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ABSTRACT 

Data compression, the reduction in size of the physical representation 

of data being stored or transmitted, has long been of interest both as a 
I 

research topic and as a practical technique. Different methods are used 

for encoding different classes of data files. The purpose of this research 

is to compress a class of highly redundant data files whose contents are 

partially described by a context-free grammar (i. e. text files containing 

computer programs). 

An encoding technique is developed for the removal of structural 

dependancy due to the context-free structure of such files. The technique 

depends on a type of LR parsing method called LALR(K) (Lookahead LRM). 

The encoder also pays particular attention to the encoding of editing 

characters, comments, names and constants. 

The encoded data maintains the exact information content of the 

original data. Hence, a decoding technique (depending on the same 

parsing method) is developed to recover the original information from 

its compressed representation. 

The technique is demonstrated by compressing Pascal programs. An 

optimal coding scheme (based on Huffman codes) is used to encode the 

parsing alternatives in each parsing state. The decoder uses these codes 

during the decoding phase. Also Huffman codes, based on the probability 

of the symbols c oncerned, are used when coding editing characterst 

comments, names and constants. The sizes of the parsing tables (and 

subsequently the encoding tables) were considerably reduced by splitting 

them into a number of sub-tables. 



The minimum and the average code length of the average program are 

derived from two different matrices. These matrices are constructed 

from a probabilistic grammar, and the language generated by this grammar. 

Finally, various comparisons are made with a related encoding method by 

using a simple context-free language. 
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CHAPTER 1 

INTRODUCTION 
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Computers are used because of their accuracy in getting the right 

results, the speed at which they, accomplish the job, and their capacity 

for storing information. Of course, there is a limit (restriction) to 

each of the above facilities. The obvious restriction is the insufficient 

size of the storage space. -To overcome this, it is necessary either to 

extend the size of the secondary storage which is costly, or to find 

efficient algorithms for compressing and restoring (decompressing) data 

which allow the storage that is available to be better utilized. This 

study considers, for a given string of symbols, the problem of finding a 

shorter string that uniquely determines the original string. It must 

always be possible to recover the original string from the short string. 

The algorithm for_transforming a string into a shorter string is called 

data compression, and the algorithm for recovering the original string is 

called data decompression. 

This study assumes that the input string consists of a finite set of 

symbols with some sort of structure from a context-free language. This 

structure produces redundancy in the language which is described by a 

context-free grammar. In addition, the string includes characters which 

lead to a more readable string. These characters are called editing 

characters. 

The data compression model (i. e. an encoder) is designed to accept 

the above input stream, check for its correctness from a syntactical 

point of view (parsing the data), and then generate.. the required codes.. 

The whole operation requires a finite set of steps (states) to be completed. 

The encoded data, which is supposedto occupy less storage space than the 
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original string, maintains the exact information content of the original 

data and should uniquely represent the original data. 

To recover the original data, a decompressio n model (i. e. a decoder) 

is designed to accept the coded data, check for any syntax error, and then 

output the required symbols. Týere must be an aI greement between the encoder 

and the decoder as to the way of parsing the data and the class of codes 

used (by the encoder) to represent different aspects of'the encoding process. 

The decoded string must be exactly the same as the original string. 

A particular encoder (and corresponding decoder) are developed to 

compress data written in the Pascal language. The parsing'of the input 

depends on a technique called LR(K) parsing. The codes used are of 

variable-length; they are constructed according to . the optimal Huffman 

coding method using the-probabilities attached to the symbols, grammar 

rules, and choices in each state. Samples of Pascal programs have been 

collected, and a frequency program was written to find the frequency of 

different elements from those samples. 

A matrix called the expectation matrix is constructed from the 

probabilistic grammar, which wilthelp to obtain the-average size of an 

input string, the average number of steps required to parse the string, 

and the average size of the encoded string. - 

The overall structure of the presentation is as follows: 

Chapter 2 explains, in general, the construction of codes for a 

sequence of letters. It also explains some general properties of, codes 

and specifies in particular a type of code called an instantaneous'code. 

Two classes of codes are available, fixed-length codes, and variable-length 

codes. The attention is concentrated on the way of constructing variable 
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length codes, especially Huffman method, because such codes will be used 

in the encoder and the decoder programs, and can produce an average code 

length nearer to the minimum code length (i. e. the entropy). 

