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ABSTRACT 

The evolution of naval vessels towards high-speed crafts subjected to severe sea conditions has 

promoted an increasing interest in lightweight high-strength materials. Due to its strength and 

weight characteristics, aluminum has been proven especially suitable as construction material for 

hull structures, as well as other vessel parts. However, fatigue in aluminum naval crafts needs to 

be effectively addressed for the proper life-cycle assessment. Structural health monitoring 

(SHM) systems constitute effective tools for measuring the structural response and assessing the 

structural performance under actual operational conditions. In this paper, an approach for using 

SHM information in the fatigue reliability analysis and service life prediction of aluminum naval 

vessels is presented. The accumulated fatigue damage and the fatigue reliability are quantified 

based on SHM data acquired under different operational conditions, specified by the ship speeds, 

sea states, and heading angles. Additionally, an approach for estimating the reliability-based 

fatigue life under a given operational profile is presented. Seakeeping trial data of an aluminum 

high-speed naval vessel are used to illustrate the proposed approach. 
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INTRODUCTION 

The use of aluminum in modern naval ships has been recently growing. This is due to its 

competitive weight and strength characteristics which make it preferable, over conventional 

steel, to comply with the rapid increase in speed and load requirements. Recently, researchers 

and designers have been investigating various properties of aluminum as a construction material, 

including the ultimate carrying capacity of stiffened panels, corrosion resistance, and fatigue 

behavior of aluminum details. Additionally, this material has been used for innovative structural 

details whose behavior may still not be well understood. As a result, methodologies for 

predicting aluminum ship behavior are still topics of active research, focusing especially on the 

hull capacity, performance in aggressive environments and fatigue resistance [1].  

Fatigue damage is one of the main concerns in naval engineering. It occurs at different 

locations of the ship structure, where stress concentrations or fabrication defects may exist. 

Fluctuations of stress levels during regular ship operations may cause crack initiation and 

propagation at these locations. The resulting reduction of the capacity of the affected region may 

cause failure at load levels well below the service ones [2]. As a result, structures subjected to 

fatigue accumulation require frequent inspections and maintenance actions which can 

significantly raise the operational cost of the vessel. Fatigue assessment of steel ships and their 

life-cycle fatigue behavior have been widely investigated [3,4], and several established design 

guides and technical reports have been produced [5-8]. For aluminum structures, various design 

guides provide rules for the fatigue design and assessment of structural details, such as the 

Eurocode 9 [9] and the DNV [10]. However, design guidance for fatigue life estimation in high 

speed naval vessels is still lacking the level of support and detail present in steel ships, and many 

of the structural details adopted in aluminum ships are still not included in the design codes [11]. 
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Even for steel ships designed using the appropriate S-N specifications, cracks commonly initiate 

and propagate long before the anticipated fatigue service life is reached [12]. This suggests the 

need for additional research and refinements in the current fatigue design and assessment 

approaches to accurately understand the actual ship fatigue behavior under normal operational 

conditions. 

Structural performance prediction of ships under sea loading is subjected to uncertainties 

inherent in the load conditions, material properties, damage propagation and cross-sectional 

dimensions. In this context, structural health monitoring (SHM) is an important tool for the 

reduction of uncertainties, providing information on the real-time structural response [13]. For 

fatigue studies, SHM data can be used for calculating the fluctuating stress levels acting on the 

details at different operational conditions. This task could be theoretically performed through a 

comprehensive finite element analysis (FEA) coupled with spectral analysis of the actual ship 

properties [14]. However, this process is more suited towards the design stage as it consists of 

significant assumptions and simplifications that can be dropped by using SHM.  

Reliability analysis provides a unified measure of the structural performance that takes 

into account both aleatory and epistemic uncertainties [15], an attractive feature for fatigue 

analysis. Moreover, it can give an adjusted service life based on the required reliability level of 

the ship, which is a function of the ship importance, age, and use, among others [16]. Although 

reliability-based fatigue evaluation of steel ship details is well established (see [3,4]), it is still an 

active research area for aluminum ones. Most of the studies in this field predict the unified long-

term probability density function (PDF) of the ship loading based on the anticipated ship 

operational conditions which assumes a specific combination of speeds, heading angles, and 

wave conditions [12,17-19]. This adds significant uncertainties in the fatigue life estimation 
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especially for littoral combat vessels which do not have a well-defined route and are required to 

operate in a wide range of operational conditions [12,20]. Additionally, this approach leaves no 

room to investigate the effect of different operational conditions on the fatigue damage 

accumulation. As a result, it is not possible to isolate those operational conditions causing severe 

fatigue damage from the ship operational profile. This operational profile, developed based on 

the operational conditions encountered by the ship, is defined in the form of discretized blocks of 

constant sea-state, speed, and relative heading. Each block has an associated probability 

representing the fraction of the navigation time spent in that operational condition [17]. 

However, this load profile cannot be easily updated if the ship operational profile changes at any 

point during its life-cycle. 

