
 

1 
 

Exploring the Influence of Big Data on City Transport Operations: a Markovian 

Approach  

 

 

Abstract 

 

Introduction          

 

Big data has the potential to revolutionize the art of supply chain management. However in 

spite of its widely reported strategic impacts, there is a paucity of empirical research 

exploring its influence on operations and production management. In this work we extend the 

findings of our framework and modelling study to examine a potential scenario of how big 

data on transportation capacity may impact on future cities supply chain management. Fosso 

Wamba et al., (2015, p.235)  define big data as: “a holistic approach to manage, process and 

analyze the 5Vs (volume, velocity, variety, veracity, and value) in order to create actionable 

insights for sustained value delivery, measuring performance and establishing competitive 

advantages.” Meanwhile, accompanying the dramatic rise in the “velocity” and “volume” of 

city data, the growth of urbanization has been dramatic in the last decade. Indeed, according 

to Lierow, (2014), it is expected that 70 per cent of the world's population will live in cities 

by 2050. This rate has increased the pressure for adjusting the actual infrastructures, and 

investing in new ones, in order to support the flow of goods and people, as well as to 

minimize the associated impact related to environmental degradation and quality of  life 

(Caragliu et al., 2011).  

 

To manage this issue, an increasing number of cities around the world are adopting the 

concept of “smart cities” (Allwinkle and Cruickshank, 2011). A smart city is: “a city seeking 

to address public issues via information and communication technology-based solutions on 

the basis of a multi-stakeholder, municipally based partnership” (Manville et al., 2014, p.24). 

Further it has been theorized that a “big data” logistics system could be constructed on the  
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“social materiality” or “superstructure” of a smart city (Leonardi, 2013).  

 

Big data logistics can be defined as the modelling and analysis of urban transport and 

distribution systems, through large datasets created by GPS, cell phone and transactional data 

of company operations (Blanco & Fransoo, 2013). The demands and requirements of city 

logistics are changing on a daily basis through innovations in technologies with smart 

computing. Increasingly the real time tracking of vehicles could facilitate more accurate 

resource pooling and capacity sharing. The logistic firm therefore requires more technical and 

technological support to handle the five V‟s (Fosso-Wamba et al., 2015).   

 

City authorities and communities are using ever-growing bodies of data to improve their 

understanding of citizen behaviour, service usage and also to build service transparency and 

accountability. With the growth of big data there is privacy surveillance and data misuse 

challenges (Moir et al., 2014). Cities also face challenges around quality, comprehensiveness, 

collection and the analysis of data from various sources. However, big data also needs to be 

robust, accessible, and interpretable if it is to provide cities and organizations with 

meaningful opportunities and solutions.  

 

Future city operations managers need strategic tools to help them realize a vision of an 

efficient and effective urban transportation network. For instance, in the city of Santander (in 

northern Spain) there are 20,000 sensors connecting buildings, infrastructure, transport, 

networks and utilities, offering a physical space for experimentation and validation of IoT 

functions
1
.  

                                                      
1
 The Internet of Things (IoT) is the network of physical objects or "things" embedded with electronics, 

software, sensors and connectivity to enable it to achieve greater value and service by exchanging data with the 
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The aim of this paper is to make a contribution to operations theory by exploring how big 

data will transform smart city transport operations. Furthermore, any smart city transportation 

solution based on big data would inevitably impact on the supply chain components that are 

inextricably linked with road transportation. Therefore, we also aim to offer a commentary of 

what this transformation could potentially mean for the practice of future supply chain 

management. In order to meet this aim we present results from a Markov study using its 

numerical solutions. This work is theoretically positioned to complement and extend the 

seminal articles of Fosso-Wamba et al., (2015) and Setia and Patel (2013) who theoretically 

explore the impact of technological absorptive capacity on logistics performance.  

 

The paper is structured as follows: in the literature review we define big data and also 

highlight the risks and challenges of its integration into city-operations management (OM).  

An initial organizing framework is then presented, together with an associated scenario. In 

the fourth section, the research method and details of the modelling procedure are outlined. 

This is followed by the results section in which the initial framework is advanced through the 

development of smart city logistics operations model. In the final section, we outline the 

theoretical contribution of the work, its practical impact and suggest some future research 

avenues.  

 

Big Data: limitations, risks and challenges  

With the advent of the smart city there is starting to emerge a body of literature exploring the 

motivations of city operations designers to adopt big data (Scott, 2014). For instance, there is 

work exploring how software solutions like SAS2 can be applied to improve the time 

performance of the public transportation sector (Biederman, 2013). A number of studies 

                                                                                                                                                                     
manufacturer, operator and/or other connected devices. Each thing is uniquely identifiable through its embedded 

computing system but is able to interoperate within the existing Internet infrastructure. 

http://en.wikipedia.org/wiki/Internet
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predict the future development and impact of big data logistics. With respect to its process 

adoption there is recent research demonstrating that 30% of the shippers and 27% of the third 

party logistics (3PL) providers, stated that they were planning on adopting a big data 

initiative to improve delivery capability (Burnson, 2013). There are several papers describing 

the advantages that big data can play in the process of information and data retrieval. 

Mehmood et al., (2015) note that the cost of healthcare, according to World Health 

Organization is mostly due to system and operational inefficiencies; and that big data 

analytics can minimize these inefficiencies and improve the clinical processes resulting in 

better, preventive, personalized healthcare. Most notably McCrea, (2013) explains which big 

data processes are important to the area of transport management. These include: cleansing, 

harmonizing, combining and standardizing data, as well as data visualization.  

 

The volume and velocity of data capture is much greater in a smart city environment. For 

instance, Miller (2013) describes new ways of gathering big data by crowdsourcing. The use 

of Geographical Information System (GIS) as a source of big data is also examined by 

McKinsey Global Institute (James et al., 2011) who also indicates sensors, GPS and social 

media as new data sources. The smart city practitioner could use such data for smart routing, 

car monitoring and localized services. It also holds benefits for both the government (e.g. 

urban planning) and companies (e.g. localized advertising, optimized routing). 

 

However, it must be noted that big data also brings much greater complexity to logistics 

planning because of the 5V‟s. Volume or the large amount of data that either consume huge 

storage or entail of large number of records data (Russom, 2011). Velocity which is the 

frequency or the speed of data generation and/or frequency of data delivery (ibid., p.2).  

Variety to highlight that it is generated from a large variety of sources and formats and it is 
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contained in multidimensional data fields (including structured and unstructured data (ibid., 

p.3).  

 

Drawing on these definitions, Fosso-Wamba et al. (2015), include another two V‟s, that is 

Value (or the 4th of the Vs) in order to stress the importance of extracting economic benefits 

from the available big data (p. 235). They also argue that a fifth dimension „Veracity‟ should 

be added to prior definitions of big data in order to highlight the importance of quality data 

and the level of trust in various data sources data (ibid., p. 234). 

 

There are significant challenges in implementing big data at the operational and process 

levels (ibid., p. 234). This is a view supported by Li et al., (2015) who note that gathering and 

analysing more data does not always correlate with improved operational performance: “not 

everything can be digitised; and we cannot assume that automation is always advantageous 

to OM; this is because our ability to handle large amount of data (in real time) and use it to 

make both rapid and effective operational interventions in the cityscape, is limited. For 

instance, does having more freight and passenger data solve traffic congestion?” (p. 10). 

Likewise, assuming that possessing more data provides necessarily better models of reality 

may be an over-simplistic assumption. For example, although big data is very effective when 

detecting correlations, it may fail when pinpointing which correlations are meaningful. 

 

Risks and challenges  

The major risks identified in the literature are summarized in Table 1. They can be further 

categorized with respect to whether they are:  “preventable risks”, “strategy risks” and 

“external risks” (Kaplan & Mikes, 2012, p.21).  
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Table 1 Big data risks and challenges 

 

 

Preventable risks are internal risks that should be actively controlled for and avoided where 

possible. For instance, this would include data sharing, ownership, data cleaning and meeting 

compliance standards Rigby, (2015); Kitchin, (2014)). Strategy risks are rational, calculated 

risks that a smart city practitioner might take in order to seek advantage or competitive gain. 