Chapter 3 defines and explains a structured language called context- 

free language-which would be generated from a context-free grammar. It 

also illustrates the way of deriving a ýtring of symbols from the set of 

grammar rules (productions) using leftmost derivation and rightmost 

derivation techniques. By including a probability with each production, 

the grammar becomesaprobabilistic grammar which can generate a probabilistic 

language. Different methods used for compressing and decompressing strings 

from a probabilistic language will be described. 

In the encoding method, the input must be (parsed) checked for any 

possible syntax error before the actual-encoding procedure starts. So, 

Chapter 4 explains the techniques used for parsing a string from a language. 

Most emphasis is placed on a parsing method called LR(K) method. This 

includes the construction of the states and the parsing tables. Because 

of the large size of the parsing tables, different techniques are used to 

minimize the tables into a reasonable size. A parser generator called YACC 

is described in this chapter. 

Chapter 5 describes the encoder model which accepts a program written 

in a context-free language as input and generates a corresponding encoded 

file. The encoder is an LR(K) parser generating Huffman code output. The 

codes represent the user names, constants, editing characters, comments 

and the parsing actions. The encoder program requires tables for holding the 

necessary codes which will be used during the encoding process. The codes 
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are constructed according to the frequencies of different actions, and 

symbols which were found by using a special program (frequency program). 

The coded file has to be decoded in order to obtain the original file. 

The decoder model is described in Chapter 6. The structure of the decoder 

follows the structure of the encoder very closely. It includes the decoding 

of user names, constants, editing characters and comments. The decoder 

requires information to recognize the codes. This information is stored 

in decoding tables. 

Chapter 7 discusses the properties of a probabilistic grammar which 

can generate a probabilistic language. Finding the properties depends on 

constructing a matrix called the expectation matrix from the grammar rules. 

It is possible to find out the average size of the input file, the average 

number of steps for recognizing a string of symbols, and the average code 

length (average length of a coded file). For rightmost derivations, the 

probability distribution of each state, and the average number of states 

required to parse a string of symbols is also discussed. 

Finally, Chapter 8 concludes the overall work. 



CHAPTER 2 

OPTIMAL CODE LENGTH PER LETTER 
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This'chapter basically explains the problem of representing letters 

from a source alphabet in terms of another set of letters. This 

representation is referred to as a code. Some properties of a code are 

explained in Section 2.1. For a set of source letters, the code consists 

of a finite number of code words. These words have either a fixed length 

or different lengths (Section 2.2). Section 2.3 shows how to represent 

code words by building up a tree. This representation helps when the 

source letters are retrieved from a sequence of code letters. For certain 

types of codes known as instantaneous codes, there is a formula (Kraft's 

inequality) in which it is possible to prove the existence of such codes 

for a given set of code word lengths. This inequality is explained in 

Section 2.4. Section 2.5 shows how to find the minimum average code 

length per source letter which is equal to the entropy. The average code 

length for a source letter is explained in Section 2.6. In Section 2.7, 

it is shown that an optimal variable-length code can be constructed from 

a well known method called Huffman's method. Finally, an extension to 

Huffman's method which led to a reduction in both the longest code word 

and the total number of digits, is illustrated in Section 2.8. 
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2.1 SOME PROPERTIES OF A CODE 

Let S-(sl,, s 2' . *. Ds N) 
be a source alphabet. consisting of N source 

letters. These source letters can be represented by a sequence of 

different letters called code letters from another set C-(c 1'c2' 6-9cm), 

such that, for each sI ES, i-l,..., N there is a sequence of ci E=-C' j-l,..., M 

(repetitions are allowed) representing s 3. . 
For example, consider the 

representation of 4 source letters, using binary digits (0,1) as code 

letters, defined by Table 2.1. 

Source Letters Binary Representation 

00 

s 01 2 

s 10 3 

s 11 4 

TABLE 2.1: Binary Representation of Source Letters 

So, there are 4 binary sequences called code words, and each source 

letter corresponds to one code word. The correspondence of binary 

sequences to source letters is an example of a code. Using the code in 

Table 2.1, it is possible to obtain a sequence of binary digits for any 

sequence of source letters. For example, suppose that the sequence, 

sIs2S1s4 of source letters is required to be coded, the corresponding 

sequence of binary digits is 

00 01 00 11 

Conversely, it is possible (with the help of Table 2.1) to obtain, -the 

same sequence of source letters (i. e. s1s2S1s4) from the above sequence 

of binary digits. To discuss properties of codes (Abramson 63), it is 
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necessary first to give a formal definition. 