This article presents a reliability-based approach to quantify the long-term reliability and 

fatigue service life of naval ships based on the short-term SHM data collected during seakeeping 

trials. The fatigue reliability and damage accumulation are assessed with respect to various 

operational conditions, including the significant wave height, encountered wave period, 

navigation speed, and heading angle. The effect of automated ride control systems at various 

operational conditions on the fatigue performance and reliability is also investigated. The results 

can be effectively integrated within the life-cycle management framework to support the decision 

making process with regards to the safe operational conditions. Moreover, it can assist in the 

evaluation of the current design and assessment guidelines under the effect of large number of 

cycles that are normally not reached in laboratory testing. Additionally, a computationally 

efficient approach for the reliability-based estimation of the fatigue service life, based on the 

SHM data collected either during seakeeping trials or normal ship operation, is proposed. After 

the initial data analysis, the proposed approach allows non-technical crew personnel to estimate 
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the remaining fatigue life at critical details. The approach is applied to the SHM data collected 

during seakeeping trials performed on an aluminum high-speed naval vessel (the HSV-2) in 

2004.  

FATIGUE DAMAGE 

Fatigue assessment can be typically performed using the S-N (i.e., stress-life) or the crack 

growth method [21]. The S-N approach, adopted in this paper, provides a relationship (usually, 

linear or bilinear) between the logarithm of the stress range and the logarithm of the expected 

number of cycles to failure for several typologies of details (see Fig. 1). The crack growth 

approach, on the other hand, provides theoretical methods to predict propagation of cracks as a 

function of several variables including the stress range, number of cycles, and geometry, among 

others, and, therefore, leading to the identification of the fatigue life of the detail [22]. It provides 

more detailed analysis with a wider range of applications, but requires considerably more 

computational effort than the S-N approach. For this reason, the S-N approach is adopted by the 

majority of the design guides and specifications. 

As previously mentioned, fatigue is considered as a major threat for metallic structures in 

general, and for ships in particular, since the vessel is subjected to a large number of stress cycles 

throughout its service life. This is more endangering in the case of aluminum high-speed vessels. 

Despite their competitive corrosion resistance and strength to weight ratio, aluminum structures 

have a crack propagation rate considerably higher than steel structures [1], and therefore a 

shorter expected fatigue life. This is clearly represented in Fig. 1 where the S-N diagrams of the 

same details made of aluminum and steel are compared. These S-N lines are adapted from the 

Eurocode 3 [23] and the Eurocode 9 [9] for steel and aluminum constructions, respectively. Fig. 

1-(a) depicts the S-N relations for rolled or extruded aluminum and steel members, while Fig. 1-
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(b) illustrates the same relations for a welded member. As shown, for any stress level, the fatigue 

life of the aluminum members is considerably lower than that of steel members compared to the 

steel ones, and the difference is significantly larger in the case of welded structures.  

For the linear S-N relationship, the number of cycles to failure N within a detail is 

calculated as 

mS

A
N 

                                                                    
(1) 

where A is the fatigue coefficient dependent on the type of the detail, m is the slope of the S-N 

lines in logarithmic scale, and S is the stress acting on the detail. 

Stress range 

Different stress analysis methods can be used for the fatigue assessment of aluminum details, 

namely the nominal stress, structural hot spot stress, and notch stress [24,25]. The choice of the 

stress type and its corresponding S-N relationships mainly depends on the available data. The 

nominal stress approach is adopted by several design and assessment guides such as the 

Eurocode 9 [9]. This method uses the stress acting on the considered location neglecting the 

stress concentration arising from both the structural configuration and the weld effect. These 

effects are inherently considered within the S-N line definition. The main advantage of using this 

approach is the ease of application since the nominal stress calculation is usually straightforward. 

On the other hand, to assess the fatigue damage for a specific detail using this approach, a similar 

match in the design guide has to be found, and this is not always possible for ship structures.   

The structural hot spot stress approach uses the stress induced in the proximity of the 

weld, including the stress concentration due to the structural configuration but not due to the 
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weld itself. This stress is next compared to S-N lines which, instead, incorporate the effect of 

weld stress concentration. The calculation of the structural stress requires more advanced 

structural analysis than the nominal stress case. To exclude the stress concentration due to the 

weld, a single reference point at a prescribed distance from the weld toe can be used; otherwise 

the structural stress can be extrapolated by measurements performed at multiple reference points 

[26]. The advantage of such approach is that a lower number of S-N curves needs to be evaluated 

compared to the nominal stress case. 

The last method, the notch stress, uses the total stress acting at the crack initiation 

location, which includes the stress concentration due to both the structural configuration and the 

weld geometry. The notch stress is usually more difficult to obtain; however, it can be used to 

find the fatigue life of the structural detail using the S-N curve for a base non-welded metal. A 

representation of the three stress types is shown schematically in Fig. 2. 