This would include: decentralization and re-orienting global to local production logistics 

through the establishment of mini-factories (e.g. the production of medical products and 

supplies for local hospitals (Mourtzis and Doukas, 2013).  

 

External risks are largely beyond the practitioners‟ control. For example, in Table 1 this 

would refer to the volume of unstructured data (Whitier, 2014) or whether there is a sufficient 

enough pool of skilled data scientists to enable big data process capabilities to be achieved 

(Bruner, 2015) .   

 

Big data is also paving the way for the integration of operational, information, business, 

quality and other dimensions of enterprise. See (Ji-fan Ren, 2016), for example, where the 

Risks and Challenges  Big Data Projects Key authors 

Interpretation error Personalized drugs using real time data (Bielinski et al., 2014) 

Data sharing Retailing moving to a feedback economy (Rigby, 2015) 

Data ownership Centro De Operacoes Prefeitura Do Rio (Kitchin, 2014) 

Compliance issues City logistics on a cloud platform (Xu et al., 2014) 

Talent management  The industrial internet (Bruner, 2015) 

Privacy invasion  Crowdsourcing and the last mile pick-up (Gue, 2014) 

Security breaches Banks and credit risk checks (Kural and Billens, 2015) 

Data analytical tools City-healthcare (ambulance)  (Mehmood and Lu, 2011) 

Agility Toyota (city) supplier network (Manyika et al., 2011) 

Strategic re-alignment  Decentralized "Mini factories" (Mourtzis and Doukas, 

2013) 

Unstructured data IBM/Motorola Retail presence (Whitier, 2014) 
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authors examine the quality dynamics in big data environment that are linked with enhancing 

business value and firm performance. Also see  (Ahmad and Mehmood, 2016) and (Ahmad 

and Mehmood, 2015) where enterprise systems and their performance are discussed in 

relation to smart cities, sustainability and logistics. The potential of logistics prototyping to 

develop “user-driven” and “SME” approaches to future city design and urban supply chain 

decision-making is explored in (Graham et al., 2015).  

 

Smart city transport operations framework  

Future cities are expected to embrace new technologies and the planning of operational 

related activities. These include transportation and healthcare which will be more dynamic 

than has been the case. Big data will play an important role in providing innovative day to 

day and emergency services in the cities (Alazawi et al., 2014a). Urban planners will be able 

to react to the emerging changes in demand within a much shorter period of time.   

 

Autonomous vehicles and autonomic computing systems appear, currently, to be the main 

approaches that could improve efficiency and reliability and hence the sustainability of city 

transport and operations systems (Schlingensiepen et al., 2014; Schlingensiepen et al., 2016). 

Using emerging technologies, such as IoT, it will be easier to measure and monitor the 

carbon footprint of transport related activities at a micro-level. A city rich in sensors will be 

able to assess the health of the whole city and provide the necessary logistics data to policy 

makers enabling them to make decisions at operational levels with a much shorter time span 

of implementation. 

 

The framework presented in Figure 1 is based on a scenario of a future city transportation 

centre. In which the capacity and demand of the city can be analysed in real-time. In such a 
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city the transportation centre is the sole authority to plan and manage demand. This scenario 

would only allow autonomous vehicles in the city.   

 

Figure 1 Big Data Operations Framework 

 

The above was designed to provide a scenario for guiding the development of a Markov 

model. This transport centre monitors events in the city using sensor networks, big data and 

the Internet of Things (IoT). The centre takes real-time, short-term and long-term actions 

based on the operational data received. These actions may require immediate actions such as: 

making amendments in the traffic signalling schedules and dispatching additional 

autonomous vehicles to specific city zone(s) to meet the real-time and emerging demands. 

Consider a scenario where all the transport demand is planned and managed by the city 

transportation authority. It is able to receive various demand data for activities including: 

freight, healthcare, shopping and leisure, work and school.  
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The data received can provide operational insight into short-run and long-run demand for 

activities affecting transport flows in the city. The data can also be live streamed data 

including the five Vs. For example, an intercity match in the city football stadium, which is 

being held in one month‟s time, would represent short-run demand data. Whilst the 

construction of a megamall in five years‟ time would be identified as long-run data, a major 

accident in the city centre a few minutes ago would be identified as a real-time shift in 

transportation demand. 

 

Research Method 

Markov chains, Markov decision processes (MDPs), queuing theory and discrete state models 

are widely used analysis, optimization and decision making tools. Markov chains allow 

systems of interest to be modelled as stochastic processes and the modelled systems can be 

analysed for their steady-state or time-dependent behaviour. Performance measures such as 

delay, blocking probability and utilization of a system can be calculated by computing the 

probability distributions of Markov chains. Markov decision processes allow systems to be 

modelled as optimisation problems.  

  

Queuing theory based models allow systems of interest to be modelled as queues, or network 

of queues, with a certain arrival and service rate. Such formulations can be used to 

analytically calculate measures of interest including job loss probabilities and waiting times 

in the system. Arrival, queuing, service and departure are inherent in many science and 

technology problems and therefore many interesting systems can be formulated as queuing 

models. Markov chains, MDPs, and queuing theory are considered discrete state modelling 

tools because the modelled system is composed of discrete states making transitions from one 

state to another under certain constraints. Worthington, (1987); (1991) notes that queuing 
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theory continues to be one of the most researched areas of city operations with its 

applications in coal mining, call centres, office processing, and retail (in addition to transport, 

telecommunications and healthcare).  

 

Worthington, (1987) identifies five dimensions of queuing based modelling: single, multi- 

and infinite server(s); exponential versus non-exponential, steady-state versus time-dependent 

analyses; single node, tandem queues; networks of queues; and extra features such as priority 

queues and server vacations. Worthington (1991) also identifies three distinct approaches in 

queuing based analysis: analytic formulations and formulae; analytic formulations and 

numeric solutions and models.  

 

Batty, (2012); (2013) notes there is a critical need for understanding of big data explanatory 

models, based on explicit modelling assumptions, with predictive power. He strongly 

supports the use of concepts such as agent-based modelling (based on modelling each 

component of a system as a software agent), flocking (emulating or copying others‟ 

behaviour applied in artificial intelligence and software models) and graph theory. Markov 

chains, he suggests, provides an excellent starting point for big data analysis. Once a system 

has been modelled using this approach, its performance measures of interest can be derived 

by generating and solving a Markov Chain. The transient behaviour of a continuous time 

Markov chain (CTMC) is described by the Chapman-Kolmogrov differential equation:  

  

𝒅𝝅 𝒕 

𝒅𝒕
= 𝝅 𝒕 𝑸 (1) 

where 𝑄 ∈ ℝ𝑛×𝑛  
is the infinitesimal generator matrix, and  𝜋 𝑡 = [𝜋1 𝑡 , 𝜋2 𝑡 , . . . , 𝜋𝑛 𝑡 ]  

is the transient state probability row vector. The vector 𝜋𝑖 𝑡  denotes the probability of the 
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CTMC being in state i at time t, and π0 is the initial probability distribution vector which 

equals 𝜋 𝑡  at t = 0.  

 

The steady state behaviour of a CTMC is given by: 

  

𝝅𝑸 = 𝟎,  𝝅𝒊

𝒏−𝟏

𝒊=𝟎

= 𝟏 

 

(2) 

 

where 𝜋 = lim𝑡→∞ 𝜋 𝑡  is the steady state probability vector, which exists for an ergodic 

CTMC. The order of the infinitesimal generator matrix Q equals the number of states in the 

CTMC. The off-diagonal elements of the matrix Q satisfy 𝑞𝑖𝑗 ∈ ℝ≥0, and the diagonal 

elements are given by 𝑞𝑖𝑖 = − 𝑞𝑖𝑗𝑗≠𝑖 . The matrix Q usually is very sparse; further details 

about the properties of these matrices can be found in (Stewart, 1991). The steady state 

equation given above can be reformulated as 𝑄𝑇𝜋𝑇 = 0, and the well-known methods for the 

solution of systems of linear equations of the form 𝐴𝑥 = 𝑏 can be used; see (Stewart, 1991) 

and (Kwiatkowska et al., 2011). The numerical solution methods for linear systems of the 

form 𝐴𝑥 = 𝑏 are broadly classified into direct methods and iterative methods. For large 

systems, direct methods become impractical due to the phenomenon of fill-in, caused by the 

generation of new entries during the factorisation phase. Iterative methods do not modify 

matrix A, rather, they involve the matrix only in the context of matrix-vector product (MVP). 

