200 16851 

44820 464 

58000 11900 

69000 16640 

14363.53 4120.42 
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% Size Reduction 

35 

67 

65 

86 

23 

60 

54 

56 

0 

72 

89 

27 

10 

82 

93 

33 

99 

79 

76 

58.21 



Problem I terat ions 

(20x30) 17 

2 (27x48) 19 

3 ( 17x40) 5 

4 (45x371 8 

5 (30x44) 19 

6 (35x50) 24 

7 (46x63) 21 

8 (59x79) 40 

9 (40x94) 14 

10 (21xI15) 5 

11 (56xI25) 36 

12 (64xI33) 12 

13 (90x137) 13 

14 (100xI30) I 17 

15 (100xI40) I 14 

16 ( 140x180) 
\ 

25 

17 (180x249) i 20 
I 

18 (200x290) I 70 

19 (230x300) 90 

Mean 24.37 

Table 6.2 (continued) 

Time (sec) 
Testing .. Total 

0.727 1.227 

0.860 2.4 

1.0 2.2 

1.0 1.95 

0.9 3.3 

0.9 3.75 

1.3 3.6 

1.3 5.0 

0.25 6.25 

1.3 4.0 

2.7 10.5 

1.5 6.5 

1.4 8.0 

1.7 5.6 

2.0 3.4 

1.5 15.75 

2.2 3.7 

2.4 15.75 

3.75 21.9 

1.51 6.57 
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% Time Reduction 

39 

40 

28 

41 

30 

20 

23 

50 

-6 

32 

41 

4 

-14 

37 

51 

29 

90 

59 

62 



6.2.~ Williams' Procedure 

Williams' procedure attempts to reduce the size of the problem by 

removing extraneous variables and non-binding constraints. Moreover, 

singleton rows and columns are replaced by primal and dual variable bounds, 

respectively. The results of Wllliams' procedure are summarised in table 

6.3. 

As can be seen the procedure reduces the size of the problems to about "'. 

49.31%. The overall average execution time reduction is 25.78%, with 

an average of 9.1 seconds (about 33% less than in simplex methods). The 

average number of iterations for all the problems is 27.0 (about 34% 

less than in simplex methods). 

The success of Wllliams' procedure depends on the~tent of tightening of 

the bounds on the dual variables and the structure of the problems, such 

as degeneracy (on the optimality) and redundancy. Also the number of 

variables which have been fixed are non-zero values (problems 4, 11 and 15) 

affects the number of iterations and consequently the execution time. Also 

it should be noted that the average reducing time is 0.75 seconds which is 

about 50% less than the reducing'time in the Reduce method (an"ave,age 

of 1. 5. second) 

finally, the performance of Wllliams' procedure could be better with 

problems of mixed types of constraints (le. ~, = and ~) where more and 

better bounds are tightened on both primal and dual variables. 
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Table 6.3 

Results of Williams' Procedure 

Problem DImension· Size (mxn) % Size Reduction 
Row Column c Actual Reduced 

1 (20x30) 20 21 600 420 30 

2 (27x40) 17 34 1296 578 55 

3 (17x40) 6 26 680 156 77 

4 (45x37) 37 22 1665 814 51 

5 OOx44) 15 31 1320 465 65 

6 05x50) 22 29 1750 638 64 

7 (46x63) 19 44 2898 836 71 

8 (59x70) 30 62 4661 1860 60 

9 (40x94) 28 94 3760 2632 30 

10 (21xllS) 21 115 2415 2915 0 

11 (S6x125) (*) 7000 100 

12 (64x133) 64 133 8512 8512 0 

13 (90xI37) 89 126 12330 11214 9 

14' (100xI30) 20 105 13000 2100 84 

15 (100xI40) 26 23 14000 598 96 

16 ( 140x180) 100 148 25200 14800 41 

17 ( 180x249) 134 221 44820 29614 34 

18 (200x290) 170 262 58000 44540 23 

19 (230x300) 152 265 69000 40280 42 

Mean 51.05 92.69 14363.53 8551.16 49.31 

(*) Problem is solved during the reduction procedure. 
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Table 6.3 (continued) 

Problem I terat ions Time (sec) % Time Reduction 
Reducing Total 

(20x30) 15 0.4 1.55 23 

2 (27x48) 17 0.4 2.3 43 

3 ( 17x40) 5 0.4 2.8 10 

4 (45x37) 5 0.4 2.6 20 

5 (30x44) 15 0.4 3.0 38 

6 05x50) 20 0,4 3.5 25 

7 (46x63) 20 0.5 3.6 22 

8 (59x79) 40 0.5 5.3 47 

9 (40x94) 14 0.5 6.75 -10 

10 (21xl15) 8 0.8 6.55 -13 

11 (56x125) (*) 0 1.15 1 ; 15 94 

12 (64x133) 12 0.6 7.4 -9 

13 (90xl37) 13 0.7 7.'),. -3 

14 (100x130) 16 0.7 6.5 27 

15 (100x140) 9 0.8 2.5 66 

16 (140x180) 25 1.2 17.5 20 

17 (180x249) 80 1.3 29.0 17 

18 (200x290) 100 1.5 32.0 29 

19 (230x300) 100 1.7 32.0 44 

Mean 27.0 0.75 9·10 25.78 

(*) Problem is solved during reduction procedure 
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6.2. Z Extended Reduce Method 

The extended reduce method reduces the problem size (when possible) while 

solving the problem and this Is achieved by removing redundant as well as 

non-binding constraints and extraneous variables. This method Is an 

improvement on the earlier Reduce method made by not considering some 

unsuccessful tests and implementing a modified version of the co-ordinate 

direction method at certain steps if necessary to identify redundant 

constra ints. 

Table 6.4 presents the results of the extended reduce method. As can be 

seen from table 6.4, the overall average size reduction is 56% which is 

about the same as the reduce method achieved, and that is due to 

performing less Iterations during processing than the Reduce method. The 

extended reduce method attempts to minimise the number of unhelpful iterations 

(defined in section 6.2.4) by terminating the processing tests after one 

unhelpful iteration. Step six (modified co-ordinate direction method) is 

helpful in Identifying more redundant constraints (if possible) at earlier 

iterations than in the Reduce method. Also, this step depends on the 

structure of the problem, since such redundant constraints exist only when 

the pivot ratio Is not unique (problems 13, 18 and 19). Removing such 

redundant constraints at early iterations could lead us to identify more 

extraneous varIables (problem. 19) earlier than in the Reduce method. 

An important consequence of the extraneous variables and non-binding 

constraints is the decrease in the number of simplex iterations. This 

may be explained by comparing the results of the extended reduce method 

with those of the simplex method (table 6.1). As can be seen from these 

tables, in the problems with lower reductions (problems 1 and,), the 

numbers of iterations are the same or only slightly different. On the 
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other hand, In problems with higher reductions (problems 17, 18 and 19) 

large differences are found In the number of Iterations between the extended 

reduce method and the simplex method. However, the number of Iterations overal 

for the problem is about 50% (averaging 23.90) less than that of the simplex 

methods (averaging 40.84). The reason that the extended reduce method has 

fewer iterations Is the elimination of more extraneous variables. 

Minimising th~ number of unhelpful iterations during the tests may avo,ild 

extra wasteful execution time by not repeating the tests for more than 

one pass at each Iteration, and not considering steps 4 and 6 of the 

Reduce method in our extended reduce method. Also step 6 is successful 

(modified co-ordinate direction method) in identifying redundant constraints 

(if they exist) and achieving more el iminations of extraneous variables, 

with· consequently smaller numbers of iterations to be performed. The 

total execution times to solve overall the problems has been reduced by 

44.42%. The overall average reducing processing time Is 0.52 seconds 

(about 67% less than in reduce method). The overall average total execution 

time is 5.74 seconds (about 13% less than in the reduce method and 57% less 

than In"the simplex methods. 
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Table 6.4 

Results of the Extended Reduce Method 

Problem Dimension Size (mxn) % Size Reduction 
Row Co I umn Actual Reduced 

1 (20x30) 17 23 600 391 35 

2 (2]x48) 17 25 1296 425 67 

3 (17x40) 17 14 680 238 65 

4 (45x37) 44 17 1665 748 55 

5 (30x44) 29 35 1320 1015 23 

6 (35x50) 25 29 1750 725 59 

7 (46x63) 44 40 2898 1160 39 

8 (59x79) 49 43 4661 2107 55 

9 (40x94) !la 94 3760 3760 0 

10 (21xl15) 21 32 2415 672 72 

11 (56xI25) 53 50 7000 2650 62 

12 (64x 133) 60 90 8512 5400 37 

13 (90xl37) 69 126 12330 8964 29 

14 (100x130) 51 48 13000 2448 81 

15 (100xI40) 33 33 14000 1089 92 

16 (140xI80) 123 137 25200 16851 33 

17 (180x249) 29 16 44820 464 99 

18 (200x290) 120 68 58000 8160 86 

19 (230x300) 111 131 69000 . 14541 79 

~ean 50. 11 55.32 14363.53 3782.53 56.21 
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Table 6.4 continued 

Problem Iterations Time (sec) % Time Reduction 
Testing Total 

(20x30) 17 0.3 1.1 45 

Z (27x48) 19 0.4 1 • 15 71 

3 ( 17x40) 5 0.4 1.8 42 

~ (45x371 9 0.15 1.8 46 

5 (30x44) 19 0.25 2.45 50 

) (35x50) 24 0.3 3.2 34 

7 (46x63) 22 0.4 3·0 38 

B (59x79) 40 0.35 4.5 55 

~ (40x94) 14 0.15 6.15 -2 

10 (21xI15) 5 0.35 3.4 42 

11 (56xI25) 36 0.45 9.0 49 

12 (64xI33) 12 0.45 6.0 12 

13 (90xI371 13 0.5 7.4 -5 

14 (100xI30) 17 0.5 5.0 44 

15 (100xI40) 14 1.0 2.7 63 

16 (140xI80) 25 0.75 15.5 30 

17 ( 180x249) 16 1.0 3.0 92 

18 (200x290) 65 1. 15 14.0 69 

19 (230x300) 82 1.1 18.0 69 

Mean 23.90 0.52 5.74 44.42 
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6.2.S Extended Williams Procedure 

As we mentioned before this procedure is a new version of Will lams' 

procedure by combining the test of Klein and Holm (1975) to identify 

extraneous variables. 

The results of this procedure are presented in table 6.5. As can be 

seen from table 6.S, the overall average size reduction is 74.47% which 

is about 25% more than Wllliams' procedure reduced. Specifically, as 

can be seen from table 6.3, Williams' procedure had 0% size reduction 

on problems 10 and 12. On the other hand, the extended Williams' 

procedure reduced the size problems 10 and 12 by 72% and 37% respectively. 

The results from these two problems explain many reasons such as the 

difference in size reductions between the two procedures. Williams' 

procedure fails to tighten any bounds on the dual variables and only 

bounds on the primal variables have been tightened; with fewer redundant 

constraints being removed. While the extended procedure (on these problems 

10 and 12) identified more extraneous variables and more "redundant" 

constraints have been removed consequently, some bounds on the dual variables 

have been tightened In the successive passes, giving the whole procedure 

more strength in fixing more variables. 

To discuss the performance of extended Williams' procedure in terms of 

the execution time, Table 6.5 shows that the overall average execution 

time reduction is 54% (about 28% more than Williams'procedure). The 

average number of iterations over all the problems is 18.27 (about 8.33% 

less than in Williams' procedure). The average of the total execution 

is 5.5 seconds (about 40% less than in Williams' procedure and 60% less 

than in simplex methods). 
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The success of the extended Will iams procedure over Williams' 

procedure, as the results show is due to the size reduction, the number 

of iterations and the amount of the execution time used in reducing the 

problems. It is quite clear that more size reduction achieved may 

result in less execution time to solve the reduced problems (problems 

4 and 11 have been reduced and solved during the procedure). However, 

the number of iterations is affected by the number of variables (extraneous 

and non-extraneous) which have been removed from the problems (problems 

5 and 16). Consequently, such effects on the number of iterations will 

lower the execution time to solve the reduced problems. However, the 

amount of execution time used In reducing the problems is not affected 

by the computation times used in the pairwise comparisons between 

columns. The average amount of such execution times by the extended 

Williams'procedure is 6% and 5% by Williams' procedure of the average 

amount of the execution time by the simplex methods, and that is due 

to programming and designing such pairwise comparisons in a way to avoid 

wasted execution time. Also, the phase is terminated after one 

unsuccessful pass, and part two Is not to be performed if neither any 

singleton columns nor "redundant" constraints with non-zero shadow 

prices have been removed. Finally, the structure of the problems may 

affect both WIIliams' and extended Williams' procedure. 
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Table 6.5 

Results of the Extended Williams Procedure 

Problem Dimension Size (mxn) % Size Reduction 
Row Column Actual Reduced 

1 (20x30) 17 21 600 420 30 

2 (27x48) 17 20 1296 340 74 

3 (17x40) 6 23 680 138 80 

4 (45x37) (*) 1665 100 

5 (30x44) 13 12 1320 156 88 

6 (35x50) 21 5 1750 105 94 

7 (46x63) 19 21 2898 399 86 

8 (59x79) 24 8 4661 192 96 

9 (40x94) 28 80 3760 2240 40 

10 (21xI15) 21 32 2415 672 72 

11 (56xI25) (*) 7000 100 

12 (64xI33) 60 190 8512 5400 37 

13 (90xI37) 89 126 12330 11214 9 

14 (100xI30) 20 65 13000 900 93 

15 (100xI40) 23 13 14000 299 98 

16 (140xI80) 84 35 25200 2940 88 

17 (180x249) 133 44 44820 5852 87 

18 (200x290) 118 160 58000 18880 67 

19 (230x300) 126 130 69000 1638Q 76 

Mean 48.37 54.15 14363.95 3591. 95 74.47 

(*) Problem is solved durin!L reduction procedure 



Table 6.5 (continued) 

Problem I terat ions Time (sec) % TIme Reduction 
Reducing Total 

1 (20x30) 15 0.45 1.6 20 

2 (2]x48) 17 0.50 2.1 50 

3 (17x40) 5 0.55 2.2 30 

4 (45x37) (*) 0 0.65 0.65 80 

5 OOx44) 11 0.55 2.0 59 

6 (35x50) 5 0.55 1.5 69 

7 (46x63) 13 0.60 1. 55 68 

8 (59x79) 8 0.65 1.55 85 

9 (40x94) 14 0.70 5.75 5 

10 (21xI15) 5 0.75 2.5 57 

11 (56xI25) (*) 0 1.0 1.0 95 

12 (64xI33) 12 0.75 6.0 12 

13 (90xl37) 13 0.70 7.3 -2 

14 (100xI30) 17 0.75 5·5 38 

15 (100xI40) 8 0.85 1.8 76 

16 (140xI80) 9 1.3 2.8 88 

17 (180x249) 44 1.4 10.0 72 

18 (200x290) 65 1.65 24.0 47 

19 (230x300) 90 1. 85 24.0 58 

Mean 18.27 0.85 5.5 54.0 

(*) Problem is solved during the reduction procedure 
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6.2.9 Preprocessing Reduction Procedure for Integer Problems 

This procedure reduces the size of integer problems (when possible) by 

tightening the bounds on primal variables and constructing new formulae 

to use only the primal bounds to fix the variables at their bounds. 

Extraneous variables and redundant constraints as well as non-binding 

constraints are removed, where the test of Klein and Holm (condition 3.2.1.6) 

is used to identify non-binding constraints. This reduct10n procedure 

is Implemented prior to solving the integer problems by the established 

techniques. 

The results of this reduction procedure are summarised in table 6.7. As 

can be seen from this table, the overall average size reduction is 65.67% 

and the overall average execution time is 50%. The performance of the 

procedure in terms of the size is dependent on the structure of the problems, 

where tighter bounds on the primal variables required ·by the formulae 

(5.1.2 - 5.1.3) to fix integer variables at their bounds, and condition 

(3.2.1.6) to identify non-binding constraints. However, the amount of 

size reduction is affected by the performance of the reduction procedure 

in terms of the execution times. The numbers of branches and iterations 

have much effect on the total execution times. The overall average of 

the total execution times is 18.86 seconds (about 55% less than by the simplex 

methods and Branch-and-Bound algorithms). Also, as can be seen from the table 

6.7, in problem 5, 62% of Its size has been reduced, while 30% of its former 

execution time has been reduced,· and that is due to no change in the number 

of branches and iterations. Also, the effectiveness of the number of branches 

and iterations may be seen from problem 9, where 41% of its size has been 

reduced and 76% of its former execution time has been reduced and that is due 

to the changes in the number of branches (about 78% less) and in the number 

of iterations (about 74% less). Therefore, the reduction process will 
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result in problems which require fewer branches and iterations and 

consequently much less execution time. 
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Problem 
No. 

2 

3 

4 

5 

6 

7 

8 

9 

19 

11 

12 

Mean 

Table 6.6 

* Characteristics of Tested Integer Problems 

Dimension 
Row Col umn 

9 19 

15 11 

13 20 

19 20 

20 25 

27 28 

20 44 

29 63 

56 80 

89 137 

109 160 

140 180 

45.5 

No. of non-zero 
Elements 

78 

88 

70 

87 

61 

96 

139 

217 

320 

463 

519 

582 

226.67 

,. 

No, of No, of CPU time 
Iterations Branches (sec) 

17 43 7.5 

34 37 7.0 

30 13 4.2 

11 3 2.20 

8 2.0 

7 5 2.9 

30 39 7.5 

125 217 42.0 

291 483 123.5 

136 210 188.0 

114 99 70.53 

64 60 50.45 

71.42 100.83 43.32 

* These problems are modified versions of the problems in Table 6.1 
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Problem 

I (9xI9) 

2 (15xl1) 

3 ( 13x20) 

4 (10x20) 

5 (20x25) 

6 (27x28) 

7 (20x44) 

8 (29x63) 

9 (56x80) 

10 (89x137) 

11 (109xI60) 

12 (140xI80) 

Mean 

Table 6.7 

Results of Preprocessing Reduction Procedure 

Dimension 
Row Column 

6 2 

3 3 

11 8 

11 7 

10 19 

10 16 

17 25 

11 20 

53 50 

88 109 

62 136 

110 140 

32.67 44.58 

137 

Size (mxn) 
Actual Reduced 

1 71 12 

165 9 

260 88 

380 77 

500 190 

756 160 

880 425 

1827 220 

4480 2650 

12193 9592 

17440 8432 

25200 15400 

5354.33 3104.58 

% Size Reduction 

93 

95 

66 

80 

62 

79 

52 

88 

41 

21 

52 

59 



Table 6.7 (continued) 

Problem No of No of Time (sec) % Time Reduction 
I terat Ions Branches Reducing Total 

(9xI9) 3 5 0.5 3.0 60 

2 (15x 11) 9 9 0.7 3.0 57 

3 (13x20) B 2 0.8 1.65 61 

4 (19x20 4 0.3 1.36 3B 

5 (20x25) 8 0.35 1.4 30 

6 (27x2B) 7 3 0.4 1.95 33 

7 (20x44) 16 9 0.5 4.0 47 

B (29x63) 64 87 0.80 18.0 57 

9 (56xBO) 76 lOB 1. 35 29.0 76 

10 (B9x137) 148 175 1.66 100 47 

11 (1 09x 160) 43 62 1.77 30.0 57 

12 ( 140x180) 48 46 2.0 32.0 37 

. Mean 30.17 42.33 0.9318.86 50.0 
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CHAPTER VII 

Conclusions and Recommendations For Further Research 

The principle objective of the research reported in this thesis was to ascertain 

how successfully, size-reduction techniques could be implemented in mathematical 

programming packages. To achieve this goal, we selected the most promising 

size-reduction techniques studied them and tested some of them on some Linear 

programming problems with different characteristics,obtained from different 

sources. Consequently, we were able to determine the performance of these 

techniques. 

