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Explicit Nonlinear Model Predictive Control for
Autonomous Helicopters
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Abstract
Trajectory tracking is a basic function required for autonomous helicopters, but it

also poses chanlleges to controller design due to the complexity of helicopter dynam-
ics. This paper introduces a closed-form model predictive control (MPC) to solve
this problem, which inherents the advantages of the nonlinear MPC but eliminates
the time-consuming online optimisation. The explicit solution to the nonlinear MPC
problem is derived by using Taylor expansion and exploiting the helicopter model.
With the explicit MPC solution, the control signals can be calculated instantaneously
to respond to the fast dynamics of helicopters and suppress the disturbances imme-
diately. On the other hand, the online optimisation process can be removed from
the MPC framework, which can accelerate the software development and simplify
the onboard hardware. Due to these advantages of the proposed method, the overall
control framework has a low complexity and high reliability, and it is easy to deploy
on the small-scale helicopters. The explicit nonlinear MPC has been successfully
validated in simulations and inactual flight tests using the Trex-250 helicopter.

1 Introduction

Autonomous helicopters are increasingly attracting attentions for their potential ap-
plications, mainly due to their ability to hover, fly in very low altitudes, and take
off and land almost everywhere. These properties make them suitable for a board
range of tasks like surveillance, boundary patrol, search and rescue. However, due to
their inherent instabilities and nonlinearities and a high dimensional model structure,
the controller design for helicopter autonomous flights is a challenge. To this end,
a number of control techniques have been applied to address this problem including
the classic cascaded PID control [KS03], feedback linearisation [KS98], multivariable
adaptive Control [KAM02], neural network adaptive control [JK05], state-dependent
riccati equation (SDRE) control [BW07] and composite nonlinear feedback control
[PCC+09].

Recently, model predictive control (MPC) has been recognised a promising method
in the unmanned aerial vehicle (UAV) community [OM04]. MPC is an optimal con-
trol strategy that uses a model to predict the future behaviour of the plant over a
prediction horizon. Based on these predictions, the performance index defined to pe-
nalise the tracking errors or state errors is minimised with respect to the sequence of

1



future inputs. Only the first action in the optimised control sequence is applied into
the plant, and this procedure is repeatedly executed in a receding horizon fashion
to continuously generate control signals. The features of MPC make it as a suit-
able control technique for UAV applications. Firstly, it naturally takes into account
the future value of the reference to improve path tracking performance; secondly, it
simplifies the control design by directly using the vehicle model in the control loop;
thirdly, it considers both the kinematics and dynamics of UAVs as an entire system
in an integrated guidance and control fashion so enhances the flight agility.

The essential procedure in the implementation of MPC algorithm is to solve
the formulated optimisation problem (OP). If the system model is linear and there
are no constraints acting on the system, the explicit minimisation solution can be
found. Otherwise, MPC technique usually requires solving an optimisation problem
numerically at every sampling instant, which poses obstacles on the real-time im-
plementation due to the heavy computational burden. Although the development
of the avionics and microprocessor technology makes the online optimisation possi-
ble, the implementation of computationally demanding MPC on small UAVs is very
challenging.

Most of the existing applications tend to use linear MPC so that the formulated
OP can be solved by efficient Quadratic Programming [KB06]. To fit the nonlinear
tracking problem into a linear setting, associated techniques like linearisation and
feedback linearisation techniques are usually required. For nonlinear MPC, although
it is more powerful the resulting optimisation problem is non-convex, which means
the solving time is much longer and even not deterministic. Therefore, the nonlinear
MPC is more likely to be seen in the guidance layer to enhance the autonomy of
the UAVs rather than in the time-critical flight control level [HK09]. The associated
low bandwidth and computational delay of nonlinear MPC make it very difficult to
meet the control requirement for systems with fast dynamics like helicopters. Only
few applications on helicopter flight control have been reported in [KSS02, SKS03],
where the authors adopt a high-level MPC to solve the tracking problem and rely
on a local linear feedback controller to compensate the high-level MPC. Moreover,
the formulated nonlinear optimisation problem has to be solved by a secondary flight
computer. The extra payload and power consumption are quite luxury for a small-
scale helicopter.