The term iterative method refers to a wide range of techniques that use successive 

approximations to obtain more accurate solutions to a linear system at each step. Since we 

deal with very large Markov chains, we mainly use iterative methods to solve the numerical 

models. 
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A major hurdle in the applicability of these tools to complex and large problems is the „curse 

of dimensionality problem‟. This is because models for even trivial real life systems comprise 

of millions of states and hence require prohibitively large computational resources. This 

problem led to the development of several techniques designed to provide alternative 

strategies to solve large systems, such as concurrent, parallel and distributed computing 

techniques.  

 

Computational Methods to Solve Large Models 

We have previously developed computational strategies for the numerical solution of Markov 

chains, to exploit the developments in computational infrastructures and techniques which 

minimize the use of the resources, see (Mehmood, 2004a); (Mehmood & Crowcroft, 2005); 

(Mehmood, 2004b); (Kwiatkowska et al., 2004); (Kwiatkowska et al., 2002); and 

(Kwiatkowska and Mehmood, 2002). The range of computational techniques which we have 

developed to resource minimize, include the following: 1) compact data structures which 

exploit model details to minimize the memory and computational requirements, 2) out-of-

core techniques which use concurrent programming (multithreading) and disk storage to 

efficiently store and retrieve large models, and 3) parallel computing techniques to use 

memory and computational power of multiple machines. For instance, the solution of CTMC 

models on single workstation as well as on parallel machines with over 1.2 billion states 

(equivalently, a linear system with 1.2 billion unknowns and equations) and 16 billion 

transitions.  

 

Traditional solution methods will require over a 100GB of memory to store and solve such 

large systems, implying that these systems cannot be solved on a single contemporary 
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workstation and will require fairly huge computational resources. This paper‟s framework 

coupled with this earlier work on the solution of large Markov models provides a promising 

approach for big data technologies and solutions to supplement previous applications of 

queuing theory (Freeman et al., (2000); Freeman and Burdon, (2013); Anderson et al., 

(2013)). 

 

Data and the capacity measure used in the Markov Model 

 

The Markov model used high level aggregate data or data aggregates that comprised a 

multitude or combination of freight, passenger ridership and service capacity data. This 

operational data was collected by the Massachusetts Bay Transport Authority (MBTA) and 

the Massachusetts Executive Office of Transportation in Boston
1
. It was made available to 

the authors in 2013 for Markov analysis after a period of 12 months from its collection. The 

use of aggregated data makes the assumption that the hypothesized relationship between the 

transport demand variables in question is homogenous across all individual cases (Garrett, 

2003). Therefore, our findings on capacity-demand relationships are not valid for any 

individual variable (if less aggregated data were used). The aggregated capacity measure we 

used is the number of vehicles operating in the Kendall Square neighbourhood of Cambridge 

(per hour).   

 

Correcting for „aggregation bias’ has received careful attention in the literature (Goodfriend, 

1992). Therefore the findings are restricted to an aggregated operational perspective which is 

not generalizable to other city scenarios. It is only representative of one city borough‟s freight 

and passenger flows in one specific time period (May - August 2013) and it is not replicable 

to other time periods of that city area. Further, no externalities were factored into the model 

                                                      
1
 The Markov study formed part of a 3 month research investigation exploring future city logistics at 

MIT‟s Centre for Transportation and Logistics (http://www.nemode.ac.uk/?page_id=740) 
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which might alter demand and supply patterns (e.g. season, climate, tourism, vacations, 

students (out of term)).  A classic example of the approach presented here is the empirical 

work of  Carroll et al., (1994) and Bram and Ludvigson (1998) who forecast national 

personal consumption expenditures through a highly aggregated measure of consumption. 

 

Note that this section and the cited references herein, illustrate limitations of our approach, as 

well as example of research using this approach. In this research, we are concerned with 

aggregated traffic flows and centralised decision systems. Moreover, the problem illustrated 

is to determine the optimal allocation of autonomous vehicle to satisfy demand and capacity. 

As it is done by central authority and the use of aggregated data, we did not consider 

modelling transportation routes, traffic lights etc. However, it is possible to augment the 

model to a hierarchical Markov model with augmented state space representing routes and 

other constraints, and the solution principle will remain the same. Approaches of using 

Markov models for short term traffic forecasting are found in literature as well, see e.g.  (Yu 

et al., 2003). The work of Büscher et al. (2009) is also relevant to our this work; they have 

explored cumulative, collective and collaborative aspects of mobility systems, and have 

illustrated challenges and opportunities in relation to practices of collaboration. A number of 

our earlier works have considered both macro-level and micro-level modelling and 

simulation of road traffic and transportation, see e.g. (Alazawi et al., 2014b, 2012, 2011, 

2011; Ayres and Mehmood, 2009; Elmirghani et al., 2006; Mehmood, 2007; Mehmood and 

Nekovee, 2007).  

 

The Model 

A total of 18 scenarios were modelled based on various levels of transport demand and 

capacities in a future city. Subsequently, we calculated precise probabilities for all future 
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states of each of the modelled scenarios. The analysis was designed along the lines of 

providing answers to questions such as: “What transportation capacity should I have in order 

to meet transportation demands of the city probability at 𝑃 = 𝛼?” where 𝛼 is the probability 

with any value between zero and one. The framework also allowed practitioners to determine 

the level of capacity sharing that is needed between various parts of the system. 

 

Consider further that a future transportation centre plans and manages its long-run and short-

run transportation capacity periodically by analysing the quantitative changes in the demands, 

any related city activities, and historical trends. The short-run planning can be, for example, 

on a quarterly, monthly, or daily basis based on city dynamics. The long-run planning can be 

for a period of one year or more. The short-run and long-run planning can be carried out by 

building Markov models and solving these models for their steady-state numerical solution. 

Any real-time dynamics of the city are met by real-time planning algorithms, for example, by 

solving Markov models for their transient solutions. Optimization methods can also be 

employed, for example using Markov decision processes. We focus here on the steady-state 

solutions.  

 

Let us denote the total transport demand of the city (in terms of the number of autonomous 

vehicles) by 𝜆𝑇 . This is per hour demand in terms of the arrival rates with exponentially 

distributed inter-arrival times. The total demand comprises 𝜆𝐹  (demand for freight related 

activities), 𝜆𝐻 (healthcare), 𝜆𝑆𝐿 (shopping & Leisure) and 𝜆𝑊  (work-related transportation 

demand). All these demands are per hour, in terms of the number of autonomous vehicles, 

with exponentially distributed inter-arrival times. Mathematically: 

  

𝝀𝑭 +  𝝀𝑯 + 𝝀𝑺𝑳 + 𝝀𝑾 = 𝝀𝑻. (3) 
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Now assume that the total transportation demand for the city for weekdays is 4800 

autonomous vehicles per hour. Also, suppose that the transportation demand for the four 

named activities, freight, health, shopping & leisure, and work are at 𝑎 = 25%, 𝑏 = 15%, 

𝑐 = 25%, and 𝑑 = 35% of the total transport demand, respectively. Formally, we can write 

as:  

 

𝝀𝑭 = 𝟏𝟐𝟎𝟎  𝝀𝑻  × 𝒂 ,  𝝀𝑯 =  𝟕𝟐𝟎  𝝀𝑻  × 𝒃 ,  𝝀𝑺𝑳 = 𝟏𝟐𝟎𝟎  𝝀𝑻  × 𝒄  ,  

 𝝀𝑾 = 𝟏𝟔𝟖𝟎  𝝀𝑻  × 𝒅 , 𝝀𝑻 = 𝟒𝟖𝟎𝟎  

(4) 

 

Note that our methodology to model the transportation demand of a future city does not 

depend on the number of transportation-related activities in the city (freight, work etc.) 

because you can add additional sub-demands for each new activity and include these in 

Equation (1) and (2). Similarly, it is also possible to build separate models for each change in 

the transportation demand, e.g. due to peak time and off-peak time demands, weekend 

demands. Similarly, the quantity of demand and capacity does not affect our methodology.  

