Loughborough
University

v

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the
following Creative Commons Licence conditions.

@creative
commons

C O M O N §

Attribution-NonCommercial-NoDerivs 2.5

You are free:

e to copy, distribute, display, and perform the worlk

Under the following conditions:

Attribution. vou must attribute the worl: in the manner specified by
the author or licensar,

Moncommercial. ¥ou may not use this work for commercial purposes,

Mo Derivative Works. vou may not alter, transform, or build upan
this waorl:,

« For any reuse or distribution, vou must make clear to others the license terms of
this worls:,

o Anvy of these conditions can be waived if yvou get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This 15 a human-readable summary of the Legal Code (the full license].

DisclaimerI:l._'I

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

FILE COMPRESSION USING

PROBABILISTIC GRAMMARS AND LR PARSING -

BY

ApiL M.M. Ac-Hussaini, B.Sc., M.Sc.

A Doctoral Thesis
submitted in partial fulfilment of the requirements
for the award of Doctor of Philosophy of the

Loughborough University of Technology

November, 1982

Supervisor: DR. R.G. STONE
Department .of Computer Studies

© by Adil M.M. Al-Hussaini, 1982,

DECLARATION

The work contained in this thesis (except where otherwise
stated) i1s original research by the author and has not been

submitted in full or part to this or any other institution for

degree purposes.

ADIL MM, AL-HUSSAINI

To my Parents
whom I owe more than

I can possibly express

ABSTRACT

CONTENTS

ACKNOWLEDGEMENT

DETAILED CONTENTS

CHAPTER 1:
CHAPTER 2:
CHAPTﬁﬁ 3:
CHAPTER 4:
CHAPTERHS:

CHAPTER 6:

CHAPTER 7:

CHAPTER 8:

REFERENCES

APPENDICES

THE ENCODER

INTRODUCTION

OPTIMAL CODE .LENGTH PER LETTER
ENCODING PROBABILISTIC CONTEXT-FREE LANGUAGES

LR PARSING gt e

THE DECODER . C ¢ an

CONSISTENT GRAMMARS AND THE PROPERTIES OF A

LANGUAGE

SUMMARY AND CONCLUSIONS

o
& !
t‘ T = =y - n *r i,
- . 2
"

PAGE

L6
67
114

159

176
226

229

235

ABSTRACT

Data compression, the reduction in size of the physical representation
of data being stored or transmitted, has long been of interest both as a
research topic and as a practical technique. Different methods are used
for encoding different classes of data files. The purpose of this research
is to compress a class of highly redundant data files whose contents are
partially described by a context-free grammar (i.e. text files containing
computer programs).,

An encoéing technique is developed for the removal of structural
dependancy due to the context-free structure of such files. The technique
depends on a type of LR parsing method called LALR(K) (Lookahead LR(K)).
The encoder also pays particular attention to the encoding of editing |
characters, comments, names and constants.

The encoded data maintains the exact information content of the
original data. Hence, a decoding technique (depending on the same
parsing method) is developed to recover the original information from
its compressed representation.

The technique is demonstrated by compressing Pascal programs. An
optimal coding scheme (based on Huffman codes) is used to encode the

parsing alternatives in each parsing state. The decoder uses these codes

during the decoding phase. Also Huffman codes, based on the probability
of the symbols concerned, are used when coding editing characters,
comments, names and constants. The sizes of the parsing tables (and

subsequently the encoding tables) were considerably reduced by splitting

them into a number of sub-tables.

The minimum and the average codé length of the average program are
derived from two different matrices. These matrices are constructed
from a probabilistic grammar, and the language generated by this grammar.
Finally, various comparisons are made with a related encoding method by

using a simple context-free language.

ACKNOWLEDGEMENTS

I wish to thank Professor D.J. EVANS, Director of Research,

for his encouragement and help throughout my study.

My sincere thanks to my Supervisor, Dr. R.G. STONE, for his

guidance, encouragement and invaluable suggestions throughout the

course of this thesis.

I am grateful to Mr. S. BEDI, Systems Manager, for his help

during my practical work on the computer.

I am greatly indebted to my family for their moral and
financial support which never came to an end. Their support and

encouragement have given me the opportunity to continue my studies.

DETAILED CONTENTS

PAGE
Chapter 1: INTRODUCTION 1
Chapter 2: OPTIMAL CODE LENGTH PER LETTER
2.1 Some Properties of a Code 6
2.2 Classes of Codes 11
2.2.1 Fixed-Length Code 11
2.2.2 Variable-Length Code 12
2.2.2.1 How to Construct a Variable-
Length Code -~ Method 1 13
2.2,2.2 How to Construct a Variable-
Length Code - Method 2 15
2.3 Tree Representation of Code Words 17
2.4 The Kraft Inequality 20
2.5 Entropy 27
2.6 Average Length of a Code Word 32
2.7 Huffman Codes 38
2.8 Minimizing the Longest Code and Total Number
of Digits 43
Chapter 3: ENCODING PROBABILISTIC CONTEXT-FREE LANGUAGES 46
3.1 Definitions | 47
3.2 Derivations and Derivation Trees >0
3.3 Handles | 54
3.4 Probabilistic Context-Free Languages 56
3.5 Compression and Decompression Phases o7
3.6 Character Encoding 59
3.7 Word Encoding 62
3.8 Parsing Encoding 63

3.9 Measures of Data Compression 66

PAGE

Chapter 4: LR PARSING 67
4.1 Parsing Methods 69
4.1.1 Top-Down Parsing Method 69
4.1.2 Bottom-Up Parsing Method 73

4.2 Recursive-Descent Method - A Detailed Example 76
4.3 LR Parsers 78
4.4 LR Parsing Algorithm 80
4.5 Constructing the Set of States 81
4.6 Constructing LR Parsing Tables 85
4.7 SLR(K) Parsers 89
4,8 LR(1) Parsers 95
4.9 Constructing LR(1l) Parsing Tables 102
4,10 LALR(1) Parsers 103
4.11 Constructing LALR(1l) Parsing Tables 107
4.12 Optimizing the Parsing Table 108
4.13 Automatic Generation of LR Parsers 111
Chapter 5: THE ENCODER 114
5.1 The Model 115
5.2 Encoding the Grammatical Part 117
5.3 The Encoder Program 119
5.3.1 The Parsing Part. 119
5.3.2 The Encoding Part 122

5.4 Encoding Editing Characters 124
5.4.1 Character Encoding 124
5.4.2 Using Counters 125
5.4.3 Using an Array 128

5.5 Encoding Comments 131
5.6 Encoding Names and Constants 134

5.7 Encoding Strings 141

Chapter 6:

Chapter 7

5.8 Optimizing the Parsing Tables

5.9 Constructing the Encoding Tables

5.10 The Frequency Program

5.11 Example

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

DECODER

The Model

Decoding the Grammatical Part

The Decoder Program

Decoding Editing Characters and Comments
Decoding Names and Constants

Decoding Strings

Constructing the Decoding Tables

Example

CONSISTENT GRAMMARS AND THE PROPERTIES OF A
LANGUAGE

7.1
7.2
7.3
7.4
7.5
7.6
1.7
7.8
7.9

Notation and Definitions

Consistent Grammars

Average Word Length (AWL)

Average Derivation Length (ADL)

Average Number of States (ANS)

The Probability Distribution of the States
Minimum Code Length (MCL)

Average Code Length (ACL)

Comparison

7.9.1 Using Leftmost Derivations

7.9.2 Using Rightmost Derivations

PAGE

142
152

154
156

159
160
161
163
166
169
171
172

175

176

178
180

185
191
196
198

204
206
208
216
219

PAGE

Chapter 8: SUMMARY AND CONCLUSIONS 226
REFERENCES _ 229
AEEendix A: PASCAL PRODUCTIONS 235
Appendix B: ENCODER PROGRAM LISTING 238
Appendix C: DECODER PROGRAM LISTING 251

Appendix D: LIST OF THE SET OF STATES FOR THE EXAMPLE IN
SECTION (7.9) 260

Appendix E: LISTS OF SAMPLE PROGRAMS USED FOR THE COMPARISON
IN SECTION (7.9) 264

CHAPTER 1

INTRODUCTION

Computers are used because of their accuracy in getting the right
results, the speed at which they accomplish the job, and their capacity

for storing information. Of course, there i1s a limit (restriction) to
each of the above facilities. The obvious restriction is the insufficiept
size of the storage space. -To overcome this, it is necessary either to
extend the size of the secondary storage which is costly, or to find
efficient algorithms for compressing and restoring (decompressing) data
which allow the storage that is available to be better utilized. This
study considers, for a given string of symbols, the problem of finding a
shorter string that uniquely determines the original string. It must
always be possible to recover the original string from the short string.
The algorithm for transforming a string into a shorter string 1s called
data compression, and the algorithm for recovering the original string 18
called data decompression.

This study assumes that the input string consists of a finite set of
symbols with some sort of structure from a context-free language. This
structure produces redundancy in the language which is described by a
context-free grammar. In addition, the string includes characters which
lead to a more readable string. These characters are called editing
characters.

The data compression model (i.e. an encoder) is designed to accept
the above input stream, check for its correctness from a syntactical
point of view (parsing the data), and then generate . the required codes.:
The whole operation requires a finite set of steps (states) to be completed.

The encoded data, which is supposedto occupy less storage space than the

4

original string, maintains the exact information content of the original
data and should uniquely represent the original data.

To recover the original data, a decompressidn*model (L.e. a decoder)
is designed to accept the coded data, check for any syntax error, and then
output the required symbols. Tﬂere'must be an‘agreement between the encoder
and the decoder as to the way of parsiné the data and the class of codes
used (by the encoder) to represent different aspects of the encoding process.
The decoded string must be exactly the same as the original string.

A particular encoder (and corresponding decoder) are developed to
compress data written in the Pascal language. The parsing of the input
depends on a technique called LR(K) parsing. The codes used are of
variable-length; they are constructed according to the optimal Huffman
coding method using the probabilities attached to the symbols, grammar
rules, and choices in each state. Samples of Pascal programs have been
collected, and a frequency program was written to find the frequency of
different elements from those samples.

A matrix called the expectation matrix is constructed from the
probabilistic grammar, which will help to obtain the average size of an
input string, the average number of steps requiréd to parse the string,
and the average size of the encoded string.

The overall structure of the presentation i1s as follows:

Chapter 2 explains, in general, the construction of codes for a
sequence of letters. It also explains some general properties of codes

and specifies in particular a type of code called an instantaneous code.

Two classes of codes are available, fixed-length codes, and va;iablé-length |

codes. The attention is concentrated on the way of constructing variable

length codes, especially Huffman method, because such codes will be used

in the encoder and the decoder programs, and can produce'an average code
length nearer to the minimum code length (i.e. the entropy).

Chapter 3 defines and explains a structured language called context-
free language ‘which would be generated from a context-free grammar. It
also illustrates the way of deriving a §tring of symbols from the set of
grammar rules (productions) using leftmost derivation and rightmost
derivation techniques. By including a probability with each production,
the grammar becomesaprobabilistic grammar which can generate a probabilistic
language, Different methods used for compressing and decompressing strings
from a probabilistic language will be described.

In the encoding method, the input must be (parsed) checked for any
possible syntax error before the actual encoding procedure starts. So,
Chapter 4 explains the techniques used for parsing a string from a language.
Most emphasis is placed on a parsing method called LR(K) method. This
includes the construction of the states and the parsing tables. Because
of the large size of the parsing tables, different techniques are used to
minimize the tables into a reasonable size. A parser generator called YACC
is described in this chapter.

Chapter 5 describes the encoder model which accepts a program written
in a context-free language as input and generates a corresponding encoded
file. The encoder is an LR(K) parser generating Huffman code output. The
codes represent the user names, constants, editing characters, comments

and the parsing actions. The encoder program requires tables for holding the

necessary codes which will be used during the encoding process. .The codes

are constructed according to the frequencies of different actions, and
symbols which were found by using a special program (frequency program).