When dealing with SHM data, it is not practical to find the stress concentration at the 

weld toe using strain measurement, due to the high stress gradient at this location. Thus, 

depending on the available data, the nominal stress approach can be used if a similar detail can 

be found in design guides. Otherwise, the structural hot spot stress approach can be used. In the 

latter case, several recommendations for the placement of sensors to measure the structural stress 

can be found in literature. For instance, Niemi [27] proposes to perform linear extrapolation of 

the stresses identified at distances 0.4 tp and 1.0 tp from the weld toe, where tp is the plate 

thickness. Other classification societies, such as the Lloyd’s Register whose approach is adopted 

herein, use the stress measured at 0.5t as the structural stress [24]. 

Equivalent Constant Amplitude Stress Range 
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Ship structures are naturally subjected to variable amplitude stress cycles. If the distribution of 

the stress cycle amplitudes is known, Miner’s damage accumulation rule [28] can be used to find 

a representative equivalent constant amplitude stress range. By considering the stress cycle 

amplitude histogram, and under the assumption of linear damage accumulation, Miner’s damage 

accumulation index D is the defined as 





ssn

i i

i

N

n
D

1

                                                                  (2) 

where nss is the number of stress range bins in a stress-range histogram, ni is the number of stress 

cycles in the ith bin with stress range Si  and Ni is the number of cycles to failure under the stress 

range Si. According to Miner’s damage accumulation rule, the failure of the detail occurs when D 

= 1.0. However, research showed that this value is subjected to various uncertainties, and up to 

date, no value is accepted by all research communities [4]. It should also be noted that other 

models for predicting fatigue damage accumulation exist. These models can consider additional 

phenomenological factors such as the load sequence and overload effects. However, due to its 

simplicity and agreement with test data, Miner’s damage accumulation rule is still adopted by 

most of the fatigue design and assessment guidelines [29]. 

Based on Miner’s damage accumulation rule, an equivalent constant amplitude stress 

range can be defined as [4] 
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where  TN  = 
1

ssn

i
i

n

 . Alternatively, Sre can be calculated using the probability density function 

fS(s) of the stress range S as follows
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(4) 

For the case study discussed in this paper, it was found that the Weibull distribution 

provides a very good fit for the stress range data of the analyzed aluminum detail. The three-

parameter PDF of this distribution is expressed as  
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(5) 

where s > sc and α and κ are the scale and shape parameters of the Weibull distribution, 

respectively. The cut-off threshold sc is the lowest stress level considered in the stress range bin 

histogram [30].  In many cases, depending on the stress range bin histogram, a two-parameter 

PDF can be used considering sc = 0.  

Fatigue Life 

For an equivalent constant amplitude stress range, fatigue life can be measured by the number of 

cycles to failure using Eq. (1). This number of cycles N, in conjunction with the average annual 

number of cycles Navg obtained by the SHM data, returns an estimation of the fatigue life tf in 

years, using the following equation 

f
avg

N
t

N
                                                                   (6) 
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and, therefore, the remaining fatigue life Trem is  

rem f sT t t                                                               (7) 

where ts is the already spent service life.  

Fatigue Reliability 

The reliability index   has been widely accepted as a structural performance measure. It is 

directly linked to the probability of failure Pf (i.e. the probability of violating a certain limit 

state), through the following relationship [30] 

 fP  11                                                                 (8) 

in which    1   is the inverse of the standard normal cumulative distribution function. 

For the probabilistic assessment of the remaining fatigue life, a reliability approach can 

be used based on the definition of the following performance function 

  ( )g t D t                                                                    (9) 

where Δ is Miner’s critical damage accumulation index, indicating the allowable accumulated 

damage and assumed lognormal distributed with mean 1.0 and coefficient of variation (COV) 

0.48 [19]; D(t) is Miner’s damage accumulation index, which can be expressed as 

  ( ) avgm m
re re

t NN t
D t S S

A A


                                              (10)                       

where A and m are S-N relationship parameters (see Eq. 1), Sre is the equivalent constant 

amplitude stress range (see Eqs. 3 and 4), and Navg is the average annual number of cycles. 
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Based on Eqs. (9) and (10) and assuming that all the random variables (i.e. reS , A , and 

Δ) follow the lognormal distribution [4,30], the fatigue reliability index β can be derived as 

follows: 

222 )(
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


                                           (11) 

where λ and ζ are the lognormal parameters associated with different random variables. 