The test process enabled us to determine the most efficient size-reduction 

techniques. During this process we determined some modifications for extensions 

and improvements to these techniques. 

The test process enabled us to determine the most efficient size-reduction 

techniques. During this process we determined some modifications for extensions 

and improvements to these techniques. The details of our extensions were 

presented in Chapters IV and V. We then tested these methods and compared 

their results with the earlier ones. The results and the discussion on all 

techniques are presented in Chapter VI. 

Now we present a summary of the conclusions made for the various techniques. 

Also we discuss possible changes for future improvements and extensions. 

7.1 Summary and Conclusions 

Although Boneh and Golan's method did very well in terms of computation 

time, their results indicated some error in the identifications. 
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Holm and Klein's method required problems with non-negative constraint coefficients 

and right-hand side sectors. The results show that, this method is not so 

efficient in terms of size-reduction rates and computation times. 

The extended sign tests and Hybrid methods performed equivalently, but their 

results are not useful for our objective study. 

The results of the Reduce method indicated that the success of this method 

over the simplex ·depends on the structure of the problem. 

However, the results of the extended reduce method are slightly different 

from the Reduce method in terms of size reduction. The extended reduce method 

is more successful over the Reduce method in terms of computation times. 

Moreover, it was indicated that on the average, both methods have a faster 

convergence rate than the simplex method. 

However, the results of Williams' and the extended Williams procedures indicated 

that tightening of better bounds on primal and dual variables depends on 

the structure of the problems, and affects the performance of reductions. 

The extended Will iams procedure showed consistent superiority over the Williams' 

procedure in terms of size and time reductions. 

The improvement called preprocessing reduction procedure for integer problems 

attempted to reduce the size of integer problems using only the primal bounds, 

prior to solving the problems by the establ ished techniques. The results 

indicate a reasonable success over the simplex and Branch-and-Bound techniques. 

From the proceeding a general conclusion may be reached that implementing 

such ~~duction techniques in mathematical programming packages could be 

desirable with large. size problems rather than small problems from the economical 

view. 
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7.2 Recommendtions for Future Research 

In the previous section, we presented the conclusions of some of the size-reduction 

techniques studied in this thesis. In this section we present some ideas 

which may result In further extensions and improvements to the existing methods. 

We restrict our discussions to those methods which appear most useful in 

our objective study. 

The Reduce and the Extended reduce method may be utilized in a number of 

different ways. Among the most promising approaches is one in which a certain 

number of tests are no longer employed when their efficiency falls below 

a specified level. Of course, the level at which the test is discontinued 

must be determined empirically. 

Another approach is to use these two methods for partial classification. 

This may be achieved by terminating the methods after a certain ~umber of 

iterations. The number of iterations at which the processing stops is a 

function of the problem size and should be determined through further investigations. 

Also, another extension to these two methods consists of obtaining the maximum 

possible reduction for a given problem. In that case, the Reduce and the 

Extended reduce methods are used in a fashion similar to that of the Extended 

sign test method. Namely, we attempt to minimize the slack variable associated 

with each constraint. However, we include the tests which identify the extraneous 

variables and update the objective function at each iteration as well. 

As in Thompson and Sethi 's method the candidate constraints were those which 

contained a pivot element in columns with potential variables for entering 

into the basis. 
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These constraints were updated at each iteration. The remaining constraints, 

called non-candidate, were not updated with the hope that they would never 

become violated. In fact, we may implement the tests which are used in Extended-

Reduce method to identify redundant constraints on the set of the non-candidate 

constraints only. 

Now, we discuss the possible improvements to Holm and Klein's method, Williams 

and Extended Williams procedures. 

Holm and Klein's method was restricted to the specially-structured problems 

due to the lack of bounds on variables in the other problems (those with 

a general A matrix). However these bounds may be obtained in a fashion similar 

to that of Williams' procedure. One may utilize the complementary slackness 

theorem to obtain better bounds on all of the variables. That is, the optimal 

objective function value may be written as 

* * ex = W b 

* * where X and Ware the values of the primal and dual variables at optimality. 

Using the above relationship in conjunction with bounds on some variables 

we may obtain bounds on the other variables. The above equality may be written 

as an inequality in either direction (I.e., i, l) depending on the existing 

bounds and the desired new bounds. 

The above utilization may be implemented to improve the bounds in Williams' 

and Extended Will iams procedures. 

Finally, another extension to Williams' procedure and Holm and Klein's method 

is to combine the methods with each other and utilize the above procedure 

for obtaining better bounds as well. 
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In that case, after the bounds have been tightened Holm and Klein's method 

may be used to remove some extraneous variables and nonbinding constraints. 

Then, Williams' procedure is applied to the remaining constraints and variables 

to reduce the problem further. 
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APPENDIX A 

In this Appendix, some details of the necessary arrays used in the Sciconic 

Algorithmic Tools Library (SATL) and the specification of the commands to 

run the package are presented. 

SCICONIC/VM was designed to be implemented in a highly modular fashion, so 

that extensions and enhancements could be easily incorporated. In order 

to help the user to be able to create FORTRAN routines of his own employing 

the primitives of the SCICONIC/VM SATL, the user must have an understanding 

of the design concepts behind SC1CONIC/VM, in particular those behind SCICONIC/VM's 

algorithmic routines. 

The variables used by SCICONIC/VM may be accessed via their associated ACCESS 

KEYS. The inclusion statement takes the form: 

include keyword) <file name specification) 

where <include keyword) is $INSERT (in Prime Computer System), 

<filename specification) may well be filename. In almost all cases, 

the filename for an entity with access key AAAAAA will be of the form PDPAAAAAA. 

An example, suppose the array PARAMS is required in a routine. Then the 

statement 

$INSERT SCICON ) S ) PDPPARAMS 

should appear in the Source Code. 

To describe the data structure created in core ready for an algorithmic routine 

to access, first, some preliminary sizing definitions are given: 
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NROW The number of rows in the in-core matrix (including the 

objective function row which is row KPTOBJ) 

NSEQ - The total number of vectors in the in-core matrix (i.e. 

slacks, structural vectors and any range vectors (q.v.) 

created). 

Now, we describe some of the main necessary Arrays used in the SATL for the 

access of matrix elements: 

NAME TYPE ACCESS KEY USE 

POOL real*8 POOL Pool of unique element values 

BETA " BETA Right-hand sides 

MRKEY integer*2 MRKEY Key information of variable 

basic in this row. 

MCKEY integer*2 MCKEY Column key information. 

MRWME i nteger;'2 MATRIX ) Parallel arrays, MRWME contail 
) 

MPTME " " ) row number whose element in 
) 
) POOL is indexed by MPTME. 

MSMEL integer*4 " Start of column information 

in MRWME/MPTME. 

MSKMEB integer*2 " Skip value: 0 for rows 

if no UB/Cos t 

2 if UB and/or Cos 

The input for the simplest SCICONIC run can be considered as being made up 

of two parts: 

1. Input Data: This contains the actual problem to be solved in coded form. 

The data of the LP problem has to be input from the matrix fo coefficients. 
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The data must be Input to a file created by the editor and then the file 

created is used by SCICONIC. In fact, we shall not discuss the details 

of the input data in this Appendix. 

2. Control Commands: Within this part commands required to run the package 

are made. Assuming we have a file of data and we wish to run the LP 

problem. We start by accessing the package. We type 

SCICONIC 

we get a prompt of (these prompts continue throughout the run) 

1 I ) 

we type INFILE = 'MYOATA' 

(MYOATA is the file in the UFO to which we are attached, quotes are mandatory) 

and it prompts 

21 ) 

and we type CONVERT 

(this command will load the input data from the data-file on the problem 

file and it will focus on possible data errors), and it replies with 

information and them prompts 

31 ) 

we type SETUP (MAXIMISE/MINIMISE) 

(this command will load the problem into core from the problem file) 

and it replies with information and then prompts 

41 ) 

we type PRIMAL 

(it will try to solve the problem, printing out some information such 

as number of iterations •.•• etc) and then prompt 
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51 ) 

we type PRINTSOLN 

(It will. print out detai Is of the solution). When complete we received 

the prompt 

61 ) 

we conclude the Session with STOP 

It replies ****STOP then OK. 

To run an integer program, basically the same procedures are used as 

for LP. The main exceptions are:-

(i) In the input data, each variable must be declared as integer and 

specified under the bounds section. 

(i il In the program commands, the PRIMAL is followed by the command GLOBAL. 

This performs the Branch-and-Bound algorithm until a solution is 

reached (or the problem is declared infeasible). Subsequent solutions 

are found by repeating the GLOBAL command. 

Now, if we wi5h to execute the 'SUBROUTINE USER' which the tests have been 

built into, we type USER after the problem has been loaded into core by SETUP, 

and before we type PRIMAL or GLOBAL. 

All the above commands will be shown by solving the problem in Appendix B. 
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APPENDIX B 

In this Appendix, one tested problem is selected. Its original data 

and computer results to get an optimal solution with and without reducing 

the problem by Extended Williams procedure, are presented. Then the program 

listings of the three main extended methods (Extended Reduce method, Extended 

Williams procedure and Preprocessing Reduction procedure) respectively, are 

presented. 

All computation work was carried out on the PRiME 400 Computer System at 
<. 

Loughborough University of Technology. 
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1E 
IS 
_ ROOOl 
_ R0002 
_ R0003 
_ R0004 
_ R0005 
_ R0006 

R0007 
_ R0008 
_ R0009 
_ R0010 
_ ROOl1 
_ R001Z 
_ R0013 
_ R0014 
_ R0015 
_ R0016 
_ R0017 
_ R0018 
_R0019 
_ R0020 
L R0021 
_ R0022 
L. R0023 
L. R0024 
L R0025 
L R0026 
L ROOZ7 
L R0028 
L R0029 
L R0030 
L R0031 
~ R0032 
L R0033 
_ R0034 
Co R0035 
_ R0036 
L k0037 
_ R0038 
L R0039 
L. R0040 
L R0041 
L R0042 
L R0043 
L R0044 
I.. R0045 
L R0046 
L R0047 
L R0048 
L R0049 
L R0050 
L R0051 
L R0052 
L R0053 
L,R0054 
L R0055 
L R0056 
N OBJ 

QA4RT32 
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JMNS 
COOOl ROOOl 1,000000 
COOOl ROOO2 1,000000 
COOOl ROO06 1,000000 
COOOl ROO07 1,000000 
COOOI R0048 1,000000 
COOOI R0054 0,880000 
COOOl R0056 0,880000 
COO02 ROO03 1,000000 
COO02 ROOO4 1,000000 
COO02 ROOO5 1.000000 
COO02 ROO07 1,000000 
COO02 ROO08 1,000000 
COO02 R0049 1,000000 
COO02 R0054 0,926667 
COO02 R0056 0,926667 
COO03 ROO03 1,000000 
COO03 ROOO4 1,000000 
COO03 ROO05 1,000000 
COO03 ROO18 1,000000 
COO03 ROO19 1,000000 
COO03 R0049 1,000000 
COO03 R0054 0,948889 
COO03 R0056 0,948889 
COO04 ROOO3 1,000000 
COO04 ROOO4 1,000000 
COO04 ROOO5 1,000000 
COOO4 R0020 1.000000 
COO04 R0021 1,000000 
COO04 R0022 1,000000 
COO04 R0049 1,000000 
COO04 R0054 1,000000 
COO04 ROOS6 1,000000 
COO05 ROOO3 1,000000 
COO05 ROO04 1,000000 
COO05 ROO05 1.000000 
COO05 R0021 1,000000 
COO05 R0022 1,000000 
COO05 R0049 1,000000 
COO05 R0054 0,948889 
COO05 R0056 0,948889 
COO06 ROO07 1,000000 
COO06 ROOO8 1,000000 
COO06 ROO13 1,000000 
COO06 ROO14 1,000000 
COO06 ROO15 1,000000 
COO06 R0049 1,000000 
COO06 R0054 0,971111 j 

COO06 R0056 0,971111 
COO07 ROO13 1,000000 
COO07 ROOl4 1,000000 
COO07 ROO15 1,000000 
COO07 R0020 1,000000 
COO07 R0021 1,000000 
COO07 R0022 1,000000 
COO07 R0049 1,000000 
COO07 R0054 1.044444 
COO07 R0056 1,044444 
COO08 ROO13 1,000000 
COO08 ROO14 1,000000 



COO08 ROO15 1 .000000 
COO08 R0021 1.000000 
COO08 R0022 1.000000 
COO08 R0049 1.000000 
COO08 R0054 0.993333 
COO08 R0056 0.993333 
COO09 ROO16 1.000000 
COO09 ROO17 1.000000 
COO09 R0031 1.000000 
COO09 R0032 1.000000 
COO09 R0051 1.000000 

. COO09 R0055 0.906667 
COOI0 ROO08 1.000000 
C0010 R0010 1.000000 
COOI0 ROO11 1.000000 
C0010 ROO12 1.000000 
COOI0 R0052 1.000000 
C0010 R0056 0.860000 
C0011 ROO08 1.000000 
C0011 ROO36 1.000000 
COO11 R0037 1.000000 
COOll R0038 1,000000 
COO11 R0052 1.000000 
COO 11 R0056 0.824444 
COO12 ROO08 1.000000 
COO12 ROO09 1.000000 
COO12 ROO11 1.000000 
COO12 ROO12 1.000000 
COO12 R0052 1.000000 
COO12 R0056 0.837778 
COO13 ROO08 1.000000 
COO13 . ROO09 1.000000 
COO13 R0037 1.000000 
COO13 R0038 1.000000 
COO13 R0052 1.000000 
COO13 R0056 0.824444 
COO14 ROO08 1.000000 
COO14 ROO09 1.000000 
COO14 R0039 1.000000 
COO14 R0040 1.000000 
COO14 R0041 1.000000 
COO14 R0052 1.000000 
COO14 R0056 0.891111 
COOlS ROO08 1.000000 
COOlS ROO09 1.000000 
COOlS R0040 1.000000 
COOlS R0041 1.000000 
COOlS R0052 1.0UO(JOO 
COOlS R0056 0.866667 
COO16 ROOlO 1 1 000000 
COO16 ROO11 1.000000 
COO16 R0026 1 + OOi)OOO 
COO16 R0027 1.0(H)OOO 
COO16 R0028 1.000()(lO 
COO16 R0052 1.000000 
COO16 R0056 0.915556 
COO17 ROOI0 1.000000 
COO17 ROO11 1.000000 
COO17 ROO12 1.000000 
COO17 R0026 1.000000 
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COO17 R0027 1.000000 
COO17 R0028 1.000000 
COO17 R0052 1.000000 
COO17 R0056 1.044444 
COO18 R0024 1.000000 
COO18 R0025 1.000000 
COO18 R0026 1 .000000 
COO18 R0027 1.000000 
COO18 R0028 1.000000 
COO18 R0052 1.000000 
COO18 R0056 0.882222 
COO19 R0026 1.000000 
COO19 R0027 1.000000 
(:0019 R0028 1.000000 
COO19 R0030 1.000000 
COO19 R0031 1.000000 
COO19 R0052 1.000000 
COO19 R0056 0.920000 
C0020 R0026 1.000000 
C0020 R0027 1.000000 
C0020 ROO28 1.000000 
C0020 R0037 1.000000 
COO20 R0038 1.000000 
C0020 R0052 1.000000 
C0020 R0056 0.831111 
C0021 R0026 1.000000 
C0021 R0027 1.000000 
C0021 R0028 1.000000 
C0021 R0039 1.000000 
C0021 R0040 1.000000 
C0021 R0041 1.000000 
C0021 ROO52 1.000000 
C0021 R0056 0.897778 
COO22 R0023 1.000000 
C0022 R0024 1.000000 
COO22 R0025 1.000000 
COO22 R0033 1.000000 
C0022 R0034 1.000000 
C0022 R0053 1.000000 
COO22 ROO56 1.064444 
C0023 R0029 1.000000 
COO23 R0030 1.000000 
C0023 R0032 1.000000 
COO23 R0033 1.000000 
C0023 R0034 1.000000 
C0023 R0053 1.000000 
C0023 R0056 1.055556 
(0024 R0029 1.000000 
C0024 R0030 1.000000 
C0024 R0042 1.000000 
C0024 R0043 1.000000 
C0024 R0044 1.000000 
(0024 R0053 1.000000 
(0024 R0056 1.000000 
C0025 R0029 1.000000 
(0025 R0030 1.000000 
C0025 R0031 1.000000 
C0025 R0043 1.000000 
C0025 R0044 1.000000 
C0025 R0053 1.000000 
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C0025 R0056 1.011111 
C0026 R0029 1,000000 
C0026 R0030 1,000000 
C:0026 R0031 1,000000 
C0026 R0046 1,000000 
C0026 R0047 1,000000 
C0026 R0053 1.000000 
COO26 R0056 1,035556 
C0027 R0032 1,000000 
C0027 ROO33 1,000000 
C0027 R0034 1,000000 
C0027 ROO35 1,000000 
C0027 ROO36 1 f 000000 
C0027 R0037 1,000000 
C0027 R0053 1,000000 
C0027 R0056 1,000000 
C0028 R0035 1,000000 
C0028 R0036 1,000000 
C0028 R0037 1,000000 
C0028 R0042 1.000000 
C0028 R0043 1,000000 
C0028 R0044 1,000000 
C0028 R0053 1,000000 
C0028 R0056 0,944444 
C0029 R0035 1,000000 
C0029 R0036 1,000000 
C0029 R0037 1,000000 
C0029 R0045 1,000000 
C0029 R0046 1.000000 
C0029 R0047 1,000000 
C0029 R0053 1,000000 
C0029 R0056 0,940000 
C0030 R0033 1,000000 
C0030 R0034 1,000000 
C0030 R0035 1,000000 
COO30 R0036 1.000000 
C0030 R0037 1,000000 
C0030 R0038 1,000000 
C0030 R0053 1,000000 
C0030 R0056 1,020000 
C0031 R0035 1,000000 
C0031 ROO36 1,000000 
C0031 R0037 1,000000 
C0031 R0038 1,000000 
C0031 R0045 1,000000 
C0031 ROO46 1,000000 
C0031 R0047 1,000000 
C0031 R0053 1,000000 
C0031 R0056 1,095556 
UOOOl ROOOl 1,000000 
UOOOl OBJ -1.827095 
UOOO2 ROO02 1,000000 
UOO02 OBJ 1.483520 
1)0003 ROO03 1,000000 
UOO03 OBJ -1,196927 
UOO04 ROOO4 1,000000 
UOO04 OBJ 1. 312849 
UOO05 ROO05 1,000000 
UOO05 OBJ 1.312849 
1I0006 ROO06 1,000000 
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1)0006 OBJ 1.115922 
1)0007 ROO07 1,000000 
1)0007 OBJ 1.0502'19 
1)0008 ROO08 1,000000 
1)0008 OBJ 1,050279 
1)0009 ROO09 1,000000 
1J0009 OBJ 1,050279 
1)0010 ROO10 1,000000 
IJOOIO OBJ 1.181564 
1)0011 ROOll 1,000000 
1J0011 OBJ 1.247207 
1)0012 ROO12 1,000000 
1J0012 OSJ 1.050279 
IJOO13 ROO13 1,000000 
1)0013 OBJ -1.853352 
1)0014 ROOl4 1,000000 
IJOO14 OBJ 1,115922 
IJOO15 ROO15 1.000000 
1J0015 OSJ 1.115922 
1J0016 ROO16 1.000000 
1J0016 OBJ 1.247207 
IJOO17 ROOl7 1.000000 
1J0017 OSJ 1,181564 
1J0018 RO')18 1,000000 
1J0018 OSJ 1.050279 
IJOO19 ROO19 1.000:)00 
IJOO19 OBJ 1.181564 
1J0020 ROO20 1,000000 
1)0020 OBJ -1.131285 
1J0021 R0021 1,000000 
1)0021 OBJ 1,115922 
UOOZ2 R0022 1,000000 
1)0022 OBJ 1.115922 
1J0023 ROO23 1.000000 
1)0023 OBJ 1,050279 
1)0024 R0024 1.000000 
1)0024 OBJ 1,115922 
1)0025 R0025 1,000000 
1)0025 OBJ 1.115922 
1)0026 ROO26 1.000000 
1J0026 OBJ -1,262570 
1)0027 ROO27 1,000000 
1)0027 OBJ 1,115922 
1J0028 R0028 1.000000 
IJOO28 OBJ 1.050279 
1J0029 ROO29 1,000000 
IJOO29 OBJ 1 t 260335 
1J0030 R0030 1,000000 
1J0030 OBJ 1.168436 