The coded file has to be decoded in order to obtain the original file.
The decoder model is described in Chapter 6. The structure of the decoder
follows the structure of the encoder very closely. It includes the decoding
of user names, constants, editing characters and comments. The decoder
requires information to recognize the codes. This information is stored
in decoding tables.

Chapter 7 discusses the properties of a probabilistic grammar which
can generate a probabilistic language. Finding the properties depends on
constructing a matrix called the expectation matrix from the grammar rules.
It 1s possible to find out the average size of the input file, the average
number of steps for recognizing a string of symbols, and the average code
length (average length of a coded file). For rightmost derivations, the
probability distribution of each state, and the average number of states
required to parse.a string of symbols 1s also discussed.

Finally, Chapter 8 concludes the overall work.

CHAPTER 2

OPTIMAL CODE LENGTH PER LETTER

This' chapter basically explains the problem of representing letters
from a source alphabet in terms of another set of letters. This
representation is referred to as a code. Some properties of a code are
explained in Section 2,1. For a set of source letters, the code consists
of a finite number of code words. These words have either a fixed length
or different lengths (Section 2.2). Section 2.3 shows how to represent
code words by building up a tree. This representation helps when the
source letters are retrieved from a sequence of code letters. For certain
types of codes known as instantaneous codes, there is a formula (Kraft's
inequality) in which it is possible to prove the existence of such codes
for a given set of code word lengths. This inequality is explained in
Section 2.4. Section 2.5 shows how to find the minimum average code
length per source letter which is equal to the entropy. The average code
length for a source letter is explained in Section 2.6. In Section 2.7,
it is shown that an optimal variable-length code can be constructed from
a well known method called Huffman's method. Finally, an extension to
Huffman's method which led to a reduction in both the longest code word

and the total number of digits, is i1llustrated in Section 2.8.

2.1 SOME PROPERTIES OF A CODE

Let S=(sl,32,...,sN) be a source alphabet consisting of N source

letters. These source letters can be represented by a sequence of
different letters called code letters from another set Cﬂ(cl,cz,...,qu),

such that, for each siES, i=1,...,N there is a sequence of chC, j=1l,...,M

(repetitions are allowed) representing . . For example, consider the

representation of 4 source letters, using binary digits (0,1) as code

letters, defined by Table 2.1.

Source Letters Binarx ReEresentation
s1 00
s2 | 01
33 | 10
34 11

TABLE 2.1: Binary Representation of Source Letters

So, there are 4 binary sequences called code words, and each source
letter corresponds to one code word. The correspondence of binary
sequences to source letters is an example of a code. Using the code in
Table 2.1, it is possible to obtain a sequence of binary digits for any
sequence of source letters. For example, suppose that the sequence,
818,%,8, of source letters is required to be coded, the corresponding
sequence of binary digits 1s

00 01 00 11
Conversely, it is possible (with the help of Table 2.1) to obtain-the

same sequence of source letters (i.e. 31523134) from the above sequence

of binary digits. To discuss properties of codes (Abramson 63), it 1is

necessary first to give a formal definition.

Let S=(31,32,...,3N)'be a set of source letters. Then a code 1is
defined as a mapping of all possible sequences of letters of S into
s;quences of letters (code letters) of some other alphabet Cﬂ(cl,cz,...,cM).
S is called the source alphabet, and C is the code alphabet.

The definition of a code, as mentioned above, is general. Therefore,
1t is necessary to investigate some of its conditions and try to give a
clear idea of what a code looks like.

1. The procedure of transforming a source letter into a corresponding
sequence of code letters is called an encoding, and the processor 1s
called an encoder. Hence, for each source letter in the source
alphabet, there is a corresponding code word. This enables the
encoder to generate the right code word during the encoding process.
For example, in Table 2.1, tﬁere are 4 source letters, and each one
has its own code word. s, can be encoded as 00, S, as 01, 5,8, as

1

000l,... and so on. Since there is a fixed number of source letters,

then the number of code words is fixed as well. A code satisfying
this condition is called a block code. All code words contain either
the same number of code letters (fixed-length) or different number
of code letters (variable-length).

2. All code words of a block code should be distinct, that is, no two
code words have the same sequence of code letters. In Table 2.1,
for example, all code words are different. But in Table 2.2 the
code words of both S, and s, are the same (101). A block code in

which all the code words are - distinct is called non-singaler.

y

Source Code Word
31 00
32 0l
33 101
34 101

TABLE 2.2: A binary code

The process of retrieving the source letters from a sequence of code
words is called a decoding process, and the processor is called a
decoder. Without the distinction of code words, the decoder can not
obtain the exact source letters. ~ (Gjven u—.e,.\?ouowinj ., sequence
of code words

00 101 01
the decoder could generate (by using Table 2.2) either

51848,
or 515,8,¢
Although a code should be non-singular (Table 2.3), it is possible
to have a sequence of code letters which does not represent a

unique sequence of source letters. Suppose that the sequence of

binary digits

001001
Source Code
S4 O
s, Ol
8, 001
8, 111

TABLE 2.3: A binary code

1s given, then the decoder (using Table 2.3 as a dictionary) could
generate one of the following sequences of source letters.

S4533

518,843
848.8,3
or 818,88,
Therefore, code words should be uniquely decodable. The code in
Table 2.4 satisfies this condition.
For a sequéﬁce of uniquely decodable code words, the decoder ought
to be able to decode each code word as it arrives without checking
the succeeding code letters. This can be achieved (Hamming 80) when
no code word is the prefix of another code word. A code in which no

. . ay) . .
code word 1is a preflx.ofﬁéiher code word 1s called an instantaneous

code, or a prefix condition code.

Source Code
81 0
82 Ol
33 011
34 0l1l1l1l

TABLE 2.4: Uniquely decodable code

Suppose that, a sequence of binary digits composed of code words
from the code in Table 2.4 is given, and the decoder has already

received the first binary digit (0), then it can not decide whether

that digit is the code word of 8., or it is a prefix of a code word

1

representing S,y OT 8, Or 34; unless a further check on the next digit

L)

10

is made. Thus the code in Table 2.4 is not an instantaneous code.
An example of an instantaneous code is given in Table 2.1l.

The advantage of an instantaneous code is that the decoding can be

accomplished without delay, because the end of a code word can be

recognized immediately and subsequent code letters do not have to be

observed before decoding is commenced.

11

2.2 CLASSES OF CODES

As has been mentioned in the previous section, a code consists of a
fixed number of code words. The number of code letters in a code word is
called the length of the word. If every code ﬁord has the same length,
then the code is calledefixed-length code. In contrast, if the code words
are not all of the same length, then the code is called a variable-length
code (Johns, 79).

Section 2.2.1 explains the construction of a fixed-length code,
including the length of the code word. Variable~length codes are discussed

in Section 2.2.2.

2.2.1 Fixed-Length Code

Let 0,1,2,...,9 be a source alphabet.. Then there are 10 different

ways of selecting only one letter from the source alphabet. For selecting

2

2 consecutive source letters, there are (100=10") different ways. So,

the number of selections of a sequence of letters depends on the number

of source letters and the length of the source sequence.

In general, suppose that S1985500058 be a source alphabet. Let k

N
be the number of selections from the source alphabet. Then there are Nk
different source sequences of length k that might be emitted from the

source, Suppose that cl,cz,...,guiis a code alphabet. Let the length

of a code word be L. Since all code words have the same length, then the

number of different code words 1is ML.

From Section 2.1, each source sequence of length Kk must correspond

to a separate code word. This is not possible unless there are at least

b

£

12

as many code words as there are source sequences (Johns, 79; Gallager, 68).

So, to find the length of a code word (i.e. L) the following condition
1s satisfied:
ML 2 ﬁK

L logM 2> K log N

L - g 108N
- log M

For K=1, the minimum length of a code word is }—zg—g. For example, suppose
that N=4, and at each time only one source letter (K=1) is encoded into

a sequence of binary digits (M=2). Then:

log 4 . _ . . s
L2 Tog 2 10324 2 binary digits
50, all code words must be at least of length 2. See Table 2.l1. If N=6

then

L 2 log,6 2 2,58 binary digits

2
L must be an integer number, so the minimum length of a code word is 3.

Encoding and decoding of source sequences using fixed-length codes
are trivial. Both procedures require a dictionary of all source letters
and their corresponding code words to be consulted. Almost all current
computer systems use a fixed~length code for transforming or storing
chéracters. Nevertheless, this class of codes does not, in general,

provide a minimum average code word length per source letter. This will

be explained in Section 2.5.

2,2,2 Variable-Length Code

In a variable-length code, the length of a code word for a source

letter may be different from that of the code word for another source

13

letter. Choosing different lengths, for the code words represents a
statistical point of view, that is the source letters of a source
alphabet are all used with different frequencies (i.e. have different
probabilities). Consequently, a code word with a short length should be
assigned to a high frequency source letter, and a long length code word
assigned to a low frequency source letter.

If the source letters are used with about the same probability,
little extra compression will be achieved by using a variable-length
code rather than by a fixed-length code (section 2.2.1) (Holborow,
McNemar and Stoneburner, 76). Hence a fixed-length code may be regarded
as a method for encoding source letters which have a uniform probability
distribution. However, if the sta;istics describing the usage of source
letters are known accurately, the use of a correctly chosen variable~-
length code will produce a total code length much less than that obtained
by a fixed-length code.

Before discussing the ways of constructing a variable-length code,
it is important to mention that the code, which will be implemented in
this study, must satisfy the properties in Seétion 2.1 (1.e. an
instantaneous code). A necessary condition imposed on an instantaneous
code is that no code word is the prefix of any other code word. This

condition is called a prefix condition.

2.2.2.,1 How to Construct a Variable-Length Code = Method 1

Let S be a set of N source letters'{sl,sz;...,s }. Each sithas a

N
propability p(si) 1<igN. Let'M.be the number of code letters in the code

14

alphabet C, Divide the source letters into M subsets making the

probability of each subset as close to-%ras possible (Johns, 79;

Gallager, 68). Assign a different code letter to each of these subsets,
If a subset has only one source letter, then the process on that subset
will terminate. Divide each subset into M approximately equiprobable
subsets, and assign to each new subset a different code letter. Continue
in this process until each subset contains only one source letter.

As an example, suppose that S¥{31,52,33,34} and the probability of
each source letter as shown in Table 2.5. Let C=(0,1) i1.e. M=2, Then 2

subsets {{Si}’{32’83’34}} are obtained each withprobability-%u Assign O

1

Source Prob. Step 1 Step 2 Step 3 Code P(Si) [P
y b
1 1
51 2 0] 2
1 — 1
S, % 1 10 10 5
2
1 L
S 4 8 1 11 110 110 23
1 1
s, 3 1 11 111 111 23

TABLE 2.5: An instantaneous code

to the first subset, and 1 to the second subset (step 1). Since the
first subset has only one source letter, 1.e. Sy then the process 1s

terminated, and s, gets code word O. Divide the second subset into two

1
subsets {{sz},{s3,s4}}, each with probability-%u Assign O to the first

subset, and 1 to the second subset (step 2). Since s, 1s the only source

15

letter in the subset, then it gets code word 10, Finally, divide the

second subset into two subsem{{s3},{84}}, each with probability }8-'

Assign O to the first subset, and 1 to the second subset (step 3). The
process is terminated, S, gets code word 110, and S, gets code word 111
(see Table 2.5). The code satisfies the condition in Section 2.1;
therefore it 18 an instantaneous code,

If the division can be achieved such that all subsets are equally

probable at each step, then a relation can be established between the

probability of a source letter and the code word length. That is:

1
p(si) T{
M

where £i 1s the code word length of the source letter S,

2.2.2.2 How to Construct a Variable-Length Code - Method 2

For M=2, there is another way of constructing an instantaneous code
(Abramson, 63). That is by assigning O to the first source letter and 1
to the remaining source letters. The first source letter gets the code

word O. Select one source letter from the remaining letters and assign O

to its code word which becomes 10, Assign 1 to the remaining source

letters. Continue with this process until no more selections can be

made. For example, suppose that there are 4 source letters 31,32,33,34.