Eqs. (9) and (10) can be used to evaluate the reliability index using computer software 

such as RELSYS [31] or CalREL [32]. Alternatively, Eq. (11) can be used directly to calculate 

the time-variant reliability index under the assumption that all the random variables have a 

lognormal PDF. By setting a fatigue reliability threshold βtarget and considering Eq. (11), the 

fatigue life tf can be determined as follows 

Sre
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f
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e
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N

 


                                                            (12)

 

where  

2
A targetk                                                    (13) 

and 

 22 2 2

reA Sm      
                                               (14)

 

Eq. (12) represents an immediate way to estimate the reliability-based fatigue life for a selected 

operational condition, once the associate stress range distribution is known. 
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FATIGUE RELIABILITY UNDER MULTIPLE OPERATIONAL CONDITIONS 

Investigating the long-term fatigue reliability of a ship detail requires analyzing all operating 

conditions that the vessel is expected to encounter. The main factors that have to be taken into 

account are ship speed, wave height and period, and heading angle. Long-term fatigue 

assessment of high-speed vessels can be performed using the lifetime weighted sea method [33]. 

This method predicts the ship long-term response as a combination of short term structural 

responses evaluated for various operational conditions. In this type of analysis, the response is 

usually obtained by structural analysis. Stress transfer functions, determined at the studied 

location for the specified ranges of wave heights and periods and heading angles, are used to 

calculate the stress energy spectrum and the spectral moments. The short-term responses are 

combined into a long-term one, for a prescribed operational profile, through the probabilities of 

the different short-term operational conditions. Moreover, under the assumption of Gaussian 

distributed loads and narrow-band load response, closed form solutions are available for the 

determination of the cumulative damage accumulation [5,34]. As mentioned previously, this 

process is based on significant assumptions that are not always realistic for high-speed naval 

vessels and may be avoided by using the SHM data. 

When SHM is available, the short-term response of the ship detail, for a selected 

operational condition, can be directly found using strain measurements recorded during 

seakeeping trials, performed on the vessel at the beginning of its service life. Subsequently, for a 

prescribed operational profile with assigned probabilities of occurrence pj of different sea states, 

speeds, and heading angles, the total damage accumulation index DT can be found, under the 

assumption of linear damage accumulation, as 
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1

on

T r j j
j

D T p D


                                                       (15) 

where no is the number of operational conditions encountered by the ship during the reference 

time Tr (years), and Dj is the annual damage accumulation index for the detail associated with the 

jth operational condition. An alternative approach to compute DT is to find an equivalent stress 

range by using Eq. (3) and calculating the total damage accumulation under this equivalent 

condition. Finally, the fatigue life Tf can be found as 
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Similarly, the fatigue reliability under multiple operational conditions can be evaluated using the 

performance function 

( ) Tg t D                                                              (17) 

which can be expressed as 

1
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By substituting Eq. (10) into Eq. (18), the performance function can be rewritten as 
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where 
javgN is the average number of cycles acting on the detail during one year of exposure to 

the jth operational condition, and 
jreS is the constant equivalent stress range acting on the detail 
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at the jth operational condition. The stress range and the number of cycles can be found using the 

SHM data collected during the water trials. Eq. (19) can be used to find the time-variant fatigue 

reliability, and the fatigue life can be determined by comparison with a prescribed target 

reliability threshold.  

For the case where the random variables follow the lognormal distribution, it has not 

been possible to determine the analytical solution of Eq. (19) in terms of the reliability index due 

to the presence of the sum over the different operational conditions constituting the complete 

operational profile. Accordingly, an approximate reliability-based fatigue life is herein proposed, 

based on the individual fatigue lives associated with different operational conditions. Denoting 

jft  as the reliability-based fatigue life under the jth operational profile, an approximate damage 

accumulation index D* can be defined for the detail after exposure to no operational states, as 
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where  
jft  can be calculated using Eqs. (12) – (14) as  
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Thus, the reliability-based fatigue life Tf is obtained as 
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This approach, in which short-term monitoring data are used to predict the long-term 

response, offers several advantages compared to adopting either a single long-term load response 

or a long-term monitoring program. A unified long-term load response has the main drawback of 

being strongly dependent on the anticipated long-term operational profile for the ship. For high 

speed naval vessels, usually, a safe operational envelope can be defined to establish ship use 

limitations to specific sea conditions in order to reduce the likelihood of damage to the ship 

structure. In fact, the reaction of the crew towards the operational envelope has a significant 

effect on the actual long-term loading profile [11].  A change in the operational profile will alter 

the predicted long-term response and, as a result, the estimated fatigue life has to be re-

calculated. If the fatigue life estimation is required for a different operational profile, the analysis 

has to be entirely redone since the combination of the short-term responses constitutes the first 

step in the fatigue assessment. In this regards, the approximate approach proposed herein only 

requires to update the probabilities of occurrence pj for the new long-term operational profile and 

evaluate the reliability-based fatigue life by Eq. (22).  Therefore, the assessed fatigue life can be 

easily updated whenever new information on the actual operational profiles of the ship is 

available. It is worth noting that the reliability threshold should be selected a priori by the vessel 

manager, and that the proposed procedure allows determining the fatigue life with respect to the 

selected target. 

On the other hand, long-term monitoring programs are expensive due to the high cost 

associated with the monitoring systems, as they require regular maintenance activities and 

regular data processing, which may add a significant burden to the operational cost of the ship. In 

general, the cost of long-term monitoring program consists of the (a) general access and 

preparation cost, (b) monitoring system cost, (c) maintenance cost, and (d) continuous analysis 
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and report preparation cost. The latter often constitutes the largest part of the monitoring 

program cost [35].  

