© o VOLL NO.. | CLASS MARK

GLI-E:: o - J}x '71'792/&;_7__

LOUGHBOROUGH "
UNIVERSITY OF TECHNOLOGY =~ " | =
| LIBRARY

o AUTHOR/FILING TITLE

1‘--...__._.-..__.._.._.._.._____..._______..-—— ——— e o i ———————

ACCESSION/COPY NO.

a '_____-'___'________;_ 0 _QD_.G.S—G-/-Q-Z"' """""""""""

E L-loA N ol |

000 0636 02 L

' This book was bound by

- Badminton Press
18 Half Croft, Syston, Leicester, LE? 8LD
Telephone: Leicester (0533) 602918,

EXPERIMENTS {N REDUCTION TECHNIQUES
FOR

LINEAR AND INTEGER PROGRAMMING

by

A doctoral thesis submitted in partial
fulfilment of the requirement for the award of

the degrée of PhD, of the Loughborough University of Technology

September 1986

Alaa Aldin Noori Ahmed, 1986

B L I I S T

]
f..c;;"-m.rn:";.': ':'.'e'.rr-l‘%"‘fi'

0 Anmataor ieep
Fab 87 §

T SR iy U —
'

T AR

- 3N 1

-

;ii," 000626 fo2

it gt el 4 ¢ e i g

TABLE OF CONTENTS

Page
Acknowledgement cessensssenariasaas teseann ‘e i
AbStract ...ceveverenseasneras R I I ii
CHAPTER |
Introduction ..eovvvncennas Ceserenens tieeteassassananns 1
1.1 Redundancy ...ieevesnncasnseans ;..........,... 2
1.2 A Survey of the Literaturec.couun. ;......f 8
1.3 Proposed Research ...vvinvvnnan. PRI RETREE: 16
CHAPTER |1
2.1 Mathematical Foundation and Notation 17
2.2 Some Common Theorems reaeans cisssenn 23

CHAPTER |11
3.1 Group One Methods
3.1.1 Boneh and Golan's methodcouecevcns 25

3.1.2 Lotfi's methods:
Extended Sign Test methodcvu. 31
Hybrid methodcvuivevnninnsnnnnnnas 36

3.2 Group Two methods

3.2.1 Holm and Klein's method ...c..... teeee. W2

3.2.2 willlams’progedute'.. saretaessrnans L9
3.2.4 Reduce method ..vevevennnn. ceraessasses~ 57

3.3 Group Three methods

3.3.1 Thompson and Sethi's methoed 62

3.4 Group Four Methods

3.4.1 Bradley et al. method «evvvvunnnnn.

3.4.2 Crowder et al. method

Improvements and Extensions

. CHAPTER lV L3N B I RN N Y N R B N Y Y A) &% 8 8 b g P e rsesade e b ety % ¢ e s ad
4,1 Extended Reduce Methodevveuues Ceveansss
4.2 Extended Williams procedureveoevunaens R
CHAPTERV e & 4 F ® 488 4% kg%t IS LI I R B B I I B R BB B LR BN R B]

5.1 Preprocessing Reduction Procedure for ILPP's

5.2 The Implication of Implementing Preprocessing

Reduction Procedure to ''Dynamlc-Presolve'

5.3 Reduction Techniques for Special Order Sets

CHAPTER VI
6.1 Programming the Methods ..u.vivecennniirioennnnn
6.2 Performance of. Methods Cereereanains

6.2,1 Boneh and Golan's method

6.2.2 Holm and Klein's method

" r e e

R

LRI I

LN B) .

.n e

s e arew

6.2.3 Extended Sign Test method ...cevvvrvecansanes

6‘2.4 Hybrid Method LB L B B I S L

6.2.5 Reduce Method ...evivevernnne

6.2.6 Williams' procedure «..ccovvenen

* s e e P Ee s * 8 s e

6.2.7 Extended Reduce Methodeveviceionrnnncsns

6.2.8 Extended Williams Procedure

6.2.9 PreProcessing Reduction Procedure for

CHAPTER VI |

7.1 Summary and Conclusions s.eviececenss

7.2 Recommendations for Future Research .

70
73

79
8a
88

96
97

102
103

106
113

‘17z

118
118
119
120
123
127
130

134

139
141

Appendix A ..ivieiieincninnaas creatarnus teressiseseesnenana
Appendix Beciviiinnn. cesese N fererreenan

References and Bibliography «.....vcvvvviiiininenaianninn..

DECLARAT[ON

The work of this thesis foilows on from work of other authors on
_reduction techniques. The applications and extensions of these works
are claimed as original and all other parts of the text except where

otherwise noted and referenced.

The author also certifies that neither the thesis nor the original
work contained herein has been submitted to any other institution for

a degree.

ACKNOWLEDGEMENT

| would like to express my deepest appreciation to Dr J M Wilson for
his most valuable advice and guidance. His friendship provided an

jdeal environment for my dissertation research.

Also, grateful acknowledgement to Basrah University, lrag for financial

support.

Finally, | wish to thank my wife Suhair for her patience and understanding

over the past three years.

(i)

ABSTRACT

This study consisted of evaluating the relative performance to a
selection of the most promising size-reduction techniques. Experiments
and comparisons were made among these techniques on a series of tested
problems to determine their relative efficiency, efficiency versus time
etc. Three main new methods were developed by modifiying and extending
the previous ones. These methods were also tested and their results are

compared with the earlier methods.

(i1)

CHAPTER |

Introduction

Redundancy in mathematical programming is defined as a characteristic
associated with a part of a system which permits deleting that part

without any consequence for the system as a whole. After eiiminat]ng
the redundant characteristics, the system may reduce to a simpler one

having the same properties.

Over the past twenty years, investigations of redundancy in linear and
integer programs have been made by various authors. In this thesis we
have selected the most promising size-redugtion techniques and conducted
experiments with these on a series of probiems obtained from different
sources. Secondly, we have extended and improved some of the more

efficient methods and have compared them with the earlier methods.

In this chapter, we consider the concept of redundancy, define the forms
it may take, and discuss its causes as well as its consequences and its
applications. Finally, we present a survey of the literature and the

proposed areas of our research,

1.1 REDUNDANCY

A linear programming problem generally consists of an objective function
which is to be maximised or minimised subject to a set of constraints.

' The constraints as well as the objective function are constructed by
using a set of variables and appropriate coefficients. Consider the

fallowing LPP:

x>0 . »resn (11101-)

in which AeR™N, beR™, CeRM and XeRN. Based on the definition presented
in the next chapter, we may refer to constraints and/or variables as

befng redundant. For example, in the following problem:

Max X, + 2x2 T Xy
Set. 3x; + 2x, + 2x3 < 20

Xl,'xz, Xa > 0

X, turns out to be redundant.

We divide redundancy into'twp general categories. The first type, called
absolute redundancy is associated with constraints and/or variables whiéh
“may be dropped without changing the problem structure in any way. The
second type, called relative redundancy is associated with constraints
and/or variables which may be dropped without changing certain aspects of

the problem, for example the optimal solution.

Redundancy often occurs in practice (already noted in Hoffman (1955))

at various steps in modelling and solving the (programming) problem.

in the modelling process of an LP problem, a certain amount of abstraction
from the real system is necessary. It is this process which may cause
redundancy. ‘'How far should the abstraction go?', 'Which aspects should
be Included and which.not?“. and so on, naturally, have to be considered
and the decision policy used In dealing with these concepts directly
affects the inclusion of redundant information in the model. This
brobiem'is especially evident as the size of the problem becomes so
Yarge that the formulator loses sight of the entire problem. Faced
with such a problem, the formulator often includes aspeﬁts of the

problem which may prove redundant.

Another reason for the occurence of redundancy is the ease of formulation
in the modelling process. An example of thls is the use of definitional .
equaltties {eg. sutming the quantities of raw material that go into a

final product).

It is useful in the problem formulation stage to keep in mind the method
that will be used in solving the problem as well as the purpose of
;formulating and solving the problem, since sometimes there is a distinction
between problem formulators and prbblem solvers. Some techniques require
the.specificétion of extra information; which may cause redundancy.

These techniques including all cutting plane methods so far linear
(Dantzig-Wolfe decomposition, dual fdrm, Dantzig and Wolfe (1960)), integer
(Gomary (1958)), mixed integer (Benders (1962)) and convex nonlinear
programming (Kglly (1963)) and all Branch-and-Bound methods.{eg. Garfinkel
and Nemhauser (1972)). In parametric programming (eg. Gal (1979))
fedundant constraints may become nonredundant énd vice-versa (see

Gal (1975)). Further details are included in Karwan et al (1983).

A direct consequence of redundancy in LP programs is thé increase in
$ize. The Iafger size has two major disadvantages. First, the problem
may be so large that conventional computer programs may not be able to
solve the problem. Secondly, the solution process may be more difficult
and more expensive. The higher cost Is assocliated with computational
effort on redundant information which could otherwise bé unnecessary.
Regarding.the size of the.pfoblem, more storage space will be requlired
which may Be critical if the problem cannot be solved by an in-core

code.

Regardless of the size of the problem, redundant constraints may cause
degeneracy. This degeneracy in turn may result in degenerate pivot steps
(ie. steps in which the objective function value does not improve)i Such
occurance for a number of consecutive pivots is called “ﬁear cycTing“
(see Thompson et al (1963)). Although the relation between redundancy
and cycling is not yet fully understood, Zionts (1965) and Telgen (1980)

conjecture that cycling is possible only by virtue of redundancy.

In addition to the computational difficulties caused, redundancy tends
to conceal certain Information and possibilities, namely knowing that
something is redundant might lead to a different decision. For example,
-in a production.plahning problem, if a capacity constraint i{s redundant,
It genérally indlcates excess capacity whlch:might be used In some other

way.

The consequences of redundancy are not all disadvantageous. The best
example of this is transforming an LP problem by adding constraints and
" variables to a transportation problem (see Charnes and Cooper (1961).
As is well known, the latter problem is much more easil§“ solved than

the general LP problem. Other examples of the advantages of redundancy

are included in Karwan‘gg_gl (1983). However, it is the author’s
conviction that the disadvantages of redundancy generally outnumber its

advantages.

Now, once a problem is formﬁlated, a question will arise, whether it is
worthwhile to implement the size reduction techniques or not. Actually,
certain factors such as the costs in implementing such technigques and

the derived benefits shouid be determined. However, there is always

a positive result frdm identifying redundancy, but there are cases in
integer programming problems wﬁere the presence of redundant constraints
can accelerate the solution process. The identification of redundancy in
a problem is just as difficult as solving the linear programming problem
itself; where It is "easy' In linear constraints, but it is "hard" if

we have to take into account Integrality constraints.

Size-reduction techniques have other desirable properties when used to
solve certain linear programming problems. For example, in Zionts (1965)
certain problems are solved for which an ordinary simpléx method computer
.code did not produce correct results (even with repeated runs) because of
the accumulation . of round-off error. In addition to that, size-reduction
techniques can provide a means for altering (possibly Improving) particular

~mathematical programming solution methods.

The application of size-redﬁction techniﬁues to mathematical programming
prbblems in general depends on the specific goal.of the techniques and the
type of probiem. For example, a Branch-and-Bound procedure for solving
integer linear programming problems may require the LP relaxation to be
solved many times.l Thus, identifyinglénd removing a redundant constraint
from thg original integer linear programming may result in a significant

decrease in the overall solution time.

Another example is an LP problemin which one set of constraints is changed
regularly.and the other set remains the same (eg. Generalised Upper Bound
(GUB) constraints). Then, it may prove economical to determine whether
any of the fixed constraints are redundant. This has two advantages. One
is that the removal of such a redundant canstraint has a multiple effect
in reducing the computation time. Secondly, the modeller may want to

- replace the redundant constraint with other constraints which were left

out due to the large size of the problem.

in addition tb feduciﬁg the size of the problems, the removal of redundant
constraints may -remove the computational complexities associated with
certain problems. For example, removiné the redundant constraints may
prevent a problem from cycling (see Zionts (j965) and Telgen (1979) for

more details),

Other applicaﬁions include obtaining the Iowef and upper bounds on variables
from the problem structure (eg. Williams' method (1983)). These bounds may

be of major interest to the problem formulator.

1.2 A SURVEY--OF -THE LITERATURE

A number of interesting results were derived for solvability and the
geomefric properties of a system of linear constraints without considering

the constraints individually.

Fourier (1926) and Motzkin (1936) , presented an elimination method which
solves the LP problem directly. Except for solving very small problems

or problems of a special structure, the method is rather cumbersome.

Unlike the elimination method, Charnes et al (1953), presented the
ratio-analysis method, which has been used only for problems which possess

certain structures.

wolfe (1955) describes a method to reduce a problem to a '"simplest problem

in standard form'.

Dantzig (1955) suggests using a prior knowledge of linear programming
problem to predict the solution. Some constraints can be anticipated

to be nén-binding and (equivalently), certain activities are anticipated

to be in the optimum solution. The slacks of the non-bind}ng constfaints'
and these essential variables can be brought into the basis. The constraints
in which they are basic, together with theuvariables, can then be dropped
from the problem. When the optimum solution is found, these assumptions
‘can be checked, and, if they are violatgd, the constraints reintroduced |
and more iterations taken. [f the number of errors in anticipating
nonbinding constraints is relatively small, great savings are achieved. |f
the variables are known to be present in the optimum solution, then no |
~additional iterations need to be made. A similar approach is due to
Thompson and ..Sethi (1983} (presented in this thesis). Their technique:

uses mathematical information to make a prediction about the solution by

defining a candidate constraint and checking this prediction at every
step, incorporating a modification of the simplex method in which only
the current candidate constraints are updated. Thompson and Sethl’

(1984), also presented another way to take advantage of the fact that most
constraints are never candidates. They begin by solving a relaxed linear
program consisting of the constraints of the original preblem which are
initially candidates. Also they introduce the idea of a probe, that is,

a line éegment-joihing two vectors for the primal problem, using it to
identify a most-violated constraint, which is added to the kélaxed probiem
which is solved again. Their computational experiments Indicate that

time saving of 50% - 80% over the simplex method could be obtained by this

method, whiclr they call PAPA, the Pivot and Probe Algorithm.

From the early 1960's systems were‘studigd from the redundancy point of
view, since it is hardly disputed.that redundancy exists in practical
ﬁathematica] problems. Before proceeding, we note that the redundancy
discussed by some authors used the terms '"trivial" (Boot (1962}),
“"superfluous' (Thompson et al (1966)), "irrelevent" (Métthesi; (1973)),

"inessential" (Zeleny (1974)), essentiallyall mean 'redundant’.

Balas (1962), identifies nonbinding constraints and extraneous variables

on the basis of ""dominance' relationships among rows and columns. Balinski
(1961), gives an algorithm ta determine all extreme points of the polyhydron
‘to identify redundant_constralnts. Since that path.is quite large

depending on the order of introduction of hyperplanes that generate

the path, and the number of extreme points grows exponentially with the

size of the pfoblem, and .so this approach is very cumbersome for large
problems. The same basic approach was followed by Shefi (1969) (see also
Luenberger (1973)), who developed another algorithm for determining all

extreme points. He also proposed certain minimality properties for systems

« Convex Puih solution.

of linear constraints. Herver, Telgen (1981), later developed a minimal
representation theory in which Shefi's proposals could be considered as

special cases.

- Mattheiss ((1973) and {1983)) implements a vertex finding algorithm to
~enumerate the vertices associated with a system of linear inequalitles.
At each vertex, the active constraints are nonredundant {assuming there

is no degeneracy). Therefore, Qhen.the énumeration process is completed
the unidentified constraints are labelled as redundant. The number of
vertices was shown to be significantly less than the number of vertices

of the original space (see Mattheiss and Schmidt (1980)). The vertlces

are enumerated by a variant of the ﬁimplex method noting active constraints,
which are nonredundant. This method was not efficient in practice; because
a large number of vertices had to be processed, each vertex corresponding
to a basic feasible solution for which the usual simplex tableau had to

be constructed, the process having to be repeaﬁed until no new unlabelled

vertex was found. .

Greenberg (1975), develops a method for determining redundant inequllities
and all solutions to convex polyhedra. In his algorithm, he Is seeking

to eliminafe the extraneous solutions obtained when using the Motzkin

- method (Motzkin (1936) and Motzkin et al (1953)) for éolving homogeneous
solutiqns, which are possible to_obtain in some situations, where the
condition In one his theorems is necessary but not sufficiént, as was
pointed out in an example by Shermain (1977) Later it was corrected in
Dyer and Proll {1980). A computational compérison by Dyer and Proll (1977}

showedthat Mattheiss' method general!y outperformed Greenberg's method.

10

Boot (1962), was the first published paper related entirely to redundancy.
His‘meth§d provides algebraic tests on the solution space which ﬁakeﬁ It'
possible to determine whether or ﬁot a variable is extraneous 6r a

"~ constraint is redundant., It is based 6n checking the feasibility of the
LP problem obtained when oﬁe of tHe constraints is violated by a small
~amount. |{f a feasible sdlution to the peturbed problem can be found,

. then the violated constraint is nanedundant. Otherwise,.the,constrafnt
is redundant. The major diéadvantage of this approach is that systems of
Ifnear constraints have to be checked for.feasibility in'érder to check

: a‘constraint for'redundancy..‘Therefore, tﬁe compﬁtations are much too
~laborious, and although the method is interesting, it is too cumbersome

to be of any general use. Zionts (1965) and Thompson et al (1966) gave

a simplified version of Boot's technique, that instead of violafing a
constraint and eliminating a variabie, only seté the slack variable to

-€ and cheéks for a feasible solution." But,_since.there is no known simple
way.of checking a constraint set to determine feasibility, this simblified

version stili faces the same difficulty.

Daie_O.Cooper‘(1962), presenté four methods for initially reducing the
size of linear pfogramming prob]ems.' One of them determines cettain
.variaﬁfes that will be strictly boéitive.in an optimal solution. The
reémaﬁning thrée methods are heuristic in nature, and reqﬁire making '
intelligent guessés as to &hich variables. are likely to be basic or _
nonbasic in an optimal solution. These guesses are subsequently revised

if they are false.

Zionts (1965) developed two methods. The first method is called the |

LR

Geometric Definition method which is of major importance to the concept

of size-reduction in LP problems. The basic feature of this method is

the establishment of situations where several simple sign tests on any

row or column of the simplex tableau show that redundancy can be recognized
immediately without any further computations. The method may beremployed

at the beginning of a linear pérogramming solution porcedure, or it may also

be employed during the course of solving a linear programming problem.

The second method is the heuristic méthod (or convex path ﬁethod).based on -
a theoretical development for which cgrtain sufficiency conditions cannot
always be assumed to hold. The heuristic assumes that these conditions do
hold. It then fixes certain variables (ie. it avoids removing them from
the solution basis) on the éupposition that they will form part of an-
optimal solution. In a similar.way, certain other variables are forced

to remain out of the solution basis. In either case, whether variables

are fixed or whether they are forced to remain out, both types of variables
are completely ignored in subsequent iterations. Once an apparently final
soiution to the problem (either optimal, infeasible or unbounded) has been
found, the ignored variables are restored. Checks are then performed for
optIma]ity and feasibility and if these are not satisfied, then furthgr
iterations are taken if necessary. Obviously, if the required sufficiency
conditions could be guaranteed to hold, the method would not be a heuristic,

and the further iterations would never be needed.

The results éf the Geometrié Definition method were implemented by mahy
researchers. Lisy {1971) used these simple sign tests to identify all
redundant constraints in an LP problem, Zionts {1972), alsc extended some
concepts of redundancy to integer programming. Rubin (1973} extended some
of the results of Thompson et al (1966), to integer programming by |

modifying theorems and their proofs. Gal ((1975) and (1978)) elaborated

on this approach by adding new rules for identifying nonredundant constraints

as well. Telgen (198ﬂ) extended the approach by considering degenerate
cases including redundant constraints which pass through an extreme
point.. Also, Rubin (1983} developed another version of Telgen's method
to identify all reduhdant constraints. Zionts and Wallenius (1980),
presented a new version based on the same concepts of Zionts (1965}, to
identify all redundant constraints. Karwan et al (1983) presented full
details about the above four methods and their comparison in experimental

tests, and mentions them as Sign Tests methods.

A number-of other researchers have addressed the possibility of redundancy
by virtue of a structural constraint and nonnegativity constraints 6n all
variables. Llewellyn (1964), presented rules (see also Zeleny (1974)) to
recognise this situation. These rules were generalized by Eckhardt (1971).
However, Telgen (1979) showed that the rules are valid only for positive

coefficients and other very special cases,

A totally different approach was developed by Boneh and Golan (1979). The
mefhod is based on determining the constraints having the closest distance from
an interior point in a randomly chosen direction. Such constraints are

clearly nonredﬁndant. Then, after a large number of trials all constraints
which have not been hit are declared té be~redundant. The latter rgsults

are not necessafily correct (le. a nonredundént constraint may not be hit
within the given number of trials}. Telgen (1981) suggested the use of
co-ordinate directions inétead of randomly chésen directions. We will

present Boneh and Golan's method in this thesis.

Lotfi (1981), breSented three methods, the first of which is called the
"“"Extended Sign Test“; whfch is an improved version of the earlier sign
test methods. The second method is called "Hybrid'" which is combined with
the Extended Sign Test method and Co-ordinate Direction methdd (the

improvement of Boneh and Golan's method using Telgen's suggestion). The

13

third‘method is called '""Reduce' and applies the Extended Sign test -
method to both the primal and dual problem while solving the problem.

Al three methods are presented in detail in this thesis.

Brearley et al (1975) described the REDUCE option of many commercial
-mathematical programming packages, which Is essentiallyran extension

of the ''Geometric Definition Method" of Zionts (1965), which was developed
independénfiy. The extehded geometric method is based on a collection of
theorems which make it possible to compute bounds on primal and dual variables
from the problem structure. Then, given thgse bounds, extraneous varlables
and nonbinding consfraints are idenfified. The process is repeated until no
further reduction is possible, More details glven by Williams (1983) are

presented in this thesis.

Klein and Holm (1975) suggest ; similar approach utilizing the complementary
slackness theorem of linear programming in combination with bounds on the
primal and dual variables to identify extraneous variables and nonbinding
constraints. In the absence of these bounds, a method is proposed for
calculating them. The problem however, must have a special structure.

All coefflicients of the matrix must be nonnegative, and all inequalities
must be less than or equal to (<). fhe detéils of the method are presented

in this thesis.
A number of papers discussed redﬁndancy in large scale problems.

Bradley, Brown and Graves' (1983) discussed automatic detection and
exploitation of structural redundancy in large scale linear programming

(as well as mixed integer programming) problmes, where suéh redundancy
represents an embgdded special structure which can g!veusignificant-insight

to the model proponent as well as greatly reduce solution effort. Various

14

identification techniques for economic application to large problems
were developed and tested. The details of these techniques are presented

in this thesis.

Finally, some other papers relate only to the class of (0~1) linear
programs. Wilson (1983), developed a procedure to reduce the set of
{0-1) linear inequalities to a smaller set by examining pairs of
inequalities and then deriving an implicft inéquality, based on the
fact that, any explicity (0-1) linear inequality may be expressed as
a set of k{k>1) implicit inequaiitiesvvithunit coefficients in the A

matrix.

Crowder et al (1983) presented a method which included problem preprocessing
and constraint generation, to gét the coptimal solution of sparse large=

scale (0-1) linear programming problems. In problem preprocessing, variables
could Be fixed at either 0 or 1, and inactive constraints could be
determined. The constraint generation is performed by generating cufting-
planes which are satisfied by (0-1) solutions of the problems. The details

of the method are presented in this thesis.

15

1.3 PROPOSED RESEARCH

The objective of this thesis is to aséertain how succe#sfully Size-reduction
techniques could be implemented in Commercial Mathematical Programming
- Packages. By studying the most promising techniques, and improving some
of them, new ones are developed which are more practically efficient and

economical in their implementation.

The thesis consists of seven chapters. The present chapter provides an
introduction to the concept of redundancy, its applications and a survey

of the literature.

Chapter |! intends to present the definitions, notation, and some common
theorems which are frequently used by the methods presented in the thesis.
Nine selected size-reduction techniques to be studied are presented In

detail in chapter I11I.

New Improvements to most of these selected methods are presented.
Chapter |V contafns two improvements in methods for general linear
programming problems. Chapter V contains an improved method. to reduce
general integer problems and its implication to the “Dynamic-Preﬁolve“
procedure, which is.afeature of the SCICONIC package. Then, a procedure

to reduce subproblems haviﬁg Special Order Sets (SO0S) is presented.

Chapter V| presents the programming aspects of some of the methods
presented in chapter |11 and our improvements toc methods. A discussion
and comparison based on the experimental results of our improvements

methods and the earlfer method follows.

Finally, conclusions and recommendations for future research are discussed

in chapter Vi1,
16

CHAPTER |1

In this chapter we present definitions and notation that will be used
throughout this thesis, as well as some common theorems which are

frequently used by the methods to be discussed.

2.1 MATHEMAT ! CAL FOUNDATION AND NOTATION

We consider the follwing linear programming problem:

Max Z = CX oo (201.1)
S.t. AX< b
X> 0 e (2.1.2)

in which AeR™", ber™, XeR" and Cer".

v sm+n)’ where the set (51,..., S)

We denote S = (ST’ ceeey 54, S o

m’ “m+l?

contains: the slack variables of the structural constraints, and the set

(s - +n) contains the slack variables of the nonnegativity

m#l® T m

constraints,

‘Adding the slack variables of structural constraints, pre-multiplying by
the inverse of an appropriate basis, we partition (A s I) into (B : N)
and redefine the variables (both slacks and structural variables) as x? or

B .
xj according to their status (Nfor nonbasic and B for basic), yielding the

equivalent system

N o1 [N =8

-1 ' .
The matrix B N is usually referred to as a contracted simplex tableau

(Dantzig (1963)). We refer to the elements of B™IN as 3§ and denote

the "updated right-hand side" elements by bi'

The feasible region corresponding to the system of linear constralnts

(2.1.2) is defined as:

FL = {XeR"|AX<b) cee (2.1.3)
and thorughout it is assumed that the Féasib]e region exists, ie. FL £ 0.
Also we define the set:

Fo= {XER"/Ax<b,, 1 # k and x>0 } e (2.1.5)

~ where Ai‘denotes to the ith row of A.

Analogously, we define Fl and FI(k) with the additienal restriction

that x be integral.

Definition 2.1
The constraint Akxibk is redundant in LP{IP) if
FL = FL(k) (FI = Fl(k)).

The above definition may be utilised for the nonoegativity constraint

XJZU as well, Note that FL(k) = F, if and only if A x<b, for all

L
xGFL(k); hence ‘an equivalent definition in which

18

Sk(x) = bk - Akx e (20]05)

makes it easy to see that Akﬁibk is redundant in the system of linear

 constraints (2.2), if and only If

§k = min {S, (x)| x¢s,} 20 e (2.1.6)

This definition is especially useful because we may consider every
variable as a.slack'(the structural variables are the slacks of their

nonnegativity constraints).

Now, if §k = 0, then the constraint is termed weakly redundant, if 7

~

Sk>0 it is termed strongly redundant.

Throughout, we will use the term redundant referring to both strong and
weak redundancy and will refer to each type explicitly when the need
arises. The following example clarifies the concepts of strong and

weak redundancy. Consider

X, + x, <4 (1)

2x; + %, < 6 (2)

X, = %, 23 : (3)
Xy < 2 {4) eee (2.1.7)

- x, < -1 | (5)

X, >0 (6)

Xo > 0)]

which is presented in Figure 2.1. In the above system of inequalities,
constraint (3) and the nonnegativity constraint (7) are strongly redundant,

constraint (2) is weakly redundant.

19

—
%
St

A

\\\
-
=T

\ \\
L

\

AT 5___.5_":;4(_;_:5 TG

-4

4) X
P O T T sﬁ : U
B TRV UL LR

(5)

2.0

(7)

~~
) |
L)

010

Figure 2.1

Feasible Region for system (2.7)

20

Until now, we have considered mainly the system of linear constraints
(2.2). There are other kinds of constraints which are called “non-
redundant' constraints and we subdivlide these into two groups of 'non-
binding'' and '"binding' constraints, for which we need to introduce the

objective function (2.1.1) into the system (2.1.2.)

pefinition 2.2

A constraint Is nonbinding if and only if it is nonredundant and its

associated slack variable is positive in every optimal solution.

Definition 2.3

A constraint is binding if and only if it is neither redundant ~nor

nonbinding.

A ".b;nd'mg.:: constraint .'IS'_-th"ﬂCCI Sfmnj_,’if its associated slack varlable
is zero at every optimal solution; if It Is zero in some but not all

optimal solutions, the constraint is termed 'weakly binding'.

For example, suppose the objective in Figuré 2.1 is parallel to constraint
(4) and an increasing factor of xy+ Then, constraint (4) is strongly
binding, constraints (1) and (5) are weakly binding, while the only non-

binding constraint is the nonnegativity constraint (6).

It should be notedthat dropping the redundant constraints does not change
the feasible region and of course the set of optimal solutlons remains the
same. Dropping the nonbinding constraints increases the feasible solution

region but not the set of optimal solutions.

21

Looking at the results of redundancy from the duality vigw point, one
could see that in any solution to the.linear programming problem (and
thus optimal solutions too) a redundant constraint in the primal problem
which implies by the complementary slackness theorem (see eg. Dantzig
(1963)) that the corresponding dual variable equals zero in the optimal
solution and we can delete such a variable but the feasible region of

the dual problem will not be increased. We-refer to such a variable as
extraneous. |In order to define the extraneous. variables mathematically,

let us present the following notation:
* *
Fj = (X*¢R"|AX*<b, xjgx and X X} e {2.1.8)

Definition 2.4

A variable xj is extraneous in LP(IP) if and only if

If XJ is zero in every optimal solution, then xj i$ strongly extraneous,
If it is zero in some but not all optimal solutions, then it is weakly
extraneous. Note that the status of a redundant constraint is not changed
jfor a different choice of the objective function. However, a different
choice of the right-hand side may change the status of the extraneity of

the variable.

As with nonredundant constraints, we refer to variables which are not
extraneous as nonextraneous, and these may be divided further into free,
inessential and essential variables. Karwan et al. (1983) gives further

details.

22

2.2 SOME COMMON THEOREMS -

.The following theorems are frequently used by most methods presented in

this thesis, to identify the redundancy status of constraints (and variables

if applied to the dual problem). Therefore, to avoid repetition, we present

them in this section. For associated theorems (if any), these will be

discussed as part of a method itself. Also, throughout this thesis we

will refer to the application of each theorem as a "Test" with its

corresponding number (eg. by test one we mean the application of theorem

one).

Theorem 2.1

Theorem 2.2

' Theoreh 2.3

Gal (1975)

A constraint is redundant if and only if its associated

slack variable Sy has the property:

S) = xB in a basic feasible solution in which a_.<0
r rj—

for all j =1,, n.

Zionts (1965), Thompson et al. (1966)

A constraint s redundant if its associated slack variable

Sk has the property:

s, = xg in a basic solution in which for some i, b,<0,

aijgp for all j =1,, N, j # p and aip<0.

Telgen (1979), Zionts and Wallenius (1980)

A constraint is not redundant if its assoclated slack

variable Sk has the property:

N

5 xp In a basic feasible solution in which

K 2
aipiﬂ for all i with bi = 0.

23

Theorem 2.4

Theorem 2.5

Rubin (1972), Mattheiss (1973) and Gal (1975)

A constraint is non redundant if its associated slack
variable Is nonbasic in a nondegenerate basic feasible

solution.

Telgen (1977)

A constraint is not redundant if its associated slack
variable Sk has the property:
sk - xE in some basic feasible solution which

br/ars z min {bi/aislais>0} is unique for some s.

Proofs of these theorems are contained.in the appropriate references.

24

CHAPTER |11

In this chapter we will present the details of the most promising
size-reduction techniques. These methods are classified according
to.their.main objectives, Namely, Boneh and Golan's, Lotif's
(Extended Sign Tests, and Hybrid) mgthods are categorised as one
group which attempts to Identify redundant (or equivalently non-
redundant constraints). The second group consists of Klein and
Holm's,Williams® and Lotfi's (Reduce) methods, which attempts to
identify redundant and nonbinding constréints as well as extraneous
variables. The third group consists of Thompson and Sethi's method
‘which uses a variation of the simp]ex method. Finally, the fourth
group consists of the methods of Bradley et al.and Crowder et al.

which attempt to discuss redundancy in large-scale problems.

3.1 GROUP ONE METHODS

3.1.1 Boneh and Golan's method

Eoneh (1983), describes a probabilistic method, developed by Boneh

and Golan which attempts to identify nonredundant constraints. Then,
'.after suffickently many it%rations, the remaining unidentifiéd constraints
are declared as redundant (possibly erroneously). The method is based

on the premise that for a given non-empty polyhedral set, the c}osest
constraints to an interior point are non-redundant. In order to identify

such constraints, first an interior point is determined. Then, a random

direction is generated and the distance between the interior point and

each constraint (along the random direction) is computed. The constraints

25

with smallest positive distance and the largest negative distance are
closest constraints to the interior point (one on'each side). Hence,
these constraints are laBelled as non-redundant. For the next iteratibn
the interior point is moved uniformly along the random direction {within
the feasible region) and a new random direction is generated. This
process is repeated until a certain stopping criterion (eg. certain
number of iterations) is satisfied. |f so, the noneredundant constraints
identified (éccurately) are output along with the remaining consfraints

labelled as redundant (possibly erroneously).

The algorithm requires two initial steps. In the first step, all the
constraints of Type‘“jruechanged to '>", and the problem becomes the

general form:

A X>b, P21, ceuym vee (3.1.1.1)

The second initial step, is to determine an interior feasible point for
the system (3.1.1), either by generating some arbitrary point X° and
check for feasibility, or generating a randém direction and move x°

along this direction to a.point which satisfies more constraints.

" The basic approach is to evaluate and (if necessary) sort the intersection
points of a specified straight line in n-dimensional space with each

and every one of the constraints., Therefore; if XOERn, d€R" are the

, interior.point and the direction, respectIQely, the scalér tER] is the
parameter of the straight line passing thrdugh the'point X° in the

direction d, then t is evaluated by the following equation:

(i=1, ..., m+n) eer (3.101.2)

The algorithm has two options for generating straight lines, randomly

.26

generated and co-ordinate direction as suggested by Telgen (1981). In

the co-ordinate direction the above computation in (3.1.1.2) could be

reduced more, and the equation (3.1.1.2) reduces to:

P A (i=1, ..., min) con (3.1.1.3)
[

In both options, the algorithm generates a new interior point x1 as follows:

] .
x' = x4 [tz -:-_u(tk- tE)] d vee (3.1.1.4)

where ty» tk are the distances associated with the closest constraints

to Xo {one on each side) and u Is a random uniform deviate in the unit

interval. Clearly, when d Is a co~ordinate direction, the equation

(3.1.1.4) may be updated at each successive iteration, that is,

x1 = X0 + [t! +u (tk - tl)] - ('3.1.1.5)

Now, we present the main steps in Boneh and Golan's method (note that

initially all of the constraints are labelled as redundant}.

Step 1: ~ Generate a random direction dER" with djnv N(D,1)

Step 2: Compute o

L by - AX (i1, ..., mén)
;s

A.d
i

Step 3: Determine t, = min {tilti>0} and t, = max {ti[ti<0}
. f i
(note that bi # 0. +i since xo is not allowed to be a boundary

point), label constraints k and { as non-redundant. If all

constraints have been identifled as non-redundant, stop, other-

wise go to step 4.