To avoid using online optimisation and inherent the advantages of nonlinear MPC,
this paper introduces an explicit nonlinear MPC (ENMPC) for trajectory tracking
of autonomous helicopters. By approximating the tracking error and control efforts
in the receding horizon using their Taylor expansion to a specified order, an analytic
solution to nonlinear MPC can be found and consequently the closed form controller
can be formulated without online optimisation [CBG03]. The benefits of using this
MPC algorithm are not only the elimination of online optimisation and associated
resource, but also a higher control bandwidth it can achieve which is very impor-
tant for helicopters in aggressive flight scenarios. The similar technique has been
applied to a glider and a parafoil aircraft, and has shown promising results in the
simulations [SKC06]. However, in both the applications, ENMPC was just used to
control the vehicle attitude with only inner-loop dynamics under consideration. To
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develop a ENMPC for trajectory tracking of autonomous helicopters, the entire heli-
copter model must be taken into account. A considerable effort is required to develop
ENMPC tailored for autonomous trajectory tracking for unmanned helicopters.

To verify the performance of the proposed ENMPC for trajectory tracking of
autonomous helicopter, numerical simulations are carried out. The result is also
compared with the conventional MPC algorithm when an online optimisation prob-
lem is solved at each time instant. Due to the feature of ENMPC, the overall control
framework has a low complexity and high reliability, and it is easy to be deployed
on the small-scale helicopters. To demonstrate this, flight tests are performed on our
indoor testbed using a Trex-250 helicopter.

The remaining part of this paper is organised as follows: Section 2 presents the
mathematical model of small-scale helicopters and the simplification for control de-
sign; in Section 3 the algorithm of ENMPC and its implementation on autonomous
helicopters are discussed in detail; Section 4 provides some simulation and flight
experiment results, followed by a conclusion in Section 5.

2 Helicopter modelling

A helicopter is a highly nonlinear system with multiple inputs and multiple outputs
and complicated internal couplings. The complete model taking into account the flex-
ibility of the rotors and fuselage usually results in a model of high degrees-of-freedom.
The complexity of such a model will make the following system identification much
more difficult. However, the general dynamics of a small-scale helicopter can be
captured by a six-degrees-of-freedom rigid-body model augmented with a simplified
rotor dynamic model [MTK02, GMF01], as shown in Fig.1. Hence, the kinematic
relationship of the helicopter, i.e. the position and the orientation represented by
Z-Y-X Euler angles, can be expressed as:

[ ẋ ẏ ż ]T = Ri
b(φ, θ, ψ)[ u v w ]T (1)φ̇θ̇

ψ̇

 =

1 sinφ tan θ cosφ tanφ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

pq
r

 (2)

where (x, y, z) describe the helicopter inertial position, (u, v, w) are the local velocities
along three body axis, (p, q, r) are angular rates and (φ, θ, ψ) are the attitude angles
and Ri

b is a transformation matrix from body to inertial coordinates given in (3) with
short notation c for cosine and s for sine.

Ri
b(φ, θ, ψ) =

 cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (3)

In terms of the dynamics model, the helicopter is driven by the external forces
and moments which are primarily generated by main and tail rotor thrusts, fin and
fuselage drags. This means that they are dependent on both the rotor and the rigid-
body states. The four control inputs, comprising longitudinal and lateral cyclic pitch,
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Figure 1: Helicopter frame

main rotor collective pitch and tail collective pitch, alter the states of the main rotor
and the trail rotor and consequently exert their influences on the helicopter fuselage.
In the control design, the external forces and moments can be approximated by the
linear combination of states and control inputs using stability and control derivatives,
but the other interactions remain a nonlinear relationship. The model structure is
represented in (4).

u̇ = vr − wq − g sin θ +Xuu+Xaa

v̇ = wp− ur + g cos θ sinφ+ Yvv + Ybb

ẇ = uq − vp+ g cos θ cosφ+ Zww + Zcolδcol − g
ṗ = Laa+ Lbb

q̇ = Maa+Mbb

ṙ = Nrr +Ncolδcol +Npedδped

ȧ = −q − a

τ
+
Alat
τ
δlat +

Alon
τ

δlon

ḃ = −p− b

τ
+
Blat
τ
δlat +

Blon
τ

δlon

(4)

where the dynamics of the main rotor is described by the flapping angles [ a b ]T

with the effective time constant τ ; u = [ δlat δlon δped δcol ]T is the control inputs
including lateral and longitudinal cyclic pitch, tail and main rotor collective pitch
respectively; the other parameters in the model structure are the stability and control
derivatives, whose values are obtained by system identification.