 

A smaller figure of 8000 vehicles per hour for transportation capacity is now used for 

explanatory purposes otherwise theoretically any quantity of transportation demand typical of 

a city can be modelled and numerically solved. For large demands, we can use the range of 

techniques that we have developed over the years to deal with large models; see Section 

“Computational Methods to Solve Large Models” on Page 12 for a discussion of the 

techniques for solving large Markov chains.  

 

The operations centre considered various scenarios and possibilities for variations in the 
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transportation demands in the city, included those discussed above (peak, off-peak, weekend, 

shift of higher work-related demand in the morning towards higher shopping and leisure 

related demands in the evenings). They decided to build transportation capacity in the city 

such that the typical workday demand is met by 60% of the total transportation capacity, that 

is: 

  

𝝁𝑻 × 𝟎. 𝟔 = 𝝀𝑻,   𝝁𝑻 =
𝟒𝟖𝟎𝟎

𝟎. 𝟔
,   𝝁𝑻 = 𝟖𝟎𝟎𝟎. (5) 

 

where 𝜇𝑇  is the total transportation capacity of the transportation system in the city. As for 

the demand, 𝜇𝑇  represents the transportation service rates with exponentially distributed 

service times. The service rate or the transportation capacity is modelled in this manner to 

take into account the random nature of shared capacity that would exist in a real city. So for 

example, one area of transport demand (e.g. school related transport) may have its peak time 

in the morning while another area of transport demand (e.g. leisure related transport) has its 

peak in the evening. So the capacity from one area of transport demand can be shared by 

another area of transport demand. Note that the term “capacity” in this paper is not strictly 

meant to be the term “capacity” as is taken in queuing theory discipline and the Kendall's 

notation; rather it is meant to be the transportation capacity in terms of the vehicles per hour 

that the transport operations centre is able to provide. The two connotations are interrelated 

here but could cause confusion if the differences are not understood.   

 

Considering the variations in transport demand, the transportation centre modelled a number 

of scenarios ranging from 𝜆𝑇 = 1 (a transport demand of one vehicle per hour) to 𝜆𝑇 = 8000 

(a transportation demand equal to the transportation capacity). We have modelled a total of 
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18 such scenarios as CTMCs and have obtained the numerical solution for their steady state 

vectors.  

 

The lowest demand case scenario (𝜆 = 1) is selected such that the demand is relatively very 

small compared to the total capacity of the transport operation. This is to show that such a 

system will have high probability of being in the near idle states. The worst case scenarios 

represents a very high demand (𝜆 = 7990 and 𝜆 = 8000 per hour) reaching very close and 

equal to the total capacity of the transport operations centre. Fifteen other scenarios (𝜆 = 500, 

1000, 1500, …, 7500) in between these extremes were modelled to understand the dynamics 

of such a transportation planning and management centre.  

 

Figure 5 (see Appendix on Page 43) gives the generic transition diagram of a CTMC 

applicable to all the 18 scenarios discussed earlier. The transition diagram depicts that the 

model has 𝑁 + 1 states. The initial state (numbered 0) represents the case where there are no 

demands or requests for vehicles in the system. The next state (numbered 1) represents the 

case where there is a demand for one vehicle in the system, and so on. The last state 

(numbered 𝑁) represents the case where the system contains the maximum number of jobs 

and is running at its full capacity (𝜇𝑇). The states numbered 𝐽 represent all the states between 

4 and 𝑁 − 1.   

 

The total number of states in the transition diagram (Figure 5, Appendix, Page 43) for all the 

18 scenarios will be the same, i.e. 8001. The departure rates will depend on the particular 

state the system is in, that is   𝜇𝑖 =  𝑖 ∗ 𝜇, ∀ 0 < 𝑖 ≤ 8000 where 𝜇 = 1. The arrival rates 

however will be in accordance with the 18 scenarios, as mentioned earlier, 𝜆𝑖 = 𝜆 =

1, 500, 1000, … , 7500, 7990, 8000, ∀ 0 ≤ 𝑖 < 8000. Essentially, this Markov model 
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represents an M/M/C queuing system. 

 

Table 2 (see Appendix, Page 43) gives the generator matrix (Q) of the CTMC model given in 

Figure 5. The diagonal elements are highlighted in the blue and bold font. Given the matrix 

Q, the steady state vector (π) of the system (containing probability distribution of all the 

system states) can be calculated by solving the corresponding sparse system of linear 

equations as given by Equation (2). The system of linear equations can be solved using 

stationary methods like Jacobi and Gauss-Seidel (GS), and non-stationary methods such as 

Conjugate Gradient, Lanczos, etc. We have used both the Jacobi and Gauss-Seidel methods 

to solve large Markov chains with over a billion states (see Page 12). Figure 6 (Appendix, 

Page 44) gives the block Jacobi algorithm used to solve the CTMCs, taken from our earlier 

work (Mehmood & Crowcroft, 2005); refer to the source for details of the algorithm.     

 

Results  

We have used two separate figures (Figure 2 and Figure 3) to make the results more 

comprehensible. First, the results are explained from a low demand scenario of 500 vehicles 

per hour. The horizontal axis is used for the states of the system. The vertical scale of 

probability ranges between 0 and 1 (where 1E-00 is one and 1E-08 indicates a small 

probability near zero).   
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Figure 2 Transportation Capacity, demand, and steady state probabilities (500 vehicles per 

hour demand) 

 

 

There are a total of 8001 states in the system: state 0 to state 8000. State 0 means that the city 

transport system is idle and there is no vehicle demand in the system for autonomous 

vehicles. State 1 implies that there is a demand for one autonomous vehicle per hour, State 2 

implies demand for two autonomous vehicles per hour, and so forth. The final state number is 

8000, which implies that the transportation system is operating at its full capacity with 8000 

autonomous vehicles being requested every hour by the city. As we have explained earlier, 

this modelled system is able to provide 8000 vehicles per hour capacity.  

 

Both the arrivals and departures have exponentially distributed inter-arrival and service times. 

The vertical axis gives the stead y-state probabilities for the city transportation system. There 
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are a total of 8001 states in the system: state 0 to state 8000. The plot gives the probability of 

the system to be in each of the system states for the scenario with 500 vehicles per hour 

demand. We have labelled some of the plot values with the number of specific state and the 

associated probability.  

 

The probability for such a system to be in state 393 is 1.0E-08. The probability for the system 

to be in all the earlier states (states zero to 392) is zero. The absence of any dots or line 

represents a zero probability. Subsequently, the plot shows an increase in the nonzero 

probabilities, rising from the left of the plot to the values between 0.0001 (state 506) and 

0.0002 (state 7055), approximately. Finally, to the right, the probabilities drop again to the 

value 1.0E-08 (state 7102). The probabilities for states 7105 to 8000, all are zero. We have 

used 1.E-08 as the vertical scale limit, and the logarithmic scale to make the graph 

comprehensible. The states with zero probability imply that the system will never reach to 

these states. For higher numbered states (7105 to 8000), it demonstrates that the system is 

fairly stable, will comfortably deal with its load, and will not fail.  
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Figure 3 Transportation Capacity, demand, and steady state probabilities (for 18 different 

scenarios) 

 

Figure 3 visualises all the 18 scenarios that we have considered in this paper. Each scenario is 

represented by a plot. As before, the horizontal axis is used for the states of the system (a 

total of 8001 states) and this modelled system is able to provide 8000 vehicles per hour 

capacity. The vertical axis gives the steady-state probabilities for the city transportation 

system. Each of the 18 plots gives the probability of the system to be in each of the system 

states for the particular scenario.  