27

Step 4: Generate a random multiplier yp€(0,1)and compute:

x1=X0+[t2+u(tk-tZ)]d

' 1
(note that X0 is moving aleng the line X0 + td), relabel X

as X0 and go to step 5.

Step 5:° Stop if one or both of the following conditions are met:

(a) Total number has exceeded 10(mxn) log (m+n)

(b) The number of consecutive unsuccessful

iterations

(iterations in which no new constraints are identified)

ismore than 2{m+n). Otherwise go to step 1.

Now we present a numerical example to illustrate the use of Boneh and

Golan's method. Consider the following system:

Xt Xy < 1
Xy t %X, 2 3

Xy < 2
th +3x2 < 12
Xy > 0

Xy 2 0

which is shown in Fig. (3.1)

28

(1)
(2)
(3)

(4)
(5)
- (6)

vee (3.1.1.6)

775*])‘)’.6"/7” foritie o { e s e r | =3

¥

(6) 12.0

iteration 1 iteration.2 j

Figure 3.1

Feasible Region for System (3.1.1.6}

29

Initlal Step (1): Changing the direction of the inequalitles (1)

Initial Step (2): Let X

Step (1):
Step (2):

Step (3):
Step (4):

Step (1):

Step (2):

Step (3)

Step (4):.

through (ﬁ) and adding the non-negativity constraints,

we have:

Xy T Xy > -1 (1)
"Xy T X, 2 =3 (2)
=Xy > -2 (3)

-hxy = 3k > =12 (4)

X, > 0 (5)

Xy 2 0 (6)
0

= (0.5, 0.5) be an interior feasible point.
The following are two representative iterations of

the main steps:

Let d = (0.2, 0.1)
t = (-10: 6-7: 7-57 7-7’ -2-53 -5)
t, = 6.7 k = 2, 5’= -2.5, L= 5

constraints 2 and 5 are non-redundant.

let u = 0.7, X' = (1.3, 0.9), x0 = (1.3, 0.9)

Let d = (0.3, 0.2)
t = (2.8, -8.0, -2.3, -6.8, 4.3, -4.5)

£, = 2.8 kal,t,=-2.3, 4 =3:

k

constraints 1 and 3.are non=redundant

Let u = 0.2, X' = (1.7, 0.6}, X" = (1.7, 0.6)

The above steps are repeated until a stopping criterion is satisfied

" in which case the remaining unidentified constraints are declared as

redundant,

N

3.1.2 Lotfi's Methods
Lotfi (1981) presented two Improvement methods within this group.

Extended Sign Test Method

This method is an improved version of the earlier sign test method. The
method is developed from some modifications (seme tests are eliminated
during the course of testing process) to the eérlier sign methods. Since
there is no new mathematical theory involved, he utilised the theorems

presented in chapter II.
Now, we present the details of the various steps:

Initial Step: Determine a basic solution and let H = {i]i = 1, oey m#n}.
H is a set containing the indices of all variables. The
first m elements correspond to the original constraints

and the next n elements, the non-negativity constraints.

Step (1): Check all the basic variables x? = S, ki for the property

aij €0, j=1, ..., n. If this holds, then constraint k

is redundant, (Theorem 2.1); remove k from H and drop row i.

Step (2): Determine the set Q = {ile =S

i

"all non-basic variables x? =S

, and b, = 0}, If Q= ¢, then

k

constraints (Theorem 2.4); remove these k from H and go to

are slacks of non-redundant

step (5). Otherwise continue with step (3).

3

Step (3):

Step (4):

Step (5):

| Step (6):

Step (7):

‘Check all the basic variables x? - Sk, i€ Q for the pfoperty

aij >0, j=1, ..., m j#p.and aIp <0. If this holds, then
N

Sq = Xp is a slack of a non-redundant constraint (Theorem 2.2);

remove q from H.

For every non-basic varaible xg - Sk kéH. Check the property
aip‘z 0 for all 1€Q. |If this holds, then constrainf k Is

non~redundant (Theorem 2.3); remove k from H.

If H » §, stop. Otherwise find the row with the lowest
index k, such that xE = S, and r¢H. ff no‘such row is found
continue: with step 7. In row k. find the column p with

akp = max akj . Determine the minimum quotient

J
by/ay, = m:n {bi/aip{aip >0}.

i

a non-redundant constraint (Theorem 2.5); remove q from H.

If this quotieht is unique, then, Sq = xB- is the slack of

Further, If q = r (ie. the unique quotient Is in the current
objective row), then repeat step 5. Otherwise continue with
step (6).

Perform a simplex pivot on a__ and drop row t if the non-basic

_ tp
variable in column p was a slack of a redundant constraint.

Go to step (1).

tntroduce a non-basic variable x? = Sk with keH into the

basis and then go to step (1).

Now, we present the following numerical example:

32

The problem is as follows:

Xyt Xy 202 (1)
2y = xy 7 (2)
X4 < 2 (3)
Xy + 2y < (4)

2x, < 5 (5)
X, + x, < | ()
1 20 _ (7

Xy 2 0 (8)

Initial Step: A basic feasible solution is given by (57,58) = (0,0)

and the corresponding contracted tableau Ty is:

S7 58 RHS
Sl 1 .-1 2
S, 2 1 7
S5 1 0 2
S, -1 2 4
55‘ 0 2 5
S 1 1 | Y

with index set H = {1, 2, 3, 4, 5, 6, 7, 8).

33

Step (2):

~
[

= g, 57 and 58 are slacks of non-redundant constraints,

= =
|

=(1, 2, 3, 4, 5, 6);

Step (5): Select S, as the slack of the objective function. In column

1

1, there is a tie for the minimum quotient;

Step (6): Pivoting on az; we get tableau T,:

Sy Sg RHS
S -1 -1 0
s, -2 1 3
s, 1 0 2
5, 1 2 6
S 0 2 5
S¢ -1 1 2

'Step (1): S1 is a slack of redundant constraint, drop row 1, H = (2,3,4,5,6);
Step (2): Q =0, 53 is a slack of a non-redundant constraint, H = (2,4,5,6);
Step (5): Select 52 as the sla;k of the objective function. In column 2,

the pivot element agy = 1 is unique; 56 is a slack of é non-

redundant constraint, H = (2,4,5).

Step (6): Pivot. on ag, to obtain tableau T,:

Step (1):

Step (5):

Step (6):

Step (5):

S 56 RHS

1 0 2
3 =2 2
2 -2 1
-1 1 2

52 is a slack of a redundant constraint, drop row 1,

H = (4,5);

Select Sk as the slack of the objectivg function. tn column
1, the pivot eiement ay = 2 is unique, SS is a slack of a

non-redundant constraint, H = (4);

Pivoting on ay s we get tableau T3:

55 SG RHS
57 -0.5 1 1.5
Sl} "105 1 0 5
53 - 0.5 =1 0.5
58 0.5 0 2.5

54 is still the slack of the objective function. In column 2,
the minimum quotient is unique arld is in the row containing 54'

Hence, Sh is a slack of a non-redundant constraint, H = ¢3 stop.

Hybrid Method

Considering the major difficiences for the co-ordinate direction

method, there is no guarantee that the remaining unidentified constraints

are actually redundant, and the extended sign'test method results in more
extreme points to be determined in order to ldentify non-redundant constraints.
Therefore,.a Hybrid method (Lotfi (1981)) was developed which consists

of two parts. |In the first part, the co-ordinate direction method, is

used to identify some of the non-redundant constraints. In the second

part, the extended sign test method identifies the remaining constraints.

Each part requires a different initial solution. The co-ordinate
direction method requires an interior point, whereas the extended sign
test method needs a basic feasible solution. Therefore, cne solution
is obtained from.another by using sensitivity analysis to overcome this

difficulty.
Once a basic feasible solution for the system

Al | el (3.1.2.1)

has been found, perturb the above system by two vectors (E], EZ) containing
small positive values, Then an interior. feasible solution is obtalned

by letting

0 =2 vee (3.1.2.2)

where $ denotes the values of the slacks of the non-negativity constraints

in a basic feasible solution to (3.1.2.1)."

LY

Compute the change in the right-hand side A§ as follows:

Ab = E1 + AE2 een (3.1.2.3)
and " “ -
AS = B ' Ab cen (3.1.2.0)

Then a basic feasible solution to (3.1.2.1) is simply:

& 28+ as cer (3.1.2.5)

Now, we present the details of the steps for the Hybrid method as

follows:

Initial Step: let H= {I|i =1, ..., m#n}, where H is the set of
indices for all varlables. Store AX < b, and compute

Ab and store it. Find X0 and go to step 1.
Step 1: Retrieve AX < b, put it in proper form;

Step 2: Using XU as the starttnj Interior feasible solution, perform
the co-ordinate direction method for a pre-specified number
of iterations. Remove the indices of identified constraints

~fromH. IfH =:¢,.st0p, all constr#ints are non-redundaﬁt.

Otherwise continue with step (3).

Step 3: Retrieve the tableau and Ab, update the right-hand side and

go to step (4).

Step 4: Apply the extended sign test method to classify the constraints

starting with the above tableau. Continue until H = ﬁ. Then,

37

stop and output the status of all constraints.

The first part of the above algorithm requires a stopping criterion as
in the co-ordinate direction method. |t is suggested that one co-ordinate
direction iteration seems to be areasonable upper limit to the number of

such iterations.

Now, to illustrate the use of the Hybrid method, consider the same numerical

example presented‘for Boneh and Gelan's method.

As before, H = (1,2,3,4,5,6). Adding the slacks, the initial contracted

tableau is:
55 36 RHS
5 -1 1 1
S, 1 1 3
53 1 0 2
Sy b 3 12

with £, = (.01, .01, .01, 007 and E, = (.01, o7,
T
ab = (.01, .03, .02, .08) .

The perturbed problem is tableau T1 which is feasible.

38

S5 56 | RHS
S1 -1 1 0.99
52. 1 1 2.97
53 1 0 1.98
54 b 3 11.92

Store Ab and the above tableau for later use.)(0 = (.01, .OI)T since
slacks of non-negativity constraints are zero. Now begin with part one

of the algorithm,

Step (1): Xp = %y 2 -1 (1)
%y > 73 (2)

=X > =2 - (3)

“hx, = 3x, > -12 (4)

X4 > 0 ' (5)

Xy 2 0 (6)

Step (2}: Using one iteration of the co-ordinate direction method,
constraints'one, three, five and six are identified as
non-redundant. H = (2,4).

1

Step (3): Retrieve T, and 4b and update T, by adding 8 ' Ab = Ab to

1
the right-hand sides (in this instance B-1 is the identity

matrix. The updates tableau is TO'

39

The contracted tableau is T.:

2
55 56 RHS
S1 -1 1 1
52 1 i 3
S3 1 0 2
Sh 4 3 12

Taking 52 as the slack of the objective function and pivoting on a31 =1,

obtalning T3.

S5 5 RHS
s, 1 1 3
S, -1 1 1
S 1 0 2
Sy -4 3 4

Select the second column for pivoting. In this column, there

is a unique pivot in the row containing $ Thus, S, is a slack

2° 2
of a non-redundant constraint, H = (4)}). So select Sy as the slack
of the objective function and pivot on a,, = 1 to get T, which

implies 54 is a slack of a redundant constraint. Then H = §,

so the algorithm stops.

S S RHS
3 2 _
2 -1 2

-1 1 1
1 0 2

-1 -3 1

i

3.2 Group Two Methods

As mentioned earlier, the objective of the methods in group two Is to
identify extraneous variables and non-binding constraints. Before
presenting the details of these methods we restate our {primal) linear

programming problem as:

max CX
S.t. AX < b (3.2.1)
X>10
Then, the dual problem associated with éystem (3.2.0) is
min . . Wb
S.t. WA =2C
W =0 ' «eo (3.2.2)

where A is an (nxm} matrix transposed from the original matrix A. C

and X are n vectors, b and W are m vectors.

3.2.1 Klein and Holm's-Method

Klein and Holm's method utilises the complementary slackness theorem

(CST) of linear programming (see for exampie, Jarvis and Bagaraa (1977))
in combination with bounds on'thé primal and duals variables. Such bounds
are directly available in problems ﬁith bounded. variables and some
problems with special structure, ie. problems with positdve coefficients

and problems with Leontief structure (for details see Klein and Holm: (1975)).

k2

In order to present the mathematicatl theary used in this mefhod:, we
define the following notation. Let pos(.) and neg(.) denote two operators
which select the‘posﬁttve and negative elements of.a matrix or vector. .
For example, If v is a vector then pos{v) 1s a vector which contains

the positive elements of v and zeros for non-positive elements of v,

fe. v = pos(v) + neg{v). Let A(i.) and A(.]) denote the ith row and

jth column of the matrix A, respectively, Finally, let x&, x4 and wQ, w'
be lower and upper bounds on the optimal-sq]UtiOﬁS* X* and Wx of (3.2.1)

and. (3.2.2) respectively.
The following two theorems and associated corollaries establish sufficient
conditions for identifying extranecus variables and non-binding constraints.

the reader may refer to the reference for the proofs.

Theorem (3.1)

If there exists column index sets R and T, and vectors P>0 and g>0 such

that

CeP = €49 >w'pos (ARP - ATq) +uwt neg (ARP,4 ATq) vee (3.2.1.1)

then there exists a column Index t€T such that xt is extraneous (ie. it

has a value of zero for every optimal solution of (3.2.1).

o

Corollary (3.1)

|f there exist column Indlces r and t such that

Cr -C. > wupos (A(.r) - A(.t)) + wgneg (A.r) = A(.t) ... (3.2.1.2)
_then x; is extranecus.

43

2 .
Note that when w = 0 then (3.2.2)reduces to:

¢ - ¢, > w' pos(A(.r) - A(.t)) . (3.2.1.3)

Theorem (3.2}

If there exist row index sets K and L and vectors P>0 and q>0 such that
Pb, - qb > pos (PA_ = gA)x" + neg(PA qAL)xF. . (3.2.1.5)
then there exists a row index kéK such that constraint k is non-Einding.

Corollary (3.2)

If there exist row Indices r and t such that

br,- bt > pos(A(f.) - Al))xY + neg(A(r.) - Alt.)) ... (3.2.1.5)

Note that in the system (3.21) »x* = 0 resulting in (3.245)reduces to

br - bt > pos{A{r.) - Alt.))x" - (3.2.136)

Klein and Holm's algorithm searches by making pairwise comparisons through
rows and columns of system (3.2.1) to find row and column indices
satisfying conditions (3.2.1.3) and (3.2.1.6). tlearly, these conditions
are sufficient, but not necessary foridentifying extraneous variables and
non-binding constraints. The effectiveness of the approach depends greatly
on the tightness of the required bounds on variables in systems (3.2.1)

and (3.2.2).

Theorem (3.3)

If A>0, b>0 and ¢>0 then

(a) x}' - n-1in {bi/aij} J=1, veuy n eee (3.2.1.7)
ira,.
1j>0

is an upper bound on the optimal value of the structural variables

in system (3.2.1).

u

(b i) w, = Tax {c./aij} i=z1, «euy m ... (3.2.1.8)
J:di1s0 '
i wz () T e izl, ceoy m ver (3.2.1.9)

where K Is the set of column indices corresponding to the

K largest values of cjx? and K = min (m,n)

1ii) w? = (1/b;) min {b max (cj/aij) =1, «.., m ... (3.2.1.10)
. kéM _ J:akj

where M is the set of row indices which correspond to strictly

positive rows, ie.
M={ila,.»>0, j=1, ..., n}
i
The following steps represent the details of Klein and Holm's algorithm:

Initial Step: Determine the upper bounds for both primal and dual

variables.

Step (1): Let j = 1, and set the logical variable IRD = 0.

b5

Step

Step

Step

Step

Step

Sfep

Step

Step

Step

Step

Step

Step

Step

Step

(2): Let t be the index of the smallest element of C;
(3): Let r be the index of j-th largest element of C;

(4): If condition (3.2.1.3) is satisfied go to step (6);

(5): If there are more columns to be compared with Ct set
j=j+1 and go to step (3) otherwise continue with step (8).
{6): Delete column t from the problem, set IRD = 1 and go to

step (8).

(7): Remove Ct temporarily, if no more columns are left, go to’

step (8), otherwise continue with step (1).
(8): Let i = 1 and set the logical variable IRD = O.

(9): Let t be the index of smallest element of b;

{(10): Let r be the index of the i-th largest element of b;
(11): If condition (3.2.1.5) holds go to step (13).

(12): If there are more rows to be compared with bt set i=i+1 and

go to step (10); otherwise continue with step (14).
(13): Delete row r from the problem, set {RD=1 and go to step (1).

(14): Remove bt temporarily, if no more rows left go to step (15).

Otherwise continue with step (8).

(15): 1f IRDz0 stop, no more reduction is possible. Otherwise

continue with Step (10).

Now, we present a numerical example {taken from Klein and Holm (1975)) to

illustrate the above algorithm. Conslder the following system:

max . 23x, + 23x2 + 22x3 + 18xk + X

1 5
S.t.
22x, +‘18x2 +xg ¥ 23x, < 6 (1)
l?xz + 22x3 + llx5 < 6‘ (2).
15x, + 21xg <13 (3)
23x, + 1hx, o+ 1hx5 < 14 (&)
3%y, <18 (5)

X; 20 Jel, o5

Initial Step: Clearly, the lower bounds on both primal and dual variables

are Zero.

>
1]

(0.27, 0.33, 0.27, 0.26, 0.55)

=
n

(4.16, 1.35, 1.53, 1.64, 1.40)

Steps 2 = 4: t =5, r =3: condition (3.2.1.6) holds,
row 5 is elimimated.

Steps 9 - 11: t =1, r = 5: condition (3.2.1.6) holds,
row 5 is eliminated.

Steps 9 - 11: t-=1, r = 4: condition (3.2.1.6) holds,
row 4 is eliminated | .

Steps 9 - 11: t =1, r =3: condition (3.2.1.6) holds,

row 3 is eliminated.

47

Steps 2 - 4: t = 4, r = 1: condition (3.2.1.2) holds

column 4 is eliminated.
No further reduction is possible, the problem reduces to:

max 23x1 + 23x2 +22x3

22x1 + 18x2 *+ Xy < 6 (1)

+22x, < 6 (2)

17x 3

3

x, >0 j=1,2,3

As Klein and Holm péint out, further reductions may be achieved if the
bounds are updated.affer each reduction.. For instance,. in the above
example the lower bound and the previous upper bounds, column 2 can be
eliminated (condition (3.2.1.2)). Computational results are reported in

Klein and Holm (1975) and (1976)) for LPPs with positive coefficients.

3.2.2 Williams’ Method

The second technique in thls group is proposed by Williams (1983).
Williams® method is similar to an earlier algorithm developed by Zionts
(1965) called ""The Extended Geometric Method". The extended geometric
method is based on a collection of theorems which makes it possible to
compute bounds on primal and dual variables from the structure of the
ﬁroblem. Then, according to- these bounds extraneocus variables and noﬁ-
binding constraints are identified and dropped. The tightening of the
bounds on all remaining variables’ continues until no further reductioﬁ
is possible in which case a simplex pivot Is performed. The above

process continues until optimality Is achieved.

Williams~ modification to the above.a]ogrithm consists of eliminating the
simplex pivot step and adding other steps which remove singleton columns
and rows {defined as columns or rows with exactly one ﬁon-zero entry’
excluding the cost coefficients and right~hand sides). |In order to
present the mathematical theory used in Williams® method we will utilise
the teminology implemented in the previous section. To reiterate,
consider the system (3.2.1) and denote the lower and upper bounds on X5
by x§ and x?, Jj=1, ..., n. respectively. Simi}arly, denote the lower

and upper bounds on .the dual variables w; (system (3.2.2)) by w% and w?,

i=l, ...,m. We will frequently refer to the w,'s as shadow prices, and

]
refer to their associated bounds as shadow price bounds. Also, for each
of the primal constraints we introduce the concept of 'actlivity level'.

For each row, the lower activity (Li) and upper activity (Ui) are given

as

b9

:) u : -
Ly = Z. 0 aij xj + Z- 0 aij X; i=1, ..., m. oo 3.2.2.1)
J:a,.” 2@, ., < .
] - 3
u, = a,, x4 +7 a,. X 21, vevy m . (3.2.2.2)
i ij 7] . <0 1J 7]
0 J a, .
J ij>' J

Similarly, for each column j we define the "imputed cost' and denote its
lower and upper values by Pj'and Qj respectively. The lower and upper

imputed costs are given as:

¢ u .
Pj sy aijwj + ;aijhu- j=1, veey n vee {3.2.2.3)
iza,.>0 i: a,.<0.
1j. ij
Q = 1 a; wo o+ A j=1, +eey ... {3.2.2.4)
J ijJ ijJ :
ira,, >0 iza,.< '
“iJ ij

Now, we present the mathematical theory implemehted in Williams~ method.-
Initially, for all of the variables {primal as well as the dual) the

lower bounds are set to zero {because of the non-negativity constraints)
and the upper bounds at a sufficiently farge real number M. ance all of
the tests in.this‘method have their dual counterparts we will describe the

- tests In pairs with the primal test followed by the dual test:

Primal! Test One {(P1): A singleton row may be replaced by a simple bound.

According to the nature of aij a new simple bound

of i% or i? is given to_xj as follows:

b,

R' _-2 - —24 - 7 I 2: }

xj = x5 1 ag <0ar_’d XjpET X .. {(3.2.2.5)
Pj _

50

Y - -u >0 -u - — < u
xj xj‘ if aij and xj = : xj v (3.2.2.6)

1

Also, thé singleton row must have the original shadow price bounds (0.M).
The reason Is that, tighter shadow price bounds indicate that singleton
columns may have been removed temporarily. It should be ﬁoted that if the
new bound obtained by test Pl is-Fess strict than the existing value, the

row will be found redundant according to test P2 below:

Dual Test One (D1): A singleton column may be replaced by a shadow
price according to the nature of aij a new shadow

price bound W? or W? Is given to W, as follows:

. |
w’; - ‘ﬁ% ifa; >0 and w’; 2 d> “ﬁ vee (3.2.2.7)
ary

. [»4 .
w? E_G? if alj < 0 and ﬁ? 2 < w? ees (3.2.2.8)
a

A

Similarly, the singleton column must have the original primal bounds
(0,M). The reason is that tighter primal bounds indicate that sinéleton
rows may be removed remporarily. As with the primal bounds, when the
new shadow price bound is less strict than the existing value, X] will
be set to one of the bounds according to test D2 (below) and the above

‘test not applied.

Primal Test Two (P2): | A constraint taken in conjunction with primal
| | bounds may demdnstrate a "redundant' or infeasible
constraint. According to the values of lower
activity (LI) and upper actlvity (U'), the

following actions are taken:

&1

Dual

bi and w?
bI and w?
P

bl and w;
b

bI and wi
Test Two (D2):
C. and x%
J J
C, and xE
] i
CJ and x?
C. nd’ u
i @ *j

constraint i{and hence model) infeasible
subtract w? times constraint i from objective
and remove constraint i

constraint | Is redundant, remove constraint fi.

times constraint | from objective

subtract w?

and remove constraint i.

A column taken In conjunction wifh shadow price
bounds may demonstrate that the corresponding
variable can be set at one of its bounds. By
comparing Pj and Qj with Cj, the following actlons

are taken:

xJ is extraneous, remove column j.

set xj to its lower bound and gubstitute out.
M variable X; (and hence model) unbounded.
M set xj to its upper bound and substitute out.

Primal Test Three (P3): _A constraint together with primal bounds on

i

? a x? + Sb‘ - LI)/a

xf+ (b; - "i)/‘.’ij - if a,,>0

some of the variables may imply bounds on
other variables. The new bounds are readily

computed by using the lower and upper activitles.

y If a;,<0 | vee (3.2.2.9)

i ees (3.2.2,10)

ca

It should be noted that the new bounds fz and i? may be less strict
than the existing value !n which case they are ignored. Moreover, the
new bounds may result in the following actions to be taken: |If I? 2 x;

or'if, or'i? =z x} or'}% set variable X] at the common value and substitute

for it.

Dual Test Three(D3): A column together with bounds on some of the
shadow price bounds. The new bounds are readily

computed by using the lower and upper imputed costs,

~U A : .' .
Wpomowp ot (Cj - Qj)/alj if aij<0 | vew (3.2.2.11)

./ u
Wy =W+ (Cj Qj)/alj if aij>° ee. (3.2.2.12)
Similarly, these new bounds may be less strict than the existing values in
whith case they are 1gnored. Also, the new bounds may result in the
following action to be taken: |If W? 2 w? or ﬁ?, or W? 2 wf or'ﬁ? set

w; to this common value and use as a multiple of the constraint to subtract

from the objective function.

The above six tests may be impleménted for reducing the size of the problem
by making successive passes over the model. Oneach pass the columns of the
model are examined sequentia}ly. For each column: Tests P3 (except for

first pass), D2, Dt, D3 are applied in this order. At the end of each pass,

Tests P2, P1 are applied in this order. However, performing these tests

: Ithout any systematic: approach may pfove dlsadvantageous;The reason is, In
//////r: loose sense tightening the bounds on primal variables and dual variables
simultaneously have opposite effects on fhe model. In ordgr to resolve
' th§ dilemma over whether to relax or tighten the bounds a two phase pfocedura

Is suggested. In the ficst phase, primal bounds are tightened and shadow

[4

price bounds are relaxed. In the second phase, primal bounds are relaxed:!
and shadow price bounds are tightened. A phase of the procedure terminates
when two successive passes yield no simblification. Furthermore, when
singleton columns replaced by shadow price bounds or constraints with
non-zero shadow prices removed by subtracting from the objective, it is
ultimately necessary to restore them. This is to ensure that the variables
are at their optimal values, and the model will not reduce any further. The
whole procedure is repeated in part two, however, singleton columns are not
replaced by shadow price bounds and constraints with non-zero shadow prices

are not subtracted from the objective function.

In order t¢ illustrate the use of Williams” method, we present a numerical

example (taken from.Williams (1983)). Consider

max: 2x1.+ 3x2 - Xy T Xy -

S.t.

R1 Xy + Xy * x3 - ox, 2 i w? w?
R2 -x1 - x2 + x3 - xh < 1 0 M

0 M

R,: X + X < 3

3 1 4 " M
£ 0o 0 0 0 0 M
J
M M MM

J

Part 1:

Phase 1: Pass 1: P3 > C3, x3 Is extraneous; remove x3

U2 < b2, R2 Is redundant; remove R2

54

Pass 2: x? Is tightened to 3.
singleton column xzpreplaced by w% =3

x: tightened to 3.

Pass 3: P1 > Ci, X3 is extraneous; remove X+

Ul < bi’ multiply RI by wﬁ = 3 and subtract from the

objective, remove R].

‘The model is now max 5, + 12 w% wﬁ
Ry Xp £ 3 0 M
xﬁ 0
x? 3

U3 = b3, remove 33.

Pass 4: - Q& 4 Ck, Xy = x: = 3, and substituted.

The model is now: max 27

S.t. nothing

Clearly the remaining two passes and Phaée two will
not have any changes. Then, the algorithm enters the
second .part. The singleton column Xy and constraint
R, (which was removed with non-zero shadow price) are

restored. Now the model is:

- L u
max 352 2 wi wi
RI XZ-E 10 0 M

.
X 0

— o .

Part 2:

Phase 2; Pass 1: Singleton row Rl’ replaced by xu = 10.

2] .
Pass 2: Qz < Cz, X = X, = 10, and substituted.
Other passes and phases are completed with no action.

The solution: Xy = 10, Xy 2 10, X2 0, Xy = 3, objective = 27.

56

3.2.3 Reduce Method

The third method in this group is proposed by Lotfi (1981}, which
identifled non-binding and/or non-redundant constraints by applying
tests one and two to the primal problem. Then, the dual counterparts of
these theorm are used to identify extraneous variables. The use of the
tests one and two was illustrated in previous method. To present the
application of these tests to the dual problem, given a basic feasible
solution, the non-basic variable x? is extraneous if

a,.>0 i=l, .o, M) and z. - ¢, >0 ces .2.3.1

i 2 (, m) Z;]z | (3.2.3.1)

where 2 - cj is the reduced cost. The correctness of the above test

may be illustrated by noting that the j~th dual constraint is redundant.

The dual counterpart of test two, however, is somewhat different. Recall
that test twé would identify a redundant constraint one pivot away from
test cne. In fact, the simplex method works towards attaining dual
feasibility. Therefore, a violated dual constralnt may satisfy the

condition as well. That is,.in a basic feasible sélution with
a'uf_o, i £ ;rl', arj>0 andzJ. - cJ. <0 . (3.2.3.2)

B .
the basjc variable x. is extraneous. The proof of the above is the
same as that of test two, pivoting on s will give the condition proposed

Cin (3.2.3.1).

In addition. to the above two tests for identifying the extraneous variables
one may identify such variables in a special-type implicit equality;

baving non-negative entries and a zero right-hand side. Then, a variable

with a positive entry in this row is extraneous. That is, if

aijio j=1, «e.y n with bi =0 ee. (3.2.3.3)

then - x? = 0 for an>0
The proof of this test is rather simple:

There are many algorithms to implement the above tests, and in each
algorithm, more than one course of action may be Implemented at certaln
tests. For example, suppose that condition (3.2.3.2) is satisfied at
certain tableau, theﬁ the course of action which Is adopted in this
method, is to mark the variables appropriatly when they were identified

and drop the row (column) when the variable entered (left) the basis.
Now, we-present the details of the Reduce method in algorithmic form:

Initial Step: Determine a basic feasible solution.

Let H = {k|S, = x;} and G ={r[S_ = x;y by and 6

are the sets of indices of slack variables in rows and

columns still remaining in the problem.

Step (1): If the current solution is optimal go to step (8). Otherwise

contlinue with step (2).

= S, and kgH, check the property

B
i k

Step (2): For every row | with x
aij 2 0 for all j and bi =0
If this holds remove all r with Sr = x? and aij >Uffrdm G

drop all such columns.

R

Step (3):

| Step (4):

Step (5):

Step (6):

Step.(7):

Drop row | and remove k from H.

For every row i with x? =S, and ke¢H, check the property:

a;; 0 for all J.

If this holds, then drop all these rows and remove the

indices of their slacks from H.

For every row i with x?-: Sk and keéH, check the property

a,. >0 j#p and a, <0 with b, =0
-~ ip i

J

—

If this holds, then mark xg as the slack of a non-bindihg

constraint.

For every column j with x? = Sr and r¢G, check the property

a,. >0 for all i > and z, = ¢, >0
1j =~ - S

If this holds, then drop column j and remove r from G.

For every column j with k? = Sk and kgG, check the property

3 <0 T ET arj>0 and z; = ¢y < 0.

If this holds, then mark Sq z x? as extraneous.

Determine the non-basic variable x? = Sk, k¢G with the most
negative reduced cost zj - cj. If no such variable exists
go to step (8). Otherwise compute:

a; = m;n {bi/atjlaij>0}
and perform a simplex pivot on arj updating the rows and

columns still remaining in the problem. Then, drop the row

59

and/or the column if the respective variables have been
marked and remove their indices from G and H. Update G

and H for the indices.

Step (8): If no rows or columns have been removed, stop. Otherwise
update the right-hand sides for the rows and zj - cj for

the columns which were dropped, then stop.

It should be noted that steps 2 - 6 may be repeated until no further
changes are made. In chapter VI we will present the results of thls

method on the tested problems,

Now, we will illustrate the use of the above algorithm by the following

numerical example. Consider

max X, - 2x2 + X, + 5xh - hx

1 3 5
s‘ t‘
X+ Xy + x3 <10 (1)
Xy T X3+ Xy + Xg ‘i 12 (2)
XI + xh = 3 (3)

adding slack variabtes, the tableau for the initial basic feasible

solution is:

Sy S¢ S¢ S, Sg
z -1 2 -1 -5 4 0
S, 1 1 1 0 0 10
S, 0 1 -1 1 1 12
S 1 0 0 1 0 3

60

with H = {1,2,3}, G = {4,5,6,7,8}.

Step (5): S5 and 58 are extraneous variables, drop columns 2 and §:

G = {h36’7};
Step (6): Mark S1 as extraneous (denoted by (*));

Step (7): The plvot element is agy = 1. The updated reduced tableau is:

Sy 56 33 RHS
Z b -1 5 15
*51 1 1 | 0 10
s, -1 -1 -1 9
S7 1 0 1 3

with H = {1,2,7} and G = {4,6,3}
Step (3): Row 2 is non-binding: drop row 2, H = {1,7};

step (5): S, and 53 are extraneous, drop column 1 and 4 and

H= G = {6};

Step (7): Pivoting on a,, = 1, getting the optimal solution as

13

‘56 = 10, 37 = 3, 52 = 19, with Z = 25.

61

3.3 Group Three Methods

The method in this group is presented by Thompson and Sethi (1983) which

Is unlike other methods. They attempt to solve LPP's by defining certain
constraints called '"'non-candidate constraints'' as those which never contain
a potentlal pivot element during the course of solving a 1lnear program.
Keeping these constraints in updated form Is of no value. A '"Candidate
Constraint'' is one that, for at least one pivot step, contains a potential

point.

The method is merely a modification of the standard simplex method in which
only constraints which currently are candidates are updated, taking .
advahtage of the fact that only some of the candidate constraints will be
binding at the optimum solution. Therefore, no new theoretical results

are needed to establish the correctness of the approach. Hence, in order

to present the method, we restate the linear programming problem as:

Max CX

t. A | ‘

S.t X <b e (330
X > 0

without loss of generality, assume that b > 0. Adding slack variables

to AX < b and using matrix notation below:

r

= ‘e (3.3.2)

Any instance of the above problem may be obtained by choosing a proper

basis B and multiplying the right-hand side vector b by B-l.

62

That is, xB z B-lb, hence Z = CBB-|b which may be written as:

b veo (3.3.3)

Therefore multiplying the left side of equatioh (3.3.2) by this same

matrix or

o
[r]
——
'
o
o
—
o
w
w
i
™
1
o
(2]
w

[=]
o
o
X
—_
(=}
w
e
o

oo (3.3.8)

which gives the desired matrix form of the system (3.3.2) after any

iterations as

B c.B la-C et] Tz S bﬂ\
B B B
X = ... (3.3.5)
0 8" 1a B! 5 LB-1b

Note that the system (3.3.5) is a full tableau of the simplex method
which is required by Thompson and Sethi's method. For the purpose of
simplicity, redefine the above system. Let X4 = Si izl, «.., m
Let Z-C <[c,87 A-c cBB"] and y =[87'A B"] where Z = C and y
are of proper dimension. Also, Let y0 = B-Ib, then we may rewrite the

system (3.3.1) as

63

m-+n -1
max Z + Z. = C.)x, = B
X I«] J)xJ CgB b
J=1

S.t. m+n

; i yijxj‘ = Yo i=l, ..., m .. (3.3.6)
j=

Associated with system (3.3.6), the superscript (k) will denote the k-th

(k)

iteration of the problem (eg. x denotes the solution at k-th iteration).
Because this method utilises the maximum objéctive rule, the pivot

element in every column with a non-negative reduced cost must be identified.
The set of variables with a negative reduced cost is represented by:

(k)

J = {jlzj - Cj <0, j=1, ..., m#n} .. (3.3.7)

(k)

Clearly, if j = 0 the optimal solution has been found.
The set of leaving basic variables is found by the usual minimum gquotient

rule, ie.

