

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

s

FILE COMPRESSION USING

PROBABILISTIC GRAMMARS AND LR PARSING

BY

ADIL M. M. AL-HUSSAINI, B. Sc., M. Sc.

A Doctoral Thesis

submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy of the

Loughborough University of Technology

Wovember, 1982

Supervisor: DR. R. C. STONE

Department-, of Computer Studies

Q by Adil M. M. Al-Hussaini, 1982.

DECLARATION

The work contained in this thesis (except where otherwise

stated) is original research by the author and has not been

submitted in full or part to this or any other institution for

degree purposes.

ADIL M. M. AL-HUSSAINI

0

To my Parents

whom I owe more than

I can possibly express

CONTENTS
PAGE

ABSTRACT

ACKNOWLEDGEMENT

DETAILED CONTENTS

CHAPTER 1: INTRODUCTION

CHAPTER 2: OPTIMAL CODE-LENGTH PER LETTER 5

CHAPTER 3: ENCODING PROBABILISTIC CONTEXT-FREE LANGUAGES 46

CHAPTER 4: LR PARSING 67

CHAPTER 5: 'THE ENCO . DER 114

CHAPTER 6: THE DECODER 159

CHAPTER 7: CONSISTENT GRAMMARS AND THE PROPERTIES OF A
LANGUAGE 176

CHAPTER 8: SUMMARY AND CONCLUSIONS 226

REFERENCES 229

AlDlPVM'nTrVQ 235
uS £ £41. 'I

ABSTRACT

Data compression, the reduction in size of the physical representation

of data being stored or transmitted, has long been of interest both as a
I

research topic and as a practical technique. Different methods are used

for encoding different classes of data files. The purpose of this research

is to compress a class of highly redundant data files whose contents are

partially described by a context-free grammar (i. e. text files containing

computer programs).

An encoding technique is developed for the removal of structural

dependancy due to the context-free structure of such files. The technique

depends on a type of LR parsing method called LALR(K) (Lookahead LRM).

The encoder also pays particular attention to the encoding of editing

characters, comments, names and constants.

The encoded data maintains the exact information content of the

original data. Hence, a decoding technique (depending on the same

parsing method) is developed to recover the original information from

its compressed representation.

The technique is demonstrated by compressing Pascal programs. An

optimal coding scheme (based on Huffman codes) is used to encode the

parsing alternatives in each parsing state. The decoder uses these codes

during the decoding phase. Also Huffman codes, based on the probability

of the symbols c oncerned, are used when coding editing characterst

comments, names and constants. The sizes of the parsing tables (and

subsequently the encoding tables) were considerably reduced by splitting

them into a number of sub-tables.

The minimum and the average code length of the average program are

derived from two different matrices. These matrices are constructed

from a probabilistic grammar, and the language generated by this grammar.

Finally, various comparisons are made with a related encoding method by

using a simple context-free language.

I

ACKNOWLEDGMENTS

I wish to thank Professor D. J. EVANS, Director of Research,

for his encouragement and help throughout my study.

My sincere thanks to my Supervisor, Dr. R. G. STONE, for his

guidance, encouragement and invaluable suggestions throughout the

course of this thesis.

I am grateful to Mr. S. BEDI, Systems Manager, for his help

during my practical work on the computer.

am greatly indebted to my family for their mor, ýl-and

financial support which never came to an end. Their support and

encouragement have given me the opportunity to continue my studies.

DETAILED CONTWS

PAGE

Chapter 1: INTRODUCTION 1

Chapter 2: OPTIMAL CODE LENGTH PER LETTER 5

2.1 Some Properties of a Code 6

2.2 Classes of Codes 11

2.2.1 Fixed-Length Code 11

2.2.2 Variable-Length Code 12

2.2.2.1 How to Construct a Variable-
Length Code - Method 1 13

2.2.2.2 How to Construct a Variable-
Length Code - Method 2 15

2.3 Tree Representation of Code Words 17

2.4 The Kraft Inequality 20

2.5 Entropy 27

2.6 Average Length of a Code Word 32

2.7 Huffman Codes 38

2.8 Minimizing the Longest Code and Total Number
of Digits 43

Chapter 3: ENCODING PROBABILISTIC CONTEXT-FREE LANGUAGES 46

3.1 Definitions 47

3.2 Derivations and Derivation Trees 50

3.3 Handles 54

3.4 Probabilistic Context-Free Languages 56

3.5 Compression and Decompression Phases 57

3.6 Character Encoding 59

3.7 Word Encoding 62

3.8 Parsing Encoding 63

3.9 Measures of Data Compression 66

PAGE

Chapter 4: LR PARSING 67
4.1 Parsing Methods 69

4.1.1 Top-Down Parsing Method 69
4.1.2 Bottom-Up Parsing Method 73

4.2 Recursive-Descent Method -A Detailed Example 76
4.3 LR Parsers 78
4.4 LR Parsing Algorithm 80

4.5 Constructing the Set of States 81
4.6 Constructing LR Parsing Tables 85

4.7 SLR(K) Parsers 89

4.8 LR(l) Parsers 95

4.9 Constructing LR(l) Parsing Tables 102

4.10 LALR(l) Parsers 103

4.11 Constructing LALR(l) Parsing Tables 107

4.12 Optimizing the Parsing Table 108

4.13 Automatic Generation of LR Parsers ill

Chapter 5: THE ENCODER 114

5.1 The Model 115

5.2 Encoding the Grammatical Part 117

5.3 The Encoder Program 119

5.3.1 The Parsing Partý 119

5.3.2 The Encoding Part 122

5.4 Encoding Editing Characters 124

5.4.1 Character Encoding 124

5.4.2 Using Counters 125

5.4.3 Using an Array 128

5.5 Encoding Comments 131

5.6 Encoding Names and Constants 134

5.7 Encoding Strings 141

PAGE

5.8 optimizing the Parsing Tables 142

5.9 Constructing the Encoding Tables 152

5.10 The Frequency Program 154

5.11 Example 156

Chapter 6: THE DECODER 159

6.1 The Model 160

6.2 Decoding the Grammatical Part 161

6.3 The Decoder Program 163

6.4 Decoding Editing Characters and Comments 166

6.5 Decoding Names and Constants 169

6.6 Decoding Strings 171

6.7 Constructing the Decoding Tables 172

6.8 Example 175

Chapter 7: CONSISTENT GRAMMARS AND THE PROPERTIES OF A
LANGUAGE 176

7.1 Notation and Definitions 178

7.2 Consistent Grammars 180

7.3 Average Word Length (AWL) 185

7.4 Average Derivation Length (ADL) 191

7.5 Average Number of States (ANS) 196

7.6 The Probability Distribption of the States 198

7.7 Minimum Code Length (MCL) 204

7.8 Average Code Length (ACL) 206

7.9 Comparison 208

7.9.1 Using Leftmost Derivations 216

7.9.2 Using Rightmost Derivations 219

PAGE

Chapter 8: SUMMARY AND CONCLUSIONS

REFERENCES

Appendix A: PASCAL PRODUCTIONS

Appendix B: ENCODER PROGRAM LISTING

Appendix C: DECODER PROGRAM LISTING

226

229

235

238

251

Appendix D: LIST OF THE SET OF STATES FOR THE EXAMPLE IN
SECTION (7.9) 260

Appendix E: LISTS OF SAMPLE PROGRAMS USED FOR THE COMPARISON
IN SECTION (7.9) 264

CHAPTER 1

INTRODUCTION

1

Computers are used because of their accuracy in getting the right

results, the speed at which they, accomplish the job, and their capacity

for storing information. Of course, there is a limit (restriction) to

each of the above facilities. The obvious restriction is the insufficient

size of the storage space. -To overcome this, it is necessary either to

extend the size of the secondary storage which is costly, or to find

efficient algorithms for compressing and restoring (decompressing) data

which allow the storage that is available to be better utilized. This

study considers, for a given string of symbols, the problem of finding a

shorter string that uniquely determines the original string. It must

always be possible to recover the original string from the short string.

The algorithm for_transforming a string into a shorter string is called

data compression, and the algorithm for recovering the original string is

called data decompression.

This study assumes that the input string consists of a finite set of

symbols with some sort of structure from a context-free language. This

structure produces redundancy in the language which is described by a

context-free grammar. In addition, the string includes characters which

lead to a more readable string. These characters are called editing

characters.

The data compression model (i. e. an encoder) is designed to accept

the above input stream, check for its correctness from a syntactical

point of view (parsing the data), and then generate.. the required codes..

The whole operation requires a finite set of steps (states) to be completed.

The encoded data, which is supposedto occupy less storage space than the

2

original string, maintains the exact information content of the original

data and should uniquely represent the original data.

To recover the original data, a decompressio n model (i. e. a decoder)

is designed to accept the coded data, check for any syntax error, and then

output the required symbols. Týere must be an aI greement between the encoder

and the decoder as to the way of parsing the data and the class of codes

used (by the encoder) to represent different aspects of'the encoding process.

The decoded string must be exactly the same as the original string.

A particular encoder (and corresponding decoder) are developed to

compress data written in the Pascal language. The parsing'of the input

depends on a technique called LR(K) parsing. The codes used are of

variable-length; they are constructed according to . the optimal Huffman

coding method using the-probabilities attached to the symbols, grammar

rules, and choices in each state. Samples of Pascal programs have been

collected, and a frequency program was written to find the frequency of

different elements from those samples.

A matrix called the expectation matrix is constructed from the

probabilistic grammar, which wilthelp to obtain the-average size of an

input string, the average number of steps required to parse the string,

and the average size of the encoded string. -

The overall structure of the presentation is as follows:

Chapter 2 explains, in general, the construction of codes for a

sequence of letters. It also explains some general properties of, codes

and specifies in particular a type of code called an instantaneous'code.

Two classes of codes are available, fixed-length codes, and variable-length

codes. The attention is concentrated on the way of constructing variable

3

length codes, especially Huffman method, because such codes will be used

in the encoder and the decoder programs, and can produce an average code

length nearer to the minimum code length (i. e. the entropy).

Chapter 3 defines and explains a structured language called context-

free language-which would be generated from a context-free grammar. It

also illustrates the way of deriving a ýtring of symbols from the set of

grammar rules (productions) using leftmost derivation and rightmost

derivation techniques. By including a probability with each production,

the grammar becomesaprobabilistic grammar which can generate a probabilistic

language. Different methods used for compressing and decompressing strings

from a probabilistic language will be described.

In the encoding method, the input must be (parsed) checked for any

possible syntax error before the actual-encoding procedure starts. So,

Chapter 4 explains the techniques used for parsing a string from a language.

Most emphasis is placed on a parsing method called LR(K) method. This

includes the construction of the states and the parsing tables. Because

of the large size of the parsing tables, different techniques are used to

minimize the tables into a reasonable size. A parser generator called YACC

is described in this chapter.

Chapter 5 describes the encoder model which accepts a program written

in a context-free language as input and generates a corresponding encoded

file. The encoder is an LR(K) parser generating Huffman code output. The

codes represent the user names, constants, editing characters, comments

and the parsing actions. The encoder program requires tables for holding the

necessary codes which will be used during the encoding process. The codes

4

are constructed according to the frequencies of different actions, and

symbols which were found by using a special program (frequency program).

The coded file has to be decoded in order to obtain the original file.

The decoder model is described in Chapter 6. The structure of the decoder

follows the structure of the encoder very closely. It includes the decoding

of user names, constants, editing characters and comments. The decoder

requires information to recognize the codes. This information is stored

in decoding tables.

Chapter 7 discusses the properties of a probabilistic grammar which

can generate a probabilistic language. Finding the properties depends on

constructing a matrix called the expectation matrix from the grammar rules.

It is possible to find out the average size of the input file, the average

number of steps for recognizing a string of symbols, and the average code

length (average length of a coded file). For rightmost derivations, the

probability distribution of each state, and the average number of states

required to parse a string of symbols is also discussed.

Finally, Chapter 8 concludes the overall work.

CHAPTER 2

OPTIMAL CODE LENGTH PER LETTER

5

This'chapter basically explains the problem of representing letters

from a source alphabet in terms of another set of letters. This

representation is referred to as a code. Some properties of a code are

explained in Section 2.1. For a set of source letters, the code consists

of a finite number of code words. These words have either a fixed length

or different lengths (Section 2.2). Section 2.3 shows how to represent

code words by building up a tree. This representation helps when the

source letters are retrieved from a sequence of code letters. For certain

types of codes known as instantaneous codes, there is a formula (Kraft's

inequality) in which it is possible to prove the existence of such codes

for a given set of code word lengths. This inequality is explained in

Section 2.4. Section 2.5 shows how to find the minimum average code

length per source letter which is equal to the entropy. The average code

length for a source letter is explained in Section 2.6. In Section 2.7,

it is shown that an optimal variable-length code can be constructed from

a well known method called Huffman's method. Finally, an extension to

Huffman's method which led to a reduction in both the longest code word

and the total number of digits, is illustrated in Section 2.8.

6

2.1 SOME PROPERTIES OF A CODE

Let S-(sl,, s 2' . *. Ds N)
be a source alphabet. consisting of N source

letters. These source letters can be represented by a sequence of

different letters called code letters from another set C-(c 1'c2' 6-9cm),

such that, for each sI ES, i-l,..., N there is a sequence of ci E=-C' j-l,..., M

(repetitions are allowed) representing s 3. .
For example, consider the

representation of 4 source letters, using binary digits (0,1) as code

letters, defined by Table 2.1.

Source Letters Binary Representation

00

s 01 2

s 10 3

s 11 4

TABLE 2.1: Binary Representation of Source Letters

So, there are 4 binary sequences called code words, and each source

letter corresponds to one code word. The correspondence of binary

sequences to source letters is an example of a code. Using the code in

Table 2.1, it is possible to obtain a sequence of binary digits for any

sequence of source letters. For example, suppose that the sequence,

sIs2S1s4 of source letters is required to be coded, the corresponding

sequence of binary digits is

00 01 00 11

Conversely, it is possible (with the help of Table 2.1) to obtain, -the

same sequence of source letters (i. e. s1s2S1s4) from the above sequence

of binary digits. To discuss properties of codes (Abramson 63), it is

7

necessary first to give a formal definition.

Let S=(sl, s 2' 0.09s N)
be a set of source letters. Then a code is

defined as a mapping of all possible sequences of letters of S into

sequences of letters (code letters) of some other alphabet C=(cl9c 2"0'9cH)'

S is called the source alphabet, and C is the code alphabeto

The definition of a code, as mentioned above, is general. Therefore,

it is necessary to investigate some of its conditions and try to give a

clear idea of what a code looks like.

1. The procedure of transforming a source letter into a corresponding

sequence of code letters is called an encoding, and the processor is

called an encoder. Hence, for each source letter in the source

alphabet, there is a corresponding code word. This enables the

encoder to generate the right code word during the encoding process.

For example, in Table 2.1, there are 4 source letters, and each one

has its own code word. s1 can be encoded as 00, s2 as 01, s1S2 as

0001.... and so on. Since there is a fixed number of source letters,

then the number of code words is fixed as well. A code satisfying

this condition is called a block code. All code words contain either

the same number of code letters (fixed-length) or different number

of code letters (variable-length).

2. All code words of a block code should be distinct, that is, no two

code words have the sam sequence of code letters. In Table 2.1,

for example, all code words are different. But in Table 2.2 the

code words of both s3 and s4 are the same (101). A block code in

As are , di-stinctis CýýtLed- noh-jsjn5ataýr- ,. vhi6h- aA the, codf- worc

8

Source Code Word

s1 00

s2 01

s3 101

s4 101

TABLE 2.2: A binary code

The process of retrieving the source letters from a sequence of code

words is called a decoding process, and the processor is called a

decoder. Without the distinction of code words, the decoder can not

obtain the exact source letters. ' Given Lhe.. ýALowjnj , sequence

of code words

00 101 01

the decoder could generate (by using Table 2.2) either

s1s3s2

or S1s4S2

3. Although a code should be non-singular (Table 2.3), it is possible

to have a sequence of code letters which does not represent a

unique sequence of source letters. Suppose that the sequence of

binary digits

001001

Source Code

s10

s2 01

a3 001

s4

TABLE 2.3: A binary code

9

is given, then the decoder (using Table 2.3 as a dictionary) could

generate one of the following sequences of source letters.
I

S3S3;

s1s2s3;

s3SIs2;

or s1s2s1s2

Therefore, code words should be uniquely decodable. The code in

Table 2.4 satisfies this condition.

For a sequence of uniquely decodable code words, the decoder ought

to be able to decode each code word as it arrives without checking

the succeeding code letters. This can be achieved (Hamming 80) when

no code word is the prefix of another code word. A code in which no
Y.

code word is a prefix ofAanother code word is called an instantaneous

code, or a prefix condition code.
I

Source Code

s10

01

Oil

0111

TABLE 2.4: Uniquely decodable code

Suppose that, a sequence of binary digits composed of code words

from the code in Table 2.4 is given, and the decoder has already

received the first binary digit (0), then it can not decide whether

that digit is the code word of sl, or it is a prefix of a code word

representing s 2' or s3 or s4; unless a further check on the next digit

10

is made. Thus the code in Table 2.4 is not an instantaneous code.

An example of an instantaneous code is given in Table 2.1.

The advantage of an instantaneous code is that the decoding can be

accomplished without delay, because the end of a code word can be

recognized immediately and subsequent code letters do not have to be

observed before decoding is commenced.

11

2.2 CLASSES OF CODES

As has been mentioned in the'previous section, a code consists of a

fixed number of code words. The number of code letters in a code word is

called the length of the word. If every code word has the same length,

then the code is calledafixed-length code. In contrast, if the code words

are not all of the same length, then the code is called a variable-length

code (Johns, 79).

Section 2.2.1 explains the construction of a fixed-length code,

including the length of the code word. Variable-length codes are discussed

in Section 2.2.2.

2.2.1 Fixed-Length Code

Let 0,1,2,..., 9 be a source alphabet., Then there are 10 different

ways of selecting only one letter from the source alphabet. For selecting

2 consecutive source letters, there are (100-10 2) different ways. So,

the number of selections of a sequence of letters depends on the number

of source letters and the length of the source sequence.

In general, suppose that s l's2'* .. 's N
be a source alphabet. Let k

be the number of selections from the source alphabet. Then there are Nk

different source sequences of length k that might be. emitted from the

source. Suppose that cl, c 2'***'cM is a code alphabet. Let the length

of a code word be L. Since all code words have the same length, then the

number of different code words is HL

From Section 2.1,, each source sequence of. length k must correspond

to a separate code word. This is not possible unless there are at least

4

12

as many code words as there are source sequences (Johns, 79; Callager, 68).

So, to find the length of a code word (i. e. L) the following condition

is satisfied:

MLýNK

L log M >, K log N

L >, K log N
log H

log N For K-1, the minimum length of a code word is
log M. For example, suppose

that N=4, and at each time only one source letter (K-1) is encoded into

a sequence of binary digits (M=2). Then:

L >,
log 4

-ý log 4-2 binary digits log 22
So, all code words must be at least of length 2. See Table 2.1. If N-6

then
Lý log 26 :ý2.58 binary digits

L must be an integer number, so the minimum length of a code word is 3.

Encoding and decoding of source sequences using fixed-length codes

are trivial. Both procedures require a dictionary of all source letters

and their corresponding code words to be consulted. Almost all current

computer systems use a fixed-length code for transforming or storing

characters. Nevertheless, this class of codes does not, in general,

provide a minimum average code word length per source letter. This will

be explained in Section 2.5.

2.2.2 Variable-Length Code

In a variable-length code, the length of a code word for a source

letter may be different from that of the code word for another source

13

letter. Choosing different lengths, for the code words represents a

statistical point of view, that is the source letters of a source

alphabet are all used with different frequencies (i. e. have different

probabilities). Consequently, a code word with a short length should be

assigned to a high frequency source letter, and a long length code word

assigned to a low frequency source letter.

If the source letters are used with about the same probability,

little extra compression will be achieved by using a variable-length

code rather than by a fixed-length code (section 2.2.1) (Holborow,

McNemar and Stoneburner, 76). Hence a fixed-length code may be regarded

as a method for encoding source letters which have a uniform probability

distribution. However, if the statistics describing the usage of source

letters are known accurately, the use of a correctly chosen variable-

length code will produce a total code length much less than that obtained

by a fixed-length code.

Before discussing the ways of constructing a variable-length code,

it is important to mention that the code, which will be implemented in

this study, must satisfy the properties in Section 2.1 (i. e. an

instantaneous code). A necessary condition imposed on an instantaneous

code is that no code word is the prefix of any other code word. This

condition is called a prefix condition.

2.2.2.1 How to Construct a Variable-Length Code - Method 1

Let S be a set of N source letters (slgs
2' eggs N

1. Each sI has a

propability p(s 1, <i, <N. Ut'M-be.. the number of code letters in the code

14

alphabet C. Divide the source letters into M subsets making the
1

probability of each subset as close to jj aa possible (Johns, 79;

Gallager, 68). Assign a different code letter to each of these subsets.

If a subset has only one source letter, then the process on that subset

will terminate. Divide each subset into M approximately equiprobable

subsets, and assign to each new subset a different code letter. Continue

in this process until each subset contains only one source letter.

As an example, suppose that S=fs l's2's3's4
I and the probability of

each source letter as shown in Table 2.5. Let C=(O, I) i. e. M-2. Then 2

subsets {fs'), {s s 11 are obtained each with probability -1. Assign 0
12 3`94 2

Source Prob. Step 1 Step 2 Step 3 Code p(s)--I-

m

s1001 22

s11 10 10
1

2422

110 110
1

323

23

TABLE 2.5: An instantaneous code

to the first subset, and 1 to the second subset (step 1). Since the

first subset has only one source letter, i. e. sl, then the process is

terminated, and sI gets code word 0. Divide the second subset into two

subsets Qs 1, {s s 11, each with probability .
1. Assign 0 to the first

2 3' 44

subset, and 1 to the second subset (step 2). Since s2 is the only source

15

letter in the subset, then it gets code word 10. Finally, divide the

second subset into two subsetaUs), {a 11, each with probabilit.,
1

34 8'
Assign 0 to the first subset, and 1 to the second subset (step 3). The

process is terminated, s3 gets code word 110, and s4 gets code word 111

(see Table 2.5). The code satisfies the condition in Section 2.1;

therefore it is an instantaneous code.

If the division can be achieved such that all subsets are equally

probable at each step, then a relation can be established between the

probability of a source letter and the code word length. That is:

P(s
m

where II is the code word length of the source letter s

2.2.2.2 How to Construct a Variable-Length Code - Method 2

For M-2, there is another way of constructing an instantaneous code

(Abramson, 63). That is by assigning 0 to the first source letter and 1

to the remaining source letters. The first source letter gets the code

word 0. Select one source letter from the remaining letters and assign 0

to its code word which becomes 10. Assign 1 to the remaining source

letters. continue with this process until no more selections can be

made. For example, suppose that there are 4 source letters s1 's 2' s3 's

Let M=2 i. e. C=(0,1), then assign 0 to sl, and 1 to S2's3 and s4 i. e.

s2

s3

Sý 1

16

The code word for s1 is 0. Select s2 and assign 0 to it. Assign 1 to

s3 and a 4'
i. e.

S0

s2 10

s3 11

s4 11

So, the code word of s2 is 10- In the last selection, assign 0 to S3

and 1 to s 4' i. e.

91U

S2 10

S3 110

s4

S3 gets the code word 110, and s4 gets 111.

For four source letters, an instantaneous code consists of four

code words which can be obtained. As mentioned above, the shortest code

word is assigned to the highest frequency source letter and assign the

longest code word to the, lowest frequency source letter.

Although methods 1 and 2 can construct an instantaneous code, they

cannot always generate optimal codes. A well known method used to

generate an optimal variable-length code is called Huffman's method. It

is explained in Section 2.7. This method will be applied to the encoder

and the decoder program

4

17

2.3 TREE REPRESENTATION OF CODE WORDS

Another way ofdescribin3 a set of code words for an instantaneous

code is by building up a tree (Johns, 79; Gallager, 68). A tree (sometimes

called a rooted tree) is a finite set of points (nodes) connected by lines

(branches) which satisfies the following properties (Page and Wilson, 73;

Hopcroft and Ullman, 69).

1. Any two nodes in a tree are connected by a unique path (sequence of

branches). The branch leaves one node and enters another node.

2. There is exadtly one node which no branch enters. This node is

called the root.

3. Exactly one branch enters every node except the root.

A node .
'with at least one branch leaving it, is called a branch

node (or non-terminal node). A node wUh- no branch leaving is

called a terminal node. For example, in Figure 2.1, the tree is a rooted

tree (node I is the root). It has 8 nodes and 7 branches. Nodes (1,2,3)

are norr-terminal nodes, and nodes (4,5,6,7,8) are terminal nodes.

level 11 root node

order I level 22 3,

branch

non-terminal node

order 2 level 3.. 4-**" 5N 6Z 7N 8'ý'*4-- terminal node

FIGURE 2.1: A rooted tree

The level of a node in a tree is the number of nodes passed through

18

on the path from the root to that node (. inclusive of both the root and

the node). For instance, node 2 is at level 2 because on its path there

are only 2 nodes (node 1 and node 2). The order of a tree is the number

of levels excluding level 1 (the root) which is assumed to be of order 0.

For a particular order, the number of nodes is equal to the number of

branches coming from each node in the previous level. The set of all

nodes n, such that there is a branch leaving a given node m and entering

n, is called the set of direct descendants of m. A node is called a

descendant of node m if there is a sequence of nodes nl, n 2'* ., n k such

that n1 -M, nk =n, and for each i, n i+1 is a direct descendant of n i*

So far, a general illustration of a tree has been given. A special

case of a tree in which each node has exactly zero or two leaving branches

is called a binary tree (Figure 2.2). A non-terminal node has two leaving

branches, and a terminal node has zero leaving branches.

FIGURE 2.2: A binary tree

Suppose that the code letters are binary digits (0,1), then a

binary tree is required to be constructed. To construct the code'in

Table 2.5, start from the root (level 1) of the tree. Two branches

corresponding to the choice between 0 and I exist which lead to the

second level (order 1) of. the tree (Figure 2.3). In this levelp one node

19

becomes a code word (0),. and the second node represents the first code

letter of the following code words. Another selection between 0 and 1

is made from the second node. leads to the third level of the tree.

root first level
0/1`1ý 1

second level

10 third level

116 liý ... fourth level

FIGURE 2.3: A tree for an instantaneous code

Again, two nodes exist, one node becomes a code word (10), and the second

node represents the next code letter of the following code words.

Similarly, the fourth level of the tree is obtained from the previous

level. This level has 2 nodes representing 2 code words (110 and 111).

Generally, by starting from the root, the successive letters leading to

a terminal node represent a code word of a source letter.

The process of branching from one level to another, away from the

root, can be done on any node (except terminal nodes). If all nodes at

one level have either zero or two leaving branches (Fig. 2.4); this will

lead to a full tree.

. 10

. 10 1%

FIGURE 2.4: A full tree

20

2.4 TRE KRAFT INEQUALITY

In Section 2.1, some constraints on the code word lengths of a

prefix condition code have been discussed. Those constraints concern

the quality of code words. It is possible to express the constraints in

a quantitative fashion. The expression is provided by the following

theorem.

Theorem (Kraft): A prefix condition code exists for code words of lengths

ZVI 2 9.0.9k N
if, and only if,

N
II

'< 1 (2.1)
:1 Mlk

where M is the number of different letters in the code alphabet.

Proof 1: (Abramson, 63; Gallager, 68):

Part Q: Sufficient condition.

Let I l'Z2'*-'ZN
be code word lengths satisfying the inequality

N1
:ý1

kil Mik

These lengths may or may not be all distinct. Consider all code words

of the same length at one time. Therefore, let n1 be the number-of, code

words of length 1; n2 be the number of code words of length 2; etc. If

the largest of the ZI -L then

nN

The sunimation of (2.1) contains n terms of-!; n terms of -L; etc. It
IM2M2

may then be written as n.
-" '< 1 (2.2)

1-1 MI

21

On multiplying (2.2) by Mt

t n. M z IM
ill M

or
Z-i z

nIMM

n1M
Z-1

+ nP
Z-2

+ nP
t-3

++nM

Z- L-1 Z-2
nL 1< M nlM nP ... n Z-1 M

By dropping the term nz and dividing by H

n 1-1 <M
Z-1

-n1
z-2

-n2M
z-3

- ... -n L-2
m

Continue dropping the subsequent terms and dividing by M each time,

n3M3n1M2-n2

n2M2n1M

111 N

For n1 (the number of code words of length 1), M possible such words

can be formed-using a code alphabet of M code letters. Since n 11<M,

select n1 code words arbitrarily. Then M-n 1 code letters were not used

as code words. They are prefixes of length 1. By adding one letter to

the end of each of these permissible prefixes, a number of code words

of length 2 could be formed i. e.

(M-n
1

)M -M2 -n 1M

From the inequality above it is possible to select n2 code words

arbitrarily from among M2 -n 1M choices; then

(M 2
-n 1 M) -n2

were not used as code words. By adding one code letter, there are

(M 2
-n 1 M-n2)M =M3 -n 1M2 -n 2M

22

permissible prefixes of length 3. It is certain according to the above

inequality that no more than this number is needed. So, n3 code words

may be selected arbitrarily. Proceed in this way until all code words

have been formed.

Part ii): Necessary condition:

To prove that equation (2.1) is a necessary condition, the arguments

already used are reversed.

End of Proof 1.

Proof 2: (Johns, 79):

Draw a full tree which has M branches coming from each node (Figure

2.6). There are M nodes of order 1, M2 of order 2,..., Mk of order k, etc.

01
0k4

. nodes of order 1

. nodes of order 2

.. * nodes of order 3

FIGURE 2.6: The full tree of order 3 where M-2

Each node gives rise to a code word. M code words of length 1 are

available at order 1, M2 code words of length 2 are available at order

2, and so forth.

Let Z l'12"***"*tN satisfy (2.1). If 9,1s the largest of Li1, <i, <N,

then the full tree would be of order 1. and the tree representing the

code will be embedded in it (in Figure 2.6 the tree (solid) embedded in

the full tree (dashed)).

23

Arrange the lengths in an ascending order k 'a choose any 1

node of order Z1. say xl, in the full tree as the first code word.

Eliminate all the branches leaving xl, All nodes on the full tree of

each order greater than or equal to L are still available for use as

code words except for the fraction -I. - that stem from node xV Choose

M
any available node of order Z

2' say x2, as the second code word.

Eliminate all the branches leaving x 2* All nodes on the full tree of

each order greater than or equal to It are still available for use as 2

code words except for the fraction I+ Repeating this process

will lead to the situation that after choosing xk (k<N) as the k th
code

word, all nodes in the full tree of each order greater than or equal to
kI

k are still available except for the fraction I- stemming from x k j=l
Mzk1

to xk. From (2.1) this fraction is always less than 1 and so nodes are

still available for further code words. Therefore the procedure can be

taken as far as xN*

Conversely, the tree representing any prefix condition code can

be embedded in a full tree whose order is the largest of the code word

lengths. A terminal node of order IV in the tree representing the code,

has stemming from it a fraction 1
of the terminal nodes in the full

MIk
tree. But the sets of terminal nodes in the full tree stemming from

different terminal nodes in the tree are disjoint on account of the

prefix condition. Hence these fractions can sum to at most 1 which

yields the equation (2.1).
End of Proof 2.

24

To show whether a given sequence of code word lengths is acceptable

as the lengths of the code words for an instantaneous code; examine the

following sets of code lengths (Table 2.6).

Source Code a Code b, Code c Code d

s1 00 000

s2 01 01 10 10

s3 10 Oil 110 110

s4 11 0111 11 1110

TABLE 2.6: Sets of code lengths

In binary code letters, the inequality becomes

N1

ý< 1
kil 2

1k

For code a4
x111+I+

k-l 2
Ik T+T44

which satisfies the Kraft' s inequality. This means that there is an

instantaneous binary code with four code words each of length 2. For

code b4

kXl
_Zk m -2 +T+ -6 + 76
2

which satisfies the Kraft's inequality. For code c

49
2ý+V k-l 2

1k

Here, the lengths do not satisfy the Kraft's inequality and therefore it

could not possibly be an instantaneous code.

Kraft's inequality can help to find a code word length for a set of

25

words having the same length. For example, suppose that there are 4 code

words, then 4

or L>, 2.2

tk

Therefore, the length should at least be equal to 2 in order to satisfy

Kraft's inequality (see Table 2.6 code a).