 

Consider the plot for the lowest-demand case scenario with the transport demand of one 

vehicle per hour (the bottommost plot in blue colour). The probability for such a system to be 

in state 0 (idle system) is 32.09% and to be in state 1 is 32.19%. Note here that state zero 

means that there is no outstanding vehicle demand in the system. It does not mean that the 
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system in this state does not receive a demand for a vehicle. Such cases are possible where 

there is a high capacity for service and relatively very low demand for jobs. In other words, 

the system in the lowest demand scenario may remain idle with a high probability, 32.09%, 

though the service demand may arrive and be satisfied. However, note also that this system, 

in fact, may remain in state 1 (with one job in the system) with slightly higher probability, 

32.19%. The probabilities for this system to be in other states are around 1.0E-05, except for 

the states 7000 and beyond, where the probability is almost zero (this can be seen by the 

sharp drop towards the right of the plot and, afterwards, the absence of line).  

 

The scenario for the lowest demand (one vehicle per hour) demonstrates a case of very low 

demand (e.g., low arrival rate), relatively, compared to a very high capacity (e.g., very high 

service or departure rate). Such a system is highly likely to be in one of the first two states 

(32.09% + 32.19%) because the total demand is one vehicle per hour and it may get served as 

soon as it arrives. Note in the figure a different trend between scenario 1 and all other 

scenarios. This is due to the fact that the increase in the demand is 500 times (500=1×500) 

compared to the other scenarios where the highest increase in the demand is 2 times 

(1000=500×2). That is, each next scenario uses demand with an increase of 500 and 

therefore, with the increasing demand, each next scenario represents a smaller increase in 

demand compared to the previous scenario (e.g. 500/1500 < 500/1000). Another way to look 

at it is that for scenario one the system load is almost zero, while scenario 500 represents, 

relatively, a fair amount of load. We have verified these justifications by solving relevant 

models and plotting results for models with a linear increase in demand, i.e., 1, 2, 4, 8, 16, 

and so on. Also consider that the vertical axis is plotted using a logarithmic scale. 

 

The plots for the other transportation demand scenarios represent behaviour similar to the 
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system with the demand of 500 vehicles per hour except that the plots shift towards the right 

with the increase in the demand. While the system with 500 vehicles demand has nonzero 

probabilities beginning from state 393, the system with 1000 vehicles demand has its first 

nonzero probability from state 737. Moreover, the probability values for higher numbered 

states (7000 and beyond) also increase as can be seen by the delay in the drop of the 

probabilities towards the right of the plots. The plots for the scenarios with transport demands 

of 7990 and 8000 vehicles show a continuous increase in probabilities towards the higher 

numbered state. These two plots, as opposed to all the other plots, do not show a drop 

towards the right, implying that the system will have the highest probability to be under full 

load, and therefore would be at risk of not meeting its demand. Such a system is at high risk 

of reaching instability and this scenario/condition should be avoided. We address this 

problem in the next section. 

 

Dynamic Configuration of Capacity Sharing 

To further clarify the system behaviour depicted in Figure 3, we note that it is best for the 

transport system to be in the idle (or near idle) state with the highest probability; as is the case 

for the lowest demand scenario. However, though such a case represents a low risk of failure, 

it does also represent a case of low resource utilization and hence wastage of resources. On 

the other hand, the case of highest demand scenario represents a high risk of failure (e.g., the 

system may not be able to provide service to its customers and can become unstable), while 

allowing a high level of utilisation. Transport managers would like the probabilities of the 

higher numbered states to be zero, implying a low risk of failure. However, they would also 

like a high level of utilization to justify a higher return on investment (ROI). Our framework 

allows the practitioners to specify the level of sharing, a precise probability for the system 

utilisation and risk and provides them with estimates of the required level of capacity. This 
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can be done in an automated control manner, and if needed the level of sharing and capacity 

could be altered based on the real-time demand. 

 

Table 3 (see Appendix, Page 45) lists the probabilities for the last few states of the highest 

demand scenarios (states 7974 to 8000 of the scenarios with demands of 6000, 6500, 7000, 

7500, 7990 and 8000 vehicles per hour). Note that all the probabilities of the given final 

states for the scenario with the demand of 6000 vehicles per hour (scenario 6000) are zero. It 

means that the transport system for this scenario with the total capacity (𝜇𝑇) of 8000 vehicles 

per hour will comfortably deal with the demand, and will not be at risk of reaching instability 

or failure. For scenario 6500, the transport system could be in states 7974 or 7975 with a 

small probability 1E-08, and with zero probability in states 7976 to 8000. It implies that the 

transport system for this scenario will also be able to deal with the associated demand of 

6500, and will not become unstable.  

 

The data in Table 3 for the other scenarios can be explained similarly. We focus here on the 

scenario 8000 (the last column). The data for this scenario shows that the transport system 

could be in any of these states with a total probability of 0.87% (0.000324 × 27 =

 0.008748). Now suppose that the transport system manager wishes to avoid any risk for the 

system to reach instability and to achieve this goal the manager looks to provision additional 

transportation capacity for the system. The model and method to do so are explained in the 

rest of this section.  

 

Let us generalise Equation (3) into the following equation for transport demand: 
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 𝝀𝟏 𝒕𝒋 

𝟏≤𝒋≤𝒎

+  𝝀𝟐 𝒕𝒋 

𝟏≤𝒋≤𝒎

+  𝝀𝟑 𝒕𝒋 

𝟏≤𝒋≤𝒎

  +  …  +   𝝀𝒏 𝒕𝒋 

𝟏≤𝒋≤𝒎

 (6) 

 

where 𝜆1 𝑡𝑗   is the demand for activity one for the time period “𝑗”,  𝜆2 𝑡𝑗   is the demand for 

activity two for the time period “𝑗”, and so on up to the activity “𝑛” (a finite integer). The 

time period “𝑗” varies between one and a parameter “𝑚”. The parameter “𝑚” can be selected 

by the system designers to optimise granularity of control, efficiency, and system complexity. 

One possibility is to set “𝑚” equals to the number of hours in the day (i.e., 24). So demands 

will be monitored on an hourly basis and there will be a maximum of 24 demands for activity 

one; that is; 𝜆1 𝑡𝑗  , 1 ≤ 𝑗 ≤ 24. In this case, the demand for an activity, for a given time 

period, could be zero or non-zero (consider the demand for e.g. school related transport). The 

other possibility is to fix the parameter “𝑚” equals to one. In this case, the transport system 

will be a simpler system but the granularity of control, and hence efficiency, would be 

limited. Similarly, periods smaller than one hour are also possible, and will provide a higher 

level of granularity for control and transport operations efficiency (but this depends on the 

nature of city transport). The total demand of the system given in Equation (6) can be written 

as 

  

𝝀𝑻 =   𝝀𝒊 𝒕𝒋 

𝟏≤𝒊≤𝒏

𝟏≤𝒋≤𝒎

 (7) 

 

Similarly, the total transportation capacity of the system can be calculated by Equation (8) 

below. 
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𝝁𝑻 =  𝝁𝒊 𝒕𝒋 

𝟏≤𝒊≤𝒏

𝟏≤𝒋≤𝒎

 (8) 

 

where 𝜇𝑖 𝑡𝑗   represents the transportation capacity with exponentially distributed service 

times for activity “𝑖” for the time period “𝑗”. These capacities and demands can be acquired 

by the system in a distributed and autonomous manner where the sources of the demands and 

capacities can update the transport system through an API. The quality of the information 

regarding capacities and demands can be validated through distributed systems technologies 

such as technologies related to trust. Alternatively, strict authorisation based approaches, or a 

middle approach can be used based on the specific requirements. 