Let M=2 i.e. C=(0,1), then assign O to 51 and 1 to S35, and s, i.e.

s1 0O
8, 1
s3 1

1

16

The code word for 3, 1s 0. Select s, and assign O to it. Assign 1 to

2
S, and S, s 1.e.
8, 0
8, 10
S, 11
S, 11

So, the code word of s, 1s 10. In the last selection, assign O to S,

and 1 to S,s 1.e,

84 O
s, 10
S 5 110
Sy 111

S 4 gets the code word 110, and s, gets 111.

For four source letters, an instantaneous code consists of four

ha s

code words which can be obtained. As mentioned above, the shortest code

word is assigned to the highest frequency source letter and assign the

longest code word to the lowest frequency source letter.

Although methods 1 and 2 can construct an instantaneous code, they
cannot always generate optimal codes. A well known method used to
generate an optimal variable-length code is called Huffman's method. It

is explained in Section 2,7. This method will be applied’to the encoder

and the decoder programs,

17

2.3 TREE REPRESENTATION OF CODE WORDS

Another way of clescribin5 a set of code words for an instantaneous
code is by building up a tree (Johns, 79; Gallager, 68). A tree (sometimes
called a rooted tree) is a finite set of points (nodes) connected by lines
(branches) which satisfies the following properties (Page and Wilson, 73;
Hopcroft and Ullman, 69),
1. Any two nodes in a tree are connected by a unique path (sequence of
branches). The branch leaves one node and enters another node.
2. There 1s exacdtly one node which no branch enfers. This node 1is
called the root.

3. Exactly one branch enters every node except the root.

A node with at least one branch leaving it, is called a branch
node (or non-terminal node). A node with*: no branch leaving 1is
called a terminal node. For example, in Figure 2.1, the tree is a rooted
tree (node 1 is the root). It has 8 nodes and 7 branches. Nodes (1,2,3)

are non—terminal nodes, and nodes (4,5,6,7,8) are terminal nodes.

level 1 .. 1. root node

branch

order 1 level 2 .. 2 non-terminal node

order 2 level 3.. 4 5 6 7 8 e rarminal node

FIGURE 2.1: A rooted tree

The level of a node in a tree is the number of nodes passed through

18

on the path from the root to that node (inclusive of both the root and
the node). For instance, node 2 is at level 2 because on its path there
are only 2 nodes (node 1 and node 2). The order of a tree is the number
of levels excluding level 1 (the root) which is assumed to be of order O.
For a particular order, the number of nodes is equal to the number of
branches coming from each node in the previous level. The set of all
nodes n, such that there is a branch leaving a given node m and entering
n, 18 called the set of direct descendants of m, A node 1s called a
descendant of node m if there is a sequence of nodes D 9Mypeeesl such
that n,=m, n, =n, and for each i, n: 9 18 a direct descendant of n, .

So far, a general illustration of a tree has been given. A special
case of a tree in which each node has exactly zero or two leaving branches
is called a binary tree (Figure 2.2). A non-terminal node has two leaving

branches, and a terminal node has zero leaving branches.

FIGURE 2.2: A binary tree
Suppose that the code letters are binary digits (0,1), then a
binary tree is required to be constructed. To construct the code 1in
Table 2.5, start from the root (level 1) of the tree. Two branches
corresponding to the choice between 0 and 1 exist which lead to the

second level (order 1) of the tree (Figure 2,3). In this level, one node

19

becomes a code word (0), and the second node represents the first code

letter of the following code words. Another selection between O and 1

1is made from the second node.leads to the third level of the tree.

cos flrst level
.es Second level

... third level

.o« fourth level

FIGURE 2.3: A tree for an instantaneous code

Again, two nodes exist, one node becomes a code word (10), and the second
node represents the next code letter of the following code words.
Similarly, the fourth level of the tree is obtained from the previous
level. This level has 2 nodes representing 2 code words (110 and 111).
Generally, by starting from the root, the successive letters leading to
a terminal node represent a code word of a source letter.

The process of branching from one level to another, away from the
root, can be done on any node (except terminal nodes). If all nodes at
one level have either zero or two leaving branches (Fig. 2.4); this will

lead to a full tree.

FIGURE 2.4: A full tree

20

2.4 THE KRAFT INEQUALITY

In Section 2.1, some constraints on the code word lengths of a
prefix condition code have been discussed., Those constraints concern
the quality of code words. It is possible to express the constraints in
a quantitative fashion. The expression is provided by the following

theorenm.

Theorem (Kraft): A prefix condition code exists for code words of lengths

21,22,...,2N i1f, and only if,

) —%— <1 (2.1)
k=l \ K

where M is the number of different letters in the code alphabet.
Proof 1: (Abramson, 63; Gallager, 68):
Part 1): Sufficient condition.

Let 21,12,...,£N‘be code word lengths satisfying the inequality

These lengths may or may not be all distinct. Consider all code words
of the same length at one time. Therefore, let n, be the number of code

words of length 1; n, be the number of code words of length 2; etc. If

the largest of the £i=£ then

R' A
) n, = N
i=1"
. . 1 1
The summation of (2.1) contains n, terms of b Dy terms of —75 etc. It

M
may then be written as

(2.2)

H P10

ELJH?
IA
-

21

On multiplying (2.2) by MR'
2 n.MR' 2
L — s
1=1 M
or L .
Z n.Mg' t < MR'
=1t
-1 =2 -3 £
nlM +n2M +n3M +...+n£$M
2 -1 =2
< - - - -
n, & M nlM n2M coo ng-1M

By dropping the term n o and dividing by M

Mﬂ.-l_ M£-2_nM£-3_ - a M

Mo1 0y 2

Continue dropping the subsequent terms and dividing by M each time,

3 2
ag s M =nM =nM
2
nst -nlM
HISM

For n, (the number of code words of length 1), M possible such words

can be formed using a code alphabet of M code letters. Since nlsM,

select n, code words arbitrarily. Then M-n1 code letters were not used

as code words. They are prefixes of length 1. By adding one letter to
the end of each of these permissible prefixes, a number of code words

of length 2 could be formed i.e.

2-n1M

From the inequality above 1t is possible to select n, code words
2

arbitrarily from among M -nlM choices;‘ then

(Mz-nIM) - n

(M-nl)M = M

2

were not used as code words. By adding one code letter, there are

2 3 2
(M 'nlM'nz)M M -HIH -n2M

22

permissible prefixes of length 3. It is certain according to the above
inequality that no more than this number is needed. So, n, code words
may be selected arbitrarily. Proceed in this way until all code words
have been formed.
Part 1i): Necessary condition:

To prove that equation (2.1) is a necessary condition, the arguments
already used are reversed.

End of Proof 1.

Proof 2: (Johns, 79):

Draw a full tree which has M branches coming from each node (Figure

2.6). There are M nodes of order l,ZM2 of order 2,...,MF of order k, etc.

X4 .+ nodes of order 1
ar, \\
\ X
4 A “
/" \ / A\ / \\
y A Y 4 \ ’ .
v > 4 L ¥ v b ... Nodes of order 3

FIGURE 2.6: The full tree of order 3 where M=2

Each node gives rise to a code word. M code words of length 1 are

available at order 1,‘M2 code words of length 2 are available at order

2, and so forth.
Let 21,22,...,£N satisfy (2.1). If 2 is the largest of li 1gigN,
then the full tree would be of order 2, and the tree representing the

code will be embedded in it (in Figure 2.6 the tree (solid) embedded in

the full tree (dashed)).

23

Arrange the lengths in an ascending order 215225...5£N, choose any

node of order 21, say X, in the full tree as the first code word.

Eliminate all the branches leaving x All nodes on the full tree of

l'l
each order greater than or equal to 21 are still available for use as
code words except for the fraction'—%—-that stem from node X, o Choose
1
M

any available node of order £2, say X,, as the second code word.
Eliminate all the branches leaving Xy All nodes on the full tree of

each order greater than or equal to %, are still available for use as

2
code words except for the fraction.—%—-+-—%—-. Repeating this process
1 2

M M
& & & th
will lead to the situation that after choosing X (k<N) as the k code

word, all nodes in the full tree of each order greater than or equal to

k

£k are still available except for the fraction z -%—-stemming from.x1
i=1 'k
M

to X . From (2.1) this fraction is always less than 1 and so nodes are

still available for further code words. Therefore the procedure can be

taken as far as xN.

Conversely, the tree representing any prefix condition code can
be embedded in a full tree whose order is the largest of the code word

lengths. A terminal node of order Lk, in the tree representing the code,

1

has stemming from it a fraction-—z—-of the terminal nodes in the full

:M'k

tree. But the sets of terminal nodes in the full tree stemming from
different terminal nodes in the tree are disjoint on account of the

prefix condition. Hence these fractions can sum to at most 1 which

yvields the equation (2.1),
End of Proof 2.

24

To show whether a given sequence of code word lengths is acceptable

as the lengths of the code words for an instantaneous code; examine the

following sets of code lengths (Table 2.6).

Source Code a Code b Code c Code d
s1 00 9, 0 0
s, Ol 01 10 10
53 10 011 110 110
s4 11 0111 11 1110

TABLE 2.6: Seﬁs of code lengths

In binary code letters, the inequality becomes

1
ETQ

For code a

HM-P‘

1. 1 1
+-Z;+'Z-+Z-_1

4:~||-

.1.
which satisfies the Kraft's inequality. This means that there is an

instantaneous binary code with four code words each of length 2. For

code b
+ L 215

il
. TE—

1 1 1
=7tz '8" 16 =16

IIM-&"

.L
which satisfies the Kraft's inequality. For code c

1 1 1 1 1
X — =+ +~§-+ 7

el Xk :?2__; A =

Here, the lengths do not satisfy the Kraft's inequality and therefore it

2

could not possibly be an instantaneous code.

Kraft's inequality can help to find a code word length fqr a set of

25

words having the same length. For example, suppose that there are 4 code

words, then
1
*_
4 . <1
2

u*wdb-

__;__
)k

or 122.
Therefore, the length should at least be equal to 2 in order to satisfy
Kraft's inequality (see Table 2.6 code a).
Kraft's theorem provides a sufficient condition on the word lengths
of a code by showing that it is possible to construct a prefix condition
code with the prescribed word lengths. However, it does not say that any
code satisfying the lnequality 1s a prefix condiéion code. For example,
in Table 2.6, code b is not a prefix condition code. Nevertheless it
satisfies Kraft's inequality. So, it is possible to construct a prefix
condition code with the prescribed word lengths (see code d).
The relation between a uniquely decodable code and the Kraft's
inequality is provided by the following theorem (Johns, 79).
Theorem (McMillan): If a code is uniquely decodable with code words of
lengths 11,22,...,£N then the inequality of Kraft's theorem is satisfied.

Proof: Let n be any arbitrary positive integer, then

n

N 1) N
R~ IR f—"i R

al .’k k,=1 "kz e =
M

M Mkl

Z

N N
1 kx 1 ee e z 1 '8 +Q ']‘-' se e +R
2 k'nm M kl k2 kn

k

_
= ~1

Now 2. +2. + ... +2 18 the number of code letters in a sequence of n

k1 k2 l""n

code words. Let r, be the number of sequences of n code words which

contain i code letters. Let £ be the largest of 11,12,...,£N. The

26

value of 1 could not be less than 1 letter nor more than n& . Hence

max
[% 1] zma.x ri
k=1 M'“k el M

I1f the code is uniquely decodable, then all code words with a length of 1

code letters are distinct. Thus

i
r. <M
1\.