R(k) = {iIYi(k)/YEF) = mEE, yig)/yr}k), fal, ..., m}
Yej 70 ve. (3.3.8)

Now, we may define the set of '""Candidate constraints'' at iteration k

as
S(k)- {iliéR(?)' for some jGJ(k)} ... {3.3.9)

Then, the set of non-candidate constraints at iteration k is

50 g™, e, L, w cee (3.3.10)

64

(k)

To determine the pivot element when J # 0, the following computation

must be performed

(k) _ 9 I (Y .
S = maxk) YIO‘/YIj (ﬁj Zj) _ oo (3.3.11)

(k)

which increases the objective function by &',

As mentioned before, a permanent non-candidate constraint need not be
updated at all during the course of the solution. At each iteration the

(k)

sét of non-candidate constraints $

is not updated with the hope that they
will never become violated. Obviously beéause the choice of pivot row i is
by the minimum ratio .rule (3.3.8) and (3.3.11), no non-candidate cons;raint
at step k is ever violated at step k+l. However, such constralints may be
violated in subsequent iterations. All that needs to be done to prevent

such infeasibilities from occuring Is to update the right-hand side vector

(call this partial pivoting) for a given pivot element Vi In other words, .
yék+l) may be computed from,yék) and a constraint i is violated if
yfg) <0. In this case, the pivot step is not performed, instead the i-th

~ constraint would be vio!éted, a new pivot element is identified and the aone.
process is repeated. When no constraint is vioiated for a given choice of

a pivot element, a simplex pivot Is pefformed, but the noﬁ-cahdidate
-constraints are not updated, This procedure is repeated until J(k) =0,

which imblies that optimality Is achieved.

(k)

‘It should be noted that in constructing the set Rj » one may face
unboundednesé,(ie. Yr}i 0,.raS(kfl)). 'However. this un?oundedness may

be false since a non-candidate constraint, say § could contain a positive
entry in column j if uﬁdated, Therefore, when the above condition occurs;
.the non-éandidate_constraints are updated one at a2 time until either a pivot
element if found or theré is no such constraint leff, and the problem is

indeed'unbounded.

65

.Now, we present the details of the method in algorithmic form:

Step (1):

Step

Step

Step
Step
Step
Step

Step

Step

(2):

(3):

(4):

(5):

(6):

(7):

(8):

(9):

Find J(OZ if J(O): b, stop, the solution is optimal. Otherwise

find S(o), let k = 0 and go to step (2).

Find (i, j) the row and column of the pivot element obtained

from (3.3.11).

(k)

Pivot on yij In the tableau restricted to the rows in S'°7.

If the solution is optimal update the right-hand side Yio?

Iés(k) and stop. Otherwise continue with step (5).

Identify the non-candidate constraints in the updated tableau,

(k) (k+1)_

remove them from S to get S

Find (i,j}, the row and column of the pivot element by (3.3.11)

in the tableau restricted to S(k+1).

(k+1)

ék) restricted to § to get

Do a partial pivot on vy
Yék+1) and x(k+1).

(k+1) (k)

Use x to see if any constraint ifS is violated. |If
not, replace k by k+l and go to step (3). Otherwise, continue

with step (9).

Update the violated constraint and put in the current tableau.

Add its index to S(k) and go to step (5).

66

To illustrate the use of the above algorithm, we will present a numerical

example. Consider the problem:

max 2x1 + sz + 3x3
Slt‘
2xl + x2 + x3 < 9
xz + 2x3 < 6
~Xy + 2x2<- x3 < 5
=X, + 3x2 + x3 <12
x1 . ,XZ s x3 > 0

after adding the slack variables, the following initial tableau:

Xy | Xy x3 Xy xs x6 x7 RHS
z -2 -5 -3 0 0 o 0 0
Xy 2 1 1 1 0 0 0 9
x5 0 1 2 0 1 0 0 6
!
Xg -1 2 -1 0 0 1 0 i 5
5
g -1 3 1 0 0 0 i ; 12
!
The potential candidates ?or entering into the basis are J(O) = {1,2,3}
with the candidate constraints. S(O)-= {1,3,2}.

From equatlion (3.57) the pivot element is Y33 = 2. We pivot on Y33
(0
updating constraints in $. to get {non-candidate constraints are

denoted by a {(%)):

67

x1 x2 x3 xk xs x6 *7 RHS
Z -4.5 0 -5.5 0 0 2;5 | 0 12.5
%Xy 2.5 0 1.5 1 | ¢ -0.5 0 6.5
X 0.5 0 2.5 0 1 -0.5 0 3.5
*x,) -0.5 1 -0.5 0 0 0.5 0 2.5
#x -1 3 10 0 0 1 12.0

(1)

and the incoming variables for this tableau are J = {1,3}, with

candidate constraints S(]) = {1,2}.

The pivot element with the maximum objective function change is Yo3 = 2.5.
So, we perform a partial pivot In the right-hand side to check for any

violations.
(1) _ (1)
X 3 - ‘I‘l” xh = l*-h

Since no constraint will be violated we perform a pivot only on S(T) and

the Z«row.
Xy Xy ;3' Xy Xg Xe Xg T RHS
2 -3.4 0 0 0 2.2 1.4 0o | 20.2
Xy 2.2 0 0 1 -0.6 -0.2 0 4.4
'#x3 0.2 0 1 0 0.4 0.2 0 1.4
*xo -1 3 -1 0 0 0 1] 12.0

68

Now there is only one incoming variable x1 and one candidate consttaint.

The pivot elément is y,, = 2.2, so we do a partial pivot, x(2)= 2.0,
1 _ 1

~ Since no constraint will be violated we perform a pivot on Yi1° updating

only the first row.

X Xy x3 Xy 7 xs Xe x7 RHS
z 0 0 - 0 1.5 1.3 1.1 0 27.0
X4 1 0 0 0.45 =-0.27 =-0.09 0 2.0
Xy =2 0 1 0 0.4 0.5 0 1.4
*xz -0.5 1 -0.5 0 0 0.5 0 2.5
*xg o - 3 j 0 0 0 1 12.0

The above solution is optimal so we perform the final update on the

right hand side

XB=1.0’ Xzzll', X7= 100

69

3.4 Group Four Methods

As mentioned earlier, the objective of the methods in group four is to

consider redundancy in larger-scale mathematical programming problems.

3.4.1 Bradley et al.Method

Bradley et al. (1983) discussed an automated method for the exploitation
of structural redundancy in a large-scale matﬁematical programming models.
Their work deals primarily with row facterisation methods (eg. McBride
(1973) and Graves and McBride (1976)) to identify the best embedded
structure~.in any particular model. These structures are considered

in increasing order of maxImum row identification complexity. The efficient
polynomial algorithms are operationally defined here as low-order polynomial
in terms of intrinsic problem dimension {eg. number of rows, columns and non-
zero elements), and not in termé of the total volume of model fnfqrmation.
(eg. total number of bits in all coefficients). The efforts of Bradley

et al. are devoted to two issues: analysis of the LP, and solving it
efficiently. The analysis is confined to reductions that do not change

the feasible region. The analysis can also be called "Ortﬁogonal” In that

the reduction tests are made on the current problem with no pivotal

~ transformations actually performed.

The analysis is applied to a fully rangedi and bounded linear program.

Min)c.x,
Lejx; | |
voo (3.401.1)
S.t. P 2) 5 S v, (ranged constraints)
x% < x, < x0 ¥: (simple upper bounds)
i =7 = 7] J

Some ranges and bounds may be missing (that is +oor -o0),

Bradley et al. presented a number of reduction analyses. Simple
reduction tests are applied on the LP model. The same reduction tests

have been reported by Brearley, Mitra and Williams (1975).

The elimination of an equation and column with a non-zero coefficlent

in the equation is discussed in the transformation.reduction analysis.

- In particular, transformation reduction can generate a ''reduced, equivalent
LP" which is attually denser, and not necessarily as well-scaled as its

progenitop.

Determining the set of Generalised Upper Bound (the set of rows for which
each column has at most one non-zero coefficient restricted to the rows)
have been dicsussed. An effective method to find maximal GUB sets was
develobed by Brearley EE.El‘ (1975). Also, Brown and Thomen (1980) have
developed bounds on the size of the maximum GUB set which are sharp and

easily computed.

Heqristic . identification methods are presented, where an extension of
GUB can be used to achieve NET ("'Pure Network Rows' are a 5et of rows.
for which each column has at most two non-zero coefficients (restricted
to those rows) are +1 and =1) factorisations. First GUB set is
determined (Brearley et al. (1975), Brown and Thomen (1980)). Then
second GUB sét is found:from an eligible subset of remalning rows, such
that its row members must process non-zero coefficients of opposite sigﬁ

in each column for which the prior GUB set has a non-zero coefficient.

71

Brown and Wright (1980) developed a method for direct NET factorisation
of implicit network rows. With the same procedure by simplie screening

of admissible candidate rows, can be identified pure NET rows.

This heuristic Is designed to perform network facotrisation of a signed
matrix (0,1 entries only). It is a deletion heuristic which is, feasibility
seeking. The measure of infeasibility at any point Is a matrix penalty
computed as the sum of individual row pénalties. The algorithm is two-
phased, one pass and non-backtracking. The first phase yields a feasible
set of rows, while the second phase attempts to improve the set by
reincluding rows previously excluded. Each iteration in Phase 1 either
deletes a row or reflects it (multiplies it by =1) and guaraﬁtees that
the matrix penalty will be reduced. Thus, the number of iterations in
phase 1 is bounded by the initial value of the matrix penalty, which is
polynomially bounded. The details of the method are included in Bradley

et al. (1983).

3.4.2 Crowder et al. Method

Crowder et al.(1983) presented a method incorporated in PIPX (an
experimental software package that they designed to solve pure (0-1)

programming problems.), which Tncludes automatic problem preprocessins

and constraiﬁt generation. Problem pre-processing inspects the user-
supplied formulation of a (0-1) linear program and improves on the
associated linear programming formulation by "tightening'' the constraint
set, ''spotting'' variables that can be fixed at either 0 or 1, and
"determining' constraints of the problem that are rendered inactive.

Constraint generation essentially generates cutting-planes that are satisfiec

by (0-1) solutions of the problem and that chop off part of the feasible
set of the.linear programming relaxation and utilises the Branchrandt~~
Bound strategy to find good integer solutions quickly. This procedure
is used repeatedly andlutiilses information contalined in the reduced costs
associated with the optimal solution of the llnear programming relaxatioﬁ

to fix variables to 0 or 1,

Crowder et al. attempted to establish the usefulness of these method-
oligical advances - when combined with clever Branch-and Bound strategies
for automatic solution of sparse large-scale (0-1) linear programming

problems.

The following problem has been considered
min cX

S.t. AX <b .o (3.4,2.1)

xj = 0or 1 for j=1, ..., n

73

where A = (aij) is mxn matrix, with aij a0, 1, ¥i,j, b and ¢ are vectors

af length m and n, respectively.

Problem Preprocessing

(1) Constraint Classification:

The inequalities of the problem (3.4.2.1) are classified into two

types: type (1) constraints are special ordered set constraints,

ie constraints of the type.

I ox -1 x| <1 - |H| vee (3.4.2.2)
jeb je |
where L and H are disjoint index sets and |H| denotes the cardinality of
the set H. Cleérly X = 1 for some j 4 implies X = 0 for all k€L, k £],
and.x, =1 for all kéH, while Xy = 0 for some j¢gH implies x, = 1 for all

keH, k £ J, and x, = 0 for all keL. Type (2) constraints are all other

constraints of problem (3.4.2.1).
(11) Variable Fixing and Blatant Infeasibility check:

‘Suppose, for.notational simplicity, that type (2) constraint of

(3.4.21)is written ast

E‘Pajqu A%, < b e (3.4.2.3)
JEN

where P and N are the index sets of coefficients with positive and negative

values respectively. If

.Z a.>b | <. (3.4.2.4)

holds,'then constraint (3.4.2.3) does not have a feasible:solution and
the overall problem (3.#.2.1), of which (3.4.2.3) is but one constraint,
is blatantly infeasible. On the other hand if

jep aj <b | | oo (3.4.2.5)
holds, the constraint (3.4.2.3) Is inactive because every possible (0-1)
vector x satisfies it. Such an inequaltiy can be dropped from the constraint

set of {3.4.2.1) because it does not exclude any (0-1) solution. Let

~«j€P and suppose that

v.. (3.2.4.6)

holds, then X; = 0 in every feasible (0-1) solution to (3.4.2.1} and
we can fix variable X; at the value 0 and drop it from the problem (3.4.2.1).

Likewise, if for some jgN we have

“a;>b- [a | L (3.2.5.7)

then xj = 1 holds In every feaéible (0-1) solution to (3.4.2.3). We can
fix variable xj at value 1, adjust the right-hand side vector b of (3.4.2.1)
and drop the variable X5 from the problem (3.4.2.1). |{f a variable

that is fixed at valué 1 also appears in a type (1) constraint with a
positive coefficient, the remaining variables in this special ordered

set are fixed as discussed in the previous éection; a similarﬁargument
hoids if a variasle that is fixed at value 0 .appears also in a type (1)
constraint with a negative coefficient . All type (2) constraints of
problem (3.4.2.1) are examined one at a time in the order in which they

appear in the formulation.

75

3.4,2.1.3 Coefficient Reduction

Consider an arbitrary linear inequality in the form

.
I ax, > b ee. (3.4.2.8)
J

where all aj for j=1, ..., r are positive. |f we have ak>b for

some+ ké{1,...,r}, then we can replace a, by b and the inequality

k

by + { a.x, >b e (3.4.2.9)
j=1, j#k

has the same solution.set in terms of (0~1) solutions as (3.4.2.8)
but fewer real solutions in the unit-hypercube. Thus (3.4.2.9) is a
"tighter" inequality that (3.4.2.8) for the associated linear programming
relaxation. Of course, the constraints of (3.4.2.1) are not always of
the form (3.4.2.8), but using the substitution x} =1 - X4 where
necessary, we can bring every constraint of (3.4.2.1) into this form,
apply this reasoning and check each coefficlent of each type (2)

constraint for a possible coefficient reduction.

Constraint Generation

The constraint generation procedure [s the second computational phase

of PIPX, to produce and solve a linear programming problem with a better
optimal continuous objective function value. The real measure of the
effectiveness of the constraint generation procedure is determined by

how much it closes the ''gap' between the optimal linear program relaxation

‘objective function value and the optimal (0-1) objective function value.

76

In a large-scale (0-1) programming problem with a sparse matrix A

and with no apparént special structure,itis reasonable to expect that
the Intersection of the m knapsack polytopes P; (*CONV{XERnlaixgbi,
xj:O or 1 for_j:l, +esy N}) provide a.fairiy good approximation to the
(0-1) polytope P1 (g E-IP}) over which to minimise a linear chjective
function. On the othe; hand, If the matrix is dense, then the different
rows of A interact and cutting planes from individual rows of A, while
certainly valid and inusome instances useful, cannot be expected to
produce the same impressive results that would come from sparse large-
scale (0-1) problems with no apparent special structure. This is the
first difference between Crowder et al. method and the traditional
cutting-ptanes described in fhe text books on Integer programs. The
second difference, is the inequalities thaf Crowder et al. generate
preserve theﬁpaFSityof the constraint matrix; on the other hand, the

traditional cutting planes are typically rather dense and as Integer

programming folklore has it - lead to explosive storage requirement.

Crowder et at. modified the standard Branch-and Bound algorithm to
facilitate the search, by cohputing the upper bound on the optimal

- solution and measuring the gap between the continuous optimal solutlon
and the optimal (0-1) objective value to provide a gobd way of guiding
to Mathematical Integer ?rogramming Software to find integer solutions,
and finally using the continuous reduced cost implication to fix the

variables in the current Branch-and-Bound tree.

Finally, Crowder et al, mentioned that there are some computational
difficulties in thelr constraint identificatfon procedure because
. of the computer storage requirements. The other difficulty 1s the

design and implementation of an effective'and efficient interface

77

between the computational procedure and the mathematical software for

solving linear and integer programming problems.

(*CONV: The convexified $olution).

-

IMPROVEMENTS
AND

EXTENSIONS

CHAPTER |V

In the previbus chapterwe presented the mest promising size-reduction
techniques. While the results of some of these techniques will be
presented in chapter VI, we suggest here some changes which result in

improving the performance of these techniques.

In this chapter, we present the details of two extended methods which

have evalved from the previous ones. The first method called ""Extended
Reduce' is an improved version of the earlier Reduce method, in order to
identify extraneous Qariables as well as redundant conétraints. The |
second one is called '"Extended-Williams: Procedure' for linear and integer

programs, which is an extended version of Williams’ procedure.

Before we proceéd with the details of each method, and to avoid any
repetition in the terminology and notations, we restate our (primal)

linear programming probiem as:

max Z = CX ces (h.1)
5.t AX < b
X>b

and the dual problem associated with the above system is:

min - Y = Wb _ .o (B.2)
s. t. WAl > ¢
| W 1.0

where A is an mxn matrix, A' Is the transpose of A, C and X are n vectors,

b and W are m vectors.

4.1 Extended Reduce Method

As mentionéd before, the Extended~Reduce method is an improved version

of the earlier Reduce method presented in chapter |ll. The method is

to identify extraneous variables and redundant constraints. Also,
redundant constraints are identified by implementing a modified version
of the co-ordinate direction method atcertain steps if necessary. Based
on the following modifications involving more effiéfent tests from some
theorems presehfed in chapter |l on both primal and dual, togéther with a
modified version of the coordfnate direction method, the Extended

Reduce method is developed.

We utilise the same notation developed in chapter Il and in Boneh and
Golan's method presented in chapter [lI{. Namely, we use the constructed
tableau A(mxn) and denote its elements by 3y The updated right-hand
side vector is denoted by b(mx1) and its associated elements by bi' The
reduced cost vector is denoted by Z - C {Ixn) and its associated elements
by Z, - Cj. Also, the vector of basic variables is x? and that of non-

J
basic vartables is x?.

The results from experiments on Extended Sign Tests, Hybrid and Reduce
methods, presented in chapter VI, show that test two and its dual test

are unhelpful and expensive (in terms of computation times), hence they
are notlconsidered here. 0On the other hand, test one and.its dual test
as.well as step two of Reduce method (fe. a constraint having non-negative
entries and-a zero right hand side, then a variable with a positive entry
.in this row is extraneous) are found most useful. Test five is found

most efficient when it is used as part of the simplex step.

80

We especially attémpf to make use of this test to identify redundant
constraints, by implementing the modified version of the co~ordinate

direction method with it.

The results of the co-ordinate direction method from experiments on

the Hybrid method seems very efficient (in terms of computations time).
However, identifyihg non-negativity constraints as redundant tells us

very little about thelr variables, since their values may turn out equal

to zero or not. Also, the existence of extraneous variables in the problem
may affect the results by classifying some redundant constraints as non-
redundant and this occurs because of perturbing the problem where

extraneous variables could have small positive values in an interior

feasible point. Secondly, when the direction from the interior feasible

point to all constraints is along one of the extraneous variables, difficultie:

can also arise. To explain this, let us consider the following example:

max Xy - x2 + 2x3

s, t.
.x1 + xz i < 2 eeee RI
-x| + 3x2 + x3 < 2.5. «eos R2
X1 + x2 + x3 < 2 «++s R3

by perturbation of the problem, the interlor feasible point is

(¢0.01, 0,01, 0.01). Clearly x, is extraneous, but ©f the direction

2

from the interior feasible point to all constraints moves along Xg s R.2

is classified as non-redundant, which it is in fact redundant.

As a result of the above difficulties, we modify the co-ordinate direction
method to be used with test five and only when the pivot ratio is not

unique, in order to identify redundant constraints before we perform a

81

simplex iteration. First we consider only the structurai constraints
having the same plvot ratio’ value, and positive coefficient corresponding
to the variable, which has been taken as a current direction. Second,

in order to be sure that the direction is not along any of the extraneous
variables, perform the test along the next pivot column, which is
easy.to identify by simply updating the objective function. Third, in
order to be sure that none of the extraneous variables could have any
positive number, we start with the boundary point instead of the interior
point, and we perturb only the slacks of non-negativity constraints which

are in the basis, and all other variables must have zero value.

Given a boundary or interior feasible point XO, the distance ti between

any constraint and.x0 aiong the j-th direction is given as follows:

i I . a..>0 vee (B.1007)

where 1 Is the constraint index having the same pivot ratio value; of

course Ai is the i-th constraint of the original problem (4.1).

Therefore, if the i~th constraint has a minimum value tos then the other
constraints classify as redundant. Moreover, the i-th constraint

becomes a pivot row for the simplex iteration.

As a result of tests, such modification is computationally beneficial,
since it is less expensive (in terms of computations time) to identify
redundant constraints, where great saving in time and storage space have

been achieved, since the total number of arithmetic operations to

82

compute (4.1.1) reduces from (m+n) (2n+2) for computing equation (3.1.1.3)
to at most m(2n+2). Furthermore, there is no need to convert the original
matrix probieﬁ into the form of ">'". Finally, the number of simplex
iterations to reach the optimum solution could be reduced, and that is

due to the right choice of pivot constraint (when the pivot ratio [s not

unique).
Now, we present the Extended-Reduce method in algorithmic steps:

initial Step: Let H --{k[Sk = x?} and G = {r| S. = x?} where H and G
are the set of indices of the slack variables In rows
and columns still remaihing in the prdb]em.

Store AX<b, find a basic feasible solution to the system

(4.1).
Step {1): If all 2y ¢ 2 0, stop. Otherwise continue with step 2.
Step (2): For every column j with x? = Sr and réG, check the property:

a.., >0 forall i and 2. ~c, >0
Iy = J]l -

If this holds, drop column j and remove r from G.

-

Step (3): For every row | with x? = S, and keH, check the property:

a.. <0 for all j
b -

If this holds, drop row 1 and remove k from H.

Step (4): For every tow i with x? = S, and keH, check the property:

aij-i 0 for all j and bi =0

83

If this holds, drop all columns with aij>0 and remove all

their indices from G. Then drop row i and remove k from H.

Step (5): Determine the non-basic variable S, = x? with the most

negative reduced cost Zp - Cp. Compute:

bt/atp = m:n {bi/aip|aip>0}

xB kéH is a slack

If the above ratio is unique then.$ b

k‘:
of a non-redundant constraint, and go to step 7. Otherwise

continue with step 6.

Step (6): ~ Determine the latest boundéry or interior feasible point,
and the next pivot column j. Among only constraints having
the same ratice. value, determine the coﬁstraint with minimum
t; Drop the other constraints from the problem, and their

indices from H.

Step (7): Perform a simplex plvot iteration, and update the table.
If no rows or columns have been removed, stop. OtherwISe

- do to step 1,

Now, to illustrate the use of our extended reduce method, we consider

the following numerical example:

max 2x1 + Xy = x3 + 3)(,+ - 3x5
s.t. '
Xy + X, + x5 =< 1
2x3 + th + xs < b
X, Xy Xy < b

84

X

+
X1 X

Inftial Step

2

+1'Xz' 'XS

+ x3 + 3xh

In what follows, we label the slack variables as s

<8
<6

>0

for all j.

1

through Sg and X4 through Xg as §g through 510 respectively.

The constructed tableau is:

56 57 58 59 510 b
Z.-¢ -2 - -
s _ 1 1 3 3 0
S 1 1 1 1
52 2 2 1 k
53 -1 1 1 .3 4
| |
T |
55 1 1 1 ‘ 3 | 1 % 6
The index sets H = {1,2,3,4,5} and G = {6,7,8,9,10}
Step (2): 58 is extraneous, we drop column 3. G= {6,7,9,10}
step (5): The pivot ratio is chosenfor cotumn four (with most
negative Z), - Ch = =3), and 1t is not unique.
Step (6): The next pivot column j =1 (Z1 - ¢y = -1),

>
1]

(0.01, 0, 0, 1.99, 0)

th = 0.03 »
L

tS = 0.02
3

Therefore constraint 5 is non-redundant, constraints 2 and

4 are redundant.

Step (7): After pivoting on ag,, = 2, we get the following updated

table:
56 57 55 510 b
Z, - C, - 2 -
] j 1 1 3 6
51 1 1 1 1
53' - E_ - % ; 2
3 |
S R R R
3 3 3 3
H = {1r3p9} G = {637’5’10}

Step (2): 57 and S10 are extraneous, we drbp columns 2 and 5.

G = {6’5}

| Step (3): Row 3 redundant, we drop row 3. H = {1,9}

86

Step (5): The pivot ratio on column one is .chosen (with most negative

Zl- C1 = -1), and it is unique.

Step {7): After pivoting on a,,» We get the following updated table:

S\ S5 | b
R -
S¢ 1 x 1
s, 1 1 s
3 33
and H =z {6,9}, - G = {1,5}

Step (1):. All z; - cj.z 0, the solution is optimum, stop.

The test results of Extended-Reduce method are presented in chapter VI.

87

4.2 Extended Williams Procedure

Unlike the previous improved method, the size of linear (and integer)
pfogramming problems has been reduced prior to applying the simplex
method. The procedure presented here ié an extended version of Williams®
~ procedure achieved by combining another test based on theorem (3.1}
presented in Holm . and Klein's method in chapter 11!, in order to
identify extraneous variables. More suggestions have been made to reduce
the course of processing. Based on the above; we developed "Extended.

Williams Procedure'',

In order to present the mathematical theory used in the extended procedure
we will utilise the same terminology impleménted in Williams’ procedure
and Holm and Klein's method presented in chapter [lI. [Initially, for all
the variables (primal and dual), the lower bounds aré set’ to zero (because
of the non-negativity constraints) and the upper bounds at a sufficiently

Iérge real number.

As a result of testing Williams® procedure presented in chapter V!, the
structure of the teéted problem {redundancy and degeneracy) is affected

on its reduction processing, and that is due to unsuccessful tightening

of the bounds of primal and?dual vafiables. Then, the required conditiﬁns
in test D2 to fix variables at their bounds are affected and not easy to
hold. The results show that ﬁost of the variables havinj non+zero
coefficients in all constraints with zero lower bounds in shadow prices

are not fixed to thelr bounds. To demonstrate this, consider thelfOIHOWing

example

88

s‘ tt
X4 + . < 5 R1
'Xl + . i 8 —_— RZ
Suppose that xi = 0 at the optimal solution, and w% = wg = 0. Williams".

procedure is unable to fix such a variable at its lower bounds zero, and

such variables may affect the whole procedure of size reduction,

Holm and Klein (1975) identify extraneous variables by paitwise
comparisons between variables, based on theorem (3.1) presented in

chapter |11, which we may restate as a test as follows:

If there exists column indices r and j such that
. - Cj > w' pos{A(.r) - A(.j)) + w” neg(A{.r) - A(.j))

cer (B02.1)

then xj is extraneous.

The basic idea of the above test is from the Complemenfary Slackness
Theorem, ief a variable x? =0 whgnever cj - wOA(.j) <0 whéré XU

and w0 are'the.optimal solution to (4.1) and (4.2), repsectively.
However, as the test covers most of the situations, and the pairwise
comparison needs a little more procéssing, we decided to combine such

a test with Williams' procedure, in a way to reduce the pairwise
comparisons time processing in the whole procedure, by not repeating

the pairwise comparisons processing in each pass, if neither any -
singleton colﬁmns are replaced by shadow price bounds nor any constraints

removed nor any shadow price bounds tightened.

89

in fact, we are using the same names for tests as in the original
Williams' proéedure, such as test P1, test D1, ..., etc (see Williams'
procedure in chapter 111) in presenting the algorithmic steps of Extended
Witliams procedure. As in Williams' procediure all the tests are implemented
in thg same'systematic approach, anq our procedure also has two phases, to
resolve the dilemma over whether to relax or tighten the bounds on primal
and dual variables. On the other hand, as a result of testing Williams'
procedure, we suggest, first. a phase of the procedure is terminated when
one pass yields no simplification. Second, there is no need to repéat

the whole procedure processing in part two, if neither singlefon coluhns
are replaced by shadow price bounds nor constraints with non-zero lower

shadow price bounds are removed by subtracting from the objective function.

We now present the details of our extended procedure in an algorithmic
form. The following logical variables are used as switches for various

steps

PART = F for part 1
= T for part 2

PHASE = F for phase 1

= T for phase 2
PSACT = T changes made during the current pass

aFotherwise
PRDSC = T changes made either by replacing singleton column or removing

constraint with non-zero shadow price bounds |

= F otherwise

90

Initial Step :

Step (1):
Step t2):
Step (3):

Step (4):

Step (5):

Step (6}:

Step (7):

Step {8):

Step (9):

Step (10):

Set all logical variables to F, all lower bounds
(primal and dual) to zero and all upper bounds to
a large real number M,

Let K =1

Let j be the k-th index of smallest element of C;

Compute 2? and X" (equations 3.2.2.9 - 10)

J

1F %% > XY or M, or XM < x* or §%, the model is infeasible,
J J J 4 J J

stop

IF XY = xY orxY, or XY = &% or E%, set x. to this common
J J J J J J J

value, substitute out, set PSACT = T and go to step 2.
}f PHASE if T, go to step 8.

If the new primél bounds are more strict than existing values,

update these bounds and set PSACT = T. Otherwlse go to step 9.

If the new primal bounds are more strict than existing values,

restore the initial bounds to xj.
Compute PJ and QJ (equations 3.2.2.3 - 4),
Perform test D2, if changes made set PSACT = T, and go to

step 2. Otherwise, continue with step 11.

N

Step (11):

Step (12):

Step (13):

Step (14):

Step (15):

Step (16):

Step (17):

Step (18):

Step (19):

If PART is T, go to step 13. Otherwise, continue with step

12.

Perform test D1, if changes made, set PSACT = PRDSC = T,

and go to step 23. OQtherwise continue with step 13.

and wo (equations 3.2.2.11 - 12)

Compute ﬁ% i

tf W? > w? or ﬁ?, or W? < w? or W%. the model is either

unbounded or infeasible, stop.

If W? = w? or W?, or W? = w? or W% multiply the constraint
i by this common value, subtract from the objective function,

remove the constraint i, set PSACT - PRDSC = T, then go to

step 19.

If PHASE is F, go to step 18.

If the new shadow price bounds are more strict than
existing values, update these bounds, and set PSACT = T,

Otherwise fo to step 19.

If the new shadow price bounds are more strict than exlsting

values, restore the initial bounds to the dual variables.

Let L=0.

92

Step

Step

Step

Step

Step

~ Step

Step

‘Step

Step

.Step

Step

Step

(20):

(21):

(22):

(23):

(24):

(25):

(26) :

(27):

(28):

(29):

(30):

(312

If there are no more columns to be compared with cj, go
to step 23. Otherwise, set L = L+1, and continue with

step 21.
Let r be the L-th index of largest element of C

If condition (4.2.1) is satisfied, remove column j, set

PSACT = T, and go to step 24. Otherwise go to'étep 20.

Compute L

; and Ui‘(equations 3.2.2,1 - 2).

If there are no more columns left (ie. K equals N), go to

step 25. Otherwise set k = k+1 and go to step 2.

Perform test P2, if changes made, set PSACT = T, moreover
if removed constraints have non-zero shadow price bounds
set PRDSC = T.

Perform test P1, If change made, set PSACT = T.

If PSACT is F, go to step 29.

i

_-Set PSACT = F and go to step 1.

If PHASE is F, set PHASE = T and go to step 1.
If PART is T, stop.

if PRDSC = T, restore all singleton columns and constraints

93

with non-zero shadow price bounds subtracted from the objective
function, set PART = T, PHASE = F and go to step 1. Otherwise,

stop.

To illustrate the use of the above algorithm, let us consider the following
numerical example taken from Williams (1983), after modification. Without
affecting the feasibility or the optimal solution, further reductions are

~ found, where Wiltiams' procedure failed to reduce its size:

' . 2 u
max 2§T + 3x2 + x3 Wi W
S.t.
R1 "Xy b Xy * x3 +x) - 2x5 <4 0 M
R2 -x1-x2+x3+xu-xsf_1 0 M
R3 Xy + Xy, + ;xs <3 0 M
L
. 0 0 0 0)]
%]
x:_' M M M MM

94

Solution:

PART ONE
PHASE ONE
PASS (1)

Xh extraneous

X3 extraneous

constraint 2 redundant
PASS (2)

xu = 3: x# = 3

5

Lower shadow price bound on constraint 1 is 3.
PASS (3)

constraint 1 redundant
PASS (4)

’ X1 extraneous

constraint 3 redundant

PASS (5)
= 3.0

X5 3
PASS (6) |

nothing
PHASE TwO
PASS (1)
PASS (2)
PART TWO
PHASE ONE
PASS (1}

: u

Xz = 10.0

XZ = 16.0 and the problem solved.
STOP

The results of the Extended Williams' procedure are presented in chapter VI.

a5

CHAPTER V

In the previous chapter, two reduction methods are presented, mainly
for Linear programs. In this chapter extended techniques are presented

mainly for integer programs.

The requirement that the variables must take integer values is a mathematical
extenSion o% Linear programming, which is known as Pure Integer Programmfng.
There are many ways of solving such problems, however, there is only

one method which purports to be applicable to all such problems and .

is sometimes presented as a simple extension to cope with integer variables
in the LP algorithm of commercial packages - the so-called "Branch-and-Bound"

algorithm.

As the problem siie increases, the amount of work needed to produce

an fnteger optimum solution may increase expoﬁentially, where, subproblems

are geherated and the number of branches increases as the number of

integer variables increases in the problem. In general, there are unnecessary
variables and rows in a model formulation which increase the number

of branches and the solution time. Therefore, reducing the size of

the problems by removing unnecessary variables and rows will reduce

the number of branches required in order to solve the problems, using

Branch-and-Bound algorithm efficiently.

.In this chapter, we present a preprocessing reduction procedure for -
general integer linear programming problems, and discuss its implications
for Dynamic-Presolve which is a feature of the SCICONIC package. Also,

reductions to subproblems having Special Order Sets (S0S) will be presented.

96

Before we proceed with the details, to avoid fepetition we state our

(primal) integer linear programming problem as follows:

n
Max Z = I ¢.x,
j=1JJ

i=1,...,m | ...{5.1)

[}
=1
X
[P
o

x, } 0 and integers

and for each variable there are finite integer lower and upper bounds

0 ¢ x% { x, { x? | «eelb5.2
N T (5.2)

5.1 Preprocessing Reduction Procedure for ILPP's

A preprocessing technique is developed to reduce the size of general
ILPP's using the primal bounds to fix variables at their bounds and
identify extraneous variables and redundant constraints prior to applying

the simplex and Branch-and=-Bound aigorithms.

In order to present the mathematical theory used in our procedure,
we use the same terminologies as in "Holm and Klein's' and '"Williams''"

methods presentéd in Chapter 111,

With integer varjables It is generally advantageous to tighten the bounds
rather than relax them since it may be possible to tighten the bound

to the next appropriate integer value. The bounds have been tightened

in our procedure in a fashion similar to that of Williams' techniques,
that is, a coﬁstfaint together with bounds on some variables may imply
bounds on another variable (equations 3.2.2.9-10), and if x5 < x;, the
upper boun&'x; is replaced by [;u_+ €]. If ;ﬁ)x}, the lower bound x?

is replaced by [2}-€]+1, where € is a small positive number. Should

i? be equal to Q?, the variable xi may be fixed at this éommon value

and removed from the problem by replacing bi by‘(bi-aij xj) for altl

i and adding the constant CjX; to the objective function.