Kraft's theorem provides a sufficient condition on the word lengths

of a code by showing that it is possible to construct a prefix condition

code with the prescribed word lengths. However, it does not say that any

code satisfying the inequality is a prefix condition code. For example,

in Table 2.6, code b is not a prefix condition code. Nevertheless it

satisfies Kraft's inequality. So, it is possible to construct a prefix

condition code with the prescribed word lengths (see code d).

The relation between a uniquely decodable code and the Kraft's

inequality is provided by the following theorem (Johns, 79).

Theorem (McMillan): If a code is uniquely decodable with code words of

lengths 111 2'-, ZN then'the inequality of Kraft's theorem is satisfied.

Proof: Let n be any arbitrary positive integer, then

NI)n. N1N1NI
I tJ

k
11

Mlkl
kl-l lk ", 01

m122k -1 'tk

NxN

klml k 2=1 kn -1

I

mz1
+t k2+... +z

n

Now Ik +9, k+... +L k
is the number of code letters in a sequence of n

code words. Let r
3.

be the number of sequences of n code words which

contain i code letters. Let Imax be the largest of Z 1"2'***'tN*
The

26

value of i could not be less than 1 letter nor more than nZ Hence
max

Nn nt max r.

I

lkýl

MJ

ýi-i

MI

If the code is uniquely decodable, then all code words with a length of i

code letters are distinct. Thus

rM

i. e. rI can not exceed the maximum number of different sequences of i code
i

letters which is M Therefore

INn nt max M 1.

kil M
tk)

I
i-I Mi

nZ max

,< nt max

1
ý(nt

max)
1/n

m
lk

By allowing rrý-, the right-hand side tends to unity. Therefore,

N1<1

kil MZk

which satisfies Kraft's'inequality.

27

2.5 ENTROPY

It is mentioned, in Section 2.2, that for a code alphabet M there

are ML equally likely words in which each word contains a number L of

separate code letters (not necessarily all different). Each of these
I

words can be assigned to a different letter from the source alphabet S.

Thus the amount of information gained when a source letter is encoded is

represented by L code letters. Hence it is possible to measure the amount

of information per source letter.
L

Let D be the number of different words, let M-2 i. e. (0,1). Then D-2

To measure the information, the logarithmic method is used (Young, 71;

Gallager, 68)

log2 D-L 1082 2

since 1092 2-1

then L= log 2D

Thus L is equal to the logarithm to the base 2 of the number D of different

equally likely words. The probability of any one of the D different

equally likely words is .
1. So D

-log2 D

m -log2 pi

which means that, the amount of information obtained from a source letter

Si is equal to -log 2
(pi). In general, let s 1"s2'* .. 's N

be a sequence of

N different source letters. Each letter has a probability p(s i)=Pip
N

with 0, <Pi, <l and
i11

pi -1 then the self-information of the letter sI is

defined as (Johns, 79)
26

I(s -log 2 pi

28

The base for the logarithm fixes the unit of information. Namely, it

determines the numerical scale used to measure information. With base 2,

the self-information is measured in bits (an abbreviation of binary digits).

Since 0, <pi$l, then I(si) is always positive and its value'depends on the

probability of the letter concerned. That is I(s i) increases when pi

decreases, and vice versa. For example, suppose that pi
I

then 2

-log

=1 bit

one bit is the amount of information obtained when one of two possible

eqiially likely letters is received. Let piml, then 4

I(S -log 24

-2 bits

Two bits are obtained when one letter is chosen at random from 4 different

letters. Note that, when the probability is decreased, the self-information

is increased.

The average ayn unt of information obtained per letter from a source

S, or the average of the self-information, is called the entropy of

(Johns, 79) i. e.
N

H(S) -pI As

N
or H(S) -IA 1092 Pi bits-

01

As an example, consider the source S=(s) with pl-
I

9P
11

l's2, s3's4 2 2ý4-'V3=14 8'

Then,, the average amount of information obtained per source letter is

4
H(S) Z? -Ip log

iml i. 2 pi

11-
.1 log .1- .1 log .1-i log 1

2 log2 2424828828
1+L+3+3
2288
3
-Z bits.

29

If H(S) is the entropy of a source letter, then a sequence of source

letters can not be represented by a sequence of bits using fewer than

H(S) bits per source letter on the average (Gallager, 68). However, it

can be represented by a sequence of bits close to H(S) bits per source

letter on the average. It is mentioned that the self-information of a

letter increases when the uncertainty of that letter grows (the probability

of the letter decreases). Hence, the entropy may be regarded as an average

amount of uncertainty.

From the definition of the entropy, log
2pi'<o

for all Oýpi, <l, thus it

can never be negative. Let one letter sj have probability one (pj-1) and

the remaining letters have zero probabilities in a source S of N letters.

Then N
H(S) =-

iýl
Pi log 2 pi

, ý- -(O+O+... +l log 2
(1)+0+... +0)

since log 2
(1) =0

then H(S) is 0

i. e. the amount of uncertainty is zero; namely it is certain that the

letter si is received.

iqs weLt as . ýL Lowf-r Lýocknct of -ae-ro ther-e- j! ý- an apper boand. -

which the entropy will never exceed. This limit is log2 N (Abramson, 63).

Consider the quantity
N

1092 N-H(S) - log 2N+p1 log 2 pi

NN
=

illpi
log2 N+

illpi
log2 pi

N

illpi
log 2N pi

30

I nNP.
since log 2 Npi =I, n2

I

and -1 log2e t n2

therefore log 2 Npi - knNPi 1082 e
N

Thus log 2 N-H(S) = log 2ep. InNp (2.3)
2.

From the relation between the natural logarithm of a variable x and the

value (x-1), it is found that

Znx< x-I (2.4)

with equality if and only if x-1.

By multiplying (2.4) by (-l)

Ln .1ý, -- 1-x (2.5)
x

Assume - Npi
x

Npi

From (2.5) kn Npi Z1 (2.6)
Npi

From (2.3) and (2.6)
N

log N-H(S) >, log e pi(l 22 Npi

N
log

2 e(Pi

a log 2 e(1-1)

ý0

From (2.4), the equality obtains when 1 for all i. Therefore

1
Npi

H(S)-log 2N only when pi N
for all i. Hence the maximum value of the

entropy is exactly log 2N
if and only if all the source letters have

equal probabilities. For example, the entropy of 4 source letters

31

s each having a probability equal to -L is
l's2, s3, s4; 4

4
H(S) -- P3. log2pi

= -4 log
424

-2 bits

- log 24

32

2.6 AVERAGE LENGTH OF A CODE WORD

Let S=fs l's2' 0.01S NI
be a sequence of source letters with their

corresponding probabilities Pl'p2"**'PN . Let cl, c2,. *etc N
be a sequence

of code words; such that each sI can be transformed into a code word cip

1, <i, <N. Let Z V12' . 9t N
be the lengths of the code words. Then the

average length of a code word I
av

is defined as:

N

av
pi Ii

The relationship between the average code length (Lav) and the

entropy (H(S)) can be obtained as follows (Abramson, 63; Hamming, 80).

From the Kraft inequality (Section 2.4), let M-2,

N
J

jmi 21

2
1

be regarded as a probability distribution where

N
x. 1

3.
i=1

Consider the expression involving two probability distributions xI and pi

X. 1NX.
p. log P-) = -i- n2 p. Xn

12 pi I Pi

From the relation (2.4)

xi1Nx.
p. log ip (-L - 1)

IL 2 i-n-2 Pi Pi i. i

1N
-Z -j (xi - Pi) Ln2 i-i

1NN
in-2 xi -Z pi

,<

33

or log 1 log 1 P. - Pi
i-1 12 pi iml 2

N1
since H(S) P. log

12 pi

N1
Then H(S) pI log 2

N

1< Pi log 2 2

< 2-ti) pi (1082Y log2

N
log 2y+i11 Pi ti log 22

since y, <l, then log 2y'<O' N
Therefore H (S), < pili or H (S)*Z

av
(2.7)

The necessary conditions for the equality of (2.7) are

y1

and pi xi 9 for all i

2-ki
y

2-k'

By taking logarithms to the base 2 of both sides

log 2Pi- -Z 1.

or -1092 pi =Ii

Thus, for an instantaneous code, L
av must be greater than or equal to

the entropy. Furthermore, t
av can achieve the equality if and 6nly if

i =-log 2pI
for all i.

Given a sequence of source letters and their corresponding probabilities,

34

a coding technique known as (Shannon-Fano coding) can be applied to

obtain the code word length for each source letter directly from the

corresponding probability, such that

-log 2 pi '< Zi < -log 2pi +
.1

The implementation of this method is trivial and satisfies (2.7).

However, it does not generate optimal codes as it will be found in

section 2.7.

Let slvs 2's3's4
be a sequence of source letters, let the probability

of each source letter pimm
1

then 4
4

H(S) -i pi 107'2 pi

-4 11 T 0'2 4

2 bits

since ti>, -log 2pi
1

>'-'-'2 4

>, 2 bits

then the minimum value that Ii can get is 2

4
z
av mI piti

imi

4*1* 4

2 bits

Therefore H(S) - Zý
av

Suppose that the probabilities of-sls s are
11

2' 3's4 P-S'12'12

respectively. Then

111121
H(S) ý -(i log2 1+T log2ý79 + T2 1092 1ý23

- 1.623 bit-s

35

-log
1

22

1 bit

Z> -log
1

2'23

> 1.58

The closest integer to 1.58 is 2, so t 2ý 2 bits.

>, -log
1

32 12

>, 3.58

so 13mx4
4m

4 bits

z
av - Pit i

+ 1+ -1 *2+ -I- *4+1* 3 12 12

1.833 bits

Therefore H(S) < P.
av -

The bounds of Z
av

are formally provided by the following theorem

(Johns, 79; Gallager, 68).

Theorem: For any uniquely decodable code

z>H
(u)

av 0 log M

Code words can always be chosen to satisfy the prefix condition and

<H
(u)

+
av log H

where u is a set of letters with their probabilities.

Proof: Let Pl'p2'***9pN be the probabilities of the source letters, and

let Jt 1'*tV . **,)I N
be the code word lengths.

H(U)
av

log XI pi log pili log M
pi i=1

og log -1- T. pi M
Pi + pi

NI

ill
pi log

M

36

since Ln x-
log x
log e

logx- Inx loge

Using the inequality In xs x-l for x>0

or log x< (x-1) log e
N1-i)

H(u) - Xav log M$ log ei11M zi

NN
log eI-I Pi)

m"i ini

log e
iim

since the Kraft's inequality

N

1M

is valid for any uniquely decodable code, then,

H (u) -I av
log M<0

or
1<

H (u)
av log M

The equality occurs only when pi 2,1,
<i, <N.

M 2.

In the second part of the theorem, only the probabilities pi of the

source are given and it has to be shown that lengths can be obtained for

the code words of a code satisfying the stated condition. If the code

word lengths did not have to be integers, then 1
2. could be obtained to

satisfy, 1
Fi -m li , 1*i, <N.

However, by choosing Zi to be the integer satisfying

II
Pi <11<i, <,. N (2.8)

Summing over N, the left-hand side of (2.8) becomes

N1N
I- -T. -- Ip

1M i-1

,<I

37

which satisfies the Kraft's inequality. Therefore a prefix condition

code exists with these lengths. Taking the logarithm of the right-hand

side of (2.8)

log Pi < log

log Pi < (1-1j) log M

-log Pi > (Ii-1) log m

-log P.

I
< log M+

Multiplying the above by pi and summing over N, then

N N pi log p. N
i Pit i <- i 108 R

Pi +
1

i i i , i 1

<H
(u)

+
av log M

which satisfies the stated condition.

From the second example in this section,

H(S) = 1.623 bits
k

and z
av = 1.833 bits

therefore 1.623 < 1.833 < 1.623 +I

which satisfies the conditions in the above theorem. So, it is possible

to construct a prefix condition code from the specified lengths of the

code words.

0

38

2.7 HUFFMAN CODES

In any code, the average code word length can not be less than the

entropy of the code. But it can be very close to it. This can be

achieved only when the lengths of the code words are variable. That is,

by assigning short code words to highly probable source letters, and long

code words to the least probable source letters (see Section 2.6). However,

there is no guarantee that an optimal coding can be obtained from the above

assignment. For example, consider the codes in Table 2.7. Both codes (a

and b) are uniquely decodable, and satisfy the Kraft's inequality.

Source. Pi -log2 P; III code a code b

2
0 0

2
1
3 1.58 2 10 10

s
1 3.58 4 1100 110

3 12

8
1 3.58 4 1110 4 12

TABLE 2.7: Uniquely decodable codes

The entropy of the source is
4

H(S) pI log Pi

1+1.58 + 3.58) 23 12
1.623 bits.

The average length of the code a is
4

z
av pizi

1+I*2+4+4
3 12 12

1.833 b1ts.

It is bounded by H(S) I
av

< H(S)

39

To find the average length of the code b

r= -1 *1 + -1 *2 + -I- * 3+ -I- *
av 2 3 12 12

-'1.667 bits.

Again, it is bounded by

H(S) -e Z' < H(S) +1
av

Since the entropy H(S)-l. 623 bits represents the minimum average length

that can be achieved, then the nearer the average length of a code to the

entropy, the more optimal a code would be. Therefore code b is more nearly

optimal than code a. A well known optimal code is called the Huffman code

(Huffman, 52; Maurer, 69; Wells, 72; Abramson, 63; Harming, 80). The method

of constructing Huffman codes is based on the construction of a probability

tree (for simplicity, a binary tree is assumed),

Let sl9s 2' go's N
be a sequence of source letters, and p l'p2'**"PN N

be a set of probabilities such that p(s i)-pi, and I pi -! 1. Arrange

the probabilities in descending order, i. e.

P1 >' P2 :ýý: pN

these will represent the leaves of the tree. Form a new node by grouping

the two least probable nodes. Now, the new node has a probability equal

to the sum of the probabilities of the nodes forming it. The remaining

leaves and the new node will form a new set of nodes which contains one

less node. The nodes should be rearranged to keep the probabilities in

descending order. Form a node as above. Repeat this process until the

tree is completed (i. e. until the last node (the root) has a probability

equal to one). For a given N source lettersthe procedure is terminated

after N-1 groupings. Assign the digits 0 and 1 to the branclýes at each

node in an arbitrary way. The code of each source letter is determined

40

by listing the digits which lie between the root of the tree and the leaf

that corresponds to the source letter. Any source letter may be reached

from the root in one and only one way. Fig. 2.7 shows an example of a

binary tree constructed for 6 source letters. By assigning the digits

0 and 1 to the branches of each node in the tree, a Huffman code is

Source Pi

s1o. 4 1.0

s2o. 3 0 0.6

s30.1
1 0.3

s40.1 o. 2

s 0.06 01
5 7,71

0.1 s60.04
>

FIGURE 2.7: Generating a binary tree

generated for the specified source. Fig. 2.8 illustrates the code of

each source letter obtained from the above binary tree.

Source Pi code

s1o. 4 1

s2o. 3 00 -

S30.1 Oil pi'i 2.2 bits

s40.1 0100

S50.06 01010

S6 m4 01011

FIGURE 2.8: Huffman code

A Huffman code is a prefix condition code in which no code word is a

prefix of any other code word. The shortest code word is assigned to the

41

most frequent source letter. That is when the probabilities are arranged

in descending order, the lengths of code words come out in ascending order.

The last two codes are identical except the last digit. Huffman code is a

minimum redundancy code. That is the average number of bits required to

encode a source letter is a minimum.

it is easy to construct manually the probability tree, and from it,

the Huffman code for a sequence of source letters. Nevertheless, Schwartz

and Kallick (Schwartz and Kallick, 64) described a computer program which

generates an optimal code based upon Huffman's method. Generally, the

program reads a set of frequencies of source letters, constructs a frequency

tree and then assigns codes.

To prove that Huffman code is optimal, assume that there is a shorter
aae, "65 It

code withAcode length L' and

L' <L

where L is the length of Huffman code. Construct a coding tree for each

code, and try to compare them. The two least probable nodes have identical

codes except the last digit, which means that they have the same length.

Suppose that the nodes are np and nq with the probabilities pp and pq

respectively. Assume that the code lengths are Ip and Zq. Then Ip -Z q

so the average code length of these nodes would be

ppp+ZAý
XP (p

P+pq)
The common node (the new node occurs as a consequence of grouping nP and

nq) which is in the higher level of the tree has a code length equal to

(jtp"l) and a probability equal to (p
P+pq

), so the average code length

would be

(Lp-')(P*p+pq) m Lp(pp+pq)-(Pp+pq)

42

Therefore, as the tree is reduced, the code length is shortened by the

amount: Pp+ pq

This process can be done on the next two least probable nodes, ... and so

on. By applying this to both the coding trees, it is easy to see that

both are decreased by the same amount. Thus the amount of inequality

between their lengths remains unchanged. Since in the Huffman code the

code length of the last two nodes is 1; for the other, it must be less

than 1, which is impossible. Therefore, the Huffman code is the shortest

possible code.

43

2.8 MINIMIZING THE LONGEST CODE AND TOTAL NUMBER OF DIGITS

It has been shown, in Section 2.3, that the probability tree is

constructed by merging two nodes which have the lowest probabilities,

and this process of merging continues until only one node (the root)

remains. Each branch of a node has assigned a digit. Therefore the code

of a source letter is the sequence of digits along the path which starts

from the root and terminates in the leaf. In other words, it is equal to

the number of mergings on the path of a source letter. So, if it is

possible to reduce the number of mergings on different paths in the tree,

then it will minimize some code word lengths, and hence, the number of

digits of all code words will be minimized.

In Huffman's method, the merge among equiprobable nodes (including

the leaves) can be done by choosing any two nodes without affecting the

average code length. That is, when two nodes are merged, and there exists

a number of nodes which have probabilities equal to the probability of the

new node, then it can inmediately merge this new node with any other node

of the same probability. Hence, a new digit is added to the code words

of the specified source letters.

Schwartz (Schwartz, 64) showed a method of merging equiprobable nodes

called bottom merge, such that the average code length remains unaffected,

but minimisesthe longest code word and the total number of digits. The

way is to place the new node at the top of the nodes which have equal

probabilities (Fig. 2.9a). This will avoid, if possible, an immediate

merging with another node, and therefore not assigning a new digit. For

instance, consider the example in the previous section (Figures 2.7 and

2.8), It is easy to notice that, after merging s5 and s 6' the new node

4

44

(with probability 0.1) is immediately merged with s 4' Consequently, a

new digit is added to the codes of both s6 and s 5* However, by applying

a bottom merge, the new node will be placed above s 3' and the next merge

will be between s4 and s3 (Fig. 2.9b). The new code words of the same

source letters is mentioned in Fig. 2.10.

By comparing the codes in Figures (2.8 and 2.10)0 it is found that

the codes of both s5 and s6 are reduced from 5 bits to 4 bits. The total

number of digits of the code in Fig. 2.8 is 20, whereas, in Fig. 2.10 it

is 19. Notice that the average code length is the same in both codes.

Source Prob. Steps
12345

S 0.4 0.4 0.4 %, 0.4 0.61 1.0

S 0.3 -k 0.3 0.3 1
.30.4

J

s 0.1 '440.1 0.2 0.3 L
3

S40.1 -S, 0. , 14 0.1 L

S 0.06 0.;

s0 . 04 6

a. An illustration of bottom merging

Source Prob.

s o. 4
1 1.0

s o. 3 0 26

s 0.1 :: ýý ""- ----;, o
5ý,

3 0.2

s 0.1 3
40

s50.06 0

s60.04>

b. A probaLlity tree (binary tree)

FIGURE 2.9: Generating a probability tree by using bottom merging

45

Source Prob. Code

s o. 4 1 1

s o. 3 01 2

s3 0.1 0010

s4 0.1 0011

s5 0.06 0000

s6 0.04 0001

FIGURE 2.10: A Huffman code

Pit i-2.2 bits

. 11 CHAPTER 3

ENCODING PROBABILISTIC CONTEXT-FREE LANGUAGES

46

A computer program (data file) usually contains data causing

redundancy such as spaces, zeros, keywords, common words, and comments,

which occupy a considerable space compared with the overall storage used

by the program. It can be transformed into another file which reflects

the same information as in the original file. The transformed file can

occupy less storage, and is called a compressed file. The transformation

method is called a data compression method. Different techniques are used

to compress data files (Martin, 76). Each technique used depends on the

nature of the file, whether it contains a lot of spaces and zeros, or

contains many common words ... and so forth. This chapter illustrates a

special type of data file in which the data is partially generated by a

context-free grammar, and tries to explain different compression methods

implemented on such files.

In Section 3.1, some definitions are given concerning the language

and grammars. The derivation of a string of symbols from a grammar is

explained in Section 3.2. Section 3.3 explains the rightmost derivations.

In Section 3.4, the probability of a string and hence a language generated

from a probabilistic grammar is illustratedL Comp'ression and decompression of

data is introduced in Section 3.5. Ways of encoding a data file character by

character, are explained in Section 3.6. Sometimes instead of encoding

one character at a time a string of characters (word) is encoded. 'This

is explained in Section 3.7. In Section 3.8, an encoding of a structured

data file is shown. Finally, different ways of evaluating the encoding

methods are explained in Section 3.9.

47

3.1 DEFINITIONS

An alphabet of a language is any finite set (T) of symbols. From

this set, strings of finite lengths can be composed. Each string is called

a sentence. A language over a set (T) of terminal symbols is a subset of

all strings (sentences) over T. Usually, these symbols are not all of equal

importance, and henceAcan apply a measure on each one of them (Booth and

Thompson, 73). If each measure is bounded by zero and one, and the total

is equal to one, then it is called a probabilistic measure of the symbol.

Let T be a finite set. A language L over a set (T) is a probabilistic

language if there exists a probability measure p(X) for each %EL such that

0, <p(x), <l and I p(x) =1 (Thompson and Booth, 71; Thompson, 74). P(x)-O
x =L

means that x will never occur. If x is certain to occur then p(x)-l.

Although any subset of strings over T is a language, the emphasis will be

placed on a structured language generated by a type of grammar called

context-free grammars. McGettrick (McGettrick, 80) explains in detail

the relations between the languages and the grammars.

A context-free grammar G is a four-tuple G=(N, T, R, S) where:

N-{v 1'v2' . **pvk) is a finite set of non-terminal symbols;

T=fal, a 2' ..., a mI
is a finite set of terminal symbols;

R=frl, r 2'0 .., r nI
is a finite set of productions of the form

V 3. : =aj ,viGN, j, E=-(N U T)

where (N U T) is a finite non-empty set of grammar symbols; (N U T)* is

either non-empty set or empty;

S is an initial symbol.

From now on, every grammar mentioned is considered to be a context-

free grammar. The follovinj notation will be used:

x t=L
means that x will never occur. If x is certain to occur then P(x)-l.

Although any subset of strings over T is a language, the emphasis will be

placed on a structured language generated by a type of grammar called

context-free grammars. McGettrick (McGettrick, 80) explains in detail

the relations between the languages and the grammars.

A context-free grammar G is a four-tuple G=(N, T, R, S) where:

N-{v 1'v2' . **pVk) is a finite set of non-terminal symbols;

T=fal, a 2' ..., a MI
is a finite set of terminal symbols;

R=frl, r 2'0 .., r nI
is a finite set of productions of the form

48

(AqBqC.... YZI to denote non-terminal symbols;

{a, b, c,..., y, z) to denote terminal symbols; and

to denote sets of grammar symbols.

The set of strings of terminal symbols generated by a context-free grammar

is called a context-free language. Another definition of a context-free

language is mentioned in the next section.

For example, let v-{E, F); T-{i, d, +, *, (,)); S-E; and the set of

productions
E: - E+F

E: - EF

E: - F

F: - (E)

F: - i

F: - d

then the grammar is a context-free grammar. The strings i+d, (d*i), i+d*d

are subsets of the language generated by the above grammar.

If each production in a context-free grarmnar is assigned a probability

then the grammar is a stochastic (probabilistic) context-free grammar

(Hutchins, 72a; Thompson and Booth, 71; Thompson, 74) which is a five tuple

G-(N, T, R, P, S) where:

N-{vl,, v 2' .. 09 Vk' is a finite set of non-terminal symbols;

T-{a,, a 2' ..., a mI
is a finite set of terminal symbols;

R-{rl, r 2* rnI is a finite set of productions of the form

vI :- aj .v i-
E N, aiE (N U T) *

For each non--terminal symbolp there is a group of productions Rip

such that all productions in each group have the same v.. I

49

P- {Pl9p2'**"pn I

is a finite set of probabilities, p, is the probability that rj is chosen;

S-v
1

is the initial symbol.

A probabilistic grammar is said to be. normalized (proper) (Huang and

Fu, 71; Thompson, 74) if and only if

I
pj R.

1.
for all productions which have the same left-hand side symbol. For example,

the granunar

E: - E+F 0.3

E: = E*F 0.2

E: - F o. 5

(E) 0.2

i o. 4

F: - d o. 4

is a proper probabilistic grammar.

50

3.2 DERIVATIONS AND DERIVATION TREES

In a context-free graymnar G, a production of the form

Aa

means that at certain step in the parsing process the non-terminal symbol

(A) can be substituted by a set of grammar symbols (a). This substitution

is called a derivation of a from A, and is written as Ala where A: =a is

a production in G. So aAMyO means that the string aAO directly derives

the string ayO if A: =y is a production in G. If there are a sequence of

derivations, i. e.
a1 =0- a2 -*. a3n

this means that a1 indirectly derives an, and can be written in a short

form as a1a

If a derivation always occurs on the first non-terminal symbol in a

string of grammar symbols, i. e. aAMyS where A: -y is a production and a

is a string of terminal symbols or empty, the derivation is called a left

most derivation (Aho and Ullman, 77). Top-down parsing methods implement

this type of derivation. Details of top-down methods are explained in

the next chapter. If the derivation always occurs on the last non-terminal

symbol of a string of grammar symbols, i. e. aAMy$ where A: -y is a

production and 0 is a string of terminal symbols or empty, then it is

called a right-most derivation. Bottom-up parsing methods implement

right-most derivations which are explained in detail in the'next chapter.

As an example, consider the following grarnmar:

S: -AA

A: -aA

A: -b

To derive the string aabb from (S) using left-most derivations, use the

first production,

51

S '* AA

The first (A) is a non-terminal symbol, it can derive the string (aA).

So S"*AA-$aAA. Again, the first (A) can derive the string (aA); i. e.

S="AA="aAA-*'aaAA. Now the first (A) can derive the string (b) by using

the last production. Then S9*AAI*aAA-*IaaAA-IaabA. Do the same thing to

the last (A):

S -IAA ="aAA =O'aaAA -laabA I*aabb.

It can be expressed as

S O*aabb

To derive the same string by using right-most derivations, the sequence

of derivations would be:

S ý*AA -IAb -O'aAb -IaaAb -*aabb

A graphical description of a derivation can be expressed in the form

of a tree (see Section 2.3) called a parse (derivation) tree. This tree

shows the hierarchical syntax structure of sentences that is implied by the

grammar (Aho and Ullman, 77).

Let G=(N, T, R, S) be a context-free grammar. A tree is a derivation

tree for G if (Hopcroft and Ullman, 69):

1. Every node has a label which is a symbol of either N or T.

2. The label of the root is S.

3. If a node n has at least one branch leaving it, and has label A, then

A must be in N.

4. If nodes nl, n ,n are the direct descendents of node A in order 2` k

from left to right with labels Al, A 2'**" Ak respectively, then

A: = AIA 2" , *'Ak

must be a production in R.

52

To construct a parse tree, let aan be realized by a1 -11 a2 -0,

=*a
a

where a1 is the root of the tree. Below a1 place a list of nodes

equal to the number of symbols in a 2' Each nodellabelled by a symbol

in a 2* Connect the root by a directed line to each new node. Assume the

tree has been constructed until a i-l* ai is derived from ai_l by applying

a specific production to a non-terminal symbol (A) in a i_l* Now, below

the node labelled (A), list nodes labelled by the right hand side of that

specific production, and draw directed lines from (A) to each node in the

list. Fig. 3.1 shows the steps of construction a parse tree for the

string aabb using left-most derivations.

S Mo. S a$, SS

aAa

=: I.
S

A

CL

a a

FIGURE 3.1:. Building a parse tree

S

b

k

53

Any sequence of granimar symbols produced as a consequence of a

derivation is called a sentential form of the grammar G. If a sentential

form has only terminal symbols, then it is called a sentence generated by

the grammar. The set of sentences generated from a grammar is called a

language. So, a language generated by a context-free grammar G can be

defined as L(G)-{aE=-T* S "a). That is the set of strings of terminal

symbols which can be derived from the initial symbol S. If for each aET*

there exists a probability p(a) then the language is called a probabilistic

language (see Section 3.4).

There is a connection between the probabilities of the productions

in the grammar and the probabilities of the sentences in the language which

is exploited in Chapter 7.

54

3.3 HANDLES

At each step in the right-most derivation, the non-terminal symbol

Is replaced by the right-hand side of the production concerned. For a"

right sentential form, the right-hand side of that particular production

is called a handle (Aho and Ullman, 77; Lewis II, Ros'enk, rantz, Stearns, 76)

which is very important in bottom-up parsing (see next chapter); that is

right-most derivations in reverse. For example, consider the derivations

S aAy -0' aSy

where a is a string of grammar symbols, y is a string of terminal symbols,

and A: =$ is a production. Then a is a handle of the right sentential form

aay and can be replaced by the symbol (A) to produce the previous right

sentential form aAy. The production A: -$ is called a handle production.

In general, a handle of a right sentential form is the replacement

of the right-hand side of the last production applied in a right-most

derivation of the right sentential form. The last production applied in

a right-most derivation of a right sentential form is a handle production.

If a right sentential form can have at most one handle and one handle

production, then the grammar is unambiguous.

Consider the grammar in the previous section which derives the string

aabb using right-most derivations. The handle, and the handle production

of each right sentential form is

Derivations Handle Handle Production

S AA AA S: =AA

A b A: =b

aAb aA A: -aA

aaAb aA A: -aA

aabb b A: -b

55

In bottom-up parsing, the above derivations will occur in reverse, i. e.

Right sentential form Handle Handle Production

aabb b A: -b

aaAb aA A: -aA

aAb aA A: -aA

Ab b A: -b

AA AA S: -AA

S

This can be interpreted as pruning the derivation tree. The tree leaves

corresponding to the right-hand side of the production would be deleted,

and the node, labelled by the left-hand side of the production, in which

the deleted leaves are the direct descendents, becomes the leaf of the new

tree.

A

56

3.4 PROBABILISTIC CONTEXT-FREE LANGUAGES

To find the probability of a string a of symbols in a language L

generated by a probabilistic grammar, consider the sequence of derivations,

i. e. S -*'a 1 0* * o. 0* a

where S is the start (initial) symbol, a1 derives from S if S: -a 1
is a

production with a probability p l' Now, a1 occurs with probability pl.

The second production is applied to one non-terminal symbol in a,, say (A),

where A: -$ is a production with P2 as its probability. If al-yAý, where

y and ý are sets of terminal and grammar symbols respectively, then

a2 -yaý with probability p 1P2
(Booth and Thompson, 73; Huang and Fu 71).

The third production is applied to another non-terminal symbol (usually

the left-most) from a2 to result in a3 with probability p lp2p3 ; and so forth.

The probabilities associated with the productions are assumed to be

independent. If k productions are required to derive a, it follows from

the independence of the productions that the probability of generating a

by means of one of the N derivations is equal to the product of the

probabilities of the sequence of the productions used in the derivation,

i. e.
P(a) - Plp2'***'Pk

k

- TTpi
i=l

For an unambiguous graymnar, the probability of all strings aGL would be
k

p (a) -I TTP
I L i=1

If I p(a) -1 for all aEL of finite length then the production
a EL

probabilities are said to be consistent, and the grammar is said to be

consistent. More discussion of consistent grammars can be found in

Chapter 7.