1.e. r. can not exceed the maximum number of different sequences of i code

»

. . 1
letters which 1s M . Therefore

n nl

N max .1
Ly
. k=1 M 1=1 M
nnmax
sl 1
1=]
< nk
max

I *~12

1
‘ max
k=1, 'k

By allowing n»», the right-hand side tends to unity. Therefore,

N
Z":,";Sl
k=1,

which satisfies Kraft's inequality.

27

2.5 ENTROPY

It is mentioned, in Section 2,2, that for a code alphabet M there
. ,

are M equally likely words in which each word contains a number L of
separate code letters (not necessarily all different). Each of these

words can be assigned to a different letter from the source alphabet S.

Thus the amount of information gained when a source letter is encoded 1is

represented by L code letters. Hence it is possible to measure the amount

of information per source letter.

Let D be the number of different words, let M=2 i.e. (0,1). Then‘D=2L.

To measure the information, the logarithmic method is used (Young, 71;

Gallager, 68)
logZD = L 10322

since 10322=1
then L = logzD
Thus L is equal to the logarithm to the base 2 of the number D of different

equally likely words. The probability ?i of any one of the D different

1

equally likely words is'ﬁu So

L = ---log2 -1]:-;-

= —log, P;
which means that, the amount of information obtained from a source letter

s. 1s equal to -logz(pi). In general, let 31,32,...,5 be a sequence of

1 N
N different source letters. Each letter has a probability p(si)=pi,
N
with 0$pi51 and X P, = 1 then the self-information of the letter S: 18
1=]

defined as (Johns, 79)

I(si) = -1032 Ps

28

The base for the logarithm fixes the unit of information. Namely, it

determines the numerical scale used to measure information. With base 2,
the self-information is measured in bits (an abbreviation of binary digits).

Since 0$p,<l1, then I(si) is always positive and its value depends on the
probability of the letter concerned. That is I(si) increases when Ps

decreases, and vice versa., For example, suppose that pi-%-then

1
I(Si) 1032(59
=] bit

one bit is the amount of information obtained when one of two possible

equally likely letters 1s received. Let p.=%3 then

1
1
I(Si) = -1032(29

= 2 bits
Two bits are obtained when one letter is chosen at random from 4 different

letters. Note that, when the probability is decreased, the self-information

is increased.

The average amount of information obtained per letter from a source
S, or the average of the self-information, is called the entropy of S

(Johns, 79) 1i.e.

N
H(S) =) PiI(Si)
1=l
N

or H(S) = - z pi 1032 pi bits
1=1

. : 1 1 1
As an example, consider the source S=(31’82’33’34)w1th P,=5P,=7sP3"P, 5"

Then, the average amount of information obtained per source letter is

4
j=1 |
1. 1 1 1 1 1 1 1
= ~ylgy gz log, 7-glog, g g lo8, 5
1 1 3 3
= 772778 's J
3 ..

29

If H(S) is the entropy of a source letter, then a sequence of source
letters can not be represented by a sequence of bits using fewer than
H(S) bits per source letter on the average (Gallager, 68). However, it
can be represented by a sequence of bits close to H(S) bits per source
letter on the average. It is mentioned that the self-information of a
letter increases when the uncertainty of that letter grows (the probability
of the letter decreases). Hence, the entropy may be regarded as an average
amount of uncertainty.

From the definition of the entropy, logzpiso for all Ospisl, thus it
éan never be negative. Let one letter gjhhave probability one (pjﬂl) and
the remaining letters have zero probabilities in a source S of N letters.
Then N

H(S) = - i§=1 p; log, p;
= =(0+0+,..+1 logz(l)+0+...+0)
since 1032(1) = Q
then H(S) =0
i.e. the amount of uncertainty is zero; namely it is certain that the

letter Sj 1s received.

As well as a lower bound of zero there‘is an upper bound.:.
which the entropy will never exceed. This limit is 1og2N'(Abramson, 63).

Consider the quantity

N
1032 N-H(S) = logzN + .Zl P. 1032 P,
1=
N N
= Lp;log)N+ }p; log, p;
1=1 1=1

g
= p. log., N p.
s =] 1 2 1

30

2 nNP,
. 1
since log2 Npi =

and logze = -E]t-'l-z—

therefore log2 Npi = RnNPi logze
N

Thus log, N-H(S) = log, e) p,enNp, (2.3)
: i 1
1=1
From the relation between the natural logarithm of a variable x and the
value (x-1), it 1s found that
nx ¢ x-1 (2.4)
with equality if and only if x=1.

By multiplying (2.4) by (-1)

1
Assume x Npi
x = b
Npi
From (2.5) en Np. 2 1 - 1 (2.6)
1 Npi
From (2.3) and (2.6)
N
1
log, N-H(S) % log, e i£1 p; (1 e

N ; N
> logze(_zlpi -5 '21 1)
1= 1=

> logze(l-l)

> 0
From (2.4), the equality obtainswhen-ﬁi-= 1 for all 1. Therefore
1
H(S)nlogzN only'whenpi=%-for all i. Hence the maximum value of the

entropy 1s exactly logzN if and only if all the source letters have

equal probabilities. For example, the entropy of 4 source letters

1

»8,384,8,; each having a probability equal to

H(S)

4

-) p. log,p.

1=]
1
4

2 bits

-l *

10g24

1
log, 7

l-is
4

31

32

2.6 AVERAGE LENGTH OF A CODE WORD

Let S={31’82""’3N} be a sequence of source letters with their

corresponding probabilities pl,pz,...;pN. Let C19ChreeesC be a sequence

N

of code words; such that each si can be transformed into a code word ci,

1<1g¢N. Let 21,22,...,£N'be the lengths of the code words. Then the

average length of a code word 2 is defined as:

The relationship between the average code length (Eav) and the
entropy (H(S)) can be obtained as follows (Abramson, 63; Hamming, 80).

From the Kraft inequality (Section 2.4), let M=2,

N

i=1 zli
—2.
2 1L
X, =
1 y

be regarded as a probability distribution where

i
X, = 1
j=1 *

Consider the expression involving two probability distributions X, and p,

!t ey Y
p. log,(—) = —= P. n (—)
saq L 2 Ps An2 io1 1 Ps

From the relation (2.4)

N X1 g *g
) p, log, (=) g - p. (— - 1)
so1 B 2°p. n2 ;=1 L P;
N
1
s—) (x, - p.)
gn2 i=1 * .
L(F x - 1
$ = (X, - P.)
4n2 i1=]1 j=1 *

33

or P. log., — ¢ p. log., (=)
i=1 * ¢P; 4a * % X
N
. 1
since H(S) = Z P. 1:::.ug2 (—
=1 Py
N 1
Then H(S) & Z p. log. (—)
] 1 2 X
1=] 1

A
0 o~ 2
gw
'-l
-
O
oo
N
"~
q<
.\—f

1=1 2 1
N iy
< _— 1
$ 1 p; (log,y - log, 27 1)
1=1
N
< logzy + .Z p1 zi 10322
1=1
since y<l, then 1ogzy50.
N
Therefore H (S)g z pizi or H (S)szav. (2.7)

i=]
The necessary conditions for the equality of (2.7) are
y=1

and Pp. = x, , for all i1

o= Z—Ri

By taking logarithms to the base 2 of both sides

log, p; = =%,

2.

or -log2 pi = :

Thus, for an instantaneous code, £av@must be greater than or equal to

the entropy. Furthermore, lav can achieve the equality if and only if
£i=-logzpi for all 1.

Given a sequence of source letters and their corresponding probabilities,

34

a coding technique known as (Shannon-Fano coding) can be applied to

obtain the code word length for each source letter directly from the

corresponding probability, such that

-log2 Ps < L,

i © '1°32Pi + 1

The implementation of this method is trivial and satisfies (2.7).
However, it does not generate optimal codes as it will be found in

section 2.7.

Let S138515438, be a sequence of source letters, let the probability

of each source letter pi'%y then

4

H(S) = - E P. log2 P
1=]

1 1
= = *— P—
4 Z log2 Z

= 2 bits
since 2i2-logzpi
1
2-log, 7
22 bits '

then the minimum value that Ei can get is 2

‘av © i§1 Pity

= 4 X l-* 2

4

= 2 bits
Therefore H(S) = L.
Suppose that the probabilities of'sl,sz,ss,s4
respectively. Then

2 1

1 1 1 1
H(S) = -('i' 1082 'i" + '5' log 3- + 17 logz -i-i-

2
= 1,623 bits

35

1
b 2 ~log, 3

> 1 bit
1

L, 2 ~log, 3

2 1.58

The closest integer to 1.58 is 2, so 2.=2 bits.

2

23 > -lr.:ag2 —

W
T
*
n
oo

SO 23=2

av

= 1.833 bits

Therefore H(S) g Rav'

The bounds of %_, are formally provided by the following theorem

(Johns, 79; Gallager, 68).

Theorem: For any uniquely decodable code

H(u) .
log M

2 >
av “

Code words can always be chosen to satisfy the prefix condition and

< H(u)

2'::W log M vl

where u is a set of letters with their probabilities.

Proof: Let pl,.pz,.,..”.'...,,pN be the probabilitieé of the source letters, and

let 2'1’22"”’2'1\1 be the code word lengths.
N 1 N
H(u) - P'aq log M = i§1 p; log .l-?-; - 121 P;2; log M
xg 1 %‘ 1
= p. log — + - p. log Y
jm1 T P; =1 * -
N .

36

since in X = log x
log e

log x = 2n X log e

Using the inequality n x £ x-1 for x>0

or log x £ (x-1) log e
N
1
H(u) 2., log M s log e 2 pi(T -1)
1=1 p.M
1
N 1 N
sloge () —7- 1 »p;)
i=]1 M™L i=s]
o1
sloge(z T-l)
i=] ML

since the Kraft's inequality

N
L
i=1 M™1

is valid for any uniquely decodable code, then,
H(u) - R'av logM <O

or 6 < H(u)

av =~ log M

The equality occurs only when p. --—%73 1<1¢N.,
L Ml
In the second part of the theorem, only the probabilities p, of the
source are given and it has to be shown that lengths can be obtained for

the code words of a code satisfying the stated condition. If the code

word lengths did not have to be integers, then 2, could be obtained to

1
satisfy, D, = i. . 1<i<N.
1 Ml
However, by choosing 2. to be the integer satisfying
-1—-<p < 1<igN s (2.8)
ef S i R\l TSR
M M
Summing over N, the left-hand side of (2.8) becomes
N ' N
) s P
i=I1 M1 i=1 *

1

37

which satisfies the Kraft's inequality. Therefore a prefix condition

code exists with these lengths. Taking the logarithm of the right-hand

side of (2.8)

log p, < log ;-1
M

log p, < (1-zi) log M

-log P, > (Ri-l) log M

—log Ps
log M

Multiplying the above by Ps and summing over N, then

2. < + 1
1

N N p. log p. N
1 1
z P.L. < - X ——— Z P.
i=1 ** 1=] log M j=1
H(u)
'Q'av < log M 1

which satisfies the stated condition.
From the second example in this section,
H(S) = 1,623 bits
and 2 1.833 bits
therefore 1.623 £ 1.833 <1.623 + 1
which satisfies the conditions in the above theorem. So, it is possible

to construct a prefix condition code from the specified lengths of the

code words.

38

2.7 HUFFMAN CODES

In any code, the average code word length can not be less than the
entropy of the code. But it can be very close to it. This can be
achieved only when the lengths of the code words are variable. That is,
by assigning short code words to highly probable source letters, and long
code words to the least probable source letters (see Section 2.6). However,
there is no guarantee that an optimal coding can be obtained from the above
assignment. For example, consider the codes in Table 2.7. Both codes (a

and b) are uniquely decodable, and satisfy the Kraft's inequality.

Source Ei. -log2 Ps .fi. code a code b
1
Sq 5 1 1 -0 O
1
s, 3 1.58 2 10 10
1
— 110
S, 15 3.58 4 | 1100
1
— 111 .
8, 17 3.58 4 1110

TABLE 2.7: Uniquely decodable codes

The entropy of the source 1is

4
H(S) = - I p; log p,
1=1
= (1 % L 2 %
(2 1 + 3 1.58 + T3 3.58)

= 1,623 bits.