97

However, Brearley et al.[1975] and Wililams [1983] identify constraint i
in a system (5.1) as redundant if U, g'bi provided that it does not

have a nonzero lower shadow price. Willlams [1978] mentioned that,

in integer problems, if a constraint has a positive slack it does not
necessarily represent a ''free good" {i.e., in one sense it is not worth
anything) and may therefore have a positive economic value (see Williams

[19781, Ch. 10).

Rubin [1972], extended the results of test one to apply to integer problems,

by presenting the following theorem:

Theorem Rubin [1972]
If row i s a structural constraint having

a;; £ 0 forall jand B,)0 ...(5.1.1)}

i)
then it is redundant in IP.
Since no simplex iterations have been performed during the course of

our procedure, all rows are structural constraints, therefore, we decided

to use the above test to identify redundant constraints.

As a result of the above test, many redundant constraints could not

be identified, because condition (5.1.1) was not satisfied. We declded

to implement Holmand Klein's test, presented in chapter I, in order

to identify redundant consfraints by pairwise comparisons between constfaints,
based on theorem {3.2), (condition 3.2.1.6). However, as the pairwise
compafisions need more time processing, we combined and performed this

test fn-a way to reduce the pairwise comparisons time processing as

much as we can, such as terminating the test és soon as the right~hand

side of (3.2.16) becomes greater than or equal to the left-hand side.

98

G -
In our procedure we construct formulae using

only primal bounds to fix the variables at their bounds, as follows:

Case (a}: If ke P, and

L u |
3) bi (z aij xj + Zaij xj) ...(5.1.2)
jeP JeN
¥k

holds, then xk=0 at every feasible solution to (5.1)

Case (b): If k¢ N, and

L | u
i) bi (2 a; xj + Eaij xj) e (5.1.3)
jepP jeN
4k

holds, then x, = xt at every feasible solution to (5.1)
where P and N are 'the index sets of coefficients with positive and negative
values, respectively. The correctness of the above two cases comes

from the feasibility of the system (5.1).

The above two formulae need good tightened bounds to fix more variables,
therefore one may identify extraneous variables by the dual test to

condition (5.1.1), which may be stated in the following corollary:

Corollary:
if column j is not a stack of a structural constraint and has

a,, > 0 for all i and chO oo (5.1.0)

ij
then xj is extraneous in a system (5.1)

99

The correctness of the above corollary is from the validity of its duality.

Now, let us present our procedure in algorithmic steps:

Initial Step: Set PASS =1, PSACT =F

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

o

Step

Step 7:

Step 8:

Step 9:

Step 10:
Step 11:

Step 12:

Step 13:
Step 14:

Step 15:

let j =1,

If condition (5.1.4) is satisfied, remove column j, set PSACT=T
and go to step 9. Otherwise continue with step 3.

If any of conditions (5.1.2-3) is satisfied, update the problem,
remove column j, set PSACT = T and go to step 9. Otherwise,
continue with step 4.

If PASS = 1, go to step 8. Otherwise, continue with step 5.

_ Compute §§ and QE {equations 3.2.2.9~10);

'f §§) x? or ;?’ or ;? (x? or Ei, the problem is infeasible, stop.

If the new bounds are more strict than existing values, update
these bounds, set PSACT = T, and if the lower and ubper bounds
on xj are equal, set x_i to this common value,lupdate the problem,
remove column i, then go to step 9. Otherwise, continue with
step 8.

Compute L, (equation 3.3.3.1);

If no more columns left, continue with step TO. Otherwise,
set j=j+1 and go to step 2.

let k =1,

et i be the k~th index of largest element of b;

If condition (5.1.1) is satisfied, remove row i, set PSACT=T
and go to step 17. Otherwise, continue with Step 13. .

let L =1, |

let t be the L-th index of smallest element of b;

If condition (3.2.1.6) i§ satisfied, remove row i, set PSACT=T

and go to step 17. Otherwise, continue with step 16.

100

Step 16: |If there are no more rows to be cqmpared with bi’ go to step 17.
Otherwise, set L=L+1 and go to step 14.

Step 17: |f there are no more rows left, go to step 18. Otherwise,
set k=k+1 and go to step 11;

Step 18: If PASS =1, set PASS = PASS + 1, PSACT = F and go to step 1.
Otherwise, if PSACT = T, set PASS = PASS +1, PSACT = F and

go to step 1. Otherwise, stop.
Now, we present the following numerical example to demonstrate our procedure:

Max 2 x1 + 3x2 - x3 -xh

s.t.
Xy X, +x3-2 Xy Loy
"Xy T Xt Xg= Xy {1
X tox, {3
2 X + x3-2xh {1
0 ¢ xj { 10 for all j, and integers
Solution:
Pass 1:
Xy =3, x, =3
X(3) =0
X(4) =3
Constraint 2 redundant
Pass 2:
X(1) =0
x(2) =10

Stop

101

5.2 The implication of implementing Preprocessing Reduction Procedure

to '"Dynamic-Presolve"

Integer problems can be solved by the SCICONIC Package (an algorithmic
advanced Mathematical Programming Packagé), by calling the command "'GLOBAL',
and with the parameter ''PRESOLVE" a Dynamic-Presolve is performed on

eaﬁh sub-problem in the Branch-and-Bound search. It attempts to reduce

the discrepancy between the linear solution to each sub-problem and

the true optimum for which we are searcﬁing, and makes the current sub-problem
easier to solve by fixing continuous variables at their lower bounds

and tightening the bounds on the variables.

Unfortunately, the Dynamic-Presolve technique becomes less powerful

when a branching decision is made on a variable with negative coefficients
in many or all constraints. Implementing our preprocessing reduction
procedure within the Dynamic-Presolve technique on each sub=-problem,

could make the whole hybrid processing more powerful in making the current

sub=problem much easier to solve, and saving more work in Tess CPU time.

To show how our procedure, works and could improve the processing of

the Dynamic-Presolve technique, let us consider the following example:

Example:

Suppose at a certain subproblem the integer variables Xyr Xy and xé

with lower bounds zero and upper bounds 3, appear in the following constraints:
Ri: 2x1 + hxz - X3 {7

R2: =5x, + 2x, = X ¢ 1

2 3

and at some branch, we might make the branching decision Xy) 2.

102

Now as far as we know, Dynamic-Presolve technique is unsuccessful in
tightening the bounds of these-variabies, but our procedure may continue
the processing by fixing Xy to 3, tightening the upper bound of X, to 2,
then removing cohstrainttwo, making the current sub~problem much easier

to solve than implemented only the Dynamic-Presolve technique.

5.3 Reduction technigues for Special Order Sets.

Special OrderedSets (S0S) are sets of variables with an explicitly or
implicity given order and a specified additional condition. They were
introduced by Beale and Tomlin [1970], as a practical device for efficiently
handling special classes of non convex optimization problems by Branch-
and-Bound with LP relaxation and are now implemented in most commercial

codes for mathematical programming. There are two types:

Type 1 (S0S1 set}, where only one variable in the set can have a nonzero
value. If fhe variables xj are not 0-1, indicator 0-1 variables 81,...8n
are introduced and linked to the xj variables. Type 2 (S0S2 set), where
up to two adjacent variables in the set can have nonzero values. The
model is sligh;ly more complicated, and the problem can be subdiQided
into two sub-problems by choosing a suitable value of j, say r, in a
suitable refgrence row. So in S051 3 in one branch 8j=0 for all.j)or
and in the other Bj = 0 for all j { r, while $052: either 8j= 0 for

all j) r, or Sj =0 for all j ¢ r.

The strategy of fixing several variables to zero simultaneously is one
reason for the success of the special ordered set (S0S) branching rule
(see Beale and Tomlin [1970], Forrest et.al.[1974], Gauthier and Ribiere

[1977] and Tomlin [1970])on integer programs with multiple choice constraints.

103

{n fact, in implementing Branch-and-Bound strategies for S0S in commercial
codes for MP, the members of an 505 must form a monotonic ascending
or descending sequence which is defined by weights w_i and maintained
throughout the whole branching process. Otherwise, there is no suitable
~ way developed to determine the branching point. Determining an average
weighf wi

- o o .

w =L W xj/Z X; ... (5.3.1)

where x° are the values of the set variables in the optimal sclution

of the LP relaxation, the branching point r is then defined either by

W L wl Wepp OF Wo 4 (w W,

We present some techniques to identify which variables of an 505 set
could have zero values or nonzero values, in order to reduce the sub-problem,

even if the S0S set does not have a suitable reference row.

Suppose (x],....,xn) is an S0S set, and they are a part of the problem,

appearing in the following constraints:

a.,. x, + Za,, x, { b, e .3.2

%117 ij 7= ‘ (5.3.2)
J€P - j€éN

where P and N are the index set of coefficients with positive and negative

values, respectively.

The following tests may be used to reduce the S0S set in a sub-problem:
(1) 1f+3
u
3) (bi/xj) ...(5.3.3)
then xj = o0 in every feasible solution at S0S1 set.
(1) 1f 3 a unique j 3

i ((bi(x;)' ' . vo (5.3.4)

104

then:

{a) - X; = x? in every feasible solution at SOS1 set.

{b) - xj will take a nonzero value qxu (q¢1) in every feasible solution,

and eijther xj~1 or xj;; could take a nonzero value (l-q)xu at

$0S2. Moreover, if all variables are integers, one may use conditions -

and x. at thelr values.

(5.1.2-3) to fix X 41

1
Now,we present the following examples to demonstrate our tests:
Example (1):

Suppose'(xt,xz,xB,xh) are S051 and form a part qf the problem,
aﬁd appear in the following constraint: '

X=2x%, + 2x3-xh {-3

1
with bounds of 2.
Implementing our tests may fix Xy= X3 = Xy =0 and Xy = 2,
Ekample_(z)i

Suppose (x1,xz,x3,xk) are S052 and form a part of the problem,
and'appear in the following constraint:
bx, = 2x, + x

1 2 3

with bounds of 2, and all are integers.

+X.|+$'1

Implementing our tests may fix X; =X, =0 and Xys X3 to nonzero values,
Note: It was not possible to test all the procedures of this Chapter

within the Sciconic computer code because the modular capabiiity of

the LP code does not extend to the Branch and Bound part.

105

CHAPTER VI

 Programming the Methods and Experimental Results

Some of the size-reduction techniques presented in chapter |1} and all
the extendedmethods presented in chapters IV and V have been programmed

and tested on the Prime Computer System at Loughborough University.

In this chapter, we present some Important basic techniques in programming
the size-reductlon techniques. The structural tested problems, the results
and discussion of the results will be the subject of the remainder of this

~chapter.

6.1 Programming the Methods

The FORTRAN 66 computer language was used for programming the methods,

‘following advice from staff at SCICON Computer Services Ltd.

The SCICONIC package is an algorithmically advanced Mathematical Programming
Package developed by SCICON. 1its purpose i5 to provide the mathematical
programmer with a convenient and cost-effective way to.solve linear, Integer
~and non-linear programming problems. In particular SCICON developed SATL
Sciconlc Algorithmic Tools library) which allows the user to assemﬁle

modules of SCICONIC to his own specification.

We built programs in the form of a sub-routine called "'SUBROUTINE USER'
which was loaded into a space already degignated for a trivial subroutine
called "USER" in-the package. Then we applied this subroutine as a
preproceésor after loading and converting the input daﬁa file, and before

executing the main LP algorithm (for more details see appendices).

106

Sciconic stores non-zero elements of the data matrix in column order.

All the non-zero matrix column elements are stored in an element pool
"array POOL'" (the element pool is based on an idea of Kalan (1977}).
which only contains unique values; individual matrix elements may be
accessed from the pool via the arrays of pointers. This enables the input
data to be stored in a very compact form, taking the maximum advanfage §f
matrix sparsity and any non-uniqueness of the matrix elements. Matrix
entries are accessed from the POOL by two parallel arrays, the entrles
within which are stored by columns., |f the column has a cost row and/or

an upper bound, then there is an additional entry in the paréllel arrays.

For certain manipulations, In some tests {such as singleton row ''Williams'
procedure'', the number of non-zero elements and their signs in each row
"sign tests' and in order to perform the palrwise comparison columns "Holm
and Klein 's method").it is convenient to have the elements easiiy accessible
in row order as well as in column order. Therefore, some additional storage
arrays were created. to store the elements of the matrix In a different way.
Th-is would letus build the programs using one dimensional arrays instead of
using two dimensional arrays as some problems occured in the storage methods
with the two dimens}onal arrays. The one dimensional arrays are packed

to save as much space as possible.

We can explain how we managed to store the matrix in one dimensional arrays,

by considering the following example.

107

Max. X, * 2x, + th + 10x, + Xg
s. t.
R1 Xp+ %y + X3 + Xy, + x5
R2 Zx1 tox
R3 X, + X3 +
Rh | 2%, + hx3 + x5
R5 ' 8x3 X,

= 2%
= 10
< 5
2 5
< 10

Let there be three arrays ROWELL '"real', IROWNO "integer' and I|ROWMK

Minteger'. IROWMK has a dimension of 512, the other two have dimensions

of 8192 (equivalent to 16 x 512). IROWNDO is created as follows:

IROWNO (1) tell us how many non-zero elements are

IROWNO (2), (3), tell us the columns in which the

IROWNO (1) = 5, 'ROWNO (2) = 1, IROWNO

IROWNO (5) = 4, IROWNO (6)

5.

The next item.in IROWNO namely IROWNO (7) tells us
occur in R2 and JROWNG (8), (9), ... tell us where

then repeats for R3, R4 and RS.

in RI1,

pon-zeros occur. So

(3) -12, IROWNO (4) = 3,

how many non-zeros

they ‘are. The procedure

Tha actual values of coefficients are now stored in the corresponding

* positions of array ROWELL:

108

R1: ROWELL (2) = 1.0, ROWELL (3) = 1.0, ROWELL (4) = 1.0,

ROWELL (5) 1.0, ROWELL (6) = 1.0

R2: ROWELL (8) = 2.0, ROWELL (9) = 1.0

R3: ROWELL (11}

1.0, ROWELL (12) 1.0

1.0, ROWELL (13)

Rk: ROWELL (15) 2.0, ROWELL (16) = 4.0, RowELL (a7

1.0

1.0.

R5: ROWELL (19) 8.0, ROWELL (20)
ROWELL (1), (7), (10), {(14) and {18) are not used {but could be set to

indicate 1, 0, = 1 for <, z,> If required).

The third array IROWMK tell us where the set of information in one row
actually begins in IROWNO. Hence IROWMK(1) = 1, IROWMK(Z) = 7, IROWMK(3) = 10,

IROWMK(4) = 14 and IROWMK(5) = 18.

For certain other purposes it is also convenient to store the columns_df
data in a similar way to ald testing. Agajn.we have three arrays {COLNO,
ICOLMK and COLELL which perform similar roles for columns as the IROWNO,
-IROVMK nad ROWELL performedh(repsectively) for rows. However, these fit

-in more naturally with exis%ing SCICONIC storage. They are set as follows:

ICOLNO(1)

3, ICOLNO{2) = 1, ICOLNO(3) = 2, ICOLNO(4) = 4
1COLNO(5)

2, ICOLNO{6} = 1, ICOLNO(7) =3
ICOLNO(8) = 4, 1COLNO(9} = 1, ICOLNO(10) = 3, ICOLNO(11) = &4

ICOLNO{(12) = 5

109

ICOLNO(13) = 3, 1COLNO(14) 1, ICOLNO(15) =2, ICOLNO(16) =5

ICOLNO(17) = &4, ICOLNO(TB) 1, ICOLNO(19) = 3, ICOLNO(20) = 4, I1COLNO(21) = 5.

ICOLMK(1) = 1, ICOLMK(2) = 5, ICOLMK(3) = 8, ICOLMK(%4) = 13, |c0LMK(5) = 17.

COLELL(2) = 1.0, COLELL(3) = 2.0, COLELL(4) = 2.0

COLELL(6) = 1.0, COLELL(7)

1.0,

COLELL(9) = 1.0, COLELL(i0)= 1.0, COLELL(11) = 4.0, COLELL(12) = 8.0

COLELL{14) = 1.0, COLELL{15) = 1.0, COLELL(16) = 2.0

COLELL(18) = 1.0, COLELL(19) = 1.0, COLELL(20) = 1.0, COLELL(21) = 5.0.

An imporctant point.should be noticed that, when we make a deletion or any

change we must update both types of stored data.

Now, we discuss how simplex operatiﬁns interact with this type of storage
in our programs. Ifrwe look at the row storage, we can find pivot elements
etc. and start the simplex operations. There might be a problem when we
update coefficients as often a zero becomes non-zero and wi]i need to.be
stored. In fact this Is straightforward because the trick is that [ROWMK
tells us where row data starts and we can move around these values.
Obviously, we need a duplicate copy of [ROWMK, IROWNO, ROWELL calling them

JROWMK, JRWONO, ROWELJ for tableau 2.

Let row 3 be first pivot row, we set JRWOMK(3) = 1, then adjusf the elements
of row 3, store them In positions 2,3,4 ... and set up JROWNO, ROWELJ. Now
we update another row eg. row 1, row 2, etc. We now proceed towards a

feasible solution or perturbation method or whatever is required.

110 | :

When performing simplex we might wish to update part of the column arrays
so that we can find pivot points more easlily. But the column arrays can

always be created from the row arrays if necessary.

Uith-the above way an efficient method of .storage and carrying out of all

tests is achieved.
Now, two important points have to be mentioned:

In programming the methods, care was taken to minimize the effects of the
round-off errors on the results of some methods (eg. the simplex pivot,
classifiying some redundant consfraintsas non-redundant). We solved the
above problem by considering any number with én absolute value less than

. -8
or equal to the relative zero 10 ~ as zero.

As most of the methods required an initial basic feasible solution, and
some difficulties arise in getting it due to the techniques used by SCICONIC
package, we considered the linear programming problems as being re-expressed

with constraints of type "<,

In order to understand the specifics such as memory space requirements

and the order of operations, we now present four miscellaneous points of

the programming process used for some methods.

(a) In sign testé (Extended sign tests, Hybrid, Reduce and extended Reduce
and extended reduce methods), we stopped the given test before the
entire row or column was scanned. For example, we stopped the process
of test two as soon as a second negative entry was found. The minimum

quotient to perform a simplex pivot as well as updating the tableau

were written in the program. Cycling problems could occur, but
our problems do not generally contain such cases. Consequently,
we did not Implement a chéck for identifying such cases. The
compufational effort for this process is negligible and does not

affect the results reported in this chapter.

(b) in the.extended reduce method we propose to stop the tests if the
amount of the identification is less than IO%IQF the number of rows

and columns during the pass (unless on the first pass).

(c) In Williams' and extended Williams procedures we utilised the
lower bounds of shadow prices at zero, and at some sufficliently
.positive large real number for the upper bounds of the shadow
prices. The bounds on the prihql variables were also initialised
at zero or at some sufficiently large real number if they had not

heen set already in the problem file.

(d) As the extended Williams procédure and preprocessing reduction
procedure. for Integer problemsrimplemenfs Kléin and Holms' tests
in which the pairwise comparisons between rows and columns are.
performed, we order the cost coefficents and the right-hand side
values before starting the test proceésing and only the values of
the right-hand side are re-ordered if there is any change in.their
values during the preprocessing reduction procedure. While, in
programmiﬁg the pairwise comparisons between columns the original
cost coefficients are stored in ascending 6rdeE, and the updated

cost coefficients are not used in this pairwise test. Also, theﬁﬂﬁumns

chosen in the comparisons should not have any non-zero elements corresponding
to "redundant'' constraints with non-zero shadow prices which are removed

from the problem.

6.2 Performance of Method

Karwan et al. reported computational tests on most of the common size
reduction techniques (the methods of Zionts and Wallenius, Telgen, Gal,
Rubin, Boneh and Golan, Mattheiss, Holm and Klein, Williams, Thompson and
Sethi as well as Lotfi's Improvements, ie.Extended Sign tests, Hybrid and
Reduce methods) in a comprehensive experiment to determine the relative

performance of the various tests.

As our objective study is to ascertafn how successfully, size-reduction
techniques could be implemented in mathematical programming packages, and

te avoid any repetition of thé results of the performaﬁce of the methods,

we concentrated our experiments onthe methods which we extended (ie. Reduce
method and Williams' procedure). These are desﬁribed in detail In the tables
of results later In this chapter. However, Boneh and Golan's, Holm: and
Klein's, Extended sign tests and Hybrid methods are discussed briefly in this
chapfer. The performance of these methods Is also discussed in more detail

in Karwan et al. (1983).

In order to evaluate the performance of the methods, items such as the
relative time, number of iterations, thé stfucture of the tesfed problem

in hand, size, degeneracy and other factors, if known, were noted. A comparison
in terms of CPU time was made to solve the tested problems with and without

the reduction methods implemented.

117

A number of problems used were obtained from different sources and most
6f them have been modified after changing ">" and "='' to "<'" in order to
ensure the problem still has a feasible all-slack selution. The
characteristics of these problems are presented in table 6.1 for testing
ail reduction methods except the pre-processing reduction procédure for
integer problemsfor which the characteristics of the tested problems are

presented in table 6.6.

Characteristics of the tested problems

Problem Dimension | No of non-zero | Starting No. of CPU time {*%) .Source
No. Row Column | elements Percent Simplex (sec}
Degenerate (%) lterations
1 20 30 76 0 _ 24 2.0 _ Farm Planning. Williams, N (1967)
2 27 48 169 0 21 h.o Production Planning. Williams, N
_ (1967) |
3 17 40 1 191 0 5 3.1 Mixing Problem. Williams, N (1967)
4 45 37 140 40 12 3.3 Tischer, H. J (1968)
5 30 L4 139 - 0 21 4.8 AHMED, A. N (1977)
6 35 50 136 14 25 4.8 SCICON Ltd, Company
k46 63 217 0 26 4.8 AHMED, A. N (1977)
i 59 79 281 13 60 10.0 Brunel University. Private
Communication.
9 40 9 9h1 0 . 14 6.0 Chvatal, vV (1984)
10 21 115 900 0 8 5.8 0i1 Company
11 56 125 416 ' 0 ' 36 17.8 Brunel University. Private
. Comminication
12 64 133 415 0 ' 12 6.8 London School of Economics.
: Private Communication

(*%)

side" vector entries that are zero.

Average CPU time to get an optimal solution by a series of runs is considered to take into account variations In

timing caused by the business of the Prime Computer System

Problem Dimens ion ‘No of non-zero- Starting No. of CPU time (**)' Source
No. Row Column elements Percent Simplex {sec)
Degenerate (*) [lterations

13 90 137 463 0 13 7.0 0i1 Company

14 100 130 380 55 20 8.8 Brunel University. Private
Communication

15 100 140 47 0 25 7.3 SCICON Ltd, Company

16 140 180 890 0 27 22.0 SCICON Ltd, Company

17 180 249 830 60 108 35.0 Brunel University. Private

O Communication

18 200 290 1010 65 161 s, 0 Brunel University. Private
Communication

19 230 300 1070 27 158 57.0 Brunel University. Private
Communication

Mean 78.95 120.21 477.47 14.42 40.84 13.44

(*) The starting percent degenerate, a measure of a probléms' degeneracy, is the percentage of'starting "Right~hand

6.2.1 Boneh and Gelan's method

As mentioned earlier, this method attempts to identify the pon-redundant
constraints and labels the remalning unidentified constraints as

redundant (possibly with some errors). The method, as originally suggested
by Boneh, would.stop after a certaln number of iterations. The results |
show that more than 90% of the non-negativity constraints and more than

70% of the structural constraints are identified as non-redundant. The
method did very well in identifying alhost all the non-redundant constraints
especlally in terms of computation time, since it did not réquire any

simplex pivots.

The existence of extraneous variables in the problems affects the results
by classifying some redundant conﬁtraints as non-redundant. This occured
because of perturbing the problem where extraneousrvariablés could have
small positive values inan interior feasible point. Also, the above
results cén arise when the direction from the interior feasible point

to all constraints is along one of the extraneous variables.

Also, as we mentioned.above most of the non-negativity constraints are
labelled as non-redundant, and that tells us very little about their

variables since their values may turn out to be equal to zero or not.

We believe that such a method with its design and purpose is not useful

for implementation in mathematical programming packages as a size-reduction
technique. Therefore, we modified this method and implemented it in our
extended reduce method to identify redundant constraints instead of non-

redundant constraints, which becomes more helpful.

117

6.2.2 Klein and Holm's method

This method attempted to identify extraneous variables and non~binding
constraints by consecutive pairwise comparisons of columns and rows. As
the tested problems-were different from the ones in the other methods in
that they all had non-negative A matrix for this method, consequently we
could not solve all the tested problems presented in table 6.1, using

this method.

The efficiency of this method depends on the rate of degeneracy and the
number of variables with nonfﬁositive cost coefficients. First, because
of the non-negativity condition on the A matrix, any variable with a
negative cost coefficient is extraneous; Secondly, in the non-negative
constraints with a zero right-hand side, every positive entry corresponds
to an extraneous variable. These variables and constraints may be
dropped immediately, and therefore lower average execution times apply.
The results show that this method is not efficient in terms of size reduction
rate and the computation time used, and that is due to the weakness in
tightening the bounds on both primal and dual. Therefore, we believe
this method is not helpful to be implemented alone as a reduction method
in mathematicél‘programming'packages.. We combined their tests in our
improvements methods, within which they_becbme more helpful in their
reductions (see extended Williams procedure, chapter 4 and preprocaséing

reduction procedure for {nteger probléms, chapter 5).

6.2.3 Extended Sign Test Method

As we mentioned earlier the extended sign test method Is an improved

version of the sign test (Zionts and Wallenius, Telgen, Gal and Rubin)

methods. A full comparative efficiency of each test and the extended sign

method is reported in Karwan _E;gl. (1983).

The results show that test three Is not performed well in both degenerate

and non-degenerate problems, In terms of nuumber of identifications. Although,
test four performed very well in identifylng a large number of the non-negativity
constraints as non-redundant, it is not helpful for reducing the ﬁroblem

size, as we mentioned before regarding Boneh and Golan's method. The

performance of test five is efficient in terms of number of identifications.

‘The method identified more than 70% of the non-redundant constraints but not
more than 40% of the redundant constralnts in the early iterations (an
iteration Is a. series of tests between two pivots of the simplex algorithm).
The method becomes less powerful as the number of iterations increases,
since the number of unsuccessful iterations (an iteration which didn't
identify any constrainfs at its tests) increases and therefore more wasteful

execution time is used.

6.2.4 Hybrid Method

This method is an improvement on the sign test methods, and consists of
two parts. In the first part, one iteration is performed using the co-
ordinate direction method to identify some non-redundant constraints. In
the second part, the E.S.T. method is used to determine the status

of the remaining constraints.

The results show that the performance of this method is better than the
extended sign test method in terms of the execution times. The efficiency

of the method is due to the power of the first part which identified more than

119

65% of the total constraints at an average execution time about 10%

of the total testing time. However, in the second part of the method

the number of iterations is less than the number of iterations performed
in the extended sign tests method. The unsuccessful iterations and the
method §f identifying redundant constraints in the Hybrid method have the

same characteristics as in the extended sign test method.

6.2.5 Reduce Method

The Reduce method reduces the prob]eh size (when possible} while solving the
problem., The reductions are achieved by identifying redundant as well as
non-binding constraints and extraneous variables. The results of this

method are presented in table 6.2

As can Ee seen from table 6;2, the size reduction rénges between zero
(problem 9) and 99% (problem 17) and the overall size reduction is 58.21%.
The times range.between -14% ile. 14% more execution time used (problem 13)
and 90% (problem 17) and the overall reduction is 34.53% (about 51. less
than in the simplex methods). The reasons which affect the success of the
reduce method are the extra execution time due to repeating the processing
of the tests (steps 2 - 6) with no more identifications, the unhelpful

tests (step 4 and step 6), and more unhelpfulniterationé (the iteration with
fewer number of identification, comparing with the size of the reduced
problem). Also, the number of iterations of the reduced problem is about
15% lower., Finally, the structure of the problemsat hand have greatly

affected the results of the reduce method.

120

Table 6.2

Results of the Reduce Method

obtem | Dimension 'Size (mxn) % Size Reduction
Row Column Actual Reduced -
(20x30) 17 23 600 391 35
(27x48) 17 25 1296 425 67
(17xk0) 17 680 238 65
(45x37) 17 14 1665 238 86
(30x44) z 29 25 1320 1015 23
(35x50) % 24 29 1750 - 696 . 60
(46x63) 8 35 2898 1330 54
(59x79) N b2 h661 2058 56
(40x9h) BN UIY 3760 3760 0
(21x115) Y 32 2415 672 72
(56x125) i 20 40 7000 800 89
(6lix133) 59 106 8512 6254 27
(90x137) % 89 126 12330 11214 . 10
(100x130) _ 48 13000 2352 82
(100x140) 33 30 14000 990 93
(140x180) 123 137 25200 16851 33
(180x249) 29 16 © 4us20 46k | 99
(200x290) | 175 68 58000 11900 79
(230x300) 130 128 69000 16640 76
no 51.37 54.32 14363.53 4120.42 | 58.21

121

Table 6.2 (continued)

G ~ Gy w1 W

. Mean

Problem Iterations Time (sec) % Time Reduction
Testing Total '
1 (20x30) 17 0.727 1.227 39
2 (27x48) 19 0.860 2.4 Lo
(17x40) 5 1.0 2.2 28
(45x37) 8 1.0 1.95 s
(30x4b4) 19 0.9 3.3 30
(35x50) 24 0.9 3.75 20
(46x63) 21 1.3 3.6 23
(59x79} 40 1.3 5.0 50
9 (40x9k) 14 0,25 6.25 -6
10 (21x115) 5 1.3 4.0 32
11 (56x125) 36 2.7 10.5 41
12 (64x133) 12 1.5 6.5 4
13 (90x137) 13 1.4 8.0 14
14 (100x130) 17 1.7 5.6 37
15 (100x140) 14 2.0 3.4 51
16 (140x180) 25 1.5 15.75 29
17 (180x249) 20 2.2 3.7 90
18 (200x290) % 70 2.4 15.75 59
19 (230x300) % 90 3.75 21.9 62
! 24.37 1.51 6.57 34.53

122

6.2.6 Williams' Procedure

Williams' procedure attempts to reduce the size of the problem by
removing extraneous variables and non-binding constraints. Moreover,
singleton rows and columns are replaced by primal and dual variable bounds,

respectively. The results of Williams' procedure are summarised in table

6.3.

As can be seen the pfocedure reduces the size of the problems to about -~ -
49,.31%. The overal1 average execution time reduction is 25,78%, with
an average of 9.1 seconds (about 33% less than in simplex methods). The
average number of iterations for all the problems is 27.0 (about 34% -

less than in simplex methods) .

The guccess of Williams' procedure depends on the extent of tightening of
the bounds on the dual variables and the structure of the problems, such

as degeneracy (on the optimality) and redundancy. Also the number of
variables which have been fixed are non-zero values (problems 4, 11 and 15)
affects the number of iterations and consequently the execution time. Also
it should be noted that the average reducing time is 0.75 seconds which is
about 50% less thati the reducing time in the Reduce method {an-average

ofrl;S. second)
Finally, the performance of Williams' procedure could be better with

- problems of mixed types of constraints (ie._i, = and_i) where more and

. better bounds are tightened on both prlmal and dual variables.

123

Table 6.3

Results of Williams' Procedure

£ W

Problem * Dimension. Size (mxn) % Size Reduction
~ Row Column ¢ Actual Reduced
1 (20x30) 20 21 600 420 30
2 (27x40) 17 34 1296 578 55
(17x40) 6 26 680 156 77
(45x37) 37 22 1665 814 51
5 (30x44) 15 31 1320 4és 65
6 (35x50) 22 29 1750 638 64
7 (46x63) 19 b 2898 83 7
8 (59x70) 30 62 4661 1860 60
9 (40x9k) a8 94 3760 2632 30
10 (21x115) 21 115 2415 2515 0
11 (56x125) (¥) - - 7000 o 100
12 (64x133) 64 133 8512 8512 0
13 (90x137) 89 126 12330 11214 | 9
14 (100x130) 20 105 13000 2100 84
15 (100x140) 26 23 14000 598 _ 96
16 (140x180) 100 148 25200 14800 1
17 (180x249) 134 221 44820 29614 34
18 (200x290) 170 262 58000 44540 23
19 (230x300) 152 265 63000 40280 42
Mean 51.05 92.69 14363.53 8551.16 49.31

(#) Problem is solved during the reduction procedure.

124

Table 6.3 (continued)

Problem iterations Time (sec) % Time Reduction

Reducing Total

—

(20x30) 15 0.4 1.55 23
2 (27x48) 17 0.4 2.3 43
3 (17x40) 5 0.4 2.8 10
b (45x37) 5 0.4 2.6 20
a 5 (30xhk4) 15 . 0.4 3.0 38
6 (35x50) 20 0,4 3.5 25
7 (46x63) 20 0.5 3.6 22
8 (59x79) 40 0.5 5.3 47
9 (40x9h) 14 0.5 6.75 -10
10 (21x115) 8 0.8 6.55 -13
11 (56x125) (*) 0 1.15 1.15 94
12 (64x133) 12 0.6 7.4 -9
13 (90x137) 13 0.7 7.2 -3
14 (100x130) 16 0.7 6.5 27
15 {100x140) 9 0.8 2.5 66
16 {140x180) 25 1.2 17.5 20
17 (180x249) 80 1.3 29.0 17
18 (200x290) 100 1.5 32.0 29
19 (230x300) 100 1.7 32.0 44
Mean 27.0 0.75 9.10 25.78

(*) Problem is solved during reduction procedure

125

6.2.7 Extended Reduce Method

The extended reduce method reduces the problem size (when possible) while
solving the problem and this is achieved by removing redundant as well as
non=binding constraints and extraneous variables. This method is an
improvement on the earlier Reduce method made by not considering some
unsuccessful tests and implementing a modified version of the co-ordinate
direction method at certain steps if necessary to identify redundant

constraints.

Table 6.4 presents the results of the éx;ended reduce method. As can be
seen from table 6.4, the overall average size reduction is 56% which is
about the same as the reduce method achieved, and that is due to
performing less Iterations during processing than the Reduce method. The
extended reduce method attempts to minimisé the number of unhelpful iterations
r(defined in section 6.2.4) by terminating the processing tests after one
unhelpful iteration. Step six (modified co-ordinate direction method) is
helpful in identifying more redundant constraints (If possible) at earlier
iterations than in the Reduce method. Also, this step depends on the
structure of the préblem, since such redundant constfaints exist only when
the plvot ratio Is not unique (problems 13, 18 and 19). Removing such
redundant constraints at early iterations could.lead us fo identify more

P

extraneous variables (problem. 19) earlier than in the Reduce method.

An important consequence of the extraneous variables and non-binding
constraints is the decrease in the number of simplex iterations. This
may be explaihed by comparing the results of thg extended reduce method
~ with those of the simplex method (table 6.1}, As can be seen from these
tables, in the problems with lower reductions {(problems 1 and 9), the

numbers of iterations are the same or only slightly different. On the

126

other hand, in problems wlth,higher.reductions (problems 17, 18 and is)

large differences are found in the number of terations between the extended
reduce method and the simplex method. However, the number of iterations overal
for the problem islabout 50% (averaging 23.90) less than that of the simplex
methods (évefaging 40.84). The reason that the extended reduce method has

fewer iterations is the elimination. of more extraneous varlables.