In this model, the rotor flapping states a and b cannot be directly measured,
which usually rely on a state observer. In order to reduce the complexity and focus
on the control design, we use steady state approximation as a measurement of the
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flapping angles [BW07]:

a = −τq +Alatδlat +Alonδlon
b = −τp+Blatδlat +Blonδlon

(5)

whose values are inserted to the model to replace the state values of a and b, such
that

ṗ = −Lpq + Llatδlat + Llonδlon

q̇ = −Mpq +Mlatδlat +Mlonδlon
(6)

where

Lpq = τ(Laq + Lbp), Mpq = τ(Maq +Mbp),
Llat = LaAlat + LbBlat, Mlat = MaAlat +MbBlat,

Llon = LaAlon + LbBlon, Mlon = MaAlon +MbBlon,

(7)

On the other hand, the helicopter suffers slightly unstable zero dynamics intro-
duced by the couplings between the rotor and fuselage [KS98], which are reflected
on derivatives Xa and Yb in (4). Due to the small magnitudes of the flapping an-
gles, these terms can be safely neglected such that the dominate force is the main
rotor thrust only. This simplification is quite common in controller design of vertical
take-off and landing (VTOL) vehicles [MN07].

The simplified helicopter model by combining (1)-(6) can be expressed in the
following compact form:

ẋ = f(x) + g(x)u
y = h(x)

(8)

where x = [ x y z u v w p q r φ θ ψ ]
′

is the helicopter state and y
is the output of the helicopter. In the trajectory tracking control of an autonomous
helicopter, the interested outputs are the position and heading angle. Thus, y =
[ x y z ψ ]T .

3 Closed-form MPC

Trajectory tracking is the basic function required when an autonomous helicopters
performs a task. To this end, we need design a controller such that the output y(t) of
the helicopter (8) tracks the prescribed reference w(t). In the MPC strategy, tracking
control can be achieved by minimising a receding horizon performance index

J =
1
2

∫ T

0
(ŷ(t+ τ)−w(t+ τ))TQ(ŷ(t+ τ)−w(t+ τ))dτ (9)

where weighting matrix Q = diag{q1, q2, q3, q4}, qi > 0, i = 1, 2, 3, 4. Note that the
hatted variables belong to the prediction time frame.

Conventional MPC algorithm requires solving of an optimisation problem at every
sampling instant to obtain the control signals. To avoid the computationally intensive
online optimisation, we adopt an explicit solution for the nonlinear MPC problem
based on the approximation of the tracking error in the receding prediction horizon.
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3.1 Output approximation

For a nonlinear MIMO system like the helicopter, it is well known that after differenti-
ating the outputs for a specific number of times, the control inputs appear. The num-
ber of times of differentiation is defined as relative degree. For the helicopter with out-
put y = [ x y z ψ ]

′
and the corresponding input u = [ δlon δlat δcol δped ],

the relative degree is a vector, ρ = [ ρ1 ρ2 ρ3 ρ4 ]. If continuously differentiating
the output after the control input appears, the derivatives of control input appear,
where the number of the input derivatives r is defined as the control order.

Since the helicopter model has different relative degrees, the control order r is first
specified in the controller design. The ith output of the helicopter in the receding
horizon can be approximated by its Taylor series expansion up to order ρi + r:

ŷi(t+ τ) ≈ yi(t) + τ ẏi(t) + · · ·+ τ r+ρi

(r + ρi)!
y

[r+ρi]
i (t)

=
[
1 τ · · · τr+ρi

(r+ρi)!