The average length of the code a 1is

4
zav - _Z pizi
1=1
1 1 1 1
22 om X —_— R — X — K
prlrgr2rT AT RA

= 1.833 bits.

It 1s bounded by H(S) < R.av < H(S) + 1

39

To find the average length of the code b

1 1 1 1
= e N — K - K o T
Lo =7 l+g*2+5%3+5%3

= 1.667 bits.,
Again, it is bounded by

<
H(S) 2 zav < H(S) + 1

Since the entropy H(S)=1.623 bits represents the minimum average length

that can be achieved, then the nearer the average length of a code to the
entropy, the more optimal a code would be. Therefore code b is more nearly
optimal than code a. A well known optimal code is called the Huffman code
(Huffman, 52; Maurer, 69; Wells, 72; Abramson, 63; Hamming, 80). The method
of constructing Huffman codes is based on the construction of a probability

tree (for simplicity, a binary tree 1s assumed).

Let 31,32,...,SN,be a sequence of source lettegs, and pl,pz,---,PN
be a set of probabilities such that p(si)=pi, and z p: = 1. Arrange
i=1 '

the probabilities in descending order, i.e.

Py 2 Py 2 s Py
these will represent the leaves of the tree. Form a new node by grouping
the two least probable nodes. Now, the new node has a probability equal
to the sum of the probabilities of the nodes forming it. The remaining
leaves and the new node will form a new set of nodes which contains one

less node. The nodes should be rearranged to keep the probabilities in
descending order. Form a node as above. Repeat this process until the
tree is completed (i.e. until the last node (the root) has a probability
equal to one). For a given N source lettersthe procedure is terminated
after N-1 groupings. Assign the digits O and 1 to the branches at each

node in an arbitrary way. The code of each source letter is determined

40

by listing the digits which lie between the root of the tree and the leaf
that corresponds to the source letter. Any source letter may be reached
from the root in one and only one way. Fig. 2.7 shows an example of a
binary tree constructed for 6 source letters. By assigning the digits

O and 1 to the branches of each node in the tree, a Huffman code 1is

Source E.‘.:.
1
31 0-4 __———7 1-0
' O_ 0.6
32 013_———]7
1 0.3

33 0.1_—_—(7 ¢

84 011 0 0.2
S 0.06 0 1
S j::l;>0.1
s 0.04

FIGURE 2.7: Generating a binary tree

generated for the specified source. Fig. 2.8 illustrates the code of

each source letter obtained from the above binary tree.

Source pi code
Sl 0.4 1
52 0.3 00 . .
4 S 0.1 O0ll .z pizi = 2,2 bits
1=]
S 0.1 0100
4
35 0.06 01010
36 ﬁ 0.04 01011

FIGURE 2.8: Huffman code

- -

A Huffman code is a prefix condition code in which no code word is a

prefix of any other code word. The shortest code word is assigned to the

41

most frequent source letter. That is when the probabilities are arranged

in descending order, the lengths of code words come out in ascending order.
The last two codes are identical except the last digit. Huffman code is a

minimum redundancy code. That is the average number of bits required to

encode a source letter i1s a minlimum.

It is easy to construct manually the probability tree, and from it,
the Huffman code for a sequence of source letters. Nevertheless, Schwartz

and Kallick (Schwartz and Kallick, 64) described a computer program which
éenerates an optimal code based upon Huffman's method. Generally, the

program reads a set of frequencies of source letters, constructs a frequency

tree and then assigns codes.

To prove that Huffman code is optimal, assume that there is a shorter

verng &
code withfbode length L' and

L' < L
where L is the length of Huffman code. Construct a coding tree for each
code, and try to compare them. The two least probable nodes have identical

codes except the last digit, which means that they have the same length.

Suppose that the nodes are np and nq'with the probabilities pp and pq

respectively. Assume that the code lengths are Rp and aq. Then £p=£q

so the average code length of these nodes would be
L + % = 2 (p_+p)
o'p ~ pPa T "pPpPg’
The common node (the new node occurs as a consequence of grouping o and

nq)which is in the higher level of the tree has a code length equal to

(zp-l) and a probability equal to (pp+pq), so the average code length

would be _
2 -1 = -
(b) (P'p"'Pq) D (pp’fp q) (pp+p q)

42

Therefore, as the tree 1s reduced, the code length is shortened by the

amount: D +p

P q
This process can be done on the next two least probable nodes, ... and so
on. By applying this to both the coding trees, it is easy to see that
both are decreased by the same amount. Thus the amount of inequality
between their lengths remains unchanged. Since in the Huffman code the
code length of the last two nodes is 1; for the other, it must be less

than 1, which is impossible. Therefore, the Huffman code is the shortest

possible code.

43

2.8 MINIMIZING THE LONGEST CODE AND TOTAL NUMBER OF DIGITS

It has been shown, in Section 2.3, that the probability tree is
constructed by merging two nodes which have the lowest probabilities,
and this process of merging continues until only one node (the root)
remains. Each branch of a node has assigned a digit. Therefore the code
of a source letter is the sequence of digits along the path which starts
from the root and terminates in the leaf. In other words, it is equal to
the number of mergings on the path of a source letter. So, if it is
possible to reduce the number of mergings on different paths in the tree,
then it will minimize some code word lengths, and hence, the number of
digits of all code words will be minimized.

In Huffman's method, the merge among equiprobable nodes (including
the leaves) can be done by choosing any two nodes without affecting the
average code length. That is, when two nodes are merged, and there exists
a number of nodes which have probabilities equal to the probability of the
new node, then it can immediately merge this new node with any other node
of the same probability. Hence, a new digit is added to the code words
of the specified source letters.

Schwartz (Schwartz, 64) showed a method of merging equiprobable nodes
called bottom merge, such that the average code length remains unaffected,
but minimisesthe longest code word and the total number of digits. The
way is to place the new node at the top of the nodes which have equal
probabilities (Fig. 2.%9a). This will avoid, if possible, an immediate
merging with another node, and therefore not assigning a new digit. For
instance, consider the example in the previous section (Figures 2.7 and

2.8), It is easy to notice that, after merging Sg and S the new node

44

(with probability 0.1) is immediately merged with 8, Consequently, a
new digit 18 added to the codes of both 5¢ and 3¢ However, by applying
a bottom merge, the new node will be placed above S and the next merge
will be between 8, and S, (Fig. 2.9b). The new code words of the same
source letters is mentioned in Fig. 2.10.

By comparing the codes in Figures (2.8 and 2.10), it is found that
the codes of both s and s, are reduced from 5 bits to 4 bits. The total

number of digits of the code in Fig. 2.8 is 20, whereas, in Fig. 2.10 it

is 19. Notice that the average code length is the same in both codes.

Source Prob. Steps
1

3
31 0-4 S, 0-4 5, 0. 4 s 0. 4 5|‘5"|-" 10
s, 0.3 s 0.3 s, 0.3 i8b.3 0.4
S, 0.1 *bo.1 S 'J
S, 3. 0.1

0.06

S5
36 0.04
a. An illustration of bottom merging
Source Prob.
1.0
.6

S, 0.1l O -3

S 0.06.0

2 >o 1

36 0.04

b. A.probaﬁility tree (binary tree)

FIGURE 2.9: Generating a probability tree by using bottom merging

Source Prob,
S, 0.4
S, 0.3
S, 0.l
S, 0.1
Sg 0.06
S¢ 0.04

FIGURE 2.10:

Code

1

01
0010
0011

0000

0001

A Huffman code

6

Y p.L, = 2.2 bits
. 1 1

1=]1

435

" CHAPTER 3

ENCODING PROBABILISTIC CONTEXT-FREE LANGUAGES

46

A computer program (data file) usually contains data causing
redundancy such as spaces, zeros, keywords, common words, and comments,
which occupy a considerable space compared with the overall storage used
by the program. It can be transformed into another file which reflects
the same information as in the original file. The transformed file can
occupy less storage, and is called a compressed file. The transformation
method is called a data compression method. Different techniques are used
to compress data files (Martin, 76). Each technique used depends on the
nature of the file, whether it contains a lot of spaces and zeros, Or
contains many common words ... and so forth. This chapter illustrates a
special type of data file in which the data is partially generated by a
context-free grammar, and tries to explain different compression methods
implemented on such files,

In Section 3.1, some definitions are given concerning the language
and grammars. The derivation of a string of symbols from a grammar is
explained in Section 3.2. Section 3.3 explains the rightmost derivationms.
In Section 3.4, the probability of a string and hence a language generated
from a probabilistic grammar is illustrated Compression anddecompression of
data is introduced in Section 3.5. Ways of encoding a data file character by
character, are explained in Section 3.6. Sometimes instead of encoding
one character at a time a string of characters (word) is encoded. This
is explained in Section 3.7. In Section 3.8, an encoding of a structured
data file is shown. Finally, different ways of evaluating the encoding

methods are explained in Section 3.9.

47

3.1 DEFINITIONS

An alphabet of a language is any finite set (T) of symbols. From
this set, strings of finite lengths can be composed. Each string is called
a sentence. A language over a set (T) of terminal symbols is a subset of
all strings (sentences) over T. Usually, these symbols are not all of equal
importance, and'hencef:én apply a measure on each one of them (Booth and
Thompson, 73). If each measure is bounded by éero and one, and the total
is equal to one, then it is called a probabilistic measure of the symbol.
Let T be a finite set. A language L over a set (T) is a probabilistic
language if there exists a probability measure p(x) for each ¥€L such that
0<p(x)<1 and EELp(x) = 1 (Thompson and Booth, 71; Thompson, 74). p(x)=0
means that x‘:ill never occur. If X 1s certain to occur then p(x)=l.
Although any subset of strings over T is a language, the emphasis will be

placed on a structured language generated by a type of grammar called

context-free grammars. McGettrick (McGettrick, 80) explains in detail
the relations between the languages and the grammars.

A context-free grammar G is a four-tuple G=(N,T,R,S) where:
N={v1,v2,...,vk} is a finite sét of non-terminal symbols;
T={a1,a2,...,am} is a finite set of terminal symbols;
R#{rl,rz,...,rn} is a finite set of productions of the form

| v, ::=c:j , vie N, a.j 'G(N U T)*
where (N U T) is a finite non-empty set of grammar symbols; (N U T)* is
either non-empty set or empty;

S is an initial symbol.

From now on, every grammar mentioned is considered to be a context-

free grammar, The following notation will be used:

48

{A,B,C,...,Y,Z} to denote non-terminal symbols;
{a,b,cy...,¥,2} to denote terminal symbols; and
{a,B8,Y5+..,¥,0} to denote sets of grammar symbols.
The set of strings of terminal symbols generated by a context-free grammaf
1s called a context-free language. Another definition of a context-free
language is mentioned in the next section.
For example, let v={E,F}; Ti{i,d,+,*,(,)}; S=Es: and the set of

productions

then the grammar is a context-free grammar. The strings i+d, (d*i), i+d*d,...

are éubsets of the language generated by the above grammar.

If each production in a context-free grammar is assigned a probability
then the grammar is a stochastic (probabilistic) context-free grammar
(Hutchins, 72a; Thompson and Booth, 71; Thompson, 74) which is a five tuple
G=(N,T,R,P,S) where:

N={v1,v2,...,vk} is a finite set of non-terminal symbols;

T={al,a ,...,am} is a finite set of terminal symbols;

2

Rﬂ{rl,rz,...,rn} is a finite set of productions of the form
o =2 = %
v, aj » V. €N, @ € (NUT)

For each non-terminal symbol, there is a group of productions R, » 121,2,..4,K

such that all productions in each group have the same Ve

49

P = {p;sPyseeesp |
1s a finite set of probabilities, p, is the probability that r. is chosen;

J J

S=v1 is the initial symbol.