, IJ0031 R0031 1,000000 
1J0031 OBJ 1.286592 
IJOO32 ROO32 1.000000 
UOO32 OBJ -1. 800838 
U0033 R0033 1.000000 
1)0033 OBJ 1.0502'79 
U0034 R0034 1.000000 
U0034 OBJ 1,404749 
U0035 R0035 1.000000 
U0035 OBJ -1.262570 
U0036 R0036 1.000000 
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U0036 08J 1.050279 
U0037 R0037 1.000000 
1)0037 08J 1.076536 
U0038 R0038 1.000000 
U0038 08J -1,853352 
ll0039 R0039 1.000000 
U0039 08J -1.078771 
U0040 R0040 1.000000 
U0040 08J 1.129050 
U0041 R0041 1.000000 
1)0041 08J 1.050279 
U0042 ROO42 1.000000 
U0042 08J 1.220950 
U0043 R0043 1.000000 
U0043 08J 1.050279 
UOO44 R0044 1.000000 
U0044 08J -1.656425 
U0045 R0045 1.000000 
U0045 08J 1.050279 
U0046 R0046 1.000000 
1)0046 08J 1.050279 
U0047 R0047 1.000000 
U0047 08J -1.800838 
00001 ROOm 2.500000 
00001 08J -1.827095 
00002 ROO02 2.500000 
00002 08J 1.483520 
00003 ROO03 2.500000 
00003 08J -1.196927 
00004 ROO04 2.500000 
00004 08J 1.312849 
00005 ROO05 2.500000 
00005 08J 1.312849 
00006 ROO06 2.500000 
00006 08J 1.115922 
00007 ROO07 2.500000 
00007 08J 1.050279 
00008 ROO08 2.500000 
00008 08J 1.050279 
00009 ROO09 2.5000(1) 
00009 08J 1.050279 
00010 R0010 2.500000 
00010 08J 1.181564 
00011 ROOll 2.500000 . 
00011 08J 1.247207 
00012 ROO12 2.500000 
00012 08J 1.050279 
00013 ROO13 2.500000 j 

00013 08J -1.853352 
00014 ROO14 2.500000 
00014 08J 1.115922 
00015 ROO15 2.500000 
00015 08J 1.115922 
00016 ROO16 2,500000 
00016 08J 1.247207 
00017 ROO17 2.500000 
00017 08J 1.181564 
00018 ROO18 2.500000 
00018 08J 1.050279 
00019 ROO19 2.500000 

.. 
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00019 OBJ 1.181564 
00020 R0020 2.500000 
00020 OBJ -1.131285 
00021 R0021 2.500000 
00021 OBJ 1.115922 
00022 R0022 2.500000 
00022 OBJ 1.115922 
00023 R0023 2.500000 
00023 OBJ 1.050279 
00024 R0024 2.500000 
00024 OBJ 1.115922 
00025 R0025 2.500000 
00025 OBJ 1.115922 
00026 R0026 2.500000 
00026 OBJ -1.262570 
00027 R0027 2.500000 
00027 OBJ 1.115922 
00028 R0028 2.500000 
00028 OBJ 1.050279 
00029 R0029 2,500000 
00029 OBJ 1.260335 
00030 R0030 2.500000 
00030 OBJ 1.168436 
00031 ROq31 2.500000 
00031 OBJ 1.286592 
00032 R0032 2.500000 
00032 OBJ -1.800838 
00033 ROO33 2.500000 
00033 OBJ 1.050279 
00034 R0034 2.500000 
00034 OBJ 1. 404749 
00035 R0035 2.500000 
00035 OBJ -1.262570 
00036 R0036 2.500000 
00036 OBJ 1.050279 
00037 R0037 2.500000 
00037 OBJ 1.076536 
00038 R0038 2.500000 
00038 OBJ -1.853352 
00039 R0039 2.500000 
00039 OBJ -1.078771 
00040 R0040 2.500000 
00040 OBJ 1.129050 
00041 R0041 2.500000 
00041 OBJ 1.050279 
00042 R0042 2.500000 
00042 OBJ 1.220950 
00043 R0043 2.500000 
00043 OBJ 1.050279 
00044 R0044 2.500CO() 
00044 OBJ -1,656425 
00045 R0045 2,500000 
00045 OBJ 1,0502"79 
00046 R0046 2,50000U 
00046 OBJ 1.050279 
00047 R0047 2,500000 
00047 OBJ -1,800838 

RHS ROO01 1.000000 
RHS RI)002 1.000000 
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RHS ROO03 1,000000 
RHS ROO04 1,000000 
RHS ROOOS 1,000000 
RHS ROO06 1,000000 
RHS ROO07 1,000000 
RHS ROO08 1,000000 
RHS ROO09 1,000000 
RHS R0010 1,000000 
RHS ROOll 1,000000 
RHS ROO12 1,000000 
RHS ROO13 1,000000 
RHS ROO14 1,000000 
RHS ROOIS 1,000000 
RHS ROOl6 1,000000 
RHS ROOl7 1,000000 
RHS ROO18 1,000000 
RHS ROO19 1,000000 
RHS R0020 1,000000 
RHS R0021 1,000000 
RHS ROO22 1,000000 
RHS R0023 1,000000 
RHS R0024 1,000000 
RHS R002S 1,000000 
RHS R0026 1,000000 
RHS R0027 1,000000 
RHS R0028 1,000000 
RHS R0029 1,000000 
RHS R0030 1,000000 
RHS R003t 1,000000 
RHS R0032 1,000000 
RHS R0033 1,000000 
RHS R0034 1,000000 
RHS R003S 1,000000 
RHS R0036 1,000000 
RHS R0037 1,000000 
RHS R0038 1,000000 
RHS R0039 1,000000 
RHS R0040 1,000000 
RHS R0041 1,000000 
RHS R0042 1,000000 
RHS R0043 1,000000 
RHS R0044 1,000000 
RHS R004S 1,000000 
RHS R0046 1,000(:00 
RHS R0047 1,000000 
RHS R0048 1,000000 
RHS R0049 2,000000 
RHS ROOSt 1,000000 
RHS ROOS2 2,000000 
RHS ROOS3 3.000000 
RHS ROOS4 3,000000 
RHS ROO5S 1.000000 
RHS ROOS6 8,000000 

JNDS 
I BNDVAL COOOI 1,000000 
I BNDVAL COOO2 1,000000 
I BNDVAL COO03 1,000000 
I BNDVAL COO04 1,000000 
I BNDVAL COOOS 1,000000 
I BNDVAL COO06 1,000000 
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I BNDVAL COO07 1,000000 
I BNDVAL COO08 1,000000 
I BNDVAL COO09 1,000000 
I BNDVAL C0010 1,0000<)0 
I BNDVAL COO11 1,000000 
I BNDVAL COO12 1,000000 
I BNDVAL COO13 1,000000 
I BNDVAL COO14 1,000000 
I BNDVAL COOlS 1,000000 
I BNDVAL (:0016 1,000000 
I BNDVAL COO17 1,000000 
I BNDVAL COO18 1,000000 
I BNDVAL (:0019 1.000000 

BNDVAL (:0020 1,000000 
I BNDVAL (:0021 1.000000 
I BNDVAL COO22 1,000000 
I BNDVAL C0023 1.000000 
I BNDVAL (:0024 1,000000 
I BNDVAL (:0025 1,000000 
I BNDVAL (:0026 1,000000 
I BNDVAL C0027 1.000000 
I 'BNDVAL C0028 1,000000 
I BNDVAL C0029 1,000000 
I BNDVAL COO30 1.000000 
I BNDVAL C0031 1,000000 
lATA 
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SCICONIC 

SCICONIC/VM VERSIOI~ VM/P1.32 
COPYRIGHT SCICON LTD. 1983 

AUTHORISED FOR USE AT: 
UNIVERSITY OF LOUGHBOROI)GH 

,I NFI LE=' MTSP10' 
,CONVERT 
:W PROBLEM QA4RT32 
IS VECTOR - RHS 
IUND VECTOR - BNDVAL 
tOBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON- ZERO ELEMENTS 
INVERT TOOK 3.87 SECONDS 
,SETUP(MAXIMI SE) 
tOBLEM QA4RT32 ON FI LE 
tEATED ON 13-JUL-1986 AT 12:40:28 
iOBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON- ZERO ELEMENTS 
IS - RHS 
IUND - BNDVAL 
IJECTI VE - OBJ 
ICORE MATRI X HAS 57 ROWS AND 125 COLUMNS 
:TlJP TOOK 1.34 SECONDS 
PRIMAL 

NITS 
o 

36 

OBJECT 
0.000000 

-41.275975 

SOLI)TI ON IS OPTI MAL 
PRINTSOLN 

INFEAS 
O.OOOOOO( 
O.OOOOOO( 

0) 
0) 

SECS 
1.58 
4.50 

PROBLEM QA4RT32 - SOLUTI ON NUMBER 1 - OPTIMAL 

CREATED ON 13-JUL-1986 AT 12:41tl0 t AFTER 36 ITERATIONS 

PRINTED ON 13-JlIL-198b AT 12:41:19 

•• • NAME ••• •• ACTIVITY •• DEFINED HS 

FUNCTIONAL 41.275975 OBJ 
RESTRAINTS RHS 
BOI)NDS •••• BNDVAL 

• ,ROW ••• AT •••• ACTIVITY •••• 
OBJ BS -41.275975 
ROO02 UL 1.000000 
ROO04 I)L 1.000000 
ROO05 I)L 1.000000 
ROO06 UL 1.000000 
ROO07 I)L 1.000000 
ROO08 I)L '1.000000 
ROO09 I)L 1.000000 
R0010 UL 1.000000 
ROOll I)L 1.000000 
ROO12 UL 1.000000 
ROO14 I)L 1.000000 
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ROO15 UL 1,000000 
ROO16 UL 1,000000 
ROO17 I)L 1,000000 
ROO18 UL 1,000000 
ROO19 I)L 1,000000 
R0021 I)L 1,000000 
R0022 I)L 1,000000 
R0023 lIL 1,000000 

7' · , 

• • ROW ••• AT ••• ,ACTIVITy •••• 
R0024 lIL 1,000000 
R0025 I)L 1,000000 
R0027 I)L 1,000000 
R0028 I)L 1,000000 
R0029 I)L 1,000000 
R0030 lIL 1,000000 
R0031 I)L 1,000000 
ROO33 lIL 1.000000 
R0034 I)L 1.000000 

. R0036 UL 1,000000 
R0037 lIL 1,000000 
R0040 lIL 1,000000 
R0041 lIL 1,000000 
R0042 UL 1,000000 
R0043 UL 1,000000 
R0045 UL 1,000000 
R0046 UL 1,000000 

*** END OF ROWS *** 
7' · , 

,COLUMN, AT ••• ,ACTIVITY t. I' 
UOO02 SS 1 ,':>00000 
1)0004 BS 1,000000 
1.10005 BS 1,000000 
1)0006 BS 1,000000 
1.10007 SS 1,000000 
lIOO08 BS 1,000000 
1)0009 SS 1,000000 
1)0010 BS 1,000000 
1.10011 BS 1,000000 
1)0012 BS 1,000000 
lIOO14 BS 1,000000 
UOO15 SS 1,000000 
UOO16 BS 1,000000 
UOO17 BS 1,000000 
1)0018 BS 1,000000 
1)0019 BS 1,000000 
U0021 BS 1,000000 
UOO22 BS 1,<)00000 
1)0023 BS 1.000000 
1)0024 BS 1,000000 

7' · , 

,COLUMN, AT .- I •• ACTIVITY t ••• 

1)0025 as 1,000000 
U0027 SS 1,000000 
1)0028 as 1,000000 
U0029 as 1,000000 
1)0030 BS 1,000000 
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1I0031 SS 1,000000 
1I0033 SS 1,000000 
1I0034 SS 1,000000 
1I0036 SS 1,000000 
1)0037 SS 1,000000 
1)0040 SS 1,000000 
1)0041 SS 1 ,000000 
1)0042 SS 1,000000 
1)0043 SS 1,000000 
1I0045 SS 1,000000 
1I0046 SS 1,000000 

** END OF COLUMNS *** 
)STOP 

** STOP 

161 



C #SCIMY 
SEG 

G R~v, 19,4,4 J 
o * liSCIMY 
L B-EXTWILM 
TA It: SMALLER REDEFI NI n ON OF COMMON 
OL It: SMALLER REDEF I NI TI ON OF COMMON 
X4CM It: SMALLER REDEFINITION OF COMMON 
X3CM It: SMALLER REDEFINITION OF COI':MON 
X2CM It: SMALLER REDEFI NI TI ON OF COMMON 
X 1 CM It: SMALLER REDEF I NI TI ON OF COMMON 
KEY It: SMALLER REDEFI NI TI ON OF COMMON 
D COMPLETE 

SEG liSCIMY 

SCICONICIVM VERSION VM/P1.32 
COPYRIGHT SCICON LTD, 1983 

AUTHORISED FOR USE AT: 
UNIVERSITY OF LOUGHBOROUGH 

INFILE=' MTSP10' 
CONVERT 

:W PROBLEM QA4RT32 
IS VECTOR - RHS 
]UND VECTOR - BNDVAL 
IOBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON-ZERO ELEMENTS 
INVERT TOOK 3,76 SECONDS 
·SETUP (MAXI MI SE) 
IOBLEM QA4RT32 ON FI LE 
IEATED ON 13-JUL-1986 AT 12:28:17 
IOBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON-ZERO ELEMENTS 
is - RHS 
)UND - BNDVAL 
lJECTI VE - OBJ 
~CORE MATRIX HAS 57 ROWS AND 
,TUP TOOK 1,36 SECONDS 
>USER 

57 182 
PART A 
PHASE 1 
PASS 1 
X ( 44) = 
X ( 69) = 
X( 91)= 
X(116)= 
XI 32)= 
XI 79)= 
XI 63)= 
XI 78)= 

0,000 
0,000 
0,000 
0,000 
0,000 
0,000 
0,000 
0,000 
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X(110)= 0,000 
X(125)= 0,000 
X ( 75) = 0,000 
X (122)= 0,000 
X( 57)= 0,000 
X ( 66) = 0,000 
X (104)= 0,000 
X(113)= 0,000 
X( 34)= 0,000 
X( 81)= 0,000 
X( 51)= 0,000 
X ( 98)= 0,000 
X( 70)= 0,000 
X(!17)= 0,000 
X( 1) EXTRANEOUS 
X( 2) EXTRANEOUS 
X( 3) EXTRANEOUS 
X( 4) EXTRANEOUS 
X( 5) EXTRANEOUS 
X( 6) EXTRANEOUS 
X( 7) EXTRANEOIJS 
X( 8) EXTRANEOUS 
X( 9) EXTRANEOUS 
X( 10) EXTRANEOUS 
X( 11) EXTRANEOUS 
X( 12) EXTRANEOUS 
X( 13) EXTRANEOUS 
X( 14) EXTRANEOUS 
X( IS) EXTRANEOUS 
X( 16) EXTRANEOUS 
X( 17) EXTRANEOUS 
X( 18) EXTRANEOUS 
X( 19) EXTRANEOIJS 
X( 20) EXTRANEOUS 
X( 21) EXTRANEOUS 
X( 22) EXTRANEOUS 
X( 23) EXTRANEOUS 
X( 24) EXTRANEOUS 
X( 25) EXTRANEOUS 
X ( 26) EXTRANEOUS 
X( 27) EXTRANEOUS 
X( 28) EXTRANEOUS 
X( 29) EXTRANEOUS 
X( 30) EXTRANEOUS 
X( 31) EXTRANEOUS 
LOWER SHADOW PRICE ON CONSTRAI NT< 7)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT( 8)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT( 9)= 1,050 
LOWER SHADOW PRICE ON CONSTRAI NT< 12)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT( 18)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT( 23)= I,O~O 

LOWER SHADOW PRICE ON CONSTRAI NT< 28)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT( 33)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT( 36)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT( 41)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT( 43)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT( 45)= 1,050 
LOWER SHADOW PRICE ON CONSTRAINT< 46)= 1,050 
X( 85)= 0,000 
X( 86)= 0,000 
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x ( 87)= c)f(l(JO 