]
yi(t)
ẏi(t)
· · ·

y
[r+ρi]
i (t)

 (10)

where i = 1, 2, 3, 4. In this way, the approximation of the overall output of the
helicopter can be cast in a matrix form:

ŷ(t+ τ) =


x̂(t+ τ)
ŷ(t+ τ)
ẑ(t+ τ)
ψ̂(t+ τ)

 =


ŷ1(t+ τ)
ŷ2(t+ τ)
ŷ3(t+ τ)
ŷ4(t+ τ)



=

1, τ, · · · , τr+ρ1
(r+ρ1)! · · · 01×(r+ρ4+1)

· · · · · · · · ·
01×(r+ρ1+1) · · · 1, τ, · · · , τr+ρ4

(r+ρ4)!





y1(t)
ẏ1(t)
· · ·

y
[r+ρ1]
1 (t)
· · ·
y4(t)
ẏ4(t)
· · ·

y
[r+ρ4]
4 (t)



(11)

For each channel in the output matrix, the control orders r are the same and can be
decided during the control design, whereas the relative degrees ρi are different but
determined by the helicopter model structure. Manipulating the output matrix (11)
gives the following partition:

ŷ(t+ τ) =

 τ̄1 · · · 01×ρ4 |
· · · · · · · · · | τ̃1 · · · τ̃r+1

01×ρ1 · · · τ̄4 |


[
Ȳ1(t)T · · · Ȳ4(t)T |Ỹ1(t)T · · · Ỹr(t)T

]T (12)
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where
Ȳi =

[
yi(t) ẏi(t) · · · y

[ρi−1]
i

]T
, i = 1, 2, 3, 4 (13)

Ỹi =
[
y

[ρ1+i−1]
1 y

[ρ2+i−1]
2 · · · y

[ρ4+i−1]
4

]T
, i = 1, . . . , r + 1 (14)

τ̄i =
[

1 τ · · · τρi−1

(ρi−1)!

]
, i = 1, 2, 3, 4 (15)

and
τ̃ = diag

{
τρ1+i−1

(ρ1+i−1)! · · ·
τρ4+i−1

(ρ4+i−1)!

}
(16)

It can be observered from Eq(12) that the prediction of the helicopter output
ŷ(t+ τ), 0 ≤ τ ≤ T , in the receding horizon needs the derivatives of each output of
the helicopter up to r + ρi order at time instant t. Except for the output y(t) itself
that can be directly measured, the other derivatives have to be derived according to
the helicopter model (8). During this process the control input will appear in the
ρith derivatives, where i = 1, 2, 3, 4.

The first derivatives can be obtained from the helicopter’s kinematics model:ẏ1

ẏ2

ẏ3

 =

ẋẏ
ż

 = Ri
b ·

uv
w

 (17)

ẏ4 = ψ̇ = q sinφ sec θ + r cosφ sec θ (18)

Differentiating (17) and (18) with substitution of helicopter dynamics (4) yields the
second derivatives: ÿ1

ÿ2

ÿ3

 =

ẍÿ
z̈

 = Ri
b

 0
0
T

+

 0
0
g

 , (19)

where T = Zww + Zcolδcol − g is the nomarlised main rotor thrust (intermedia steps
given in apendix A), and

ÿ4 =ψ̈ = q
cosφ
cos θ

φ̇+ q
sinφ sin θ

cos2 θ
θ̇ − r sinφ

cos θ
φ̇+ r

cosφ sin θ
cos2 θ

θ̇−

Lpq
sinφ
cos θ

+Nr
cosφ
cos θ

+
[
Llat

sinφ
cos θ Llon

sinφ
cos θ Ncol

cosφ
cos θ Nped

cosφ
cos θ

]
u (20)

where u is the control vector. Note that although control input δcol appears in (19),
the other control inputs do not, so we have to continue differentiating the first three
outputs. To facilitate the derivation, we adopt the relationship Ṙi

b = Ri
bω̂ by using

skew-symmetric matrix ω̂ ∈ R3×3:

ω̂ =

 0 −r q
r 0 −p
−q p 0

 . (21)

Thus, the third and fourth derivatives of the position output can be written in:y
[3]
1

y
[3]
2

y
[3]
3

 =

x[3]

y[3]

z[3]