A probabilistic grammar is said to be. normalized (proper) (Huang and

Fu, 71; Thompéon, 74) 1f and only if
for all productions which have the same left-hand side symbol. For example,
the grammar

E:= E+F 0.3

E:= E*F 0.2

E:=F 0.5

F:= (E) 0.2

F:= 1 0.4

Fi=d 0.4

1s a proper probabilistic grammar.

50

3.2 DERIVATIONS AND DERIVATION TREES

In a context-free grammar G, a production of the form
AT a
means that at certain step in the parsing process the non-terminal symbol

(A) can be substituted by a set of grammar symbols (a). This substitution

is called a derivation of a from A, and is written as A=y where A:=qa 1S

a production in G. So aAfPuyB means that the string aAB directly derives
the string ayB 1f A:=y is a production in G. If there are a sequence of

derivations, 1.e.
a., T a. =aqa =

1 2 3 900y n

1 indirectly derives o and can be written in a short

*

form as o =
1 n

this means that a

If a derivation always occurs on the first non-terminal symbol in a
string of grammar symbols, i.e. aAB™uyB where A:=y is a production and a
is a string of terminal symbols or empty, the derivation is called a left
most derivation (Aho and Ullman, 77). Top-down parsing methods implement
this type of derivation. Details of top-down methods are explained in
the next chapter. If the derivation always occurs on the last non-terminal
symbol of a string of grammar symbols, i.e, aAR™yB8 where A:=y is a
production and B is a string of terminal symbols or empty, then it is
called a right-most derivation. Bottom-up parsing methods implement
right-most derivations which are explained in detail in the next chapter.

As an example, consider the following grammar:

S :=AA
A:=aA
A:=b ,

To derive the string aabb from (S) using left-most derivations, use the

first production,

21

S ™ AA
The first (A) is a non-terminal symbol, it can derive the string (aA).
So S ™AA =aAA. Again, the first (A) can derive the string (aA); 1.e.
S =AA =aAA =aaAA. Now the first (A) can derive the string (b) by using

the last production. Then S =AA *=aAA ="aaAA =*aabA. Do the same thing to

the last (A):
S = AA =aAA =a3alAA =aabA =aabb.

It can be expressed as

*
S =raabb

To derive the same string by using right-most derivations, the sequence
of derivations would be:
S =AA =Ab =aAb =aaAb =aabb
A graphical description of a derivation can be expressed in the form
of a tree (see Section 2.3) called a parse (derivation) tree. This tree

shows the hierarchical syntax structure of sentences that is implied by the

grammar (Aho and Ullman, 77).

Let G=(N,T,R,S) be a context-free grammar. A tree is a derivation
tree for G if (Hopcroft and Ullman, 69):
1. Every node has a label which is a symbol of either N or T.

2. The label of the root is S.

3. If a node n has at least one branch leaving it, and has label A, then

A must be in N.

4, If nodes nl,.nz,.i...i...r..,,nk are the direct descendents of node A in order

\J

from left to right with labels A, ,A A'k respectively, then

1! 2!""
A= AIAZ"”’Ak

must be a production in R.

32

*
To construct a parse tree, let al" a_ be realized by al"" Ay oo

‘“un where @y 1s the root of the tree. Below a, place a list of nodes

equal to the number of symbols in.az. Each nodeiiabelled by a symbol

in Qg Connect the root by a directed line to each new node. Assume the
tree has been constructed until Qs 1+ Os is derived from s _y by applying
a specific production to a non-terminal symbol (A) in JIRE Now, below
the node labelled (A), 1list nodes labelled by the right hand side of that

specific production, and draw directed lines from (A) to each node in the

list., Fig. 3.1 shows the steps of construction a parse tree for the

string aabb using left-most derivationms,

S = S = S = S

FIGURE 3.1: Building a parse tree

23

Any sequence of grammar symbols produced as a consequence of a

derivation 1s called a sentential form of the grammar G. If a sentential
form has only terminal symbols,'then it 1s called a sentence generated by
the grammar. The set of sentences generated from a grammar is called a
language. So, a language generated by a context-free grammar G can be
defined as L(G)={a ET* |[S - a}. That is the set of strings of terminal
symbols which can be derived from the initial symbol S. If for each a €T*
there exists a probability p(a) then the language is called a probabilistic
language (see Section 3.4).

There is a connection between the probabilities of the productions
in the grammar and the probabilities of the sentences in the language which

is exploited in Chapter 7,

54

3.3 HANDLES

At each step in the right-most derivation, the non-terminal symbol
is replaced by the right-hand side of the production concerned. For a

right sentential form, the right-hand side of that particular production

is called a handle (Aho and Ullman, 77; Lewis II, Rosenkrantz, Stearns, 76)

which is very important in bottom-up parsing (see next chapter); that is

right-most derivations in reverse. For example, consider the derivations
S’g'an‘”'aBY

where o 1s a string of grammar symbols, y is a string of terminal symbols,

and A:=8 1s a production. Then B is a handle of the right sentential form

2By and can be replaced by the symbol (A) to produce the previous right

sentential form aAy. The production A:=8 is called a héndle production.

In general, a handle of a right sentential form is the replacement

of the right-hand side of the last production applied in a right-most

derivation of the right sentential form. The last production applied in

a right-most derivation of a right sentential form is a handle production.
If a right sentential form can have at most one handle and one handle

production, then the grammar is unambiguous.

Consider the grammar in the previous section which derives the string

aabb using right-most derivations. The handle, and the handle production

of each right sentential form 1is

Derivations Handle Handle Production
S = AA AA S:=AA
= Ab b A:=b
= aAb aA A:=aA
= aaAb ‘ aA A:=aA
= aabb b A:=b

—_—
- — -
R . m e mrama
o O TaE it e——
i

35

In bottom~up parsing, the above derivations will occur in reverse, i.e.

Right sentential form Handle Handle Production
aabb b A:=Db
aaAb aA A:i=aA
aAb aA A:=aA
Ab b A:=b
AA AA S:i=AA
S

This can be interpreted as pruning the derivation tree. The tree leaves
corresponding to the right-hand side of the production would be deleted,
and the node, labelled by the left-hand side of the production, in which

the deleted leaves are the direct descendents, becomes the leaf of the new

tree.

56

3.4 PROBABILISTIC CONTEXT-FREE LANGUAGES

To find the probability of a string ¢ of symbols in a language L

generated by a probabilistic grammar, consider the sequence of derivations,

l.e. g =y =

1 L B

where S is the start (initial) symbol, ay derives from S if S:Ha1 18 a

production with a probability Py Now, a, occurs with probability 2K

= a

The second production is applied to one non-terminal symbol in &,y S3Y (A),
where A:=B is a production with p, as its probability. If a, =YA¢, where

vy and ¢ are sets of terminal and grammar symbols respectively, then

a2=yB¢ with probability P,P, (Booth and Thompson,73; Huang and Fu 71).

The third production is applied to another non-terminal symbol (usually

the left-most) from.a2 to result inma3'with probability P{P,P5s and so forth.

The probabilities associated with the productions are assumed to be
independent. If k productions are required to derive a, it follows from

the independence of the productions that the probability of generating

by means of one of the N derivations is equal to the product of the

probabilities of the sequence of the productions used in the derivation,

1.e.
p(a‘) = p1p2’ >0 ’pk

Kk
-'rrpi

1=]
For an unambiguous grammar, the probability of all strings a €L would be

k
é pla) = Z -‘Tpi
al L

i=]

1f) p(a) =1 for all a €L of finite length then the production
a €L |

probabilities are said to be consistent, and the grammar is said to be

consistent. More discussion of consistent grammars can be found in

T

Chapter /.

37

3.5 COMPRESSION AND DECOMPRESSION PHASES

In a compression phase, Fig. 3.2(a), symbols are input to a program
called compressor (or encoder) which produces as an output a sequence of
code symbols. The codes are output either from some computational trans-
formation or from a table. In the latter case, characters, words, or strings
of characters from the input are selected and replaced by code words
generally of shorter length than the original elements. The sequence of
code symbols is the compressed form of the input symbols. To recover the
original information from compressed data, a decompression, Fig. 3.2(b),
must be performed. The program (decoder) uses the same technique as the
compressor program, If a computational transformation was used during
the encoding process, then the decompressor uses the same process but in

reverse. If a table is used in the encoding process, then with a related

table the decompressor can restore the original input symbols.

Storage
device

Compressing

program Compressed data

Compressed data Decompressing
program

Output

(a) (b)

FIGURE 3.2: Compression and decompression phases

28

The decompression methods can be divided into two different classes
called reversible or irreversible (Schuegraf,76). If the output of the
decompression program is not an exact copy of the original input, then
the method is called irreversible. If the output produced by a decompression
program 18 the exact copy of the input, then the method is called
reversible. Usually with the latter method a table is used.

The table used by both encoding and decoding methods must be
determined before starting the actual encoding and decoding of symbols.
The construction of such tables depends on the language elements and the
statistical analysis of those elements.

In the following discussions concerning the decoding of files, only
reversible methods will be explained because the decoder must provide an

output file exactly the same as the original one.

59

3.6 CHARACTER ENCODING

In a character-encoding H of a finite set T',x each character a;
in T maps onto a code C. in H. So, the encoder reads one character at
a time and generates the corresponding code. This process continues until
there are no more characters to be coded. If there is a sequence of

characters a,a,a,,...a in a probabilistic language, then the sequence of

n
codes u1u2,...,uTlcorre3ponding to those characters is in the code
language. The properties of the code language are the same as those of
probabilistic language.(Thompson and Booth, 71), that is the code language
is a probabilistic language, and if the source language is context-free
then the code language is context-free as well,

Different techniques are used for encoding characters. Nevertheless

the most popular technique is Huffman method (explained in Section 2.7).
Hahn (Hahn, 74) explains a method of encoding a sequence of characters
after squeezing off the leading and trailing blanks, the remaining
characters are encoded in groups of a fixed length as unique fixed point
numbers. The characters are encoded according to their positions in a
dictionary comprising all those characters. The unique fixed point
number representing a group of characters is constructed from:

plBN-l + pZBN-z + .o. +py B+ p_
where P,sP,se«++»Py aTe the positions of characters in the dictionary.
B is the number of characters in the dictionary; and N is the length
of each group. For example, suppose that B=10, N=4, and the symbols to

be encoded have the positions 7,5,8,9,4,2,6 and 3 in the dictiomary.

These symbols would be encoded in two groups. The first group having

the value 74100 +5%10°+8%10+9 =758 ;

and the second group having the value

60

L %100 +2%10°+6 %10+ 3 = 4263

The value of B can be less than the actual number of elements in the
dictionary. The first B-l elements comprise the primary dictionary, the
Bth position is used as an escape character and is coded as 0. This allows
the dictionary to extend beyond B. So, more characters can have positions

in the range B+l to 2B-l, and so on. So, a character with position 12 is

encoded as 02 (B=10). For example, to encode the symbols having the

positions 7,12,2 would be
7 % 103 + 0 % 102 + 2 * 10 + 2 = 7022

The way of storing the encoded data is to store the number of leading
blanks followed by the number of characters encoded followed by the codes.

The problem with this method is when a character is encountered which
has not already been in the dicﬁionary. It must be added to the dictionary
before the start of the encoding process. Later when decoding takes place,
the same character positions in the dictionary will be used to produce
the original sequence of characters because the dictionary is written as
the first record of the encoded file.

There 1s another technique concerning identical characters
especially blanks and zeros (Smith, 76); that is instead of generating
a code for each character, the encoder counts them and generates the
number of occurrences followed by a code of one item only. For example,
five zeros could be encoded as 50.

When Huffman code is applied, there are no delimiters between the
sequence of codes. So the decoder must know when to consider the

received sequence of code symbols as a complete coding for a character.