CASE STUDY 

General 

The fatigue assessment and reliability analysis presented in this paper are applied to the HSV-2 

swift, an aluminum wave piercing catamaran, with an overall length of 98 meters, designed and 

built in Tasmania, Australia [36]. The HSV-2 is capable of reaching speeds of 38-47 knots while 

maintaining an average speed of 35 knots [37]. The ship is also equipped with a T-foil that is 

used by the ride control system to stabilize the ship motions at high speeds. A general view of 

the ship is shown in Fig. 3-(a) based on [20,36-38]. The ship was completed in December 2003 

and it was instrumented with various types of sensors, during the period 2003-2004, to measure 

the (a) primary load response, (b) stress concentrations, (c) secondary slam loads, (d) ramp, 

crane, vehicle deck, and helicopter deck strains. Moreover, the ship was instrumented with 

accelerometers at various locations and an over-the-bow wave height system supplemented by 

Tsurumi Seiki Co. Ltd. (T.S.K) [39]. Foil strain gages as well as piezoelectric accelerometers 

were wired and connected to remote junction boxes and an instrumentation trailer [36]. The 

instrumentation required the use of remote junction boxes to provide a cabling scheme in which 

small sensor wires from multiple locations were combined and routed in larger cables for 

termination at the instrumentation trailer; a two-pair signal cable connecting the sensor to the 

remote junction boxes was installed by the monitoring personnel [36]. The main objectives of the 

monitoring plan were to (a) develop safe operating limits for the HSV-2 swift based on structural 

responses measured during calm water powering trials and rough water seakeeping trials, (b) 

comparing these limits to the safe operational envelope established by the American Bureau of 
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Shipping, and (c) quantify the adequacy of the structure against global loads, as well as, slam 

events [36]. 

As indicated in [36], a total of 16 sensors were placed for measuring the structural 

response due to global loading. These sensors, denoted as T1-1 to T1-16, recorded the global 

bending stresses, pitch connecting moments, and split responses. Another group of sensors, T2-1 

to T2-9 and T2-12 to T2-21, was installed to measure the stress concentration at various 

locations. Positions of the structural response sensors (i.e., T1 and T2 sensors) were selected 

based on detailed finite element analysis and previous experience with similar vessels [36]. Data 

recorded by these sensors have a sample rate of 100 Hz. Seakeeping trials were set up to expose 

the ship to different operational conditions covering multiple speeds, wave headings, and sea 

states. Thus, the trials were performed by executing octagon patterns where wave headings of 0°, 

45°, 90°, 135°, 180°, 225°, 270°, 315°, and 360° were encountered. However, considering the 

symmetry of the vessel, most of the runs were executed to cover only 5 heading angles. A total 

of 22 trial octagons have been performed at different speeds ranging between 2 and 35 knots at 

sea states 4 and 5. To study the effect of the ride control system on the structural response, a 

portion of those trial octagons was performed with the T-foil deployed while the rest was 

performed with the T-foil retracted. Slam load analysis performed by [17] showed that deploying 

the T-foil may slightly increase the slam pressure; however, it reduces the rate of slams. The 

study by Brady [17] was based on a comparison at speed 20 knots with no assessment with 

respect to fatigue, which is sensitive to both the pressures and the number of cycles. In this 

paper, a comparison of the fatigue response with respect to the T-foil deployment is performed at 

different operational conditions. 

Fatigue Analysis 
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For fatigue analysis, the global response (i.e., T1) or stress concentration sensors (i.e., T2) can be 

used. Since many of the construction details have no direct match in the design guides, the 

nominal stress approach was not used in this study. Thus, the T2 strain gages are used with the 

hot spot structural stress S-N approach. Among those sensors, the sensor T2-4, placed to measure 

the bending response on the keel frame 26 on the port side, is analyzed herein. This sensor and 

its mirrored sensor T2-5, installed on the same frame but on the starboard side, show the highest 

strain response among all the T2 sensors. The location of frame 26 and the sensor T2-4 are 

shown in Fig. 3-(b) and 3-(c), respectively. 

The strain gage measurements provide the loading effects for the fatigue assessment 

process. Since strains at the studied T2 sensor are well below the yield limit, Hooke’s law is used 

to convert strains to stress values. For the resistance, the S-N relationship based on the hot spot 

approach proposed in [19] is used herein. This approach provides the mean S-N line based on 

regression analysis of 21 tests reported in [40]. In this paper, both deterministic and probabilistic 

fatigue assessments are performed. For the deterministic case, the design curve is obtained by 

shifting the mean S-N line by two standard deviations of log(A) to the left [2]. On the other hand, 

for reliability analysis, the mean S-N line is used. Both the design and the mean S-N line are 

plotted in Fig. 4. The intercepts of the adopted design and mean S-N lines are reported in Table 

1.  