X( 90)= 0,000 
X( 96)= 0,000 
X(101)= 0,000 
X(106)= 0,000 
X( 111>= 0,000 
X(114)= 0,000 
X(119)= 0,000 
X(121)= 0,000 
X(123)= 0,000 
X(124)= 0,000 
LOWt:R SHADOW PRICE ON CONSTRAINT( 37)= 1.077 
X(115)= 0,000 
LOWER SHADOW PRICE ON CONSTRAINT( 6)= 1,116 
LOWER SHADOW PRICE ON CONSTRA I NT( 14)= 1. 116 
LOWER SHADOW PRICE ON CONSTRAI NT( 15)= 1,116 
LOWER SHADOW PRICE ON CONSTRA I NT( 21>= 1,116 
LOWER SHADOW PRICE ON CONSTRAINT( 22)= 1,116 
LOWER SHADOW PRICE ON CONSTRAINT( 24)= 1,116 
LOWER SHADOW PRICE ON CONSTRAINT( 25)= 1,116 
LOWER SHADOW PRICE ON CONSTRAINT( 27)= 1,116 
X( 84)= 0,000 
X( 92)= 0,000 
X( 93)= 0,000 
X ( 99)= 0,000 
X(IOO)= 0,000 
X(102)= 0,000 
X(103)= 0,000 
X(105)= 0,000 
LOWER SHADOW PRICE ON CONSTRAI NT( 40)= 1,129 
X( 118)= 0,000 
LOWER SHADOW PRICE ON CONSTRAI NT( 30)= 1,168 
X (l08)= 0,000 
LOWER SHADOW PRICE ON CONSTRAINT( 10)= 1,182 
LOWER SHADOW PRICE ON CONSTRA I NT( 17)= 1,132 
LOWER SHADOW PRICE ON CONSTRAI NT( 19)= 1.182 
X ( 88)= 0,000 
X( 95)= 0,000 
X( 97)= 0,000 
LOWER SHADOW PRICE ON CONSTRA I NT( 42)= 1.221 
X(120)= 0,000 
LOWER SHADOW PRICE ON CONSTRAI NT( 11)= 1,247 
LOWER SHADOW PRICE ON CONSTRAINT( 16) = 1,247 
X( 89)= 0,000 
X ( 94) = 0,000 
LOWER SHADOW PRICE ON CONSTRAINT( 29)= 1.260 
X(107)= 0,000 
LOWER SHADOW PRICE ON CONSTRAINT( 31)= 1.287 
X(109)= 0,000 
LOWER SHADOW PRICE ON CONSTRAINT( 4)= 1 t 313 
LOWER SHADOW PRICE ON CONSTRAINT( 5)= 1,313 
X( 82)= 0,000 
X( 83)= 0,000 
LOWER SHADOW PRICE ON CONSTRAINT( 34)= 1,405 
X(112)= 0,000 
LOWER SHADOW PRICE ON CONSTRAI NT( 2)= 1,484 
X( 80)= 0,000 
PASS 2 
PHASE 2 
PASS 1 
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PASS 2 
PART B 
PHASE 1 
PASS 1 
UPPER BOUND X( 33) = 1,000 
X ( 33) = 1,000 
UPPER BOUND X( 35) = 1.000 
X( 35) = 1,000 
UPPER BOUND X( 36) = 1,000 
X ( 36) = 1,000 
UPPER BOUND X( 37) = 1 ,000 
X ( 37) = 1,000 
UPPER BOUND X( 38) = 1,000 
X ( 38) = 1,000 
UPPER BOUND X( 39) = 1,000 
X( 39) = 1 ,000 
UPPER BOUND X( 40) = 1,000 
X( 40) = 1,000 
lJPPER BOUND X( 41) = 1,000 
X( 41) = 1,000 
UPPER BOUND X( 42) = 1,000 
X( 42) = 1,000 
UPPER BOUND X( 43) = 1.000 
X( 43) = 1,000 
UPPER BOUND X( 45) = 1 ,000 
X( 45) = 1,000 
UPPER BOUND X( 46) = 1 ,000 
X ( 46) = 1.000 
UPPER BOUND X ( 47) = 1,000 
X( 47) = 1,000 
UPPER BOUND X ( 48) = 1,000 
X( 48) = 1,000 
UPPER BOUND X( 49) = 1,000 
X( 49) - 1,000 
UPPER BOUND X( 50) = 1,000 
X( 50) = 1,000 
UPPER BOUND X ( 52) = 1,000 
X( 52) = 1,000 
UPPER BOUND X( 53) = 1,000 
X( 53) = 1,000 
UF'PER BOUND X ( 54) = 1,000 
X( 54) = 1,000 
UPPER BOUND X( 55) = 1,000 
X( 55) = 1,000 
UPPER BOUND X( 56) = 1,000 
X( 56) = 1,000 
UPPER BOUND X( 58) = 1,000 
X( 58) = 1,000 
UPPER BOUND X( 59) = 1.000 
X( 59) = 1,000 
UPPER BOUND X( 60) = 1,000 
X( 60) = 1,000 
UPPER BOUND X( 61> = 1,000 
X( 61) = 1,000 
UPP!::R BOUND X( 62) = 1,000 
X( 62) = 1,000 
UPF'E:R BOUND X( 64) = 1,000 
X ( 64) = 1,000 
UPPER BOUND X( 65) = 1,000 
X( 65) = 1,000 
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UPPER BOUND X( 67) = 1,000. 
X( 67) = 1,000 
UPPER BOUND X( 68) = 1,000 
X ( 68) = 1,000 
UPPER BOUND X( 71) = 1.000 
X( 71) = 1,000 
UPPER BOUND X( 72) = 1,000 
X( 72) = 1,000 
UPP~R BOUND X( 73) = 1,000 
X( 73) = 1,0(1) 
UPPER BOUND, X( 74) = 1 ,000 
X ( 74) = 1,000 
UPP~R BOUND X( 76) = 1,000 
X ( 76) = 1,000 
UPPER BOUND X( 77) = 1.000 
X( 77) = 1,000 
PROBLEM IS SOLVED OBJ = 41,275 

I>STOP 

*** STOP 
K, 
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:~(~o;: SUBROUTINE I)SER 
'0002: $INSERT SCICON)"S>F'DPF'FtRI'IMS 
{I003: $INSERT SCICON>S>PDPMCKEY 
'0004: $INSERT SCreON)S'; F'DF''''R~:~Y 
0005:$INSERT SCICON>S>PDPITER 
0006:~INSERT SCl(.IJrv'd;-PDF'BL'3 
,0007 t $ i NSC:~T sel COl >S;'-PDPI)SEFVL 
0008: $1 NSERT SCUX~N.~ S) PDF''1A-;i\I X 
0009: 'INSERT 3:: 1 cr.:.1'< ;S>F'8""p!~~c~ 
0010: $Ir,SERf SCICO~:-'S)~'u:'=ETA 

EXTENDED REDUCE METHOD 

0011: REAL*8 C'~L~L.L ~ ::~:4.s) ,R(·' .. E!...L (2(A81 ,:; ~" .. ELJ( 2048) ,RC'WGLL (~1)48) , 
')I)!<:: * RHS(5~;:} ,;';:,~S1, :i1::) ,X\:':i~': ).~;:'ij:21 ,:::;512} ,F': (;:;;.;) ,CST(~~:Z), 
'),)13: Af4X ,AMIN, BOV, ~,(':-tIN, GM! N. ~C-.;, DEF 
(,(: 14: : NTEGER"'~ .. (:I)LNO( 2(48) ,1RC",,~<i)\ ~().:.~ I, ;·;':OwNI); :::(,'1~) ) : F'l~..."~O (;2') .. 2. i , 

0')15:" ! COI_,':Y (St:.:!) t ~ :-:<1) .... ;··"',: '5:::) t"·<::'~'\.,i~~, (::.:Z) , i.;':GWI~I' ~ :'1 ~), . 
()01.!): *" NRO( 5~~ I, : ::. (:;:;::; ,I Si 5 ~.:) ,:.:;CL; =;. 2) ,1::~', :::;,:; , :JJX '. S-~Z) , 
0017:" NCDC5!Z).~SS(S:2),LRT(512), 

1)018: ~ J:'IlEG,: :5:2) ,J':-V:::: 5.21 ,~r"~;, '.:5: ';;.' ,.,,'NC o{ 5~2 J 

0019: I NTEGEi=\-1-Z ., l.'1( 28) 
0020: ::G~M:)N/882:::0M/COi ... L ... :.... RO""tL:'" ,ROWE,-J ,';;w~GLL 
')021 ~ ',:OMM('.N/ALAA2/1 COL~JI ... :,; i\G'.oINO,! ROWNO, JRSWNO 
0022: CC:,"1Mor~/ALAI-\31 X, 1.0, C,RHS, Rr:Sl,Pl.DS ~ 
1)023: 
0024: 
1)025: 
0026: 
)027: 
:)028: 
)0291994 
)030: 
)031 :e 
)032:C 
)033:e 
)034:e 
)035:C 
)036: C 
)037: 
)0381 
)039: 
)040: 
:0 4 1 : 
)042: 
)043: 
)044: 
)04~: 

)046: 
)047: 
)048: 
)049: 
)050: 
1051 : 
1052: 
1053: 
1054: 1600 
1055: 
1056: 
1057: 
1058: 
'059: 
'060: 
'061 : 
062: 1660 
063: 
064: 1500 
065: 
066: 
067: 
068: 
069: 
070: 
071 : 
072: 
073: 
074: 
075: 
1.)76: 
077: 
078: 
079: 
080: 
0811 
082: 
0831 
084: 
085: 
086: 
087: 
088: 
089: 1900 
090:1800 
091 : 
)92: 
093: 
)94; 
)95:1700 
)96: 
)97:C 
)98:C 
199:C 
oo:e 

Ci)MMON/ALAA4/1 CCLI"1I{,: RCwM!<,: ;;";:,.,;1'11, .... :::':':"';"'1!\ 
COr-:M,~N/ALflflSI ~ S, IG, I 5S,1 R; ,:~x ,NRD. NCO ,;....S , 

... NRDD, I DDX, J,'.£GT ,JPVG, ; ?\If,; , Jr-.Cr-.. 

WRITE(l,994) NRI)W,NSEQ 
FORMAT(2X,I3,3X,I3) 
XX=10C;(;OO!) ,0 

NNRCW=NROW+l 
N::l 
V,=1 
DO 1500 JSEQ=m-1KOW, N5EI~ 
J=JSEO-NROW 
rc (J /=';3S;:.t 
I C:JL";I( (J ) =1-< 
KLr'!EL=,'1SMi;;.1.... (JS::':~) tMSf<f'1£8 (';'2,::: . .:;) 
LL~EL.=MSi"'lEL (JSEQ+ 1 ) 

DO 1600 I:.....'1EL=-<~~EL.LLMEL 

IROW=~RWME(ILME~) 

I PIJOL=MPTME (ILMEL1 
N=N+l 
L=L+l 
COt-E~L(NI=POOL(:;:POOL) 

ICOLNO(N):::IROIoJ 
CONTINUE 
ICOLNO(K)=L 
NCDtJ)=L 
I F (AND (MCKEY (JSEQ) ,XCBUBC / ,E:.:),(l) ,;':1 

IPOOL=MPTME(KLMEL-1) 
COLELL(K)=POOL(IPOOL) 
CtJ)=COLELL(K1 
IF(C(j).LT .-O,lE-B) ';Q2=1 
K=K+L+l 
N=N+1 
CONTINtJE 
K::1 
DO 1700 I=2,NROW 
RHSCI )=BETA(J) 
IOX<l )=1 
15(1)=1 
IR=K 
IROWMKCI)=K 
IRGWMI-«!)=;.< 
L=O 
DO 1800 J'S£Q=NNRCW,NSi:~ 
J=JSE''::-NROW 
I<LME!....=MSMEL C JS£G) +MSKMEB (JSEQ; 
LLMEL=MSMEL(JSEQ+l) 
DO 1900 ILMEL"'I-!LMEL.LL.'1I;:L 
IROW=MRWMECILMEL) 
IF(lROW,NE,I) ·~o TO 191')0 
L==L+l 
K=I<+1 
IPOOL=MPTME( 1 LMEL)' 
ROWELL(K)=POOLCIPOOL1 
ROWGLLtK)=ROWELL(I-() 
lROWNI)(Kl:aJ 
IRGWNO(K)=J 
ILMEL""LLMEL 
CONTINUE 
CONTINUE 
IROWNO(JR)=L 
IRGWNO(IRl=L. 
NRD<I )=L 
K=K+l 
CONTINUE 
NRW=NROw 
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101:(: 
102:103 
103: 104 
104: 105 
I1JS: 107 
106: 1 
t')7:2 
!Od:~ 
11)9:4 
110:5 
111 :6 
112:7 
113:(; 
114:C 
L Is:e 
[ 16~C 
L17:C 
118: 10 
L19: 
L20:C 
121 :e 
L22:C 
L23:C 
124: 
12~: 

1;::6: 
.27:C 
,:::3:1; 
29:C 
30:(: 

F'~IRMAT (ZX,' C(;N57Rfl! NT' ,; 3,' Rc.=::::l.JNDANT' ) 
FO~:"1AT (::::X, ' :< (' , r:,') t::.crERANEOVS') 
FCF.MAT(;::)(,'S(' ,!.?:,') S.J.T;l;"!~:EC :3') 
';;CRMAT(ZX,'PASS(' ,.2,' 1') 
F"::E~AT;::::X,'5~·EP ") 
FORMAT C:X,' SrEi" Z' J 

';-'_:R,'1AT(ZX,' STEP :' ) 
F·:IRMAT(2X,'STEP 4') 
F.~:::~."I"!(:::x,·sr:::? S' ) 
F0F:MAT (2X,' STt:P 6' ) 
F,:·r;.I'1AT(ZX,'STEP 7') 

! PASS::f P,qss +-1 
wRITE(1.107) IPASS 

STEP (1) 

'~·.qI;E(!,l) 

IOCOR::tO 
IF(J~~:,::::::;,')J GO n 100 

31:(: S;-E? '.Zl ... 
32:::: ... .,..,.... 
-.J-.J, .... ' 

34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49:25 
50: 
51:C 
52:(; 

~o :: J:::.=: ,;\ICOL 

IF:r:J2:=O 
JNCD(j'Z/=O 
~F(NCD(J2i,EQ.O) GO 'fO 2.1 
rF(C(J2) ,LT ,1),0) GO ro 21 
JX=ICOL!'1K(J2) 
JY::ICOLNOUX) 
NS::JX+-1 
NL::JX+-J'r' 
DO 25 K::NS,NL 
IF(COLELLClO ,CE,O,O) GO TO :':S 
JNEG=l 
K::tNL 
CONTINUE 
IF(JNEG,£Q,ll GO TO 21 

53: DO 22 Kl=NS,NL 
54: rF(COLELL(;<!J..S'~!,i).O) GO T(: .:..'::' 
55: COLELLi~l )==0,0 
56t I2.::I(",:,U.O('r<U 
57: 
58: 
59: 
60: 
bl : 
~2: 

b3: 
~4: 

~5: 

~6:23 
~7:22 

~8: 

~9: 

ra: 
rl : 
r2: 
r3: 
r4:24 
rs: 
'6: 
77: 
78:21 
79:C 
~O: c 
H:e 
~2:C 
~3:e 

~4:C 
~s:e 
~6: 
~7: 

~8: 

~9: 

~O: 
~ 1: 
12: 
13: 
14: 

'5: 
'6, 
'7: 
8: 
9: 
0: 

I X::I Ri)WM!< (12) 
IY::; ROI,Jt\:j(: x I 
:XX==IX+-l 
:YY=!XtIY 
DO 23 ,{2=IXX,IYY 
:F(rRO,,,ij'';C(;'<Z) ,N!::,:':/ GO re ~,", 

;:;I)Wt::..:..;\\2)=O,O 
NRD(!::):::"lRD<l2) -1 
K2=IYY 
CONTINUE 
CONTI NIJE 
NCO(J21=O 
:F(lC(J21,GT.NROW) GO TO 24 
INR=IC(J21-1 
WRITE(l,lOSl INR 
MRKEY( IC( J211 =OR(KRBFRE.MRKEV( ICU": 1 ) 
GO TO 21 
I NR=IC(J2) -~JRO\ol 
WRITE(1,1041 INR 
MCKEV(lC(JZl )=AND(MCKEYU21) ,1(C3P.,:;: I 

rOCOR=l 
CONTINtJE 

STEP (3) ", 

WRITECl,31 
IRD::O 
DO 31 I~=2,rml..l 
IPOS::tO 
IPVR( IZ.)=O 
IFCIS(I3) .CT ,NROW) GO "1) 31 
IF(NRD(I3),~Q,O) GO TO :1 
IX"'IROWMK{I31 
1 Y==IROWNO( I X 1 
JS=IX+l 
JL=I;(+IV 
00 30 K=JS, JL 
IF(ROWELL(K),LE,O,O) GO TO::>O 
IPOS=l 
K:c:JL 
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01 ::0 
02: 
03p':: 
04:C 
05: 

CONTINI)E 
rF(IPOS,El~,l) ·;0 TO ';1 

NRO(I3)=O 
1)6: rOe-OR=! 
~7: DO 33 K=JS,JL 
:18: IF<RO'.,JELL(lU ,EQ,O,(:) GO TO ...:...:. 
09: ROWELLtK)=O,O 
IQ: ;=IROI.,JNOU<) 
U: JS'=rC:::":1f{(J) 
12: 
13: 
14: 
15 : 
16: 
17: 
18: 
19: 
20:34 
::1:::3 
22; 
23: 
~4 : 
~5: 

~6:31 

~7:C 
!8:1; 

JT=:COLN\)(JRl 
;,~=J:,+l 

~ y::-1R+,n 
j)i) :4 ;"\,=:X,IY 
IF'(l':::'1..~'C(~:K.\ ,:1.1:£,:';) N re .,N 

1."~::..Ell.. (:<..: ) =O,!) 
NCDI';:=N::D(..iJ •• 
"';,,=IY 
(\":Tl \i;;~:' 
c:.:';"II1 r,\'·;~ 
RHS \ ::;;) ='),0 
INA=IS1I3J-1 
'~'F:r'"S(lt1!)3) INI~ 

,'lRKEY( I 3 (13) ) :::(rRl Kf'EW,,'E, ,"'~"~EY (IS I ~::) J 

CONT!M)S 

Z9:C STEP (4) ,', 
~o:e 

H:e 
~2: WFUTE(l,o+) 
53: DO 41 I5=2,NROW 
~41 IPOZ=!) 
~5: IF(NRO<IS) ,EO,O) GO TO 41 
S6: IF(RHS(J5) ,NE,O,c) GO TO '+1 
$7: IX=rROWMK(I5) 
~8: IY"'IRI)WNO(IX) 

10: 
H: 
12: 
13: 
14: 
15:40 
16: 
~7: C 
f8:C 
19: 
w: 
il: 

JS=IX+l 
JL=lX+IY 
DO 40 )(=J8 I JL 
IF(RC'.,JELl..On ,GE,O,O) GO T') <+(; 

IPOZ=l 
K=JI_ 
CON7r,',;!::: 
LF(:F"::Z,~'~,lJ GO ",". 