But since Huffman codes é}e.uniquely decodable, then if the first k

6]

code symbols received are not a coding for any character in the set T,
then the decoder must read another code symbol and check again. Once
the sequence of code symbols matches one of the coding of characters

then the corresponding character is output and the next received code

symbol 1is considered as the first symbol of the coding of the subsequent

character. The exact sequence of characters will be obtained during a

decoding process. For the encoder and the decoder programs, Huffman code

will be implemented to encode and decode characters.

62

3.7 WORD ENCODING
Instead of encoding character by character,rhére a group of characters
(word) 1s encoded at a time. So for a set oftwords in a 1an§uage, there is
a code corresponding to each word such that the encoder does not output
the code until all the word has been read. Huffman code (explained in
Section 2.7) is used to find the codes. However, Huffman code caﬁ only
be constructed over a finite set of words. So if a probabilistic
language is not finite, it may be approximated (Tﬁompson and Booth, 71).
That is by ordering the words x.,€ L in decreasing order of their probabilities

p(xi) and then selécting the words in order until

n
) P(xi) = (l-¢)
i=]1

Now, the new probabilistic 1anguageifrcontains n words plus one word
(dummy) which-has a probability €. If a code is constructed for each
word in L, then the encoder outputs a code for each word in L which is

in L. However, for a word in L which is not in L, the encoder might

report an error or generates the code of the dummy word.

63

3.8 PARSING ENCODING

The input generated from a context-free grammar should be parsed

before allowing the encoder to generate any code (Thompson and Booth, 71).
A code 1s constructed over a set of productions which have the same left-
hand side (say Ai) i.e. a set of productions belonging to a non-terminal
symbol (Ai)' This set belongs to a probabilistic grammar which generates
the probabilistic language to be encoded. Each production in the set is
assigned a code. Obviously the total probabilities of the productions in

one set is equal to one. Then for optimal code Huffman method is applied

to generate a suitable unique code for each production in the set. The
method is applied to all sets in the probabilistic grammar, and hence the
sets have independent codes. It is possible that more than one set has
the same code. However, this does not cause any problem to the encoder
program because during the parsing process, the program recognizes the

exact production of the set and then generates its code. For example,

consider the following grammar:

Productions Probabilities Huffman Codes
1, E:=E+F 0.3 00
2, E:=E*F | 0.2 01
3. E:=F 0.5 1
4., F:=(E) 0.2 01
5. F:=1 0.4 00
6. F:=d | 0.4 1

There are two sets: the first set has the productions (1-3), and the
second set has the productions (4-6). The codes of both sets are exactly

the same, However, although the productions,

64

E:=E+F
and Fi=i
have got the same code (00), they are treated completely different by the -
encoder program. The same argument applies to the decoder program.

The way used for encoding a string of symbols (Hutchins, 72a) is to
parse the symbols, list the productions used in the parse in the order in
which they appear in the left-most derivation, concatenate the code worﬁs
corresponding to the productions in the 1ist+. This will form the coding
of the string. The parser does not need to know all the productions before
outputting the codes. It can generate a code as soon as a production has
been recognized. Note that, although a set might have only one production,

the encoder generates its code when the production is recognized by the

parser.

The decoder must translate a string of code symbols from the input
stream into a string of productions which can be used to construct a parse
tree. The decoder contains a stack, a code table holding the productions
with their codes, and the productions of the grammar. The decoding
procedure would be:

1. Begin with the initial symbol of the grammar on the stack.

2. By examining the top of the stack and checking the code table,

determine the next code word.

3. The word taken from the input determines the next production.
Apply the production to the stack and remove the code word from

the input.

+Note that there t8 a code for every production in the list, even ,thwgh

. some productions are certain to occur, t.e. they do not need any

code to be generated.

4., If any terminal symbols on the top of the stack, output them.
5. If the stack is not empty, then go to step (2); otherwise a
complete string has been decoded.
The decoder can be decomposed into two operations, the first segmenting
the input stream, and the second operating the stack to reconstruct the
striné. The problem with the decoding process is that the code words are
variable length codes (Huffman codes). So care must be taken when reading

a code word.

66

3.9 MEASURES OF DATA COMPRESSION

Before discussing the design and the implementation of the encoder,
it 1s necessary to explain the measures used for evaluating different
encoding techniques. The first measure expresses data compression results
in terms of the average number of binary digits that are required to encode
a given character (Martin, 76). The second measure is to compare the
ave

rag¢
entropy (i.e. the theoretical minimum length), and the*length of the

compressed data (Schuegraf, 76). That is

E = Theoretical minimum length of compressed data
Averade Length of compressed data

N
=1 Py logy(py)

_ =l
1§

pl 2.

i=1 ~ 1

The values of E are always less than or equal to one, and the maximum
of one 1s obtained only when

In other words, E is equal to one only when the average length of the
compressed data is equal to the entropy. The last type of data

compression measure is to find the ratio of the size of the compressed

data to the size of the data in its original form, 1i.e.

S = Length of compressed data
Length of original data

An encoding method is said to be optimal under some specific
condition if the average length of an encoded string is less than that

for any other encoding method under the same condition (Thompson, 71).

CHAPTER 4

LR PARSING

67

This chapter discusses the main methods for checking the syntactic
structure of an input generated from a context-free grammar: and proving
its validity. These methods are called parsing methods, and the programs
are called parsers. The parser tries, during its process to construct a

parse tree for the specified input. Accordingly, parsers fall into two

main classes called top-down parsers and bottom-up parsers (Gries, 71:
Aho and Ullman, 77). One type of top-down parsing method is called
Recursive-Descent. An example of bottom-up parsing is called LR(K) parsing
which is the most attractive method among the same class of parsing methods
for practical context-free grammars. L stands for reading the input from
left to right, R for producing a right parse, and K for the number of
Lookahead symbols. In practice, K is always O or 1.

The LR parsing method was originally described by Knuth (Knuth, 65).
The algorithm explains how to construct the set of states from the grammar;
;nd how the parser works with the help of a stack. However, the method was
not practically efficient because of the waste of space and time., A simple
method called SLR(K) parsing is explained in DeRemer, 71; Bornat, 79: and
Aho and Ullman, 77, However, for some grammars, it failed to produce
parsers. More general methods called LR(1) and LALR(1) are used to
construct LR parsers (Pager, 77; Aho and Ullman, 77;: Bornat, 79). A
general survey of LR parsing including the construction of the set of
states and also the parsing tables is contained in Aho and Johnson, 74,

Different optimization techniques are used to reduce the size of
the parser, and also to speed-up its execution. These techniques are
explained in detail in Aho and Ullman, 72; Anderson, Eve and Horning, 73;

Aho and Ullman, 73; Demers', 753 Joliat, 76.

68

Attempts have been made to generate automatically LR parsers from
a set of productions., One such generator is called YACC (Johnson, 78).

Section 4.1 explains briefly the two classes of parsing methods.
A Recursive-Descent parsing method is explained in Section 4.2. In
Section 4.3, the general construction of LR parsers is shown. The
algorithm of LR parsing is illustrated in Section 4.4, The way of
constructing the items and hence, the set of states is explained in
Section 4,5. Section 4.6 illustrates how to construct the parsing tables
from the set of states, The construction of SLR(K) parsers is mentioned
in Section 4.7. The construction of LR(1) parsers and LR(1l) parsing
tables is illustrated in Sections 4.8 and 4.9 respectively. Sections
4,10 and 4.11 are respectively concerned with the construction of LALR(1)
parsers and LALR(1l) parsing tables. Section 4.12 shows some techniques

used to optimize the parsing tables., Finally, an explanation of the

parser generator called YACC is given in Section 4.13.

69

4,1 PARSING METHODS

During the validation process, the parser tries to build up a
syntax tree (or parse tree) for the specified input string, according
to the sequence of productions used. The completion of the tree means
that the input is syntactically correct and no error is reported.
Referring to the way in which the syntax trees are built, the parsing

methods can be divided into two categories, top-down and bottom-up.

4,1.1 Top=Down Parsing Method

In this method, the parser tries to find a left most derivation for
an input string. Equivalently, the parser attempts to build a parse tree
by starting from the root and working down to the leaves. The leaves
represent terminal symbols, and the remaining nodes (including the root)
represent non-terminal symbols (i.e. the left-hand side of the productions).
For example, consider the grammar

S t=aAd

Ai=bb.

A:=cC
and the input abbd. To build up a parse tree for the input, create a
tree consisting of only one node labelled S, Since the first input

character is a, then use the first production to expand the tree, 1.e.

/0

The left-most leaf, labelled a, matches the current input character.,
The next input character is b which becomes the current input character,
Since the next leaf is a non-terminal symbol, then it is possible to

expand 1t by using the second production. The tree becomes:

Now, the leaf labelled b matches the current input character, The next
input character is b which matches with the next leaf 1labelled b. The
next input character is d which matches with the last leaf labelled d.
The tree is completed without any error., Hence the input abbd is
syntactically correct.

The important factor when writing a top-down parser is to prepare
a grammar which is suitable for top-down parsing. Once this has been
done, it is easy to write a parser., The main problems which have to
be overcome when preparing a grammar are backtracking and left recursion.
The problem of backtracking is that at certain state of parsing, the
parser discovers that the way used is not the proper one and it would

fail to parse the remaining input characters, Thus it has to backtrack

to a state in which an alternative way can be used. For example,

consider the grammar
S :=aAd

A:=be .
A:=bb

71

and the input is abbd. To construct a parse tree for the input, create
a tree consisting of only one node labelled S, The first input character

is a, use the first production to expand the tree:

S

The current input character matches the leftemost leaf, i.e. a. The
next current character is b, Since the next leaf is a non-terminal node,
then it '1s possible to expand it by applying the first alternative for A,

The tree becomes

Now, the leaf labelled b matches the current input character. The next
current character is b, and the next leaf labelled ¢ do not match.
Hence, the parser could not carry on its job and it has to go back to
the node A to see if there is another alternative for A that has not

yet been tried which might produce a match. In going back, the current
input character should be the one when the node A was firstly expanded,
that is the character b. By trying the second alternative for A, the

tree becomes, S

72

The leaf b matches the current character b, and the remaining input

characters (i.e. b and d) match the last two leaves. Hence, there is

a parse tree for the input, and the input is said to be syntactically

correct,

The next problem is a grammar which contains a left recursive
production (simple recursion) i.e. a production in which the left hand

symbol appears at the left end of the right hand side of the production,

For example, consider the productions
S:=S§,a
Si=a
and assume that each non-terminal symbol is represented by a procedure
in the parser., Then from the first altermative production, the procedure

S will call itself an infinite number of times,

To overcome the above problems, the grammar should be modified in
such a way that the new grammar is structurally equivalent to the original
one, but the input 1is recognized without backtracking and left recursion.
To eliminate backtracking, try to factor out the common portions at the
left end of each alternative. This action enables the parser to check
these portions only once. Parentheses are used for this purpose as
syntax notations., For example, the grammar

S t=aAd
A:=bc
A:=bb

which has a backtracking, could be rearranged as

S:=aAd
A:=b(c|b)

73

To remove the left recursion from a production, a better way is to

iterate the sequence of elements zero or more times. For this purpose
assume that brackets { and } are used. So, the productions

S:=S5,a

S:=a

cause the repetition of (,a) zero or more times. This can be arranged as

S:=af{,a}

Fig. 4.1 shows the parsing trees of both the recursion and the iteration

for the input a,a,a. Both trees are treated as equivalent,

.
S
, a
S
. a a . a A a
a
recursion iteration

FIGURE 4.,1: Parsing trees using recursion
and iteration

An example of a top-down parsing method is called Recursive=-Descent

which is explained in Section 4.2,

4,1.2 BottomruEParsing'Method

In this method, the parser tries to build up a parse tree for a
given input, by starting from the terminal nodes (leaves) and building
to the root, That is, it starts with the terminal string and replaces
a substring of symbols by a non-terminal symbol from which the substring

can be derived by one application of a production of the grammar, Then,

74

using the resulting string, the process of replacing a substring of

symbols by a non-terminal symbol is repeated until the start symbol S

is obtained. For example consider the following grammar

Se:=aAd
A:=bb

A:=C
and the input abbd. The parser reads the input symbol (a) and constructs

the tree:

0
d

then reads the next input symbol (b) and creates a single node, i.e.
a b

the parser reads another input symbol (b), and adds a new node, i.e.

abb
By using the second production, the string (bb) can be reduced to (A).