 

Once the capacities and demands have been specified as above, the transport management 

system can use a computer algorithm to look for additionally available capacities with 

mutually exclusive time periods; i.e., the time period “𝑡𝑗 ” should not be the same for the 

additional transportation capacity, otherwise it would have already been included in the 

current transportation capacity. Certainly, there should be a system record for each 

transportation capacity 𝜇𝑖 𝑡𝑗   as to where it is being used for other than their primary 

purposes. Capacity sharing can be further optimised for various system characteristics or 

constrains such as cost, sustainability, trust level in the capacity provider, appropriateness of 

the vehicles for the required purpose, etc. 
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Figure 4 Transportation Capacity, demand, and steady state probabilities (8000/10000 

vehicles per hour demand/capacity) 

 

Figure 4 gives the steady-state probabilities for the scenario with transport demand of 8000 

vehicles per hour. This is the same scenario as we have discussed earlier in relation to Figure 

3. However, this time, the transportation capacity has been increased to 10000 vehicles per 

hour. Some of the plot values are labelled with the number of states and the associated 

probabilities. Compare these results with the results for scenario 8000 in Figure 3. For 

instance, the probability for the system to be in state 9951 is 1.0E-08, while the probabilities 

for the states numbered 9961 up to 10000, all are zero (shown by the absence of the plot). 

Note particularly that the probability has gone to zero before state 10000 which implies that 

the system, whilst providing high resource utilisation, has zero probability for the last few 

states and therefore this system will not be at risk of instability. 
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The additional capacity could be provisioned through sharing, procured through the 

procedure explained above. The level of transport capacity required to provide stability 

higher than the original scenario 8000 (Figure 3) was calculated by solving a range of 

Markov chains with different levels of capacities and a fixed level of demand (8000). This 

procedure was stopped when a satisfactory level of system stability was found. In this case, 

the required capacity for the system is 10000 vehicles per hour. 

 

To summarise: the overall system behaviour depicted by Figure 2, Figure 3, and Figure 4 

shows that a higher number of vehicle demand will lead to higher probabilities for the system 

to be under full load. The model provides precise probabilities (we have used double 

precision number format for higher accuracy of probability values) for the system to be in 

any of the 8000 states under a range of workloads. We have modelled 18 scenarios, although 

our approach allows each of the 8000 scenarios to be modelled and their associated precise 

probabilities to be calculated. Therefore, we can ask such a system to provide answers to 

questions such as “What transportation capacity should I have in order to meet 

transportation demands of the city with (e.g.) 80% probability?”. The probabilities used in 

these queries can be for individual states or aggregated probabilities for multiple states. The 

Markov model scenarios essentially represent the M/M/C systems.  

 

A smaller figure of 8000 vehicles per hour for transportation capacity is used for explanatory 

purposes. Any quantity of transportation demand typical of a city can be modelled and 

numerically solved using the range of techniques that we have developed (see Section 

“Computational Methods to Solve Large Models” on Page 12). Moreover, our methodology 

to model the transportation demand of a future city does not depend on the number of 
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transportation-related activities in the city (leisure, school etc.); additional sub-demands for 

new activities can be added to the model.  

 

The approach to computing the numerical solution of the underlying Markov chains allows 

the practitioner to obtain detailed information about the system as compared to simple 

analytical results for the number of jobs in the system and response times. The city planners 

or managers can explore and compute a set of shared capacities that are sufficient, 

probabilistically, to meet the required transport demands for usual city conditions or a 

specific situation. Therefore, our framework can be used by the transportation planners and 

managers to have greater insight into the system and higher efficiencies through a pool of 

resources that can be shared across various transportation activities in the city; e.g. the 

transportation capacity for work & school-related demands in the morning can be used in the 

evening for shopping & leisure related transportation demands. 

 

Discussion 

The Markov solution is focused on matching the transport demands (of people and freight 

mobility) with city transport service provision. This model and its solution were designed to 

illustrate how sharing transport load in a smart city can improve efficiencies in meeting real-

time demand for city services.  A smart city environment enables the production and use of 

such data in the provision of services in these cities. The fast-growing data generated in an 

online community-like setting is shared across the city network amongst industry, the public 

and transport-service operators. On the one hand this enables local governments, businesses 

and other organizations to act smartly by processing the data to provide transport load sharing 

services that respond to emerging needs within cities; and on the other hand, it allows citizens 

to take an active role in data sharing with service providers and providing real-time feedback 
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on services.  

 

Theoretical contribution 

The paper aims to make a contribution to theory by modelling the potential of the smart city 

to facilitate a city-network perspective to capacity sharing decision making. This is more 

efficient than individual firms taking independent decisions, as this often leads to duplication 

and inefficiency with transport capacity failing to meet volatile and rapidly changing demand.  

 

It is well acknowledged that a large amount of data is generated within smart cities (Manville 

et al., 2014). However, there is no attempt at exploring the interplay between smart cities, big 

data, and city logistics sharing. Therefore, we contribute to existing theory on related logistic 

issues such as RFID tags (Zelbst et al., 2012), information infrastructure capability (Sook-

Ling et al., 2015); and administrative data collected directly from citizens, traffic 

management systems and carbon footprints (Batty, 2013). Although there is a significant 

body of work at the strategic level, what is missing is the detailed operational implementation 

of decisions based on big data (analytics).  

 

Moreover, while previous work focuses on the issues of sources and capture (Kitchin, 2014) 

the issues of volume and velocity are not focused upon theoretically. We go further in our 

work‟s analytical scope by providing detailed insight into how big data could be analysed and 

operationally implemented within the smart city. This will enable more effective capacity 

decision making. While numerous studies claim to highlight the value of big data (Davenport, 

2013), they do not provide operational evidence.   
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Whilst the importance of sampling data to make operational decisions is a well-established 

construct (Taniguchi, 2012), what is less understood are the two main kinds of velocity with 

respect to big data: (1) the frequency of generation; and, (2) frequency of handling, recording, 

and publishing. Our smart city operations model mediates the role of velocity on system 

performance (Leonardi, 2012). Furthermore, we also extend fairly simplistic considerations 

of data veracity. This is achieved by indicating the risks and challenges its complexity poses 

to effective operational decision making (the significant differences in its coverage, accuracy, 

and timeliness).  For instance, one cannot assume, as is often outlined in leading works 

(Kitchin, 2014), that collecting more data will automatically correlate with a better 

performing operational model.     

 

Previous attempts to model big data logistics have been based on empirical data gathered 

from small sample sizes (Fosso-Wamba et al., 2015; Taniguchi, 2012). These and other 

works omit theoretical considerations of the variety dimension. Through our Markovian 

analysis of aggregated structured and unstructured data, we worked with data collected from 

a population (n=all) rather than a sample and therefore the developed model both focuses and 

is built on data variety. 

 

In addition, our work complements that of Fosso-Wamba et al., (2015) and Setia and Patel 

(2013), who explore the role of big data in building operational capabilities and the 

absorptive capacity of logistic operations. Their research findings underscore the importance 

of integrating big data into city logistics design. They argue for greater integration between 

big data and OM and encourage advancing new theories at the big data-OM interface. We are 

therefore extending the adoption literature to the sub-field of big data and city logistics 

research. Through this modelling study, we are building new knowledge on the inter-
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relationships between big data capabilities, load sharing, absorptive capacity and city 

transport planning capabilities. 

 

We have endeavoured to provide a new understanding of load sharing and optimization in a 

smart city context. Specifically through demonstrating how big data could be used to improve 

operational efficiency in meeting demand and also lowering over-capacity. The work 

suggests how improvement could take place by having a (private
1
) car free city environment 

with autonomous vehicles and shared resource capacity among providers. Although 

researchers have begun to assess OAC capabilities of big data, their antecedents are still not 

well examined.  

 

Implications for smart city operations practitioners 

The developments in technologies such as 4G wireless, FTTX (Fibre to the x), IoT, mobile 

computing, cloud computing and big data are enabling new design models of future city 

operations systems. Smart city practitioners must make the best use of these emerging 

technologies to improve their operational efficiency and environmental performance. The city 

logistics aspects point to how transportation would actually need to be re-organized so as to 

deal with the CO2 footprint.  