DO 42 f<=JS,JL 
!FtROwEl..L(K) ,£0,0,0) GO ro 42 
i':OI..JELL (~< I =0,0 

>'2.: '!s=!q::I.,J',Q(K) 
>3: JX=!C8L.~,·:(J5J 

>4: JY=ICOLNOtJXI 
;5: IX=JX+: 
:6: IY=JX-I-JY 
i7: DO 43;.<1=:l(,IY 
:8: IF(C::::..EL~(Y.1 I ,£Q,O,(I) GO if') .,.::; 

:9: COLELUKl )=0,0 
,0: IR=IC:)I_~(J\){:) 

,1: II';=IRO""r:~<Wi) 

,2: 
,3: 
,4: 
.s: 
,c: 
,7: 
8, 
9:44 
0:43 

" 2, 
31 

" " 0145 
7: 
8: 
9:Stb 
0, 
1:42 
2: 
3: 

" " 6:41 
7:C 
8:e 
9:C 
O:C 
t :e 
z:e 
3150 
4:C 
5:C 
6:C 
7:5t 
8, 

" " 

IM=IROWN\)(!N) 
IXX=IN+l 
IYY=[!\I+IM 
DO 44 K2=IXX,IYY 
IFtIROWNOtKZ),NE,J5) GO TO 44 
ROWELL(K2)=O.0 
K2"'IYY 
CONTINUE 
CON"f.INUE 
IF{IC(JS),GT,NRQW) GO TO 45 
INR=IC(J5)-1 
wRITE(l,!CS) INR 
!'i~)!EY( ICt J5) 1 =OR(KRBFRE, "1Rf.:EY (L C 1.:5) ; 
GO ;-'J 516 
I NR=I::: <':5 ) • Ni'\I)W 
WRlTE(1,104) !~~ 

i'1C~:EY(!(. (J5 ) J =AND( M::::f~::Y( re <.:'5; • Ki.:Srt,:.:-r ) 
NC!)tJS)=O 
IOCOR=l 
C(tNTINUE 
NRD(rSJ=O 
~,.,'R=IS(r5)·1 

WRITE<1,103) !:'4:;: 
MRv'EY(!S(IS»=OR(KRBFRE,MRKEY(IS(IS») 
CONnNl)E 

STEP (5) '" 

WRITE(1,S) 

FINDING THE PIVOT COLUMN '" 

J·o 
CMIN=XX 
DO 5~ J5 .. 1 ,NCOL 
IF(JPVC(JS),EQ,lI GO TO S5 
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301: IF(NCD<JSJ,EQ,O) ';0 TO 55 
~Q2: IF(O::(J~),GE,-I),.S-~J ,~O '":;::S 
::;03: IF(C:J5) ,GT ,CMI:'Il! .j;) 1'0 ':"5 

:05: 
3uo: ~S 
:;07: 
~08:(: 

31)9:1.: 

..'=J5 

::;13: Iu!)=!) 
3.4: ,~,,,::~,::~X 

~15: i~:IC0L~~~Jl 
~:b: ;":::r:))U~Cllt.l 

~17: JS::: IX + 1 
318: JL:IX+!y 
H9: 01) S2 ~""'..'S.Jl 
~20: I i::(C';l..'::U_tK; ,L<:',O,1':-8) GO fO 52 
S21: IA:IC(ILNQ(K) 

125: 
:26: 
:21: 
:28: 53 
,29: 
~:o: 54 
;31 : 
;:;2:52 
;::3: 
,::4: 
;35: 
;36: 
;37:C 
;38:C 
;39:C 
;40:C 
;41 :60 
;42:C 
;.43:C 
;44:C 
;45: 
;46: 
;47: 
;48: 
;49: 
;50: 
;51 : 
"52: 
,53: 
54:67 
55, 
56:C 
57:C 
58:e 
59:C 
60:C 
61lC 
62: 
63: 
64: 

72: 
73: 
74: 
75: 
7~:68 

77, 
78:65 
79: 
80: 
!HI 
82:64 
8~1 
84: 
B~:C 
B., 
B7: 
B8: 

'91 
'0' 
~1 :66 
n:6! 
~3:C 
~4:C 
?~:C 
?6: 
?7:C 
181C 
19:69 
lO: 

BOV=i,J""S i rH) ICOL£LL (K) 
iJEF::::t;MIN-BOV 
IF(r:EF,GT,I),1E.-5) GO TO 53 
IF(DEF,LT,-O,:E-S) GI) T,) 52 
IvQ=iUQ+l 
GO TO 54 
rUi)=l 
GMIN=BI;V 
!Q""IA 
K .... -=K 

IF(Il.II~,EQ,lI GO "!,t) 80 
IF(IUQ,~E,O) GO ~0 to 
JPVC (";) =1 
GO :'':: 5! 

FINDING ''-:-£ NEW INTER1:::R F'OI~T '" 

• ;(O(J)=RHS(IQ)/CCLE~L<;~J) 
~O 67 K=';S, JL 
IA=!COLNO(I<) 
;FfIA,EQ,IQ) GO ~o 67 
IFfNRDfIA) ,EQ,Ol GO Et 67 
IF(ISfIA),LE,NRi)\..I) GO TO 67 
JV=ISf!A)-IIlROW 
XO( JV) =RHS( I A) -XO(J) *COL=:LL ".I":) 
XO(JV):XO<JVl-O,01 
CONTINUE 
XO( J)"'XO(J) -1),01 

UPDATING THE ;;'Iver ROW 

G.'1IN=O,U 
IN!:"=O 
1)(=1 R(lI",oMK (I Q) 

!Y=IR')W~;C(l"i 

JA=IX+1 
JB=IX+IV 
K::cJA 
DO 64 J6=1,NCOL 
IFfIRQWNOOO .NE,J6) GO TO 65 
IFfNCOfJ6) ,EI),O) GO TO 68 
IC=C (,]6) _t': (J ,. (RQWELL (Kl/CC'LZ:":.; ... ~ .. ' 
IF{ZC.GE,O.O,OR.lC,GE.CMIN) GO TO ,,13 
Ci"I i'\=ZC 
JNC=J6 
K=;'(+l 
GO TO 64 
IFfNC;)fJ6) ,EQ.O) t;:) TO Q4 

IF(CfJ6) .GE,CMIN) GO TO 64 
C~!~=C(J6) 

JNC=J6 
CONTINIJE 
IFfJNC,EO.O) GO TO 80 
XOfJNC)=O.Ol 

DO·61 K=JS,JL 
IF(COLELLfK) .LE.O.1E-SI GO TO 61 
IA:IC:JLNO(KI 
DOv=RH8fIAI/COLELL(K) 
IF(GMIN.NE,DOV) GO TO 61 
IPVRfIA)=l 
CONT1NVE 

FINDING THE DISTANCES BETWEEN 'HE !~TERW~ P("~:'-IT 
AND THE CONSTRAINTS '" 

NT=O 
AMI N=XX 
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)0401: 
1l)4QZ: 
)(.J403: 
uj4(14: 
)1)405: 
)0406: 
1')407: 
10408: 
:(140Q: 
10410: 
10411 : 
10412: 
0413: 
'0414:63 
0415: 
0416: 
0417: 
0418: 
(:419:62 
0420: 
0421 : 
0 .. 1.2: 
0423: 
0424: 
042S~C 
042Q;( 
(>427;70 
0428: 
04:9: 
(1430: 
0431: 
0432: 
~)4~3: 

:1434: 
)435: 
)436: 
)437: 
)438: 
)439: 
)440: 
)441 : 
)442: 
)443: 
)444: 
)445: 
)446: 
)447: 

:)0 6: r 6::::, ,\.RW 
;:~(I~VR(!Q).~E.~) '~'''' ~,:. 1-": 

~:S=O 
FlA:(:::(I,() 

I;;=::JX;: !:d 
I X=!;',~(",-·.~ (: I,) 
II(:::;"GWN!J(;;() 
r .(.I=~ HI 
L(y=!;<+IY 
:)063 K=IX):,IYY 
JF""I~GWNO(KJ 

;;:'(JR,EQ,JNCJ K!i=K 
FlAX:::AAx+XO (JR) 1:;;:(iWGI.. ... (K) 
CONTrN:.:1;: 
:F(){S,EQ,O) G;) Tt) 6: 
DST (I.!::I ):.( BETA (I R) -AFlX ) IR((WGLL(li,'61 
1~(DST(r6!,GT,~M!~) :~O TO bZ 
A~IN=C3T(I6) 

CC,N"I~I.'E 

!F"(~M:N.NE,XXl GO ~:) ,,) 
IF{~T.E:~.:) :;:) r(: 3(1 

NT=l 

DI) 71 ;<S:::]S,JL 
! =: ,:::::'u~:)(t\SJ 
:,=(:PVR(J) ,:::Q,O) GO ~:,) 71 
~;:'iDST(I),EQ.AM'N) GO TO 
!\:F:~(I )=0 
rO(DR=l 
r f\(R=l S Cl )-1 
'"IRiTE(l,:V';l :i>lft 
,"R~<EY (IS! I) l=(,1fo.'lI<:iSFRE,I'IRKEY( I3 (r) ) 
I X=IR')I..JI'1~{(:) 
lY:::!R:.)WNO(IX) 
IXX=IX+l. 
IYY:IX+IY 
DO 72 Kl:::IXX,lVY 
IF(RDWELLO<tl,EQ,O,O) GO TO 7: 
ROWELL(V,l)=O,O 
JR=IROWNO(K1 ) 
JX=ICOLMK(JR) 
JY=ICOLNOCJX) 
JSS=JX+l 
JLL:JX+JY 

1448: DO 73 ~,2=JSS,JlL 
)449: IF<ICJU,I(I(K21.NE,I) GCI TO 73 
)4501 COLELL(~(2)::0.0 

1451: NCD(';Rl=~CD(Jr;)-1 

1452: 1'2=J .... ;.. 
1453:73 
1454:72 
1455: 
'45&:74 
'457: 
458:71 
459~C. 

460:C 
461lC 
462:80 
463: 
464: 
465:C 
466:C 
467:C 
468:C 
469:C 
470:C 
471:C 
472:81 
473: 
474: 
475: 
~76\ 
q77: 
~78: 

,79: 
~80: 

~81 : 
;82: 
~83: 

;84: 
;85: 
~86: 

;87: 
;88: 
;89: 
;90: 
;911 
192: 
:93: 
.94: 
,95:8117 
,96: 
,91: 
98: .. , 
00, 

"::GNi !N~·E 
(':j;';';-;:\:Je. 

GO TO 71 
K';=~',S 

IQ=I 
c.:',~(fINt)E 

::=,(r,:,',:":"R,E'~.l) :~I) T(I cl 
IF(IF'ASS,!:JJ.ll GQ TO 81 
GO TI) 101) 

STEP (7) ••• 

PERFORMING THE SIMPLEX ITERATION ••• 

. WRITE(1.7) 
R=1/COLELLCKJ) 
IE=O 
I W::: 1 
I RO(,J='Z, 
JROWML«( IROW)""I W 
JX=IROWMK(lQI 
JY,=IROWNO(JXl 
JR:::JX+l 
JQ=JX+JY 
RowELJ (!Wl =ROWELL( JX) 
IW=IW+l 
DO 8017 j.{:zJR,JQ 
IF(RCWELUKI.EQ,O.OI GO TO 8017 
JA::IROWNO(K) 
IF(JA,NE,J) GO TO 8117 
ROW ELL (K):::R 
ROWELJ(IW)=R 
JROWNO ( r W) "'JA 
HJ=IW+1 
IE=IE+l 
JNCD(JAl=JNCD(JA)+l 
GO TO .g'):7 
ROWELL(K)=R*ROWELL(K) 
ROwELJeIW1=ROWElL(K) 
JROWNOeIW1-JA 
lW=I1,,/+1 
IE=IE+l 
JNcoeJA):::JNCO(JA)+1 
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ov501: 
00502:8017 
00503: 
00504: 
C!;5~~5 :C 
005')6: C 
1);:'507: 
')0508 : 
~~')S09 : 
JI)S10: 
'~:~511 ; ':-

)0513: 
)(;5:4: 

)1,l51~: 

)0517: 
)0518: 
)1-,51'';: 
)('520: 
)0521 : 
)0522: 

)0524: 
)0525: 
)0526: 
)0527: 
)0528: 
)0529: 
)0530:8770 
)0531:8170 
10532:C 
Iv533:C 
10534: 
10535: 
10536: 
10537: 
10538: 
11)539: 
:0540: 
:0541 : 
10542: 
'0543: 
10544:8172 
'0545:C 
0546 :e 
0547: 
0548: 
0549: 
0550: 
0551 le 
0552:8178 
0553:C 
0554:C 
0555: 
0556: 
0557: 
0558: 
~)S59: 

0560:8173 
)561: 
0562: 
)563: 
0564:8174 
)565: 
)566: 8177 
0567: 
0568: 
0569:8175 
0570: 
)571 : 
)572: 
)573:8176 
)574: 
)575:8119 
)576;­
)577: 
,1378: 
)519: 
)S8O: 
)581 : 
)582:8171 
)583:C 
)584:C 
)585: 
)586: 
)587: 
)588: 
1589: 
1590:8771 
1591 : 
1592: 
1593:8070 
1594: 
1595: 
'596:C 
'597:C 
598:C 
'599:C 
'600:C 

JNCD(JA)=JNCD(JA)+l 
CONTI NI)E 
RHS( IQ) =F,·RHS (r i) 
JRt)WNI)(lJ=[E 

ErS: (IRI}W) =M.HS \ : I~) 
[SS( rr::::",)"::-3; :':'; 
':-,;)C( :RCW)=:E 
[;:to'!;' :::;,.:',i,:}:::~ ':Ix (~,~, 

!:C 31;':'0 !,Q=:,:.C:',J 
!F(IA,EQ,1')) 1;(1 "'0 80','':, 
IF(j,!:i:G(:~) ,£'~,l): 'x' TO 13,:'';'0 
: ,~:,}.,= ~ RI~\J ~ l 
:S:::1) 
! Z=~ ... 
r:";=IW-+-l 
: X::IR')I,.;,"'""( ili) 
:':'-:!R(lI.ON'){:X) 
RGI..EL.J( I l) ::Ri)',JE~L: I X) 
JP'J=O 
JS=D.+: 
JL=IX-+-IY 
DO 81 70 ~:S=J'd, JL 
IF(lROWNOn'.S) ,NE,J) I)) 1'":' 817(, 
IF(ROWELUKS) .EO,'),!)) GO ':1) 137'/,) 
JPV=KS 
~:S=JL 

CONTINUE 

v'=JS 
DO 8171 JA=I,NCOL 
IF(JA,EQ,J) GO ';~i 31",'"1 

JR=2 
,j::-=1 +JROWNO ( 1 ) 
DO 8172 1o'.1=-1fl,JC 

:PV"'v.~ 
;.'.l=JO 
CONTI N';~ 

rF(I~T(JAI,EO.1) GO TO 8178 
IF<Ipv,':i;,,)J :~:) c:) 8178 
C (JI1>=C (JI1) -R(:i..;EL; (I PV) '1-(.: J) 
~R" (JA)=-1 

IF(ROWELL(Kl,£Q,O,t,)1 CO TO 8173 
IF(JPV,EI~,O.UR.IPY.E,~.(I) GO 'ro Si. 11 

ROWELJ (rWI=ROIo:ELL(~:) -ROI.o;E~L (':,;;':~') <t ;:,w:'~J,': (.-\)) 
[F(R(,WELJ(IiIi\ .L.E,O,lE-3,AND.RC! ... ~'_ (:',)\ ,.;~. -0 •• ::-5) 
co TO 8175 
IF(NCO(JAI.=O,U) GO TO 8176 
IF(JPV,EQ,O.·}R.IPv,~Q,O) ,:;,,:; Tu tl-~~6 

,~C·JE;"J( 1',J) '" -ROWtL .. (J? I; "''''::::,~=L! ( : :' 
Gl) T') 8175 
ROWELJ(IW):~OWELLI~) 

G(: TO 8175 
IF(lROWNO(K),NE.JA) GO TO 8171 
IF(JPV,EQ,Q) GO TO 8176 
ROWELJ( IW) =·f\*ROWELL( JPV) 
JROWNO(IW)::JA 
IW=IW+1 
IE:IE+l 
JNCO(JA)""JNCD(JA) ~: 
K=I<+! 
cc TO at71 
IF(NCO(JA).EQ,O) GO TO 8171 
IF'UPV.El,:,O;OR.[PV.EQ,O) G':, ",) 6,"', 
ROWELJ (! 'iJl=-':"(:WELL (';PV) f!-ROWELJ, :;- ,.' 
';ROWNO{!W)::JA 
ll"J=Iw+l 
IE=rS+l 
';NCD(JA)=';NCD(JH)+1 
CONTIN:)E 

JROWMK(IROW):IZ 
JROWNO(lZ)"'IE 
NROO (I ROW) =JROWNO (I Z ) 
IF(JPV.EQ.O) GO TO 8771 
RHS(IA)=RHS(IA)"ROWELL(JPV)*RHS(IQI 
RHSl (IReIJ) =RHS (lA) 
ISS( IRQW)=1 S (lA) 
I COX (I ROi,J) =1 OX I I H) 
CONTINUE 
C(J):-R*C(J) 
NRW=IROW 
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'J601 : 
~o02: 

J603: 
)604: 
)605: 
)606: 
)607: 
)~08: 

)60Q: 

)610: 
)611: 
)612: 
)613:9(:92 
)614:8U91 
\615:C 
J616:C 

JQ2::1() 

Or) 8091 I1=2,NRW 
IROWMK( I 1 )=JRi)l,,)MK( I 1) 
IX=IR')',o,IMK(IIJ 
R'Y"ELL (I X ) =ROWELJ , I X ) 
rROWN')( I X )=JRC''''~jO' ! X) 
IY=IRO!..oNO(IX) 
1:<:<=!X+l 
I'!Y=TX+IY 
DO 8(192 K2:::1[(X •• "" 
[ROWNO(Y.2) :::IJ~I)WNO (1<2) 
ROWELL (.:2) =F.;IJWELJ (KZ) 
(,:JNT! ,\lI.iE 
C:_,,'\I"NUE 

1617: :.-I=! 
)618: DO 81)93 ,;t=l.NC'IJ_ 
1619: ':'::-V(IJ1)=:) 
1620: NCD(JU=,;'N(JL.ill 
)621: IF('\iCOUl;,::'J,O) i~O T,) :!')93 
1622: 
1623: 
1624: 
'625: 
'626: 
'627: 
628: 
629: 
630: 
631: 
632: 
633: 
634: 
635: 
636:8095 
637t8094 
638: 
639: 
~40:8093 

641 :c 
~42:C 

~43:C 

~44: 

~45: 

~46: 

,47:C 
~48:C 

,49:C 
~SO: 

:'51 : 
~52: 

,53: 
,54: 
,55:8096 
,56:C 
,57:C 
,58:e 
,59: 
,60:e 
,61 : 
,02: 
,63:C 
,64:C 

IC[ILMI< (J1):::IN 
I Z=-."l 
N::N+! 
00 80'<4 Il::2,iliRW 
Jx"'IROWMK(i1 ) 
':Y=fROWNOCJX) 
JXX=JX+1 
JvY"'.!X+JY 
DO 131)95 ~","'JXX,J'(Y 
IF( IROWNI)(K) ,NE,J1) GO TO 8(195 
COLELL \ N) "ROWELL (11.) 