So a new node is created labelled (A) from the leaves (b) and (b).

/A\
a b b

Now, the parser reads the last input symbol (d) and adds a new node to

e tree
th A

By using the first production, the string (aAd) can be reduced to (S).

So a new node labelled (S) is created from the nodes a,A, and d.

75

Node S is called the root of the tree. At this point, all the input

has been read, and the parsing is completed. An example of a bottom—-up

parsing method is called LR method which is explained in detail in

Sections 4.3-4.13.,

e A offF g By o 0S

_ Y o r
P

76

4.2 RECURSIVE-DESCENT METHOD - A DETAILED EXAMPLE

An easy way to implement top-down parsing is to create one
(possibly recursive) procedure for each non- terminal symbol, which
parses the input derived from that non-terminal symbol. The procedure
is told where in the program to begin looking for its input., This can
be found by using the right-hand side of the productions for the non-
terminal symbol. During this process other procedures might be called.

A parser that uses a set of recursive procedures to recognize its
input with no backtracking is called a Recursive=-Descent parser. The
recursive procedures can be quite easy to write and fairly efficient
if written in a programming language that implements procedure calls
efficiently. If the programming language has not the ability to call
procedures recursively, then a stack could be created and maintained by
the parser (thisﬁould be a LIFO or a push-down stack).

As an example, consider the following grammar rules (productions)

E:=E+F|E*F|E-F|E/F|F
F:=i|c| (E)

It is assumed that all arithmetic operators have equal precedence.
Since the grammar suffers from left recursion problem, then it can be
rearranged as

E:=F{+F|=F|*F|/F }

F:=i|c]| (E)
There are two recursive procedures (E and F) involved recognizing the
inﬁut. In addition assume that SCAN() is a procedure which reads an.
input character and stores its typé in a variable location called token,

From the first production, the procedure E() immediately calls the

77

procedure F(), see Fig. 4.2, and then whenever there is an arithmetic

operator SCAN is called to advance to a new token and the procedure F()
1s called. Similarly, F() is coded directly from the production F,
Note that in the programming language C the symbol (==) 1is used to test

for equality, and the symbol (!!) is used to mean a logical (or) operator.

EC)
{F();
while (token =='+'!! token =='='!! token == "#'!! token =='/')
{scAN(); F()3}
}
F()
{If(token ==1.;: token ==¢c) SCAN():
Else 1f (token =='('")
{SCAN(); E();
If (token ==')"') SCAN():
Else error():

}

Else error()

FIGURE 4,2: Mutually recursive procedures written in C language

R

78

4.3 LR PARSERS

LR(K) parsers are considered to be one of the more efficient types

of bottom~up parsers. They can recognize most context-free languages.
Syntax errors can be detected as soon as they occur. The input string 1s

parsed in a time which is proportional to the length of the string. No

backtracking is required. The function of the parser is divided into a
finite sequence of steps called states. In each state, all possible actions
that can be taken by the parser are provided. The construction of these
states 1s described in Section 4.5.

The parser comsists of a driver routine, a parsing table which governs
its operation, an input stream, and a stack (Fig. 4.3). The driver routine
is the same for all LR parsers which reflect the parsing algorithm mentioned

in Section 4.4. The input contains only terminal symbols and is read from
input stream

Iml L
k

s
m
o Driver
routine
Parsing
table
stack

FIGURE 4.3: LR parser

left to right, one symbol at a time. The stack contains a string of
symbols called states. The parsing table consists of two parts; the

ACTION table and GOTO table. The ACTION table specifies which action 1s

79

going to be taken by the parser with respect to the current state and
the next input symbol (see Section 4.4). There are four different actions:
1. Shift the input symbol and change to a new state;
2. Reduce by the production
Ai=q and goto a new state;
3. Accept the input;

4, Error

The GOTO table specifies the next state as a new current state after each

reduction.

80

4.4 LR PARSING ALGORITHM

For a given input, the parser starts from the initial state, parsing

the input by consulting the ACTION table until an accept or an error action

18 encountered.

is the current state on the top of the stack. Let a., a,

Let {so,sl,...,sm} be a set of states stored on the stack, where s _

: 1+1,...,an,$be the

remaining input symbols ($ is the end of input marker), a, is the next input

to be expected by the parser. By consulting the ACTION Eable, the algorithm

would be:

1.

If ACTION [current state, next input]= shift s, then the parser shifts
a. from the input and enters state s. The stack becomes 30’31""’3mf8'

s becomes the current state, and the next input symbol is a,.1° Go to

Step 1.

If ACTION [current state, next input]= reduce by the production

A:=qa,
Suppose a is a string of grammar symbols of length r. The parser has
found the handle of the above production, and can now do the reduce

action. It will remove, by starting from the top of the stack, a
number of elements equal to the length of a which is r. Now, 8 —rp
on the top of the stack. To find the next current state, consult the
GOTO table, i.e. GOTO[sm_r,ﬂ=s. Push 8 onto stack. Since no shift

action has been made on the input symbol, it remains as the current
input symbol. Go to step 1.

If ACTION [current state, next input]= accept, then the input has been
successfully parsed. Here § is the next input.

If ACTION [current state, next input]= error, then a syntax error has

been discovered.

81

4,5 CONSTRUCTING THE SET OF STATES

Before generating both the ACTION table and GOTO table, it 1s
necessary to construct the set of states for a particular grammar. Each
state represents the position of the parser and the range of possible
next actions.

An item is defined as a production of a grammar G with a marker
(say dot) at some position in the right side of the production. The
position of the dot indicates that the parser has already recognized the
string derivable from the grammar symbols before the dot of this particular
production, and expecting to see the string derivable from the grammar

symbols after the dot before making any reduction by the same production.

For example, consider the production
S:=af
Then three items can be obtained

S:=,af
S:=a.B
S:=af.

The first item indicates that a string derivable from aB is expected next
on the input. The second item indicates that a string derived from «
has already been seen and a string derivable from 8 is expected next.

The last item indicates that a string derivable from af has been seen

and a reduction by the production
S:=af
1s possible.
To indicate to the parser when it should stop parsing and announce

acceptance of the input, a new start symbol P is added with the production

4

P:=8S

82

to the grammar, because if the parser reaches a point where the marker (.)1s
at the right-most of the item

P:=5,
then the input has been accepted.

The construction of the collection sets of items starts from the

augmented production

P:=S

The first set of items must contain the item

P:=,S
If the marker i1s placed immediately before a non-terminal symbol, include an
item with a marker in first position for each of the productions which define
that non-terminal. Continue to apply this process until no more items can be
added to the set of items. The included set of items is called the closure
set. The first item with its closure set represents the first state (initial
state). The successor states are computed by starting from the initial state.
If a state contains items in which the marker is positioned immediately before
a particular symbol in their productions (i.e. the marker is not at the right
most of the items), create a new state which contains only those items such
that the marker is positioned immediately after that symbol. Now find the

closure set of items of the new state as mentioned above. As an example,

consider the grammar

1. S:=AA
2. A:=aA
3. A:=b

First, add to the grammar the following production
0. P:=S ,

Next, to construct the initial state (so), it must contain the item:

83

Pi=,S
since the dot is immediately before the non-terminal symbol S, then the

closure set must be obtained. The idea of finding the closure items is

that the parser does not expect to find S as the next input, but a string of

input symbols derivable from S. Thus s, must also contain

Si=,AA
,s 9 ® ®
The dot+*before A which 1s a non-terminal symbol so the following items

should be included in 84°

A:=,aA
A:=.,b

So, s, has four items. To find the successor states, choose the item
P:=, S

place the dot after the symbol S, 1.e.

P'=S

since the position of the dot is at the right-most, then the closure set of
items can not be obtained. Hence the new state (sl) has only one item. 8

is called the final state. From the item
S:=,AA
two states can be generated (32 and 33)

s.: S:=AA

2
A:=,aA
A:=.,b
53: S:=AA,

continue in this process until no more states can be created. Fig. 4.4 shows
a complete set of states generated from the above grammar. Fig. 4.5
illustrates the relations between different states according to the grammar

symbols, For instance, if the current state is s. and the current grammar

O

symbol is S, then s, would be the new current state.

1

S:=A A
A:=,aA
A:=.,b

As=3 A
A:=,aA

A:=Db,

FIGURE 4.4

FIGURE 4.5:

A set of LR(0) states

A graph showing the relationships between the states

84

85

4.6 CONSTRUCTING LR PARSING TABLES

This section shows how to construct the LR parsing ACTION and GOTO

tables from a set of states (described in the previous section) generated
from an augmented grammar G' (assuming that the original grammar is G).

Let Sq2SyseeesS be a set of states, the elements of the -ACTION table

n

are determined as follows:

1. If A:=x.az 1s in s, and the successor state 18 sj, then set

ACTION[i,a] to shift j. a is a terminal symbol.

2, If A:=x. is in s., then set ACTION[i,a] to reduce by the production

A=x
3, If P:=S, is in S+ then set ACTION{[i,$] to accept. $ is the end of
input marker.

4. The remaining undefined elements are set to error.

The elements of GOTO table are obtained as follows:

1. If A:=,Xy is insi and A:=X.y is in Sj’ then set GOTO[1,X] to j].
X is a non-terminal symbol, and y is a grammar symbol or empty.

2. The remaining undefined elements in the GOTO table are set to error.
The representation of both the ACTION table and GOTO'table depends on the
number of states and the way of accessing a particular element. If the
number of states is relatively small, then the parsing actions for each
state can be represented by a sequence of prégramming languége statements,
and GOTO table can be represented by a sequence of programming language
statements for each non-terminal symbol. For example, consider the

construction of both the ACTION table aﬁd GOTO table from the set of states

mentioned in Fig. 4.4. The ACTION table would be:

.

86

0: If (input ==%'a') shift 4
Else if (input =='b') shift 6:

Else error;

l: If (input =='$') accept;

Else error;

2: If (input =='a') shift 4;
Else 1f (input =='b') shift 6;

Else error;

3: reduce 1;

43 If (input =='a') shift 4;
Else if (input =='b') shift 6;

Else error;
5: reduce 2;
'6: reduce 3;
The GOTO table would be:

S: If (state =='0') goto 1

A: If (state =='0') goto 2
If (state =='2') goto

3
If (state =='4') goto 5

However, for a practical grammar where the number of states might reach
several hundreds, the above method looks impractical because of the increase
in the size of the parser.

The next method is to represent the ACTION table and GOTO table by
two different matrices. For the ACTION table, each row represents a
particular state and each column represents a terminal symbol. Each row
of the GOTO table represents a particular state and each column represents

a non-terminal symbol.

the production number i; (a) denotes the accept action; a space denotes

In what follows (s) denotes a shift: (ri) denotes a reduction by

an error: and an integer denotes a state number. The ACTION table and

GOTO table corresponding to the set of states in Fig. 4.4 is shown 1in

Fig. 4.6.

state a b $ S A
0 S4 36 1 2
1 a
2 34 86 3
3 rl r1 rl
4 34 36 5
5 r2 r2 r2
6 r3 r3 r3

FIGURE 4.6: Two matrices representing the parsing tables

87

Another way of constructing the ACTION table is to store the elements

of each state separately, and try to link the states as required after each

action. Fig. 4.7 shows the relations between the states mentioned in Fig.
4.4, Some states are connected to the GOTO table.
11 shift 6
0 __ error
accept
L m error
1t shift 6
e b e] o
GOTO . L err

FIGURE 4.7:. Constructing the parsing table using a
pointer type structure

88

Using matrices for constructing a parsing table is more practical

than others because any element can be obtained in one access. Further-
more, it is relatively eas<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>