Minimising the number of unhelpful iterations during the tests hay avoild
extra wasteful execution time by nét repeating the tests for more than

one pass at each itération, and not considering steps 4 and 6 of the

Reduce method in our extended reduce method. Also step 6 is success?ul_
(modified co~ordinate direction method) in identifying redundant constraints
(if they exist) and'achieving more eliminations of extraneous variables,
whth. consequently smaller numbers of iterations to be performed. The

total execution times to solve overall the problems has been reduced by
44.42%. The overall average reducing processing time Is 0.52 seconds
(about 67% less than in reduce method). The overall average total execution
time is 5.74 seconds (about 13% less than in the reduce method and 57% less

than Innthe simplex methods.

127

Table 6.4

Results of the Extended Reduce Method

Problem Dimension Size (mxn) % Size Reduction
Row Column Actual Reduced
1 (20x30) 17 23 600 391 35
2 {27xh8) 17 25 1296 425 67
3 (17xk0) 17 14 680 238 65
b (45x37) by 17 1665 748 55
5 (30x44) 29 35 1320 1015 23
6 (35x50) 25 29 1750 725 59
7 (46x63) 44 40 2898 1260 39
8 (59x79) 49 43 4661 2107 55
9.(40x9h) - 40 9 3760 .3760 0
10 (21x115) 21 32 25 672 72
11 (56x125) 53 50 7000 2650 62
12 (64x133) 60 90 8512 5400 37
13 (90x137) 69 126 12330 8964 29
14 (100x130) 51 48 13000 2448 81
15 {100x140) 33 33 14000 1089 92
16 (140x180) 123 137 25200 16851 33
17 (180x249) 29 16 44820 Leh 99
18 (200x290) 120 68 58000 8160 86
19 (230x300) 11 131 63000 14541 I
Mean 50.11 55.32 14363.53 3782.53 56.21

128

Table 6.4 continued

Problem Iterations Time (sec) % Time Reduction
Testing Total

(20x30) 17 0.3 1.1 45

|
2 (27x48) 19 b s 7

3 (17xb0) : 5 0.4 1.8 42

4 (45x37) 9 0.15 1.8 - b6

5 (30x4k) 19 - 0.25 2.45 50

5 (35x50) 24 0.3 3.2 34

7 (46x63) | 22 0.4 3.0 38

B (59x79) 40 0.35 4.5 55

3 (4oxah) 14 0.15 6.15 -2

10 (21x115) 5 - 0.35 3.4 42

11 (56x125) 36 0.45 9.0 49

12 (64x133) 12 0.45 6.0 12

13 (90x137) 13 0.5 7.4 -5

14 (100x130) 17 0.5 5.0 Ly

15 (100x140) 14 1.0 2.7 63

16 (140x180) 25 0.75 15.5 30

17 (180x249) 16 1.0 3.0 : 92

18 (200x230) 65 1.15 14,0 69

19 (230x300) 82 1.1 18.0 69
Mean | 23.90 0.52 5.74 Lk b2

129

6.2.8 Extended Williams Procedure

As we mentioned before this procedure is a new version of Williams'
procedure by combining the test of Klein and Holm (1975} to identify

extraneous variables. .

The results of this proéedure are presented in table 6.5. As can be

seen from table 6.5, the overall average size reduction is 74.47% which

is about 25% more than Williams' procedure reduced. Spécif!cally, as

can be seen from table 6.3, Wiiliams' procedure had 0% size reduction

on problems 10 and 12. On the other hand, the extended Williams'

procedure reduced the size problems 10 and 12 by 72% and 37% respectively.
The resulﬁs from these two problems explalin many reasons such as the
difference in size reductions between the two procedures. Willjams'
procedure fails to tighten any bounds dn the dqal variables and only

bounds on the primal variables have been tightened, with fewer redundant
constraints being removed. While the extended procedure {on these problems
10 and 12) identified more extraneous variables and more ''redundant'
constraints have been removed consequently, some bounds on the dual variables
have been tightened in the successive passes, giving the whole procedure

more strength in fixing more variables.

To discuss the performance of extended Williams' procedure in terms of.
the execution time, Table 6.5 shows that the overall average execution
time reduction is 54% (about 28% more than wflliams'procedure).‘ The
aQerage number. of iterations over all fhe problems is 18.27 (about 8.33%
less than in Williams' procedure). The average of the total execution
is 5.5 seconds (about 40% less than in Williams' procedure and 60% less

than in simplex methods) .

130

The success of the extended Williams procedure over Williams'

procedure, as the results show is due to the size reduction, the number
of iterations and the amount of the execution time used in reducing the
problems, It is quite clear that more size reduétion achieved may |
result in less execution time to solve the reduced problems (problems

4 and 11 have been reduced and solved during the procedure). However,
the number of iterafions s affected by the number of variables {extraneous
and non-extraneous) which have been removed from the problems (problems

5 and 16). Consequently, such effects on the number of iterations will
lower the execution time to solve the reduced problems. However, the
amount of execution time used in reducing the problems is not affected

by the computation times used in the pairwise comparisons between
columns. The average amount of such execution times by the extended
Williams'procedure is 6% and 5% by Williams' procadufe of the average
amount of the execution time by the simplex methods, and that is due

to programming and designing such pairwise comparisons in a way to avoid
wasted execution time. Also, the phase is terminated after one |
unsuccessful pass, and paft two is.not to be performed if neither any
singleton columns nor ''redundant'' constraints with non-zero shadow

prices havé.been removed. Finally, the structure of the problems may

affect both Williams' and extended Williams' procedure.

131

Table 6.5

Results of the Extended Williams Procedure

Problem ' Dimension Size {(mxn) % Size Reduction
Row Column Actual Redu;ed
1 (20x30) 17 21 600 420 30
2 (27x48) 17 20 1296 340 74
3 (17x40) 6 23 680 138 80
b (45x37) (%) - - 1665 - 100
5 (30xhb) 13 12 1320 156 88
6 (35x50) 21 5 1750 105 94
7 (46x63) 19 21 2898 399 86
8 (59x79) 24 8 4661 192 96
9 (40x94) | 28 80 3760 2240 | 40
10 (21x115) 2 32 2415 672 72
11 (56x125) (%) - - 7000 - 100
12 (64x133) 60 190 8512 5400 37
13 {90x137) 89 126 12330 11214 9
14 (100x130) 20 65 13000 900 93
15 (100x140) '23 - 3 | 14000 299 98
16 (140x180) 84 35 25200 - 2940 88
1} (180x249) 133 il 44820 5852 87
18 (200x290) 118 160 58000 18880 67
19 (230x300) 126 130 69000 16380 76
Mean 48.37 - 5hs 14363.95 3591.95 74 .47

. (*) Problem is solved during:. reduction procedure

Table 6.5 (continued)

Problem . - Iterations Time (sec)
' Reducing Total

% Time Reduction

1 (20x30) 5 0.45 1.6 20
2 (27x48) - 7 | 0.50 2.1 ' 50
3 (17xb0) | 5 - 0.55 2.2 30
b (45x37) (%) 0 0.65 = . 0.65 !

5 (30xh4) on '_ 0.5 2.0 59
6 (35x50) 5 0.55 1.5 69
7 (46x63) | 13 0.60 1.55 68

8 (59x79) - 8 0.65 1.55 85 -
"9 (40x9k) B 14 ©0.70 5.75 5
10 (21x115) 5 0.75 2.5 57

o (sex1zs) (%) 0 | 1.0 1.0 %5
12 (6hx133) 12 - 0.75 6.0 12

13 (90x137) | 13 0,70 7.3 -2

14 (100x130) 17 0.75 5.5 38

15 (100x140) 8 | 0.85 1.8 76
- 16 (140x180) 9 - 1.3 2.8 88
17 (180x249) L N 10.0 7
18 (200x290) 65 ‘ 1.65 24,0 47

19 (230x300) 90 85 2h.0 58

Mean 18.27 0.85 5.5 54.0

_(*)‘- Problem is solved during the reduction procedure

133

6.2.9 Preprocessing Reduction Procedure for Integer Problems

This procedure reduces the size of integer problems (when possible) by
tightening the bounds on primal variables and constructing new formulae

to use only the primal bdunds to fix the variables at their bounds.
Extraneous variablesrand redundant constfalnts as well as non-binding .
constraints are remﬁved, where the test of Klein and Holm (condition 3.2.1.6)
is used to identify non-binding constraints. This reductiﬁn procedure

is implemented prior to solving the integer problems by the established

techniques.

The results of this reduction procedure are summarised in table 6,7. As

can be seen from this table, the overall average size reduction is 65.67%

and the overall average execution time is 50%. The performance of the

' procedure in terms of the size is dependent on the structure of the problems,
where tighter bounds on the primal variables required by the formulae

{(5.1.2 = 5.1.3) to fix integer variables at their bounds, and condition
(3.2.1.6) to identify non-binding constraints. However, the amount of

size reduction is affected by the performance of the reduction procedure

in terms of the execution times. The numbers of branches and iterations

have much effect on the total executlon times. The overall average of

the total execution times is 18.86 seconds (about 55% less than by the simplex
methods and Branch-and-Bound algorithms), Also, as can be seen from the table
6.7, in probiem 5, 62% of its size has been reduced, while 30% of its former
execution time has been reduced, and that is due to no change in the number

of branches and iterations. Also, the effectiveness of the number of brénches
and iterations may be seen from problem 9, where 41% of its size has been
reduced and 76% of its former execution time has been reduced and that is due
to the changes in the number of branches (about 78% less) and in the number

of iterations {about 74% less). Therefore, the reduction process will

134

result in problems which requlre fewer branches and iterations and

consequently much less execution time.

135

Table 6.6

Characteristics of Tested Integer Problems *

Prob]em Dimension No. of non-zero No, of No,of -CPU time
No. Row Column Elements Iterations Branches (sec)
1 9 19 78 17 43 7.5
2 15 11 88 34 37 7.0
3 13 20 70 30 13 4.2
Yy 19 20 87 11 3 2.20
_\'5 20 25 61 8 1 2.0
-6 27 28 96 7 5 2.9
7 20 4y 139 130 39 7.5
8 29 63 217 125 217 42.0
9 56 80 320 291 h83 123.5
19 89. 137 463 136 210 188.0
11 - 109 160 519 | 14 99 70.53
12 140 180 582 64 60 50.45
~ Mean 45.5 65.58 226.67 . 71.42 . 100.83 43.32

* These problems are modified versions of the problems in Table 6.1

136

Table 6.7

Results of Preprocessing Reduction Procedure

£ 0w N

" Problem - Dimension Size (mxn) % Size Reduction
' - Row Column Actual Reduced
U(ex19) 6 2 171 12 93
(15x11) 3 3 165 9 95
(13x20) o 8 260 88 66
(10x20) 11 7 380 77 | ‘80
5 (20x25) 10 19 500 190 Y
6 (27x28) 10 16 756 160 79
7 (20xkh) 17 25 880 425 . 52
8 (29x63) 1 20 1827 220 88
9 (56x80) 53 50 480 2650 4
10 (89x137) 88 109 12193 9592 2
11 (109x160) 62 136 17440 8432 52
12 (140x180) 110 1ho 25200 15400 59
Mean 32.67 4h.58 535h.33 3104.58 65.67

137

Table 6.7 (continued)

30.17 42.33 0.93 18.86

Problem No of . No of Time (sec) % Time Reduction
lterations Branches Reducing Total

1 (9x19) 3 5 0.5 3.0 60

2 (15x11) 9 9 0.7 3.0 57

3 (13x20) 8 2 0.8 1.65 61

4 (19x20 h 1 0.3 1.36 38

5 (20x25) 8 1 0.35 1.4 30

6 (27x28) 7 3 0.4 1.95 33

7 (20xkh) 16 9 0.5 4.0 47

8 (29x63) 64 87 0.80 18.0 57

9 {56x80) 76 108 C1.35 29.0 76
10 (89x137) 148 175 1.66 100 47

11 (109x160) 43 62 1.77 30.0 57

12 (140x180) 48 hé 2.0 32.0 37
. Mean 50.0

138

CHAPTER VI

Conclusions and Recommendations For Further Research

The principle objective of the research reported in this thesis was to ascertain
how successfully, éize-reduction techniques could be implemented in mathematical
programming packages. To achieve this goal, we selected.thé_most prdmising
size-reduction techniques studied them and tested some of them on some Linear
programming problems with different characteristics,obtained from different
sources. Consequently, we were able to determine the performance of these

techniques.

The test process enabled us to determine the most efficient size-reduction
techniques. During this process we determined some modifications for extensions

and improvements to these techniques.

The test process enabled us to determine the most efficient size-reduction
techniques. During this process we determined some modifications for extensions
and improvements to these techniques. The details of our extensions were
presentéd in Chapters 1V and V. We then tested these methods and compared

their results with the earlier ones. The resylts and thé discussion on all

techniques are presented in Chapter VI.

Now we present a summary of the conclusions made for the various techniques.
.) :

Also we discuss possible changes for future improvements and extensions.

7.1 Summary and Conclusions

Although Boneh and Golan's method did very well in terms of computation

time, their results indicated some error in the identifications.

139

Holm and Klein's method required problems with non-negative constraint coefficients
and right-hand side sectors. The results show that, thls method is not so

efficient In terms of size-reduction rates and computation times.

The extended sign tests and Hybrid methods performed equivalently, but their

results are not useful for our objective study.

The results of the Reduce method indicated that the success of this method

over the simplex depends on the structure of the problem.

However, the results of the extended reduce method are slightly different

frqm the Reduce method in terms of size reduction. The extended reduce method
is more successful over tHe Reduce method in terms of computation times.
Moreover, it was indicated that on the average, both methods have a faster

_Convergence rate than the simplex method.

t

However, the results of Williams' and the extended Williams procedures‘indicated
that tightening of better bounds on pr{mal and dual variables depends on
the structure of the problems, and affects the performance of reductions.
The extended Williams procedure showed consistent superiority over the Williams'

procedure in terms of size and time reductions.

The improvement called preprocessing reduction procedure for integer problems
attempted to reduce the size of integer problems using only the primal bounds,
‘prior to solving the problems by the established techniques. The results

indicate a reasonable success over the simplex and Branch-and-Bound techniques.

From the proceeding argeneral conclusion may be reached that implémenting
such weduction techniques in mathematical programming packages could be
desirable with large size problems rather than small problems from the economical

view,

140

7.2 Recommendtions for Future Research

In the previous sectién, we presented'the conclusions of some of the size-reduction
techniques studied in this thesis. In this section we present some ideas

which may result in further extensions and impro@ements to the existing methods.

We restrict our discussions to those methods which appear most useful in |

our objective study.

The Reduce and the Extended reduce method may be utilized in a number of
different ways. Among the most promising approaches is one in which a certain
number of tests are no longer employed when their efficiency falls below

a specified level. Of course, the level at which the test is discontinued

- must be determined empirically.

Another approach is to use these two methods for partial classification.
This may be achieved by terminating the methods after a certain number of
iterations. The number of iterations at which the processing stops is a

function of the problem size and should be determined through further investigations.

Also, anofher extension to these two methods consists of obtaining the maximum
possible reduction for a given problem. In that case, the Reduce and the

Extended reduce methods are used in a fashion similar to that of the Extended

sign test method. Namely, we attempt to minimize thg slack variable associated
with each constraint. However, we include ;he tests which identify the extraneous

variables and update the objective function at each iteration as well.

As in Thompson and Sethi's method the candidate constraints were those which
contained a pivot element in columns with potential variables for entering

into the basis.

LA

141

These constraints were updated at each iteration. The remaining constraints,
called non-candidate, were not updated with the hope that they would never

become violated. In fact, we may implement the tests which are used in Extended-
Reduce method to identify redundant constraints on the set of the non-candidate

constraints only,

Now, we discuss the possible improvements to Holm and Klein's method, Williams

and Extended Williams procedures.

Holm and Klein's method was restricted to the specially=structured problems
‘due to the Tack of bounds on variables in the other problems {those with

a general A matrix). However these bounds may be obtained in a fashion similar
to that of Williams' procedure. One may utilize the complementary slackness
theorem to obtain better bounds on all of the variables. That is, the optimal
objective function value may be wriften as

% %
CX =Whb

s

> * : ‘

where X and W are the values of the primal and dual variables at optimality.
Using the above relationship in conjunction with bounds on some variables

we may obtain bounds on the other variables. The above equality may be written

as an inequality in either direction (i.e., {,)) depending on the existing

bounds and the desired new bounds.

The above utilization may be implemented to improve the bounds in Williams'

and Extended Williams procedures.

Finally, another extension to Williams' procedure and Holm and Klein's method
~is to combine the methods with each other and utilize the above procedure

for obtaining better bounds as well.

142

In that case, after the bounds have been tightened Holm and Klein's method
may be used to remove some extraneous variables and nonbinding constraints.

Then, Williams' procedure is applied to the remaining constraints and variables
’ p pp

to reduce the problem further.

143

APPENDIX A

In this Appendix, some details of the necessary arrays used in the Sciconic
Algorithmic Tools Library (SATL) and the specification of the commands to

run the package are presented.

'SCICON1C/VM was désignedrto be implemented in a highly modular fashion, so

that extensions and enhancements could be easily incorporated. In order

to help the user to be able to create FORTRAN routines of his own employing

the primitiVes.of the SCICONIC/VR SATL, the user must have an understanding

of the design concepts behind SCICONIC/VM, in particular those behind SCICONIC/VM's

algorithmic routines.

The variables used by SCICONIC/VM may be accessed via their associated ACCESS

KEYS. The inclusion statement takes the form:

{ include keyword) (file name specification}
where (include keyword) is $INSERT (in Prime Computer System),
{filename SpeCifiCatTOﬂ) may well be filename. In almost all cases,

the filename for an entity with access key AAAAAA will be of the form PDPAAAAAA.

An example, suppose the array PARAMS is required in a routine. Then the

statement
$INSERT SCICON ¥ S) PDPPARAMS

should appear in the Source Code.

To describe the data structure created in core ready for an algorithmic routine

to access, first, some preliminary sizing definitions are given:

144

NROW

NSEQ

Now, we describe

The number of rows in the in-core matrix {including the

objective function row which Is row KPTOBJ)

The total number of vectors in the in-core matrix (i.e.

slacks, structural vectors and any range vectors (q.v.)

created).

some of the main necessary Arrays used in the SATL for the

access of matrix elements:

NAME
PGOL
BETA

MRKEY

MCKEY

MRWME

MPTME

MSMEL

MSKMEB

TYPE

real*8

integer®2

integer*2

integer*2

1

integer¥*h

integer#*2

ACCESS KEY

POOL

BETA

MRKEY

- MCKEY

MATRIX

H

i

USE

Pool of unique element values
Right~hand sides

Key information of variable
basic in this row.

Column key information.
Paratlel arrays, MRWME contéi:
row number whose element in

POOL is indexed by MPTME.

Start of column information

in MRWME/MPTME,

Skip value: 0 for rows
1 if no UB/Cost

2 if UB and/or Cos

The input for the simplest SCICONIC run can be considered as being made up

of two parts:

. Input Data: This contains the actual problem to be solved in coded form.

The data of the LP problem has to be input from the matrix fo coefficients.

145

The data must be Input to a file created by the editor and then the file
created is used by SCICONIC, In fact, we shall not discuss the details

of the input data in this Appendix.

Control Commands: Within this bart commands required to run the package
are made. Assuming we have a file of data and we wish to run the LP
problem. We start by accessing the package. We type.

SCICONIC
we get a prompt.of (these prompts continue throughout the run)
11
we type INFILE = 'MYDATA'

(MYDATA is the file in the UFD to which we are attached, gquotes are mandatory)

-and Tt prompts

21) .

and we type CONVERT

(thi§ command will load the input data from the data-file on the problem
file and it will focus on possible data errors), and it replies with
information and them prompts

n

we type SETUP (MAXIMISE/MINIMISE)

(this command will load the problem into core from the problem file)
and.it replies with information and then prompts

41

we typé PRIMAL

(it will try to salve the problem, printing out some information such

as number of iterations.... etc) and then prompt

146

5h)

we type PRINTSOLN

(1t wfll print out details of the solution). When complete we received

the prompt

6l)

we conclqde the Session with STOP

It replies #***STQP then OK.

To run an integer program, basically the same procedures are used as

for LP. The main exceptions are:-

(i} In the input data, each variable must be declared as integer and
specified under the bounds section.

(if) In the program commands, the PRIMAL fs followed by the command'GLOBAL.'
This performs the Branch-and-Bound algorithm until a solution is
reached (or the problem is declared infeasible}. Subsequent solutions

are found by repeating the GLOBAL command.

Now, if we widh to execute the 'SUBROUTINE USER' which the tests have been
built into, we type USER after the problem has been loaded into core by SETUP,

- and before we type PRIMAL or GLOBAL.

All the above commands will be shown by solving the problem in Appendix B.

147

APPENDIX B

In this Appendix, one tested problem is selected. Its original data

and computer results to get an optimal solution wifh and without reducing

the problem by Extended Williams procedure, are presented. Then the program
iistings-of the three main extended method§ (Extended Reduce method, Extended

Williams procedure and Preprocessing Reduction procedure) respectively, are

presented.

All computation work was carried out on the PRIME 400 Computer System at

Loughborough University of Technology.

148

1E QA4RTIZ

- ROOO1
- ROOOZ
- RODO3
. ROODO4
. RODOS
- RODOSY
. ROOO7
- ROGOZ
- ROOGOZ
- ROO10
- ROO11
. ROULZ
- ROOLZ
- ROO14
. ROO1S
- RQO14
- RO017
- ROO18
- RO0O19
- ROOZ0
ROOZ1
ROG22
ROOZ23
ROOZ24
ROOZS
ROD2A
ROOZTY
ROOZ28
ROGZP
ROOZ0
ROO31
ROOZ2
RO0OZ3
ROOZ4
L ROO3S
ROGIS
ROOZ7
ROQZS
ROO3?
RO040
RO0O41
ROO42
RO04Z
RO044
ROO4S
RO0456
ROGAT
ROO48
R0049
RGOS0
RODSL
ROOS32
RO0OS3
ROUSS
ROO55
RDOSS
0BJ

—

ryrrrer e rooeirrn

1

Z2rrrOrrrOrrrC e rrrrrr

149

JMNS
CO001
CO0GL
C0001
£0001
o001
£0001
£O001
coonz
o002
CO002
o002
o002
£o0n2
£O002
co00Z
CO003
CO003
£O003
CO003
CO003
CO003
COO03
0003
COO0%
Co004
CO004
CO004
TO004
C0004
£O004
CO004
CO004
Coo0s
CO00S
CO00%
co005
CO005
£o005
COOOS
CO00S
CO00b6
£O00s
CO004
CO00H
CO006
L0006
COOn6
CO004
CO0n7
Co007
o007
COGOT
CO007
CO007
CO007
CO007
CO007
COONs
Co00a

ROOO1
ROOOZ
ROCOS
ROOG7
ROOA4S
ROOS4
ROOSE
ROOOI
ROOO4
ROQOS
RQOO7
ROOO8
ROG49
ROOS4
RO0OS4
ROOO3
ROOO4
ROOOS
R0OO18
ROQ1Y
ROD4T
ROOS4
ROOS6
ROOGE
Roo04
ROOOS
ROOZ20
ROO21
ROOZZ
ROO4GT
RO0OS4
RO0NS4
ROODI
ROOO4
ROOGS
ROOZEL
ROOZ22
RCO4T
ROOS4
ROO54
ROOO7
ROGGAE
ROOL3
ROO14
ROQL1S
R0OO49
R0OO54
ROO546
ROO13Z
ROO14
R0OO15
ROOZ0
ROOZ1
ROQ22
ROO49
R(O0O54
RO0O54
ROGL3
ROO14

1, 000000

1, 000000
1,000000
1,000000
1,000000
0, 880000
0,880000
1,000000
1,000000
1, 000000
1, 000000
1,000000

1,000000
0,926687
0,926667
1, 000000
1,000000
1, 000000
1,000000
1, 000000
1,000000
0,743889
0,9488892
1, 000000
1,000000
1, 000000
1, 000000
1,000000
1, 000000
1,000000
1, 000000
1, 000000

1,000000
1,000000
1,000000
1.000000
0,748889
0,948889
1,000000
1, 000000
1,000000
1,0000G0
1,000000
1,000000
0,9271111
0,971111
1,000000
1.000000
1,000000
1, 000000
1, 000000
1.,000000
1,000000
1.044444
1,044444
1,0000Q0
1,000000

-00O08
c0008
CO008
CO008
COO0s
coo0a
COCO9
20009
COO09
Co009
Co0ae
© L0009
COo10
Co010
COoLo
COO10
£0010
Co010
o011
20011
- Coo1
Cooll
cocll
coo11
coo12
Co0iz2
Co012
coo12
L0012
con12
o013
coO3
CO013
Co013
£0013
CO013
0014
Co014
o014
Conla

C0014

Coo14
Co014
Co015
Coo1s
Co01s
Co015
Loo1s
0015
L0014
0014

. COO16

L0014
CO016
CO014
£0016
Coo17
cooL7
Coo17
£0017

ROQLS
ROOZ21
ROD22
ROOA49
ROOS4
ROGS6
ROO14
ROOL17
ROO3L
ROO32
ROOS1
ROGS5
ROOOS
ROO10
ROO1L
ROO12
ROO32
ROOS4E
ROOOS
ROOTA

ROGZE7 .

RDOZ8
ROGS2
ROOS6
ROOOS
ROQOF
ROG11
ROO12
RQOS2
ROOSH
ROOOS

© ROOO9

ROO37
ROO38
RrROOS2
ROOS&
ROOOS
ROCOT

TRGO3ZY

ROQ40
RQO41
ROOSZE
ROOSA
ROOODA
ROQO9
ROQ40
ROO41

_ ROO52

ROOS6
ROOLIO
ROO11
ROO2&
ROOZ27
ROGZ8
ROOS2
RO0OTS
ROOL10
ROO11
ROO12
ROO26

1,000000
1,000000

4, 000000

1,000000
G,993323
0,993333
1,000000
1,000000
1, 000000
1,000000
1, Q00000
0,70860687
1, 000000
1,000000
1, 000000
1, 000000
1,000000
0,8460000
1, 000000
1, 000000
L, 00000
1, 000000

- 1,000000

0,824444
1, 000000
1, 006000
1,000000
1,000000

1,000000

0,837778
1,000000
1,000000
1, 000000
1,000000
1, 000000
0,824444
1, 000000
1, 000000
1, 000000
1,000000
1,000000
0,891111

1,000000

1, 000000
1,000000
1,000000
0,886647
1, GO0N00O0

1, 000000
0,715556
1, 000000
1,000000
1, GOO000
1,000000

151

coo17
cont7
£0017
com7
conis
con1a
CO018
conta
COoQls
cOo0n1a
Coo1s
coo1e
coo1L?
20019
coo1?
coole
Coole
C0o019
CO0Z20
COOZ0
Con20
CQoOZ0
L0020
COOZ0
CO020
Coo21
£00Z21
Coozi
Cooz2l
CO021
coo21
CO021
CO0Z21
Ccooz22
CO022
coo22
cooz2
cooz2
cooz2
CO022
Co0zZ3
COO23
Co023
CO023
TO02S
Co023
C0023
o0024
20024
Co0zZ4
C0024
CO024
CO0Z4
CooZ4
CO025
TO025
L6025
COQz5
C00Z5
CO0z25

ROOZ7
ROGZ8
ROOSZ2
ROOSH
ROO24
ROCZ5
ROGZS
ROO27
ROOZ8
ROOS2
ROCSS
ROOZ4
ROO27
ROOZ8
ROO3IN0
ROOZ1

- ROGS2Z

ROOS6
ROO2S
ROOZ7
ROO28
ROOS7
ROOZ8
RODS2
ROO36
RO026
ROGZT
ROOZ28

. ROOZ9

RQQ4D
RO041
ROOSZ

ROOSSs

ROD23
ROGCZ24
RQO25
ROO33
ROV34
ROGS3Z
ROOSE
ROOZG
ROQI0O
ROOZ2
ROO33
RO03Z4
RQOS53

"ROOS4

ROD29
ROOZ0
RO042
ROOAZ
ROO44
ROOS3
RO0S6
R0029
ROOZ0
ROOZ1
RO043
RO044
ROOS3

1, QOOOCH
1, 000000
1, 000000
1,044444
1, 000000
1., 000000
1,000000
1, 000000
1, 000000
1,000000
0,882222
1,000000
1, 000000
1, 000000
1, 000000
1, 000000
1, 000000
0,920000
1, 000000
1, 000000
1, 000000
1, 000000
1., 000000

- 1,000000

a,831111
1,000000
1, 000000
1, 000000
1, 000000
1,000000
1,000000
1,000000
0,897778
1,000000
1, 000000
1,000000
1, 000G00
1,000000
1, 000000
1,0564444
1, 000000
1, 000000
1, 000000
1, 000000
1,000000
1,000000
1,0355354
1,000000
1, Q000600
1, 000000
1,000000
1,000000
1, 000000
1,000000
1, 000000
1,000000
1, 400000
1, 000000
1, 000000
1, GO00O00

152

0025
CO026
CO026
CONZ2s
cO026
Co02Z4
COO26
CO026
COOZ7
COO27
c0027
CO027
co0z7
cooz2?
co0z7
coo27
cO028
cnoz2a
cooz8

- Cooz8
. Co0zg

COOZ8
Co028
CO028
Co029
CO029
£0029
Co029
co029
CO029
0029
C0029
L0030
£OOZ0
£0030
£O030
£O03T0
CO030
LOO3Z0
£O030
20031
£0031
20031
CO031
£O031
CO031
£O031
£0031
£O031
Vo001
OQo1
Yuooz
YoOz2
UOO03
UOOD3
UoOO4
UO0s4
vo00s
V0005
Uo00os

ROO34
ROOZ?
ROOE0
ROCZ1
ROCAS
ROO4T7
ROOS3
ROO5S
ROGI2
ROG3IZ
ROO34
ROOZS
RDO36
ROOZ7
ROGS3
ROOS4
ROO3S

ROQZS

ROO37
ROO42
RUO0AS
RO0D44
RDO33
R0OO58
ROQZ3
ROQ36

ROO37.

ROG45
ROO44
ROQ47
ROOS3
ROOS56
ROO3Y
ROO34
ROGZS
ROO36
ROO37
RO0OZ8
ROOS3
ROOS6
ROO3S5
ROOS6
ROQ3Z7
ROO38
ROGAS
ROO46
ROD47

. ROO53

RO0OS4
ROO01
DRJ
ROQOZ
oRJ

- ROQG3

oBJ
ROCO4
oRJ
RQOOS
OBJ

ROOOL

1.,011111
1,000000
1, 000000
1,000000
1, 000000
1,000000
1, QOO000
1,035556
1, 000000
1,000000
1,000000
1,000000
1, 000000
1, 000000
1.,600000
1, 000000
1,000000
1., 000000
1, 000000
1, 000000
1, 000000
0,944444
1, 000000
1,000000
1,000000
1,000000
1, 000000
1,000000

1,000000

0, 740000
1, 000000
1,0000Q0
1, 000000
1, 000000
1,000000
1,000000
1,020000
1,000000
1,000000
1, 000000
1,000000
1, 000000
1,000000
1, 000000
1,000000
1,095556
1, 000000
-1,827093

-1,198927
1, 000000
1,312849
1,000000
1,312849
1,000000

153

UQoons
UOon7
Loon7
UON08
Uo0nsa
Vo009
Uoo0ne
LOD10
uoa10
Uvoo11
oot
Uoo12
uoo12
Vo013
oot
U014
uoni 4
uoo15
S UO01LS
Vo016
Uoots
UG0L17
U017
Yoo1s
Uoo18

Hon1e:

uoo1?

Hoozo

Uoo20
L0021
UoG21
Yoozz
Lonz2
Uonz3
Uoo23
LoOz4
Loo24

unazs

UQo0zs
L0026
UO02s
uonzy
Uoo27
Uo0z2a
Uon24
ueoz9
Uoonze
U030
Ugo3o
T UDO3L
Uoonz1
U032
Uo0z2
Vo033
Vo033
Uanz4
Vonz4
Q035
LO03sS
V0036

ngJ
ROOO7
oBJ
ROCOB
nBeJ
ROOOT
ORJg
ROO10
ORJ
ROO11
1}zA)
ROO12
CEJg
RODIJ
0ORBRJ
ROO14
0BJ
ROOLS
oBRJ-
ROO1S
CRJ
ROO1L7?
oRJg
ROO18
ORJ
ROO19
nBJ
ROOZ0
nBJ
RO021
oRJg
ROO22
OBJ
ROOZ23
ORJ
ROOZ24
QBJg
ROO25
opJ
ROOZS
OBJ
ROOZ7
BJ
ROOZ8
0gJ
ROOZT9
neJ
KOOI
nEJ
ROO3I1
oBJ
ROQ3Z
aRJg
ROOIS
ORJg
ROCZ4
0OBJ
ROOZS
nBJ
R0OO34

1,115922
1,000000
1,050279
1,000000
1,050279
1,000000
1,050279
1,000000
1,181564
1,000000
1,247207
1, 000000
1,050279
1,000000
-1,853352
1,000000
1,115922
1.,000000
1,115922
1,000000
1,247207
1, 000000
1,131564
1,000000
1,050279
1,000000
1,181564
1, 000000
-1,131285
1, 000000
1,1159z22
1,000000
1,113%22
1,000000
1,030279
1,000000
1,115922
1, 000000
1,118922
i N CIOCH]DD
-1,242370
1,000000
1,115922
1,000000
1,050272
1,000000
1,260335
1,000000
1,1468438
1,000000
1,284592
1,000000
-1,3800838
1,000000
1,050279
1, 000000
1,804749
1,000000
=1,262370
1, 000000

154

UOOZS
UQO37
UOo37
uonss
UoozZa
VOQEe
L0039
DO040
Uo0n4ao

0041
Uoc4l
Uoga2
won4z2
alsl: ht
Uo04s3
uco4s
Yyooaa
ucn4s
VOG443
Uooas
Uo0as
uooa7
uooa7
o001
00001
20002

10002

-QO0a3
CO0S
o004
aooos
Qo003
0O00s
30006
Q000s
Qo007
nooo7
00008
20008
00009
ooooe

Q0010

aoa1o
00011
nootl
0oe12
noo12
Q0013
00013
pooi4
00014
00015
uoots
0014
00018
o017
ooo17
0Qo18
0oo1a
Qo019

QoeJ
ROOZT
nBJ
ROOZA8
oBJ
ROQ3?
oBJ
ROO40
oRJ
ROO41
oBJ

ROO4Z

oBJ
ROGA3
JB.J
ROG44
oBJ
ROO4S
0BJ
ROG44
QRJ
ROOAT
IBJ
ROOO1
RS
ROOO2
aBJ
ROOO3
Bt
ROOD4
QRBJ
ROQOS
ORJ
RODIDS
BJ
ROOO7
0BJ
ROOOS
0BJ
ROGO9
oBJ
ROO10
CBJ
ROO11
nBJ
ROO12
ORJ
ROO13
2By
ROO14
oBJ
ROQ1S
oBJ
ROO16
OB
ROO17
OBJ
ROD18
1RJ
RODL?