57

3.5 COMPRESSION AND DECOMPRESSION PHASES

In a compression phase, Fig. 3.2(a), symbols are input to a program

called compressor (or encoder) which produces as an output a sequence of

code symbols. The codes are output either from some computational trans-

formation or from a table. In the latter case, characters, words, or strings

of characters from the input are selected and replaced by code words

generally of shorter length than the original elements. The sequence of

code symbols is the compressed form of the input symbols. To recover the

original information from compressed data, a decompression, Fig. 3.2(b)9

must be performed. The program (decoder) uses the same technique as the

compressor program. If a computational transformation was used during

the encoding process, then the decompressor uses the same process but in

reverse. If a table is used in the encoding process, then with a related

table the decompressor can restore the original input symbols.

t Storage
device

Compressing
program

I

I Compressed datal

Storage
device

(a)

I Compressed datal

Decompressing
program

I

I Output I

(b)

FIGURE 3.2: Compression and decompression phases

58

The decompression methods can be divided into two different classes

called reversible or irreversible (Schuegraf, 76). If the output of the

decompression program is not an exact copy of the original input, then

the method is called irreversible. If the output produced by a decompression

program is the exact copy of the input, 'then the method is called

reversible. Usually with the latter method a table is used.

The table used by both encoding and decoding methods must be

determined before startingýthe actual encoding and decoding of symbols.

The construction of such tables depends on the language elements and the

statistical analysis of those elements.

In the following discussions concerning the decoding of files, only

reversible methods will be explained because the decoder must provide an

output file exactly the same as the original one.

59

3.6 CHARACTER ENCODING

In a. eharar-ter--enc-odin5 H of a. finite ýset 7-', N? - each character aL

in T maps onto a code cL in H. So, the encoder reads one character at

a time and generates the corresponding code. This process continues until

there are no more characters to be coded. If there is a sequence of

characters a1a2a 3' ... a n
in a probabilistic language, then the sequence of

codes u1u 2' O.. Pu n corresponding to those characters is in the code

language. The properties of the code language are the same as those of

probabilistic language. (Thompson and Booth, 71), that is the code language

is a probabilistic language, and if the source language is context-free

then the code language is context-free as well.

Different techniques are used for encoding characters. Nevertheless

the most popular technique is Huffman method (explained in Section 2.7).

Hahn (Hahn, 74) explains a method of encoding a sequence of characters

after squeezing off the leading and trailing blanks, the remaining

characters are encoded in groups of a fixed length as unique fixed point

numbers. The characters are encoded according to their positions in a

dictionary comprising all those characters. The unique fixed point

number representing a group of characters is constructed from:

pjB
N-1

+ P2 B N-2
+ ... +P N-1 B+ Pn

where Pl'p2"**IPN are the positions of characters in the dictionary.

B is the number of characters in the dictionary; and N is the length

of each group. For example, suppose that B=10, N=4, and the symbols to

be encoded have the positions 7,5,8,9,4,2,6 and 3 in the dictionary.

These symbols would be encoded in two groups. The first group having

the value 7* 10 3+5*
10 2+8* 10 +9= 7589 ;

and the second group having the value

60

32 4* 10 +2* 10 +6* 10 +3- 4263

The value of B can be less than the actual number of elements in the

dictionary. The first B-1 elements comprise the primary dictionary, the

B th
position is used as an escape character and is coded as 0. This allows

the dictionary to extend beyond B. So, more characters can have positions

in the range B+l to 2B-1, and so on. So, a character with position 12 is

encoded as 02 (B-10). For example, to encode the symbols having the

positions 7,12,2 would be

10 3+0* 10 2+2*
10 +2- 7022

The way of storing the encoded data is to store the number of leading

blanks followed by the number of characters encoded followed by the codes.

The problem with this method is when a character is encountered which

has not already been in the dictionary. It must be added to the dictionary

before the start of the encoding process. Later when decoding takes place,

the same character positions in the dictionary will be used to produce

the original sequence of characters because the dictionary is written as

the first record of the encoded file.

There is another technique concerning identical characters

especially blanks and zeros (Smith, 76); that is instead of generating

a code for each character, the encoder counts them and generates the

number of occurrences followed by a code of one item only. For example,

five zeros could be encoded as 50.

When Huffman code is applied, there are no delimiters between the

sequence of codes. So the decoder must know when to consider the

received sequence of code symbols as a complete coding for a character.

But since Huffman codes are uniquely decodable, then if the first k

6J

code symbols received are not a coding for any character in the set T,

then the decoder must read another code symbol and check again. Once

the sequence of code symbols matches one of the coding of characters

then the corresponding character is output and the next received code

symbol is considered as the first symbol of the coding of the subsequent

character. The exact sequence of characters will be obtained during a

decoding process. For the encoder and the decoder programs, Huffman code

will be implemented to encode and decode characters.

62

3.7 WORD ENCODING

Instead of encoding character by character, here a group of characters

(word) is encoded at a time. So for a set of Words in a language, there is

a code corresponding to each word such that the encoder does not output

the code until all the word has been read. Huffman code (explained in

Section 2.7) is used to find the codes. However, Huffman code can only

be constructed over a finite set of words. So if a probabilistic

language is not finite, it may be approximated (Thompson and Booth, 71).

That is by ordering the words x 2.
EL in decreasing o rder of their probabilities

P(X and then selecting the words in order until

n

illp(xi)
- (1-C)

Now, the new probabilistic language j: contains n words plus one word

(dummy) which, has a probability e. If a code is constructed for each

word in Z, then the encoder outputs a code for each word in L which is

in L. However, for a word in L which is not in L, the encoder might

report an error or generates the code of the dummy word.

63

3.8 PARSING ENCODING

The input generated from a context-free grammar should be parsed

before allowing the encoder to generate any code (Thompson and Booth, 71).

A code is constructed over a set of productions which have the same left-

hand side (say Ai)i. e. a set of productions belonging to a non-terminal

symbol (A i). This set belongs to a probabilistic grammar which generates

the probabilistic language to be encoded. Each production in the set is

assigned a code. Obviously the total probabilities of the productions in

one set is equal to one. Then for optimal code Huffman method is applied

to generate a suitable unique code for each production in the set. The

method is applied to all sets in the probabilistic grarnmar, and hence the

sets have independent codes. It is possible that more than one set has

the same code. However, this does not cause any problem to the encoder

program because during the parsing process, the program recognizes the

exact production of the set and then generates its code. For example,

consider the following grammar:

Productions Probabilities Huffman Codes

1. E: -E+F 0.3 00

2. E: =E*F M 01

3. E: -F 0.5 1

4. F: -(E), 0.2 01

5' F: -i o. 4 00

6. F: -d o. 4 1

There are two sets: the first set has the productions (1-3), and the

second set has the productions (4-6). The codes of both sets are exactly

the same. However, although the productions,

64

E: -E+F

and F: -i

have got the same code (00), they are treated completely different by the

encoder program. The same argument applies to the decoder program.

The way used for encoding a string of symbols (Hutchins, 72a) is to

parse the symbols, list the productions used in the parse in the order in

which they appear in the left-most derivation, concatenate the code words
t

corresponding to the productions in the list . This will form the coding

of the string. The parser does not need to know all the productions before

outputting the codes. It can generate a code as soon as a production has

been recognized. Note that, although a set might have only one production,

the encoder generates its code when the production is recognized by the

parser.

The decoder must translate a string of code symbols from the input

stream into a string of productions which can be used to construct a parse

tree. The decoder contains a stack, a code table holding the productions

with their codes, and the productions of the grammar. The decoding

procedure would be:

1. Begin with the initial symbol of the grammar on the stack.

2. By examining the top of the stack and checking the code table,

determine the next code word.

3. The word taken from the input determines the next production.
Apply the production*to the stack and remove the code word from

the input.

t Note that there is a code for every production in the Zist, ever). tkoaSh

some productions are certain to occur., i. e. they do not need any

code to be generated.

65

If any terminal symbols on the top of the stack, output them.

5. If the stack is not empty, then go to step (2); otherwise a

complete string has been decoded.

The decoder can be decomposed into two operations, the first segmenting

the input stream, and the second operating the stack to reconstruct the

string. The problem with the decoding process is that the code words are

variable length codes (Huffman codes). So care must be taken when reading

a code word.

66

3.9 MEASURES OF DATA COMPRESSION

Before discussing the design and the implementation of the encoder,

it is necessary to explain the measures used for evaluating different

encoding techniques. The first measure expresses data compression results

in terms of the average number of binary digits that are required to encode

a given character (Martin, 76). The second measure is to compare the

"i", M"
entropy (i. e. the theoretical minimum length), and theA-length of the

compressed data (Schuegraf, 76). That is

E Theoretical minimum length of compressed data
klvtr,, jr- Length of compressed data

N

illpi
log2(pi)

N

illpi
li

The values of E are always less than or equal to one, and the maximum

of one is obtained only when

li - -log2(pi)

In other words, E is equal to one only when the average length of the

compressed data is equal to the entropy. The last type of data

compression measure is to find the ratio of the size of the compressed

data to the size of the data in its original form, i. e.

S. Length of compressed data
Length of original data

An encoding method is said to be optimal under some specific

condition if the average length of an encoded string is less than that

for any other encoding method under the same condition (Thompson, 71).

CHAPTER 4

LR PARSING

67

This chapter discusses the main methods; or checking the syntactic

structure of an input generated from a context-free grammar. - and proviyV

its validity. These methods'are called parsing methods, and the programs

are called parsers. The parser tries, during its process to construct a

parse tree for the specified input. Accordingly, parsers fall into two

main classes called top-down parsers and bottom-up parsers (Gries, 71;

Aho and Ullman, 77). One type of top-down parsing method is called

Recursive-Descent* An example of bottour-up parsing is called LR(K) parsing

which is the most attractive method among the same class of parsing methods

for practical context-free grammars. L stands for reading the input from

left to rightq R for producing a right parse, and K for the number of

Lookahead symbols. In practice, K is always 0 or 1.

The LR parsing method was originally described by Knuth (Knuthl 65).

The algorithm explains how to construct the set of states from the gramm r;

and how the parser works with the help of a stack. However, the method was

not practically efficient because of the waste of space and time. A simple

method called SLR(K) parsing is explained in DeRemer, 71; Bornat, 79: and

Aho and Ullman, 77. However, for some grammars, it failed to produce

parsers. More general methods called LR(l) and LALR(l) are used to

construct LR parsers (Pager, 77; Aho and Ullman, 77; Bornat, 79). A

general survey of LR parsing including the construction of the set of

states and also the parsing tables is contained in Aho and Johnson, 74.

Different optimization techniques are used to reduce the size of

the parser, and also to speed-up its execution. These techniques are

explained in detail in Aho and Ullman, 72; Anderson, Eve and Horning, 73;

Aho and Ullman, 73; Demersý, 75; Joliat, 76.

68

Attempts have been made to generate automatically LR parsers from

a set of productions. One such generator is called YACC (Johnson, 78).

Section 4.1 explains briefly the two classes of parsing methods.

A Recursive-Descent parsing method is explained in Section 4.2. In

Section 4.3, the general construction of LR parsers is shown. The

algorithm of LR parsing is illustrated in Section 4.4. The way of

constructing the items and hence, the set of states is explained in

Section 4.5. Section 4.6 illustrates how to construct the parsing tables
I

from the set of states, The construction of SLR(K) parsers is mentioned

in Section 4.7. The construction of LR(l) parsers and LR(l) parsing

tables is illustrated in Sections 4.8 and 4.9 respectively. Sections

4.10 and 4.11 are respectively concerned with the construction of LALR(l)

parsers and LALR(l) parsing tables. Section 4.12 shows some techniques

used to optimize the parsing tables. Finally, an explanation of the

parser generator called YACC is given in Section 4.13.

69

4.1 PARSING METHODS

During the validation process, the parser tries to build up a

syntax tree (or parse tree) for the specified input string, according

to the sequence of productions used. The completion of the tree means

that the input is syntactically correct and no error is reported.

Referring to the way in which the syntax trees are built, the parsing

methods can be divided into two categories, top-down and bottom-up.

4.1.1 Top-Down Parsing Method

In this method, the parser tries to find a left most derivation for

an input string. Equivalentlyt the parser attempts to build a parse tree

by starting from the root and working down to the leaves. The leaves

represent terminal symbols, and the remaining nodes (including the root)

represent non-terminal symbols (i. e. the left-hand side of the productions).

For example, consider the grannnar

S: -aAd

A: -bb -

A: -c

and the input abbd. To build up a parse tree for the input, create a

tree consisting of only one node labelled S. Since the first input

character is a. then use the first production to expand the tree, i. e.

70

The left-most leaf, labelled a, matches the current input character.

The next input character is b which becomes the current input charactere

Since the next leaf is a non-terminal symbol* then it is possible to

expand it by using the second production. The tree becomes:

S

a
d

bb

Now, the leaf labelled b matches the current input character. The next

input character is b which matches with the next leaf labelled b. The

next input character is d which matches with the last leaf labelled d.

The tree is completed without any error. Hence the input abbd is

syntactically correct.

The important factor when writing a top-down parser is to prepare

a grammar which is suitable for top-down parsing. once this has been

done, it is easy to write a parser, The main problems which have to

be overcome when preparing a grammar are backtracking and left recursion.

The problem of backtracking is that at certain state of parsing, the

parser discovers that the way used is not the proper one. and it would

fail to parse the remaining input characters. Thus it has to backtrack

to a state in which an alternative way can be used. For example,

consider the grammar

S: -aAd
A: -bc
A: -bb

71

and the input is abbd. To construct a parse tree for the input, create

a tree consisting of only one node labelled S. The first input character

is a, use the first production to expand the tree:

ad

The current input character matches the left-most leaf, i. e. a. The

next current character is b. Since the next leaf is a non-terminal node,

then it-is possible to expand it by applying the first alternative for A.

The tree becomes

S

a

bC

I

Now, the leaf'labelled b'matches the current input character. The next

current character is b, and the next leaf labelled c do not match.

Hencel the parser could not carry on its job and it has to go back to

the node A to see if there is another alternative for A that has not

yet been tried which might produce a match. In going back, the current

input character should be the one when the node A was firstly expanded,

that is the character b. By trying the second alternative for A, the

tree becomes, S

a
d

72

The leaf b matches the current character b. and the remaining input

characters (i. e. b and d) match the last two leaves. Hence, there is

a parse tree for the input, and the input is said to be syntactically

correct*

The next problem is a grammar which contains a left recursive

production (simple recursion) i. e. a production in which the left hind

symbol appears at the left end of the right hand side of the production.

For example, consider the productions

S: - S,

S: -a

and assume that each non-terminal symbol is represented by a procedure

in the parser. Then from the first alternative production, the procedure

Swill call itself an infinite number of times.

To overcome the above problems, the grammar should be modified in

such a way that the new grammar is structurally equivalent to the original

one, but the input is recognized without backtracking and left recursion.

To eliminate backtracking, try to factor out the common portions at the

left end of each alternative. This action enables the parser to check

these portions only once. Parentheses are used for this purpose as

syntax notations. For example, the grannar

S: -aAd
A: =bc
A: -bb

which has a backtracking, could be rearranged as

S: -aAd
A: -b(clb)

73

To remove the left recursion from a productiong a better way is to

iterate the sequence of elements zero or more times. For this purpose

assume that brackets { and I are used. So. the productions

S: -5, a
S: -a

cause the repetition of (, a) zero or more times. This can be arranged as

S: -af, a)

Fig. 4.1 shows the parsing trees of both the recursion and the iteration

for the input a, a, a. Both trees are treated as equivalent.

a

s

iteration

FIGURE 4.1: Parsing trees using recursion
and iteration

An example of a top-down parsing method is called Recursive-Descent

which is explained in Section 4.2.

4.1.2 Bottom-up Parsing Method

In this method, the parser tries to build up a parse tree for a

given input, by starting from the terminal nodes (leaves) and building

to the root. That is* it starts with the terminal string and replaces

a substring of symbols by a non-terminal symbol from which the substring

can be derived by one apýlication of a production of the grammar. Then,

recursion

74

using the resulting string, the process of replacing a substring of

symbols by a non-terminal symbol is repeated until the start symbol S

is obtained. For example consider the following grammar

S: -aAd
A: -bb
A: -c

and the input abbd. The parser reads the input symbol (a) and constructs

the tree:
a

then reads the next input symbol (b) and creates a single node, i. e.

the parser reads another input symbol (b), and adds a new node, i. e.

ýbb

By using the second production, the string (bb) can be reduced to (A).

So a new node is created labelled (A) from the leaves (b) and (b).

bAb

Now,, the parser reads the last input symbol (d) and adds a new node to

the tree

b

By using the first production, the string (aAd) can be reduced to (S).

So a new node labelled (S) is created from the nodes a. Ap and d.

75

S

A

Node S is called the root of the tree. At this' point, all the input

has been read, and the parsing is completed. An example of a bottow-up

parsing method is called LR method which is explained in detail in

Sections 4.3-4.13.

4

abbd

76

4.2 RECURSIVE-DESCENT METHOD -A DETAILED EXAMPLE

An easy way to implement top-down parsing is to create one

(possibly recursive) procedure for each non- terminal symbol, which

parses the input derived from that non-terminal symbol. The procedure

is told where in the program to begin looking for its input, This can

be found by using the right-hand side of the productions for the non-

terminal symbol. During this process other procedures might be called.

A parser that uses a set of recursive procedures to recognize its

input with no backtracking is called a Recursive-Descent parser. The

recursive procedures can be quite easy to write and fairly efficient

if written in a programming language that implements procedure calls

efficiently. Ifýthe programming language has not the ability to call

procedures recursively, then a stack could be created and maintained by

the parser (this would be a LIFO or a push-down stack).

As an example, consider the following grammar rules (productions)

E: =E+FIE*FIE-FIE/FIF

F: -ilcl(E)

It is assumed that all arithmetic operators have equal precedence.

Since the grammar suffers from left recursion problem, then it can be

rearranged as

E: =F{+FI-FI*FI/Fl

F: =il cl (E)

There are two recursive procedures (E and F) involved recognizing the

input. In addition assume that SCAN() is a procedure which reads CIA

input character and stores its type in a variable location called token.

From the first productiono the procedure E() immediately calls the

77

procedure F(), see Fig. 4.2, and then whenever there is an arithmetic

operator SCAN is called to advance to a new token and the procedure F(

is called. Similarly, F() is coded directly from the production F,

Note that in the programming language C the symbol (--) is used to test

for equality, and the symbol (N) is used to mean a logical (or) operator.

IF();

while (token --'+"' token ac='-'Zle' token token
{SCAN(); F(

; *;
}

I

F()

(If(token =-i!! token, -=c) SCAN(

Else if (token

{SCAN(); E(

If (token SCAN(

Else error(
II

Else error();
I

FIGURE 4.2: Mutually recursive procedures written in C language

78

4.3 LR PARSERS

LR(K) parsers are considered to be one of the more efficient types

of bottom-up parsers. They can recognize most context-free languages.

Syntax errors can be detected as soon as they occur. The input string is

parsed in a time which is proportional to the length of the string. No

backtracking is required. The function of the parser is divided into a

finite sequence of steps called states. In each state, all possible actions

that can be taken by the parser are provided. The construction of these

states is described in Section 4.5.

The parser consists of a driver routine, a parsing table which governs

its operation, an input stream, and a stack (Fig. 4.3). The driver routine

is the same for all LR parsers which reflect the parsing algorithm mentioned

in Section 4.4. The input contains only terminal symbols and is read from
input stream

Ic
S
in

Driver
routine

Pars ing
table

s tack

FIGURE 4.3: LR parser

left to right, one symbol at a time. The stack contains a string of

symbols called states. The parsing table consists of two parts; the

ACTION table and GOTO table. The ACTION table specifies which action is

79

going to be taken by the parser with respect to the current state and

the next input symbol (see Section 4.4). There are four different actions:

1. Shift the input symbol and change to a new state;

2. Reduce by the production

A: -a , and goto a new state;

3. Accept the input;

Error

The GOTO table specifies the next state as a new current state after each

reduction.

80

4.4 LR PARSING ALGORITHH

For a given input, the parser starts from the initial state, parsing

the input by consulting the ACTION table until an accept or an error action

is encountered.

Let {sO9sjq--*vsm I be a set of states stored on the stack, where sm

is the current state on the top of the stack. Let ais ai+,,..., a n
$be the

remaining input symbols ($ is the end of input marker), aI is the next input

to be expected by the parser. By consulting the ACTION table, the algorithm

would be:

1. If ACTION (current state, next input]- shift s-, then the parser shifts

aI from the input and enters state s. The stack becomes soolseatts m so

s becomes the current state, and the next input symbol is a i+16
Go to

step 1.

2. If ACTION [current state, next input]- reduce by the production

A: =a.

Suppose a is a string of grmnmar symbols of length r. The parser has

found the handle of the above production, and can now do the reduce

action. It will remove, by starting from the top of the stack, a

number of elements equal to the length of a which is r. Now, s m-r

on the top of the stack. To find the next current state, consult the

GOTO table, i. e. GOTO[s
w-r

+s. Push s onto stack. Since no shift

action has been made on the input symbol, it remains as the current

input symbol. Go to step 1.

3. If ACTION [current state, next input]- accept, then the input has been

successfully parsed. Here $ is the next input.

If ACTION [current staie, next input]= error, then a syntax error has

been discovered.

81

4.5 CONSTRUCTING THE SET OF STATES

Before generating both the ACTION table and COTO table, it is

necessary to construct the set of states for a particular grammar. Each

state represents the position of the parser and the range of possible

next actions.

An item is defined as a production of a grammar G with a marker

(say dot) at some position in the right side of the production. The

position of the dot indicates that the parser has already recognized the

string derivable from the grarnmar symbols before the dot of this particular

production, and expecting to see the string derivable from the grammar

symbols after the dot before making any reduction by the same production.

For example, consider the production

S: =aO

Then three items can be obtained

S: -. aa
S: =a. 0

S: =as.

The first item indicates that a string derivable from a$ is expected next

on the input. The second item indicates that a string derived from a

has already been seen and a string derivable from 0 is expected next.

The last item indicates that a string derivable from a$ has been seen

and a reduction by the production

S: =ao

is possible.

To indicate to the parser when it should stop parsing and announce

acceptance of the input, a new start symbol P is added with the production

P: -S

82

to the graurnar, because if the parser reaches a point where the marker (.) tG

at the right-most of the item

P: -S.

then the input has been accepted.

The construction of the collection sets of items starts from the

augmented production

P: =S

The first set of items must contain the item

P: -. S

If the marker is placed immediately before a non-terminal symbol, include an

item with a marker in first position for each of the productions which define

that non-terminal. Continue to apply this process until no more items can be

added to the set of items. The included set of items is called the closure

set. The first item with its closure set represents the first state (initial

state). The successor states are computed by starting from the initial state.

If a state contains items in which the marker is positioned immediately before

a particular symbol in their productions (i. e. the marker is not at the right

most of the items), create a new state which contains only those items such

that-the marker is positioned immediately after that symbol. Now find the

closure set of items of the new state as mentioned above. As an example,

consider the grammar

1. S: =AA

2. A: -aA

3. A: -b

First, add to the grammar the following production

0. P: -5

Next, to construct the initial state (s
0

), it must contain the item:

b3

P: -. S

since the dot is immediately before the non-terminal symbol S, then the

closure set must be obtained. The idea of finding the closure items is

that the parser does not expect to find S as the next input, but a string of

input symbols derivable from S. Thus s0 must also contain

S: -. AA

1.5 The dot, *before A which is a non-terminal symbol so the following items

should be included in s0:

A: -. aA

So, 90 has four items. To find the successor states, choose the item

P: =. S

place the dot after the symbol S, i. e.

P: =S.

since the position of the dot is at the right-most, then the closure set of

items can not be obtained. Hence the new state (s
1) has only one item. s

is called the finAl state. From the item

S: =. AA

two states can be generated (s 2 and s 3)

s2: S: -A. A

A: -. aA
A: -. b

s3: S: -AA.

continue in this process until no more states can be created. Fig. 4.4 shows

a complete set of states generated from the above grammar. Fig. 4.5

illustrates the relations between different states according to the grammar

symbols. For instance, if ýhe
current state is s0 and the curr ent grammar

symbol is S, then s1 would be the new current state.

84

s0 P: -. S

S: -. AA

A: -. aA
A: -. b

s P: - S.

s2 S: -A. A

A: -. aA
A: -. b

s3 S: =AA.

s4 A: =a. A

A: -. aA
A: -. b

s5 A: =aA.

s6 A: -b.

FIGURE 4.4: A set of LR(O) states

FIGURE 4.5: A graph showing the relationships between the states

85

4.6 CONSTRUCTING LR PARSING TABLES

This section shows how to construct the LR parsing ACTION and GOTO

tables from a set of states (described in the previous section) generated

from an augmented grammar GI (assuming that the original grammar is G).

Let sosslie-ps n
be a set of states, the elements of the-ACTION table

are determined as follows:

1. If A: -x. az is in s 3.
and the successor state is sj, then set

ACTION[i, a] to shift j. a is a terminal symbol.

2. If A: -x. is in sip then set ACTION[i, a] to reduce by the production

A:

If P: -S. is in sip, then set ACTION[i, $] to accept. $ is the end of

input marker.

4. The remaining undefined elements are set to error.

The elements of GOTO table are obtained as follows:

1. If A: -. Xy is in s 3. and A: -X. y is in s, p then set GOTO[i, X] to

X is a non-terminal symbol, and y is a grammar symbol or empty.

2. The remaining undefined elements in the GOTO table are set to error.

The representation of both the ACTION table and GOTO table depends on the

number of states and the way of accessing a particular element. If the

number of states is relatively small, then the parsing actions for each

state can be represented by a sequence of programming language statements,

and GOTO table can be represented by a sequence of programming language

statements for each non-terminal symbol. For example, consider the

construction of both the ACTION table and GOTO table from the set of states

mentioned in Fig. 4.4. The ACTION table would be:

86

0: If (input -=ýa') shift 4;

Else if (input =='b') shift 6;

Else error;

If (input --'$') accept;

Else error;

2: If (input =='a') shift 4;

Else if (input --lb') shift 6;

Else error;

3: reduce 1;

4: If (input =='a') shift 4;

Else if (input --lbl) shift 6;

Else error;

reduce 2;

6: reduce 3;

The GOTO table would be:

If (state -101) goto 1;

A: If (state -101) goto 2;

If (state --121) goto 3;

If (state =-'4') goto 5;

Howeverp for a practical grammar where the number of states might reach

several hundreds, the above method looks impractical because of the increase

in the size of the parser.

The next method is to represent the ACTION table and GOTO table by

two different matrices. For the ACTION table, each row represents a

particular state and each column represents a terminal symbol. Each row

of the GOTO table represents a particular state and each column represents

a non-terminal symbol.

4

87

In what follows (s) denotes a shift; (r i) denotes a reduction by

the production number i; (a) denotes the accept action; a space denotes

an error; and an integer denotes a state number. The ACTION table and

GOTO table corresponding to the set of states in Fig. 4.4 is shown in

Fig. 4.6.

state ab $ SA

0 s4s6 12

1 a
2 s4s6 3

3 r1r1 r
4 s4S6 5

5 r2r2 r2
6 r3r3 r3

FIGURE 4.6: Two matrices representing the parsing tables

Another way of constructing the ACTION table is to store the elements

of each state separately, and try to link the states as required after each

action. Fig. 4.7 shows the relations between the states mentioned in Fig.

4.4. Some states are connected to the GOTO table.
Rhift 4 shift 6

1
0ab 7F others771-ýý, error

accept
$ others error

-IvLtt 4 shif t6
SII

-2-1 ab others error

reduce 1
S Itt 4 shif t6

GOTO error

reduce 2

6 reduce 3

FIGURE 4.7.:, Constructing the parsing table using a
pointer type structure

88

Using matrices for constructing a parsing table is more practical

than others because any element can be obtained in one access. Further-

more, it is relatively easy to build and maintain the matrices. From now

on, the parsing table will be represented by matrices unless otherwise

mentioned.

0

0

89

4.7 SLR(K) PARSERS

For K-0, the parser begins scanning the input from left to right. It

identifies a production when it gets to the right-most symbol derived from

that production, and each handle can be detected without looking at any

input symbols beyond the last input symbol derived from the handle. When a

handle is found, the parser does the same reduce action regardless what the

current input symbol is. Such parsers sometimes called simple LR(O) or

SLR(O). AlthoughLR(O) parsers can be constructed for different grammars,

sometimes it is not possible because in certain states the parser can not

decide whether to shift the input symbol or to reduce by a particular

production without looking ahead to the next input symbol(s). This problem

called a shift-reduce conflict. So, to solve this conflict, allow the

parser to inspect at most K>O input symbols ahead in order to make the

right decision. For a practical reason K=l is assumed. The parsing

algorithm and the construction of the set of states of SLR(K) are explained

in Sections 4.4 and 4.5.

To find the set of lookahead symbols for each non-terminal symbol in

the grammar, it is required to discuss two functions called FIRST and

FOLLOW. If a is a string of grammar symbols then FIRST(a) is the set of

terminal symbols that begin strings derived from a. For example, consider

the productions

A: =Bb
B: -(A)lb

then FIRSTM-U, bl.

To find FIRST(A) for all grammar symbols A, apply the following rules

until no more terminals or c (empty) can be added to any FIRST set.

90

1. If A is a terminal symbol, then FIRST(A) is (Al.

2. If A is a non-terminal symbol and

A: -aa

is a production, then add a to FIRST(A). a is a terminal symbol. If

A:

is a production, then add e to FIRST(A).

If A: -B 1B 2' oo., B

is a production, then for all i such that all of Bl, B 2' ..., Bi_l are non-

terminal symbols and FIRST(B i) contains e for add every

non-C symbol in FIRST(B i) to FIRST(A). If e is in FIRST(B i) for all

i=i,..., n then add c to FIRST(A).

Let A be a non-terminal symbol, then FOLLOW(A) is the set of terminal

symbols that can appear immediately to the right of A in some sentential

forms. If A can be the right-most symbol in some sentential form, then

add the end of input marker ($) to FOLLOW(A). For example, FOLLOW(A)-{), $).

To compute FOLLOW(A) for all non-terminal symbols A, apply the

following rules until nothing can be added to any FOLLOW set.

1. If S is the start symbol, then the end of input marker ($) is in FOLLOW(S).

2. If there is a production

A: =aBO , Oie

then everything in FIRSTO) except c is in FOLLOW(B).

If there is a production

A: =aB

or A: =aBO

where FIRST($) contains c, then everything in FOLLOW(A) is in FOLLOW(B).

Consider the following set of productions:

91

1. A: =CB

2. B: -+CB

3. B: -e

4. C: -ED

5. D: -*ED

6. D: -r:

7. E: - (A)

8. E: -i

To compile the FIRST of each non-terminal symbol, according to rule 3,

FIRST(A)-FIRST(C)=FIRST(E). From rule 2, FIRST(E)-((, i), then

FIRST(A)=FIRST(C)-FIRST(E)=((, iI

From rule 2,

FIRST(B)={+, C}

FIRST(D)=[*,. El

To find FOLLOW of each non-terminal symbol, from rules (1 and 2) and the

productions (1 and 7).

FOLLOW (A)-{), $),

FOLLOW(B) is equal to FOLLOW(A) according to rule 3 and the

production 1,. i. e.

FOLLOW(A)=FOLLOW(B)-f), $j

From rule 2 and the production 1, every element (except c) in FIRST(B)

is in FOLLOW(C). Also according to rule 3 and the production 1, FIRST(B)

contains c, then every element in FOLLOW(A) is in FOLLOW(C). Therefore

FOLLOW(C)-FIRST(B) plus FOLLOW(A)

={+,)'.
0$1

I
From rule 3 and the production 4, FOLLOW(D)-FOLLOW(C).

92

To find FOLLOW(g), according to rule 2 and production 5 every element

except e in FIRST(D) is in FOLLOW(E). Since FIRST(D) contains C, then

from rule 3 and production 4, every element in FOLLOW(C) is in FOLLOW(E).

Therefore

FOIIOW(E)-FIRST(D) U FOLLOW(C)

After having an idea of how to compute the FOLLOW set of characters, now

consider constructing (Fig. 4.8) a set of states with FOLLOW sets included

from the following augmented grammar:

1. P: -E
2. E: -E+T
3. E: =T
4. T: =T*F
5. T: -F
6. F: - (E)

7. F: -i
FOLLOW(P)-{$l

0
P: =. E' FOLLOW(E)-{+,), $l

E: -. E+T FOLLOW(T)-{*, +,), $l

E: -. T FOLLOW(F)-{*j, +,), $l

T: -. T*F

T: -. F

F: -. (E)

F: =. i

P: =E.
E: -E. +T

E: =E+. T

T: -. T*F

T: -. F

F: -. (E)

F: -. i
4

93

s3 E: =E+T.
T: -T. *F

s4 E: -T.
T: -T. *F

s5 T: =T*. F
F: -. (E)

F: -. i

s6 T: -T*F.

s
,7

T: -F.

s8 F: =(. E)

E: -. E+T
E: =. T
T: -. T*F
T: =. F
F: =. (E)

s9 F: =(E.)