Analysis of SHM Data 

Ship structures are normally subjected to various simultaneous loading actions, as low frequency 

(i.e., wave induced), high frequency, still water and thermal loadings. The still water and thermal 

loadings have, usually, very low frequency and they affect only the mean stresses. Therefore, 
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they have minimal effect on fatigue damage accumulation [7]. The response due to wave induced 

and dynamic loadings can be captured using strain measurements recorded by monitoring 

systems showing, typically, the overall response to both loading conditions. Since the effect of 

this combined load on the fatigue damage accumulation is herein analyzed, it has not been 

necessary to identify low and high frequency load components. This is in contrast with ultimate 

load capacity analyses in which the decomposition into low and high frequency loads is essential 

[13]. However, digital filters have been used herein to remove low amplitude stress cycles 

associated with very high frequencies induced by external noise and having negligible effect on 

the fatigue accumulation. After analyzing the Fourier transforms of signals recorded during 

various operational conditions, it has been chosen to process all signals with a low-pass 

Butterworth filter with 7.0 Hz cut-off frequency. A sensitivity analysis has been performed to 

investigate the effect of the cut-off frequency on the annual fatigue damage accumulation, 

showing only marginal increase in the annual fatigue damage accumulation for cut-off 

frequencies above 7 Hz. In Figs. 5-(a) and 5-(b), the amplitudes of the Fourier transform of two 

strain signals recorded at speeds 20 and 35 knots, respectively, are plotted. The raw signal, in the 

time domain, is shown in Fig. 6-(a) for run 133, and a close-up look is shown in Fig. 6-(b) to 

demonstrate the effect of the filtering process. The MATLAB signal processing toolbox in 

version 2012a [41] has been used. 

After filtering the signal, the rainflow algorithm [42] is used to construct the stress range 

bin histograms and obtain the average number of cycles for each operational condition. The 

resulting stress range histograms are used to find the equivalent constant amplitude stress range 

using Eq. (4). A distribution fitting process is performed, using the maximum likelihood method, 

to find the best fit for the stress range data among multiple candidate distributions, namely, 
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lognormal, Rayleigh, Weibull, and exponential. Goodness of fit is judged using the Kolmogorov-

Smirnov test [43] as well as probability plots. Analyses of the fitting data showed that the 

Weibull distribution provides the best fit for the short term stress range records. The fitting 

results are illustrated in Fig. 7 for the Run 70 with speed 20 knots for head sea conditions; in 

particular, Fig. 7-(a), (b), and (c) show the probability plot of the stress range data for the 

Weibull, lognormal, and exponential distributions, respectively. Additionally, Fig. 7-(d) shows 

the stress range bin histogram along with the best distribution fit. 

Fatigue Damage Accumulation 

Fatigue damage assessment is performed for the detail equipped with the sensor T2-4 using the 

strain measurements for the range of available operational conditions. Eq. (2) is used for this task 

considering an annual ship operation rate or = 2/3 (i.e., it is considered that the ship is operated 

2/3 of the time). The results of such analysis provide indications on the effect of different 

operational conditions on the fatigue damage. Fig. 8-(a) shows the annual damage accumulation 

with respect to the speed for sea states 4 and 5. It should be noted that the strain records of the 

operational condition at sea state 5 with speed 20 knots and heading angle 0° were not included 

in the monitoring data. As expected, the damage accumulation increases with the speed. Higher 

sea states have significant effect on the damage accumulation especially at speeds higher than 30 

knots. At 35 knots, an increase of 250% in the damage accumulation is found when the sea state 

changes from 4 to 5. Additionally, the study is performed with respect to the significant wave 

height and the encountered wave period, which is dependent on the ship speed. Results reported 

in Fig. 8-(b) illustrate the variation of the annual fatigue damage accumulation of the detail with 

respect to the encountered wave period for different values of the significant wave height H. As 

shown, the damage accumulation decreases with the increase in the encountered wave period. 
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Additionally, the accumulation increases with the increase in the significant wave height H; this 

effect is amplified for low values of the encountered wave period (i.e., at higher navigation 

speeds). It is also observed that the difference in the damage accumulation occurring at sea state 

4 for speeds 20 and 30 knots is very small. This can be attributed to the difference in the wave 

period between the two operational conditions. 

The effect of the T-foil deployment on the fatigue damage accumulation at various 

operational conditions has been also investigated. Results are depicted in Fig. 9 for sea state 5 

and head sea condition, considering various speeds, and T-Foil deployed or retracted. At low 

speeds (15 knots and below) the effect of the T-foil on the damage accumulation seems 

negligible. However, with the increase in speed, a different behavior is observed; at 30 knots, the 

damage accumulation is lower with the T-foil retracted, with a reduction of 30% in the damage 

accumulation when compared to the case with the T-foil deployed; whereas, at 35 knots, the T-

foil deployment reduces the damage accumulation by about 30%. Therefore, with respect to the 

fatigue damage accumulation, the T-foil seems to be not effective at speeds 30, 15, and 2 knots. 