ICOLNO(N)=I1 
N=N+l 
K=JYV 
CONTHM~ 
r:;ONTINUE 
ICOLNi)(IZ)::N-IZ-1 
IF(CUi l.L T ,-'),lE-S) J1)2=1 
CO;'llTINlJE 

rS;I~8=rSS(:::) 

ISSi.2)=!C(J) 
IC(jJ=LS,OR 

DO 8\.196 r.;'G:,J:Z, NRW 
I S< I ROW):1 SS (IROW) 
RHS i I ROW )=RHSl (l.=iOWI 
Nf::O( !~,)\~) :N!~!,)O (IROW) 
! OX (:ROW ):1 Dt'X ('R':-W) 
CONTINUE 

GO TO !O 

RETURN 
END 
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!)Ol: SVBROUT~NE ')5cO:;: 
002:'SINSERT 5Cl(ON>S>PDPHR~MS 
00:::: $INSERT SCIC('N>S>PDPMCKE'( 
0!)4:'SINSER'f' SC!':::;~CS;P::WI E~\ 

005:$INSERT ::?CI(::,N. '3~PDF"BIT5 
!J06: $INSERT '~C: ':':'N; S;I:'D:~'uS!:::: ."'_ 
001:*:NSERT ~,:!("::~J: 3>F'Df-'M FlT"'!X 
008: '$ r ';S~", T ~,.,.": .. ,' S >':·DF':'(.':_ 
:)09: 1;!\iSERT 21: !ccr:;-S,' '?-'r;F'fE":"A 

EXTENDED WILLIAMS METHOD 

01V: :;:=,~:","3 ~!'"!S(5L~) 

011: ,;:::=lL *8 COU:!..:'" \ :::;'8 1 
012: r.E~L~·3 :;":'WELLC:04d) 
013: ~EAL*8 ':::;:')~di 

014: r(tHL*8 SN(,;::'48: 
015: ·.'::,4t ... S '.)(5l2) 

016: 
017; 
013: 
019: 
020; 
021 : 
OZZ: 
023: 
OZ4: 
025: 
026: 
027: 
1)28: 
029: 
030: 
031: 
032: 
033t 
034: 
035: 
0~6: 

037: 
033: 
039: 
040: 
041: 
042: 
043: 
044: 
045:998 
046: 
047:C 
048:C 
049: 
050: 
051: 
052: 
053: 
)54: 
)55: 
)56: 
)57: 
)58: 
)59; 
)60~ 

)61; 

)62: 
)63: 
)6lt: 
)65: 
)66: 
)67: 
)68: 
)69: 1600 
)70: 
)71 : 
)72: 
)73: 
)74: 
)75: 
)76: 
)71: 
)78: 
)79: 
)80: 1650 
)81 : 
)82:1660 
)83: 1670 
)84: 
)85: 1500 
)86: 
)87: 
)88: 
)89: 
)90: 
)91 : 
)92: 
)93: 
)94: 
)95: 
)96: 
)97: 
198: 
)99: 
,00: 

REA:..*8 ~"'P(512) 

RE.'=IL",g ':;:'.0.1'::51:) 
RE.'\L~'3 '-,-;::(512) 
REAL"e RW(512) 
REAL"'!! RU(512) 
REAL*8 P(512) ,PP(SlZ) 
REAL*8 Q(~1Z) ,QPtS12) 
REAL*8 Se(512) 
RE.'IV8 C(5tZ) 
REAL*8 G':(512) 
REAL*S X(S:2) 
REAL*8 PS ,I~S. WT ,UT, DFC, OF'), DF!::, E:"'Ml.E!...:'12, AI"1~ N 
INTEGER.Z ICOLN(i(2048) 
INTEGE.~*2 I ROW~JO (2048) 
! ~!TF::GER.2 !I.~OL '11\ \ 512) 
[~.f'!'EGE.R*2 I RQWMK (~t;;:) 
:r.:7EG~~:t2 ·.{K(SI2) 
INTEGE~.2 KZ(S12) 
:N:·E'~~:R*:": 18C(::.2) 
J~;~GE~.2 JGN(~12) 

:~J~~I;':f;""~ lnN(S:~2) 

!.'JTEI~E:'::-tZ JV(51::J 
!~I'EGERt2 rC(jl~: 

r :'IJTEGER*2 JSC (512) 
('::~MON/P.Lf,~ ~ ICOLE:L:" ,RO!")ELL, lC.j~tI!.:,. ! ;';'~"'NO, (COt.r.K, : ':':;':'"-IMf< 
COMt'!ONlALAA2/SC, S, :~, j~~S, x, c, ':::: . 
COM.''l':'N/ALAA3/~~K, KZ,! SC.JCN, r:;:~, JV. I (", :<;::: 
COt'!MON/ALAA4/U ,I)F', ~"~C, RUC, F', Q, ::;:i~ ,~U, ~'~. ,~p 
',JR. -E( ! ,79),3) ~IR:)W, !I.'S::'Q 
FOR!"1AT(Z,X, 13,::;X,! 3) 
X'l.=lOO:)0;)O,r) 

NNROW=NROW+l 
N=1 
~:"'1 
DO 1500 JSt:::~=NNROW,;~·:3':'Q 

J=JSEQ-!'lROW 
IC(J)=J 
ICOLI"':I<CJ)=f{ 
KLMEL=~SJ"lr::L (JSEQ) +:-'ISK:1::8i J'3t::'~) 
LL~F.L=MSMEL(JSEQ+l) 

L'=") 

DO 1600 I 1_1"::L=;.<L,'o:SL, ,-U'IEL 
t R('w=MRWME '. ! LMEL) 
IP'X'L=~P'!'~E (IL~EL) 

~'='I"l 

:...=L'"l 
I (:!JLNO (N );I;;IJt.l 
;';:JLELL (N) =PI)i)L ( l f'(:Ol) 
:F(Ci)LELI..(NJ ,CT ,0,0) GO ~C ,60:') 
JCN(J )=JeN(J) + 1 
I RN( IROW)=IRN( IROWl" 1 
CONTINUE 
tCOLNO(i.';)=L 
KI«J):::L 
rF(ANO(I"'C~<EY(JSEI..'I ,;,Cf!U8C) ,EQ,~~i '~'.' 

I ~'OOL=MPTMr::( KLM£L-l) 
GOLE_:... (;{) ::::POOL (I POOL) 
C(J)=-COLELL(Kl 
3~..:(';)=<GLSL:"(K) 

CC( J l=-COLELL( Kl 
rpOOL=M~WMC: (KL,"tEL-l) 
IF(IPOOL,NE,I<PTF'U) \;:::: "'0 :,~.sO 

U(J)=XX 
CO TO 1670 
U(JI=POOL(IPOOL) 
K=K+L+l 
N=N+l 
CONTINUE 
~<=1 

DO 1700 I=2,NRUW 
~HS<I )=BETA(I) 
Q(I )=XX 
PH )=').0 
L=O 
IROWMK(I )=1.{ 

IR=K 
DO 1800 ,J3E'~=NNROW, NSEQ 
J=JSEQ-NROW 
KU1EL=MSMEL: ':SEQ) +MSKMES(JSE';:) 
LLMEL=MSMELeJ3eQ+l) 
DO 1900 I:"~EL=KLMEL,LL~SL 
IROW=MRWME(ILMEL) 
IF(IRIJW,NE,I) GO TO 19(1) 
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01: 
0:; 
03: 
1)4: 
os: 
06: 
07u9QI) 
08: IdOl) 
09: 
10 : 
11: 
12: 1700 
13:C 
!4:C 
15:C 
16 : 
.7:2001 

19:21)02 

21: 

<-:::L+l 
;<=~+1 

IPCOL:::MPTME(lLMtl) 
ROWE<-L,;<) :::POOl ( : peel) 
IROWNO(K):::J 
IL.i"'EL:LL:-:EL 
(.ClNTINUE 
CGI\. :-::I;!)E 
IR01")NO(lR)=L 
-'.Z (r ):::L 
K=K+1 

wRI rEi 1,';:')01) 
FORMAT(3X,'r-'AkT A') 
IoIRI T::: ( I,'::C()2) 
FORMAT (3X,' PHASE 1') 
!F~\,'"",l) 

IF'riA3f.:=':: 
22: !PASS=l 
23: :F'SACT=O 
24: I!)SC2:::1 
~S:2003 FC:RMAT(3X,'j-:'ASS' ,!2) 
:':6:, .. 
~7 le 
;::8: C SETT! .'~G T:-:: G'~U)MNS ! ~ nN ;.~':3::::JO: "V, _ ::;::::.'\ :-,:..:,,~.~ ;.:!): ,,; 

29: ,0 THE:R COST CO::::;: . .:':::-!E~l:S ", 
:O!C 
:'a:c 

~S: 

~6: 
~7: 

~8: 

~9:2 

~O: 

H: 
~2:1 

n:c 
~4:C 
~5 :(; 
~6: 1009 
~7 : 
~8: 
;9: 
50: 
sue 
52:C 
53:C 
54:C 

Dr) 1 Jl=l,~CCl 
AMIN:::XX 
,)0 2 J2= 1 ,:.eel 
rF(IC(J2) ,EQ,l)) G:) TO 2 
r:=(AMI~,LE,C\':Zl) (;:) ~(I 2 
AMIN==C(J2) 
J=J: 
CONTINUE 
JV(Jl l=J 
IC(J)=O 
CONTINUE 

I.'RITE(l,201)':;; I?ASS 
DO 1000 JG1:::1,NU)L 
rC(JGl i""JGl 
J=JV<JG1) 
rF(!SC(J),:SQ.l,(OR,~SC(J),:::'~,.2) GO TO !OOO 

55: j\;::ICOlM~~(J) 

;6: ~:::!'.)'::L"+':-(:'I;) 

57: IN:::N+l 
18: ! ,'!=N+M 
;9: :F(KV.U) ,EQ,O) G;J :':~ 1004 
,0: rF(I?AS3,~'~, 1) Go) T') ~:)Q4 

A:e TIGHTENING T~E ."'~UI'!AL 3(:~INDS '" 
,SIC 
,6: 
.7: 
,8: 
,9: 
'0: 
'1: 
'2: 
'3: 
'4:901 
'5:C 
'6:C 
'7 :e 
8, 9, 
,0: 
,1: 
,2: 
3:902 
,4: 
5, .. 
7, 
8:590 
9:e 
O:C 
tIC 

UP(Jl=V(J) 
DO 901 K=IN,[M 

"IF(COlElL<Kl,lE,O,OI GO TO 901 
1:ICOLNO(KI 
IF(RWC(l) ,EQ.~XXl GO TO 901 
UT=(RHS(I) -RIMC( Ill/COLELL(V,) 
IF(UP(J),LE,UT) GO TO YOl 
VP(J)=UT 
CONrINlJE 

IF<uP(J) ,NE,O,Ol GO ~o 902 
VCJ)=O,O 
X(J)=U(J) 
WRITE(1,202) J,X(J) 
GO TO 140 
IF(IPHASE,EV.l) GO TO 1004 
IF<vP(JI,GE,\J(J) GO TO 10011-
U(J)=UP(J) 
IPSACT:1 
WRITE(l,590lJ,VP(J) 
FC'R:1AT<3X,'I)PPER BOUND (f ,13,' )TIG~:::,,';E~ .;;, ,.~:';',3_\ 

2:C CAl(:tJLATIIIIG -;";-tE vPF'ER AND L.OWER ':::::'ST ':F-' :-;~E VAF.:::"'S!..-=: ... 
3:C 
4:1004 

" ., 
7, 
8, 

" ':20 

PS=o,o 
Q8=O,O 
IF(KKtJ) .EQ,O) GO TO :006 
DO 10 K=IN,IM 
I:ICOLNO(K) 
IF(COLELL(K») 30,10,20 
JF=K 
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0201 : 
0202: 
020.!: 
0204: 13 
')205: 14 
0206: 
;}207: 
f)2!)8: 30 
02v9: 
'nl l)! 
0;::11: 
1)212: ~::5 
0213:16 
0214: 
:)215: :~:­
~:Zl·~:C 

:)217:''; 
:J::13:C 
)219:C 
)220::::: 
)221: ::)1)6 
)2:2: 
)223: 
)224: 120 
)225: 
)226: 
)227n60 
)228: 
)229: 130 
)230: 
)231: 
)232: 
)233: 140 
)234: 
,235: 
)236: 
1237: . 
)238: 
)239: 
)240: 
'241 : 
'242: 
:243: 
1244: 
'245: 
'246: 
1247: 
1248: 
'249: 
1250: 
'251: 6666 
'252:6 
'253: 
1254: 
'255: 
'256: 
'257: 
'258: 170 
259: 150 
260: 
261:C 
262:C 
263:C 
264:1005 
265: 
266: 
2671 
268:C 
269:C 
270:C 
271lC 
272:C 
273:C 
274: 
275: 
276:3:8 
277: 
278: 
279: 
280: 
28lt 
282: 
283: 
284:314 
285: 
286: 
287: 
288: 
289:319 
290: 
~91 : 
292: 
=93: 
~94: 

~95: 
~96 : 
:97:311 
:98: 
·99: 
:00: 

IF/I)<I),E,~,XX,OR,QS,EQ,XX) GO TO .... 
QS=:)S+(OLELL( K) *Q' ! J 

GO TO 14 
QS=x.;( 
~~(PS,EQ,-XX) GO TO lO 
PS=F·2+(OLELi... (K) *F'( I J 

GO fQ lO 
JF=K 
!FCQ(I),EQ,XX,OR,PS,~Q,-~O GO TO 15 
':·S=::-S+CO'_ELl( ·"'1 +.'! i: i 
GO "'0 to 
F-·-:=-d 
IF(QS.~'~.XX) GO TO ~(l 

f:·S=·:'S ~':;O'-~_:..:;.:) ·Pl r ) 
·:::·r.T!."\J'.:E. 

;:':::(PS,,;T,C<J» CO TO ~.::O 

IF(':IS,'.T,C(J» GO fO 130 
GI) TO 1005 
X(J)=O,O 
IPSnCT=1 
WRITE(1.t60) J,X(JJ 
F'JRf'lAH3X,'X(' ,13,' )::' ,F"14,3.':X,' IV'; 
GO TO 140 
I~(l:(j),EO,XX) GO TO 170 
XU)"'U(.JI 
IPSACT=1 
WRITE(1,t6(» J,X:J) 
DO 6 ;t:..1N.JM 
I=!COLNOtll.) 
IF(3<K) ,NE,O,O) ,": .... SCI J=RHS(J )-S(l.O*;«J; 
8(;0=0,0 
!F«(i)LEl:..nO,E~I.:).l)J G:) m 6 

COL.EL!...'''{)=O.O 
:\It,= I ,~(:wt"~ ,! ) 
MM=IROWNO(NN) 
r ~)I,;"'IIJN+ 1 
:MM=I\r;,+I'j:"1 
DO 6666 I,{=L\lN,r:",'1 
IFCIRr)WNO(lK) ,Ni;;";.J) G:) rc ·.J606 

."i"HS(':: J=Rl"i5C I) -ROWELl( I K)"'X (J) 

BETA( I) =BETA (I) -ROW!::LLC U.O*XU) 
:F (ROWEl..L( UO ,L7 ,0,0) IRN(! )=rRi~(! )-1 
ROI..lE!...L (r~:) =0,0 
KZ(1 )=t{Z(I )-1 
li~=I ~,"1 

CONT;NlJE 
CO"TIN,):::' 
KI<(Jl=O 
ISC(J)=l 
JSEQ=NROW+J 
MCI<EY( ]SEQ) =ANOtMCKEY( JSEQ) ,KCBFlRl) 
GO 10 lOCO 
WRITE(1,1S0l J 
FORMAT(3X,' XC' ,13,') IS !)NBOt:NDE[;') 
GO TO 999 

IFqPART,E!J,ll GO TO 301 
IF(CtJ),EQ.O,O) CO TO 301 
IFO<K(JI,~<E,l) CO TO 301 
IF(UtJ),NE,XX) GO TO 301 

REPACING SINGLETON COLVMN BY SHADOW F:~:ICE ", 

!=ICCLNOC,;F) 
IF«(:OL!::ll(JrJ J 318,301,319 
:.n=c (J) ICOLEL:" (JF) 

·IF(lJT.GE,Q(J)) GO ro 3000 
SNCJF)=COLELl(JFl 
lSC(J)=2 
Q(Il=VT 
IPSAeT=1 
I,'IIROW=l -1 
WRI1E(l,314lINROW,Q(I) 
FORMAT(3X,'UPPER SHADOW PRICE ON CC: .. S~;;,nrNT(' ,13,' )=' ,F14,3) 
IPS=1 
I OS=<1 
I OSC2"'" 1 
GO TO 3200 
WT=C(J )/COlELL( JF) 
IF(WT,LE,PtI» GO TO 3000 
SN(JF)=COLELL(JF) 
ISC{J)=2 
PtI)=WT 
IPSACT=1 
INROW=!-l 
WRITE(!,317)INRO~,P(I) 

FORMAT(3X,JlO~ER SHADOW PRICE ON CONSTRAINTt' ,[3,' J=' ,F14,~) 
IPS=1 
I DS:z1 
IOSe:=1 176 



:;O::C 
30.1:1.:: 
:04:'':: 
:05:C 
>6:C 
:;07:C 
':;)8: 30! 
309: 
310:C 
311 :C 

313: 
:;14: 
315: 
316: 
317: 
318: 
319: 
320:732 
321: 
!;2Zt 
323: 
324: 
325:731 
326: 
327: 
~28: 
~29:'133 

:= ~3.£~.1XI a: 78 :000 
;F\C(JI,Ew,u,O,A~O,~S.EQ,O,O) GO TO ~ooo 

DO 7:;':) ;<=IN,IM 

! :::=0 
t=I('O:"~~:~(;.t, 

PP(! )=P(I 1 
QP( I ):::1)( t) 
rF(O)LELLOO) 731!7"::O,732 
~T~O(I,+CC(J)-QS'/COLELL(K) 

IF(WT,LE,PPII») GO TO 7::;(1 
PP(I):::WT 
IP=l 
GO TO n:· 
~;=~(I)+(C(:)·Q9;!COLELLCK) 

IFClIT,GS,QP(I)) G;) TO 730 
OPC: )::.IT 
IQ=1 

530: ~F(I':'F'(:),'I':,~'·'(l») G:) ro ?::.s 
~31: P(l)=P!"',I) 
;32: ')(Ii-<'::-UI 
~33: JX"'l;·;w~~«I) 
)34: JY=!Ro(~r;O(JX) 

~:5: JS=JX+1 
:36: ,]:..=J)+-;Y 

;)0 7:;4 ;<;,;;".:~,J:" 

I F(ROwE::.....·. (:.z-":J ,;;;»,0,:::; :;::' 
:Q:::IRC(.;~~G('~2) 

J5:: (.."~) ... 3 
,41: C (..':~ ,,,(: ~ .";;) -R:):JE:....L..\ .(2) ~'~'\! ) 
;42: ROWEL:....(~::}=O,O 

;43: IX=ICOLMKIJQ) 
;44: IY.::ICOLNOla) 
;45: IS=IX+l 
;46: IL=rXQY 
,47: DO 736 ;C::::S,IL 
;48: IFIICOLN(!(~'.3),r,E.!) <:0 TO 7':'6 
;49: IF(COLELL (lC) ,LT. 0,0) JCN( JQ)=JCN(J;~)-1 
;50: S(1<3)::':'OLELLIK3) 
:5'1: COLELlIK3)=I),O 
;52: kK(Jr)=~'.~:(Ji,JJ·l 

:53: v.3=lL 
54:736 
55:734 
56: 
57: 
58: 
59: 
60: 
61:735 

63: 
64: 
05: ' 
66: 
67: 
68: 
69: 
70:737 
71: 
72\ 
73: 
74 : 
75: 

(.(lNTtNUE 
CONTINUE 
Kzn )=1) 

IRN( I )=0 
!PSAC:=l 
INQOw=I -1 

IF(?F'(I1,!....E,?(U: co 1'(',7::;0 
PC; )'-=PP(!) 
IP5t-iG :"=1 
INROw:: -1 
WRITE(!,763) !NROW,P(I) 

I IOSC2=1 
GO TO 730 
IF<IQ.EQ,O) GO TO 730 
IF(QP(I) ,GE,QII» G:) TO 730 
Q<I )=QP(l) j 

IPSACT=l 
INROW=I-l 
WRITE (1 ,765) I NROW, Qcr ) 
IOSC:=t 
CONTINUE 

76: 
77:730 
781C 
79:C 
!30!763 
!H: 
!3Z:765 
!33: 

FORM.'=!T (3X , 'LOWER S:iADOW PRI CE ::'N . -': '-: -. , : : , ' T! G:-JTE~lEj) TO' , 

!34:C 
!ISle 
!!b:c 
!l71C 
!l81C 
!39:3000 
~O: 

~1 : 
~2: 

~3: 

14:C 
IS:C 
~6:C 

17: 
'8: 
'91 
'0: 