E: =E. +T

s 10 F: =(E).

s 11 F: =i.

FIGURE 4.8: A set of SLR(l) states

State 0 expects either the input symbol "C' in order to shift it and goto

state 8, or the symbol "i" in which the action would be to shift the input

symbol and goto state 11. In state 3 there are two actions (reduce when

the first item is implemented, and shift when the second item is used),

one of them must be chosen by the parser. For SLR(O) this case causes a

shift-reduce conflict because it can not decide whether to make a reduction

by the production number 2 pr to shift and goto state 5. The same conflict

94

occurs in the state 4. Hence, it is not possible to construct a SLR(O)

parser from the above grammar,

However, for K-1, the shift-reduce conflict mentioned above will

disappear because the parser can check the next input symbol and accordingly

decides which action should be done. For example, if the parser is in the

state 3, it checks the next input symbol, for (*) a shift action is required,

if the input symbol is either or 11$11 then a reduce action is

required otherwise an error has occurred. The same argument applies to

the state 4. So, it is possible to construct a parsing table from the

above set of states. The parser which has such parsing table is called

an SLR(l) parser.

95

4.8 LR(l) PARSERS

It was mentioned in the previous section that SLR(l) method can solve

some conflicts which the SLR(O) method can not handle. Nevertheless there

are conflicts that can not be solved by looking at a symbol in the FOLLOW

set. In such a case it is not possible to construct a SLR(l) parser, and

the grammar is not SLRM. For example, consider the following augmented

grammar:

P: =S

S: -A=B

S: -B

A: -*B

A: -i

B: -A

The set of states together with their FOLLOW sets is shown in Fig. 4.9.

In state 2, suppose that the next input symbol is (-), then the first

item causes a shift action and goto state 3, whereas the second item causes

a reduce action by the production

B: -A

because the symbol (-) is in the FOLLOW(B). This situation causes a

shift-reduce conflict on the input symbol (-). So, the grammar is not

SLRM -

Another problem which causes a conflict is when a state has two or

more completed items (a completed item is one in which the marker is at

the right-most position in the right part of a production) with a common

0 P: -. s $
S: -. A-B $

S: =. B $

A: -. i

A: -. *B

B: -. A

96

P: -S. $

s2 S: -A. -B
B: =A.

s3 S: -A-. B

B: -. A

A: -. i

A: -. *B

s4 S: -A-B.

S: =B.

s6 A: -i.

s7 A: =*. B

B: -. A =0$
A: -. i

A: -. *B

A: -*B.

FIGURE 4.9: Non SLR(l) states

input symbol in the FOLLOW sets of these items. With respect to this

input Symbol, if a reduce action is required then the parser can not

decide by which production the reduction should be made. This type of

conflict is called reduce-reduce conflict. For example, consider the

following augmented grammar

P: =S
S: =V=E
V: -i
V: -R! E

E: -V
E: -R
R: -i

The set of states of the above grarmar is shown in Fig. 4.10. State 5

97

shows a reduce-reduce conflict. (V) can be followed either by (-) or ($),

(R) can be followed either by or ($) in some sentential form. So

SLR(l) method can not solve this conflict because if the next input symbol

is (-) then it can not decide whether to. - reduce by the production

V: '4

or by the production

R: i

Hence the above grammar is not an SLR(l) grammar.

It is possible to make the parser choose arbitrarily between conflicting

actions and continue in the presence of conflicts. For instance, the

conflict in state 5 can be resolved by looking at the next input symbol,

if it is (-) then reduce by the production

V: =1

and if it is (!) then reduce by the production

R: -i

Another way for solving conflicts is the inclusion of more information

in the state. The information allows the parser to know exactly which

input symbols can follow a handle for which there is a possible reduce action.

0
P: -. s $

S: -. V-E $

V: -. i

V: -. R! E

R: -. i

P: =S,. .ý$

s2S: -V. =E $

98

83: S: -V-. E
E: -. V wo$
E: -. R te

v: -. i le
V: -. R! E

R: -. i

S: -V-E.

V: -i.
R: -i.

s6V: -R.! E

s7V: -R.. E

E: -. V

E: -. R
v: -. i

V: -. R! E
R: =. i

a8: V: -R! E.

FIGURE 4.10: Non SLRM states

The extra information is incorporated into the state by redefining

items to include one or more terminal symbols as a second component. The

general form of an item becomes:

A: =a. 0, Zs

where A: =aO is a production, and (t
s

is a set of terminal symbols (the

set might include the end of input marker). If the expected number of

terminal symbols from 4s) is 1, then the item is called LR(l) item. The

first component is called the core of the item, and the second component

is called the lookahead set of the item. If 0 is not empty, the lookahead

set has no effect on the item. But an item of the form

99

A: -a., I

calls for the reduction by the production

A:

only when the next input symbol is in (Z
S).

The way of constructing LR(l) states is the same as mentioned in

Section 4.5 except that the lookahead set of each item should be taken into

consideration. Suppose that

A: =a. BB, Is

is an item where B is a grammar symbol, and .
(Z

S)
is a lookahead set, then

the successor item on B is

A: -aB. 0, L

the lookahead set remains unchanged. To find the closure set, suppose that

a state contains the item

A: =a. Ba Zs

where B is a non-terminal symbol, include the items

B: = y, nt

for each production of the form

B: =y

If 0 is empty, the new lookahead set (nZ) will contain the set (I
.ss

otherwise (n1s) will contain FIRST($t
S).

If a set of items in a state

contains identical core, e. g.

A: -a. $ zs1

A: -a. B Is 2

but different lookahead sets, then these items must be merged into a single

item which has the union of the lookahead sets of all the items, e. g.

A: '-a. 0, Is1Uts2

100

As an example, consider the following augmented grammar:

P: =s
S: -AA
A: -aA
A: -b

The first item is

P: -. S

since S is a non-terminal symbol, then include the item

S: -. AA

the input symbols following S are empty, so the lookahead set of the new

item is ($), i. e.

S: -. AA 1$

(A) is a non-terminal symbol, includes the set of items with their lookahead

set which is equal to FIRST(A). According to the rules mentioned in Section

4.7, FIRST(A) contains (a) and (b), then

A: -. aA a, b

A: -. b a, b

None of the new items has a non-terminal symbol immediately after the dot,

therefore no more items can be added. So the initial state is

s0P: -. S $

S: -. AA $

A: -. aA a, b

A: -. b a, b

The lookahead set of the successor item remains unchanged then

S1: P: - S. $

continue in this process until no more states. can be added. The complete

set of states is shown in Fig. 4.11. By comparing the set of LR(O)

states in Figure 4.4 with the set of LR(l) states in Figure 4.11,
4

101

notice that the LR(O) states are identical to some LR(l)

states (ignoring lookahead sets).., The extra states are caused by the

lookahead sets. For instance, in Fig. 4.11, states 4 and 7 are identical

except for the lookahead set of each item. This situation does not happen

in LR(O) states.

s0 P: -. S $
S: =. AA $

A: -. aA a, b

A: -. b it

s1 P: -S. $

s2: S: -A. A $

A: -. aA $

A: -. b $

s3: S: -AA. $

s: 4 A: -a. A a, b

A: -. aA tv

A: -. b it

s5: A: -aA. a, b

s6: A: -b. a, b

s7 A: =a. A $

A: =. aA $

A: -. b $

s8 A: -aA. $

s9 A: =b. $

FIGURE 4.11: LR(l) states

102

4.9 CONSTRUCTING LR(l) PARSING TABLES

Let G be an augmented grammar. Let '800sil ... Isn) be a set of states

constructed as in the previous section. The elements of the ACTION table

are determined as follows:

If [A: -a. aO, 1
s]

is in s 1. and the successor state is sj, then set

ACTION[i, a] to shift j. (a) is a terminal symbol.

2. If[A: =a., t
s]

is in sip then for all (a) in (Z
s

), set ACTION[i, a]

to reduce by the production

A: =a

3. If [P: -S., t
s]

is in si, and ($) in (I
s

), then set ACTION[i, $]

to accept.

4. The remaining undefined elements are set to error.

The elements of GOTO table are obtained as follows:

If [A: =. Xy, t
s]

is, in sI and [A: -X. y, t
s]

is in s, * then set GOTO[i, X]

to j. X is a non-terminal symbol and y is a grammar symbol or empty.

2. All undefined elements are set to error.

The representation of both tables is the same as in Section 4.6.

103

4.10 LALR(I) PARSERS

It was mentioned in Section 4.8 that LR(l) method solves the conflicts

encountered with LR(O) and SLR(l) by including a lookahead set of input

symbols with each item. But this requires a much larger number of states.

This section discusses a method which uses LR(l) algorithm for resolving
AAA

conflicts but uses no more than the number of LR(O) states4is called LALR(l)

(LookAhead LR).

The reason for the smaller number of states is the merge of all sets

of items that have the same core into one set of items, and the new lookahead

set will be the union of lookahead sets of the merged sets of items. The

number of the new sets of items is exactly equal to the number of LR(O)

sets of items (i. e. sets of states).

Consider the LRM states mentioned in Fig. 4.11, the cores of the

items in the states 4 and 7 are identical. So, it is possible to merge

them into one state (say s 47
) i. e.,

s 47 A: =a. A a, b, $

A: -. aA a, b, $

A: =. b ab, $.

Actually the merge has no effect on the parser because there is no reduce

action, and it is clear that if the next input symbol is neither a nor b,

an error will occur. The set of states 5 and 8 are identical and can be

merged into one state (say s 58
), i. e.

s 58 : A: =aA. a, b, $

The same situation occurs with the states 6 and 9. The complete set of

LALR(l) states is shown in Fig. 4.12. The number of LALRM states is

equal to the number of LR(Q) states (see Fig. 4.4).

104

s0 P: -. S $
S: -. AA $

A: -. aA a, b

A: =. b it

s1 P: =S. $

s2: S: -A. A $

A: =. aA $

A: =. b $

s3: S: -AA. $

s 47 A: =a. A a, b, $

A: -. aA is

A: =. b It

s 58 : A: =aA. it

s 69 : A: -b. it

FIGURE 4.12: LALR(l) States

If a set of LR(l) states has no conflicts, and all states having the

same core are merged into one state with a lookahead set equal to the union

of all lookahead sets of the merged states, then it is possible that the new

set of states will have a reduce-reduce conflict. For example, consider the

following augmented grammar

P: WS
S: =aAd
S: -bBd
S: -aBe
S: =bAe
A: -c
B: =c

The set of LR(l) states (Fig. 4.13) has no conflict. So the grammar is

LR(l) grammar. Notice that the cores of the states 6 and 7 are the same.

105

They can be merged into one state (say s 67
) i. e.,

s 67 A: -c. d, e
B: -c. e, d

This state has a reduce-reduce conflict because with the input symbol

(either d or e) the parser can not decide which reduce action should be

performed. Hence, the grammar is not LALR(I). However such cases are rare

s0 P: -. S $
S: -. aAd $

S: -. bBd $

S: =. aBe $

S: =. bAe $

s1 P: ms. $

s2 S: -a. Ad $

S: =a. Be $

A: -. c d

B: =. c e

s3 S: -aA. d $

s4 S: -aAd. $

s5 S: -b. Bd $

S: =b. Ae $

A: -. c e
B: -. c d

s6 A: -c. d

B: =c. e

s7 A*. =c. e

B: =c. d

s8 S: =bB. d $

s9 S: =bBd. $

a 10
S: =aB. e $

106

s 11 :
S: -aBe.

s 12 : S: =bA. e$

s 13 : S: =bAe. $

FIGURE 4.13: LR(l) states

in real life grammars, and in practice, LALR(l) parsing method is considered

to be the most practical method.

I

107

4.11 CONSTRUCTING LALR(l) PARSING TABLES

The general idea is to construct the set of LR(l) states and if no

conflicts arise, merge the states in which all items have the same cores.

The parsing table is constructed from the new set of states.

Let G be an augmented grammar, the algorithm of constructing the

parsing table will be:

1. Construct the set of LR(l) states. Let this set be s O'si, Soots no
2. Merge all states in which the items have a same core into one

state. The new lookahead sets will be the union of the lookahead

sets of all the items merged.

3. The elements of the ACTION table can be constructed from the new

set of states in the same way as mentioned in Section 4.9.

The elements of GOTO table can be constructed as follows:

1. Let {sOps1p ... 9sn I be a set of states having the same core and

merged into one state (say s). Suppose that GOTO [solX]- yot

GOTO[s,, X]-yl,..., GOTO[s
n'X]. Yn* Then yo, yl,..., yn have the

same core and can be merged into one state (say y). Now, set

GOTO[s, X] to

2. All undefined elements are set to error.

The representation of both tables is the same as in Section 4.6.

108

4.12 OPTIMIZING THE PARSING TABLE

There are two main factors that should be taken into consideration

during the construction of the parser. They are the size and the speed.

of the parser. As mentioned in Section 4.3 the main part of an LR parser,

which occupies a large amount of space, is the parsing table. So any

reduction in the size of the parsing table will have an effect on the size

of the parser as a whole.

As far as the ACTION table is concerned, some states have identical

parsing actions. These states can be merged into one state. For example,

in Fig. 4.14, states 0,2 and 47 are identical and can be merged into one row.

states ab$

0 s 47 s 69
1 a
2 s 47 s 69
3 r
47 s 47 s 69
58 r2 r2r2
69 r3 r3r3

ACTION TABLE

SA

FIGURE 4.14: LALR parsing table constructed from Fig. 4.12

The ACTION table becomes

ab$
0,2,47 s 47 s 69

1a

3r

58 r2r2r2

69 r3r3r3

similar merging could bý done with the GOTO table.
I

GOTO TABLE

109

It has been mentioned earlier that all undefined elements in GOTO

table are set to error. However, in practice these entries will never

be used because the function of GOTO table is just to specify the next

state after a reduce action has been carried out. Moreover, any error
;5

will be caught while the parser A consulting the ACTION table. Hence, each

row in GOTO table in which all elements are undefined can be erased. For

example, GOTO table in Fig. 4.14 will be

SA

012

23

47 58

To reduce further the size of the parsing table and increase the speed of

the parser, there are some productions (single productions) which are

semantically insignificant and are of the form

A:

where A is a non-terminal symbol and x is a grammar symbol. The elimination

of reductions by such productions will improve the parsing speed because it

allows the parser to by-pass the eliminated productions during a parse. For

example, consider the following augmented grammar:

P: -$
S: =S, B

S: -B
B: -a
B: =b

The set of LALR(l) states constructed from the above grammar is shown in

Fig. 4.15.

110

s0P: -. S $

S: -. S, B 1$
S: -. B It

B: -ý. a of

B: -. b it

s P: -S. $

S: -S. 9B 1$

s S: -S, B 1$ 2
B: =. a
B: -. b

S3S: =S, B. 1$

S4S: =B. it
.

s5B: -a. of

s6B: =b. if

FIGURE 4.15: A set of LAIR(l) states

After recognizing an input symbol and reducing it to B, the parser at

state 0 consults GOTO table to find the next current state, which is state 4.

Here, the parser will do a reduce action by the single production S: -B.

Now, the current state is state 0. Again, the parser consults GOTO

table to find the next state which is state 1. The last reduce by the

production S: =B can be avoided by letting the parser go directly to state I

rather than state 4. The size of the ACTION table is reduced by eliminating

state

ill

4.13 AUTOMATIC GENERATION OF LR PARSERS

It has been shown that a lot of manual work is necessary to construct

the set of states and subsequently both the ACTION table and GOTO table. If

there is an automatic generation of such states and tables by a program

which accepts a context-free grammar as an input and produces a set of

states and parsing table as an output, it will save a lot of time.

Fortunately, there exists such programs, such as the YACC program (Yet

Another Compiler-Compiler) which is written in the programming language C

and runs under UNIX. The user provides YACC with an input file, and YACC

builds the LALR(l) parser. This includes the construction of the states.

The input consists of three sections, the declarations, productions and

programs. They are separated by '%%' marks, i. e.,

declarations section

productions section

programs section

The first and last sections are optional, and when they are omitted, the

layout of the input looks like

productions section
C"h 0"9

The productions section consists of one or more productions and-'has the

following form,

A: BODY ;

where A is a non-terminal symbol (left-hand side of the production), and

BODY is the right hand side of the same production. The colon and the

semi-colon are YACC punctuations. If there are several productions with

112

It can be used to avoid rewriting the the same left hand side, the mark 1.

left-hand side. The semi-colon at the end of a production must be dropped

before '. ". For example, -the productions

A: aAb
A: bBc

A: cCd

can be written as

A: aAb
bBc I!

cCd ;

All norr-terminal and terminal symbols must be known to YACC. This is done

by declaring all terminal symbols in the declarations section. Any name

not defined in the declarations section is assumed to represent a non-

terminal symbol. The terminal symbols are defined as

%token namel, name2,

If there are no conflicts-then the user need not supply anything more than

the grammar. But when there are shift-reduce or reduce-reduce conflicts,

YACC still prod4ces a parser. It does this by selecting one of the valid

choices as-follows:

l.. If there is a shift-reduce conflict, then a shift action is

selected.

2. If there is a reduce-reduce-conflict, then reduce by the

production listed first in the original input.

If the user is satisfied with the default selections, provided by YACC,

this will resolve the problem. However, it is possible for the user to

provide more information to help YACC resolve the conflicts. This extra

information is to specify the precedence and the associativity to the

113

terminal symbol& in the declarations section. This is done by a series

of lines beginning with a YACC keyword: %left, %right, or %nonassoc,

followed by a list of terminal symbols. For example, consider the

production,

E: =E I*'E

then with the input of the form E*E*E the parser can treat it either as

(E*E)*E or E*(E*E) which causes a conflict. So if (*) is chosen as left

associative, i. e.

%left '*'

then the input is treated only as(E*E)*E, whereas, if (*) is chosen as

right associative, i. e.

%right '*I

then the input is treated only as E*(E*E). Therefore the conflict is

resolved when the associativity of the symbol (*) is specified.

All of the terminal symbols on the same line are assumed to have the

same precedence level and associativity. The lines are*listed in order of

increasing precedence. For example, in the following declarations

%left

%left

and (-) are left associative, and have lower precedence than (*) and

which are also left associative. YACC checks the precedence of the

terminal symbols, if they are the same then it can apply the associativity

to them.

When the input is
_rcAA,!

by YACC program, an output file is produced.

This can be compiled to get an executable parser program. An optional file

can also be produced by YACC. This file contains a description concerning

the set of states, and also details about the conflicts that might exist.

CHAPTER 5

THE ENCODER

114

Fot a given probabilistic context-free grammar G, a design of an

encoder program is discussed in which whenever a valid input sequence

of symbols is in the language generated by G (together with editing

characters and perhaps comments) a corresponding sequence of code words

is generated by the encoder. In general, the function of the encoder is

to start at a certain state (initial state), encode the input by following

some intermediate states, and terminate atacertain state (final state).

In any state, only one action is chosen, and when one action is chosen

there is no way that, after a while, the encoder will go back and choose

an alternative one. Thus there is no backtracking.

Section 5.1 illilstrates the basic model of the encoder. Section 5.2

explains the encoding of the grammatical symbols of the input and

illustrates its work. The construction of the encoder program is explained

in Section 5.3. Different ways of encoding editing characters are explained

in Section 5.4. The encoding of comments is illustrated in Section 5.5.

Section 5.6 explains the encoding of names and numbers (identifiers).

The encoding of strings is explained in Section 5.7. An optimization has

been done on the size of the parsing table in order to reduce the total

space of the encoder. This is mentioned in-Section 5.8. Section 5.9

illustrates the construction of the encoding table which depends on the

way of constructing the ACTION table. Section 5.10 illustrates the

construction of a program in which the frequencies of all possible

symbols, required to be coded, are obtained. Finally, some sample Pascal

programs have been submitted to the encoder to find the size of the coded

files, and the amount of space saved. These results are recorded in

Section 5.11.

115

5.1 THE MODEL

The input file contains a mixture of language tokens and editing

characters (including comments). So the data can be classified into two

parts, the editing part which includes all editing characters and comments;

and the grammatical part which includes keywords, identifiers, special

symbols and strings.

The encoding procedure, in general, will alternate between the two

parts; that is, once the encoding of elements of the first part is

accomplished, the encoding of elements of. the second part will start.

Then returns to the first part, ... and so on. i. e.

coding encoding start, enjC
Di

tj editing grammatical
part part

However, for the grammatical part, the encoder needs to parse (an LR(K)

parsing method is used) each element of it before generating any code.

In each state, one of the following three actions (shift, reduce, and

accept) will be chosen and a required code will be generated. In all

cases, the encoder shifts to the editing part except when the action is

reduce. In this action (i. e. reduce), no change on the input symbols

will occur, and the current token must be a language token. So, as far

as there is a reduce action which does not alter the input file, the

encoder does not need to shift to the editing part. Diagrammatically,

the relation would be:

116

encoding grammatical
part

encodin educe

reduce action
reduc

action
ý ýaction

F

encodin
editing
s, part

:t

other actions I other actions

ncoding
other
actions,

Details of the encoding of each part are explained in the following

sections in this chapter.

117

5.2 ENCODING THE GRAMMATICAL PART

Basically, the encoder consists of:

1. A finite set of states S-{sOvslv.. *ps n
1; S0 is the initial state.

2. A sequence of input symbols (I) from a context-free language.

3. A sequence of code words represents an output (0) from a code (H).

4. A push-dowa stack holds the current state and a grammar symbol at the top.

5. A defining function: for a state sI on top of the stack and an input

symbol ai from (I), the encoder transfers to a particular state sj and,
FPL, 06ce'a

if required, generates a code word. The state sj will be-on the top

of the stack, and the input symbol may or may not be removed. If sj

is not in the set S then the input ai is not an element of the language.

The following notation will be used to express the function:

current state: (top of the stack, input stream, output stream) -1--

(new top of the stack, remaining input, updated output).

There exist a final state sz in S, and an end of input marker ($),

such that the encoder stops the processing when the current state is

and the input is $.

Suppose that a1a 2'***,
$ is a string of input symbols (including the

V*,, Ch
end of file marker $)*is required to be encoded. The encoder starts from

the initial state s0 on the top of the stack as the current state, and

the output stream is empty (e). This can be expressed as:

s0 : (so, a 132' ..., a n
$, e) (a

1 siga 2a 3' ..., a n
$'0

1)

Now, the new current state is s on the top of the stack, a1 is shifted

away from the input, and a new code 01 is added to the output. Continue

in this process until it reaches the final state. It can be expressed as:

118

8i: (asits, 0 102..., 0 k) 4- (Gst9$9010
2'***'ok+1)

where a is a gra-ar symbol and G is the initial symbol. To express the

whole process:

s0s 19.0. Ps (so, ala 2' ..., a n
$, e) (GsII$I0l02'*`Ok+l)

where 00 is the encoded data of the input ala a2 in'the
1 2'***'Ok+l 2' n

form of a sequence of codes. s0 S19*009s i are the states (some of them are

repeated) used by the encoder which are a subset of S. ' Thus for each string

of an input language, there is an equivalent sequence of'code words generated

by a unique sequence of states.

Transferring from one state to another is equivalent to going one step

further to the right of the right-hand side of a particular production.

This transfer can be represented by a sequence of code words. Apart from

the states and terminal symbols, the stack holds non-terminal symbols.

This occurs when a handle production has been found; the right-hand side

of the production will be substituted by the left-hand side of the same

production. This substitution (reduction) always occurs to the recent

updated or read symbols (symbols which*are on the top of the stack). So

a right-most derivation is applied everytime a handle is found.

The sequence of proce'ssing the states can be seen as building a parse

tree for a given input, where the input symbols represent the leaves of

the tree, and the marker $4equivalent to recognizinjthe root of the tree (G).

At any intermediate state, the input symbols together with the grammar

symbols on the stack are regarded as a sentential form. Since the building

of the parse tree starts from the leaves upwards to the root, the set of

states involved could be treated as steps of a bottom-up parse.

119

5.3 THE ENCODER PROGRAM

The function of the encoder program (Fig. 3.2(a)) is to compress

partially'structured data (a program) written in Pascal language (Appendix

A contains the full Pascal syntax). It transforms a fixed length represent-

ation into a shorter, variable length representation. The program is

sufficiently complex to make it difficult to understand it as a single

entity. Therefore, it is preferable to divide the process into a number

of small processes connected to each other. Hence, the encoder consists

(Fig. 5.1) of two main parts, the parsin3 part and the encoding part. The

operation of the encoder program begins'in the parsing part. The data is

read and checking will be done as to whether it is syntactically correct

or not. During this checking the encoder generates, 'when required, an

appropriate code concerning the parsing, names, constants, ... etc.

5.3.1 The Parsing Part

The parser uses the LR parsing method which has been explained in

Chapter 4. At any stage, the parser depends on the current state and the

current input symbol to decide the next state. The input symbols are

divided into 3 classes: names, constants, and special symbols. The

classification of the symbols is the work of a routine called scanner.

It also recognizes the editing characters (spaces, tabs and new lines),

and the comments which could immediately be encoded because they are not

elements of the grammar rules. Names are either'keywords such as (begin,

end, if, ... etc.) or user names. Numbers are either integers or reals.

Fhen the scanner recognizes any element in each class, it passes

information to the parser khown as a token. The same token is returned

120

for all user names. Another three different tokens are assigned to the

strings, integers and reals. Each remaining recognized symbol - .. has

its ova token. New names and constants are stored in a table called the

symbol table. The algorithm for the scanner would be:

Begin i
If input is editing character or comment
Then encode the input;

read new input
Else If input is name

Then If it is a keyword
Then generate the appropriate token
Else generate a token for a user name;

store the name in a symbol table if it isnew
Else If input is a constant

Then If input is an integer
Then generate a token and store the number (if new)

in the symbol table
Else generate a token for a real number and store

it (if new) in a symbol table
Else generate a specific token

End

sourcL scanner fl parser encoder encoding
progr symbols

parsing and
encoding tables

FIGURE 5.1: The encoder program

Assume that the initial state on the top of the stack is the

current state, and the scanner provides the next'token. The parser can

consult the ACTION table to determine the next action. For a shift action,

the next state will be the current state and is stored on top of the stack.

A new token will be provided by the scanner routine. If a handle is found

121

then a reduce action is required. The parser removes elements from the

top of the stack equal to the length of the right hand side of the handle

production. The left hand side of the handle production and the state

on top of the stack decide the next current state by consulting the GOTO

table. After each action, a specific code could be selected from the

encoding tables (see Section 5.9) and passed to the encoding part in order

to be stored on the encoded file. Before performing a new action, the

encoder checks the token as to whether it represents a user name or represents

a constant. In'both cases, another code is generated for each character,

or a code representing the location of the identifier (name, or constant)

in the symbol table would be generated (this is explained'in detail in

Section 5.6). For a state which has only one choice, the probability of

that choice must be one. Therefore, if the state is the current one (in

both the encoder and the decoder) then it is certain that the choice would

be selected. Thus it is not required to generate any code. If the final

state is reached and the next token is end of the input file, then an accept

action occurs, and the processing will be stopped. Usually the data

submitted to the encoder program is already syntactically correct and no

syntax error is expected. Nevertheless, a simple error routine is included

in the parser. The algorithm of the parser is:

Begin
while the action is reduce
do pop off the stack elements equal to the length of the handle;

find a new current state
generate a code if required

end do
if the action is shift
then push next current state on the stack

generate a code if required
else if the action is accept

then stop parsing
else error

End

The complete parsing part of the encoder program can be seen in Appendix B.

122

5.3.2 The Encoding Part

once the input symbol has been parsed, an appropriate code, if any,

is generated. The encoder picks up the code from the encoding table and

stores it in an output buffer (in the program, the buffer length is two

words). Since the code is a variable-length (Huffman code), more than one

code could'be stored in a buffer word. So, care must be taken in this

case, especially when a code has to be stored across two words. Suppose

that a code is required to be output, the algorithm would be:

The (binary) code symbols are stored in a buffer so as to make the

final output to disc file more efficient. The buffer consists of a certain

number of computer words and one of them is partially filled to a point

indicated by counter, i. e.,

I==

it

"
IJ

it

J
31 0 31 0 31 0 31 0

word I word 2 word i (current) word n

-counter

Begin
If code length + counter 4< word length
Then shift the word to the left (code length) times;

store the code at the right-most of the word without
destroying the previous stored codes;

update the counter
Else shift the word to the left for the remaining unused

bits in the word;
store part of the code;
If the word is the last in the buffer
Then store buffer on a file
Else prepare the next word
clear the counter;
store the remaining bits of the cpde in the word;
update the counter.

End.

The full buffer is stored on the output file by redividing into 8 bit

123

bytes and outputtiý3. as if characters. When no more codes are generated,

the buffer has to be flushed in order to save the significant code symbols

in it.

As far as encoding editing characters, names, constants, and comments

is concerned, these will be explained in Sections 5.4,5.6 and 5.5

respectively. The listing of the encoding routine and its relation with

the parsing routine is mentioned in Appendix B.

124

5.4 ENCODING EDITING CHARACTERS

Editing characters i. e. space, tab , and new line are mainly used

to make a computer program more readable, well formatted, and also to

separate keywords, identifiers, and numbers. Hence, in general, source

program consist of a high percentage of those characters. They reserve

a considerable space compared with the total area occupied by the whole

program. So, any attempt to compress these characters and reduce the space

which they occupy will have a direct effect on the size of the program as

a whole. Usually, editing characters can be used anywhere in the program.

At each time one or more characters can be used. For the editing characters,

there are different ways of encoding them; such as character encoding, using

counters or arrays to encode groups of characters instead of individual

characters. So three different methods of encoding editing characters

will be presented in subsections 5.4.1,5.4.2 and 5.4.3.

5.4.1 Character Encoding

The editing characters used in Pascal programs are: spaces, tabs

and new line characters. Statistically, the most frequent editing characters

are the spaces, followed by the tabs and then the new lines. By applying

Huffman codes, the code of each of those characters would be:

space 0

tab 10

new line 11

Since editing characters can be placed anywhere in the program and

also there exists a mutual knowledge between the encoder and the decoder,

then the encoder must inform the decoder as to whether the next code

125

representý an editing character or not. This requires the generation

of an indicator (one code symbol) before generating any code which may

or may not represent an editing character.

Each time an editing character has been recognized, the encoder

generates one bit of value 1 as mentioned above, and then generates the

code of the editing character. The format would be:

10 space
1 10 tab
1 11 new line

0 no editing character

Indicator Code

For example, if there are three spaces and one tab then the sequence of

code symbols will be
1010101 10

But, if there are no such characters, the encoder will generate only one

code symbol (bit) of value 0. That is to inform the decoder that no

editing character is expected next.

5.4.2 Using Counters

Instead of using one editing character at a time, it is possible to

use a sequence of subsequent characters without affecting the structure

of the program. Hence, before generating any code, assign a counter

(accumulator) to each type of the editing characters. This allows the

encoder to accumulate all subsequent identical characters until the next

character is not an editing character. Then an indicator of value 1

followed by the total number of editing charactersfollowed by codes of all

editing characters will be generated. Theoretically, the number of editing

126

characters which can be used between names, numbers, ... etc.. is unlimited.

However, in practice it is limited; thus it is required to determine a

coding scheme to indicate the total number of characters. The format

would be:

f ield 1

[--.
li f ield 2 f ield

codes for new lines I

"-codes for tabs

codes for spaces

where:

Field 1: an indicator;

Field 2: the number. of characters;

Field 3: codes of the characters.

Since the number of editing characters which are expected at each time

is variable, this will lead to the field 2 to be of a variable length as

well. To simplify both the encoding and the decoding processes, a fixed

length will be assigned to field 2. Accordingly, field 2 can not hold

any number. So a set of ranges is provided; for each range there is a

correspondinj length assigned to field 2 such that any number within the

range can be stored in field 2. The ranges are organized in a way such

that. the length of field 2 is equal to or multiple of a certain length.

Let the initial length be 3 bits, then the set of ranges would be:

Length of field 2

3

6-3+3

, 9-3+3+3

12-3+3+3+3

The ranize of characters
1-6

7-62

63-510

511-

127

So, if the number of editing characters is within the range 1-6, then

only one field of length 3 bits is required. If the number of characters

is within the range 7-62, then 2 fields each of length 3 bits are required.

The first field must hold the maximum value (i. e.. 111). Obviously, in

most programs, the number of editing characters is within the first range.