The effect of the heading angle is next analyzed; the annual damage accumulation with 

respect to the heading angle at speed 15 knots is reported in Fig. 10 for different sea states. The 

same trend in the results is observed for the two considered sea states with respect to the heading 

angle; however, an upwards shift in the damage accumulation occurs with the higher sea state. 

The damage accumulation is maximum for head sea condition and minimum for beam (i.e., 

heading angle = 90°) and following seas (i.e., heading angle = 180°). For heading angles 45° and 

135°, the damage accumulation level is almost equal, residing at around 75% of that occurring at 

head sea conditions. Similar results were found for the case of T-foil deployed, shown in Fig. 11-

(a). The damage accumulation has similar values to the case of T-foil retracted at most heading 
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angles, except for the head sea (i.e., heading angle = 0°) and the following sea in which the T-

foil deployment causes a slight increase in the damage accumulation. This observation is in line 

with the results shown in Fig. 9. The effect of the heading angle on the fatigue damage 

accumulation trend changes with higher speed. Fig. 11-(b) shows the annual damage 

accumulation at speed 35 knots, for different heading angles and T-foil deployed or retracted. As 

expected, the T-foil reduces significantly the damage accumulation for most heading angles 

except 135° and 180°. In these cases, the damage accumulation shows no sensitivity with respect 

to the T-foil condition. Figs. 12-(a) and (b) provide, in polar plot representation, the annual 

damage accumulation at speeds 15 and 30 knots for sea states 4 and 5, respectively. As shown, 

the speed of the ship has a significant effect on the damage accumulation at different heading 

angles and sea states. 

Fatigue Reliability  

Fatigue reliability for the individual operational conditions is found by means of Eqs. (9) and 

(10) using the software CalREL [32] that implements second order reliability method (SORM). 

Fig. 13 plots the time-variant reliability index for different operational conditions, assuming that 

the ship is subjected to the same operational condition throughout its service life, with an annual 

operational rate or = 2/3. Fig. 13-(a) shows the reliability profiles at speed 30 knots for different 

sea states whereas Fig. 13-(b) highlights the effect of the speed on the fatigue reliability by 

showing the fatigue reliability profile for speeds 15, 20, 30, and 35 knots, at sea state 5. Fig. 13-

(c) shows a comparison between the reliability profiles obtained with the T-foil deployed and 

retracted at speed 35 knots. As expected from previous results, using the T-foil improves the 

reliability at high speeds, increasing the predicted fatigue life by more than 100%, specifically, 

28.1 years and 13.4 years for target reliability indices of 2.0 and 3.0, respectively. The effect of 
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the heading angle is shown in Fig. 13-(d) in which the reliability is plotted for 0°, 45° and 90° 

heading angles. For other heading angles, since the damage accumulation is significantly low, 

the resulting reliability profiles are extremely high compared to those associated with the 

considered angles; thus, these profiles have been excluded from the plot. 

When the real operational profile recorded in the ship log files is considered, a different 

reliability profile has to be expected. If the time spent in each operational condition or the 

probability of being in each operational condition is known, the overall fatigue reliability, as a 

result of being exposed to multiple operational states, can be found using Eq. (19). Additional 

information on obtaining these probabilities and the overall operational profile of a ship can be 

found in [44]. This information, in conjunction with the SHM data recorded during the sea 

keeping trials at an early stage of the ship service life, can be used to project the long-term 

reliability profile of the ship. As an example, a simple operational profile is provided in Table 2 

where the probabilities of being in each sea state, heading angle, and speed are given for three 

different operational conditions (i.e., C1, C2 and C3). In this case, the reliability analysis is 

performed using the software CalREL. Fig. 14-(a) shows the reliability profiles of each 

operational condition, assuming complete operability of the ship in this condition, and the overall 

reliability profile arising from the real operability in the mixed operational states. The target 

service life can be easily estimated by establishing a reliability index threshold βtarget. Setting 

βtarget = 2.0 returns a fatigue life of 13.30 years at the detail, whereas, βtarget = 3.0 gives 6.38 years 

of fatigue life. This fatigue life seems to be relatively short, especially when compared to other 

types of structures such as steel ships and bridges. However, as previously mentioned, the 

analyzed detail shows significantly higher strain response compared to other monitored 
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locations. This suggests the need for more frequent inspections at the analyzed detail to detect 

and repair any cracks before they reach their critical sizes. 