 

Big data is typically seen by the private sector as an enhanced form of business intelligence 

or enhanced data analytics capability (Kitchin, 2014). However, the model proposed here is 

embedded in the operational sharing economy (Li et al., 2015) and this paper could be seen in 

the applied sense, as a move from individual firms optimizing their own transportation supply 

                                                      
1
 It is possible that future cities will continue to allow people to own autonomous cars but we believe that 

technology will allow the creation of micro-services which will be available dynamically with almost zero 

human (visible) intervention and administrative time. This will allow people to rent cars and avoid parking and 

other disadvantages of owning cars. 
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to a shared collaborative load system. As MIT‟s (Caplice, 2015) recently noted in the Wall 

Street Journal such ideas are radical changes for practitioners and are driven by the growth of 

the sharing economy and the trend away from scale economies based on global  systems to 

more decentralized local transport solutions.  

 

Power and governance in such a system would be transferred more to the city authorities, 

public organizations and local citizens away from profit-driven individual firms (Taniguchi, 

2012). Third party logistics firms operating as „last mile’ delivery operators within the city 

boundary would in a sense lose business unless they could encompass the sharing economy. 

They would also need to be willing to share business intelligence, their freight capacity and 

utilize the shared network offerings. These changed interaction patterns would, therefore, 

transform current city network actor interaction systems, with geography increasing the 

impact on interaction decisions. 

 

Barton and Court (2012) highlighted that the key OM challenge for smart city practitioners in 

using big data is to ensure that it is trustworthy and understandable for all their employees. 

Shah and Pathak (2014) for example, suggests that advanced business analytics skills are still 

largely confined to an expert level. In order to add value from using big data, it is, therefore, 

essential that all levels of practitioners are well equipped to make crucial strategic and 

operations decisions using big data (which can be only be achieved through specialist 

training). Similarly, while organisations might have access to reliable information, owing to 

the lack of clear and coherent content, practitioners could find it difficult to locate this 

properly as/when needed.   
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Smart city practitioners need to emphasize the finding of the right skills including technical, 

analytical, governance skills and networked relationships if they are to optimize their 

implementation of big data (Schroeck et al., 2012). As argued by McAfee et al., (2012) the 

enormous amount of big data requires cleaning and organising, which necessitates recruiting 

technically and analytically sound data scientists. Practitioners should make sure that smart 

city data scientists are well conversant about business and governances issues and the 

necessary skills to talk in the language of business. The findings show that data scientists 

should be trained to build networked relationships which are an important skill (Davenport, 

2014). As such, practitioners should grow, nurture and retain their smart city data scientists in 

order to grasp regular opportunities. Another challenge of using big data for practitioners is to 

develop both their technology infrastructure and business processes in the initial phase 

(Batty, 2013). To strengthen this aspect of personnel expertise capability, an organized effort 

must be made to build technical knowledge, technological management knowledge, business 

knowledge and relational knowledge related to big data logistics (Fosso-Wamba et al., 2015).   

 

This study also urges practitioners to ensure safe handling of individual and organizational 

privacy in the context of big data. For example, keeping individual and business customer 

name, address, market, operational and financial information confidential and undisclosed to 

third parties. This poses an enormous challenge for big data logistics (Kitchin, 2014). In this 

regard, McAfee and Brynjolfsson (2012) highlighted that the privacy concern is becoming 

more significant in this environment and should receive greater attention. 

 

 

Implications for Future Cities’ Supply Chain Management 
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The successful modelling of the Markov model in this study is premised on a big data 

operations framework which celebrates an enhanced interconnectivity between its 

components. It is assumed that customers, information management infrastructure, and 

transport services would share in a mutually supportive reciprocity. This smart cities 

transportation strategy thus introduces contextual discontinuity in the sphere of operations 

management. This new contextual environment calls for greater collaboration and integration 

between the system‟s actors for its effective functioning. From an operations management 

perspective, this calls for greater emphasis on supply chain integration (SCI) (Prajogo and 

Olhager, 2012), particularly given that this scenario affords the operations managers limited 

direct control over information and transportation assets, if companies are to reap the benefits 

of the big data resources and more specifically the notion of load sharing as these would be 

controlled by a third party, the city manager. Nevertheless, we share the conviction that up-

to-date information about transportation capacity and demand could potentially be a valuable 

asset to firms and could be used in enhanced logistics planning (Foresti et al., 2015; Ruiz-

Torres and Nakatani, 1998) to provide customised solutions based on the specificities of 

individual cities. Furthermore, updated information on an hourly basis could potentially be 

integrated into logistics activities to respond to fluctuations in transport capacity in real time 

and thus provide flexibility and greater supply chain agility (Zhang et al., 2011). However, 

the real challenge lies in procuring and managing this intelligence in the context of this new 

“smart cities landscape” (Angelidou, 2014). 

 

Contingency theory suggests that an organization must be aligned with its internal as well as 

external environment to achieve optimal performance (Chong and Rundus, 2004; Hayes, 

1977, p. 19). Thus, applied to SCI, contingency theory suggests that the individual 

dimensions of SCI should be aligned, in order to achieve the best performance. In terms of 
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external fit, the contingency theory indicates the need for consistency between an 

organizational structure and the strategy it pursues in response to its external environment 

(Flynn et al., 2010). At an operational level, this means that a manufacturer should respond to 

changes in its external environment by developing, selecting and implementing strategies to 

maintain fit (Kotha and Nair, 1995; Tushman and Nadler, 1978). Therefore, in the context of 

smart cities transportation solutions based on the framework presented, we predict the need 

for greater integration of third party logistics (Birou et al., 2011).  

 

Whilst the practice of integrating third party logistics in the focal firm‟s supply chain is not 

new the unique contextual features of future cities, in particular, the introduction of the city 

manager variable, puts an accentuated emphasis on relational capital (Chen and Hung, 2014; 

Li et al., 2014). In this scenario, the implication for future supply chain management is that 

efficient operations would depend on the ability of managers to build effective collaborations 

with the transport/logistics provider, other firms in the supply chain, as well as the city 

manager in order to harness value from the big data information. Therefore, in this new 

domain, relationship and trust building (Prajogo and Olhager, 2012) would probably take 

centre stage. This is because, this new way of functioning would require a high degree of 

openness (Gunasekaran et al., 2007) of potentially sensitive operations activities involving a 

high level of information sharing, and in all likelihood, frequent and intense communication 

between firms, transport/logistics provider and city managers. In effect, in addition to third 

party logistics integration, information integration (Cagliano et al., 2006) would also feature 

prominently as a determinant of an organization‟s supply chain performance in the context of 

future cities. Therefore, the contingencies created by a smart city transportation environment 

would impose on operations management the need for greater and perhaps more sophisticated 
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integration of logistics and information. However, alignment with this external environment 

would also have implications for the internal workings of supply chains. 

 

The implications for the internal alignment of future operations management can be viewed 

through the lens of IT-enabled supply chain (Rai et al., 2006). Because the imperative of 

sharing at the heart of external fit, any internal changes would need to share the same 

philosophy. Under the banner of IT-enabled supply chain, previous work has indeed 

accentuated the importance of communication and application of IT in supply chain 

management (SCM) (Gunasekaran and Ngai, 2004) for the purpose of supply chain 

integration. For example, (Rai et al., 2006) offer a model that examines how IT infrastructure 

could be usefully leveraged to harness value from information integration and hence improve 

supply chain process integration leading to superior firm performance.  

 

The work of (Prajogo and Olhager, 2012) is also pertinent to this conversation. In this work, 

the authors show that two aspects of information integration namely, IT capabilities for 

connectivity and information sharing, have positive effects on logistics integration. As we 

have argued, a smart city‟s transportation solution based on big data resources brings with it a 

shift in the operational paradigm towards a more collaborative modus operandi (Clegg et al., 

2013). Thus, the implication for supply chain integration from an internal alignment 

perspective of contingency theory potentially resides in how to leverage IT resources in 

building more transparent supply chains which are based on meaningful and trustworthy 

relationships while preserving economic viability. It is interesting that (Prajogo and Olhager, 

2012: 519) observed a low correlation between IT capabilities and information sharing which 

suggests “that firms cannot assume that because they are technically connected, they are also 
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socially connected.” Whilst it is unequivocal that IT capabilities integration would have a 

defining role in a future cities supply chain management context, we agree with (Rai et al., 

2006) that this would need to be complemented by the integration of other relationship 

management capabilities in order to extract value from the unique big data environment 

discussed in this work. Therefore, while smart cities might well epitomise the frontier of 

technological innovations applications in addressing future cities needs, including 

transportation, future solutions might well be rooted in a distinctively human judgement, that 

is, trust.  