Hence, only 3 bits will be sufficient. The length of field 2 could be

changed to 2 bits or multiple of 2 bits. Assume, for example, the number

of characters is five, then according to the above format the output would

be:
1 101 000010

In the case that the total number of editing characters exceeds six

(if the length of field 2 is 3). The encoder must generate the value

seven (3 bits of ones) and then subtract 7 from the accumulator. If the

remaining number is less than seven then only three more bits containing

the new number required to be generated; otherwise generate another three

bits of ones (value 7) and carry on subtracting as above. For example,

if the number of characters is 7 then the output codes would be:

1 ill 000 000001011

The codes for 8 characters would be

1 ill 001 0000001011

The idea of generating extra three bits of zeros when the number of

characters is exactly 7 is to let the decoder know that the following

sequence of code symbols are the codes of 7 editing characters and, not

more, because the first three bits are always (111) when the number of

editing characters is greater than or equal to 7. Generally, the extra

3 bits of zeros will always be added when the number of characters is a

multiple of 7.

128

However, this method can not be applied for any combination of

editing characters especially when the encoded file must be reversible,

because editing characters can be used in any suitable order. So, the

encoding of some combinations of editing characters causes the encoded

file to be regarded as irreversible. For example, if the combination of

editing characters is two spaces, a new line and one space; then the

encoder could be written to print either spaces characters first or new

line characters first, i. e.

1 100 00011

or 1 100 11000

To decode the above sequences, the result would be either three spaces.

and a new line, or a new line and three spaces; which are different from

the original sequence of characters. One way to overcome the above problem

is to generate a code after accumulating identical editing characters.

Hence only one code representing the editing character will be generated

rather than for each character. For instance, the code of the above example

would be
1 010 01 001 11 1 001 0

5.4.3 Using an Array

The length of editing sequence is unknown, but in practical actual

programs, is mostly less than, say x. So the idea is to save editing

characters until the next character is not an editing character, or the

limit x is reached. Then y editing characters have been collected yýx
to d am sent

and ---a.,. code expressing y,
ý' 'ry codes for each editing characteri. Values y

of x-3 or x-7 have been tried in the encoder program. The output format

would be:

129

1

_____ ________

Field 1 Field 2 Field 3

where:

Field 1: an indicator;

Field 2: a fixed size holds the number of characters;

Field 3: codes of the characters.

The encoder generates one bit of value 1, three bits contain the total

number of characters, and then the codes of these characters. This way

ensures that the encoded data is reversible. For instance the code of the

above example would be

1 100 00110

If there are more than seven subsequent editing characters, then each

group of seven characters would be treated independently. So, for each

group, the decoder expects only three bits (field 2) containing the number

of characters, which is in contrast with the method explained in the previous

section.

In the encoder program (as has been described in Section 5.3), the

scanner routine usually checks for the existence of editing characters.

It also stores them in an array. When the array is full or nomore editing

characters are read, the scanner calls another procedure to generate the

required code. The algorithm of the code generator procedure will be:

130

Begin
If number of characters is not zero
Then generate a code (value 1) for the indicator;

generate the length of the characters;
generate a code for each character in the array;
clear the field containing the number of characters

End

The coding of the above algorithm can be seen in Appendix B under the name

(editproc).

131

5.5 ENCODING COMMENTS

A comment is usually a string of symbols enclosed by either 11{ and

or "(* and *)" (in Pascal). It can be embedded anywhere in the program;

and can be of any length. It has no syntactic recognition. So, the parser

does not require to check for its existence. The only routine dealing with

comments is the scanner which treats them in the same way as the editing

characters. When the scanner recognizes the start of a comment, it reads

all the characters until the end of the comment. Hence, encoding a comment

is part of the scanner's function. The format of the code will be an

extention to the format of encoding editing characters mentioned in (5.4.3),

i. e.

II F-I I III
field 1 field 2 field 3 field 4 field 5

where:

Field 1: an, indicator of value 1;

Field 2: contains zeros; (to distinguish from editing characters which

have an entry greater than or equal to 1)

Field 3: has value 1 if delimiters are "(* and *)", and 0 if delimiters

are "I and I";

Field 4: codes of the characters;

Field 5: delimiter code.

Fields 1 and 2 are exactly the same as in the editing characters.

The only difference is the value of field 2 which is zero in order to

distinguish the comment from editing characters, because field 2 will

never contain zero in the case of encoding editing characters. The codes

132

of the characters can be obtained from the character table mentioned in

Section 5.9. The last field will contain either the code of "Y', or a

special code, representing depending on the type of delimiters used.

The routine which checks for a comment, and passes the necessary code

to the encoding part would be:

Begi
-n generate a code of value 1 (field 1);

generate a code of value 0 (field 2);
If input is "(*"
Then generate a code of value 1 (field 3);

read new input;
while "*)" has not been found

generate character code;
read new input

generate. a delimiter code
Else generate a code of value 0 (field 3);

while input not "I"
read new input;
generate character code

End

The above routine 'Could be coded as a separate procedure or as part of the

scanner procedure as it has been done in the encoding program (see Appendix B)

As an example, consider the following sequence of symbols together

with their codes (Huffman codes)

Svmbol Probability Code

a 0.32 01

b 0.20 10

0.04 1100

0.04 1101

0.16 001

0.08 ill

0.08 0000

special'code 0.08 0001

The codes of the following comment
{(a * b) * al

133

would be b)
1 00 0 ill 01 001 10 0000 001 01 1101

For the following comment

(*(a*b)*a*)

The codes would be

aba
1 00 1 ill 01 001 10 0000 001 01 0001

There are two rules for using comments:

1. comment finishes at the first closing delimiter *) or I depending

on the opening delimiter.

2. nested comments, that is, a comment can be part of another comment,

such as
{start first comment {second comment) end first comment)

or
(*start first comment(*second comment*)end first comment*).

So after the first closing delimiter (which belongs to the second

comment), the encoder must carry on encoding the following

characters (because they are part of the first comment) until it

reaches the second closing delimiter (which belongs to the first

comment).

The encoder program uses the first rule for encoding comments. However,

the second rule can be implemented with the condition that the delimiters

of the first comment must be different from the inner comments, such as

{start first comment(*second comment*) end first comment)

or (*start first comment {second comment) end first comment*).

134

5.6 ENCODING NAMES AND CONSTANTS

Non-keyword names usually consist of any combination of alphabetical

and numerical characters including the hyphen symbol. Any unsigned integers

or reals are considered to be constants. These names and constants

(identifiers) are almost always repeated more than once in a source program.

Therefore, it is necessary to pay some attention to the way these identifiers

will be encoded.

Assume that Huffman codes are applied to the characters and symbols

involved. The simplest method is to generate a code for each character of

the identifier; preceded by the number of elements involved. Specifying

the number of elements is important to the decoder because identifiers are

usually of variable lengths. The code can be generated everytime the encoder

recognizes an identifier despite that some of them could be repeated

somewhere in the program. Hence, the same codes could be duplicated in

the encoded file which is impractical especially for long identifiers.

The method applied by the encoder program distinguishes between new

identifiers and already existing identifiers. For an already existing

identifier, the encoder generates a sequence of code symbols different

from the sequence of code symbols generated when the same identifier was

firstly recognized as a new identifier. Hence, it considers two different

formats for encoding such identifiers with the help of a lookup table

called symbol table. The first format used for all new identifiers which

are immediately stored on the symbol table, and the code is regarded as

the sequence of codes of each character of the identifier. It consists

of three fields:

field 1 field 2 field 3

135

where:

Field 1: one bit of value 0 which means that the identifier is a new one;

Field 2: 3 or multiple of 3 bits which is used to store the length of the

identifier;

Field 3: the code of each character.

The way of constructing field 2 is exactly the same as explained in

the construction of field 2 in Section (5.4.2). As an example, consider

the encoding of the identifier (abcd) where the codes of a, b, c, and d are

00,01,10 and 11 respectively. According to the first format, the sequence

of bits generated is

1 100 00011011

abcd will be stored in the next available element in the symbol table.

The second format is applied only when the encoder recognizes an

identifier which already exists in the symbol table. ' So instead of

generating a code for each character of the identifier, the encoder only

needs to generate the location of that identifier in the symbol table.,

The format consists of two fields

[71 11
f ield 1f ield 2

where:

Field 1: one bit of value 1 which means that the identifier already exists

on the symbol table;

Field 2: holds the position of the identifier in the symbol table.

For example, if the identifier (abcd) is required to be encoded again,

taking into consideration that it is stored in the location zero in the

symbol table, then the code would be

136

1

which is rather short compared with the previous code generated for the

same identifier.

The problem here is to find the size of field 2. A simple way is to

assign a fixed length depending on the maximum number of identifiers which

can be stored in the symbol table. This maximum number is actually equal

to the size of the symbol table. For instance, if the size of the symbol

table is 256 (0-255) then a field of length 8 bits is sufficient to hold

the maximum number, i. e. 256. However, it. is possible to optimize the

length of field 2 by assigning a variable length rather than fixed length.

For instance if there is only one identifier in the symbol table, then a

size of one bit would be'enough. For three identifiers', two bits are

necessary and sufficient to hold that number.

To seek a general way of recognizing the size of field 2, consider

the following two ideas:

1. Table lookup: the relationship between the locations and the length

of field 2 can be expressed in the following table:

Locations Length of field 2

0-1 1 bit

2-3 2 bits

4-7 3"

8-15 4 It

16-31 5

32-63 6

64-127 7

128-255 8

Thus if the start location numbers which cause an increase in the size

137

of field 2 are stored in an array, then it would be possible to seek

the correct length by finding the location of the smallest number in

the array which is greater than the location of the current free

element in the symbol table. For example, suppose that the size of

the symbol table is 256, then from the above table, the length required

is 9.

2. The length of field 2 can be expressed by means of logarithms to the

base 2 of the current free location. Suppose that n is the current free

location, then

.
INTeger value of 1092 (n)+1 will be the size of field 2.

For example, INT(log 2
(4))-2

2+1-3 bits
are required when the location is 4. For the location 9

INT (1092 (9))-3

3+1=4 bits

are required.

The implementation of the first method is a straight-forward -process

and it does not require a lot of calculations in order to obtain the field

length. But the second method needs a special routine to deal with the

logarithmic function and then find the integral part of the result. This

required a considerable computing time especially when the procesi-repeated

many times during the encoding procedure. Hence the first method is more

economical than the second method and will be used by the encoder'program.

Whatever method used to find the length of field 2, there must be an

agreement between the encoder and the decoder on the way of recognizing

new and old identifierso and also on constructing the symbol table. That

138

is when the encoder stores a new identifier in a particular location in

the symbol table, the decoder, when it recognizes the code of the same

identifier, must store it in the same location in its own symbol table.

Thus the sequence of the identifiers in the symbol table must be the same

in both the encoder and the decoder. This is important because when the

encoder generates a code for an old identifier using the second format,

the decoder must know (with the help of the indicator) the length of

field 2, -and also the correct identifier which has been stored in the

symbol table.

In a block structured languages identifiers are defined either

globally which means that they are accessible throughout the program, or

locally which means that they are accessible only inside a part of the

program (usually procedures). So. the construction of the symbol table

in the simple way (as mentioned above) comes because of the assumption

that all identifiers are considered to be global. For instance, the

encoder treats both an identifier defined outside a procedure (i. e. global

to the procedure)9 and another identifier which has the same name defined

inside the procedure (i. e. local to the procedure) equally the same despite

the fact that they are independent. The first identifierAConsidered by

the encoder as a new one; whereas the latter is, considered as an already

existing one. Actuallyt this is preferable because the encoder does not

need to generate a code for each character of the second identifier,

instead it generates only its location in the symbol table.

Another method can be used to construct a symbol table, that is when

the encoder differentiates between global and local identifiers. It should

generate a code for a local identifier as if it is a new one even if there

139

exists a global identifier which has the same name., When a local

identifier becomes unaccessible (not valid outside the procedure in which

it has been defined), the encoder should remove it from the symbol table.

As an example, consider (abc. Imn and temp) are three global

identifiers, and (temp) is a local identifier defined inside a procedure.

The symbol tables look like:

first method

abc

global Imn

temp

second method Qhili--
rea. din3 procecLare

I ab cI

second method after
proc. li(xs been react

II abc
I

global iI tm I global jI Pm I

temp

local temp

II
temp

I

As a second example, reconsider the first example but assume that the

global identifier (temp) does not exist. The symbol tables would be:

first method second method whiLe- second method after
rea-dirv3 pmc-edure-- proc. has been rea-cL

abc abc abc
global global-

global hm

local

The first method is very simple and does not require much calculation to

find any identifier. The size of the symbol table might be bigger or

smaller than the size of the symbol table used by the second method

depending on the structure of the Pascal program. The first method has

been implemented by the encoder for simplicity and because the second

method is not uniformly superior.

140

Usually the scanner recognizes all the identifiers, then searches

the symbol table for such identifiers. The search routine would be:

Begin
For all identifiers in symbol table

If the input identifier exists
Then save the location;

return
Store the identifier in the symbol table;
Increment the indicator

End

After the parsing process, a code must be generated representing the

input identifier. The routine would be

Begin
If old identifier
Then begin generate a code of value 1;

find the length of field 2;
output the location of the identifier in the

symbol table in required length
end

Else begingenerate a code of value 0;
output the length of the identifier;
generate a code for each character

end
End

The coding of the above routines can be found in Appendix Bg under the

names (lookup) and (check) respectively.

141

5.7 ENCODING STRINGS

A string is any finite sequence of symbols enclosed by the symbols

"31 and 0% such as
'this is a string)

It is considered as an element of the grammatical part, and hence it is

a language token. The symbol can be used inside the string, but it

has to be doubled in order to discriminate it from the end of the string,

so this allows strings to be nested.

The encoding of a string is almost straightforward; as soon as the

scanner recognizes the first delimiter (3), it passes a token to the

parser in order to check its syntax, and then generates the grammatical

code. Now, the encoder starts generating the codes of all symbols

belonging to the string until the last delimiter. In the encoding process

the character encoding table will be consulted. At the end of the

encoding, no code will be generated for the end delimiter, instead, a

special code representing the end of the string will be generated. This

allows the decoder to recognize the end of the string; otherwise it can

not be sure whether the symbol ()) is the end delimiter or it is a symbol

within the string. Assume the first symbol is available to the encoder,

the algorithm of generating the code of each symbol would be:

Begin while the symbol is not
(generate its code;
read new symbol

read new symbol;
If the symbol is
Then generate twice the code of "s";

read new symbol;
start the algorithm again

Else generate a code for the end of string
End.

142

5.8 OPTIMIZING THE PARSING TABIES

It has been mentioned in Chapter 4. that the parsing table (ACTION

and GOTO tables) is constructed from a set of states of a particular

grammar. For a practical grammar in which the number of states might

reach several hundreds, this will lead to a large parsing table which

is difficult to implement on a computer system. one technique (see

Section 4.12) used to reduce the size of the ACTION table is to merge all

identical states into one state. This section discusses another way of

reducing the size of the ACTION table which depends to a certain extent

on the elements of the table. That is, a table in which different rows

have elements doing the same function. For example, consider the

following table

row no. 2 3 45 67 8

x x x
2 x
3 x x x x
4 x x x
5 x x x
6 x x x x
7 x x x
8 x x x x
9 x

9*8- 72

where the elements marked by (x) are all different in their functions

within each row, and the blank elements are doing the same function

within each row. Then, it is possible to construct an equivalent table

to the original one but with all blank elements replaced by only one

elements The new table now has. rows with different lengths. So, it

can be divided into a number of subtables, each has rows of equal lengths.

143

The above table could be divided into three subtables as follows:

2 3 41234512

xx x a3xxx a7 2 xa a
4 xx x 9[a6xxxxax a] x
5 xx x a8xxxxa Tota3
7 xx x aJ4*4-16 3*5-15 2*2-4 35

(a) represents a blank element'in the original row.

This way of reducing the'size of a table could be implemented on

the ACTION table. It has been assumed that the data file submitted to

the encoder program4already syntactically correct. Nevertheless, an

error could be detected during the parsing process. So any error might

occur, the error routine generates a trivial message. Since there is

a significant proportion of error elements in the ACTION table (the same

thing happens with reduce actions), therefore it is worth applying the

above technique in order to reduce its size. Generally, the construction

of the subtables could be done as follows:

1. Put all identical states (the states in which all expected inputs

are identical) into a subtable.

2, Add the state in which all the'expected'inputs are part of the

expected inputs of a state belonging to any subtable, to that

subtable.

3. Put all unique states into one subtable.

4. Substitute all columns which have only an error action by one

column doing the same action.

5. In step (2), if a state can be part of more than one subtable,

then choose a subtable which has less number of columns.

144

If each row in a subtable has only identical reduce actions, then

substitute each row by a new row having only one reduce action

(i. e.. one column).

The above technique is. implemented on the ACTION table used by the

encoder program. The size of the ACTION table is

312 * 63 - 19656 memory units

because there are 312 states generated by the YACC program, and 63 tokens

(including the end of file marker). This table is divided into 12

different subtables as follows

Table number Size

0 84*1

1 22*3

2 16*3

3 12*5

4 14*5

5 7*3

6 29*22

7 50*17

8 12*11

9 7*12

10 13*9

11 6*16

mapping tables

Total

84

66
48
60

70
21

638
850
132
84

117
96

2266

1378

3644

obviously, reconstructing the ACTION table into a new form requires

two different mapping tables. The function of the first table is'to

locate the position of a state in a particular subt able. So each raw

has information concernifig one particular st I ates the'information

145

determines the subtable containing this state, and also the row number

within the subtable. Diagrammatically, it is illustrated in Fig. 5.2.

state
no.

0
1
2

3
4

5
6

7
state table

FIGURE 5.2: The state table

I ACTION subtables

2

As. far as the second table is concerned, its function is to re-

number the tokens. Within the ACTION table, tokens must have-unique

numbers. This is the same within each subtable. But a token might have

or have not the same token number in different subtables. Each row

number in the mapping table represents a token number passed by the

scanner routine. The row has 12 elements (because there are 12 subtables),

each element has a value representing the new token number for the

specified token in the appropriate subtable. This is illustrated in

Fig. 5.3. Both these tables require extra space equal to 1.378 memory

units. Therefore a tremendous amount of space has been saved by

implementing the splitting method on the ACTION. table.

To access any element, in the ACTIO-I tables itis required to access

the mapping tables to find the exact subtable, the row number, and the

0
1
2

3

0
1.
2

column number. Then the specified element can be found easily. Thus

table row
no. no.

146

Token Token no. in
no, subtables

123

0
1
2

3
S
S
S

I

3 e..
_

FIGURE 5.3: The token table

there are calculations before the element can be accessed. This will

inevitably slow the parsing process. Hence there is a trade-off between

the space and the speed.

As far as the GOTO table is concerned, assume that the optimization

methods mentioned in Chapter 4 are applied. Since any syntax error could

be discovered earlier when the parser consults the ACTION table, and there

is no chance of an error in the GOTO table; therefore it is possible to

reduce the size of the GOTO table further by exploiting the blank elements

in each row. This could be done as follows:

1. Start from the right-most column in the table (say j);

2. If there is a column i such that for all rows r, GOTO[r, i] is a blank

element and GOTO[r, j] is non-blank then move GOTO[r, j] to GOTO[ri].

Else go to step

Eliininate the right-m6st column (i. e. j) ; go to step

ACTION subtables
1

4.. - 123...

Stop.

147

Instead of choosing the right-most column each time, it is possible

to start from the second column and look for the possibility of moving it

to the left. It must be done for each column until the right-most column.

To illustrate the reconstruction of the GOTO tableg consider the following

table:
012345

x0xIx2x4

.x1x2x3
x1x3x5

x2

Lx2

where xi means a state number in column i.

6

x6

x6

x6j
1,

The elements of column 6 can

be moved to their corresponding elements in column 0. So any reference to

an element in coli, = 6 must be diverted to coli, = 0. Column 5 can be moved

to column 2; and column 4 moves to column 3. The new table would be:

0123

x0x1x2x4

x6x1x2x3

x6x1x5x3

x2

Lx6x2

A mapping table is required to direct the parsing program to the new

column number, i. e.

6

01

Obviously, another mapping table is required because of the previous

optimizations (Section 4.12) which directs the parsing program to a new

raw in the table.

148

In the encoder program, the size of the GOTO table before reducing

the number of columns is

39 rows * 50 columns - 1950

whereas after the reductiont becomes

39 rows * 22 columns - 858

plus the size of the mapping table which is 50, i. e.

858 + 50 - 908

Finally, to understand practically the construction of both the

ACTION table and the GOTO table of the encoder program, a simple example

will be given below. Suppose that a context-free grammar is given as

f ollows:

1. S: -E
2. E: =O
3. E: =EPO
4., P: -+
5. p: m-
6. P : -*
7. P: -/
8.0: MV
9.0: =c

10.0 09- (E)

11. V: =i
12. V: =i! 0

Then the ACTION table generated from a set of. states would be

149

1

2

3

4

5

6

7

8

9

10

11

c(i)+-*/$

s7s 11 s8
s 14 s 15 s 16 s 17 a

R2 R2 R2 R2 R2 R2 R2 R2 R2 R2

s7 s 11 s8
R3 R3 R3 R3 R3 R3 R3 R3 R3 R3
R8 R8 R8 R8 R8 R8 R8 R8 R8 R8
Rg Rg Rg Rg Rg Rg Rg Rg Rg Rg
R1, R1, Rll Rll Rll Rll Rll Rll S9 R1,

s7 s 11 s8
R12 R 12 R 12 R 12 R 12 R 12 R 12 R 12 R 12 R 12
s7 s 11 s8

12 s 13 s 14 s 15 S 16 s 17
13 R 10 R 10 R 10 R 10 R 10 R 10 R 10 R 10 R 10 R 10
14 R4R4R4R4R4R4R4R4R4R4
15 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5
16 R6R6R6R6R6R6R6R6R6R6
17 R7 R7 R7 R7 R7 R7R7 R7 R7R7

where si-shift aýd goto'state i. Rj -reduce by the production number j,

a-accept, empty places mean errors, and $-end of program.

The states 1,4,9 and 11 are identical and can be grouped in one

subtable. The states 2,8 and 12 are unique. Finally, the states 3,5-7,

10,13-17 are identical in their actions and can be grouped in one sub-

table, Therefore 3 subtables can be constructed;

Subtable 1: Ci others
I s s s E 7 11 8
4 s s s E 7 11 8

s s s E 7 11 8
s s s E 7 11 8

The size is

4*4- 16

where E-error.

150

Subtable 2:

2Es
14

8R
11 R 11

12 s 13 s 14

Subtable 3:

s 15

s 15

others

s 16

s 16

$ others

s 17 aEE

R 11 R 11 s9R 11
s 17 EEE

the size is

3*8- 24

3R2

5R3

6 R8
the size is

9 10 *1- 10 10 R12
13 R 10
14 R4
15 R5
16 R6
17 R7

Two mapping tables are required to specify the exact element.

state table and token table.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

col. no.
subtable

12

c 1 8 1
C 2 8 1
i 3 8 1
) 4 1 1
+ 4 2 1
- 4 3 1
* 4 4 1
I 4 5 1

4 7 1
$ 4 6 1

the size is

17 *2- 34

token table

These are

the size is

10 *3- 30

state table

Table no. Row no.

151

The size of the original ACTION table is

17 * 10 - 170

The total space required by the subtablesand the mapping tables is

50 + 64 - 114

After removing the blank rows, the GOTO table would be:

1234

11236

2 4

4 5 6

9 10 6

11 12 3 6

12 4

the size is

64- 24

To move the columns to the left in order to reduce further the size of

the table; it becomes

1 2 3

1 2 6 3

2 4

4 6 5

9 6 10

11 12 6 3

12 4

the size is

6*3- 18

/

Again, a mapping table is required to specify any element in the table:

column no.

234
the size is

21324*1-4

So,, the total space required is 22.

152

5.9 CONSTRUCTING THE ENCODING TABLES

Codes required to be available to the encoder program can be expressed

in two groups. The first group comprises codes representing the parsing

routes. So each state has its own codes (Huffman codes), and when the

parsing action is completed, the necessary code'(if required) should be

generated by passing the sequence of code symbols to the encoding part,

and then stored on the encoded file. Hence, the codes are organized in

a set of tables corresponding to the ACTION subtables which have been

organized in Section (5.8). Each element of the table consists of two

fields (Fig. 5.4), the-first one holds the length of the code, and the

state
no 0

0

--#code

code length

FIGURE 5.4: A row of an encoding subtable

second field holds the code itself. The mapping function will be exactly

the same as the mapping function of the ACTION table; hence only one

function will be sufficient for both. It might happen that all the

elements in a table have zero length codes. This occurs when each state

in the corresponding ACTION subtable has only one choice. So, the encoding

subtable can be removed.

The second group consists of codes (Huffman codes) of all possible

characters that might be used in the program which need to be encoded.

0

Tokens

23

153

A table of size equal to the number of characters involved is constructed.

Each element of the table consists of two fields (Fig. 5*5). The length

of the code, and the code. The table is organized in ascending order

according to the order of characters recognized by the computer.

code code length

row representing
one character

FIGURE 5.5: Character table

154

5.10 THE FREQUENCY PROGRAM

The function of the frequency program is to provide information

needed for constructing the necessary codes which will be used by the

encoder program. The information is regarded as the frequencies of

different symbolsq and also all possible options acquired in each state.

Thusp the program can be divided into two different phases; a parsing

phasel and a statistical phase. The first phase checks the syntactic

structure of the input data before finding the frequencies, The parsing

method used is LALR(l) as explained in Chapter 4; and the construction of

the parsing table (both the ACTION table and GOTO table) is exactly as

explained in Section (5.8). The second phase counts the frequency of each

option in each state, and also the frequency of each character involved in

identifiers (names and constants), strings and comments. Editing characters

are independently treatedo and hence a space character (for example) inside

a comment is considered different from a space character treated as an

editing character. The way of storing the frequencies of each state is

to construct a set of tables equal to the set of ACTION tables. Each

element of a frequency table is a counter of a particular action in a

specific state. Obviously, for a state which has only one option, no

counting is required because the encoder does not need to generate any

code for an action which is certain to occur in a state, Another case

occurs which does not need to find the frequency, that is when a state

has only two options. Then whatever the frequency of each option, assign

a code of value 1 (one bit only) to one option, and a code of value 0 to

the other.

A set of Pascal progýams of different sizes has been submitted to the

155

frequency program in order to get the occurrences of all possible

charactersq and also the frequencies of each action in all the states.

For each state, Huffman method is applied to find its codes. Also the

method used to provide codes for each character. These codes are used

by the encoder program (Section 5.3). and stored in the encoding tables

(Section 5.9). The frequencies were computed over 21 Pascal programs

containing a total of 115,119 characters.

156

11 EXANPLE

Samples of Pascal programs have been chosen to be encoded to see the

size of the encoded file of each program. (Table 5.1).

Program size

1231

378

461

822

137

141

148

4266

Encoder 1 Encoder 2 Encoder 3

504 472 464

172 168 160
220 220 208
280 256 256

60 60 60

72 68 68

72 72 68

1620 1560 1528

TAKE 5.1: Sample programs

All the three encoder programs which output the encoded files are the

same except in the way of encoding editing characters (see Section 5.4).

The first file produced by an encoder program using a counter for each

type of the editing characters. The second file produced when the encoder

uses an array of size 7; the size of field 2 will be 3. The last file

produced by an encoder uses an array of size 3, and the size of field 2

is 2, The last encoded f ile is the OPtimal among the others because the

number of editing characters between terminal symbols is, in practice,

one or two characters. Hence the field 2 of size 2 instead of 3 would be

enough.

Table 5,2 illustrates in more detail the sizes in bits of different

elements of the programs and their corresponding encoded version. The

size of
I

the data file in bits equals the number of characters multiplied

by 8 bits (the number of bits for one character). Mostly the size of the

157

Editing chars. Comments Strings Identifiers Others Size Waste,

original 224 0 0 576 296 1096
encoded 130 0 0 270 60 460 20

232 0 0 472 424 1128
158 0 0 271 93 522 22

248 0 0 472 464 1184
166 0 0 269 94 529 15

4248 2848 2056 16992 7984 34128
2970 1662 1094 4294 2173 12193 31

2176 464 312 4152 2744 9848
1242 286 220 1280 673 3704 8

552 320 24 1104 1024 3024
374 230 10 457 187 1258 22

1696 0 152 2712 2016 6576
913 0 76 632 403 2024 24

584 0 240 1208 1656 3688
515 0 114 621 407 1657 7

TAKE 5.2: Encoding sample programs

encoded file in characters does not represent the actual file size

because some bits have to be added to the last output buffer in order to

make it full before storing it. (Waste in table above). The number of

bits added to the buffer depends on the size of the buffer, and its

range would be between zero and the size of the buffer minus one.

As far as the speed is concerneds the execution time of the encoder

has been compared with the compilation time of Pascal programs (Tables

5.3 and 5.4). This is because both programs (i. e. the encoder and the

compiler) have parts of their jobs in common such as scanning the input

and also the parsing which is the main phase of both programs, The real

time is the interval time between the execution command and the end of

the execution response. The user time is the actual execution time of

158

the program. The system time is the time spent by the system to be

ready for the execution of the program.

program size real user system

1231 20.0 4.3 2.5

378 19.0 3.2 2.3
461 20.0 2.6 2.7
822 19.0 3.4 2.6
137 20.0 3. o 2.5
141 19.0 3.0 2.6
148 18.0 3.1 2.4

4266 23.0 6.5 2.4

TABLE 5.3,: Compilation time

program size real user system

1231 10.0 0.7 1.6

378 10.0 o. 3 1.2
461 10.0 0.3 1.4
822 9.0 0.5 1.3
137 9.0 0.1 1.5
141 9.0 0.1 1.1
148 9.0 o. 2 1.2

4266 14. o. 3.2 1.9

TABLE 5.4: Encoding time

CHAPTER 6

THE DECODER

159

It has been mentioned in the previous chaptera that the coded file

should be reversible, and accordingly the encoder was designed with this

in mind. This chapter discusses the construction of the decoder (Fig.

3.2(b)) which accepts the coded file as an input and produces as an output

a file identical to the original one.

The method used for constructing the decoder depends to a certain

extent on the encoder, and the strategy used for constructing the codes.

So some subjects which have been explained in the previous chapter will

not be explained again in this chapter, and only a reference will be made

in the appropriate place.

Section 6.1 introduces the basic model of'the decoder. Section 6.2

defines the decoding of the gramatical symbols and illustrates its work.

Section 6.3 illustrates the construction of the decoder program. The way

of decoding editing characters and comments is explained in Section 6.4.

Section 6.5 explains the decoding of identifiers (names and numbers).

Section 6.6 explains the decoding of strings. The codes and other

information required by the decoder are stored in tables which are explained

in Section 6.7. Finally, some coded files have been decoded and compared

with the original files. This is mentioned in Section 6.8. ' Also, the speed

of the program is mentioned.

160

6.1 THE MODEL

The coded file, which is the input to the decoding program consists

of a sequence of codes representing both the editing characters (including

comments) and the grammatical symbols of a context-free language. So, the

codes can be separated into two parts; in the first part, the codes represent

the editing characters; the codes of the second part represent the grammatical

symbols. The decoding model, accordingly, consists of two sections. The

first section deals with the decoding of editing characters; whereas the

second section deals with-the decoding of the grammatical symbols. The

decoding process will alternate between these sections, i. e.

start
Decoding
editing

part

LI
Decoding
grammatical

part -. 00

For decoding the grammatical part, the same parsing method (LR(K)) used by

the encoder (Section 5.1) will be used to select the exact codes and output

the required symbols. The decoder needs to parse each code before generating

any output. So in the reduce action, no more, codes will be selected and

the decoding process does not change to the decoding of editing characters.

This will be repeated until no more successive reduce actions occur.

Diagrammatically, the relation between the two sections of the decoder

would be:

start Decoding
editing

part

d de din ecoding
p grammaticall part

redu Decoding

gc tio
r

actions rredduucee

t

ther
aactionn

actions

0

other 0
Decoding actions

co g

other
actions

d

Details of decoding each part will be discussed in the following sections

of this chapter.

161

6.2 DECODING THE GRAMMATICAL PART

The decoder consists of

1. A finite set of states S-{s O"ll"'s'n
1; s0 is the initial state.

2. A sequence of code words from the code alphabet C.; stored on an input

f ile.

A push-down stack holds the current state and a grammar symbol at the top.

A sequence of symbols (characterst numbers and special symbols) represents

the output file.