*F14,3) 
~ORMAT(:X,' I.;PPER SHADOW ~'~I CE ON (":.,'.: ;,: ro'';-:-' ,13,' rr GhTENED TI}' , 

*F14,3) 

A CC:~lPARISON SE:!o:EEN THE COLUMtJS 

IF(JSC(J) .EQ,:;) GO TO 3:00 
IB=O 
IFIlDSC2.EG,O; (~O TD .3200 
IF(CClj) , .... c:, 0,0 .AND,JCN( J) ,EQ,O) I;') T8 
IF(JC1,EQ,~COLl GO TO 3201) 

JCL"'JGl+1 
DO 3100 JG2-JCL,NCOL 
J2=JV(JC2) 
IFIgK(J21,EQ,O) GO TO 3100 177 



401: rFtlSCCJ2l,EO,!,t)R,ISCCJZ).t:Q,:' ,;0 -,-, ::')0 

40~:C 

40":C 
405:C 
406: ~j!"C:::(C(J:)-':((J) 

407: ;:F(OFC,LT,O,o) 1;0 TO :;100 
408: C'FU=r) , r) 
409: I E:::r) 
410: )0 :;:::;20 I=Z,NROI..I 
411: IF(I.(l(I),EQ,o) G(r TO :;:220 
412: :":':=':"'0,0 
U3: ELII11=O,O 
414: ~L~:=0,O 

:1.:5: JX::::fROW~l<fU 

11- Ib~ :'~"'~ ;'~' .. :.O( JX) 
H7: J5=J)'+1 
~18: ~'l,"',:~"';Y 

H9: C-:: ::::::1 I<=JS1JL 
4'·"~· ~F(r<C;..LLi...(;O .~,~.~~.~). GO ~·O ::::1 
4:::: .jF':lR;).II~IO:;{' 

1122: 
423: 
~24: :;::2! 
~:::S : 
~:Z6: 

r:={jR.E'~.":::) -;;::..,"':"',~-:,'!:li_~;-:_\ 

;:1=' (JR ,EQ. J, EL..M2=R!::t,.:EL ... ',1<) 
,,:':)NT! '-JI JE 

OF~=r:::!..j'l1-E::L:12 

! F <oFE. L.=- ,0. 1E -::.) 
~27: r::(Q\I),~IJ.Xx) G:) To) .:;;2:3 
~28: DFI)=OFU+DFE'Q (1 ) 
~29: 

~31 : 
132: 
~33~3224 

.34:3220 
135: 
~36: 

137:(: 
138:C 
139~e 

~40: 3222 
)41: 
)4Z:3101 
~43: 
)44: 
145: 
146: 
)47: 

)49: 
):;)0: 
151: 
~s:: 

,53: 
:54: 
,55: 
,56: 
57: 
58: 
59: 
60: 
61 : 
62:3033 
63:3011 
64: 
65: 
66:e 
67:C 
68:310tl 
691 
70:C 

C;) TO 3:21) 
rE=1 
I=NROW 

DFU=OI='UtDFE*P( [) 
CONn~VE 

IFfIE,EQ,lJ GO TO .31~~O 

IF<DFC,LE,DFI) GO TO 3i')r) 

IPSf1Ci=~ 

'.rJ::::ITEf1 1 3!Oll J 
!:':~'RMAT(3X,'X(' 113,') EXTRANEOUS') 
JSEQ=NRO'~+J 
i':ChE'f (':SSQ )=AND (i1CKC'I' ( ]s:::':;,: • ,;(,:;:'~,~T ) 
KK(J):::O 
!SCU)=i 
DO 3011 Kl=!N,II1 

O)LELL< K 1 )::0 ,0 
SO<l )::0 ,0 
fl"'IC)I_:\C(l{l) 
:X=!~C:"MI{!I') 

JY=IR:)WNCfJXl 
';8=JX t 1 
JL=JX+JY 
:)(1 :':'\)33 :·c>':::i, JL 
IF(IR('iJNOfK2),8:::,J) GO .0 :~;;:; 
IF{f;:0Wc~:...(,<2) ,;"'[,0,1) ::::::r.(!! 1< ;.\:! 1 )-1 
ROWELL(KZ):::(j,O 
,\l<Il)=KZ(I1J-l 
:.<2=JL 
CONTIN:,.'t: 
CONTINUE 
18=1 
JG2=NCOL 

CONTINUE 
IF(IB.EQ,l) GO TO 1000 

71 :e 
72:C 
n:c 
74:C 
75:C 
76:3200 
77: 

CALCULATING THE U?!='ER AND LQ~}E:; 4CTIVITY c:oNsTRArNT •• , 

78: 
79:810 
80: 
81 : 
82: 
83:8101 
84: 
8'5;812 
86: 
87: 
88; 
89;8120 
90 :811 
91 :e 
n:c 
~l:C 
?4: 1000 
?5:C 
?6:C 
?7: 
18: 
>91 
>01 

DO 811 K:;I.'lJ1:M 
[ = [ COLNO 0-0 
r;:(':'~LE'~L(;':) ~:01811IB12 

IF(Uf]) ,EQ.XX) GC: fO 81'0t 
!e(:':W(I),EQ.-XX: G:) ';") 811 
RWf I )=RW(i ) +COL;;:LL< K) *u (J) 

GO TO .311 
RW(I)::z-XX 
GO TO Bu 
IFfU(J) ,EQ,XX) GO ji) 81::0 
IF(HUfl),EQ,XX) GO TO 811 
RU (I) =RUt r ) +COLELL 00 *U (J) 

GO TO 811 
RUf Il::XX 
CCNTIN.)E 

CONTINUE 

DO 1028 I=2,NROW 
RWCII)=R\oHIl 
RUC(I )::zRU<I 1 
RW(I )=0,0 17R 



01: RI)(IJ=O,O 
t)Z: 1028 C :)NTl Nt.:E 
03: IDse:=o 
(14:C 
(15: .:: 
06: ! = , ~ PART ,Sl~ , :) ,;:) ',', ::0(1) 
07:::: 
013:(: 
09:(: REMovI,\G .-';ED~INDI1Ni CQ~'Si'\rl~.-":TS '" 

11 :C 

l:::;: .O=oa::i;,£'~,O) :;:.:' E: :;406 
l4: :x:::rRC\.,o~!{d II 

10: 
17: 
18: 
19: 
20: 
21 : 

rS=:'(~l 

rL=r~+rY 

IF(P(:1),~E,O,0) GO -~ ::: 
IF(RHS( I 1) ,EQ,O,o,AND, LP:"Hi 1) ,EQ,:)l 
!F(Q<I1) ,NE,XX) I~O- T') :12 
[FIRu(:(Il),I..T,;:,:.,S(lll) GO TO 11') 

;;:2:112 IF(RIJC(!11,Lf,r.:hS(Il),:O!'.!D,P(!:),G'T,O,:))';) ~,:, 1~1 

23: CO TO 3400 
:4:C 
:5:C 
26:110 
Z7: 
28: 
29: 

31: 
!:2: 

DO 125 IK=I5,IL 
IF<ROWELl(HO ,EQ,O,Q) GO 70 125 
Rr)wELL( I~< )=0,0 
JR:::IR('\1JNO( .110 
~=I(:JLMK(';R) 

M=ICOLNCI(N) 
N5="Pl 
MS:::NH'1 

:;5: r;:(l((IU' •. )\iO,:o.JE,:i.: ~;) 7:) :'".:':'3 
!:6: !r-'(COL::LL<Kl,LT ,~\.O) JCN( ;R)"':'~\ :i\)-: 
37: COLELL(,,)=O,O 
:i8: \<K(JR)=!(~q-'R)-~ 

~9: ~{=MS 

~O::::55 

U: 125 

~4 : 
~5 : 
~6 : 
.7: 
~8 : 
~9 : 
50: 111 
H; 
52: 
;3: 
~4 : 
)5: 
)6: 
>7: 
>8: 
i9: 
10: 
,1 : 
,2: 
.3: 
14: 
15: 
,6: 
,'7:1155 
,8:115 
,9: 
'0: 
1: 
2: 
3: 
4: 113 

" 6: 
7' 
8: 
9: 
0, 
1: 
2: 
3, 
4: 
5, 
6: 
7: 
8: 
9, 
0, 
I: 
2: 
3, 
4: 

" 6:121 
7:119 
9: 
9: 

" 

::C'NTI~,UE 

CONT~.'~UE 

KZ<!l)=O 
IRNd:)=O 
!PSrC=1 
1~t\GW=[1-1 

WRIT~(!.116)rNROW 

MRKEY (11) =O~ (KR8FRE. MR;,:'::'y (: ;. ) ) 
IDSC2=1 
GI) TO 3400 
DO 115 IK=IS,IL 
IF(RCWELL<iK) ,EQ,O,Ol GO TO 115 
Jt=IROWNO(IK) 
JS=ICIJU1K(Jll 
C(Jl )=C U1 ) -ROWELl{ 1)<: "tp( I 1 ) 
ROWELL(IK)=Q,Q 
JL"ICOLNO(JS) 
N5=JS+l 
:-.JL"'J5+JL 
Or) 115'5 K=NS,Nl. 
IF<I(;OU_G(j.I,) .. ~E,II) GO:O 1~5:'5 

IF (::·':' .. :~LL<K) ,LT ,0,01 JCNc":l )-=JC~\d':~) 
S(I-<)<C':"'E~L~}<) 

CO!...EI..\.. (I-{) =0. () 
:<K( J 1)=ttlt. LT! ) - I 
J5C(.:': )=3 
:·~=\;L 

CONTI;IIUE 
CONTINUE 
KZ(I1)=O 
IRN(Il'=O 
QtI1l=P(Il) 
108=1 
GO TO 114 
DO Il7 IV.=!5,IL 
IF(ROWELI..(lK),t::Q,O,OJ Go:ro 117 
!=IROWNOI.IKl 
JX=ICOLMK{JI 
JY=ICI)LNOC!X) 
JS=JX+l 
JL=JX+JY 
DO 119 Kl=J5,JL 
rF(COLELUKt),EO,O,O) GO TO !!9 
COLELUKll=O,O 
S(I".1 )=0,0 
I2=lCI)LNO(Kl ) 
!X=IROWMlf(I2) 
IY"'IROWNiJ(IXl 
IXX=!X+l 
IYY=IX+!Y 
DiJ 121 K~=IXX.IYY 
IF(IROI"tNO(K2',NE,J) GO TO 121 
! F (ROWELU ~'2 ) ,LT, 0, Ol I RN( I 2l =IRN(J:2J -! 
ROWE:LL (K2) =0,0 
KZ (12 )=KZ (!2)-1 
K2=IYY 
CONTINUE 
CONTlN!)E 
ISC(JJ=l 
KK(J'=O 
V(J)=o,O 

179 



')iJ601 : 
':('602 : 
OUb03:117 
00604: 
00605: 
00606: 114 
00607: 
0(16(,8: ~:5 
00609:116 
0('610: 
00011 le 
O()61Z:::4I)O 
00613:e 
00614:( 
0!)o15:C 
00616:8 
00617:C 
',")!:.lil:Z'~()O 

00619: 
0'-'62'): 
Q(l62! : 
l~0622: 

00623: 
()~)624: 

00625: 
')<)626: 
0062'7: 
('0628: 
00629: 
')()630: 

.(;J=U(;, 
WRITE(1,2021 J,X(Jl 
C(:NTI Nl.:E 
",Z (I ~ 1-=0 
i.;:'!'.j(lll=O 
!F-'SA('T=l 
INRO'.ll=il-l 
' .. ~!T:::I!.1:6) 1,,,;;:('1,,1 
r:I)RMFHt3X,'·.-O".SfRAINT ',13,X,''lS r:EDI"/IIDANP~ 
LDseZ"'l 

DO 201) 1=2, ~!Rr:::1.rJ 

If(:!=lr.J(I).;~E.')\ ';0 ro 200 
IF(F'U i ,clE,Q,O,OR,f~I(~) ,NE,XX) ::} 
;!="..,,) 
'\;~=[ f",::(.~."''':( I ) 
~"1=I ~::;.. ';':' ( '.I~~) 
1: ~IN:;;~-IN+ 1 

;:)':: .::8G :1<=INN,IM", 
:f!"(R(I'~I!=:!..l...(r~.;),L::,,~,'':} ';1) :.-, ':3') 
J',>~.~'~':~";'~ t, I)~) 

';<=":1:.< 

';.0631 :280 CONT':N\)S 
OC63Z: !F(JF .£Q.') G·) ~'': ;;::.,t') 
Of)6Z3: 
00634: 
00635: 
00636: 
00637: 
00638:Z9: 
006:9: 
OU640: 
00641 : 
C0642; 
00643:204 
00644::05 
00645: 
00646::0Z 
00647:203 
00648: 
00649: 
00650: 
00651: 
00b52: 
00653: 
01)654: 
00655: 
00656: 
00657: 
:)0658: 
00659:201 
00660;200 
00661 ;C 
00662:C 
00663:C 
00664: 1(101 
00665: 
00666: 
00667: 
00668: 
00669: 
00670: 
00671 : 
00672: 
00673: 
00674: 
00675: 
00676: 
00677: 
00678: 
00679: 
00680: 
00681 : 
00682: 
00683: 
00684: 
00685: 
00686: 
00687: 
00688: 
00689: 
00690: 
00691: 
00692: 
00693;1336 
00694: 1036 
00695: 1035 
00696: 
00697: 1008 
00698: 
00699: 
00700: 

'PI .JZ)=!;r'j (: ) /RC".,ISLL(-J~) 
rFWPIJ2).GE,t.H]2») GO ~J ,:'~r.'. 

IPSFlCT=l 
U

'
J2)=I)P(J2) 

'.JRtTE(1,Z91) J2,U(J2J 
F~RM~T(3X,'UPPER BOUND x:' ,13,') =' ,~14,3,;;:: •• 'rr') 
II="O<K(J2J,NE,l) GO 7Q 21)3 
IF(C(J21,LT,0.01 CO TO 204 
X\J~) ... l)(J2) 
co El 2')5 
I(J2)=O,O 
rSC(J2i::l 
WRI'"E(1,202) J2,X(J2) 
FORMFlT(3X,'X(, ,13,' I ",' ,F14,3) 
ROWELL(JF)=v,O 
KZ(I)=O 
JX=IC')U'!K(J2) 
JY"'ICOLNO<JX) 
JXX ... ';X-H 
.!yv:::JX+JV 
DO 20. '''.2:=JXX,.!'I'I 

COLEL .... (~I.2;:;;<), 0 
3(1.(2)=0,0 
KK (:2) '"f(K (J2) -1 
.{2= ;yy 
CONYINVE 
::_;:,~;"' ~ ~"t.:~ 

~>:'(IPSACT ,E),O) r;O:: ~'() 100,~ 

I F'SAC-;-=,) 
r !"ASS=IPI'ISS+ 1 
IF! IPART ,Er),1) GO TO 1009 
IF(IPS,EQ,O) GO TO 1009 
IPS=O 
DO 1035 J3=1,NCOL 
IF(ISCfJ3I,NE,21 GO TO 1035 
IFfKK(J3) ,EI),O) GO TO 1035 
N=lCOLMK(J3) 
M=ICOLNO(N) 
NS::;N+l 
MS=N+M 
DO 1036 1J.=r..:S,MS 
rF(SN(K),EQ,O,O)GO TO 1036 
r F(COLELL<K) ,LT, 0,0) JCN <J3 )=JCN (,;:; i-1 
COU::!...i.. (K) =\),0 
KK(J3)=O 
~=I(.8!"';-":O(K) 

NN=I ROWM!-< (I) 
MM=I~OWNO{"'N) 

INN=NN+l 
. IMM"'''JN+MM 
DO 1336 !K=:NN,rMM 
IF(lROWNO<IK) ,.'lE,J3) GO :0 1:::!; 
IF(RI)WELL.(IK),..f,O.O) IRN<I;=IRN(l.)·l 
ROWELL{!K)=O,O 
KZ<t)=HZ(l)-l 
IK=IMM 
CONTINUE 
CONTINUE 
CONTINUE 
GO 10 1009 
IF(IPASS,GT.l) GO TO 1010 
IPSACT"'O 
IPASS·IPAS~+1 
GO. TO 1009 

.On 



'070t: tOl0 
10702: 
I070~: 

'0704: 
'0705: 
'0706: 
m07: 
0708: 
0709: 
;)710~ 

0711 : 
I):::: 
071~: 

0714: 
t:715: 
(1716: 
1)717: 
0718: 
0719: 
0720: 
0721: 
0722; 
0723; 
0724: 
0725: 
07:6: 
0727: 
0728; 
0729:6888 
0730: 
0731:608 
(1732: 
0733~ 

0734: 
0735: 
0736; 
0737: 
:)738: 
0739: 
:)740: 
:)741 : 
.)742: 
)743: 
)744: 
)745:6088 
)746:609 
0747:606 
)748:605 
)749: 
)750~ 

)751 : 
)752:607 
)753; 
)754: 
)755:2004 
)756: 
)757; 
/758: 
)759: 
)760: 
)761 : 
)762: 
)763: 1 113 
)764: 
>765: 1012 
1766; 
176712005 
1768: 
1"/69: 
1770: 
1771 :999 
1772: 
1773:C 
1774:C 
1?7SIC 

IF( IPHASE,EQ,O) GO -:-0 1012 
!~(IPART ,EQ, 1 H;C: TO 999 
IF( r:'S,EQ,I) GO TO 999 
DO 61)5 J=l,~~COL 
JsceJl=O 
IF(ISC(J),S'),~) GO "0 =_)5 
N:I COL~'Y. (.;) 
r"=ICJ)U'Oe[\:: 
r.S-=N+ 1 
:-;5:1'<+'" 
[{1 6(;6 K:::~'.3.:' ... 3 
r::1 .:,::".~.;O(!-{) 

:SCeJ)=I) 

'~"·:~LC:':,..L (~~ J =Sj~ ( :~ J 
.rl._:·')' .• :::I..L<~) ,LT ,('.',l) :':~U.:)~,;,:::, 

"At,j ,=,.:\; (J) +1 
r8:::IR(I\,J!"t«: ) 
!G:::IRC!,,;;\iC t ZS 1 
.!8=I I? ';. 