1,030279
1, 000000
1,076336
1,000000
-1,853332
1,000000
-1,078771
1,000000
1,129030
1,000000
1,050279
1,000000
1,220930
1,000000
1,080279
1, 000000
-1,656425
1,000000
1,050279
1,000000
1.050279
1,000000
-1,800838
2,500000
-1.827093
2,500000
1,483320
2, 5060000
-1,196927
2,500000
1,312849
2,500000
1,312849
2,500000
1,115922
2,500000
1,050279
2,500000
1,050279
2,500000
1,050279
2,300000
1,181364
2,500000
1,247207
2,500000
1,030279
2,300000
-1,833332
2,300000
1.,115922
2,500000
1,113922
2,300000
1,287207
2, 300000
1.,181364
2, 500000
1.050279
2, 300000

155

aono1e
Q0020
a0Q20
00021
noo21
0QoZ2
aooz2
Q0023
0o0zZ3
0024
30024
DOOZ3

o025 -

00024
00024
0027
00027
00028
00028
00029

00029
BO03TO
20030
00031
00031
00032
00032
00033
00033
00034
00034
00035
00035
00036
00036
0037
00037
00038
00038

0Qos9

20039
00040
Q0G40
20041
00041
00042
00042
0043
00043
ao044
00044
w0045
00045
00046
10045
00047
oo04a7
RHS

RHS

DEBJ
ROOZ0
opJ
RODZ21

" BJ

ROO22
QBJ
ROOZZ
iR
ROOZ4
aBJ
ROOZS
aBJ
RODZ&

aRJg

RODZ7
ApJ
ROO28
oBJ
ROOZ9
cRJ
ROOZO
RJ
ROGZL
nBRJ
ROD3Z
ORBJ
ROQ33
By
ROO34
ORJ
ROO3S
0Bt
RO0O34
orJ
ROO37?
DRI
ROOZE
oBRJ
ROOZTF
oBJ
RO0O40
oBJ
ROO41
oBJ
RO0O42
oBJ
ROO4Z
By
ROO44
oBJ
ROO45
neJ
ROO4A
BJ
ROO47
oBJ

ROGCO1
RO0O0O2

1,181544
2,500000
-1,131285
2,500000
1,115922
2,300000
1,115922
2,500000
1,050279
2.500000
1,113922
2,300000
1.1153922
Z,300000
=1,262570
2, 500000
1,115922
2,500000
1,030279
2,300000
1,260335
2,500000
1,1468474
&, 300000
1,284592
2,300000
-1,800838
2,300000
1,020279
2.500000
1,404749
2, 300000
-1,262570
2,500000
1,050279
2,.300000
1,076536
2,500000
-1,852352
2,500000
-1,078771
2,300000
1,129030
2,500000
1,050279
2,500000
1,220930
2. 300000
1,050279
2 ,50000:0
~1,8655425

1,050279
2,500000
-1,800878

1.,000000
1, 000000

156

RHS
RHS
RHS

" RHS

RHS

" RHS

RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS

'RHS

RHS
RHS
RHS
RHS
RHS

‘RHS

RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS

- RHS

RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS
RHS

" RHS
JNDS

/
/
}
]
/
’

BNDVAL -

BNDVAL
BENDVAL

BNDVAL

ENDVAL
ENDVAL

ROOO3
ROOO4
ROOGS
ROOGE
ROOO7
ROO0OS
ROOG?
ROOLO
ROOLL
ROOL2
ROO1Z
ROO14
RCO15
ROOLS
RQQ17
ROG1S
ROO19
ROO20
ROGZ21
ROOZ22
ROOZ3
ROOZ4
ROOZS
ROOZ&
ROQZ7
ROOZ8
ROOZQ
ROOZO
ROO31
ROOZ2
ROO33
ROOZ4
ROO3IS
ROO34
ROGI7
ROOZS

ROOZ9

R00O40
RON41

RO04Z

ROO4Z
RO044
RQO45
RO046
ROC47
R(048
RO049
RO0O31
ROOS52
ROO33
ROOS4
ROOSS
ROOS4

£O001
L0002
£O003
CO004
CO005
CO004

1,000000
1, 000000
1,000000
1, GOQ000
1,000000
1, 000000
1,000000
1, 000000
1,000000
1, 000000
1,000000
1, 000000
1,000000
1, 000000
1,000000
1,000000
1,000000
1, 000000
1,000000
1,000000
1,000000
1, 000000
1, 000000
1, 000000
1,000000
1, 000000
1,000000
1, 000000
1,000000
1, 000000
1.,000000
1, 000000
1,000000
1, 000000
1,000000
1,000000
1,000000
1,000000
1,000000
1, 000000
1, 500000
1, 000000
1, 000000
1,000C00
1,000000
1,000000
2,000000
1, 000000
2,000000
Z, 000000
3, 000000
1,000000
8,000000

1,000000
1,000000
1, 000000
1, 000000
1,0G0000
1, 000000

157

/ BNDVAL COQo7 1,000000
/. BNDVAL Coo0s 1, 000000
/ BNDVAL £O009 1,000000
¢ ENDVAL £OG10 1, 000000
/ ENDVAL Cool1l 1,000000
¢ BNDVAL coolz 1, 000000
/ BNDVAL CO013 1,000000
¢ BNDVAL 20014 1, 000000
/ BNDVAL COg15 1,000000
! BNDVAL Lools 1, 000000
! ENDVAL CO017 1,000000
/ BNDVAL coo1s 1, 000000
! BNDVAL co01e 1.,000000
! BNDVAL COQZ0 1, 000000
/ BNDVAL Co0Z1 1,000000
! BNDVAL ooz 1, 000000
! ENDVAL Co023 1.,000000
} BNDVAL con24 1, 000000
/ BNDVAL Coo23 1,000000
!/ BNDVAL -~ CO0Z6 © 1, 000000
/ BNDVAL Cooz7 1,000000
) BNDVAL 0028 1,0Q0000
/ BNDVAL COOZe - 1,000000
/ BNDVAL COQZ0 1,000000
/ BNDVAL Co03i 1,000000
JATA

158

. SCICONIC

SCICONIC/VM VERSION YM/P1, 32
COPYRIGHT SCICON LTD, 1983

AUTHORISED FOR USE AT!
_ UNIVERSITY OF LOUGHBORCOUGH
"INFILE=* MTSP10?
{CEONVERT -
W FROBLEM QRERTIZ
1S VECTOR - RHS
JUND VECTOR - BNDVAL

{TBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON-ZERD ELEMENTS

INVERT Tio0K 3,87 SECIOINDS
'SETUR{MAXIMISE)

IOBLEM QA4RTIZ2 1ON FILE

[EATED ON 13-JUL-1986 AT 123140328

IO0BLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON-ZERD ELEMENTS
is ~ RHS
WUND- - BNDVAL
tJECTIVE - DBJ :
ICORE MATRIX HAS 37 ROWS AND 125 COLUMNS
TUP TOOK 1,34 SECENDS
‘PRIMAL
- NITS NBJECT INFEAS SECS
0 G, 000000 0, 0000004 Q) 1,58
36 -41,275975 2, 000000 0) 4,50
SOLUTION IS OPTIMAL
‘PRINTSOLN
FROBLEM QA4RTIZ - SOLUTION NUMEBER 1 - OFTIMAL

CRERTED ON 13-JUL-1985 AT 12341110, AFTER

PRINTED ON - 13-JUL-1986 AT 12:41319

+ o NAME, ., WRACTIVITY, ., DEFINED AS
FUNCTICNAL 41,273%975 oRJ
RESTRAINTS ' RHS
BOUNDS, ,,. BNDVAL

s oROW, ., AT e e 0 RETIVITY,,,,

oBJ BS -41,275973

- ROGOZ UL 1,000000

RO0O04 UL 1, 000000

ROOOTS UL : ©1,000000

ROO0OS Ut ~1,000000

ROOO7 UL 1,000000

ROOO8 UL 1, 000000

ROOO UL 1, 000000

ROOLO UL 1,000000

ROO11 UL 1,000000

ROO12 UL ’ 1, 000000

ROO14 UL 1,000000

159

36 ITERATIONS

#%% END OF ROWS %%

78

ROO15
ROO16
ROOL7
RO0O18
ROO1?
ROOZ1
ROOZZ
ROQZ3

o ROW, 4o
ROOZ4

"ROQZS

ROOZ27
ROOZS
ROOZ?
ROGZO
ROO31
ROG33
ROOZ4

- ROO34

ROGSI7
R0040
A0041
ROQAZ
ROOAZ
ROO45
ROO44

+COLUMN,
Vo002
uooos
o003
alelel
uooaQ7
uonosd
UoGo9

©Uoo1D

Uoo1l
voo12
von14
Uog1s
Uoo14

Uo7

LoQ18
o019
Uoozl
vonz2
UOOZ3
uonz24

» COLUMN,
uoa2s
uooz27
Uo0z8
uooz29
UG030

UL
uL
UL
uL
UL
UL
Ut
uL

AT

UL
uc
UL
LU

S

UL

uL -

uL
UL
UL
UL

uL

UL
UL
UL
uL
uL

AT
BS
BS
BS
BS
Bs
BS
BS
ES
BS

ES

ES
BS
BS
ES
BS
BS
BS
ES
ES
ES

AT
BS
ES
BS
ES
BS

1, 000000
1, 000000
1, 000000
1, 000000
1, OO0000
1.000000
1, 000000
1, 000000

lOOCHDTIVITYQOOO
L, 000000
1, 000000
1, 000000
1,000000
1, 000000
1, 000000
1, 000000
1,000000
1, 000000
1, 000000
1, 000000
1, 000000
1, 000000
1,000000
1,000000
1,000000
L, 000000

v BCTIVITY, .y
1, 000000
1, 000000
1., 0000600
1,000000
1,000000
1,000000
1, 000000
1,000000
1, G000
1, 000000
1, 000000
1, 000000
1, 000000
1,000000
1, 000000
1,000000
1, 000000
1,C00o000
1, 000000

1, 000000

e ACTIVITY .\
1,000000
1,000000
1, 000000
1, 000000
1, 000000

160

#% END OF COLUMNG *x#

U0OZ1
U033
U034
L0036
UO037
V0040
Uo041
Y0042
V0043
U004s
Y0046

>STIP

*% STOP

BES
BS
BS
BS
BS
ES
ES
ES
ES
ES
BES

1,000000
1, 000000
1, 000000
1, 000000
1,000000
1,000000
1, 000000
1,000000
1, 000000
1,000000
1, 000000

161

L B_EXTWILM

TA ty BMALLER REDEFINITION OF COMMON
oL "y SMALLER REDEFINITION OF CiBhMMIN
X4CM " SMALLER REDEFINITION OF COMMON
XICM " SMALLER REDEFIN{TION OF LOMMON
X2CM) SMALLER REDEFINITION OF COMMON
XiCM "¢ SMALLER REDEFINITION 0QF SOMMON
KEY ! SMALLER REDEFINITICN OF COMMON
D COMPLETE '

SEG ¥SCIMY

SCICONIC/VM VERSION VM/P1,32
COPYRIGHT SCICON LTD, 1983

AUTHORISED FOR USE AT
UNIVERSITY OF LOUGHEOROUGH
INFILE=*MTSPLO!
‘CONVERT
W PROELEM QA4RTIZ
IS . VECTOR - RHS
IUND VECTOR - EBNDVAL

(OBLEM HAS 37 ROUS, 125 CTOLUMNG AND 4146 NON-ZERO ELEMENTS
INVERT TOOK 3,746 SECONDS
-SETUP (MAXIMISE)

{OBLEM TQRARTI2 ON FILE
{EATED ON 13-JUL-1984 AT 12328417

WIBLEM HAS 57 ROWS, 125 COLUMNS AND 416 NON-ZERO ELEMENTS
1S - RHS
JUND - BNDVAL
IJECTIVE - ORJ
CORE MATRIX HAS 57 ROWS AND 125 COLUMNS
ITUP TOOK 1,36 SECONDS
*USER
57 182 ’
PART A ‘
PHASE 1
PASS 1
X(44)= 0,000
% 6= 0,000
X(91)= 3,000
X(116)= 0,000
X(3= 0,000
X(79)= 0,000
X{ 63)= 0,000
X(78)= 0,000

142

X{110)=
X(125)=
X{ 79)=
X(1z22)=
X{ 37)=
X{ 6b)=
X(104)=
X(113)=
Xt 34)=
X(81)=
X({ 31)=
X(78)=
Xt 70)=
X(117)=

X
X<
X1

X
X1

X¢
X<
X4
X{
X<
Xt
X
Xt

X
X{
X(
X
Xt
X
X
X
X
X
X
X(
X1
Xt
X<
X
X(
X

1)
2)
3}
4)
5)
6}
7)
8)
)
10)
11)

12)

13)
14)
i5)
16)

17}

18)
19}
20)
21}
22)
23)
24}
25
26)

27)

28
Z29)
30}
31}

LOWER
LOWER
LOWER
LOWER
L.OWER
LOWER
LOWER
LOWER
LOWER
LOWER
LOWER
LOWER
LOWER
X{ 85)=
X0 84)=

EXTRANEQUS

EXTRANEOUS

EXTRANEDUS
EXTRANEOUS
EXTRANEOUS
EXTRANEDUS
EXTRANEOUS
EXTRANEOUS
EXTRANEOUS
EXTRANEOUS
EXTRANEOUS
EXTRANEQUS
EXTRANEOUS
EXTRANEOUS
EXTRANEDUS
EXTRANEOUS
EXTRANEAUS
EXTRANEQUS
EXTRANECQYS
EXTRANEOUS
EXTRANEIUS
EXTRANEOUS
EXTRANEIS
EXTRANEQUS
EXTRANEDUS
EXTRANEQUS
EXTRANEDIUS
EXTRANEQUS
EXTRANECUS
EXTRANEQUS
EXTRANEQUS

SHRDOW
SHADOW
SHADOW
SHADOW
SHADOW
SHADOW
SHADOW
SHADIW
SHADOW
SHADOYW
SHADOW
SHRDOW
SHADOW

FRICE
FRICE
FRICE
FRICE
FPRICE
FRICE
PRICE
PRICE
PRICE
FRICE
PRICE
FRICE
PRICE

0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000

aN
an
ON
ON
ON
o
ON
N
ON
ON
ON
N
ON

0,000
0,000

CONSTRAINT(
CONSTRAINT(
CONSTRAINT
CONSTRAINTH
CONSTRAINT(
CONSTRAINT(
CONSTRAINT(
CONSTRAINT(
CONSTRAINT(
CONSTRAINT (
CONSTRAINT(
CONSTRAINT(
CIONSTRAINT(

7=
8=

12)=
18)=
23)=
28)=
33)=
3b)=
41)=
43)=
45)=
46)=

163

1,030
1,050
1,030
1,030

- 1,050

1,030
1,050
1,050
1,050
1,050
1,050
1,030
1,050

X{ 87)=
X(90)=

X(96)=
X(101)=
X(106)=
X(111)=
X(1143=
X(119)=
X(1z1)=
X(123)=
X(124)=
LOWER SHADOW
X(115)=
LOWER SHADOW
LOWER SHADDW
LOWER SHADOW
LOWER SHADIW
LOWER SHADOW
LOWER SHADOW
LOWER SHADOW
LOWER SHADOW
X{ 84)=

X(92)=

X(93)=

X({ 99)=
X(100)=
X(102)=
X(103)=
X(105)=
LOWER SHADOW
X(118)=
LOWER SHADOW
X(108)=
LOWER SHADOW
LLOWER SHADOW
LOWER SHADOW
X(88)=

X(95)=

X(97)=
LOWER SHADOW
X(120)=
LOWER SHADOW
LOWER SHADCW
X(89)=

X(94)=
LOWER SHADOW
X(107)=
LOWER SHADOW
X(109)=
LOWER SHADOW
LOWER SHADOW
X{ 82)=

X{ 83)=
LOWER SHADOW
X(112)=
LOWER SHADOW
X(80)=

PASS 2
FPHASE 2
PASS 1

0,000
0,000
0,000
0,000
9,000
0,000
0,000
0,000
0,000
0,000
0,000
FRICE 0ON
0,000
FRICE ON
FRICE ON
FRICE ON
PRICE ON
FRICE ©ON
FRICE 0N
PRICE ON
FRICE 0N
Q0,000
0,000
0,000
0,000
2,000
0,000
0,000
Q3,000
FPRICE ON
0,000
FRICE ON
Q0,000
FRICE ON
FRICE ON
FRICE 0N
3,000
0,000
0,000
PRICE On
0,000
FRICE ON
FRICE 1N
0,000
0,000
PRICE ON
0,000
FRICE ON
2,000
PRICE 0N
FRICE 0N
0,000
0,000
FRICE ON
0,000
FRICE ON
0,000

CONSTRAINTH

CONSTRAINT(
CONSTRRAINT
CONSTRAINT(
CONSTRAINT(
CONSTRAINT!
CONSTRAINT(
CONSTRAINT{
CONSTRAINT(

CONSTRAINT (
CONSTRAINT(
CONSTRAINT(

CONSTRAINT(
CONSTRAINT(

CONSTRAINT(
CONSTRAINT(
CONSTRAINT{
CONSTRAINT(

CONSTRAINT(

CONSTRAINT(

CONSTRAINT(

CONSTRAINT(

CONSTRAINT ¢

37)=

&)=
18})=
13})=

21)=

22)=

24)=
29)=
27)=

40)=
30)=
10)=

173=
19)=

42)=

11)=
148)=

164

1,077

1,116
1,114
1,116
1,114
1,116
1,115
1,116
1,114

1,247
1,247
1,260
1,287
1,313
1,313
1,405

1,484

PASS 2
PART = B
PHASE 1
FASS 1
UPPER BOUND
X(33 =
UFPER EBOUND
X(35) =
UFFER EWJUND
X(3&6) =
UFFER BOUND
X(37) =
UFFER BOUND
Xt 38) =
UFPER BOUND
X{ 39) =
UFFER EOUND
X(40) =
UFFER EOUND
X{ 41) =
UPFER EOUND
X(42) =
UFFER BOUND
X(43) =

UFFER EBOUND

X(45) =
UFPER BOUND
X(48) =
UPPER BOUND
X¢ 47) =
UPFER EOUND
X{ 48) =
UPPER BOUND
X{ 49) =
UFFER BOUND
X(500 =
UFFER BOUND
Xt 52) =
UPFER BOUND
X(53) =
UFFER EOUND
X(54) =
UFFER BOUND
X 55) =
UPPER BOUND
Xt 56) =
UPFER BOUND
Xt 58) =
UFFER EOUND
X(59) =
UPPER BOUND
X(60) =
UFFER BOUND
X(61) =
UPFER BOUND
X(62) =
UFFER EOUND
X(&4) =
UPPER BOUND
X(65) =

XA{

X

X(

X«

X(

Xt

X{

X

X<

X{

X<

X

%<

X(

X<

X{

X{

X<

X{

X

X{

X

X

X{

X{

X(

X«

X(

33)
1
33)
1
&)
1
7)
1
8)

(]

LA

£

+000

L0000

000

00

1,000

37)
1
40)
1

41

1
42)

1.

43)

L,

45}

1,

44)

1,

47)

1,

48)

1,

49)

1,

S0)

1,

32)
1
33

l,

54)

1,

33)

1,

38)
1
58)
1
59)
1
60)
1
&1)
1
&2)

1,

64)

1,

&35)

1,

000

000

LI00

Q00

GO0

000

plole)

000

000

000

000

+000

000

000

000

+000

+ Q00

Q00

000

+ 000

000

000

GO0

1,000
1,000
1,400
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000

1,000

1,000

1,000
1,000
1,000
1,000

1,000

165

UFPER BOUND X(&7) = 1,000,

Xt &7) = 1,000

UFFER BOUND X({ &8) = 1,000

X 68) = 1,000

UFPFER BOUND X(71) = 1,000

Xt 71} = 1,000

UFFER BOUND X(72) = 1,000

X(72) = 1,000

UFFER BOUND X(73) = 1,000

Xt 73) = 1,000

UFFER BOUND, X(74) = 1,000

Xt 74) = 1,000

UPPER BOUND X(76) = 1,000

Xt 786} = 1,000

UFFER BOUND X(77) = 1,000

Xt 77y = 1,000

FROELEM IS SOLVED opJ = 41,275
1>8TOF ' : :
%% STOP

Ky

166

"
:5601: SUBROUTINE YSER

00023 $INSERT SCILON:S»FDPFARANS :

Q0TI $INSERT SCICONXS>PDRFMIKEY EXTENDED REDUCE METHOD
D004 $INSERT SCILING 85 FDFMAKEY ,

0008 $INSERT SCICON>SrPDRITE?

OG04t SINSERT SEILUNIS»EDREI (5

D07 $INSERT STINENS-PDFUSEFUL

QOO SINSERT 5C;b.m¥S\PDF1ﬁTR[X

0009 $INGERT 3210
0010 $INSERT BOICON SrepE

00114 REAL*G C2LEiL B) , RIRELL(2G4S) , R MWELT (2048 ROWGLL (2068,
B * RH! (::QJ.nrbl 3121, x\:._-,a t,.ﬁ;,,\51~1, 1132y, D3TISLEy,
G13 - ARX, BMIN, Bﬁv,.,LW‘N GMIN, SOV, DEF
GLila: INTEGER®Z [COLNO(Z0O48) , FRDWND (204 FATWNIZ L 2058 [RGINDUENed i,
20158 * TCOLR SR D S LE), LRGWMCEID),
uoLs: * NRDLS._:...«J.~4.As‘:._:, CRELTS12) , 10X 5300 100Ky,
00178 * NCD(S1Z),IE5(512), IRT{51L),

00188 * JNEGT{SID), Jrvd\d.-J,.er 5;;;,:NEDcS:ZJ
2017 INTEGER*Z TIM(LG)

Q0zZ0: COMMINS BB2ION DLELL , ROWELL ROWEL S, Adwil L
214 COMMAN/RLRAZ/ TCOLNL, L RGWND, [TRIWND , JROWND
Q0223 COMMOnN/ALARSY X, A0, 12, RHS, RREL,FL, D87

LO23: COMMON/RLARS 7 L CRLME, TROWMH , D RGwM, F
o243 SO NALARS £18, 1, IS5, IRT, 12X, NRD, NCD, LS,
1)0231 * C NRDD,IDDg, JNEGT, JEVE, Tovi, JNCD
n0zéd [TR=0

30271 Jizd=0

20283 WRITE(1,994) NRUW,NSED

10291994 FORMATLZX,13,3X,13)

030 . XX=1QGGO00,0

031

OTﬂqc

2W0I3C

J0I41C . SETTING THE vALUES FROM BRRAY #O0L ..,
H3ISC

0IZaC

0378 NNRCW=NROW+ 1

plent: H N=1

30394 k=1

040 D0 1500 JSEQ=MAROW, NSEL

Mdgy J=JSEQ-NRCW

W42 {CiJr—uu “

104373 RIS

w441 kLNEL‘HSHLL(JSZJ)*wSh|“5(::2

WAL LLMEL=MSMEL (JSEQ+1)

0463 L=

47 DO 1600 ILME =< MEL LLMEL

0453 TROW=MRWME (ILMEL}

049 IPOOL=MPTME{ILMEL?

G503 N=N+1

1051y Le=L+1

032 COLELL (N =POOL{TF2IL)

1055} ICOLND(N)=TROW

105411400 CONTINUE

035} TCOLND (K=

10361 NCD{JI=L

0571 IF(AND (MCKEY (JSER) MCBURC) EQ, 00 &3 70 14550
0584 [FOOL=MPTME (KLMEL-1)

Q39 COLELL (K)=POOL (TFOOL}

&0t CiJy=COLELL(K)

0613 IF(CCI) LT, -3, 1E-8) JQ2=1

06231660 KK+l

0631 N=N+1

06411500 CIINTINUE

V&5 K=1

Vbb1 DO 1700 1=2,NROW

0473 . RHS{I)= BETH(I)

0868¢ Ibxi1=1

047} IS(I)=I

Q703 IR=K

0711 TROUMK(E) =K i
072 IRGWMK{1) =& o
073 =) N
QA74} DO 1800 JSEQ=NNRIW, NSE

073) J=JSEI-NROW

V75 KLMEL=MSMEL (JSEG) +MSKMEB(JSER:

D774 LLMEL=MSMEL (JHEQ+1)

n78; DD 1900 TLMEL=KLMEL,LLMEL

079 [ROW=MRWME { IL.MEL)

080¢ IFCIRCW,.NE, I} S0 TD 1900

ne1y L=L+1

1az: K=K+l

-k EFPQOL=MPTME{ILMEL)" |

0843 ROWELL (K) =POOL (IFOOL)

nas; ROWGLL (K)=ROWELL (K}

Das} TROWNGIK) =]

a7 TRGWND{K)=]J

daay ILMEL=LLMEL

08931900 CONTINUE

J9011800 CONTINUE

b5 B TROWNOC(IR)=L

w2 IRGWNO{IR =L

b AH NROCT }=L

394 K=K+l

19341700 CONTINUE

1943 NRW=NROW

97iC

98LC

9910 167

00:C

10110 . .

1024103 FORMATOIX,* SONSTRAINTY 13,7 RESUNDANT? ;
103: 104 FORMAT (24, 407, 12,) EXATERANEDVS)
1044105 FORMATIZX, P80, 12,7) £ATRANETUS!)

105107 FLRMATIZX,PPASS((2,0 07
10611 FORMATIZE,"SVER 1m0
1972 FURMAT(2X, T STER 24)
HARH SURMATI(Z2X, T 8TER 2*)
10914 FIRMAT(2X,' STEF 47
11915 FURMAT(IX, GTER 30}
11144 FORMATI2X,* STER &)
112:7 FIAMAT(2X,BTEF 7))
11318
114;:C
L15:€
t1s3C
g
118110 IPASZS={FASS+L
1193 WRITE(1,107) IFASS
L1203
121:C
122:c . STEP (1)
l23c
1243 WRIYE(L,1)
1258 [2CTR=0
[pd.H IFLJSZ, 23,2 68 75 100
2TiC
23
it

G

H STEP '2) s

IF(NCD(32),EQ,Q) GO 75 21
IF(ZI2),LT, 0,00 G0 IO 21

BB s L G G G G L G T
AR~ S -0~ 6 U B R

JX=IC0L M T2)
JY=TCOLNO(JSX)
NS=JX+1
44 NL=JX+JY
45; D 25 K=NS,NL
LIH TR{COLELLIKY LGE, 0,00 GO T L3
47 JNEG=1
481 K=NL
49:25° ZIONT INLE
S0 IF(JMEG,EQ, 1) G0 TO 21
51iC
Jzie
533 Dl 22 K1=NS N
54 IFCCILELLEKI) (B0, 0,00 GO T 22
551 COLELL{W1)=0,0
564 R i} S R 43)
=7 IX=IRIWMK{IZ)
581 Ty=ROWNG(L)
59: SRX=IA+Y
=1 INY=IXHIY
511 DO 23 W2=IXX,IYY
523 CFOIROWNG (K2) WNE,J20 o2 T 23
53¢ RUOWELL®2)=0,0
54 NRD{IZ)I=NRDIIZ2) -1
535! Wi=fyy

56123 CONT INUE
57122 | CONTIMUE

58 NED(JZ2)=0

59t IFCIC(I2),GT NROW)Y G TO 24
701 INR=IC(J2)-1 .

713 WRITE(L1,105) INR

2% MRKEY{12¢J2) 1 =0R{KRBFRE, MRKEY (I (J2))
T3 52 TR 21

T4:24 ENR=IC{JZ) -NROW

51 WRITE(1,104) INR

-1 MCKEY (IC(J2) Y=AND(MCKEY (J2)) KSR,
7 10C0R=1

18;21 CONTINUE

rc

HeHW

L

j2:C

A3ic STERP (3) ...

g

35C

tH WRITE(1,3}

373 IRD=Q

8¢ O 31 IZ=2,nMHU

39 - IPINg=0

104 IPVR(IZ)=0

ne IFCIS(I3) GT, NROWY GO T'F 31
1zt IF(NRD(1IZ) ,E£Q,0) GC TO 31

13 IX=IROWMK (I3}

4y LY=IRuUWNG(IX)

'S JS=1%+1

K-H JL=IA+1Y

78 DO 20 K=Js,JL

at IF (ROMELL (K),LE,0,0) GO TC U0
9 IPDS=1 . 168

'H K=JL

- OO O O o
€ ¥
(=3

By T o A e s e R

T A P

[=3

4
21133

43

Sta

et

unnngnnnnnna

U N A BN, OO S0l RNo 00 AN
-

T bw we B S8 ey mw oww aw ww ww r br bh Fh e we me =T TR TR AR Ee e e am == b =n e

CONTINLE
IF(IFOS,EQ, L} S0 TO St

NRD(IZ)=0

ToenR=1

b 3T K=JS,JUL
IF(RIWELL(K)Y EQ, 0,3 GO T 33
AROWELLtK)=0,Q

JelROWNG(K)

Je=TCILM ()

JT={0OLNG{JRI

ik
TR DTG ORY (N, L) 30 T o3
LL W =0,0
DLIr=NIDLG -3
=Y
CUnTiNG
CINI
RHS:!3)=1,0
INR=ISLUIS)-1

TE(1,103) INR
MRKEY (IS II D)) =0RAKFEFRE , MREY(ISLIT)
CONTINUE

STEP (4) ,,,

WRITE(L,+)

DO 41 [3=Z,NROW

IPIaZ=0

IF(NARDOIS) EQ, 00 60 TOD 41
IF(RHS(IS) \NE, O, GO TO 41
[X=[RIWMK{IS)

TY=IRIWND{IX)

JS=IX+1

JL=TX+1Y

DO 40 M=]S, JL
IF(ROWELL (M), GE, 0,00 GO TO oG
IpGz=1

oo 42 K=JS,JL
IF(ROWELL () EQ,0,0) G0 [42
AWELL {4)=0,0

IS =IRNILK)

JXe=LEILM (IS

JY=TCOLNI(SX)

Ix=J%41

TY=IX+JY

D 43 «i=iv,I¥

TFOTNLELL (¥1),£9,0,0) 60 T <5
COLELL (K1)=0,0

IR=ICILNGKD)

IN=IRIWMCIR)

IM=TROWNGLIN

IXX=IN+L

1yy=tn+ln

DO 44 k2=IXX,1YY
IF{IROUND(K2) ,NE, JS) GO TD 44
ROWELL (K2)=0,0

K2=1YY

CONTINUE

CENTINUE

IF(IC(ISY ,GT.NROW) GO TO 45
INR=IG(JS) -1

WRITE(1,103) INR

MRHEY (IS (%) 1 =R (HREFRE , MRKEY (L0 (I3
CO TO 514 '
INR=IE (S5) RN

WRITE(L,104) INK

MTHEY (10 (J5) 1 =ANDCMEREY (1L (IS5 o BRRT)
NCDCJS =0

1060R=1

CINT INUE

NRD(15)#0

LNR=IS(IS)-1

MRITE(1, 103} 18R

MRKEY (T5(1%))=0R (KREFRE,MRKEY(15(15))
CONT ZNUE

STEF {3) ..,

WRITE(1,%)
FINDING THE PIVOT COLUMN ..,

J=0

CMIN=XX
DO 55 JS=1,NCOL 169
IF(JPVC(IS) ,EQ,1) GO T 55

01 IF(NED(JS),EQ,00 GO TO 55

1028 IFICU)SY , GE. -0, :E-8) G0 TF 5S
03: IFLCUJS 6T, CMIND 30 TD =5
Joa ST

305:

T0a1Z5

W07 PRI

- H

el

I1a0 TINOIvE VAR FIveT v L,
AR

1128 L=

M Tug=0

114 =

315

141-H H

17 J5=1%+1

3183 JL=IXely

3193 0 32 =I5, L

a0l IFQUULILLAKS ,LE 2,18 -8) 6D TO 82
321 - TA=TCOLNDOK)

122 BOV=US [A) FCOLELL (K)

5231 DEF=GMIN-BOYV

3243 IF(DEF,GT,0,1E-3) G TQ 53
e IF(DEF.LT,-0,1E-3) 80 T3 S2
- Tug=1Ug+1

27 GO TO 54

28153 o=t

298 GHIN=BLUY

JI0yS4 1a=1A

131 KI=k

102382 CONTINGE

23 IFCIVD,EQ, 1) GO T 580

24 IF(IUD,NEOF B0 Ta &%

3%t

It

ZTIC

j38:C

Z9c STE® (&) .y,

IR

41380 WRITE(L,8)

Erais

M3t FINDING THE NEW INTERLCR FOINT .,
1 ¥

45 LA JI=RHS (IO JCCLELL (T

Yy o0 &7 K=435,J5L

1471 1A=TSOLND(K)

48 IF(IAED, L) G0 T2 &7

- H IF(NRDCIAY ,EQ,03 G0 TO &7

5014 IFCISIIA)Y ,LE,NROWY GO TO &7
911 JV=IS(TA)=NROW

52 ATV =RHS (1A ~XO0J Y RCOLELL 1)
535 XOLIVI=XOLIVI-0,01

54107 CONTINVE

554 ADCT =0T =0, 01

54iC .

37tC

Sarc UFDATING THE PIVCT ROW .,
39:C

&0 FINDING THE NEXT FIVOT COLUMN .,
11 :

82t CMIN=0, 5

&34 INL=G

bay IA=IRMWMI IR

&5} Ty=TROWME{IR}

&b} JA=IR+1

&7 IB=[X+1¥Y

681 t K=JA

49 D &4 Jé=1,NCOL

708 IFCZROWND{M) NE, J&) GO TO &%
71t IF{NCR{S8) ER,0) GO TO &8

728 IC=0026) - (I I+ (ROWELL €) FOOLE oL 3 s
73 IF(2C,GE.0,0,0R, 2¢,GE,CMIN) G0 TQ 48
743 oIN=IC

751 InC=J4

Ta168 K=K+l

bk G TO A4

78145 IF{NCD(TEY 22,00 62 TO o4

79; IF¢2(I8) ,GE,CMIN) GO TO A4

B0 CMIN=C(J4) -

813 INC=T&

B2164 CONTINUE B

By IF(JNC,EQ.0) 60 TO 80

LH AT CINC =, 01

835:c

LLH DD. 61 ¥=JS,JL

87 IF(COLELL(X),LE,0,1E-TF) GO T 41
283 TA=]COLND()

393 DOV=RHS(TA) /COLELL (K)

701 IF(GMIN,NE, DOV) 5O TD &1

EART-1Y IPVRIIAY=1

72161 CONTINUE

L

1410

5 FINDING THE DISTANCES BETWEEN THE INTERIDR FrinT
R AND THE CINSTRARINTS ...

17ic

3] : .
19149 NT=0 ‘ ' 170

'H PAMIN=XX

10401
J L6 T3 Jed
AL takH
WA0A L
W40T:
0A0s:
18078
14681
409
104103
w0411
13412}
0a1Iy
414163
04151
0416)
04173
0418:
419362
04291
04213
Q4224
04233
04243
14255%
[LEPE- RN
Gaz7I7n
04281
0429
04304
G451t
D432t
24331
14741
1433
2436}
437
)438;
437
14401
441y
14424
4432
44
1445
LEFH
JLEYH
14483
14493
14501
451
W32
M53173
145472
14534
456374
457t
456371
45940
46010
4514C
456280
443¢
464}
4465;C
486610
457:C
4p8:C '
459:C
470:C
471iC
472181
4738
4741
LrE-H
§76%
77
478
179
1803
1813
182
183
184;
18351
1842
187
1281
1893
ELH
28]
1921
193
943
9518117
LI H
97
bl-H
991
003

o0 42 146=2,NRW
IF(IPVRITS) NE, 2 5% T2 a2
WE=0

ARX=G 0

Tai=in+l

Iry=IX+1Y

20 &3 K=[XX,IYY

JR=IRGWND K)

VFLIRLVED JNC) KS=K
RAX=ARAX+X0LIR) &ROWELL LK)
CONTINGE

IE(KS,EQO) GI T 52
DST(I&={EETR(IR Y =ARX) /RMGWGLL (L)
(F(DST(I&), 07, AMING 30 TR &2
AMIN=DST(18)

CONTINUE

IF(AMIN,NE, XX) G0 T3 /0
TFINT, Z3, 00 40 TO 30

NT=1

INC=J

GG T 49

03 71 wS=38,L
I=7200NDKS)
IZCIPVRITILER, O) GO
TELDSTILYLEQ L AMINY G
NAD(T) RO

IOCRR=1

INR=[S(I¥-1

WRITECL, (3 INK
MAKEY (IS)) =R (KISFRE , MRKEY{IS (I)
IX=IRMMR]y

Ty=IROWNG(IX)

Txx=Ix+i

IYY=IX+1Y

DO 72 Ki=IXX,IvY

[F(ROWELL (K%),EQ,0,0) GO TO 72
RIOWELL (K1) =) ,0

JR=TROWND (K1)

CIx=1COLMK (JR)

JY=IZOLND(JX)

JES=JX+1

JLL=TX+JY

D) 73 K2=JSE,JLL
IFCICALNDIKZ) B, I QU TD 73
COLELL (M2 =0, 0
NCB{JRI=XCD(IR)~1

w2=Ju

=1
CiIMTINUE

IZ(LOTNRLGED, L) O TO BL
[F{IFRSS, k. 1) GO TO 81
G3 T 100

STEP (7} 444

PERFORMING THE SIMPLEX ITERATION ,,.