The simplified approach provided by Eqs. (20)-(22) is also used to find the fatigue life at 

each operational state and the overall fatigue life at the detail. The time to failure for each 

operational state and given by Eq. (21), is listed in Table 2 for target reliability indices 2.0 and 

3.0. Using Eq. (22) for the listed operational states returns a fatigue life of 13.27 years and 6.34 

years for target reliability index of 2.0 and 3.0, respectively. Results obtained by Eqs. (20)-(22) 

are within 5% of those calculated using SORM. However, this simplified method can be used to 

immediately update the fatigue life, if any future changes should affect the ship operational 

profile. For example, the updated operational profile given in Table 3 is analyzed.  This profile 

provides the same operational states reported in Table 2 with modified probabilities; in addition, 

more operational states characterized by having the T-foil retracted for speeds lower than 35 

knots are considered. The fatigue life can be easily updated to account for the modified 

operational profile. Using Eqs. (20)-(22), a fatigue life of 15.83 and 7.56 years is obtained for 

βtarget = 2.0 and 3.0, respectively, compared to 15.92 and 7.65, given by the SORM. As shown, 

both methods yield similar fatigue life estimates for different target reliability indices. 

CONCLUSIONS 

In this paper, fatigue assessment of aluminum high speed naval vessels with respect to individual 

operational conditions has been performed. In addition, an approach for the reliability-based 

fatigue assessment and life estimation has been proposed. Operational data of the ship, in terms 

of the time spent at each operational condition (i.e., sea state, heading angle, and speed), were 

used, in conjunction with the sea trial SHM data, to predict the long-term fatigue reliability of a 

ship detail. The hot spot structural stress approach was used for the fatigue assessment; however, 
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the proposed methodology can be applied to any stress analysis method. The proposed approach 

allows to (a) evaluate the reliability-based fatigue life in a straightforward manner; (b) analyze 

the effect of different operational conditions on the fatigue damage accumulation to adjust the 

ship safe operational profile and minimize the probability of fatigue failures; (c) plan the ship 

route in order to minimize the fatigue damage accumulation; and (d) promote the real-world 

application of reliability-based methods using SHM information. The proposed fatigue life 

estimation method is applied to strain data of the HSV-2 obtained during the seakeeping trials of 

the vessel. The following conclusions can be drawn: 

- Some combinations of speeds, sea states, and wave headings have a significant effect on 

fatigue damage accumulation. These operational conditions should be identified and they 

should be avoided to prevent the accelerated damage to the ship structure. 

- The effect of the T-foil on the damage accumulation has to be investigated carefully for 

different operational conditions. For the analyzed vessel, it was found that at speeds 

lower than 30 knots, the damage accumulation is larger when the T-foil is deployed. 

However, for speed 35 knots, the T-foil deployment significantly reduces the damage 

accumulation. 

- Although fatigue is a major limit state affecting the ship safety, other limit states, such as 

the serviceability and ultimate strength should also be studied using SHM information 

including Bayesian updating [45], [46]. 

- The proposed approach enables the active integration of fatigue limit state in the life-

cycle management framework in which inspection and maintenance optimization based 

on reliability [47] and life-cycle cost analysis [48] can be performed, as well as the active 
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route planning to minimize the fatigue damage accumulation at critical details during 

voyages. 
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Table 1. Deterministic parameters and random variables for fatigue assessment 

Parameter Notation 
Distribution 

type 
Mean value COV

†
 

Slope of S-N lines
††

  m - 3.0 - 

Miner’s critical damage 

accumulation index
††

   
Δ Lognormal 1.0 0.48 

Equivalent constant 

amplitude stress range
††

 
Sre Lognormal Eq. (4) 0.1 

Intercept, mean value
*
   E(log A) Lognormal 11.47 0.53 

Intercept, lower bound
*
 E(log A) – 2 × σ (log A) - 11.07 - 

† 
Coefficient of variation 

†† based on Collette and Incecik 2006 
*
 Based on regression analysis of test results for aluminum details reported in Tveiten (1999) 

 



Table 2. Parameters the first operational profile and the corresponding fatigue life  

Operational Condition Parameters  Fatigue life (years) 

Operational 

state 
Probability 

Sea 

State 

Heading 

Angle 

Speed 

(knots) 
T-Foil 

 
βtarget = 2 βtarget = 3 

C1 0.30 5 45° 15 Deployed 
 

90.2 43.1 

C2 0.45 5 0° 30 Deployed 
 

6.55 3.13 

C3 0.25 4 315° 35 Deployed 
 

75.2 35.9 

 

 

 

 



Table 3. Parameters the updated operational profile and the corresponding fatigue life  

Operational Condition Parameters  Fatigue life (years) 

Operational 

state 
Probability 

Sea 

State 

Heading 

Angle 

Speed 

(knots) 
T-Foil 

 
βtarget = 2 βtarget = 3 

C1 0.20 5 45° 15 Deployed 
 

90.2 43.1 

C2 0.25 5 0° 30 Deployed 
 

6.55 3.13 

C3 0.20 4 315° 35 Deployed 
 

75.2 35.9 

C4 0.15 5 45° 15 Retracted 
 

97.55 46.6 

C5 0.20 5 0° 30 Retracted 
 

10.76 5.15 
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