DO h88,3 !D-=JB,JG 
I::'(::;'I:,~,' .. )(rDl,NE,Jl <,;.) 'T'::: e...383 
KljwELL{ ID) =SN (K) 
IF(RI)W!:LU ID) ,LT ,'),0) ::'::N(: :"rR~( r J +t 
~:z ( r l-:\IZ (I) + 1 

ID=JG 
CO~T:~lU: 

GO TO 60Q 
IF{sn~) ,EI),Q,Q) GO TO oO.~ 

COLELL (I<) =8\1< J 
I F( CDLELLOO ,LT ,0 ,0) JC~,{!) "''::':."J( J) ~'. 
1<1(J)=~'.K(J)+l 

I.'(=IRO{J~Kn ) 
IV=lRCI..;~.O(!X) 

JS=IX+l 
JL=I;(+lY 
[;0 6038 :;:-=18,J:.. 
rF(J:~(iWNO(IZl,."E,n -;!) -;:; t,,!)fd 
t::(!'"ELL( IK) -=8 (K) 
Ii:(RCwEI..:...\!sl ,L.T ,0,0) n::~(I J=lRNU) ~l 
1(Z(!)-=!-'Z(t)+l 
IZ::JL 
C~~NTINIJE 

::(';:::SC(J) 
::::NT!~I!.'E 

C::':-';T!~.US 

:)13 607 !:::2, ~~:~Ol,,; 
PC !)=:),:) 

OII )=X;( 
CONTINIJE 
IPI'IRT::l 
WRITE(1,20041 
FORMAT(~X,'PART E') 
IPI1HSE:::O 
WRlTE(l,200l1 
I PASS=O 
I PSA('T:::(i 
I PASS= I PASS+ 1 
00 1113 J=l,NCOL 
JSC(J) =1) 

CONTINtJE 
GO ro 1()Q9 
I PHASE:: 1 
WRITE(1,200S) 
FORMAT(3X,'PHASE 2') 
I PASS:::l 
IPSACT=O 
GO T:J 1009 
REfURN 
END 

181 



ur)f)l: S~_2f:::Ot_,.r;:JE 1.:SE.~ 

{I(I()~: 'INSERT SCICON)S>PDPPARAr'15 
0003: $1 NSERT se: ':::!N_'S>F"DF-~O:EY 
0004t 'INSERT S(:~('-:-~L S' ,po;;' ~ ";" '::-"';. 
0005:$INSERT SCI::C~LS>PDF'8!TS 
0006: $1 "OSERT .~.: :::;:,~!>s> O::·~~VS~~l.lL 

1)1)1.)7: ,! NSERT '3::1 ':I:'~>S>PDPI"1Fr,'RI x 
i)(If)!: '$1 ~lSERT 3'~ : ::"::~l S'; ~'D'::'f:":r':lL 
(::)[)9: 'I NSERT seI CON.;S;'F'['pBETA 
(1010: r::E~'_~~ RHS(512) 
00 1 1 : h'E.9L *8 COL ELL " 2(48) 
0012: RE~L*-3 R(iJEL.L;2C-1-·g) 
'JOI3: REAL*8 W(512) 
0014: 
0015: 
0016: 
01)17: 
0018: 
0019: 
0020: 
0021: 
0022: 
l)023: 
1)024: 

REFlL ~a \,:1= (SI".!! 
REAL*8 lH512) 
REAL·a l-,~( 512) 

REAL*8 RUSt2) 
REAL*8 RLC(512) 

REAL*8 X(SI2J 
REAL*8 DFE 
~ErlL*8 OFR 
F·EflL·~ OFl.! 

i"\EAL*8 UT 
REAL*8 WT 
""EAL*8 E:"'Ml 
Ri::AL"',g KM:::: 
p.r;-E'~S~*2 ~ COLNO (2:)48) 

INT~G;::;''':::: ~;:'i)LMK'jl:':) 

r."l-:-EGER'"'2 : ~OWNC: (2048) 
r~. TSGER*::: ! "OW;"l~:: '5 ~:.:) 
r.'lTEGES:+Z '!~«S12) 

rN~~GER'*:::: KI\5~":i 

r,-,(;"EC':::R*:::: :.(Z~~:::;;..) 

IN7E,;ER*;:: ;l.'~(::~:i! 

INTEGER"'Z I:JCRU(S12) 
:N:t::'~ER*2 Ir)CRL',:i'Z) 
!IIlTE';ER*2 LV(512) 
INTEGER*2 :llij~2) 

':OI"MONI'))Mrll IC:JLElL I ':;:C'\..'E~!... 

COMMCN/GOM81 iI .:-0:....-.8, fRCW;\!1) 

PREPROCESSING REDUCTION PROCEDURE 

J025: 
:)026: 
)021: 
)028: 
)029: 
)030: 
)031 : 
)032: 
)03~: 

)034: 
)035: 
)O~6: 

)037: 
)038: 
)039: 
)040: 
)041 : 
)1)42: 
)043: 

COMMON/COMe 1/! COLMK,! ROW:-:V., x:-~, ~',l, :'::.Il, .JZN, : ':":,RI),! CC;OL.., I V,!R 
COMMON/CC'MOI/I..!, '.JP, U, ur.:', X 

)044: 
)045:998 
)046: 
)047: 
)048: 
)049: 
)050: 
1051 : 
1052: 
1053: 
1054: 
lOSS: 
'056: 
'057: 
058: 
059: 
060: 
061 : 
062: 
063: 
064: 
065:" 
066: 
067: 
068~ 

0691 
070:1600 
071 : 
072: 
073: 
074: 
075: 
076:1650 
017~ 
078: 
0791 
:)80:1660 
081 : 
082: 1500 
083:C 
084:C 
)85: 
)86: 
)87: 
)88: 
)89: 
)90: 
)91 : 
)92: 
)93: 
194: 
195; 
196: 
197: 
198: 
199: 
00: 

COMMON/COME 1/RL, RLC, RHS 
WRI TE ( 1 (998) NROW, NSE:~ 
FORMAT(2X ,I 3,3X ,13) 
XX=10000I)O.0 
NNROW=,,<ROW+ 1 
IPAS3=1 
N=l 
K=l 
00 1500 ':SEIj=NNROI"l,NSEQ 
J=JSEQ-NROW 
I COLM~!. (J) =I{ 
KU"'EL=MS;"'\EL (JSEQ) +MSKI"EB (JSEC.) 
LLMEL=MSNEL (":SE~+ 1) 
L=O 
DO 1600 LLMEL=I·L"!EL,:":":"1EL 

rFu.'~.ow.EQ,l) GO TO 1600 
rpOOL=MP-:-"':;: (!!..M:L) 
N=N+I 
:....=:...., 1 
COLEL:" (N) =P'JOl ( I ~'OOL) 
rcou,,,:: (N) =IROW 
KI{(.n=I<)«J)+l 
KZ (IRCY) :::KZ (IROW) + 1 
IF(COLELUN) ,c;T ,0, lE-8) GO TO 1601) 
JZN(J)=JZN (J) + t 
KZN(IROW)=KZN(IROW'+l 
CO,'\liINlJE 
ICOLNO(K'=L 
LF(ANO( MCI<EY (JSEQ) .KCBUBC! I!:Q ,0) 
IPOOL=MPTME(KLMEL-t) 
COLELL(KJ=POOLtIPOOL) 
COLELL(K)=-COLELL(K) 
IPOOL=NRWME (KLMEl-l ) 
IF(lPOOL,EQ,KPTPLI) GO TO 1660 
U(J)=POOL(IPOoL) 
UP(J)=\)(J) 
K=K+L+l 
N:::N+l 
CONT!NUE 

LL:::1 
K=1 
DO 1400 I:::2,NROW 
IR(f)=! 
RHS<I)=8ETA!l) 
IROWMK(I )::.( 
lC:::O 
~o 1401 J=l,NCOL 
N::::ICQLMK(J) 
,'1:::ICQLNO(N) 
IN=N+l 
IM=N+M 
DO 1402 L"IN,IM 
!F(ICOLNO(ll,NE,J) GO TO 1402 
IC=IC+1 
LL=Ll+l 182 



0101 : 
0102: 
0103: 
0104: 
0105: 
!)106: 14')2 
011)7: 1401 
01(18: 
0109: 

ROWELl<Ll)=COl£LL(Ll 
IROINNO{LL)"J 
L=tM 
IFIF.CWELL(i...LJ,G""!",O,r)) GCI rc, !41)2 
RL,{ I 1 =Rl( t 1 +ROW£lL{ LU *"1)( JJ 
CC"NTr~I\)E 

CC'NTl~lUE 

1)11 0: '_'-:;::_~ .• 1 
0111:1400 CONT:NUE 
)1::: :'7=1 
vU3: re;;-..:i. 
I):;, 14:::: 
0ItS:(; 
01. :~~.: 
Ol17::'X{l ',.;R!"TEI1 ,:'::!)<)1)! :F'~SS 

0118:2000 :·.~"'~·-·:x,'l-·1-'·3:::' ,:2.) 
0119:C 
.)~ 20: (-
(ll;':I:C 
01Z2: 
0123: 
:)1:4: 
()12S: 
0126: 
1)127: 
0128:(. 
0129:C 
')130: 
1)131 :e 
1)132:C 
:)133:900 
:)1·34: 
)135: 
:)136: 
)137: 
:)138: 
)139: 
)140:902· 
)141: 
)142: 
)143: 
)144: 
)145:C 
)146:C 
)147:C 
)148:595 
)149:590 
)l50:S85 
)151:580 
)lj::570 
)153:C 
)154:C 
)155:C 
)156:7('.5 
)157: 
)158: 
1159: 
1160: 
1161 :706 
1162: 
1163: 
1164:707 
1165: 
1166: 
1167: 
1168: 
11M: 
1170: 
,t 71: 
'172: 
'In: 
'174: 
'175: 
'176: 
177: 
1'78 : 
179: 
180: 
181 :715 
182:714 
183: 
'184: 
'185: 
'18b: 
187:C 
t8s:e 
189:C 
190:901 
191:C 
192:C 
193:C 
194:C 
195:C 
196:C 
197: 
198: 
199: 
wo: 

::c ! ~=1 ,~~':C'L 
rF(~~K\':).EQ.I): ( ..... -(! 

DO 9.)1 ¥.=IN,IM 
I:o"(COLELLOO ,EQ.O.(J) GO T8 '701 
I=!COl.!lJI)(" ) 
:F(COU;:~L(K),LT,O.O) GO TO 90':::: 
DFE=RHS (I) -Rl (1 ) 
IF{:::CLElL(-<).GT.!)FE) GO TO:' '1(15 
';0 10 901 
RlM=RL(I)-COlELL(K)rfol)(J\ 
DFE"Rf1S(Il-RL!'1 
ELM=-COLELL (K) 

IF (EL'1,';"[ ,DFEl GO -:-0 706 
GO TO 91)! 

r:::RMH:(3X,'~':WER BC~~D (. ,::::,' -' -:-:'~:-r:-=.' .. c:J TO' ,F14.31 
FCRMAT(3X,'I)PPER E:JV:-.:D ~. ,!3,') T::;H;S~JS!) TO' ,F14,3) 
FC~,~AT(::;X,'X(' ,13,') (x:.'I,~~;ECUS') 

FORMAT<3X,'X(' ,r.:,' )=' ,~~';',3) 
FCR~AT(:::X,'C:rNS,.~qINT(' ,~:::,') f,;;:DUr:DANT' ~ 

'hRLE(1,S8S) J 
JSEQ=NROW+J 
I'1U·:::"Y (JSEQ) =Ar,;) (~("KEY (JSE'':;! ,~:::r·fR7 ~ 
X (J 1 =;..; CH 
GO T,] ;')7 
.~(Jl=IJ(J) 

WRITE(1,580) J,X(J) 
JFX=l 
DO 714 K2:::IN,IM 
I 2"'I(.OLNi)U.;2) 
IF(COLELL{1-:2) ,EQ,O,O) GO TO 714 
RL(12)=Rl(IZ)-COLElL(K2)*X(J) 
RHS(I2)=RHS(IZ)-COLELL(KZ1*X(J) 
BETACIZ)=BETA1I2)=COLELL(K2)*X<J) 
COLELL(K2)=O,O 
N=IROWNK(I2 ) 
M=IROWiIIO(N) 
IN:::N+l 
JM"'N+M 
DO 71S K~=J~j,JM 
IFC.:;:CWNO(K3) ,NE .. il GO TO '115 
IF( RCWELL<K3) .LT • 0, 0) f<ZN( 12) =KLN \ ; ~ ~ . : 
::;;OWELL (L<3) =1) ,I) 
KZ(IZ)=KZ(lZ)-l 
x:;"'.i M 

:':':ONTI iIIlJE 
i)}N;I\lUE 
!f'HASE=1 
IDR=l 
v'K(J)=O 
K=!M 

CONTINUE 

IF(KK(J),EQ,O) GO TO 1 
N=ICOLMK(J) 
M:::IIICOLNO(N) 
IN=N+l 
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)<)201 : 
)0,02: 
)0:03: 
)(),()4: 
)f)Z05:C 
)1),06:C 
)0207: 
10:08: C 
;(12(19:(: 
::~2:!): 

::)211 : 
-(;21:2:; 
11)213: 
1(:214: 
10215:C 
1(12:6:8 
:0217;4 
10:18; 
11)2:9; 
10220: 
11)221 :e 
10222 ~C 
10223:3 
'0224;C 
0225:C 
0226: 
0227: 
0228: 
0229: 
02:;0: 
02311 
0232:5 
0233: 
0234; 
0235; 
0236; 
0237: 
0238;C 
0239:C 
0240:C 
0241;903 
0242: 
0243; 
0244; 
0245: 
0246; 
r)247;7 
0248:2 
0249:C 
0250;C 
nSI:C 
0252:1 
)253:e 
)254:C 
)255:C 
)256; 
)257; 
)258: 
),59:6 
)260:e 
)261 :e 
)262:e 
)263: 
)264: 
)265; 
)266: 
)267; 
)268; 
)269; 
1270: 
1271 ; 
1272:t02 
)273; 
1274: 
1275; 101 
1276:e 
1277:e 
1278: 103 
1279~ 

1280: 
1281 : 
1282; 
1283: 
1284:e 
1285:e 
1286:e 
1287: 
1288: 
12891 
'2901 
'2911 
'292:C 
293;e 
2941 
295; 
296: 
297: 
298; 
2991 
300: 

IM::::lN+M 
DO ::; ;.':::N~II'! 

rF(COLELLCK) ,;:':',0,0) GO TO 3 
!::I':-OLNI)(K) 

'"::,;:,,,:.:' 4:;!-ISf! ~-RLf!) )/(:C'LE!..:..()·',) 
I:='\":T,Li::,I.:PtJI) (,;C ~O ::; 
,.;F' \J )::I NTt ' .. 'T) 'I 
!I)CRL(JI=l 
r;e TO 3 

UT=\tJ(J}+ (:':HS (r ; ·"IL (.I i ) /C(.LEl.~ ~;o 
!F(UT,GE,UP(J») GO TO 3 
1)f-~tJ)"rr,T(VT) 

IOCR!)tJ):! 

CONTINUE 

r~t::JCRl\J),EQ,O) GO rCI 5 
W(J):WP(J) 
WRITEtl,595) J,WtJ) 
IO(RLfJ):() 
I F'~'A::E= 1 
10R=1 
~!:i:C'C~U(J),EI~,:;) ,~~ .. TO 903 
~1(':)=I)PtJ) 

WRITE~!,:90) !,~(J) 

IO':'RU(J)=O 
rpf't.t-~E:l 

IDR=l 

iJO 2 i<=:N, P! 
:F(COLEU.(}:) ,I.;:Q,~),(1, Cl) -:-0 2 
:=ICOLNl)lX) 
:~(C::·:"'E:"':"'(J.<) ,GT ,0,0) GI) TO 7 
RLC (I) =>:':LC (! : ·r:O'..SLL t iO .!)(,j) 
1;0 TO 2 
':lLC (r ) ::RL~: f I ) +CC-LELl( K) *W(J) 
CONn~ll!E 

CONTINUE 

DO 6 I=Z,N~OW 
RUI )=RLC(l) 
RLCIl )::0,0 
CONTINIJE 

IF(JFX,E:),O) GO TO 103 
JFX=O 
DO 101 n=2,NROW 
AMAX::O,O 
DO 102 12=2,NROW 
IF(IRtI::l,EQ,O) GO TO 102 
IFtAMAX,GE.RHS(12» GO TO 102 
AMAX=RHS(lZ) 
1=12 
CONTINUE 
IV<I1>"'1 
!R(I )::0 
CGNTINlJE 

IFt!:::R,EQ,O) GO TO 999 
DO 104 IGla2,NROW 
IRtlGll::!Gt 
l"IVCIGll 
IF(KZCJ) ,E(:J,Ol GO TO 104 
IFCKZtI),EQ.KZNtI» GO TO loa 

IF(IGl.EQ,NROWl GO TO 104 
IRL"'lGl+l 
DO 105 IG2=IRL t NROW 
12=IV(lG21 
IF(KZ(I2),EQ.Ol GO TO 105 

DFR=RHStII-RHStJ2) 
OFU"'O.O 
DO 106 J=l,NCOl. 
IF(V.K(J),EI~.O.O) GO TO 106 
DFE=O.O 
ELMl'"O.O 
ELM2=O,0 
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(10301 : 
(;·):;02: 

00303: 
00304: 
00::;05: 
00306: 
00307: 
00308: 
00309: 107 
01).:::;1 L): 

00311: 
00312: 
00313: 100 
O:):;14:C 
OO:lS~C 

01),316: 
00317: 
00318:( 
00319:C 
01)320: H'8 
00321: 
00322: 
00323: 
I)lj::;:4: 
~)0:25 : 
00;:;26: 
0032.,: 
G(,328: 
00329: 
00:;30: 
00331: 
00332: 
00333: 
00334: 
00335: . 
01)336: 
00337: 
00338; 
00339: 
00340: 
00341 ; 
01)342: 110 
00343: 109 
01)344 : 
00345:C 
00346:C 
00347:105 
00348: 104 
~0349:C 
~l)350 : 
)0:51 : 
)0,352 : 
)0353: 
)0354; 
)03SS:C 
)1.1356 :e 
)0357: c 
)0358:C 
)0359:999 
'10360: 
)0301 :e 
1(:362:C 
l036~:C 

IX=fCOLMYotJ) 
:-!~rCOUWt~,(} 

!S=[X'l 
i~=r";+I'{ 

DO 1:}7 K=IS.!l.. 
r::;=!I:Cl..Nl)t,{} 
: ~(t3 ,EQ, I) ELM! =': -:'l..!:':l..li. r:) 
r~(I':,EL.J.!2) ::::"I":;C,:~L:.~·_(,O 

::-ONTI,'J!.'E 
D,·;"E=t::l..i"l-~1..M:::: 

IF<DFE.:..=:.O.I,') G') -ro !(l6 
DFV:OF!)+DFElI-vtJI 
CONTINUE 

IFtOFR.LT ,DFlJ) GCI rl..: 1('5 
! G:2 '~;'~'UI'" 

• ~1C::=I-1 
wRITE(1.57')) bh 
:1RJ-<EY( I )=t)R( KF:9FRE ,,"R!-<EY' (! ) ; 
:X=IRC'..JI'1I«! ) 
Jy=IROI"lrJO(]X) 
~-S=.;)( ~ ~ 

JL=J)(+JY 
:)0 .M ~'.l=JS.:"" 
:::(~':-' .. ~ ___ n{!) .S-:.0,0) GO 7':: :1)9 
Jl:Ifi.I')!.,N(iO{i) 

~!:'(!;:':-\I;=:LLlKl) ,i..T ,0,0) JZ'I;( :',: =!l~H,:"l -." 
RIJ:"';eL~(I{l J =0, ,) 
~;()(=[':'C'L:1'-<tJl ,I 

IY'(=ICGL,\iI)(IXi) 
ISS=IXX+l 
ILl..=lXx+!YY 
DO 110 ~<2"'ISS.Il..l.. 
IF(ICOLNOtk2),NE,I) GO TO 110 
COLELL(K2):0,0 
I<K(Jl )"',;«Jll-l 
KZ:rILL 
r.:':I:-.TINUE 
CONTINUE 
kZ<I )=0 

CONTINUE 
CONTINUE 

!F<:PHASE,E'~.(.'; GI~ ~'J 999 
!PHASE=O 
IPASS-=:;::=-ASS+l 
!DR=O 
GO TO 101)1) 

RETURN 
.E~~D 
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