CWRITE(1,7)

R=1/COLELL(KT)

1E=0

IW=1

TRIW=2
SROWMK C TROW = TW
JX=IROWMK (1)
JY=T1ROWNDCIX}

JR=JX+1

JO=JX+IY

ROWELS (IWY=ROWELL{JX)
TW=Tu+t

D0 8017 H=JR,J0
IF(ROWELL (K),EQ,0,0) SO TO 8017

C JA=TROUNGIR)

IF{JA,NE,J) GO TO 8117
ROWELL (K)=R

ROWELJ (IW) =R
JROWNGC[W)=JA

TW=IW+1

IE=IE+1
JNCDTARY=INCD(JA)+]
G0 TH 35:7
ROWELL (K)=R*ROWELL (K}
ROWELJ{IW)=ROWELL{K)
JROWNO(IW)=JA

TW=1uW+1

T1E=1E+1
JNCDCIA)=INCD(JAY ¢1

m

ousol: JNCD(JAI=JNCD (IR} +]
HOS02:8017 CONTINUE

Pl ltax RHSITQ) =R*RHS{IJ}

DOso4a: JROWNDC1)=1E

LUS0SLIC

0GS0s1 0

D07 ERSL{IROWI =RMS {17

0508 MO

SOS09;

wIloy

w5117

513; 07 3070 [R=D, 84

365147 - IFALALES, D2 B0 Y6 a0v%

plal-44-1] IF(NRDIID) &0, 0 50 TO 3070
msis

5174

SIS

U1

WI204 W L)

5213 IV={RIWNI(IX)

WS22: ROWELJCIZy=RQUELL (T X)

hir vt JEY=0

WN324¢ Je=Ix+1

EES JL=IX+1Y

032483 D3 8170 KS=J3,JL

MEITY IF{IROWNG{ES) JNE,JY G T2 8170
blesled-H IF(ROWELL (KS),EQ,0,0) GO T3 8770
WiBZ29: JPV=KS

NSINIETTO KS=JL .
53138170 CONTINUE

10532:C

WS3IIIC

0334 K=Js

16535 D 8171 JA=1,NCOL

0SI4At IF{JAEQ, Iy G 1o 3iwd

10337 IPV=0

105283 JR=2

155398 S+ JR0WNDI(L)

HT40 T 8172 #1=JK, TG)
05414 F{JRDWNCIME) JHELJAY OO T 2T
05423 IPY=KL

034354 ®i=dQ

054438872 CONTINCE

0545:C

QT44a L

0547 IF(IATIIAYLED. L) GO T0 2178
05483 IF(IPY, S Gy G0 0 8178

05493 CUIM=C{IRm) -RONELSLIPVI*LID
03501 JRTA) =L

G5513C

055238178 IF(IROWNGIH),NE,JAY GO T2 2179
033316

0554:¢

0555 CIF(ROMELL (K, £9,0,0) GO T3 2173
033543 IF{JPV,EQ 0IR[PV, ET,0) GO TD 8104
05571 ROWELJ ([WI=ROWELL LK ~ROWELL
0538} ITF(RGWELI(TW) ,LE, 00, LE-8, AND, R T D IE-S) QU 0 Alvs
559 GO 7o 8173

P360:8173 IF(NCD{JAY . 53,0y 50 TO 8174
561 IF(IPV,EQOL,OR, TPV, EG, DY &
15628 RLCUELT{ T = -ROWELL ISP/ *

29631 G T 8175

054418174 ROWELJ(IW)=ROWELLLKY

1565 GITO BL7E

V56618177 IFCIROWNOCK) ,NE,JA) GO TO 81734
567 IF{JPV.EQ.D) GO TO 81758

15483 ! ROWELJ(IW) =-R*ROWELLLJPV)
56918178 JROWNO!(IWI=JA

95701 - 1W=Ius1

35718 IE=IE+1 : :
35728 JNCD(IAYI=JNCDE JA) + -
ISTIIB176 KaKs! !
15748 o oTe 3171

157518179 IF(NCDCJA) (EX,0) GO 1O 8171

ISTLY IF(JRVED, O, OR, PV, EQ,.C) S0 D B0

3773 ROWELT(IW)==RUWELL { SRV) SROWELI (15

15784 JROWND(Iw:=JA

15791 IW={W+1

5803 TE=1E+

5813 JNCD{JA)=INCD (JH) 41

58218171 CONTINUE

58I

15841C

sasy JROWMK (TROWI=TZ

5887 JROMWND(IZ)=IE

IS8T NRDD(T ROWI=JROWNI(I Z

5881 IFLIPV,EN,O) G TO B771

1589 ¢ RHS{IA)=RHS(IA) ~ROWELL (JPVI #RHS (1)
1$90:8771 RHS51{IRCW) =RHS(TA)

15913 ISS(IROWI=IS(IA)

15928 IDDX(IROWISIDX([H)

SFTRO70 CONTINUE

5741 . OOl ==RACT)

5953 NRW=IROW

5961C

597:C

5983¢ 172
599:C

800:C

36013
26023
16038
26048
2605
2406
W07
BEINE: 34
2GSy
15103
&1L
12t

161318072

161418091

K -H

b4 C

WBiTy
418y
16194
208
oS
16228
eIt
h24
b25
b26}
627
L28¢
629!
630
831
5321
4Z31

6348 . -

&33%

5418095
463718094

6538;
6393

54038093

8413C
54231C
54310
q44
545}
h44}
54730
54830
54910
P
5511
3528
133
154

y3T18095

S63C
37IC

5816

59
-1E
bl
&2
&SI
641C

Ja2=0
D 80%L I1=2,NRV

TROWMKAT L) =JROWMK (T T

fx=lriwmd (11

ROWELL (X)) =ROWELS < IX1

TRIWNICT R y=JROWHEI LK)
Iv=1ROWNDEIX)
Txx=lx+l

IRACIRENS

00 8092 K2=[KX,1vy
[ARNUND{H2) = JROWNG (K2
ROWELL (2 =ROWELT (K Z)
CINTINVE

CUNT DNUE

N=1
Db 8093 J1=1,MN0u

IF(NCD0A1:,E0,0) G0 70 493

oM (1) =N
IZ=N

N=N+:

Dy 8094 11=2,NRW
JA=TROWHK (T 1)
Sy=TROWMDETX)
JAX=Ji+1
JYY=JKe]Y

DO 2095 B=JAK,JrY

IFCIROWNDCK) (NE, J1) G0 TO 8095

COLELL (N)=ROWELL (K)
ICOLND(N)=]]

N=N+1

K=JYY

CONTINUIE

CONTINUE
ICOLNOCIZY=N-TT-1

IF(COTL) LT, -0, 12~5) JRZ=1

CONTINUE

ISTLR=IS5(Z}
ISS(2)=IC(J}
I2JI=I5T0R

BO 80%a [AGW=Z,NRW
ISCIROWI =T SSCIROW)
RHS{THIWI=RHS 1 (I ROW}
NREDCIRGW)Y =NRDD ([ROW)
IDX{IROW)=IDDX (TROW)
CINT [MUE

G0OTO Y

RETURN
END

173

[10) 4

SUBROUTINE SeER

0021 $INSERT SCICON:SHPDFFARRMS

003: SINSERT SCICIN>S>PDRMEKEY EXTENDED WILLIAMS

QU4 SINSERT
005 $INSERT

DOS3EINSERT

0073 $INSERT
OOFIVEIRT

JUQ'EA\SEhT

S3ETH

0112

0123

0134

014 REML*S Hhi‘l#&*

Q153 ZAlL*8 L(ﬁ 2

014} REAL*Y (S;;)

0171 REAL*S wa' 12

o018 REAL+S R 0(512y

019; REAL*S RW{S12}

20 RERL*E RU(SLZE:

0Z1: REAL*3 R(S12},FP(512)

C22} REAL*E N(312),0P(5t2)

0238 SEAL=E SCI512)

024 REAL*8 127({512)

CZ5t REAL%8 CT(312)

026: REAL=*S X(S12)

0278 REAL*8 #3,58,WT,uT,DFC,DFU, DFE, ELML L ELM2, AMIN
nZa) INTEGER#*Z [COLNGIO48)

0293 INTEGER#Z IROWND(Z2048)

0304 INTECER*Z [0OLMKALSLZ)

0314 IROUMK(SEZ)

0z24 HKA{S12)

033 2 KLLSL2)

D34 S -1 5. el

035! JONt312)

DIbt an\..g)

D374 Jthl

038 M7 EZ;ER*"J 2(3!::

0393 INTESER*2 2SC(512)

040y COMMON/ALAA L/ COLELL RIGWELL , TOOUNG, [AZwND, DTDUMK, JACWMH
0414 COMMON,ALARZ/ 5C, S, 2N, tHS, X, T, 70
042y COMMIN/RLLARS /KK KT, 195, JON, IRN, JV, 10, T8
0431 IIWMJN/PLHFM/U VE L R RUC, F L0, R, G, FE, R
0443 WRITE(?%)th\hﬂ
045:998 FDRmﬂT(:x,:E,:X.IZ)

Nas} A=1030020 .0

047:C

4830

049 NNROW=NROW 4+ {

naoL N=1

D514 wmy

52 D3 1500 JSEI=NNROW, N30

PSS =JSEQ-NEﬂu

2533 1Ic(Ji=J

55: TCOLMKET) =

3568 KLMEL =MSMEL (JSEQ) +MBKMER{ J2E)
157 kLﬂFL*MSMEL(JSEu+1)

1588 L=

1594 PO 1400 ILMEL=LMEl, L MEL

260 TRTCW=MRUME L TLMEL)

hEEH IPTIL=>PTME (T{MEL)

262 RS

2633 L=l+l

ETH TCOUNT N =T

hLLH ILELL UM r=PIIL CLRCOL

2664 IFQDOLELL (N, GT, 0,00 50 7T 1800
pLY & JCNCSY=ICN(I) +1

pLE-H ! TRN{IROW)=IRNCIROW) #1

269514600 CONTINUE

370 TCOLMD (i) =t

by H M (Ja=L

b IF(ANDOMTREY (JSEW) WDRBUBD) (EQ, 0y o T3 1830
DA IFOOL=MPTME{KLMEL - 1)

3743 COLELL () =PRCLLIPQOL)

1753 C{J)=~COLELL{K)

br-H CAT] SLLIH?

by £C(Jr=-COLELL (K}

bri-H IPDCL=MRWME (KLMEL 1)

79 IFCIPI0L L NE RPTFLL) 30 70 1640
8031650 ULJr=XX

Y813 GO TQ 1570

J82116860 L(T)=PAOL(IPRAL}

PBIL1ETO K=Kl +l

284 N=N+1

J8311500 CONTINUE

18643 W=1

87y DO 1700 I=2,NRLV

)88 RHS(I)-QETH(I)

)89 QI y=XX

704 PII =00

191y L=0

|z [ROWMK (])=y

93 [R=K

194 DO 1800 IIEQ=NNROW,NSEQ

1933 J=JSEG-NROW

1943 KLMEL=MSMEL { JEEQ } +MSKMEB(JSEL)
197 LLMEL=MSMEL{JSEQ+1)

981 DD 1900 TLMEL=KLMEL,LLMEL : 174
79 IROW=MRWME (I LMEL)

e H IF(IROW,NE,I) GO TO 1900

METHCD

013 LaL+l

filetd K=K+l

03 IPCAL=MPTME ([LMEL)
DLH ROWELL () =FO0LL TECTL)
s iRDwNQ(K}=J

0&: © o ILMEL=LLMEL

0731900 tnNTlNHE
083 1800

49} IRDwND(lR)-L

HOH £200)=1

11 H K1

1231700 COnNTINGE

13:C

L3

150

148 WRITE(L,2501)
VTIZ001 PORMAT(IN,'FAKT A7)
id) WRITE(L,2002)
$912002 FORMATISX, ! FHASE 1*)
2603 PR

3,12

R o8

Ly}

SETTING THS SOULUMNG TN AN ADSENDINN: (SIZR A7
T THEIR COST COZFSIIIENTS .,

[l

o1 Ji=1,Ncol

AMIN=XA

20 2 J2=1,5000
[F(ILEI2Y,EQ, 0 60 T 2
[Z(AMIN,LE, COID): U0 T0 2
AMIN=T(J2)

J=312

2. CONTINUE

IVeI1=g

HARIED)

CONTINUE

1009 WRITE(L,20uI) [PASS

DO 1600 Jel=1, Nl
[C(IG)=JG1

J=JYiIG1)

TF(ISCeT) B9, 1,0/, ISC0J),

[y N R e Ry
l"u

m=I r‘IJL("IH(J)

COUPRV AL WD ORAP A RURN D GE~NNFURUNSSOBAr RN -SSR AP R RUMN TS 00NN RHEAMN S OB N BR300~ WD

IFIMKAS) (B, 0) G 70 1004
IF(IFASS, 23,10 6D 70 ond

TIGHTENING THE SRIMAL sCUNDS ..

OO0 0o

UP(JTI=ULT}

DO 901 H=IN,IN
TIF(COLELL (K} ,LE,0,0) 60 TO 901
1=ICOLNO(K)

IF{RWCII) ,EQ,~XX) GO TA 901
UT=(RHSLI ¥ -RWCAT }) FCOLELL(K)
IF(UP{J},LE,UT} GO TO %01
UR(JY=UT

901 TONTINUE

.
c
c
[FLUFEI) \NE, 0,00 GO T3 902
UL31=0,0
X(JI=uen
URITE(1,202) J,x(J)
o0 TO 140
9027 IF(IFHASE,EY,1) 60 TQ 1004
IFGUP LI, GE,U(1)) GO T 1004
ULH=URLT)
1FSACT=1
WRTTE(1,590)J,U8 ()
90 FORMATIIX,’ UPFER EUUND (13,7)TIGRTENED 27, 714.2)

y e T

CALCULATING THE UPFER AND LOWER =057 1€ “HE VARISELE |
004 PS=0.0
45=0,0
IF(KK{T) EQ, D) GO TO L1006
DO 10 K=IN,In
[=1C0LNO(K) 175
IF(COLELL (K}) 30,10,20 :
20 JF=K

0201 IFO3¢1) EQ, XX OR, IS, EQ. XX) GO T3 L2
0202 QS alS+COLELL(K) #Qr 1)

02038 Gy T 14

204113 NS=xx

0205114 IF(PSED, -XX) G2 TD 30

02041 ES=FS+lOLELL (K #P (]}

2207 GOTd 10

02081 Z0 JF =

n209; IFOICI) 50, XX OR, PG, EQ, =2X) GO T2 15
02104 CO=Et e ELL LRI ¥

S 8 G2 ™I ie

514 s -] Fe=-aX

0213116 IFOOS.EL. N0 GD 19 Lo
0214} TSRS R IGLELL (R R L)
sz1sie NE '

ST H
92175
JZisc
Kzt F1ulhG wARIABLES AT T-ELR SunDE .,
DREOT

JE2LIANE ISIRS,GT,LMN) GO TO 10

12224 CIFOIS,LTLOY GO D 130

223 . Gl TA 1003

2283120 X(D=0,0

JZ23: [FEACT=1

222488 WRITE(1,160) J, X0

2274160 FORMATIIX P X(Y 13,7 5= ,F14,5,34," V"]
I2283 G0 T 140

12293130 IFQUM) EQXX) GO T 170

12308 X{Jy=uidy

12313 IFSACT=1

2328 WRITE (1,180 T, X100}

12333140 DO & ¥=IN,IM

1234 I=I00ND KD :

12338 IF(S{R) NE 0. 0) AHSIII=RHS(I)-8(KI#X();
12T SiA4)=0,0

2378 IFQOOLELL (KL, EQ, D00 G2 1D &

2T COLELL{x)=0,0

1239t AN LRCWME (D)

124014 M= ROWND (NN

241y INN=NN+1

12423 IMM=Ri MM

12433 D2 ssss TH=INN, IMM

124418 IFCIRIOWND (L) WNE, T 50 V0 ook
1245 RHE(I)=RHS (I) ~ROVELL A TKI1#X ()

1244 EETA{I)=EETAIL)-ROMELL{ TR *X (]}
12473 IF(ROWELL (I, LT,0,0) IAMITI=IRN(I)-!
12488 REWELL(IKI=0,0

12493 KZ{I)=KZ(I}=1

12503 TH=1"™

23116666 CONTINUE

123216 CONT INE

125314 KK{J)=0

12542 ISCili=1

1255} JSEQ=NROW+J

12563 MCKEY ¢ JSEQ)=AND (MCKEY (JSEQ) ,KIBART)
2574 5O TO 1000

2381170 WRITE(1,150) J :
2591150 FORMATIIX,*X(* 13,7 IS UNROUNDED')

2608 S G0 T 999

2e11C

W2

263:C

26431005 IF({IFART.EQ,1) GO TO I01
2458 IF(2¢),EQ,0,00 6O TR 30t
2668 IF(KK(J;,NEL 1) GO TO 70t
2678 IF{UCT) NE, XX) GO TO 301
25850+

269:C

270:C .

27110 REPACING SINGLETON COLUMN BY SHAROW FRICE ..
2720

27350

2741 1= COLNDL)

2753 IF(COLELLIJF) Y 318,201,319
2751318 UT=C(J)/COLELLLJF)

2778 IF(UT,GE, Q1)) &0 o 3000
278 SNIJFY=COLELL (JF}

2794 ISCi=2

2801 QOI=UT

2814 - IFSALT=Y

2824 INROW=]~1 .

2834 WRITECL,S14) INROW, (L)

2841314 FORMAT(3X,' UFPER SAADOW FRICE 0N CONSTRAINT(! I3,)= ,F14,3)
i4:)-H [FS=1

2853 I1D8=t

2873 1D5C2a1

288: GO TI Zzoo0

BFITLT WT=C(J)/COLELL(JF)
2903 IF(WT,LE,P(I}) GO TO J000
291 SNCJIF)=COLELL(JF)

92: ISC{T) =2

peAH PLT) =Wt

941 IFSACT=1

195 [NROW=T -1

96 WRITE(L,Z17) INROW,P(I)

97317 FORMAT(3X,* LOWER SHADOW FRICE ON CONSTRAINT(? 13,7 =" ,Fi4,3)
- H IPS=1

94 I1DS=1

003 IDSCZ2=1 : . 1 76

G TO 2200
ISTENMING T=E UFCER AND LIWER SHADDW SRICS .,
PP & R AR A8 o)

CFOCOSY L ERL O, 0,80, 78, 80,0,0) G T 3004

DO 70 K=IN,IM
1p=1

[=I oLt
FEUD=P(I
QPCL)=at)
IFOZILELL KOy 731,730,732
WY=L e OT(S) -08) FCOLELL tH)
IF(WT,LE,PP(L) Y GOQ T 750
FR{IY=WT

IF=1

. G T g

325:721 UT=R I 0T}~ Q”‘

LELLLK)
126 IFIUT,GR,QP(I) G2 TO 730
Z7T QPLIH=UT
3282 =1
I2PIVIS IFCIPART.ESL L) S T YIS

IZ0: DYy GROoTo YIS
RIS

T2t

3331 Jx=1RwWMH LD

i34 Sy=TROIWRG T

5353 JG=Jx+1

b Ju=Jx+iyY

5371 20 734 we=ls,Ju

1383 IF (ROW R ERL DT G T 7L
e H ! 1«2}

LH

414) -RIWELLAMIY e80T
1823 RIOWELL =0,

1433 Ix= ILGLMH(JQ)

144 1Yl COLNICTX)

[L-H IS=IX+1

LT3 IL=IX+1Y

a7 DD 7T HI=IS,IL

£ IF(ICOLND (KT NE, DY 20 T9 748
4 H IF(COLELL (K3),LT.¢,0) JIN{IJQ)=JON(J -1
30 S{KT=UOLELL(KT)

= . COLELL (KZ)=0,0

324 HROTY =R (T -1

531 K3=IL

54477 TIONTINUE
331734 CONTINUE

364 KZ(I)=0
571 IRN(L)=0
381 LFSACTE]
392 INQDU"I 1
501 [

11735 IF(T

621 IS rf,ﬂ~ G TE 77

8T IF(PPILY,LE, AL 62 T 720

543 FOIy=RRLLD

631" [PERcT=1

- INRW=1 -

a71 WRITE{1,763) INROW,P(I)

&8 + 1DSC2=t .

693 60 TQ 720

701737 IF(1Q,€3,0) Gu TO 730

718 IFQPLIY,GE,G{I}) 53 TO 730)
724 L) =R 7 i
733 IPSACT=1 -
743 INASWe] -1

738 WRITE(S,745) INROW,GCT)

741 10SC2st

774730 CONTINVE

7810

79:C

801763 FORMAT(3X,'LOWER SHADOW FRICE O ©0- - f3lx=+, 13 vTroqTEMED TO,
a1y *F14,3)

821745 FORMAT(IX,’UFFER SHADDW SRICE DN 0O%% =iswT 13, TIGHTENED Ti*,
83 *F14,3)

LE H

15

LS

273C A COMPARISON BETWEEN THE COLUMMS ,,,
B:C

8913000 IFCISC(T) ,EQ,3) <O TO 3200

joy IB=0

71 IF(IDSCZ,EG,0: a0 TO 3200

bt TFICCLS), g, 0,0, AND, JONCT) (EQ,0) 5 T 2022
[EFLIGT, EQ,N00L) GU TS 2200

141 :

21C

-3

" JCL=JG141

g DO 100 JazaJoL, NCDL

L3 J2=IV(JG2)

03 IF(RKIJ2),EQ, 00 GO T3 3100 177

401}
402
407;C
40020
40510
q06;
407
408;
09
410}
411
812
313
a13;
133y
416¢
LI
4183
3193
420}
422,
4231
324:2224
[ARH
1248
278
128
1291
12033222
121
1728
13313224
43413220
135
1348}
1370
et H
1395
1043222
[Z3H

18213101

M3
1441
1451
LM
T
148
ey
150
151
1521
53t
544

33

S84

37

533

591

[-LeH

&1
6213033
§I13011
G4

-
14
&710
£813100
694
70
T1:C
72:C
73C
744¢
73:C
7613200
774

751
731810
GOy

a1

821
8318101
-LH
2833812
8414

87;

883
8918120
901811
it
7210
33iC
74451000
73:C
HEH
7t

131

[4]

W0t

IFUISCOI2),EQ,1,0R, ISC(IZ) EQ, 2y w0 ~3 Z100

TFLJS0(52),80,3) 50 To 3100

e Wl e U O
{F(OFC,LT, 0,0 G0 TO 100
LFU=D, 0

[E=0

I T220 I=2 NRCW

IFC(KZ(LY ,EQ,0F &) TO IZ20
LETEGL,0

ELM1=0,0

R Rt)
JS Jx+l
Sl
05 3221 K=JS5,JL

TE(RCWELL G 20, 0,0 G 7O 222
SEETRIWNOIR)
IFUJR,ES,J2) I
FUIRLED,) ELMZ=ROWELL (K}
DUNTINGE
DFE=ELM]-ELM2
IF(DFE,2,9,15-3} 7
HE OIS IN-DN & § I e
DFU=QFU+DFEXGILD)
G T 3220
E=1
T=NRIOW
G0 oTa IEN0
DFU=0FL4+DFE*F{L)
CONTINVE
IF(IE B, 1) GO T2 2100
IF{DFC,LE,DF\Y GO T Zico

IPSACT=4

WRITE(L, 2000 J
ENRMATON, PR, LS, EXTRANEDUS?
JSEN=NR]

FCREY CSEEC=AND (MCKEY (JT2E2) CFART)
HKtJ)=0

1SC{Sr=

DO Z011 K1=IN,IN
IECCCLELL (ML ER. 0,00 B30 13 01l
COLELL (K1)=0,0

SU11=0,0

DI=sIRDLNGIRLY

IX=TRCWMKITL)

| TYSIRIUNG (20D

wE=Jxet
Ja=Ihe v
DI L0ST «2=38,JL
IF(IRQWND (K2, 8E,J) G 7 2203
TFORMWEL L2, T, 0,0) IRK{Itr=lmnelta=1
RUNELL(HZ)'O o
=IOl -y
42=JL
CONTINJE
CONTINUE
IB=1
JOZ=NCOL

CONTINUE
IF(IB,EQ. 1) GO T2 1000

CALCULATING THE UPFER AND LQWER ALCTIVITY CONETR

00 851 K=Ix,Im

[=[CALNG (4

IFICOLELL (k) 410,811,812
IF(ULD) EQ, XX} S i 8101
ISCRWCD) S0, XX G TO 8ii
RU LT) 2RWT 3 +GOLELL () #I(T)
G3 TH 811

RWEI)=-XX

GO TO &1t

IF(ULI) EQ, XX} GO T 8120
IF(RUILY,EQ,XX) 6 TO 81t
RU (1) =RU{T) +COLELL (1) *#U ()
GO TO &1

RU{E)=XX

CENTINE

CONTINUE

DO 1028 [=2,NROY
RUC{T}=RW(T)
RUCLT }=RU(T)
RW(T}=0,0

RAINT ., .

178

a1
$211028
sk
04
o5l
-H
D7
- H W
09:0
P
11
1Z:

14;

153

Y

T

154

19

201

21!
22:112
3
243
5t
2631110
27
283
FH
0%

3

123

i3

I8
b-H
63
A

r

0t

41113

ai121
1119

RU(I)=2,0
CONTINGE
I1B5Ca=

T&rIPARTVEC, 1) F2 70 D000

REMIVING SEDUNDANT [OMSVRHINTE o,

D) Ten) [1=2,NALY

(FWZE55,E5,00 S0 TG 2800

IA=TRCWMKOT L)

Ty={Raenry LK)

I

It=[x+lY

IFCPLTLY NS, 0, 2) 60 7% 1il
IF(RASCILY EQ, 0, G,AND, [RNILy EQ, 0 50 T 1l
IFQUCLIL) NE XX) O T iz
TFLRUTILL) LT RHSEIL)) G T3 110

IF(RUCITLY LT, ARG (I L), OND,FEI T, 6T.0, 00060 T2 111
GO OTD 3400

Do 139 IK=IS,IL :
IF(ROWELLCIR) ,EQ, 0,0 G0 7] 123
ROWELL (I¥)=0,0

JR=TROWNGCIK)

N=[TILMR(GR)

M=l EOLNCD(ND

NS+

ME=N+

DD 1255 U=NF, M5

IF¢ KD LNE DLy G OTD LTRSS
TE(OOLELL (M) LT, 0,0y JOENCIR) =D TR -1
COLELL{mi=0,0

WU JR)=WH{ TR -1

HEMS

THNTINUVE

CONTINGE

KI{IL)wE

IRNGIL) =0

IPSACT=1

TNRCW=[1-2

WRITZ{1, 114 TNROY

MRKEY({11)=0R (KREFRE, MRHNEY (21))
InSCe= :
GoTO 3400

DO 1:5 TK=I§,IL
IF(ROWELL {1y ,EQ,0,0) GO T 1313
JE=I ROWNQCTK)

Je=ICOLMK AT)
CHJ1I=COT1) -ROVELL (T¥S+R (I 1)
ROWELL(IK)=0,0
JL=FCOLND(TS)

NS=JG+1

NL=JS+JL

DO 1155 K=NS,NL
TF(ICOLNG(w) NELTLY G2 TO $188
IFUCILSLL O, LT, 0,00 JUNGSLI=IgN S -1
SR)=I0OLELL)

COLELL (K =0,

Wi (J1isWi(Ty =1

JSC(J=3

H=ENL

CONTINUE

CONTINUVE

KZ{I1)=0

IRN(I1 =0

PISS RIS SN

iDs=t

GO 70 114

DD 117 IK=I5,IL
IF(ROWVELL (1K) €4, C¢,0) G0 TQ 117
JrIROWNG (1)

JX=ICOLMKLT)

JY=TOOLNDOTY)

JS=J A+

JL=IX+TY

D0 119 K195, JL

IF(COLELL {K1),EQ,0,0) GO T2 119
COLELL{K1}=3,0

S(k1)=0,0

ITE=ICOLND (K] }

Ix=IROWMKITZ)

IY=IROWNG(IN)

IXX=0X+1

Iyy=IX+1Y

DO 12 MI=1%X,IYY
TF(IRGWNO(KZ)Y NE, J) GO TQ {21
IF(ROWELL (W2),LT,0.0) IRN{IZ)=IRN(IZ)=?
ROWELL{KZ)=0,0

KZ{I2)=KZ(I2)~1

KZ=1YY

CONTINVE

CONTENGE

- ISC(J)=1

KK(J)=0
JtJ)=0,0

179

EOEII L051=000,

UANZ Y © WRITELD,202) J, X0}
nueulitl? LONTINUE

DOA04 Y «2CI1)=0

NUs0S: il =0
004045114 I=8ACT=st

00607 TMRW=I1-1

O0aG8Y LIS WRITZL, 118) 1WA
ORENTILILS FORMATIIX, P VINSTRAINT ¢, 13,X," 15 AREDUNDANTY)
Noei0: 1D8C2=1

DLl

DOR1ZITA00 CTNFINUE

QGA1332 .
a0e1430

Jus150 REPLACING SINGLETDN <ifw Z¥ PRIMAL SOLMD ..
40/ SV T H

Q06170)

036132000 DA 2090 [=Z,NRCW

Q04198 IFGHI0IY NEL LY B0 T 200

a2 IELISNCLY NE, 0 52 TD 200

el g TRCR (I HE, O, 0 0R 4Dy Nz, XX A T8 00
ehe22y e

QHEZEE s RGN T)

G0e24: =] RN

POy TMM=MN+ 1

AL24] AN

G0e2T: IH=INN, MM

206288 DM LE, S) i I3

00527 vt L3

SOET0Y

UOA31IZ80 DONTINUJE

COLI2Y IFQIF,EQ.D) G2 T2 270

08I} B LIV =Rrg (1) FRIELUCTF)

00634 IFLURCTEY GELUIEY) G0 T D

008338 1PSACT=1

Mol 1Y W I =02

GOLIT! WRITE(L,291) J2,u0d2)

QUEISIZ9Y FURMATIZN, Y UFPER BOUND X{',I13,7) =',~14,3,2Y,r 11
el H IFGK{I2) NE, 1) GO T2 203

D040 IFIC(TI2) LT, 0,00 G0 TO 204

oQb411: X1d2y=0iJ2)

COs42Z: GO TO 205

GOBAZIZO4 A(J2i=0,0

008443205 [SC(I2:=

00645: WRITE(L,202) J2,%J2)
0046461202 FORMAT(IK,' X, 12,7y =' ,Fi4,3)
O0&84TI203 ROVELL(JF120,0 '

00648 KZ(I}¥=0

00649 JX=T0 MK AS2)

00&50L IY=ICOLND{IX)

O0a5L JAKRTKr

o0e52: JYY=JX+JY

BU&33I: OO 201 w2=JKX, vy

00634} IFCITILNDIR2) ,NE, D) GO YT 20
Q&3S COUELL(H2:=0,0

QU436 3{UZY=0,0

Q0457 KREJZ) =M (J2) -1

204658

QOESF3 201

DI--tebpsalal

Q4410 .

COAGZLE

QOLE5LE

0066441001 IF(IFSACT,E3.0) OO T 1223
00665 I FSACT =

[elalT IFR8S=IPASS+]

00647 IF{IPART,.EQ. 1) GO TO 1009
00688 IF(IPS.EQ.0) GO TO 1009
00649 1P5=0

70} DD 1033 J3=! ,NCOL

00871} IF(ISC(II),NE,2) GO TQ 1075
00572 IF(EKOIT) B, 00 67 TO 1025
00873 N=1COLMK{JIZ)

GO&TS: M=ICOLND(N)

CO&7TS: NS=N+1

CO&TE! MS=N+M

Q0&77: DD 1034 H=N3, M5

005781 IF(SN{K)},EQ,0,0)60 TO 1035
004a7Y: TF(COLELLAK) ,L7,0,0) JONGIZy=2JONGIT) -1
OC&E0 COLELL(KI=0,0

OG681 4 L KRGS =0

00882 I=ITOUNO(K)

00683%; NN=IROWMK (I}

006844 MM=1 RCWNI (NN

G685 TNN=NN+]

0C6BGY L IMM=NN M

00487} DO 1234 IK=INN, MM

0046881 IF(IROWND(IM) (NE,J3) B 72 1I0n
006589 IF(ROWELL (IR, ¥, 0,00 IRNCII=IRNGLT L
004901 ROWELL (IK)=0,0

00691 KI(Ty=W2({i)=1

00492 TH=I1M

0069331336 CONTINUE
0049451036 CONTINUE
0069311035 CONTINUE

00898} GO TD 1009

0069711008 IF(IPASS,GT,1) GO TD 1010
006983 IFSACT=Q

006993 IPASS=IPASS+1

00700; GO, T 1009

19n

07111010
OTIZE
0705,
0704}
070%;
07081
QIGT
07083
0709
27104
0T
0TIy
0713,
a7143
L7L5e
G716t
0747y

g -4
0719}
0720
0728
n722:
72T
0FZ4y
0725
a726¢
0727
07283
0729:4888
L7308
07T11608
732
0733
734
wrIs:
D7IL:
uIIT:
2728
2739:
J740;
1741
27423
4z
2744: .
174336088
17453609
ITAT 600
174581605
¥749;
ITS
7511
27521607
1753
1754

173512004 .