 = Ri
bω̂

 0
0
T

+ Ri
b

 0
0

Zwẇ + Zcolδ̇col

 , (22)
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andy
[4]
1

y
[4]
2

y
[4]
3

 =

x[4]

y[4]

z[4]

 =Ri
bω̂ω̂

 0
0
T

+ 2Ri
bω̂

 0
0

Zwẇ + Zcolδ̇col

+

Ri
b

 −MpqT
LpqT
Zwẅ

+ Ri
b

 MlatT MlonT 0
−LlatT −LlonT 0

0 0 Zcol

 δlat
δlon
δ̈col

 (23)

At this stage, the control inputs explicitly appear in (23). Therefore, the vector
relative degree for the helicopter is ρ = [ 4 4 4 2 ]. Note that in the formulation
of (23) δ̈col is the new control input, whereas δcol and ˙δcol are treated as the states
which can be obtained by adding integrators.

By invoking (17) -(22), we now can construct matrix Ȳi, i = 1, 2, 3, 4. However, in
order to find the elements in Ỹi, i = 1, 2, . . . , r + 1, further manipulation is required.
By combining (20) and (23) and utilizing the Lie notation [Isi95], we have:

Ỹ1 =


y

[ρ1]
1

y
[ρ2]
2

y
[ρ3]
3

y
[ρ4]
4

 =


x[4]

y[4]

z[4]

ψ[2]

 =


Lρ1f h1(x)
Lρ2f h2(x)
Lρ3f h3(x)
Lρ4f h4(x)

+A(x)ũ (24)

where ũ = [ δlat δlon δ̈col δped ]; nonlinear terms Lρif hi(x), i = 1, 2, 3, 4, can be
found in the previous derivation, and

A(x) =


Lg1L

ρ1−1
f h1(x) · · · Lg4L

ρ1−1
f h1(x)

Lg1L
ρ1−1
f h2(x) · · · Lg4L

ρ1−1
f h2(x)

· · · · · · · · ·
Lg1L

ρ1−1
f h4(x) · · · Lg4L

ρ1−1
f h4(x)

 =
[
A11 A12

A21 A22

]
. (25)

where

A11 = Ri
b

 MlatT MlonT 0
−LlatT −LlonT 0

0 0 Zcol

 , A12 = 03×1,

A21 =
[
Llat

sinφ
cos θ Llon

sinφ
cos θ 0

]
, A22 = Nped

cosφ
cos θ

.

(26)

Differentiating (24) with respect to time together with substituation of the sys-
tem’s dynamics gives

Ỹ2 =


y

[ρ1+1]
1

y
[ρ2+1]
2

y
[ρ3+1]
3

y
[ρ4+1]
4

 =


Lρ1+1
f h1(x)

Lρ2+1
f h2(x)

Lρ3+1
f h3(x)

Lρ4+1
f h4(x)

+A(x)ũ[1] + p1(x, ũ) (27)
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where p1(x, ũ) is a nonlinear vector function of x and ũ. By repeating this procedure,
the higher derivatives of the output and Ỹi, i = 1, 2, . . . , r, can be calculated and
finally we have

Ỹr+1 =


y

[ρ1+r]
1

y
[ρ2+r]
2

y
[ρ3+r]
3

y
[ρ4+r]
4

 =


Lρ1+r
f h1(x)

Lρ2+r
f h2(x)

Lρ3+r
f h3(x)

Lρ4+r
f h4(x)

+A(x)ũ[r] + pr(x, ũ, ũ[1], . . . , ũ[r]) (28)

So far by exploiting the helicopter model the elements to construct Ȳ and Ỹ are
available. Therefore, the output of the helicopter in the future horizon y(t+ τ) can
be expressed by its Taylor expansion in a generalized linear form with respect to the
prediction time τ and current states as shown in Eq.(12).

In the same fashion as in Eq.(12), the reference in the receding horizon w(t+ τ)
can also be approximated by:

w(t+τ) =


w1(t+ τ)
w2(t+ τ)
w3(t+ τ)
w4(t+ τ)

 =
[
Tf Ts

] [
W̄1(t)T · · · W̄4(t)T |W̃1(t)T · · · W̃r+1(t)T

]T
(29)

where

Tf =

 τ̄1 · · · 01×ρ4
...