5. A defining function: for a state si as the current state on the top of

the stack; and a code word ck from the input file, the decoder transfers

to a particular state s3 and, if required, generates the appropriate

output symbols. si will be on the top of the stack. If si is not in S,

then an error has occurred. The code word may or may not be removed

from the input file.

6. There exists a final state s, in S, such that the decoder stops the

decoding process when the current state is s,,

The input file is actually the encoded file generated by the encoder. '

Hence the output file generated by the decoder should be the same as the

original file. The decoder works in a similar way to the encoder (Section

5.2) except that the input and the Output files of the encoder become the

output and the input files of the decoder. Briefly, the work of the decoder

could be arranged in steps as:

1. Start from the initial state as the current state.

2. If necessary, find the next allowable code word from the input file.

3. The current state and the word recognized in step 2 determine the next

current state.

162

4. If any terminal symbols have been recognized, write them on the

output file.

5. If the final state has not been reached, then goto step 2; otherwise

stop and the input file has been decoded.

163

6.3 THE DECODER PROGRAM

The program consists of two parts. 0? ig. 6.1). The decoding part and

the parsing part.

Encoded Decoding Parsing
output data

part part

Parsing tables
and

Decoding tables

FIGURE 6.1: The decoder program

The way of constructing the parsing part and its function is exactly

the same as explained in Section (5.3.1) except that instead of the scanner

routine which reads the input and passes tokens to the parser, a decoding

part is constructed which supplies the parser with the necessary information

such as tokens, and codes for reduce actions to decide which action is going

to be the next. It includes routines for decoding editing characters,

comments (Section 6.4), and identifiers (Section 6.5). For the decoding

part, suppose that the coded input file already exists, and the decoding

tables (Tables I and 2 described later in Section 6.7) have been constructed.

The information required to make the next decoding step is obtained either

directly from Table 1, or from the input file. The choice depends on the

actions-listed for the current parsing state. If only one action is list etj

the decoding part can provide it without reading any code from the file.

If more than one action exists in a state, then the decoding part should

164

get code symbols from the input file, and with the help of Table 2. it

is possible to find the exact action and then pass it to the parser. The

problem with the input file is that the code words are all of variable-

lengths (Huffman codes), and the same code word could be used for more than

one token or one token might have more than one code word. The decoder,

nevertheless, recognizes this problem; so at each state there is a unique

code for each action, and the codes of each state are uniquely decodable.

The routine for recognizing all tokens and the reduce action would be:

Begin
Find the element of the current state from Table 1;
If the element is a reduce action
Then return to the parser
Else. if it is a token number

Then pass it to the parser
Else if it is an address to a location in Table 2

Then identify the next code
Else error

End

The routine of identifying the next code would be

Begin
Get one bit from the input file;
While the element of Table 2 is a location of a new row
Do find the new row;

Get next bit from the file
If the element is not a reduce action
Then pass it as a token

End

When the parser recognizes a token which causes a shift action, it

will check for the type of the token. If it is a keyword, the parser will

recognize which keyword it should be, and then output it. In the case of

an identifier the routine mentioned in Section (6.5) will be called. If

the current token represents a string then the output of the sequence of

characters involved will be the same as outputting the characters of a

comment. Hence the routiný mentioned in Section (6.4) which is used for a

165

comment would be used to output a string. Additional checking should be

added to secure the end of a'string, and then output the closing delimiter.

It is assumed that the encoded file should be syntactically correct.

Nevertheless, the decoder program checks for any error which might occur

as a consequence of corrupted data. The program listings of the parsing

part and the decoding part together with other related routines can be found

in Appendix C.

166

6.4 DECODING EDITING CHARACTERS AND COMMENTS

The methods used for decoding editing characters reflect the encoding

methods of those characters which have been mentioned in Section 5.4. So

as soon as the decoder recognizes the value of the indicator as one, it

will definitely know that the following sequence of bits represents a string

of characters starting with at least one editing character or a comment

(Section 5.5). The codes used by the encoder are variable-length (Huffman

codes), and no code is a prefix of another code. Hence, for encoding

character by character, the decoder can recognize a character without any

doubt that the code might be, a prefix of another code which represents

another character. Since the code in this case is very simple, i. e.

space 0

tab 10

new line 11

then the decoder does not need to build a decoding table, instead of

simple routine will do the job, i. e.

Begin
Get a bit;
If the bit is zero
Then output a space
Else get next bit

If the bit is zero
Then output a tab
Else output a new line

End

In the case of using counters in the encoding process, the decoder

needs to know the number of characters expected next. Suppose that the

length of field 2 is 2 bits (i. e. counts maximum 3 characters), the decoder

reads these 2 bits and checks with, the number 3; if the number is greaterr-

than or equal to 3 then reads the next 2 bits and checks again as above. -

167

In such case the decoder should accumulate the number in order to find

the total number of characters. The above routine will be repeated as

many times as the total number of characters. If an array was used in the

encoding process, the decoder will behave in the same way as above except

that only one field 2 exists.

Decoding a comment involves decoding the delimiters and the string

of symbols bounded by them. Each symbol can be decoded by searching a

tree which recognizes all possible symbols. The tree can be constructed

as a 2-dimensional table (Fig. 6.2) in which row has 2 elements. The

value of each element could either be a character, or an address to another

row in the table. For a binary digit, the first and second elements can be

rows

1

2

3

Bit 0 Bit 1
(First element) (second element)

(

A B

)

C D

A

represents C0

B 000,

the tree 1
D

FIGURE 6.2: An example of a character table
consists of 4 characters

accessed when the code symbols are respectively zero and one. For example,

from Fig. 6.2, by starting from row 1, if the next bit is zero, the value

of the first element is an address points to the second row. Suppose that

the next bit is 1, then the value of the second element represents the

character B.

The existence of a comment comes from checking the field 2 length

for the value of zero. The next step is to check for the type of delimiters

used. If the value of the next bit is one, then the delimiters are "(* and

168

*)"; otherwise they are N and 111. The routine for outputting a comment

would be:

Begin
If the field 2 length is zero
Then If the next bit is one

Then output
Else output
decode characters until the next delimiter

End

The routine of finding each character would be

Begin
Start from the beginning of the character table;
get a new bit;
While the element is an address
Do find the next row;

get a new bit;
If character represents
Then output "*)"
Else If character is "I" and the opening delimiter was
Then output ")"
Else output the character;

start the routine again
End

The coding of the above routines can be found as two separate

procedures in Appendix C called (edit proc), and (rd chars). After

decoding editing characters or comments, there is a chance that the next

code symbols represent new editing characters, or another comment. In

this case the same routines will be repeated.

169

6.5 DECODING NAMES AND CONSTANTS

The method used to decode names and constants (i. e. identifiers)

should be influenced by the way of encoding such identifiers. Otherwise

the decoder would fail to provide a decoded file. As it has already been

mentioned in Section (5.6) 2 formats have been used for encoding new and

old identifiers with the help of a symbol table. The decoding method has

to recognize these 2 formats in order to decide whether the next identifier

is a new one or it already exists in the symbol table.

If a new identifier (the first bit has value 0) is expected next,

the decoder should. (according to the first format) find the length (number

of characters) of this identifier and then output each character of it by

recognizing their codes in the coded file. The new identifier must be

stored in the current free location in the symbol table just in case the

same identifier may occur again. The location of the identifier in the

symbol table will be exactly the same location of the identifier when it

was first encoded.

The decoder should know that the field 2 is of fixed number of bits

(3 bits), and it could be repeated. As far as recognizing each character

from the sequence of code symbols which follows field 2 is concerned, the

decoder consults the character table, mentioned in Section (6.4), to output

the exact characters of the identifiers. The identifier will later be

stored in the symbol table. For example, suppose that

0 Oil 010011

is a sequence of code symbols represents an identifier, and the character

table is bit 0 bit 1

__ ___

170

Then the first bit indicates that the identifier is a new one. The next

3 bits have value equal to 3 (the number of characters). Then according

to the character table, (01) represents b, (00) represents a, and (11)

represents d.

When an old identifier (the first bit has value 1) has been recognized,

it must be in the symbol table, and the following sequence of bits in the

coded file represents the location of the identifier in the symbol table.

The decoder must find the exact number of bits concerned. It will apply

the same method used by the encoder (see Section 5.6) which decides the

size of this field. As soon as the location is recognized, the decoder

can easily output the identifier. The routine for decoding identifiers

would be

Begin
If the next bit is one
Then find the location in the symbol table;

output the identifier
Else find number of characters;

store identifier in the symbol table;
output the identifier;
increment the symbol table pointer

End

The method of finding the location of an identifier in the symbol table

reflects the method used by the encoder. It checks the length of the field

2 and then finds its value. The routine of finding the number of characters

is

Begin
get 3 bits;
accummulate the number;
If the number equal to 7
Then repeat the routine

End

171

6.6 DECODING STRINGS

The decoding-. of each symbol in a string is similar to decoding the

elements of a comment (Section 6.4). As soon as the parser recognizes a

string (i. e. recognizes a code which is representing a string token), the

decoder starts decoding and outputting all symbols belonging to the string

until it reaches the, delimiter code (a special code indicating the end of

the string which is generated by the encoder). Obviously, the delimiters

"v and "' are included in the output.

The routine for finding each character is a modified version of the

routine mentioned in Section 6.4. It becomes:

Begin
start from the beginning of the character table;
get a new bit;
while the element is an address
do find the next row;

get a new bit;
if character represents end of string
then output the symbol "i, "; stop;
Else if character represents
Then output "*) it; stop;
Else If character is "I" and the opening delimiter was
Then output "I"; stop;
Else output the character;
Start the routine again;

End

172

6.7 CONSTRUCTING THE DECODING TABLES

The information in the decoding tables is classified into 2 groups.

The first group helps to recognize characters and symbols of comments,

strings, and identifiers. The construction of this group has been mentioned

in Section (6.4). The second group, with the help of the coded file, directs

the parser to the ýext state, and if required, outputs the appropriate words

such as keywords or special'symbols. Thus each state has required some

information to deal with it. This depends on the type and number of actions

permissible in the state. A state might require only one action such as

shift or reduce; or one of many possible actions is required. If there is

only one choice, the decoding table can pass it directly to the parser

without reading any code'symbols from the coded file. This is true because

the encoder in such cases does not need to generate any code (i. e. an action

which is certain to occur). For a state which has different choices of

actions, a tree is constructed. The decoder needs only to read code symbols

from the coded file and follows the appropriate path to decide the exact

action. Hence, two different decoding tables are required (Fig. 6.3).

FIGURE 6.3: Decoding tables

Table 1 has elements equal to the number of states used by the parser.

Table I Table 2

173

This table should be consulted first before reading any codes. Each

element has one of three different values:

A value representing a token number,

2. A value representing a reduce action,

3. A value representing a pointer to a specific location in table 2.

The first and the third values are within two separate ranges so that the

decoder can distinguish between them. For example, the token numbers are

within the range (1000-1062), and the pointers are within the range (0-683).

The first and second values occur when a state has exactly one action.

Table 2 is regarded as the concatenation of different tables which have

the same format. Each individual table represents a code tree for a

specific state, and the construction of these tables is exactly as the

construction of the character table which has been mentioned in Section (6.4).

The value of each element could either be an address, or a token number, or

a value represents a reduce action. The concatenation of those tables into

one large table necessitates storing their start locations in table 1.

In the case of a state which has different reduce actions'depending

on the next input, each action has its own code. Table 2 uses these

different codes to inform the parsing part of the decoder which production

to reduce by. For example, consider the following state:

state i

a shif tj 00

b shif tk 01

c reduce x 10

others reduce y 11

part of Table 2 would be

174

For the code (10), the symbol (c) will be passed to the decoder, and

frou the ACTION table, the action will be a reduce by the production x.

175

6.8 EXAMPLE

The same samples of Pascal programs mentioned in Section (5.11) which

have been encoded by the encoder program are applied to the decoder program

(Table 6.1). The size of each file produced by the decoder program is

exactly the same as the size of the original file. So, there is no loss in

characters. and more important, the layout of the new file is exactly similar

Program number Originil Size Encoded Size Decoded Size

1 1231 464 1231
2 378 160 378
3 461 208 461
4 822 256 822
5 137 60 137
6 141 68 141
7 148 68 148
8 4266 1528 4266

TABLE 6.1: Decoding samples of Pascal programs

to the original file, i. e. the encoded file is reversible.

Again, the execution time of the decoder program (Table 6.2) has been

compared with the compilation time mentioned in Table (5.3).

Program number real user system

1 7. o 1.1 0.9
2 5. o 0.4 0.7
3 6. o 0.5 0.9
4 6. o 0.6 0.8
5 6. o 0.1 0.8
6 6. o 0.1 0.9
7 6. o 0.1 0.9
8 10.0 3.8 0.9

TABLE 6.2: The execution times of the decoder

The execution time of the decoder is similar to the execution time

of the encoder. But it takes less time to decode a file than compiling

the original file. The explanations of different times (real, user, system)
I

are mentioned in Section (5.11).

CHAPTER 7

CONSISTENT GRAMMARS AND

THE PROPERTIES OF A LANGUAGE

176

Probabilistic languages and grammars have been defined and the

relation between them has been studied in Chapter 3. This chapter

discusses a probabilistic grammar that can generate a probabilistic

language. The grammar is called a consistent grammar. By examining the

structure of a consistent grammar, it is possible to discover interesting

properties such as the average length of a string
t (average program size).

Each string has to be parsed before encoding it; this requires the

derivation of the string from the grammar rules. So from the grammar,

the average number of derivations required to parse a string of symbols

from a probabilistic context-free language can be obtained. Another

important subject of this chapter is to find out the average length of a

coded file generated by the LR encoder. This will be used as the basis

for testing the efficiency of the method.

Section (7.1) provides some definitions and notation concerning

matrices which will be used throughout the chapter. In Section (7.2),

the expectation matrix is constructed from a probabilistic grammar. From

this matrix, it is possible to prove the consistency of the grammar. The

method of obtaining the average length of a string of symbols is described

in Section (7-3). Any string has to be derived from grammar rules

(productions). The average number of derivations is explained in Section

(7.4). In right-most derivations, each syntactically correct string can

be represented by a set of states. The average number of states is explained

tNote in this chapter "string" refers to a compZete sentence in a

context-free Zanguage.

177

in Section (7.5). Section (7.6) illustrates the probability distribution

of each state. The minimum length of a coded file is explained in Section

(7.7). In Section (7.8), the average code length of a coded file is

illustrated. Finally, a comparison, through an example, between two

different encoding methods using the parsing encoding technique is explained

in Section (7.9).

178

7.1 NOTATION AND DEFINITIONS I

Some notation, and definitions are given in this section which will

be used in the following sections of this chapter. These fundamental

definitions can be found in most books which deal with matrices such as

Campbell, 65; Wilkinson, 65; and Jennings, 77. Denotations:

(n*n) matrix

A71 The inverse of the matrix A

AT The transpose of the matrix A

det(A) - The determinant of the matrix A

INI - Length of the vector N

I- Identity matrix.

An eigenvalue and corresponding eigenvector of a matrix satidfy the

property that the eigenvector multiplied by the matrix yields a vector

proportional to itself. The fundamental algebraic eigen-problem is the

determination of those values of X for which the set of n homogeneous

linear equations in n unknowns

Ax - Xx

or
(A-U) x- (1)

has a non-trivial solution. X can be obtained as

det(A-XI) -0

The values of X are called the eigenvalues of the matrix A. Corresponding

to any eigenvalue X, the set of equations (1) has at least one non-trivial

solution x. Such a solution is called an eigenvector corresponding to the

eigenvalue. If x is a solution of (1), then kx is also a solution for any

value of k. It is convenient to choose k so that the eigenvector has some

179

desirable numerical property, and such vectors are called normalized vectors.

The eigenvalues of AT are, by definition, those values of X for which

the set of equations
T XY-

has a non-trivial solution. These are the values for which

de-t(AT-XI)

and since the determinant of a matrix is equal to that of its transpose,

the eigenvalues of AT are the same as those of A.

If pairs of rows and corresponding columns of a matrix are inter-

changed, the eigenvalues remain the same.

Given a matrix A and a scalar c, then cA is a matrix of the same size

as A, in which every element in it is the result of multiplying every entry

of the matrix A by the' scalar c.

180

7.2 CONSISTENT GRAMMARS

The aim in this section is to determine necessary and sufficient

conditions on a probabilistic context-free grammar to ensure that the

summation of probabilities over all strings of a context-free language (L)

must total one, i. e. for all a in L

I P(a)
dG L

This can be achieved by examining the probabilistic context-free grammar

which generates (L). The probabilistic grammar which satisfies equation

(1) is called consistent grammar (Wetherell, 80). Therefore, it is

necessary to study the conditions under which the grammar is consistent.

For a context-free grammar, all the productions have the form

A: =a

where a may contain either zero, one, or a number of non-terminal symbols.

For example, the production

A: =aABcC

has got one A, one B and one C. So during the derivation process, if (A)

is substituted in a sentential form, this rule will produce another (A),

one B and one C. The occurrence of each non-terminal symbol can be defined

in the following matrix (Wetherell, 80).

Definition: The matrix C has IRI rows indexed by the productions and IVNI

columns indexed by the non-terminal symbols. * Element c 13
is the number

of occurrences of non-terminal symbol v3 on the consequence of the production

Ri 9 i.

181

v2v3v

c 11 c 12 c 13 c 1N

R2 c 21 c 22 c 23 c 2N

R 3

Rk ffkl Ck2 c k3 c kN

Each production has a probability attached to it; the probabilities can be

arranged in a matrix defined as follows:

Definition: The matrix Q has IV
NI rows indexed by non-terminal symbols and

IRI columns indexed by productions. An element q,, is the probability of

the production Rj which has the non-terminal V
2. as its premise and zero

otherwise, i. e.

RI R2 R3 --Rk

v1 q 11 q 12 q 13 lk

v2 q 21 q 22 q 23- q 2k

v N q LNI q N2 qq N3 Nkj

Multiplying the matrix Q by the matrix C produces a square matrix

(E) in which each element eij represents the average number of Vis expected

each time V. is re-written. In other words, eij is the expected number

of Vis in the consequences of the productions in which VI is the premise of

182

those productions. The matrix (E) is called the expectation matrix, or

the first moment matrix. For example consider the following productions,

Probability Productions

R10.5 A: -a

R20.5 A: -AB

R3MB: -cb

R4o. 2 B: -bA

Then the matrices C and Q would be

AB

R10J

CR211
R300

R41.1 Od

R1 R2 R3 R4

A .5 0.5 0 0]

B0 0 0.8 0.2

The expectation matrix E is

E Q*C
0 0

5 0.5 0 0]

0 0 M 0.2 0 0

Ll 01
A B

A, 5 0.5 1

B 0.2 0

So this means that:

183

An A generates an A-! the time 2

aB -1 the time 2

B generates an A-! of the time 5

and aB never.

The expectation matrix provides useful means to prove the consistency of

a probabilistic grammar, and also to find the average word length of a

language (Section 7.3), and the average derivation length (Section 7.4).

For a square matrix (E) the modulus of the largest eigenvalue of (E)

is called the spectral radius p(E). If (E) is the expectation matrix

computed from a probabilistic grammar, and p(E)<l, then the probabilistic

grammar is consistent (Wetherell, 80) or strongly consistent (Booth and

Thompson, 73). For instance, the above (E) matrix has eigenvalues 0.6532,

and -0.1532. Both of them are less than one. So the grammar is consistent.

Another way which can be used to show that p(E)<1 isa5ScAlows
.-

1. Set x=E

2. For each row of x, sum the absolute values of the elements of the

row. If all the row sums are less than one, halt and the answer

is p (E) <1

3. Otherwise, set x=x*x and go back to step 2.

For example, let

,50.5
X

0.2 Ol

The first row sum is 1 and the second row sum is 0.2. Since the

first row is not less than 1, then perform the third step, i. e.

184

0
X2

35 0.251

0.10 0.10

From step 2, the row sums of x2 are 0.60 and 0.20. Both are less than

1. So p(E)<l. Hence the grammar is consistent.

Each element of the expectation matrix (E) (i. e. e ii) represents the

average number of Vis expected when Vi is rewritten exactly once. In other

words, (E) is a matrix of averages for one-step derivations; (E 2) is the

expectation matrix for two-step derivations;
... and so on. In a zero-step

derivation, a non-terminal derives exactly and only itself. Thus, (E 0) is

equal to the identity matrix (I). Now, for derivations of all lengths, the

expectation matrix would be

EE
i=O

so, e"O is the average number of V. s to expect after an arbitrary derivation ii 3

beginning with V i* To simplify E"*,

EIE
i=O

I+E1+E2+

I-E

= (I-E)-l

The sum converges whenever E is small enough. Fortunately E is small

enough exactly when the spectral radius p(E) is less than one. For a

consistant grammar, p(E) is less than one, and hence

CO -1 E ax (I-E)

E"* is called the non-terminal expectation matrix.

185

7.3 AVERAGE WORD LENGTH (AWL)

For a-probabilistic. language L, the average word length (AWL) is the

average number of terminal symbols in a string obtained from the language
t

Suppose that s is a string in L, and I(s) is the length of the string, then

the (AWL) of the language is defined (Booth and Thompson, 73) as:

AWL - ýý I(S)p(s)

Were p(s) is the probability of the string s.

Finding the (AWL) from the language is difficult because of the problem

of finding all possible strings of the language. However, from the relation-

ship between the probabilistic languages and the probabilisitic grammars

generating them, it is possible to find the AWL from the grammar rules

(productions). Let the productions of a probabilistic context-free grammar

be specified as follows:

A1 : mß 11

12 A1 : =ß 12

p lk A1 : =ß lk

p 21 A2 : =O 21

nl
: An : -ß nl

p

nk
: An : =ß nk

n

where, in general, a non-terminal AI is re-written by the string with

tNote that the average word length is not the average1ength of

individual words but the average length of a -string measured in words
i. e. average string length. AWL is used here for comPatibiZity with

other research.

186

probability pij. The'string Iij is a combination of terminal and non-

terminal symbols. So for each production, the average number of terminal

symbols can be expressed as the number of terminal symbols plus the average

number of terminal symbols obtained from the non-terminal symbols. Since

there are usually . severat i., - productionswhich have the same premise-t, then

the average number'of terminal symbols generated by the grammar with A. as L

the initial symbol is equal to the average number of symbols of all productions

which rewrite A io For example, consider the following probabilistic context

free grammar G-(T, N, R, P, S) where

T-{a, b, cl; N={A, B); S-{Aj; P and R

R2

R3

R

0.5: A: -a

0.5: A: -AB

0.8: B: =cb

0.2: B: -bA

Then the average length of all symbols generated by G with A as the initial

symbol is
nA - 0.5 *1+0.5 (n

A +nB)

and for B
nB - 0.8 *2+0.2 * (1 +nA

To express formally the value of n, let:

MO number of terminal symbols in Oij;

nI- average length of all words generated by G with AI as the

initial symbol; and

qi(O ij
)- number of occurrences of A, in the consequence $ijo

Then 3. n

ni Pij Waij +I nxqx($ij))
X. 1

187

The AWL of the language generated by G. can be obtained by the

following theorem (Booth and Thompson, 73).

Theorem: Let L(G) be generated by a strongly consistent context-free

probabilistic grarnmar G. Then the AWL of L(G) is

AWL - ftOO
... 0](I-E)-'T

where E- expectation matrix (first moment matrix)

T- [t
i column vector; such that

k.
I

tIP ii M(a ij j-1

= average number of terminal symbols generated when AI

is rewritten;

I- identity matrix.

Proof: For any i

ni mip ii {m (s ii
)+j

imi x-1
k.

k
EI Pi
j-i jmj

xqx Ij
)I

n
p

2.3 nxqx(a

k. k.
n 3.

p M(a +

x!

ýP3.
j qx (a

Lj nx
j=l ii iI J=j

Then for the entire grammar

n2

k1k1

qpq i ýii 1 li li 2 li
j-i j. 1

k2k2
i p2jql(ß 2i

)i
ýj2i

q2 (ß
2i)

kk
En Pnj q10 ni

)- in Pnj q2 (11
ni

)
ii. j i-i

n2

k1

pJ M(a
Jul J

k2

p2i mo 2i

k
n

Pnj M(o
nj

188

The square matrix is the expectation matrix E. Let N denote the column

vector [n
i

], then

N= EN +T

solving for N gives

N= (I-E)-lT

where (I-E)-l exists if E has no eigenvalues with unit magnitude. This

condition is guaranteed if G is a strongly consistent context-free grammar.

The average word length for the overall grammar -n1 because A1 is the

start symbol, so

AWL- [100
... O]N

= [100 ... 0](I-E)-'T

End of proof.

From the above example
E

0.5]

0 0.20.0

the eigenvalues are 0.65, and -0.15. Thus the grammar is strongly

consistent. 5*1 + 0.5*0 5

0.8*2 + 0.2*1

rl

8]

-1
5 -0.

-0.2 0

[2.5 1.25]

05 0 .51.25
Therefore [2.5 1.25 .5

a AWL [10] 0 .51.25] 10 8]

3.50 terminal symbols per string

Wetherell (Wetherell,. 80) explains another way of finding the AWL

189

which leads to almost the same equation as mentioned above. The method

is to find the expected number of each terminal symbol after one rewriting

of each non-terminal symbol. The resulting matrix S will eventually be

multiplied by the non-terminal expectation matrix E** (see Section 7.2) to

yield matrix W. If AI is the initial symbol then the sum of the elements

of the A1 th row of W is the AWL, i. e.

'n W=ES

AWL - sum of the elements of the first row of W

First row of W- [100
... O]E**S

- [100 ... 0](I-E)-ls

To find the elements of the matrix S,

S Q. D

where Q is a matrix which has INI rows indexed by non-terminal symbols and

IRI columns indexed by productions. The element Qij has value Pij if

production Ri has non-terminal A3. on its left and value zero otherwise.

The matrix D has IRI rows indexed by productions and ITI columns indexed

by terminal symbols. The element D
Ij

has as value the number of times

terminal T. occurs on the right-hand side of the production R.. From the
1 3.

example above:
.50.5 00

Q000.8
0.2]

10 6'

D000
011

01 01

S Q. D

190

e5 095

00

050

0 1.0

Therefore

2.5

First row of W [10]

_0.5

0 1 0 6,

0.8 ob 2] 0 0 0

0 1 1

0 Lo 1 oJ
0.81

1.25 0.5 00

1.25 0 1.0 0.8-

1.25 1.25 1.0

0., 25 1.25 1.0

[1.25 1.25 1.0]

AWL 1.25 + 1.25 + 1.0

3.50 terminal symbols Per string

191

7.4 AVERAGE DERIVATION LENGTH (ADL)

It has been mentioned in Section (3.2) that a string of symbols

from a language L can be derived from the set of productions of a context-

free grammar which generates L. In each derivation, a particular production

is used, which is considered as one step in completing the derivation of

the string. So the derivation length of a string by starting from a non-

terminal symbol represents the number of steps required to complete the

derivation. Suppose that S is the initial state, then the average derivation

length ADL(S) of a derivation beginning with the non-terminal S is the

expected number of steps in a derivation beginning in S and ending with

a terminal string (Wetherell, 80). Since the length of a derivation is

exactly equal to the number of non-terminals introduced (each non-terminal

requires one application of a production rule to be replaced), then from

the non-terminal expectation matrix E00, each element represents the average

number of occurrence of the particular non-terminal symbol produced during

the derivation of a string by the first non-terminal symbol. Assume that

A1 is the initial symbol, then the sum of the elements of the A1 th row of

E CO is the ADL (A,). From the example in Section (7.3)

2.5 1.2

0.5 1.25 il

ADL(A) - 2.5 + 1.25

w 3.75

This means that the average derivation will have under four production

applications before a terminal string is reached.

To find formally the ADL, let G-({S-vl, v 2'0*0'v k' T, R, P, S) be a

192

probabilistic context-free grammar. The following definitions are made

(Hutchinsq 72b; Feller, 57).

Definition: dis, i-1,2,..., k are discrete random variables representing

the number of steps necessary to complete a left-most derivation of a

terminal string from vI.

Definition: qi(n)-p(d i -n), i-1,2,..., k.
to

Definition: For each i-1,2,..., k, Fi (s)- Iq3. Ws n. Fi (s) is the
Sequawce . n-

generating function for the A, {q, (n)
, and 'n-0

cc

n

10 qi(n) =Fi (1) =1

Definition: Let {a and {b be any two4emStls. The new -4! {c is called

the convolution of {a
iI and {b

iI and will be denoted by

{c
iI-

{a
iI *'{b

i)

where crý aob r
+a 1b r-1

+ *** +a
r_lbl+a r

bo.

Since v1 is the initial symbol, d1 is the random variable for left-

most derivation length of strings in the language L generated by G, and

q (n) is the probabilitY that left-most derivation requires n steps for
1 co

completion. So Iq1 (n) -F1 (1) is the probability of completing a
n-1 w

derivation. The average derivation length is equal to I nq 1
(n) - Fl(l).

n-0
Assume D, =ADL(V 1

).

Consider R., the set of productions applicable to Vis R 2.
P

rvI -). a1V1a2v2 clk(j v k(j 1)

p j2
rj

2v

p
rj

m
vi -),

jm

32v32
a

32
v

j2 j2
v

j2

1122 ak(i
2

)- k(i 2)

CL
mylm amvmm-m 22-*** cýc (im) Vk (im)

193

Jk
where at is an arbitrary string of terminal symbols. If n steps are

required to derive a string of terminal symbols from V, 9 then (n-1) steps

are required to generate the terminal substring from V'k v'k v
Jk

12 kU k)
by assuming that rIk production is used with probability p,

ko
So the

probability that n steps are required for completing a string of terminal

symbols from V. is
I

q i(n) - pj q11 (n) qj (n) ... qj
1

1nI +n 2 +..
Z+nk(il)-n-1

1122 k(jl)

+pj 4q2
(n)q

J2
(n qj2 (nk (j

2)
2n1 +n 2 -nk (i 2) -n-I 1122k (i 2)

m +pj q m(nl)q (n qjm
m1

+n 2 +. .
4nk

(j
2) -n- 122k (i

From the definition abgve

qi (n) - pj (q *qq (n-1))
12k (3

3221
+ pj

2
(q

1*q2**. * *qk0
2)

(n-1))

+ pj (q 'a *qq 1n.

ra
12 k(j

m

From (Feller, 57, and Hutchins, 72b) the generation function for the

convolution of two sets is the product of their generating functions.

If F(s) is the generating function of {q(n))** then the generating n-O'

function for {q(n+1)1'0 is SF(S).
n--O

F. (s) - pj S(F (S)y (S) ... F 2k

21232
+ pj S(F (s)F,

212
(S) ... Fk (i

2)(s))
S

S

194

iij

+ pj s(F, M(s)F M(s)
... FMj (s))

m2
k(

m

sI pj
hýýFj

(s)

r ER t-1 t

Since i-1,2,..., k, then there are k equations relating to the k unknown

generating functions. The equations are non-linear in the Fi (s). By

differentiating the above equation
k(j)

V(s) pj (I 'Fj (s) ITFj
3. Srj

;ERI
t-l t kOt k(s))

By letting D -F! (l), F (l)-l, i-1,2,..., k, then, i 3. i

(
k(j)

Fti 1+ pj It
C-R. t=i

J-+ pj(n(j, l)F"
i

W+
... + n(j, k)Fý (1))

r. ER.
jI

1+a Fll(l) + ai2F2'(l)+ ... + ai ii k7ký(')

+ il D+a i2 D2++a ik Dk

k
a it DI

Let D= (D
i]a column vector, i-1,2....

, k, and

1= [1] a column vector of size k

Then D-1+ ED

or
(I-E) D

or D= (I-E)-ll

Therefore ADL(V DI

sum of the elements of the first row of the

expectation matrix.

195

For instance, from the expectation matrix mentioned above

05
ADL (A)

[2.5 1.2.5]

0 .51.25

2.5 *1+1.25 *1

3.75

196

7.5 AVERAGE NUMBER OF STATES (ANS)

Any string of symbols from a language generated by a context-free

grammar has to be recognized (parsed) before storing its code. The

recognition can be represented by a unique sequence of states. Each state

is selected, either as a consequence of a shift action or a reduce action,

from the previous state. The number of shift actions is equal to the number

of terminal symbols in the string (including the end marker). In the right-

most derivations, a reduce action is equivalent to a derivation step in the

left-most derivations; because in the reduction step, the consequence of a

particular production will be replaced by its premise; whereas in the

derivation step, the premise of a particular production will be substituted

by its consequence in the sentential form (see Section 3.2). So the number

of reduce actions ispqual to the number of derivations of the string.