1754
Y737
»738:
1755t
1760
1761}
V7628
176311113
17564
1786511012
ErTH
17671200%
17483
L

i +H
7711999
Y772
o
Firk HY
775

IF(IFHASE ,EQ, 0} GO TO 1012
IF{IPART ,EQ, 1JLG T2 999
[F(TI2S,EQ,0) GO TO 999

DI 05 J=1,NC00L

JETCN =0 .
IFISE(T).E0.2) G0 70 &03
MN=TCOLM]

ALNOCNG

4

[0 854 W=N3, M3
H J{KD

EANEE AN LS
LB=1 Rl
Ig=[RCWNQUIR)

T

@=

-
™ 2l

D 43883 1D=JB,JG

IFLIROWNSCID)Y WNELS) 6T TD 6385
FOWELLL{ID)=SN(H}
IF(ROWELLAIDY (LT, 0,00 IS I =IrN(I)+1
WICr=w2(I+}

I0=JG

CONTINUE

GO TN 09

IFUSIE) EQ,0.0) GO T o0
COLELL () =SK)
TF(COLELLCRY LT, 0,00 JOnehy=l0n)+
KK(J) = { T+l

IX=IROWMKI(L)

I¥Y=1RCUNG{IX)

JS=IX+1-

JL=Ix+lY

L2 4023 [2=J5,JL
TF(IARGWNACIZ) (NE, 2 50 75 80aH
RIELLLIK 28 (K)
IS(ROWELLIN) LT, 0,0) IEN{I)=LRNtI+1
WItD)=HE T+l

I2=3L

CONTINUVE

S12r=32)

SINTIMUVE

SONTINUE

D0 S0UT T=T, M '
Pil}=0,0

AT y=XX

CONTINUE

IFART=1

WRITE(1,2004}

FORMAT (ZX,* FART &)

IPHASE=D

WRITE(1,2002)

IPASS=0

IFSACT=0

IPASS=IPASS+1

DI 1313 J=1,NCOL

JEC{I)=0

CEMTINVE

GO TO 1009

IFHASE=1

WRITE(1,2005}

FORMAT{3X ,' PHASE 24

IPASS=1

1PSACT =0

GO T 1009

RETURN

END

181

Y 3 3

RO $INSERT
BO0T I SINSERT
O004 4 $INSERT
o005 SINSERT
00Uh; FINSERT
U7 L SINSERT
(OB EIMSERT

JEROUTINE USER

SCICONSYPDPPARANS

BCIOIND SR PRFMCKEY
E LPGRITIN
= §¥FDF

53 EDOUSERLY

SIPDRMATHL Y

Rl

PREPROCESSING

G0 INSERT G0l

Q010
00113
0o12:
0014
0014}
no1s:
Q0l&:
uoLT:
o018y
noLe
0G2o;
opzZl
nN22y
Vo234
G241
JUZ5H
202e;
plird 43
W28}
hleka 3
1030
0Z13
Bl
033
W34
20635
0364
03T
038}
WIF;
1040
1041
mwazs
043
044}
0451998
Hag!
0474
W48 3
JOE L
1050t
051
0528
1053}
ML H
W55
0543
L5773
0348
0591
[FELH
0411
s34
063}
044
085¢
0643
067

048 +

069y
070114600
07t
0724
073
074;
0753
07531450
i £
D78
79t
JBOLLILED
o1y
1821150
283:C
J84:C
P11
843
)87
J884

B H

b H

1913

2

93

1943

95

1951

974

17984

1993

00}

CCOMMIN/COMAL /T

CUN:SAPDFEETA
FERL#E RMS(S12)
REAL*S COLELL 1 2045)
REMAL*S ROJELL(20486)
REAL*8 Wi312)
REARL*8 WFIi512:
REAL*S WIS1D)
REAL*S LP({512)
REAL*S RL{S512)
REAL*8 RALL(S12)
REAL#*8 X{(312)
REAL®*S DFE
REAL*E DFR
REAL*3 CDFL
REAL#*3 LT
REAL*E WT
REAL*8 ELM]
REAL*S ELMZ
! LOOLND(ZOA8)

2 OTOOLME S
INTEGER®Z IADUNC(ZN48)
INTEGER®Z IRowm=is)
INTEGER*Z #K(512}

j= KILS12:
INTEGESR*2 WlIn{
INTEGER®Z JIN(Z00)
INTEGER=*Z IOCRUCSLE)
INTECER#*Z [ICRLGS12)
INTEGER#Z [V(512}
INTEGER®Z IR{3.2}
LELL , RCWELL
COMMONACOME L/ T 200N, LRIWNGD
COMMON/ CEMG 7 TEOLMKE, TROWMK, Wi, K2, 128, JEN, O
COMMON ADOMDL /4, WP, L R X
ComMmon/COME LRl , RLEC, RHS
WRTTE(1,798) NROW,NSZY
FORMART(2X,13,3%,13)
1X=1000000,0
NNROW=NROW+ 3
IFASS=1
N=1
K=l
D0 1500 JSEQG=NNRUW, NSEQ
J=JSEQ-NROY
ToGLme (J)=3
KLMEL=MSMEL (JSE QY +MSKIMER(JSED)
LLMEL=MSMEL (JEES+1)
L=0
DO 1600 [LMEL=KLWEL,LiMEL
TRIMW=MRWME ([LMEL)
IF(IRDW,EQ, 1) GO TO 1600
IPOCL=MP T2 ([LMEL)
N=N+1
velvl
COLELL (N)=FO0L (TFOOL)
TLOLNC INY =T ROW
MHIJY=KK (] +1
KICIRUM)=KI(IROWi+]
IF(COLELL (NS, GT,0,1E-8) GO TO 1600
JINGI)=JINCT) #1
KIN(TROWI =K IN{IROW) +1
CONTINUE
ICOLNG (K=
IF(AND{MCKEY (JSEQ) , KOBUBLY EQ, G 20 71 1850 5
LPOOL=MPTME (KLMEL-1)
COLELL (K)=FO0OLLIFDOL)
COLELL {K)=-COLELL(K)
IFOQL=MRWME (KLMEL-1)
[F{IPOOL,EG,KFTFLEy GO TO 1440
LTy =000 ¢ TR0l)
LR CJ=U()
K=K4L+1
NN+t
CONTINUE

LL=1

k=1

DO 1400 I=2,NROW
IR({)=I
RHS{I)=BETA(L)

- TROWMI (1 y=x

IC=0

o0 401 J=1,NCOL

N=ICOLMK(J}

M=TCOLNO(R)

IN=pN+1

IM=N+M

DO 1402 L=IN,IM

IFCICOLNDIL)Y NE,I) Gy 7O 1402
IC=IC+1

LL=LL+}

REDUCTION PROCEDURE

MR, TEERL, IV, IR

182

Q1oL
L0zt
Q103
DO H
Q105
0104651402
010711401
01033
Lo
01108
011131300
21123
(34844
D4z
QL5
Diiese
0117300
D118:2000
(AR N
gian
[AE S
a3 et 4
0123
N1243
01254
01253
n127:
0128:C
N1zZee
M304
manc
DEE2IC
D1ITLT00
M3
M35
136t
3137t
1xa;
AT
1401902,
41
21423
114323
1443
245:C
N4s1C
34750
11481595
1149390
3150 8%
51:380
ILSZISTY
MSIIC
NS4
nssic
MESHLTCS
137
1138,
159
11603
1HELET06
nez\
11634

164707

1165}
Y-1H
11471
11688 t
PY-LH
11703
17ty
1723
173
174
175
17481
1778
178;
1793
180
181:735
182:714
183: '
184
185
1843
187:iC
188
189:¢
1704901
1913C
192;C
19310
1941
195:0
196:C
197!
198}
199
200

ROWELL(LL»=COLELL(L Y
IROWNO(LL)Y=J

L=IM

IFROWELL(LL) LGT, 0,00 G 70 1402
RLETIaRLOT Y +ROVELL(LL ®UHT)
CoNTINUE

CIONTINUE

IRCuao =10

K=+ It+]

fiwil el

CONTIMIE

JFE=1

[0 =1

WRITE(Y,Z000) 1FASS

BIRwATIOX, PRPSE 0 I0)

e I R Y]

VIOJINGT) B, AND SOLELL oNY L LE, QO 1E-8) 6D TR TS

[0 901 w=1N,IM

TR QOILELL (M) ,E0,0,00 GO T2 w0t
T=LZ0LND () }
TFOIOLELL (K) LT, 0,00 33 T0 947
DFE=RHS{L) -RL LI
IFUDOLELL L) 6T, DFE) 20 "0 705
B0 10 901

RLM=RL (1) =COLELL (K #0(T
DFE=RHS{I) -RLM

ELM=-CALELL (K}

IF(ELM,5T,DFEY G T 706

GO T 901

FORMAT(IY, P LOWER BOUND {212, TIGHTEINGD TO' ,F14.23)
FORMAT (3K, UPPER BIUND {0, 1%,0) TIGHIZNED TO',F18,3)
ECOMAT(IN, P X0, 13,0y CXTRANEOQUS)
FORMAT(3X,* X (* 12,7 1% ,F13,5)

FORMATIZY, POONSTRARINTC D2, 7) REDUNDANT?

LRITE(L,585) I
JEED=NROW+J
Y (JSESQ) =RND (MUKEY (JEES KOEPRT)

GOoTS 707

XI=uin

WRITEL1,580) J, X103

JFX=1

DI 714 WIZ=IN,IM

E2=1COLND K2

IF{COLELL{K2) ,ER,D,0) GO TO 713
RLATZ2)=RLITZ2)-COLELL (KZ)*X(T)
RHS(I2)=RHS(I2}-COLELL(KZ)#*X{J)
BETA{E2}=BETA{IZ)=COLELL (K2)#X{.])
COLELL(K2)=0,0

N=IROWMK(I Z)

M=TROWND (M)

JN=N+]

Jh=n M

DG Ti5 KZ=JN,JM
IFCIRDWNGIKE) (NE, 53 S0 T 71S
IF(ROWELL (K3) LT, 0,00 RIN(IZ)=KINGIZ) -
RIWELL (MZi=0,0

KI(I2y=z2(I2)-1

WI=iM

SOMT INUE

CINTINUE

IFHASE=1

IDR=1

KK =G

KsIM

CONTINGE

IF(KK{J) ,EQ,0) GO TG 1

N=TCOLMK (T)

M=ICOLNG(N}] 83
[N=N+1

01! IMaN+M

W02 O3 W=IN,IM
WO IF(COLELLCK) ,E0,0,0) G3 TO 3
WZ20a TN)
HZ03C
MIZ0LIC
20T IEQCALE e, 6T, 0,0 50 T 4
0INGC
LI
2101 WTEL St RHG(T Y -RL (L)) ACOLELL (W0

2118 TFCSTLEWFW Y w7 3
212 WFOTI=INT(WT)
W2L3; IDERLCS =1
W24y L g B
W0I152
nz2isis
021714 UT=W TP+ (AHS (D -G 3) /COLELL L)
a8 IFGUT, GEUP(SY)y 50 TO 3
nzig: URCT)=InTiuT)
102208 1ACRU(T =2
22140
022245 B
022313 CONTINUE
o v *
0220
G226 IF(IOCRUGTY EQ, Q) GO TO 5
0227 WiJr=Wwp ()
02284 WRITE(L, 95 J, W)
0229} TocRL (Jy=a0
G230 [FLpSE=t
0231t LOR=1 .
02I2:5 OGRS VES, DY S0 TD 90l
02334 WTI=UR{d)
0234 VRITECL 900 [,0(0))
02331 TaCRUE)Y =0
OZTEL IRpHATE S
R2371 1DR=1
Q2Z8:L
021940
n240;C
02411903 DO 2 W=IN,IM
2424 PEOCALELL GO LR, 0,0 G0 702
02431 I=ICOLNDIK)
0244 IF(COLELL UKD LGT, 0,00 A0 TD 7
02454 RLC(D)=RLT (1Y +COLELL (M) Ut d)
D244 6 Tl 2
2477 RLCED)=RLE (L) #LOLSLL (K W)
024812 CONTINVE
0249:C
n230:C
25130
25211 CONTTNUE
225ZiC
J254:0
)2353C
1254 DO & T=2,NROW
1237} RL{I)=RLEAT)
12583 RLC(T)=0,0
125944 CONTINVE
126030
2b1E
126250
eI [FOJFX,€2.0) GO 1O 102
1264} JFX=0
12653 DO 101 I1s=2,NROW
1258 AMAX=0,0
1287 DO 102 I12=Z2,NROW
12683 « IF(IRUIZ).LEQ,O0) GO TO 102
12693 IF(AMAX ,CE,RHS(I2)) GO TO 102
12708 AMAX=RHS(IZ)
1271 I=12
12721102 CONTINUE
12733 IV{I1)=]
12743 IR(IY=0
12751101 CONTINUE
12743C
12771C
12781103 IF(IZR,EQ.0)} GO TO 999
12793 DO 104 IG1=2, NROW
12808 IR(IG1)=151
1281 I=Iv(IGt)
12821 IF(KI(IY,EQ0) GO TD 104
1283 ¢ IF(KZ{IY,EQ,KIN(I) Y GO TO 108
1284:C
12850
1284:C
12873 IF(IGL,EQ,NROW) GO TO 104
1288 IRL=1G1+1
1287 D3 105 IGZ=IRL,NROW
1290t 12=IV(162)
2913 IF(KZ(12),EQ,0) GO TO LOF
292;C
2931C
274} DFR=RHS{I)-RH5(]2)
295; DFU=0,0
2944 DO 10& Jai,NCOL
2973 IF(HKIIY,EQ,0,0) G0 T3 104
- H DFE=0,¢
2991 - ELM1=0,0 184

300: ELMZ=0,0

LATH
¢ITOZ3
U303}
80z04,
QQI03y .
00306
00307
DU}
00209167
QICi0e
L B
o)t e
ANELT 108
37140
QGIISC
[IksN
00317
03180
00I19C
VUZ20 103
QU3IZL:
NO3IL:
0OI2E:
[t
L0325,
o326
o327
SLIZ8s
00329}
00Z30
Blshat
003328
NO3I38
o0OT34:
003338
0N336:
03378
00338:
00339
DOT40:
no34a1y
QU3I4Z23110
on343:109
PUAEEH
00245:C
0034460
DO347:103
00348: 104
A0I49C
20350}
MITIY
ploficiy
0333
WEE
JOIIS 0
IZET
03574C
0ITs8:C
NI5P1999
V0 H

slCOLME T}
Le=ICOLNOCIZ Y
=[

02 £37 K=IS,IL

I 3=L0CLNQG)

FOUL3,EQ, 1) SLMm=l00E0L)
IFeI 0B, 12 Eomi=rolaotnd
CONTINUVE

DEE=EuMt-EunT
IF(OFE,LE, 00 6 TD 104
DFU=DFU+DFE*L]}

COMTINUE

[F(DFR,LT,OFY) G0 Tu 102

TzanA

JME=[-1

WRITE(L,5707 Lan

MRMEY (L)=0RTKRSFRE MRNEY (T)
JX=IRCWMKLT)

Jy=1ROWNDCTX)

JEsiKti

Ju=JX+JY

DG w09 ¥i=08,0 L

TEORITWE LKLY T, 2,0 S0 TS 09

J1=TROWND(HL

JEARIWELL (KL LT, 0,00 JINITUr=0dngli) -

ROWELL(H1I=0,0
TXX=ITnLMud)
I¥y=[COLNO(TXX)
158=1XX+1
ILL=lXX+IYY

DO 110 K2=155,TLL
IF{ICOLNG(RS) NE)Y GO TO 10
COLELL (K2)=0,0
KE(J1) ={{ 1) -1
KZ=LL

CIONTINUE

CONTINUE

KZ(L)=2

CONTINUE
CONTLRUE

IF(IPHASE,EQ,! G0 ™0 999
IPHASE=0

IPASE=IFASS+!

INDR=0

DT 1000

185

REFERENCES AND*BIBLIOGRAPHY

* Austin, L. M., and Michael, E. H. (1983), MA Bounded Dﬁal (A1l Integer)
Integer.” Programming Algorithm with objective cut, ' Naval Res.
Logtcs, Quarterly, Vol. 30, pp.271-281.

*Austin, L. M., and Michael, E. H. (1985), "An Advance Start Algorithm
For All~Integer Programming, ' Comput. & Ops Res. Vol. 12,

NO. 3’ PP-301'309.

Ahmed, A. N. (1977}, ‘“'Application of Linear Programming to Transportation
Problem in Iraq', MSc Thesls, Baghdad University, lraq.

*Ahmed, A. N (1984), "A Modified Reduction Procedure for Linear Programming
' Problems,' Working Paper, Management Studies Department, Loughborough
University. : '

*Ahmed, A.N. (1985), ‘A Reduction Procedure for Integer Programming
Problems,' Working Paper, Management Studies Department, Loughborough
University.

-*Ahmed, A.N. (1985), "Size Reduction of Linear Programs,' Working Paper,
Management Studies Department, Loughborough University.

Balas, E. {1962), ""An Additive Algorithm for Solving Linear Programs with
‘Zero-One Variables,'" Ops. Res., Vol. 13, No. 4, pp.517-546.

7 Balinsky, M. L. (1961}, "An Algorithm for Finding All Vertices of Convex
Polyhedral Set,' Journal of the Society for Industrial and Applied
Mathematics, Vol.,. 9, No. 1, pp.72-88.

Benders, J. F. (1962}, "Partitioning Procedures for Solving Mixed Variables
Programming Problems, Numerische Mehtmatik, Vol. 4, pp.238-252:

Beale, E. M. L. and Forrest, J. J. H. (1976), "Global Optimisation Using
Special Ordered Sets'", Mathematical Programming, No. 10, pp.52-69.

Beale, E. M., L. and Forrest, J. J. H. (1978), "Global Optimisation as an
Extension of Integer Programming,' in Towards Global Optimisation 2,
eds., L. C. W. Dixon and G. P. Szego, North-Holland, Holland.

Beale, E. M. L. and Tomlin, J. A. (1970), "Special Facilities in a General
Mathematical Programming System for Non-convex Problems Using
Ordered Sets of Variables,'" in Proceeding of the Fifth International
Conference on Operations Research, ed. J. Lawrence, pp.447-454.

Bixby, R. E. (1981), ''Hidden Structure in Linear Programs," in Computer
: Assisted Analysis and Mole Simplification, ed. H. Greenberg and
J. Maybee, Academic Press, New York, pp.327-360.

Bixby, R. £. and Cunningham, W. H. (1980), "'Converting Linear Programs to
Network Problems,! Maths, of Ops. Research., Vol.5, pp.321-357.

Boneh, A. (1981), "Minimal Representation of Nonlinear Inequalities by a
Probabilistics Set Covering Problem Equivalence', Technical Report
TRCS8-05, Computer Science Department, University of California,
Santa Barbara. '

186

Boneh,

Boneh,

A. (1983), "PREDUCE - A Probabilistic Algorithm ldentifying
Redundancy by a Random Feasible Point Generator (RFPG)," in
Redundancy in Mathematical Programming ed. M. H. Karwan,

V. Lotfi, J. Telgen and S. Zionts, Springer-Verlag.

A. and Golan, A. (1979), "Constraints Redundancy and Feasible
Region Boundedness by Random Feasible Points Generator,' paper
presented at EURO |I1l, Amsterdam.

Boot, J. €. G. (1962), "On Trivial and Binding Constraints in Programming

*

Problems," Management Science, Col. 8, No. 4, pp.lL19-441.

Boot, J. C. G. (1963), Quadratic Programming, Amsterdam, North Holland.

Bradley, G., Brown, G. and Galatas, P (1980), ""An Interactive System

to Analyse Large-scale Optimisation Models'', Naval Postgraduate
School, Technical Report NPS$S52-80-005. :

*Bradley, G., Brown, G. and Graves, G. (1977), ''Design and Implementation

of Large-scale Primal Transshipment Algorithms,' Management Science.,
Vol. 24, No. 1.

*Bradley, G., Borwn, G. and Graves, G. {1977), '"Preprocessing Large-scale

Optimisation Models,' in Redundancy in Mathematical Programming,
ed. M. H. Karwan, V. Lotfi, J. Telgen and S. Zionts, Springer-Verlag.

Bradley, G., Brown, G. and Graves, G. (1983), HStructural Redundancy in

Large-Scale Optimisation Models'", in Redundancy in Mathematical
Programming, ed. M. H. Karwan, V, Lotfi, J. Telgen .and 5. Zionts,
Springer-Verlag. : :

Brearley, A. L., Mitra, G and Williams H. P. (1975), “"Analysis of Mathematical

Brown,

Brown,

Programming Models Prior to Applying the Simplex Algorithm,"
Mathematical Programming Vol. 8, pp.54-83.

G. and Thomen, D. (1980), "Automatic Identification of Generalised
Upper Bounds in Large-scale Optimisation Models,'" Management Science,
Vol. 26, No. 11, 00.1166-1184.

G. and Wright; W. (1980), "Automatic ldentification of Network Rows
in Large-scale Optimisation Models," in Proceeding of the Symposium
of Computer Associated Analysls and Model Simplification, Boulder.

Charnes, A. and Cooper, W.; W. (1961), Management Models and Industrial

Applications of Linear Programming, Vol. | and 1|, John Wiley &
Sons, New York

Charnes, A. Cooper, W. W. and Farr, D. (1953), ""Linear Programming and Profit

Performance Scheduling for a Manufacturing Firm,'" Journal of the ORSA,
Vol. 1. '

Charnes, A;, Cooper, W. W. and Thompson, G. L. (1962), '"Some Properties

of Redundant Constraints and Extraheous Variables in Direct and
Dual Linear Programming Problems," Ops. Res., Vol.10, No. 5,
pp.711-723.

187

*Cheng, M. C. (1980), ""New Criteria for the Simplex Algorithm," Mathematical
Programming, Vol. 19, pp.230-236.

Chvatal; V. (1984), Linear Programming, W. H. Freeman and Company, New York.

Cooper, Dale 0., (1962), '"Techniques for Reducing the Size of Process
Plant Models for Linear Programming,'' Bonner and Moore Associates,
Houston.

Crowder, H., Johnson, E. L. and Padberg, M. W. (1983}, ""Solving Large-scale
Zero-One Linear Programming Problems,' Ops. Research., Vol. 31,
No. 4.

* Dantzig, G. B. (1948), “Programming in a Linear Structure," Comptroller
USAF, Washington, D.C. '

Dantzig, G. B. {1955), "Upper Bounds, Secondary Constraints, and Block
Trianguarity," Econometrica, Vol. 23, No. 2,rpp.l7h-183.

*Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton:
Princeton University Press.

Dantzig, G. B. and Wolfe, P. (1960), "The Decomposition Principle for Linear
Programs,'" Ops. Res., Veol. 8, pp.101-111.

Dyer, M. E. and Proll, L. G. (1977), '"Vertex Enumeration in Convex Polyhedra-
a Comparative Computational Study," in T. B. Boffey, ed, Proceeding
of the CP77 Combinatorial Programming Conference.

Eckhardt, U. (1931), "Redundant Ungleichungen bei linearen Ungleichungssytemnf
Unternehmenforschung, Vol. 12, pp279-286.

*Férguson, R. 0. and Sargent, L. F. (1958), Linear Programming: Fundementals
and Applications, McGraw-Hiil Book Company Inc, New York.

Forrest, J. J. H. and Tomlin, J. A. {1972), "Updating Triangular Factors
of the Basis to Maintain Sparsity in.the Product-Form Simplex Method,"
Mathematical Programming, Vol. 2, pp.263-278.

Forrest, J. J. H., Tomlin, J. A. and Hirst, J. P. H. (1974), "Practical
Solutions of Large Mixed Integer Programming Problems with UMPIRE,"
Management Science, Col. 20, pp.736-773.

*Fourier, J. B. J. (1926), "Solution d'une question particuliere du calcul
des inequalities,"

Gal, T. (1975), "Redundancy Reudction in the Restrictions Set Given in the
Form of Linear lnequalities,'" Progress in Cybernetics and Systems
Research, Vol. 1, pp.177-179.

*gal, T. (1977), "A General Method for Determining the Set of All Efficient
Solutions. to a Linear Vectormaximum Probliem,' European Journal of
Operationai Research, Vol. 1, pp.307-329.

Gal, T. (1978), “Redundancy in Systems of Linear inequalities Revisited,"
Discussion Paper No. 19, Fernuniversitat, Hagen.

188

*Gal {1979), ""Postoptimal Analysis, Parametrrc Programming and Related
TOpICS, McGraw-Hill.

Gal, T. (1983), “Another Method for Determining Redundant Constraints,"
in Redundancy in Mathematical Programming, ed. M. H. Karwan,
V. Lotfi, J. Telgen and 5. Zionts, Springer-Verlag. :

*Gal, T., and Leberling, H. (1977), "'Redundant Objective Functions in Linear
Vecotrmaximum Problems and Their Determination,' European Journal
0f Operational Research, Vol. 1, pp.176-184.

Gale, D. (1960) The Theory of‘Linear Economic Models, New York:Mc Graw-
Hill. .

*Gale, G. (1979), "How to Solve Linear Inequalities' American Mathematical
Monthly, Vol. 76, pp.589.599. ‘

Garfinkel, R. S. and Nemhauser, G. L. (1972), Integer Programming,
John Wiley, '

Gauthier, J. M. and Ribiere, G, {1977), Experiments in Mixéd-lnteger
Linear Programming Pseudo-Costs,'' Mathematical Programming, Vol. 12,

pp.26-47.

Gomory, R. E. (1958), "Essentials of an Algorithm for Integer Solutions to
Linear Programs, Bull. American Mathematical Society, Vol. 6k,
NO. 5! pp‘ 275-2780

Graves, G. and McBride ,R (1976}, ''"The Factorisation Approach to Large-
Scale Linear Programming,” Mathematical Programming, Vol. 10,
No. 1, p.91.

Graves, G. and Van Troy, T. (1979), ''Decomposition for Large-scale Linear
and Mixed Integer Linear Programming,' UCLA Technical Report.

Graves, R. and Wolfe, P. (1963), Recent Advances in Mathematical Programming,
New York:McGraw=Hill.

'Greenberg; (1975), “An Algorithm for Determining Redundant Inequalities
.and All Solutions to Convex Polyhedral,'" Numerlsche Mathemat ika,
Vol. 24, pp.19-26. :

Hoffman, A. J. {1955), "How to Solve a Linear Programming Problem,' in
H. A. Antosiewicz, ed. pp.397-423.

Holm, S. and Klein, D. (1975), "'Size Reduction of Linear Programs with
: Special Structure,” Working Paper, Odense University.

Holm, S. and Klein; D. (1976), "ldentification of Nonbinding Constraints
and Zero Variables in Linear Programming.' Ops. Res. Verfahren,
Vol. 25, No. 1, pp.58-65.

Holm, S. and Klein, D (1979), ""Size Reduction of Linear Programs Using

Bounds on Problem Variables,'" Working Paper, Florida International
University.

189

»
Jackson, R. and 0'Neill, R. (1983), Mixed Integer Programming In
Mathematical Systems, ORSA/committee on Algorithms Publication.
Special Issue.

Jarvis, J. J. and Bazaraa, M. S. (1977), Linear Pfogramming and Network,
John Wiley:& Sons Inc., New York. ' '

Karwan, M. H., Lotfi, V., Telgen, J. and'Zionts,_S. (1983), Redundancy
in Mathematical Programming, Lecture Notes in Economics and Mathematical
Systems, No. 206, Springer-Verlag.

Katan, J. E. (1977), "Aspects of Large-scale In-core Linear Programming'';
in Proceeding of the ACM conference, Chicago University Press.

Kelly, J. E. (1963), "The Cutting Plane Method for Solving Convex Prograhs,“
J, Soc. Ind. Appl. Math., Vol. 8, No. &4, pp.703-712.

*Land, A. H. and Powell, S. (1981), "A Survey of Available Computer Codes
to Solve Integer Linear Programming Problems,' Rapport de recherche
No. 81-09, Montreal University, Canada.
Lisy, J. (}?gé% in {Ekonomiko Matematicky Obzor, Vol. 7, No. 3, PP-285'2?8)
Lottt, V. f, A Study of Size-Reduction Techniques in Linear Programming,
PhD Dissertation, State University of New York, Buffalo.

Luenberger, D. G. (1973), Introduction to Linear and Non-Linear Programming,
"~ Addison-Wesley. :

Mattheiss, T. H.(1973), '"An Algorithm for Determining {rrelevant Constraints
and All Vertices in Systems of Linear Inequalities,' Ops. Res., Vol. 21,
. NO- 1, pp- 2"17-2600 - .

Mattheiss, T. H. (1983), "'A Method for Finding Redundant Constraints of a
System of Linear Inequalities,"” in Redundancy in Mathematical Programming,
ed. M. H. Karwan, V. Lotfi, J Teigen and S. Zionts, Springer-Verlag.

Mattheiss, T. H. and Rubin, D. S. (1980), "A Survey and Comparison of Methods
' for Finding All Vertices of Convex Polyhedral Sets,'" Mathematics of
Ops. Res., Vol. 5, No. 2, pp.167-185.

Mattheiss, T. H. and Schmidt, B. K. (1980}, "Computational Results on an
Algorithm for Finding All Vertices of a Polytope,'" Mathematical
Programming, Vol. 18, pp.308-329.

McBride, R. {1973), Factorisation in Large~Scale Linear Programming, PhD
Dissertation, UCLA,

Meyerman, B. G. (1979), ""Some Resuits of a Reduction Algorithm for Linear
Programming Problems,'' Department of Ops. Research. Groningen
University. .

% ' ' '
Musalem, S. (1979), Converting Linear Models to Network Models, PhD
Dissertation, UCLA.

Motzkin, T. S. (1936), '"Beitage Sun Theorie lder Linearen Ungleichringen,"
PhD Dissertation, University of Zurich.

190

Motzkin, T. S, Raiffa, H. Thompson, G. L. and Thrall, R. M. (1953), "‘The
Double Description Method,' in Contribution to the Theory of Games,
ed. by Kuhn, H. W. and Tucker, A. W., Vol. 2, Annals of Mathematics
Studies, No. 28, :

7 Rubin, D. S. (1972), "Redundant Constraints and Extraneous Variables in
Integer Programs,' Management Science, Vol. 18, No. 7, pp.423-427.

Rubin, D. S. (1983), '"Redundant Constraints in Linear Programs,' in
Redundancy and Mathematical Programming, ed. M. H., Karwan, V. Lotfi,
J. Telgen and S. Zionts, Springer-Verlag.

SCICONIC VM (1983}, Scicon Services Ltd, Milton Keynes, England.

Sethi, A, P. and Thompson, G. L. {(1983), ""The Non-Candidate Constraint
Method for Reducing the Size of a Linear Program,'" in Redundancy
in Mathematical Programming, ed. Karwan, M. H., Lotfi, V, Telgen, J
and Zionts, S.

Seth!, A. P. and Thompson, G. L. (1984), ""The Pivot and Probe Algorithm for
Solving a Linear Program,' Mathematical Programming, Vol. 29,
pp. 219-233.

Shefi, A. (1969), Reduction of Linear Inequality Constraints and
Determination of All Possible Extreme Points, PhD Dissertation,
Stanford University.

Sherman, R. F. (1977}, "A Counterexample to Greenberg's Algorithm for
Solving Linear Inequalities," Numerische Mathematik, Vel. 27,

pp. 491-492,

Spronk, J. and Telgen, J. (1979), "A Note on Multiple Objective Programming
and Redundancy,' Report No. 7906, Centre for Research in Business
Economics , Erasmus University, Rotterdam,

Télgen, J. (1977), "On Redundancy in Systems of Linear Inequalities,"
Report 7718, Econometric: Institute, Erasmus University, Rotterdam.

Telgen, J. (1977), ''Redundant and Nonbinding Constraints in Linear
Programmlng Problems,'" Report 7720, Econometric Instttute, Erasmus
University, Rotterdam.

Telgen, J. (1979}, "'On Llewellyn's Rules to Identify Redundant Constraints
In Systems of Llnear Equalities," Zeitschrift for Ops. Res., Vol. 23,
pp.197-206.

Telgen, J. (1980}, "ldentifying Redundaﬁt Constraints and Implicit
Equalities in Systems of Linear Constraints,' Working Paper 90,
College of Business Administration, University of Tennessee.

Telgen, J. (1981), "Minimal Representation of Convex Polyhedral Sets,"
Journal of Optimisation, Theory and Applications.

Telgen ,J. (1981), Redundancy and Llnear Programs, Mathematisch Centrum,
Amsteradam. '

Telgen, J. (1983}, "Identifying Reundancy in Systemsof Linear Constraints n

in Redundancy in Mathematical Programming ed. M.H. Karwan, V. Lotfl,
J. Telgen and S. Zionts, Springer-Verlag.

191

Thompson, G. L., Tonge, F. M. and Zionts, S. {1966), "Techniques for
Removing Nonbinding Constraints and Extraneous Variables from Linear
Programming Problems,' Management Science, Vol.i12, No. 7, pp.588-608.

Tischer, H. j. (1968), Mathematische Verfahren Zur Reduzierung der Zeilenund
. Spaltenzahl Linearer Opimierrungsaufgaben, Dissertation, Zentralinstitut
fur Fertigungstechnik des mMaschinenbaues, Karl Marx Stad.

Tomlln, J. A. and Welch, J. S. (1983), "A Pathological Case in the Reddction
of Linear Programs," Opes. Res., Letters, Vol. 2, No. 2.

* Tomlln, J. A. and Welch, J. S. (1983), "Formal Optimisation of Some Reduced
Linear Pr09ramm|ng Problem,” Mathematical Programming, Vol. 27,
Pp. 232 -240.

*Williams, H. P. (1973), "Simplifying Linear Programming Problems,"
Research Repcrt, No. 73-2, University of Sussex.

*Williams, H. P. 1975), "Further Simplification of Linear Programming
Problems,'" Research Report 75-1, UnlverSIty of Sussex.

Williams, H. P. (1978), Modelling in Mathematical Programmlﬁg, J. Wiley,
New York, ‘

Williams, H. P (1983), "A Reduction Procedure for Linear and Integer
Problems,' In Redundancy in Mathematical Programming, ed. M. H. Karwan
V. Lotfi, J. Telgen, S$. Zionts, Springer-Verlag,

~Williams, N. (1967), Linear and Non-linear Programming in industry.
ed. by S. Vadja (A Series of 'Topics in Operational Research').
Pitman., .

Wilson, J. M. (1983), "Removing Certain Redundancies from a Set of
(0-1) Linear lnequalities," Management Studies Department,
Loughborough University. -

Wolf, P. (1955), "Reduction of Systems of Linear Relations {abstract),"
In H. A, Antosiewicz, pp.L4l9-451.

Wright, W. (1980), Automatic ldentification of Network Rows in Large-
Scale Optimisation Models,' MSc Thesis, Naval Postgraduate School.

Zeleny, M. (1974), Linear Multiobjective Programming, Lecture Notes in
Economics and Mathematical Systems, No. 95, Springer-Verlag.

Zionts, S. (1965), Size Reduction Techniques of Linear Programming and
- Their Application, PhD Dissertation, Carnegie Institute of Technology.

'*Zionts, S. (1960), "Toward a Unifying Theory for Integer Linear
Programming,' Ops. Res. Vol. 17, No. 2, pp.359-367.

Zionts, S. and Wallenius, J. (1976), '"An Interactive Programming Method
for Solving the Multiple Criteria Problem,'' Management Science,
Vol. 22, No. 6, pp.652-663.

Zionts, S, and Wallenius, J, (1980), "ldentifying Efficient Vectors:
Some Theory and Computational Results,'' Ops. Res. Vol, 28,
pp.785-793.
Zionts, S. and Wallenius, J. (1983), "A Method for Determining Redundaat
' Constraints and Extraneous Variables in Linear Programming Problems,"

192

Zionts, S. and Wallenius, J. (1983), "A Method for Determining Redundant
Constraints and Extraneous Varlables in Linear Programming Problems,"
in Redundancy in Mathematical Programming, ed. M. H. Karwan,

V. Lotfi, J. Telgenad S. Zionts, Springer-Verlag.

193