. . .
...

01×ρ1 · · · τ̄4

 (30)

and
Ts =

[
τ̃1 · · · τ̃r+1

]
(31)

and the construction of W̄i(t), i = 1, 2, 3, 4, and W̃i, i = 1, . . . , r+ 1, can refer to the
structure of Ȳi(t) and Ỹi, respectively.

3.2 Explicit nonlinear MPC solution

The conventional MPC needs to solve a formulated optimisation problem to generate
the control signal, where the control performance index is minimised with respect to
the future control input over the prediction horizon. In this paper, after the output
is approximated by its Taylor expansion, the control profile can be defined as

ũ(t+ τ) = ũ(t) + τ ũ[1](t) + · · ·+ τ r

r!
ũ[r](t), 0 ≤ τ ≤ T (32)

Thereby, the helicopter outputs depend on the control variables ū = { ũ, ũ[1], . . . , ũ[r] }.
Recalling the performance index (9) and the output and reference approximation

(12) and (29), we have:

J =
1
2

(Ȳ (t)− W̄ (t))T
[
T1 T2

T T2 T3

]
(Ȳ (t)− W̄ (t)) (33)
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where
Ȳ (t) =

[
Ȳ1(t)T · · · Ȳ4(t)T |Ỹ1(t)T · · · Ỹr(t)T

]T
, (34)

W̄ (t) =
[
W̄1(t)T · · · W̄4(t)T |W̃1(t)T · · · W̃r+1(t)T

]T
, (35)

T1 =
∫ T

0
T Tf QTfdτ, (36)

T2 =
∫ T

0
T Tf QTsdτ, (37)

and

T3 =
∫ T

0
T Ts QTsdτ. (38)

Therefore, instead of minimising the performance index (9) with respect to control
profile u(t + τ), 0 < τ < T directly, we can minimise the approximated index (33)
with respect to ū, where the necessary condition for the optimality is given by

∂J

∂ū
= 0 (39)

After solving the nonlinear equation (39), we can obtain the optimal control variables
ū∗ to construct the optimal control profile defined by Eq.(32). As in MPC only
the current control in the control profile is implemented, the explicit solution is
ũ∗ = ũ(t+ τ), for τ = 0. The resulting controller is given by

ũ∗ = −A(x)−1(KMρ +M1) (40)

where K ∈ R4×(ρ1+···+ρ4) is the first 4 row of the matrix T −1
3 T T2 ∈ R4(r+1)×(ρ1+···+ρ4)

where the ijth block of T2 is of ρi × 4 matrix, and all its elements are zeros except
the ith column is given by[

qi
T ρi+j

(ρi+j−1)!(ρi+j)
· · · qi

T 2ρi+j−1

(ρi+j−1)!(ρi−1)!(2ρi+j−1)

]T
(41)

for i = 1, 2, 3, 4 and j = 1, 2, . . . , r + 1, and ijth block of T3 is given by

diag
{
q1

T 2ρ1+i+j−1

(ρ1+i−1)!(ρ1+j−1)!(2ρ1+i+j−1) , · · · , q4
T 2ρ4+i+j−1

(ρ4+i−1)!(ρ4+j−1)!(2ρ4+i+j−1)

}
(42)

for i, j = 1, 2, . . . , r + 1; the matrix Mρ ∈ Rρ1+···+ρ4 and matrix Mi ∈ R4 are defined
as:

Mρ =

Ȳ1(t)T
...

Ȳ4(t)T

−
W̄1(t)T

...
W̄4(t)T

 (43)

and

Mi =


Lρ1+i−1
f h1(t)

Lρ2+i−1
f h2(t)

...
Lρ4+i−1
f h4(t)

− W̃i(t)T , i = 1, 2, . . . , r + 1. (44)

The detailed derivation is provided in the appendix. The overall controller structure
is shown in Fig.2.
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Figure 2: ENMPC structure

3.3 Implementation issue

When the ENMPC is applied for trajectory tracking of autonomous helicopters, not
only the reference trajectory is required, the higher derivatives of the reference tra-
jectory with respect to time are also needed in the prediction. Although this can
be achieved by using various modern path planning algorithms, there are still some
applications where the dedicated path generator is not available. In these cases the
reference is more likely to be designed comprising only the demanded helicopter po-
sition and the associated heading angle. To address this problem, we adopt a simple
but effective method of low-pass prefilter (45), as shown in Fig. 3.