Therefore, the set of states which represents a string of symbols can be

divided into two subsets (see the example in Section 7.9):

1. The states which cause shift actions; and

2. The states which cause reduce actions.

In general, assume that

NS - s198 V-'sn

be a set of states represents a string of sYmbols where

I=SI 's 2'***, Si cause shift actions; and

j=S1 's 2' *.. Is i cause reduce actions;

such that I+J-n.

Then NS -I+J

The average of (I) is the average word length (AWL) which was explained

in Section (. 7.3); and the average of W would be the average derivation

197

length (ADL) which was explained in Section (7.4). So

the average of (NS) - AWL + ADL

Assume that [A] - the expectation matrix;

[ti] = the column vector as defined in Section (7.3)

Then
ANS = [1000.

... 0] (A] (t I+ (1000,
... 0] (A) [I] I

(100 ... 01 (A] ([til+[1)

From the definition of the addition of two matrices mentioned in Section

(7.1).

ANS = [100 ... 0] [A] [t
i +II

or
let e.. be the expected occurrence of the non-terminal symbol v,

P(V i) be the probability of vI

#T be the number of terminal symbols in a production j IE R
2.

Then
ANS = AWL + ADL

= (e
1e2e3 *** e O[ti] + ADL

Since ADL e1 +e 2 +... +e k

e.
P(V =I ADL

then ANS - ADL[p(v 1) P(v2) ... P(vk)][ti] + ADL

k
= ADL P(vi pj # T) + ADL jGRi

k
= ADL P(v i pj # T) + 1]

jC- RI

An example of obtaining the average number of states is mentioned in

Section

198

7.6 THE PROBABILITY DISTRI13UTION OF THE STATES

It has been mentioned that for a context-free grammar. a finite set

of states could be generated (using YACC program) to encode (or decode)

any string of symbols from the language generated by the grammar. The

transition between the states is not independent; each state has certain

connections in which it can be entered, and it can exit to other particular

states. So the probability of being in a state depends on the previous

state (conditional probability), and is noted as p(alb) which means the

probability of seeing the state (a) given that (1) the state (b) has just

been seen.

For a set of n states, a convenient way of describing the relation

between the states is to arrange the probabilities in matrix form

(transition matrix) where each row represents the current state, and each

column represents the next state. The matrix entry is the conditional

probability (Fig. 7.1). The sum of the elements in each row is equal to

abC4..

a p(ala) p(bla) p(cla)

b p(alb) p(b1b) p(c1b) ...

C

FIGURE 7.1: Transition matrix

one. For example, suppose that a, b and c are three states with the

following probabilities I

p (a I a) - -1 , p(b p(cla) 333

199

p(Alb) - -1 , 4 p(bib) - -1 2 p(clb) - .1 4

p(a1c) - -1 , 4 p(b[c) - .1 4 p(CIC) - -1 2
Then the transition matrix would be:

a b c
r1 1 11 a (.

1 ii
1 1 C

Assume that l)l'p2'***'Pn be the probability distributions of the states

s l's2'***'sn respectively. The relations between the probabilities can

be easily derived. For example, there are maximum n states in which a

new state can be seen. If state 1 is the current state, then state 1 will

be the next state with probability p(111); if state 2 is the current state,

state 1 will be the next state with probability p(112),..., and so on. In

general, the probability of each state would be:

p(l)p(111) + p(2)p(112) ++ p(n)p(lin) p(l)

p(l)p(211) + p(2)p(212) ++ p(n)p(21n) p(2)

p(l)p(nll) + p(2)p(n[2) + ... + p(n)p(nin) - p(n)

The above set of equations is arranged as follows (Hamming, 80):

(p(l),, p(2) ... p(n))
transition

matrix
(P(I). p(2) p(n)) (1)

6- j

where p(l)+p(2)+... +p(n) - 1. This indicates that the probabilities of

the states remain unchanged-through shifts in time. From the above example:

200

p (b), p Cc))

1 1-
3 3

4 2 4

1 1 1
L4 4 2j

This is equivalent to the equations

p(a) + -1 p (b) + -1 p (c) -6 p (a) 44

p(a) + -1 p (b) + -1 p (C) -p (b) 24

p (a) +Ip (b) +Ip (C) p (C) 42

It is known that

p (a) +p (b) +p (c) -1

By solving the above equations

p (b) p (c)

mpp (c))

Equation (1) can be used for limited transition matrix. Nevertheless, it

can be reorganized in a way suitable for obtaining the probability

distributions for large numbers of states with the help of computer routines

which are already available for users. Assume that (A) is the transition

matrix and (A T
is the transpose of (A). Equation (1) can be written as

PTA-PT

where (P T)
is the row vector (pl'p2, ***-Pn), then

T
AP=P (2)

It can be shown that equation (2) has a non-trivial solution POO and one

of the eigenvalues of AT is equal to unity. In this case P will be equal

to the normalized eigenvector corresponding to the eigenvalue of 1. From

the properties of eigenvaluea (Jennings, 77), --_. .a matrix has the same

201

eigenvalues as its transpose. So to prove that one of the eigenvalues is

one, it is necessary to show that

det(A-I) -0

where I is the identity matrix. Suppose that a ij is an element of the

i th row and j th
column in (A). Then

a 11-1 a 12 a 13------- a ln

a 21 a 22-1 a 23- a 2n

det(A-I)=det I

a nl
a n2 aa

n3 -1 L nn]

Any row or column can be added to any other row or column of the matrix

I without affecting the value of the determinant (Campbell, 65). So add all

the columns j-2,3,..., n to the first column, then

det(A-I). =detl

-n j1a
lj a 12 -a ln

n
a 2j -1 a 22-1 a 2n

n
il a nj -1 a n2 a nn-1

-0

since the silmation of the elements of any row is equal to 1, i. e.

a

Then r r-o

det(A-I)-det

a 12 a In

a 22-1-- -a 2n

a
n2 nn -1

202

Since the first colimm of the above matrix is all zeros, then (Campbell,

65): det(A-I) -0

Therefore one of the eigenvalues of the matrix (A T) is 1. Hence equation

(2) has a non-trivial solution PJO. Notice that equation (2) has multiple

solution vectors. That is if P is one solution then aP is a solution as

well, where a is a constant (see Section 7.1). The correct solution can be

found by using the fact that

n I P.
j=l 3.

Therefore, once the vector (x) has been evaluated, then,

p= ax
p

where a -_
x

1

n

ill
X

As an example, consider the above transition matrix

4

AT 3

L3

21
3

det(AT-I)-det
1
3

I Li

2(i
_I "-54 It) - T(- T- Ift-) + T(T2 +V

23+
.1*3. +1*3 S 16 4 12 4 12

=

For the eigenvalue of 1

x 0
a

(A -I) xb 0

X ci

2
3 xa

3 xb

1
L. -

3_ 4 2j x
L cJ

2 1 1 Xa + xb + X 0
C

xa xb + X0
C

x 3a + Xb ;. 4 x0 2c

By simplifying the above equations

Xb x C
3

x a4 "b

For xb-1
X1 C

3
and xa4

since p a+pb
+PC

Then am1 3+1+
w

Therefore ax
3-
4

-3-
11
4

4

4
rid

i. e. pa 11 'b 'c 11

,6

0

203

204

7.7 MINIMUM CODE LENGTH (MCL)

Let a be any string from the language (L) with probability p(q),

then the minimum code length would be (Hutchins, 72a),

H --
1p (a) 1092P((I)

CIEý

This can be achieved from the derivation steps and the productions which

generate the language. From the definition of the grammar (Section 3.1),

let pj (j-1,2,,,., m) be the probability of each production in R. (i-1,2 n)

in which vI is the premise with probability p(v i). Then

h. --1 3. jE: - RL
pi log2(pj)

is the minimum code length of a particular state vI. Now the minimum code

length per non-terminal symbol would be

H=I P(V i)h i

In the derivation process (left-most derivation), each non-terminal

symbol. is substituted by a particular production which is considered as

one step of the process. From Section (7.4); D1 would be the average

number of derivation steps required for deriving a string. Hence,

MCL - DI H

k
Dl IP (Vi)h i imi

In the right-most derivation, assume that s l's2'***'Sn
is a set of

states which is used to encode any string from the language (L), and each

state has got m choices. Let the probability of each choice be pj,

Then m

:L jll'3j
log2(pj)

205

be the minimum code length for a particular state (s i
). The minimum

code length per state would be p(s2.)h3. where P(si) is the probabil

of the state sI Since each string can be represented by a set of st

From Section (7.5), let N be the average number Of states required to

n
code length per state would be P(s

2.
)h

3.
where p(s is the probability

of the state sI Since each string can be represented by a set of states.

encode a string, then the minimum code length per string would be

n
MCL N p(s 3.

)h
3.

An example of finding the MCL of a string is mentioned in Section (7.9).

)

7.8 AVERAGE CODE LENGTH (ACL)

To determine the average length of the coded string generated by

the encoder, assume that:

c(r i) is the code of each rule ri;

Z(c(r i
)) is the length of the code.

Then for each non-terminal symbol v, p i-1,2,..., k

206

IIWj ZR

i
pj Z (c (r i))

would be the average code length of the code for RI- Since there are k

non-terminal symbols, each has a probability p(v i-1,2,..., k, then

the average code length for each norr terminal is

k

illp
(vi)

In a left-most derivation, the replacement of a non-terminal symbol

by the consequence of a particular production is considered as one step

in the derivation process. Hence the average number of non-terminal

symbols is equal to the average derivation length of the string. From

Section (7.4) the average derivation length Dl can be obtained* Therefore

the average code length per string would be (Hutchins, 72a):
k

ACL - D1 P(v Z.

For the right-most derivation, assume that s be a set l's2"**'sn

of states in which a string can be encoded. Let

P(s i) be the probability of si;

C be the code of each choice in the state

t(c i) be the length of the code;

p, be the probability of each choice in the state

207

Then the average code length for a particular state is

m
Z

jL
pjt(ci)

Now, for the set of state, the average code length per state is

n
P(s

From Section (7-5), let N be the average number of states required to

encode a string. Then the average code length per string would be:

n
ACL -NI P(s

_An example of the average code length per string is mentioned in Section

. (7-9)-

208,

7.9 COMPARISON

The main objective of designing a compression method is to encode

a sequence of source letters into a form such that the encoded data can

0 ccupy as li ttle storage space as possible. Obviously, all compression

methods have the ability to compress data but it has to be decided which

method is the optimal. Therefore, a comparison between different compressing

methods is necessary to decide which method does use less storage for the

encoded file.

Two practical comparisons exist. The first is to find the number of

binary digits that are required to encode a given source letter by these

methods. The second is to f ind the ratio of the size of the encoded data

to the size of the data in its original form (Section 3.9).

The encoding method (explained in Chapter 5) has been implemented on

Pascal language, and some Pascal program have been used as sample data

(Section 5.11). However, the language itself has not been used for comparing

the encoding method with an already existing encoding method because of

the difficulties of obtaining the probability of each state (there are

raore than 300 states) which require the construction of the transition

matrix, and also the construction of the expectation matrix. So, it is

, lot possible to calculate the average length of a program (AWL), and also

the average length of the encoded file (ACL). Instead, a simple language

is used for comparing the encoding method with another method using a

parsing encoding technique. The set of productions (rules) of that

language is listed in Fig. (7.2) together with the frequency, probabilityv

and the code of each production. The frequencies are obtained from six

simple programs (Fig. 7.3). The full listing of these programs is in

209

Appendix E. Note that the programs are syntactically correct but have no

semantic meanings.

Freq. Prob. Length Code

1. prog: =series

2. series: -series; stmnt

3. : wstmnt

4. stmnt: -var-exp

5. exp: -exp+factor
6. : -exp-factor
7. : =exp*factor

8. : =exp/factor

9. : =factor

10. facton-var

11. : -const

12. : -(exp)

var: -a

: -b

: WC

:. Z
const: -0

: -1

: -2

: -9

33 0.846 0
6 0.154 1

24 0.157 3 001
21 0.137 4 0000
36 0.235 2 01
12 0.079 4 0001
60 0.392 1 1

96 0.628 1 0
36 0.235 2 10
21 0.137 2 11

FIGURE 7.2: Grammar rules

210

program I

of 2

it 3

prog. size
176

62
112
53
71

166

FIGURE 7.3: Sample programs

The proposed compression method tries to encode a source file by

building up a syntax tree of that file starting from the leaves upwards

to the root. Hence, a bottom-up parsing method is required to do the

encoding. So, an LR(K) parsing technique is used. But, the compression

method which already exists, tries to encode a source file by building up

a syntax tree starting from the root downwards to the leaves. So, a top-

down parsing method is required to do the encoding. An example of such a

method is a Recursive-Descent (R-D) technique.

The above grammar rules are not suitable for R-D parsing technique,

because of the problem of left recursion. Hence, a slight modification

is required to some productions which does not affect the overall outcome.

The modified rules are:

series: - stmnt [; stmnt)

exp: - factorf(+I-I*I/) factor)

An encoded file size depends on the number of bits generated for

the letters, digits, editing characters (spaces and new lines), and for

the parsing. If its assumed that the ways used for encoding those letters,

digits, and editing characters are identical, then the comparison will

211

depend only on the number of bits generated by the encoder for the parsing.

That is, the less number of bits genera ted by one method, the better that

method is.

By implementing both methods on a number of sample programs, the

following two tables (7.1 and 7.2) have been prod uced.

Prog. size -Bits for Bits for
Total Bits for Size in

in bytes chars. edit. chars. parsing bytes

176 170 408 578 160 96

62 61 138 199 58 40

112 121 248 369 97 64

53 60 108 168 53 32

71 80 156 236 68 40

166 165 374 539 149 88

640 657 1432 2089 585 360

TABLE 7.1: Encoding program using R-D parsing

Prog. size Bits for Bits for
Total Bits for Size in

in bytes chars. edit. chars. parsing bytes

176 170 408 578 149 96

62 61 138 199 55 32

112 121 248 369 96 64
53 60 108 168 53 32

71 80 156 236 70 40

166' 165 374 539 140 88

640 657 1432 2089 563 352

TABLE 7.2: Encoding programs using LR parsing

It can be seen that the number of bits generated for characters and

editing characters by both methods for each sample program is identical.

212

Whereas, the average number of bits generated for the parsing by the

proposed method (Table 7.2) is less than that of the already existing

method (Table 7.1). This means that the proposed method can build a

syntax tree with less number of bits required to be encoded. Hence, the

average encoded file size generated by the proposed method is smaller

than that generated by the existing methodý

In general, one or both of the following two reasons cause a reduction

in the number of bits generated by the proposed method:

1. In the existing method, the frequency of each grammar rule is

fixed (i. e. the code is fixed), that is, whenever a rule is

recognized during a parsing process, the same code is generated.

For instance, whenever the rule

exp: -exp*factor

is recognized, always 4 bits are generated. But in the proposed

method, the frequency of each input symbol is fixed within each

state (Appendix D), not for all states. That is, the same input

'might'have different'frequencies in different states. Therefore,

the code length is varying from one state to another. For

instance, in state 8 the symbol * requires 2 bits, whereas in

state 17 requires 3 bits. So, the code of the expression aft

is different from the code of the same expression inside paranthesis.

2. It is considered that the average code length (i. e. average

number of bits) generated for any tree could be minimized by

t In the existing method, no code was generated for productions which

were certain to occur.

213

reducing the number of levels that the tree has.

In the existing method, the parsing starts at the root and goes down

level by level until the process is completed. If at certain levels more

than one option exists in a node, then a code should be generated by the

encoder to indicate which grannar rule is applied. For instance, consider

the following simple grammar rules with their frequencies and code lengths:

Freq. No. of bits

A: -B 20 1 bit

:. a7 1 bit

B: =b 17 1 bit

: =c 3 1 bit

the parsing tree would be:
A level

B level 2

bc

which has ý levels.

When the parser is at level 1, it only derives either a or B, and

rom B, it derives either b or c. So, in order to parse c, the parser

should pass through B, i. e. W* Bý* c.

The symbol (a) requires 1 bit to be recognized. But (c) and (b)

need an extra bit (whatever their frequencies are). This extra bit is

generated when the parser has to choose B out of two choices.

However, at any state in the proposed method, the parser can

recognize all expected input symbols (i. e. it allows a widespread of

options). This sometimes allows the parser to reduce the input according

to a specific rule (i. e. goes up one level higher) without a need to generate

214

any extra code. In other words, the parser can by-pass this level to a

higher one. For'instance, state 0 (Fig. 7.4) which examines the first

input derived from A is expecting a, b or c.

A level 1
/I\

abc

1ý
Any input could be reduced to A without generating any extra code.

state 0: prog: =. A$

as3
bs4

cs5

others error

state 1: prog: -A. $

$ accept

others error

state 2: A: -B.

rI

state 3: A: -a.

r2

state 4: B: =b.

r3

state 5: B: -c.

r4

FIGURE 7.4: A set of states for the above example

To compare the number of derivations in R-D parsing method with the

number of states used by the LR parser for the same string of symbols,

consider the R-D parsing for the following string x-a*b; y-l. From the

215

productions mentioned eariler in Fig. (7-2) . the set of derivations is

prog series

series; stmnt

-*, stmnt; stmnt

-0-var=exp; stmnt

=O, x--exp; stmnt

=* x=exp*factor; stmnt

=*-x-factor*factor; stmnt

x--var*factor; stmnt

x-a*f actor; stmnt

x=a*var; s tmnt

-I, x-a*b; stmnt

2* x-a*b; var=exp

-0- x-a*b; y=exp

=$-x-a*b; y-factor

x--a*b; y=const

x=a*b; Y-1

The derivation length is 16. Obviously, 5 derivations are part of the

scanner's job (see Fig. 7-5)o Therefore, the parser needs only 11

derivation steps in order to complete the recognition of the above string.
prog

series

parser's job series
exp

var
nt

factor

r exp
Is

t /If
ctor

exp *I

scanner's job
I-

var factor

var b

a

216

To parse the same string using LR parsing method (the set of states

generated by the YACC program is listed in Appendix D). Assume that (S.)

means shift the symbol -; and (R
5) means reduce by the production number 5.

Then the sequence of states would be:

sxssR 10 R9 S*

0s4s6s 10 s9888 15

Rjo RRRS.
S 10 s 20 S8s3s2s5

ssRRR
s4 -*

=S6
-*

1S
11 -*

11
S9 -*

9s8 ý4
s3

R2R1s lend
-+ s24. s1 accept.

The total number of states is 21,11 states occur due to reduce actions,

and 10 states occur due to shift actions. Assume that each derivation in

R-D method represents one state in the parsing process, then the total

number of derivation steps in R-D is the same as the number of reduce

actions in IR.

7.9.1 Us_ing Left-Most Derivations

To find the. average word length of a string generated from the

grammar mentioned in Fig. (7.2); the average code length; and the minimum

code length of the encoded file. By implementing the left-most derivations,

the first step is to construct the expectation matrix from the productions,

then find the non-terminal expectation matrix.

217

prog series stmnt exp factor

01 0 0 0

200.846 1 0 0

300 0 1 0
E

400 0 0.608 1

500 0 0.137 0

-1 0 0 J

0 0.154 -1 0 0

(I-E) 00 1 -1 0

00 0 0.392 -1

LO 0 0 -0.137

6.494 6.494 25.465 25.465

0 6.494 6.494 25.465 25.465

001 3.922 3.922
-1

000 3.922 3.922

LO 00 0.537 1.537

The average derivation length is

ADL -1+6.494 + 6.494 + 25.465 + 25.465

- 64.918 steps

There are 5 non-terminal symbols, the probability of each of these symbols

would be

p(prog) 0.
64.918

015

p(Aeries)- 0.1

p(stmnt) - 0.1

218

p(exp) - 0.392

0(factor) - 0.392

The average word length would be

I 1 6.494

0 6.494

AWL - (100001 00

00

LO 0

6.494 25.465 25.46ý 0-
6.494 25.465 25.465 0.846

1 3.922 3.922 1
0 3.922 3.922 0.608
0 0.537 1.537J Ll . 137J

- 6.494 * 0.846 + 6.494 + 25.465 * 1.745

= 56.424

Now to find the minimum code length per string; first try to evaluate the

minimal average code length obtained from each state:

hI--
JJRi

Pj log 2
(pi)

=0

h2m- (0.846 log 2 0.846 + 0.154 log 2 0.154)

- 0.619

h3 =0

h4 (0.392 log 2 0.392 + 0.157 log 2 0.157 + 0.137 log2 0.137

+ 0.235 log 2 0.235 + 0.079 log 2 0.079)

- 2.121

h5 = -(0.628 log 2 0.628 + 0.235 log 2 0.235 + 0.137 log 2 0.137)

- 1.306
5

H- P(v.)h.
3.

. 0.1 * 0.619 + 0.392 * 2.121 + 0.392 * 1.306

- 1.405

q

219

So the minimum code per string is

MCL - ADL *H

- 64.918 * 1.405

= 91.210 bits

The average code length per a state is
5
I P(v i)

lpjgj
i=l i

0.1(0.846+0.154) + 0.392(0.392+0.157*3+0.137*4

+0.235*2+0.079*4)+0.392(0.628+0.235*2+0.137*2)

1.499 bits/state

Now the average code length per string would be

ACL - ADL *I

- 64.918 * 1.499

- 97.312 bits.

7.9.2 Using Right-Most Derivations

For the right-most derivations, the average number of states would be:

ANS - ADL + AWL

= 64.918 + 56.424

= 121.342 states

or 1 I 6.494 6.494 25.465 25.46! T 1

0 6. *494 6.494 25.465 25.465 1.846

ANS - 1100001 0 0 1 3.922 3.922 2

0 0 0 3.922 3.922 1.608

10 0 0 0.537 1.537 L2.137J

1+6.494 * 3.846 + 25.465 * 3.745

121.342 states

220

From the state probability (Table 7.4), and the frequency of choices in

each state (Appendix D), it is possible to find the minimum code length

of a state:
22

H--i0 P(s i) jEE
I

S.
pi log2 (pi)

- 0.0499 * 0.619 + 0.0499 * 1.423 + 0.1339 * 2.065 + 0.027 * 0.703

0.0309 * 1.417 + 0.027 * 0.863 + 0.047 * 1.123 + 0.0158 *1

0.063 * 1.749

- 0.643 bits/state

Now, the minimum code length per a string of symbols is

MCL - ANS *H

- 121.342 * 0.643

- 78.024 bits

From Table (7.4), the average code length of a state is

22
I P(s I) jr=

IS P-1.
i-O ,iJ

0.0499 + 0.0499 * 1.436 + 0.1339 * 2.154 + 0.027 * 1.19o

+0.0309 * 1.542 + 0.027 * 1.286 + 0.047 * 1.278 + 0.0158 * 1.5 ý

+0.063 * 1.857

- 0.725 bits/state

So, the average code length per string is

ACL m ANS *Z

121.342 * 0.725

= 87.973 bits

I,
if a fixed code length for each character (8 bits) is usedv then the

average code length would bp ACL - 56.414 *8

- 451.312 bits

221

code
character frequency length character

39 39

36 3q

33 4k

+ 24 4m

21 4q

21 44

21 45

1 16 5p

a 14 5z

c 12 50

r 12 5f

w '12 5

12 5

b 11 5s

h 10 5t

e86y

x863
d768

76u

66v

2666

n577

TABLE 7.3: Character code lengths

frequency code
length

4 7
4 7
3 7
3 7
3 7
3 7
3 7
2 8
2 8
2 8

8
8
8
8
8
9

9

9
0
0
0
0

Fig. (7.6) shows diagrammatically the above values. Note that the

editing characters are excluded.
MCL ---m ACL

78.024 (87.973)

LR
0 263.115 451.312

Rm-D
MCL

II ACL I
97.312

FIGURE 7,6: Diagram of the average code length

222

State no. Freq. Prob. pjt 3 Pj log2(Pj)

0 6 0.008 0 0

1 6 0,008 0 0

2 39 0.0499 1 0.619

3 6 0.008 0 0

4 39 0.0499 0 0

5 33 0.0429 0 0

6 39 0.0499 1.436 1.423

7 33 0.0429 0 0

8 104 0.1339 2.154 2.065

9 60 0.0778 0 0

10 96 0.1238 0 0

11 36 0.0469' 0 0

12 21 0.027 1.190 0.703

13 24 0.0309 1.542 1.417

14 21 0.027 1.286 0.863

15, 36 0.047 1.278 1.123

16 12 0.0158 1.5 1

17 49 0.063 1.857 1.749

18 24 0.0309 0 0

19 21 0.027 0 0

20 36 0.047 0 0

21 12 0.0158 0 0
22 21 0.027 0 0

TABLE 7.4: Probability distr ibutions, average code lengths
and minimum code lengths of the states

Suppose that the average length of a string is given, then from TaVle (7.3)

the average code length per character is

ypi 'i

4.664 bits

since the average word length of a string is 56.414, then the average code

length would be: I

223

ACL - 56.414 * 4.664

263.115 bits

The efficiency of the first method (left-most derivation) would be

97.312 0.216 451.312

1 whereas the efficiency of the second method (right-most derivation) would be-,
87.973 0.195 451.312

Samples of programs (Table 7.1) have been chosen to find the average

code length of a string:

Total number of characters excluding the editing characters - 378

Total number of bits generated - 1242

378
AWL -6 63 characters

ACL =
1242

- 207 bits
6

From Table (7.2)

Total number of bits generated = 1220

ACL -
1220

= 203.333 bits
6

For a fixed code length per character (8 bits)

ACL = 63-* 8

- 504 bits

IFig. (7.7) shows diagrammatically how far apart the average code length

obtained from the samples, and the minimum and average code lengths

obtained from the grammar, were in this case.
MCL --a jr- ACL iW-" ACL

78.024 87.973 203.333

LR

11

R-D
MCL

II
ACL *-. I

ACL

91.21 _. a X---"97.312 Xýl 207
FIGURE 7.7: Diagram of the average code length

224

The same samples of programs (Table 7.1) have been chosen to find the

average code length of a string. The difference here is that the editing

characters are included.

Total number of characters - 640

Total number of bits generated, - 2674

AWL =
ý40

- 106.667 characters 6

ACL -
L674

- 445.667 bits

From Table (7.2) the average code length of a string would be:

Total number of bits generated = 2652

ACL =
2652

= 442 bits
6

3: f a fixed code length per character is used (8 bits), then

ACL = 106.667 *8

- 853.336 bits

Fig. (7.8) shows that the inclusion of the editing characters as part of

the program to be encoded, increases the code length and consequently,

the average code length becomes far from the average code length generated

from the grammar.

MCL "O"Zv CL ACL-ý,
8

LR
78.024

1
F7.973

442

853.336

1
R-D

MCL II ACL ACL,.
_I! r

91.21 97.312 445.667

FIGURE 7.8: Diagram of the average code length

225

It seems that for the small grammar tested, the minimal theoretical

average code length is

91.21-78.024 * 100 - 14.45 91.21

smaller for the IR method than the R-D method. However, in practice over

the sample program used, the average code length was:

97.312-87.973 * 100 - 9.59
97.312 -

smaller.

CHAPTtR 8

SUMMARY AND CONCLUSIONS

226

4 General definitions and illustrations have been given of the concepts

of probabilistic context-free languages, and the probabilistic context-

free grammars which generate such languages. The construction of the

parsing method LR(K) has been explained. The definition and the properties

of a code were illustrated. The method of construction of a variable-

length code known as Huffman code has been given.

The objectives 'Of this study were:

1. To design a model for the compression of a text the content of which

is partially recognized by a context-free grammar. The model was to

be based on the parsing encodingýtechnique.

2. To design a model for the decompression of the encoded string which

must retain the exact original text.

To investigate the properties of the probabilistic context-free

language, and the probabilistic context-free grammar,

The encoder has been implemented on the Pascal language. The results

were encouraging since a considerable saving in storage space has been

achieved. The encoder program consists of the parsing part and the encoding

part. The program verifies the granmatical structure of the input by

parsing its and then generates the required codes. The parsing method

used was LR(K) which is the most practical method for a right-most

derivation technique. However, two main obstacles have been found. The

first was that the manual construction of the set of states was tedious

and time consuming. This has been overcome with the help of the program

generator YACC. The second obstacle was the large size of the parsing

tables. This was optimized by splitting the ACTION table into a number

227

of subtables, and also by compressing the GOTO table. Thus the size of

the tables was dramatically reduced. For the encoding part, it generates

three different Huffman codes. That is, codes for the grammatical actions;

codes for user names, constants, and comments; codes for editing characters.

The decoder has also been implemented. The output was exactly as the

original f ile. This has proved that the encoded data was indeed representing

the original data. The program consists of two parts; - the parsing part and

the decoding part. The parsing part is similar to the parsing part of the

encoder program. For the decoding part, each Huffman code has to be

recognized before outputting any symbol. Since Huffman codes are variable-

length codes, then a fair amount of computer time is spent on code

manipulations because this involved a tree search. This is acceptable

because-computer space, not computer time, is the main concern in this

study. However, the amount of computer time spent was small compared to

the time spent on transmitting information to and from the storage devices.

Since the volume of the information transmitted was reduced, thus the

transmission time would be reduced.

Different statistical properties have been obtained from the

probabilistic language and the probabilistic grammar. These include the

average size of the input string, the average size of the encoded data,

and the average number of states required to parse a string. A comparison

has been done with an already existing parsing encoding method using a

simple example of a probabilistic context-free grammar. The encoding

method discussed earlier has produced a smaller average size of the

encoded data than the average size of the encoded data produced by the

228

other method. Nevertheless, the method can not always guarantee the

production of a smaller size for the encoded data for any string; the

reason for this is that in a left-most derivation process, each non-

terminal symbol can be represented by one state, and the first terminal

symbols derived from the non-terminal symbol represent all the possible

choices of that state. Thus the probability of selecting a particular

choice would always be the same every time the corresponding terminal

symbol is expected. Hence the same code would be generated. But in a

right-MOst derivation process, the same choices could occur in more than

one state depending on the grammar rules. Thus a particular choice might

have different probabilities, and hence different codes, depending on

which state it belongs to.

Thus the LR encoder method is feasible. It seems to be better than

the corresponding top-down encoder on average but not for every program.

It has also been demonstrated to be practical by using it to encode Pascal

programs. The encoder and decoder can be used to compress programs in

other languages (context-free languages) by changing the encoding and

decoding tables.

229

REFERENCES

ABRAMSON, N. (1963), "Information theory and coding". Me-Graw Hill Inc.

Allo, A. v., & JOHNSON, S. C., (1974), IILR par3ing"S Computing Surveys 6,

pp. 99-124.

AHO, A. V. & ULLMAN, J. D. (1972), "Optsm*zation of LR(K) parseraft, J.

Computer & Systems Sciences, 6: 6, pp. 573-602.

AHOp A. V. & ULLMAN, J. D. (1973), "A technique for speeding up LR(K) parsere",

SIAM J. Computing, 2: 2, pp. 106-127.

AHO, A. V. & ULLMAN, J. D. (1977), "'Principles of Compiler Design",

Addison-Wesley.

ANDERSON, T., EVE, J. & HORNING, J. J. (1973), "Efficient LRM parserzilt,

ACTA Informatica, 2: 1, pp. 12-39.

BOOTH, T. L. & THOMPSON, R. A. (1973), "APPZYing PrObabiZitY measures to

abstract Zanguages". % IEEE Trans. on Computers, C-22: 5, pp. 442-450.

]30RNAT, R. (1979), flUnderstanding and vriting compilers".. The Macmillan

Press Ltd.

230

CAMPBEII, H. G. (1965) * "An introduction to matrices, vectors and Zinear

programming"I Appleton-Century-Crofts.

D&MERPs. A. J. (1975), "Elimi*nation of singte production8 and merging of

non-terminaZ symboZs in LR(K) gramaratt., J. Computer Languages,

1: 2, pp. 105-119.

DeREMER, F. L. (1971), "Sinple LR(K) gnx=ars'lp CACM, 14, pp. 453-460.

FELLER, W., (1957), "An introduction to probability theory and its

appUcations". Volime 1: John Wiley and Sons, Inc.

CALLAGER, R. G. (1968), "Information theory and reZiabZe communication"..

John Wiley.

GRIES, D. (1971), "CompiZer construction for digitaZ computers". John

Wiley & Sons.

HaN, B. (1974), "A new technique for compression and storage of datatt,,

CACM, 17: 8, pp. 434-436.

HAWING, R. W. (1980), "Coding and information theory", Prentice-Hall Inc.