 

Conclusions 

The initial research aim of this paper was to investigate how big data is transforming smart 

city transport operations. In meeting this aim, the research relied on Markov modelling and 

numerical solutions. There are risks and challenges with smart city operations and big data 

(Kaplan & Mikes, 2012). Even bearing this in mind, as the prominence of big data continues 

to develop and stakeholder groups become increasingly knowledgeable and engaged, there is 

considerable incentives for operations managers to achieve value added improvement (Fosso-

Wamba et al., 2015). This could be through transforming their operations models from 

transactional to sharing systems and the extracting of new forms of operational value from 

the big data (Li et al., 2015).  

 

The networking technologies such as FTTX and LTE are enabling fast access to remote 

computational and storage resources, allowing operators to share data in near real-time. This 

is in contrast to the past where several data islands existed and access to these data islands 

were slow or non-existent. This hindered synchronisation, sharing and use of data for 

multiple purposes across and between various city management related systems (Mehmood et 
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al., 2015). IoT and sensor networking technologies will provide the logistics pulse of future 

cities. It will allow future cities to be monitored and controlled in real time. Mobile 

computing is allowing computing intensive tasks to take place on small devices that we carry 

around and the devices that are embedded in our static and mobile environments. Cloud 

computing is enabling computing to be provided as an on-demand elastic utility accessible 

through any device and with minimal management effort. New hardware architectures such 

as GPUs, Field-Programmable Gate Array (FPGA) and Cell Broadband Engine Architecture 

(Cell BE) are providing huge amount of computational power for us to solve increasingly 

large OM problems (Mehmood and Lu, 2011). Furthermore, the emerging computational 

units are much more reconfigurable today compared to the single core machines of the past, 

although the complexity of the design space for software developers is also increasing. All 

these technologies have given rise to big data, its associate challenges, as well as providing 

opportunities to address those challenges. We believe that modelling realistic, complex and 

large smart city- problems require significantly advanced big data computational intelligence 

which is possible today due to the advancements in computations, both hardware and 

software. However, significant efforts are required to translate raw computational power into 

operational intelligence.  

 

Notwithstanding, operational intelligence on its own has little value in solving future cities 

problems unless it can be leveraged into useful capabilities. We have argued from the vantage 

point of future cities supply change management emphasising that the growth in the sharing 

economy would change the dynamics of supply chain operations. In a smart cities landscape, 

firms would need to maintain external and internal alignment (Gonzalez-Benito and 

Lannelongue, 2014). Against a backdrop of the transportation solution presented, this would 

translate in greater integration of the operational intelligence in the form of logistics and 



 

41 
 

information in the focal firm supply chain. However, our analysis shows that in spite of the 

coming of age of technological solutions in the smart cities context, and in spite of the 

predictive proclivities of the Markov process, it would be ill-advised to ignore the 

significance of the flesh of blood cosmopolitans of future cities. In fact, in this new city 

landscape, high-value social relationships (“Editorial,” 2005) might well be viewed as 

complementary resources to technological infrastructure in forging future cities supply chain 

management capabilities.  

 

More in-depth analysis and more discrete modelling are clearly needed to assist in the 

implementation of big data initiatives. Some of the changes that operations and their 

connected logistic chains face are revolutionary and this requires careful consideration from 

both a practical and theoretical point of view. To advance this Markovian work, three types 

of research are urgently needed to extend our preliminary results. Firstly, intensive case 

studies of the transformation of traditional city logistic systems and the development of new 

big data operations models. These need to be identified and documented. The description of 

the new models and the rich context in which these new models are embedded will provide a 

deep insight to researchers and practitioners in exploring similar opportunities and challenges 

in their own domains.  

 

Secondly, new analytical frameworks, tools and techniques need to systematically capture 

relevant data and generate reliable insights to inform operational and strategic decision 

making of operations managers (Slack and Lewis, 2011). Some existing frameworks and 

tools can be adapted for big data but new ones need to be developed to address emerging 

opportunities.  
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Thirdly and perhaps most importantly, is new theoretical and empirical research about the 

transformation of traditional city operations models and the emergence of new ones in the big 

data space. Big data provides the ideal environment for a range of new innovations at the 

interface between big data and operational activity.  

 

This paper coupled with our earlier work on the solution of large Markov models provides a 

promising approach for big data technologies and solutions. Whilst we have primarily 

addressed the volume and velocity challenges, through intelligent storage and parallel 

computing techniques, we need also to aim to explore the value, veracity and variety 

challenges of big data. 
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Appendix 

 

 

Figure 5 The (generic) Transition Diagram for the CTMC of the transport model 

 

 

Table 2 The Generator Matrix Q (transition rate matrix) of the CTMC depicted in Figure 5 

 

 
 
 
 
 

−𝝀  𝜆 0 ⋯ ⋯ ⋯ ⋯ ⋯
µ −(µ + 𝝀) 𝜆   0 ⋯ ⋯ ⋯ ⋯
0    2µ −(𝟐µ + 𝝀)   𝜆 0 ⋯ ⋯ ⋯
0    0   3µ −(𝟑µ + 𝝀) 𝜆 0 ⋯ ⋯
⋮ ⋮ ⋯  ⋯ ⋱ ⋯ ⋯ ⋯
⋮ ⋮ ⋮ ⋯ ⋯ ⋱ ⋯ ⋯
0 ⋮ ⋮   ⋮ 0 𝑏µ −(𝒃µ + 𝝀) 𝜆
0 0 ⋯ ⋯ ⋯ 0 𝑐µ −(𝒄µ) 
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Figure 6 Jacobi Algorithm for solving Markov Chains 
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Table 3 Probabilities for the last few states of the highest demand scenarios (states 7974 to 8000) 

state 6000 6500 7000 7500 7990 8000 

7974 0 1E-08 2.15E-06 6.54E-05 0.000318 0.000324 

7975 0 1E-08 1.98E-06 6.3E-05 0.000318 0.000324 

7976 0 0 1.83E-06 6.06E-05 0.000317 0.000324 

7977 0 0 1.68E-06 5.82E-05 0.000317 0.000324 

7978 0 0 1.55E-06 5.59E-05 0.000317 0.000324 

7979 0 0 1.42E-06 5.36E-05 0.000317 0.000324 

7980 0 0 1.31E-06 5.14E-05 0.000316 0.000324 

7981 0 0 1.2E-06 4.92E-05 0.000316 0.000324 

7982 0 0 1.09E-06 4.71E-05 0.000316 0.000324 

7983 0 0 1.0E-06 4.51E-05 0.000316 0.000324 

7984 0 0 9.1E-07 4.31E-05 0.000315 0.000324 

7985 0 0 8.3E-07 4.11E-05 0.000315 0.000324 

7986 0 0 7.6E-07 3.92E-05 0.000315 0.000324 

7987 0 0 6.9E-07 3.74E-05 0.000314 0.000324 

7988 0 0 6.2E-07 3.56E-05 0.000314 0.000324 

7989 0 0 5.6E-07 3.38E-05 0.000314 0.000324 

7990 0 0 5.1E-07 3.21E-05 0.000314 0.000324 

7991 0 0 4.6E-07 3.05E-05 0.000313 0.000324 

7992 0 0 4.1E-07 2.89E-05 0.000313 0.000324 

7993 0 0 3.7E-07 2.74E-05 0.000313 0.000324 

7994 0 0 3.3E-07 2.59E-05 0.000312 0.000324 

7995 0 0 3.0E-07 2.44E-05 0.000312 0.000324 

7996 0 0 2.6E-07 2.3E-05 0.000311 0.000324 

7997 0 0 2.3E-07 2.17E-05 0.000311 0.000324 

7998 0 0 2.1E-07 2.04E-05 0.000311 0.000324 

7999 0 0 1.8E-07 1.92E-05 0.00031 0.000324 

8000 0 0 1.6E-07 1.8E-05 0.00031 0.000324 
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