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(45)

Given the appropriate parameters ζ and ω, the command prefilter can provide first
and second derivatives of the original reference, which is adequate for a smooth
trajectory tracking.

Figure 3: Command prefilter
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4 Simulation and experiment

4.1 Simulation

The proposed ENMPC has been validated in simulations and flight experiments. The
simulation and experiment are based on the Trex-250 miniature helicopter that is a
radio controlled helicopter with a main rotor diameter of 460mm and a trail rotor
diameter of 108mm. Trex-250 has a collective pitch rotor and well designed Bell-Hiller
stabilizer mechanism which is consistent with most of the small-scale helicopters
mentioned in the literature. Moreover, the miniaturized size and aerobatic ability
make it well-suited for indoor flight test. The model parameters of Trex-250 have
been obtained by comprehensive system identification in the previous work.

Numerical simulations were carried out first to investigate the attained perfor-
mance of ENMPC and compare it with the conventional MPC supported by the
online optimisation [LCA10]. In the simulation, the full dynamic model with 20%
parameter uncertainties was used as the plant, whereas the simplified model was just
for control synthesis purposes. The ENMPC is designed with the prediction horizon
T = 4s, control order r = 4 and Q = diag

{
1 1 1 1

}
. The command prefilter

parameters are chosen as: ζ = 0.7 and ωb = 10rad/s. In the conventional MPC, the
prediction horizon is set to T = 1s and the weighting matrix is chosen as the same
as in ENMPC, but to penalise the control effort, the control input weighting term
uTRu is added into the performance index, where R = diag

{
0.5 0.5 0.5 0.5

}
.

The corresponding optimisation problem is solved by using Matlab function fmin-
con.

In the simulation, the helicopter was required to track a mulit-section reference
connected by abrupt turns. The helicopter tracking performance is given in Fig.4. It
can be seen that the helicopter under both conventional MPC and ENMPC is able to
track the reference with very satisfactory performance. However, in the conventional
MPC the average time for solving the formulated OP is about 0.2s, which restricts
the control bandwidth to 5Hz. The ENMPC tackles this problem by directly using
the explicit solution and can easily reach the required control bandwidth. On the
other hand, during the abrupt reference changes, the conventional MPC can replan
the local trajectory to adapt to the helicopter dynamics, whereas the ENMPC relying
on the command prefilter can also deliver a smooth tracking performance.

4.2 Flight experiment

The proposed ENMPC was further validated through flight experiments which took
place on our indoor testbed. Consisting of Trex-250 helicopters, Vicon motion capture
system and ground station computers, the testbed combines commercial-off-the-shelf
equipments effectively and integrates them into the Matlab environment (see Fig.5).
By developing dedicated interfaces, researcher can implement algorithms in Simulink
to operate the real helicopter as normal as in the simulation. Thus, the testbed
provides a seamless way from the control analysis and design to the experimental
validation [LCCAed].

The first flight test is to track a square trajectory with the heading angle fixed
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Figure 4: Trajectory tracking results

Figure 5: Structure of indoor testbed
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at zero. During this process the helicopter exhibits its manoeuvrability along four
directions respectively. The tracking result is shown in Fig.6 in a 3-dimensional
view with the attitude indicated along the trajectory. With the predictive feature,
the helicopter under the control of ENMPC has the smooth and stable tracking
capability even if it comes across an abrupt turn. The roll and pitch angle history
provided in Fig.7 shows how the lateral and longitudinal channels are coordinated
by the controller. During the turning points, the roll angle and pitch angle change
together to increase the translational speed at one direction and decrease at another.
The corresponding control signals are also given in Fig.8.