HOLBOROW, C., mcNEMAR, J. & STONEBURNER, P. (1976), "A review of data

compression aZgoritlvns"., DCA 100- 73-C-0015, CCTG-TM-122-76,

ADA 035786.

231

HOPCROFT9 J. E. & ULLMAN, J. D. (1969), "FormaZ Umguages and their

reZation to automata", Addison-Wesley.

HUANG, T. & FU, K. S. (1971). "On stochastic context-free Zanguagea",
O

Information Sciences 3, pp. 201-224.

HUMAN, D. A. (1952), "A method for the construction of minimum-redundancy

codes". Proceedings of the I. R. E. 40, pp. 1098-1101.

HUTCHINS, S. E. (1972a), "Data compression in context-free Zanguages",,

Information Processings 71, North-Holland Publishing Co.,

pp. 104-109.

HUTCHINS, S. E. (1972b), 'Woments of string and derivation Zengths of

stochastic context-free gramareff. 0 Information Sciences

pp. 179-191.

jENNINGS, A. (1977), 'Natrix computation for engineers and scientists",,

John Wiley.

jONES, D. S. (1979), "Elementary information theoryllp Oxford Press.

joHNSON, S. C. (1978), IIYACC - Yet Another CompiZer-CompiZer'?, Bell

Laboratories, Murray Hill, New Jersey, 07974.

232

JOLIAT9 M. L. (19709 "A simple technique for partial elimination of

unit productions from LR(K) parsers". IEEE Trans. on Computerso

25: 7, pp. 763-764.

KNUTH,, D. E. (1965) . "On the translation of languages from left to right",

Information & Controlv 8: 6, pp. 607-639.

LEWIS II p. M., ROSENKRANTZ D. J. & STEARNS* R. E. (1976), "CompiZer Design

Theory". Addison-Wesley.

MARTIN9 W. C. Jr. (1976),, "An optimizing variable power data coppression,

method" as A&M University,
.p

Ph. D. Thesis, Tex

MAURERO W. D. (1969), "File compression using Huffýmn coding"i Conference:

"I Computing Methods in Optimization Problems - ý, Academic Press,

pp. 247-256.

McGETTRICK, A. D. (1980), "Theýdefinition of programming Uznguages",

Cambridge University Press.

pAGE, E. S. & WILSONO, L. B. (1973), "Information Representation and

ManipuZation in a Computer", Cambridge University Press.

PAGER,, D. (1977) p "A practical general method for constructing LR(K)

parserell, ACTA Informatica, 7: 3 pp. 249-268.

233

SCHUEGRAFq E, J. (1976), ? 'A survey of data corTression methods for non-

numeric records". Can. J. Inf. Sciences Canada, 2: 1 pp. 93-105.

SCHWARTZ9 E. S. (1964); ?? An optimwn encoding with ?? dnimwn Zongest code

and totaZ nwnber of digits"j Information & Control, 7. pp. 37-44.

SCHWARTZj E. S. & KALLICK, B. (1964), "Generating a canonicat Prefix

encoding"i CACM, 7: 3, pp. 166-169.

SjfITH, A. J. (1976) j, "A queueing network method for the effect of data

corpression on system efficiency National Computer Conference,

pp. 457-465.

THoNFSONO R. A. (1971). "Compact encoding of probabiZistic Zanguage. 911,

Ph. D. Thesis# The University of Connecticut.

THOMPSON,, R. A. (1974), "Determination of probabiZistic gramm: zrs for

functionaLty specified probabiZity measure Zanguage3fl, IEEE

Trans. on Computers C-23: 6, pp. 603-614.

THOMIPSONO R. A. & BOOTH T. L. (1971), "Encoding probabitistic cOntext-free

Zanguages". Conference: Theory of Machines and Computations,

Academic Press, pp. 169-186.

WELLSo M- (1972)9 "FiZe compression using variabZe Zength encodingstt,,

The Computer Jouraal, 15: 49 pp. 308-313.

234

WETHERELL* C. S. (1980), "ProbabiZistic Zanguages: a review and sorne

open questions"i Computing surveys, 12: 4. pp. 361-379.

WILKINsoN, j. H. (1965), "The aZgebraic eigenvaZue probZem". Oxford

University Press.

YOUNG, J. F. (1971), "Information theory". Butterworth & Co,

APPENDIx A

PASCAL PRODUCTIONS

%token IDR DIGIT UNSREAL ,
%token STRING NOTEQ LESEQ GRTEQ ASSIGN DOTS
%token ARRAY PACKED CONST DO FILE SET FOR
%token TO DOWNTO IF THEN LABEL FUNCTION GOTO
%token OF PROGRAM ELSE RECORD TYPE UNTIL
%token VAR WHILE BEGIN END REPEAT WITH CASE
%token IN NIL MOD NOT PROCEDURE OR AND DIV
%token FORWARD EXTERN
0 -. ý
prog : PROGRAM IDR I(' idrlist 1)' 1; 1 block
idrlist : IDR I

idrlist 1.1 IDR
block : lpart, cpart tpart vpart ppart spart;
lpart : LABEL llist

llist : DIGIT
llist, DIGIT

cpart : CONST clist

clist : IDR 1=1 const
clist IDR const

const : int
real
STRING
IDR
f+1 IDR
11 IDR

: Jnt DIGIT
+1 DIGIT

11 DIGIT

real UNSREAL
1+1 UNSREAL

1-1 UNSREAL
tpart : TYPE tlist '; to'

tlist : IDR 1=1 type
tlist 1; 1 IDR 1=1 type

type I(' idrlist, I)'
const, DOTS const
IDR I
PACKED unptype
unptype

IDR

,, nptype ARRAY indlist OF type
RECORD flist END
SET OF type
FILE OF type

indlist type
indlist, 1.1 type

flist : fpart
fpart, 1; 1 varpart,
varpart. ;

fpart : idrlist 1: 1 type
fpart 1; 1 idrlist 1: 1 type

235

varpart CASE IDR 1: 1 type OF varnlistj
236

CASE'type OF varnlist
varnlist varnt I

varnlist '; ' varnt
varnt : caselab 1: 1 1(' flist

caselab const
caselab 1,1 const

vpart VAR vlistd I ;1 11

vlistd idrlist 1: 1 type 11
vlistd 1; 1 idrlist 1: 1 type

ppart fdec 1;

fdec pdec
fdec t; l pdec

pdec PROCEDURE IDR 1; 1 blocki
PROCEDURE IDR I(' formlist 1)' 1; ' blockl
FUNCTION IDR IDR '; ' blockl
FUNCTION IDR formlist IDR blocki
IDR 1; 1 blockl

formlist : fparam 1
formlist 1; 1 fparam

fparam : idrlist 1: 1 IDR
VAR idrlist 1: 1 IDR
PROCEDURE idrlist
FUNCTION idrlist 1: 1 IDR

spart : BEGIN series END
series : stmt

series 1; 1 stmt
stnit : DIGIT 1: 1 st 11

st ;
st_: var ASSIGN expr

IDR ,
'IDR I0 outlist)I
GOTO DIGIT

ýBEGIN series END
WHILE expr DO stmt

,, -REPEAT series UNTIL expr
FOR IDR ASSIGN expr TO expr DO stmt

. FOR IDR ASSIGN expr DOWNTO expr DO stmt
IF expr THEN stmt
IF expr THEN stmt ELSE stmt
CASE expr OF caselimbs END
WITH varlist DO stmt

expr sexpr
sexpr relop sexpr

sexpr 1+1 term
11 term
term
sexpr addop term

term factor 1
term multop factor

237

factor : var 1
unsconst
IDR I(' aparlist
IP elmlist IP 1
I(' expr I)' I
NOT factor

var : IDR 1
var IP aparlist'll 1
var IDR
var ;

unsconst DIGIT
UNSREAL
STRING
NIL

relop

IN
NOTEQ 1
LESEQ 1
GRTEQ

addop

OR
multop : 1*1

1/1
DIV
MOD
AND

elmlist : elmt
elmlist elmt

elmt : expr
expr DOTS expr

aparlist : expr 1
aparlist expr

caselimbs : caselimb
caselimbs caselimb

caselimb : caselab 1: 1 stmt

varlist : var
varlist var

outlist : outval
outlist outval

outval : expr 11
expr 1: 1 expr
expr 1: 1 expr 1: 1 expr

pdec : FUNCTION IDR 1; 1 blockl
blockl : block

FORWARD
EXTERN ;

I

APPENDix B

ENCODER PROGRAM LISTING

238

define NULL 0-
define stelmts 300
define zero 0
define one 1
define newline f\nl
define symlen 256
define idrsize 25
0 define bufsize 2
define blocksize 512
int fdl, fdw;
char filename[14];
char *name;
int pointer; /*stack pointer
int endflag;
int errorflag;
int dotsflg;
int ch; /* input character
int class;
int I =1;
int d =2;
int others =3;
char *keyword[]

If array" "packed", " con st", "doll "file" "set".
"for", "to", I'downtoll , "then", " label" "function",
"gotoll . "of", "program" . "else" . "record" . "type", "until" Illvarll "while" "begin" "end" , "repeat'l, "with'I. Ilcasell. flif".
If in" "nil" . "mod" "not", "procedure", "or" . Itand", "divfltllforward'I. Ilextern", O

int token;
int-idr =61;
int digit =62;
int unreal =37;
int noteq =38;
int leseq =39;
int grteq =40;
int assign =41;
int dots =42;
int lpar =43;
int dot =47;
int colon =48;
int les =57;
int grt =58;
int endfile =59;
int string =60;
int tokensH =(

44,45,46,49,50,51,52,53,54,55,. 56);
char *chars
int lenth, bits; /* length and value to be encoded*/
struct symtag (

int length;
int code;

include Ilrealdata" /* parsing tables
include "encodedata" /* enýoding tables
int stack(stelmts];
int word[idrsizel;
int upper;

239

int bufpntr; /*points to the current input in the buffer*/
char inpbuf[blocksizel;
int idrposit[] =[

2,4,8,16,32,64,128,256);
int symtab(symlen](idrsize];
int sympntr; /* symbol table pointer
int idradrs;
int oldidr;
int loc; /* (editab) pointer*/
char editab[31; /* store editing chars before encoding
int stnglnth =6;
int stngcode =44;
int cmntlnth =13;
int cmntcode =1646;
int n1count;
int counter; /*no. of bits stored in a current word*/
int buff(bufsize]; /* output buffer*/
int index; /* points to a current word*/

nextcho /*get one char at a time*/
I

int n;
if(bufpntr >= blocksize)

n=read(fdl, inpbuf, blocksize);
if(n I= blocksize) inpbuf[n] = 1\01;
if(n<=O)error(4);
else bufpntr=O;

I
ch=inpbuf[bufpntr++];
if Uch >= IM &&eh <= 8Z8)
else if (. ch >= 101 && ch <=
else class = others;
return ;

chckidro

register i, J, r;
upper 0;
while class == d

ei (ch >= 8al Uch <= Izl»classcl;
191) class = d;

11 class == 1 11 ch == '%-')

word[upper++] = ch;
nextcho;

word[upperl = 1\01;
for (i=0; keyword[il I= 0; 1++)
I

for (J=O; (r= keyword[il[jl)==word[j] &&rl= 1\01; j++);
if (r== word[j])

token
return;

token = idr;
lookupo;
return;

I

240

crname(s) /*creats an encoded file name*/
char *s;

name = filename;
while (*name++ = *s++);
name 2;
*name le';

codeproc(len, bitseq) /*generate codes
int len, bitseq;
I

int temp, J, wa;
register i;
temp = counter + len;
if(temp <= 32)
1

counter = temp;
buff(index] = buff[indexl<< len 1 bitseq;

bitseq <<= (32 - len);
for(i=counter +1 ; i<= 32; 1++)
I

wa = bitseq & 020000000000;
bitseq <<= 1;
len-;
buff[indexlzbuff[indexl<<l 1 (wa? one : zero);

if(index == bufsize -1) /*buffer is full*/

J=write(fdw, buff, 8);
index = counter = 0;

else
index++;
counter = 0;

for(i=O; i<len; i++)
I

wa = bitseq & 020000000000;
bitseq <<= 1;
counter++;
buff[indexl=buff[indexl<<l 1 (wa? one : zero);

I
I

}

else

241

oldproco /*encode the position in symbol table of an old idr*/

register i;
for(i=O; i<8; i++) if(sympntr < ldrposit[i]) break;
i += 1;
codeproc(i, idradrs);

lastwriteo

int i, j;
for(i=counter + 1; i<= 32; 1++) buff[index] <<= 1;
j= write(fdw, buff, 8);

storecharo /* encode each char in a new idr or const*/

register ij;
for(i=O; i< upper; i++)

j= word[i]
codeproc(chtab[jl. length, chtab[j]. code);

checko /*encode idrs or constants*/

int i;
if(token==idr 11 token==digit 1; token==unreal)

codeproc(l, oldidr);
if(oldidr==1) oldproc(); /*an old idr or const*/
else

i=upper; /*new idr or const*/
while(l)

if(i>=7)

codeproc(3.7);
i-7;

else
codeproc(3, i);
break;

storecharo;

else if(token == string) rdstringo;

242

lookupo /*search the sym. table for idr or const; store it if new*/

int r;
register ij;
for(i=O; i<sympntr; i++)
I

for(J=O; (r=symtab[i][JI) == word[j] && r 1=1\01; j++);
if(r==word[j]) /*an old idr*/
I

oldidr 1;
idradrs i; /*position in sym. table*/
return;

if(sympntr <= symlen) /*new idr*/
I

for(J=O; J<=upper; J++) symtab[i][j] = word[j];
oldidr = 0;
idradrs =0;
sympntr++;
return;

I

else
printf("symbol table is full");
exito;

rdigito
I

moreo
I

}

I

while (class == d)
I

word[upper++] = ch;
nextcho;

return;

if(class==d) rdigito;
else if (ch ch
I

word[upper++] = ch;
nextcho;
rdigito ;

I
else error(l);
return;

4

243

chckinto

upper 0;
rdigito ;
if(ch==I. I)

nextcho;
if (class I= d)

if(ch ==I. I)

token = digit;
word(upperl =1\01;
lookupo;
dotsflg =1;

else error(l);
return;

word(upper++]
rdigito;
if(ch I= IEI)

token = unreal;
word[upperl = 1\01;
lookupo;
return;

word[upperl = IEI;
nextcho;
more () ;
token = unreal;
word[upperl = 1\01;
lookupo;
return;

else if(ch == IEI)

word[upper++] = IEI;
nexteho;
more () ;
token = unreal;
word[upperl = 1\01;
lookupo;
return;

I
else

token = digit;
word(upperl = I\Ot;
lookupo;
return;

}
}

244

rdcomnto Pencode co=ent3*/

int temp;
while(ch It 101)
I

codeproc(chtab[chl. length, chtab[chl. code);
nextcho, -

nextcho;
if(chzzl)') codeproc(cmntlnth, cmntcode);
el3e (

temp = 101:
codeproc(chtab[templ. length, chtab[templ. code);
rdcomnto:

I
return;

I

editproco Pencode editing chars

char wa;
register i;
if (loc)
I

codeproc(l, l);
codeproc(2, loc);
for(i --0; i< loc; i++)

wa -- editab[i];
if(wazz' 1) codeproc(1,0);
el3e if(wa zz I\tl) codeproc(2.2);
el3e codeproc(2,3);

loc 2 0;

rd3tringo Pencode 3tring3f/

while (ch Ix 1\11)
codeproc(chtsbEchl. length, chtabEchl. code);
nextcho;

nextcho;
if(chsx 1\11)

codeproc(chtsbEch3. length, chtabEchl. code);
codeproc(chtabEchl. length, chtab[chl. code);
nextcho;
rdstringo;

el3e codeproc(3tnglnth, 3tngcode);
return;

chokothro
I

int c;
register i;
switch(ch)
case 10:

nextcho;
if(ch == 1>1) token = noteq;
else if (ch == 1=1) token = leseq;
else token = les;
if (ch == 1>1 11 ch == 1=1) nextcho;
break;

case 1>1:
nextcho;
if (ch == 1=1)[

token = grteq;
nextcho;

else token = grt;
break;

case 1: 1:
nextcho;
if(ch == 1=1) (

token = assign;
nextcho;

else token = colon;
break;

case I. I:
if(dotsflg== 1)

token = dots;
nextcho;
dotsflg = 0;
break;

nextcho;
if (ch == 1.1) 1

token = dots;
nextcho;

else token = dot;
break;

case 1\11:
nextaho;
token = string;
break;

case 1\01:
token = endfile;
break;

default:
for(i =0; (c=chars[il) I= 1\01 && c I= ch ; i++);
if (c == ch) I

token = tokens[i];
nextcho;

else error(2);
break;

return;

245

I

246

error(i)
int i;
I

errorflag = 0;
endflag = 0;
switch(i)
case 1:

printf("lex. error real number\n");
break;

case 2:
printf(Illex. error unknown input\n");
break;

case 3:
printf(I'syntax error \n");
break;

case 4:
printf("reached end of file\n");
break;

default:
printf("unknown error\n");
break;

printf(I'line number %d\n", nlcount);
return;

I

247

scano
I

while(ch==' ch=zl\nl 11 ch==111 11 ch=zl\tl 11 chz='(')

switch (ch)
case II:
case I\tI :
case I\nI :

editab[loc++] = ch;
if(ch==I\nl) nlcount++;
if(loc >= 3) editproc();
nextcho;
break;

case :
nexteho;
if(ch I=

token lpar;
editproco;
codeproc(1,0);
return;

else[
editproc();
codeproc(4,9);
nextcho;
rdcomnto;

nextcho;
break;

default :
editproc();
codeproc(4,8);
while(ch I= 1P)

nextcho;
codeproc(chtab[chl. length, chtab[chl. code);

nextcho;
break;

editproco;
codeproc(l. 0);
if (class==l) chckidro;
else if (class == d) chekinto;
else chckothro;
return;

}

248 *

actiono /*find the action and a code to be generated with its length*/

register tbno, rwno, tok;
int val;
tbno = stab[3tack[pointerl][0]; /*table number*/
rwno = stab[stack[pointerl][11; /*row number*/
tok = toktab[token][tbnol; /*column number*/
3Witch(tbno) I
case 0:

val = tabO[rwnol;
lenth=O;
bits=O;
break;

case 1:
val, = tabl[rwno][tok];
lenth = entabl[rwno][tokl. length;
bits = entabl[rwno][tokl. code;
break;

case 2: ,
val = tab2[rwno][tok];
lenth = entab2[rwno][tokl. length;
bits = entab2[rwno][tokl. code;
break;

case 3:
val = tab3[rwno)(tok];
lenth = entab3[rwno](tokl. length;
bits = entab3Crwno][tokl. code;
break;

case 4:
val = tab4[rwno][tok];
lenth = entab4[rwno](tokl. length;
bits = entab4[rwno][tokl. code;
break;

case 5:
val = tab5[rwno][tok];
lenth = entab5[rwno][tokl. length;
bits = entab5[rwno][tokl. code;
break;

case 6:
val = tab6[rwno][tok];
lenth = entab6[rwno][tokl. length;
bits = entab6[rwno][tokl. code;
break;

case 7:
val = tab7[rwno][tok];
lenth = entab7Crwno](tokl. length;
bits = entab7[rwno][tokl. code;
break;

case 8:
val = tab8[rwno][tok];
lenth = entab8[rwno](tokl. length;
bits = entab8[rwno][tokl. code;
break;

case 9:
val = tab9[rwno][tok];
lenth entab9[rwno][tokl. length;
bits entab9Crwno][tokl. code;
break;

249

case 10:
val = tablO[rwno][tok];
lenth = entablO[rwno][tokl. length;
bits = entablO[rwno][tok]. code;
break;

case 11:
val = tabll[rwno][tok];
lenth = entabll[rwno][tokl. length;
bits = entabll[rwno][tokl. code;
break;

default :
printf(Ilunknown table number %d\n", tbno);
exito;

return(val);

parseo /*parsing routine*/

register temp, tpntr, nonterm;
int nont;
while((temp = actiono) <0 && temp I= -500) /*reduce action*/

temp = temp
if (lenth != 0) codeproc(lenth, bits); /*generate a code*/
pointer -= gramtab[temp][01; /* popped off the stack*/
tpntr stack(pointer];
nont gramtab[temp](11;
nonterm = nontab(nont];
stack[++pointerl = gototab[gotopntr[tpntrll[nonterml;

if (temp >= 0 && temp < 800) /*shift action*/

stack[++pointerl = temp;
if (lenth I= 0) codeproc(lenth, bits);
checko;

else if (temp -500) 1
endflag 0; /*accept the input*/
lastwriteo; /*store the buffer*/

I
else error(3);
return;

I

250

main(argc, argv)
int argc;
char **argv;

int i, num;
for (i=l; i< argc; i++)
I

fdl = open(argv[il, 0);
if(fdl < 0) printf("%s not found\n", argv[il);
else

crname(argv[iD;
fdw = creat(filename, 0644);
pointer = 0;
stack[pointerl = 0;
counter = index = sympntr = n1count =0;
bufpntr = 0;
num = read(fdl, inpbuf, blocksize);
if(num I= blocksize) inpbuf[num] = 1\01;
nextcho;
scan() ;
endflag = errorflag = 1;
while(endflag)
f

parseo ;
if(errorflag==O 11 tokenz=endfile) endflag=O;
else scano;

if(errorflag == 0) {
printf("an error is occured On %s\n", argv[i]);
close(fdw);
unlink(filename);

else
printf("%s is encoded\n", argv[il);
close(fdw);

close(fdl);

printf(Ilend of execution\n");
exito;

APPENDIX C

DECODER PROGRAM LISTING

251

include <stdio. h>
define stelmts 300
define symlen 256
define idrsize 25
define bufsize 128
define blocksize 512
define reduce -100
define reducel 100
define zero 0
define one 1
define binsize 683
include "realdata" /*parsing tables*/
include "decodedatall /*decode tables*/
int buff(bufsizel; /*input buffer
int idrposit[I =(

2,4,8,16.32,64,128,256);
char symtab[symlen][idrsizel;
int sympntr; /* symbol table pointer*/
int nofchrs;
int index; /*points to current input word*/
int counter; /* no. of bits read from a word*/
char filename[141;
char *name;
FILE *fd2;
int fdl;
int pointer; /* stack pointer*/
int endflag, comntflag;
int errorflag;
char *keyword[]

"array", "packed", "const'l, tidoll, "file", "set",
"for'l, "to", "downtoll, "thenll, "label", "function",
"goto", Vfoffftllprogramll, "else", "record",
"type", "until", "vartl, "while", Itbegin'l, "end",

, "repeat", "with'I. Ilcasell, 'lifflt
Ivinll, "nilll Itmod", Itnot" . "procedure" "or",
Itand" I'd ivII , "forward" "ex tern". " 11 911o" #"<=" 911>=11 9": =11 tit, 4, " 9 it (it 'If; ti, 11.11 911: 1t off[11,11 Pf tltýlf 911+11 fit-" 0"*" 1
"/"tvv="9"<"9II>"9"\OII, O);

int token;
int idr =61;
int digit =62;
int unreal =37;
int endfile =59;
int string =60;
int stack[stelmts];
int n1count;

252

gtbito /*get one bit from the buffer*/

int J;
register wa;
if(counter >32)

if(index== bufsize - 1) /*read a block

j= read(fdl, buff, blocksize);
if(j< 0) error(2);
else index =0;

else index++;
counter

wa = buff[index] & 020000000000;
buff[index] <<= 1;
counter++;
return(wa ? one : zero);

I

binserch(pntr) /*search a binary tree*/
int pntr;

register i, J, r;
i= gtbito;
while ((r bintree(pntrj[il) <0)
I

jr* (-J);
pntr += J;
i= gtbito;

if(r I= reducel) token r;
else token = 0;
return;

error(i)
int i;
I

errorflag = 0;
switch(i)
case 1:

printf("an error number in decod table\n");
break;

case 2:
printf("an error in the number of bytes read\n");
break;

case 3:
printf(I'syntax error Wt);
break;

default:
printf("unknown error\n");
break;

I
printf("line number %d\n". nlcount);
return;

I

253

oldproco
I

register i;
for(i=O* i<8; i++) if(sympntr < idrposit[i])break;
return(! + 1);

countchro /*find no. of chars in an idr or const
I

register i, bits, num;
num = 0;
for(i=l; i<= 3; 1++)

bits gtbito;
num num<< 11 bits;

nofchrs += num;
if(num== 7) countchro;

lookupo /* print idrs or constants

int bit, count, postion, 1, r;
register i, j, k;
if((bit = gtbito) ==1) /*already in symbol table
I

postion = 0;
count = oldproco; /*length of the location
for(i=1; i<= count; i++)

bit = gtbito;
postion = postion<< 11 bit;

fprintf(fd2, "%s", symtab(postion]);

else
nofchrs = 0; /*new idr or const*/
countchro;
for(i=O; i<nofchrs; i++) /* store in symbol table
I

J= gtbito;
k=0;
while ((rzchartab[k][j]) <0)

1=r* (-J);
k += 1;
j= gtbito;

symtab[sympntr][i] = r;

symtab[sympntr][i] t\01;
fprintf(fd2, "%s", symtab[sympntr]);
sympntr++;

I

254

rdcharso /* print chars of strings or comments
I

int k, 1, ch;
register ij;
while(l)

i=O;
J=gtbito;
while((k=chartab[ij[j))<O)

1=k*(-l);
i+= 1 *,
J= gtbito;

ch= chartab[i][j];
if(chz=128)(

fprintf (fd2, "
break;

else if(ch==129)f
f printf (fd2, "*) 11)
break;

else if(ch==')' && comntflag ==O)(
f printf M2,111 11)
break;

else fprintf(fd2, "%c", ch);
}

255

editproc() /* output editing chars

register i, bit;
while(gtbito)
II

nofchrs=O;
for(i=1; i<=2; i++) /*find no. of editing chars

bit = gtbito;
nofchrs = nofchrs<< 11 bit;

if(nofchrs==O) /*start a comment*/

if(gtbito) I
fprintf(fd2, "(*");
comntflag = 1;

else I
fprintf(fd2, "i");
comntflag =0;

rdcharso;

else[
for(i=1; i<= nofchrs; i++)

if((bit=gtbito)==O) fprintf(fd2, " 11);
else if((bit=gtbito)==O) fprintf(fd2, "\t");
else I

fpr int f(fd2, n")
nlcount++;

I

256

chktokno

if(token == idr 11 token digit 11 token == unreal)
lookup();

else if(token== string)
fprintf M2, "
rdcharso;

I
else fprintf(fd2,11%s", keyword[tokenl); /* keyword or symbol*/
return;

}

decodeo /*decodr routine
I

register i, J;
i= stack[pointer];
j= dcodtab[i];
if(j == reduce) return;
else if (j >= 1000 && j <= 1062) token =j- 1000;
else if Q >= 0 && j <= binsize)

binserch(j); /* search the apprpriate tree
else error(l);
return;

I

ername(s)
char *s;

name
while
name
*name

creat a file name

filename;
(*name++ = *s++);

2;
Ip';

I

257

actiono /* find the action

register tbno, rwno, tok;
int val;
tbno = stab(stack[pointer]][O]; /*table no
rwno = stab(stack[pointerl](1]; /*row number*/
tok = toktab(token][tbno]; /*column no*/
switch(tbno)
case 0:

val tabOErwnol;
break;

case 1:
val = tabl(rwno][tok];
break;

case 2:
val = tab2[rwno][tok];
break;

case 3:
val = tab3[rwno][tok];
break;

case 4:
val = tab4Crwno][tok];
break;

case 5:
val = tab5Crwno][tok];
break;

case 6:
val = tab6[rwno][tok];
break;

case 7:
val = tab7[rwno][tok];
break;

case 8:
val = tab8[rwno][tokj*,
break;

case 9:
val = tab9[rwno][tok];
break;

case 10:
val = tablOErwno][tok];
break;

case 11:
val = tabll[rwno][tok];
break;

default :
printf(Ilunknown table number %d\n", tbno);
exito;

return(val);
I

258

parseo /*parsing routine
I

register temp, tpntr, nonterm;
int nont;
while((temp = actiono) <0 && temp I= -500) /*reduce action*/

temp = temp * (-l);
pointer -= gramtab[temp][01; /*popped off the stack*/
tpntr stack[pointerl;
nont gramtab[temp][11;
nonterm = nontab[nont];
stack[++pointerl = gototab[gotopntr[tpntrll[nonterml;
decodeo;

if (temp >= 0 && temp < 800 /*shift action*/

stack[++pointerl = temp;
chktokno;

else if (temp -500) endflag = 0; /*accept*/
else error(3);
return;

I

259

main(arge, argv)
int argc;
char **argv;

int i,
for (i=l; i< argc; i++)

fd1 = open(argv[il, 0);
if (fdl < O)printf("%s not found\n", argv[il);
else (

crname(argv[il);
fd2 = fopen(filename, "w");
pointer = 0;
stack[pointerl = 0;
counter = 1;
n1count = 0;
index = sympntr = 0;
j= read(fdl, buff, blocksize);
editproco;
decodeo;
endflag = errorflag = 1;
while(endflag)
I

parse() ;
if(errorflag==O 11 token==endfile) endflag=O;
else I

editproco;
decodeo;

if(errorflag == 0)

printf(Ilan error is occured on %s\n", argv[il);
felose(fd2);

else
printf("%s is decoded\n", argv[il);
fflush(fd2);
fclose(fd2);

close(fdl);

printf(Ilend of execution\nlt);
exito ;

J

APPENDix D

LIST OF THE SET OF STATES FOR THE EXAMPLE

IN SECTION (7,9)

260

The following set of states is generated by YACC for the language

used for the comparison.

state 0

$ accept:. prog $end

var s

9 error

state 1

$ accept: prog. $end

$ end a

a error

state 2

prog: series.

series: s
.
eries.; stunt freq. length

s5 33 1 bit
161 bit

state

series: stmnt.

.

state

st=t: var. -exp

S6

error

state

series: series;. stmt
var s4

-error

261

state

stmat: var-. exp

var s 10
const s

s 12
error

state

series: series; stmt.

. r2

state

stmnt: var=exp.

exp: exp. +factor

exp: exp. -factor

exp: exp. *factor

exp: exp. /factor

+s 13 23

S14 5

S 15 26

S16 11

r4 39

state

exp: factor.

,r9

state 10

factorwar.

.r 10

state 11

factor: conste

.r 11

2 bits

3

2

3

2

freq. length

22 1 bit

92 bits

82"

262

state 12

factor: (. exp)

var s 10 17 1 bit

const s 11 42 bits

s 12 02

* error

state 13

exp: exp+. factor

var s 10 10 2 bits

const s 11 11 1 bit

-s 12 32 bits

error

state 14

exp: exp-! tfactor
var s 10 15 1 bit

const s 11 62 bits

s 12 02

0 error

state 15

exp: exp*. factor

var s 10 26 1 bit

const s 11 62 bits

S 12 42 bits

error

state 16

exp: exp/. factor

var s 10 61 bit

const s 11 02 bits

s 12 62 bits
error

263

state 17

exp: exp. +factor

exp: exp. -factor

exp: exp. *factor

exp: exp. /factor

factor: (exp.)

+ S-- 13
s 14
s 15
s 16
s 22

error

state 18

1

16

10

1
21

exp: exp+factor.

.r5

state 19

exp : exp-f actor.

.r6

state 20

exp: exp*factor.

.r7

state 21

exp: exp/factor.

.r8

state 22

factor: (exp).

4 bits
2 bits
3 bits
4 bits
1 bit

. 12

APPENDIx E

LISTS OF SAMPLE PROGRAMS USED FOR THE COMPARISON

IN SECTION*(7,9)

264

i=i+1;
w1+1'2;
rw5+4*wh+wh+9 w)
xw X-+O-W) g;
dde;
d (d b e) e;
r (r arb* r) /c;
n=r- d* x -e *x

9+k2;

b *(i +
x +(I-w) *h

265

266

0;
0:
m a;
1/ (M-1);
2 e/ (c*z);
2;
(i- 1) *h;
5+ 2
a+ 5b

267

(03) /(b -2);
g +1;
(g*i) +J;
h-c

e4 +1;
(e o) /(p q +1);
e+d;
a+r +y *(9 /c)

268

269

ka+b+1;
s= (a*4) / (z - 9);
qq+1;
nn *(I +
x w* i+ (1 - w) * h;
ce+ah;
ccb;
rrb;
r (r a* r) / (b-a * c);
kn1

0