Figure 6: Square trajectory tracking

Figure 7: Attitude angles for square tracking

Another flight test was carried out to track a eight-shape trajectory. This flight
test is used to show the coordinated heading and position tracking capability that is
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Figure 8: Control signals for square tracking

not demonstrated in the first flight test. Along the reference trajectory the required
heading angle w4 is defined by

w4(t) = arctan 2(ẇ1(t), ẇ2(t)) (46)

where arctan 2 is the four-quadrant inverse tangent function, ẇ1 and ẇ2 are the
reference velocity in x and y directions, respectively. The helicopter tracking result
is given in Fig.9 in a 2-dimensional view with heading angle indicated. The control
signals are given in Fig.10.

5 Summary

Designing an MPC based controller with ”foresee” feature to support the trajectory
tracking of autonomous helicopters is a promising but challenging work, as the he-
licopter is unstable, highly nonlinear and particularly exhibits fast dynamics. To
inherent the advantages of the MPC technique and prevent time consuming online
optimisation, we introduce a closed-form MPC for the helicopter tracking problem.
The explicit solution to the MPC problem is derived by using Taylor expansion and
exploiting the helicopter model. With the explicit MPC solution, on one hand the
control signals can be calculated instantaneously to respond to the fast dynamics
of helicopters and suppress the disturbances immediately. On the other hand, the
online optimisation process can be removed from the MPC framework, which can ac-
celerate the software development and simplify the onboard hardware. Due to these
advantages of ENMPC, the overall control framework has a low complexity and high
reliability, and it is easy to deploy on the small-scale helicopters.

The proposed ENMPC has been successfully validated in simulations and actual
flight tests using the Trex-250 helicopter. ENMPC shows a competitive performance
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Figure 9: Eight-shape trajectory tracking

Figure 10: Control signals for eight-shape tracking
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against the conventional MPC in the simulation and it demonstrates the excellent
capability in the practical flight tests.

A Derivation of second derivative of position

By using the relationship in Eq.(21) the first three equations in the helicopter dy-
namics (4) can be simplified as followsu̇v̇

ẇ

 = −ω̂

uw
w

+ Rb
i

0
0
g

+

0
0
T

 (47)

where Rb
i is a transformation matrix from inertial to body coordinates with the fact

that Rb
iR

i
b = I3×3. On the other hand, differentiating (17) givesẍÿ

z̈

 = Ri
bω̂

uv
w

+ Ri
b

u̇v̇
ẇ

 (48)

By substituting Eq.(47) into Eq.(48) and cancelling the equivalent terms, one has
the second derivative of position (19).

B Derivation of explicit MPC solution

By using the short notations of (43) and (44),we have the following relationship:

Ȳ − W̄ =


Mρ

M1

M2
...

Mr+1

+


0(ρ1+···+ρ4)×1

A(x)ũ
A(x)ũ[1] + p1(x, ũ)

...
A(x)ũ[r] + pr(x, ũ, · · · , ũ[r−1])

 =
[
Mρ

Mr

]
+
[

0
H

]
(49)

Hence, the performance index (33) can be further manipulated as

J =
1
2

([
Mρ

Mr

]
+
[

0
H

])T [ T1 T2

T T2 T3

]([
Mρ

Mr

]
+
[
0
H

])
=

1
2

[
Mρ

Mr

]T [ T1 T2

T T2 T3

] [
Mρ

Mr

]T
+

1
2

[
Mρ

Mr

]T [T2

T3

]
H+

1
2
HT

[
T T2 T3

] [Mρ

Mr

]
+

1
2
HTT3H

(50)

It can be seen that the necessary optimal condition can be written as(
∂H

∂ū

)T [
T T2 T3

] [Mρ

Mr

]
+
(
∂H

∂ū

)T
T3H = 0 (51)
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Recalling (49), the structure of ∂H
∂ū is given in:

∂H

∂ū
=


A(x) 04×4 04×4 · · · 04×4

×4×4 A(x) 04×4 · · · 04×4
...

...
...

. . .
...

×4×4 ×4×4 ×4×4 ×4×4 A(x)

 (52)

where ×4×4 denotes the non-zero element. It can be seen that ∂H
∂ū is invertible. Since

T3 is positive definite, the necessary optimal condition implies:

H = −
[
T −1

3 T T2 I(r+1)×(r+1)

] [Mρ

Mr

]
(53)

Extracting the first 4 equations from (53) yields the explicit solution to the MPC
formulation (40).
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