Let S=(sl, s 2' 0.09s N) 
be a set of source letters. Then a code is 

defined as a mapping of all possible sequences of letters of S into 

sequences of letters (code letters) of some other alphabet C=(cl9c 2"0'9cH)' 

S is called the source alphabet, and C is the code alphabeto 

The definition of a code, as mentioned above, is general. Therefore, 

it is necessary to investigate some of its conditions and try to give a 

clear idea of what a code looks like. 

1. The procedure of transforming a source letter into a corresponding 

sequence of code letters is called an encoding, and the processor is 

called an encoder. Hence, for each source letter in the source 

alphabet, there is a corresponding code word. This enables the 

encoder to generate the right code word during the encoding process. 

For example, in Table 2.1, there are 4 source letters, and each one 

has its own code word. s1 can be encoded as 00, s2 as 01, s1S2 as 

0001.... and so on. Since there is a fixed number of source letters, 

then the number of code words is fixed as well. A code satisfying 

this condition is called a block code. All code words contain either 

the same number of code letters (fixed-length) or different number 

of code letters (variable-length). 

2. All code words of a block code should be distinct, that is, no two 

code words have the sam sequence of code letters. In Table 2.1, 

for example, all code words are different. But in Table 2.2 the 

code words of both s3 and s4 are the same (101). A block code in 

As are , di-stinctis CýýtLed- noh-jsjn5ataýr- ,. vhi6h- aA the, codf- worc 
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Source Code Word 

s1 00 

s2 01 

s3 101 

s4 101 

TABLE 2.2: A binary code 

The process of retrieving the source letters from a sequence of code 

words is called a decoding process, and the processor is called a 

decoder. Without the distinction of code words, the decoder can not 

obtain the exact source letters. ' Given Lhe.. ýALowjnj , sequence 

of code words 

00 101 01 

the decoder could generate (by using Table 2.2) either 

s1s3s2 

or S1s4S2 

3. Although a code should be non-singular (Table 2.3), it is possible 

to have a sequence of code letters which does not represent a 

unique sequence of source letters. Suppose that the sequence of 

binary digits 

001001 

Source Code 

s10 

s2 01 

a3 001 

s4 

TABLE 2.3: A binary code 
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is given, then the decoder (using Table 2.3 as a dictionary) could 

generate one of the following sequences of source letters. 
I 

S3S3; 

s1s2s3; 

s3SIs2; 

or s1s2s1s2 

Therefore, code words should be uniquely decodable. The code in 

Table 2.4 satisfies this condition. 

For a sequence of uniquely decodable code words, the decoder ought 

to be able to decode each code word as it arrives without checking 

the succeeding code letters. This can be achieved (Hamming 80) when 

no code word is the prefix of another code word. A code in which no 
Y. 

code word is a prefix ofAanother code word is called an instantaneous 

code, or a prefix condition code. 
I 

Source Code 

s10 

01 

Oil 

0111 

TABLE 2.4: Uniquely decodable code 

Suppose that, a sequence of binary digits composed of code words 

from the code in Table 2.4 is given, and the decoder has already 

received the first binary digit (0), then it can not decide whether 

that digit is the code word of sl, or it is a prefix of a code word 

representing s 2' or s3 or s4; unless a further check on the next digit 
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is made. Thus the code in Table 2.4 is not an instantaneous code. 

An example of an instantaneous code is given in Table 2.1. 

The advantage of an instantaneous code is that the decoding can be 

accomplished without delay, because the end of a code word can be 

recognized immediately and subsequent code letters do not have to be 

observed before decoding is commenced. 
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2.2 CLASSES OF CODES 

As has been mentioned in the'previous section, a code consists of a 

fixed number of code words. The number of code letters in a code word is 

called the length of the word. If every code word has the same length, 

then the code is calledafixed-length code. In contrast, if the code words 

are not all of the same length, then the code is called a variable-length 

code (Johns, 79). 

Section 2.2.1 explains the construction of a fixed-length code, 

including the length of the code word. Variable-length codes are discussed 

in Section 2.2.2. 

2.2.1 Fixed-Length Code 

Let 0,1,2,..., 9 be a source alphabet., Then there are 10 different 

ways of selecting only one letter from the source alphabet. For selecting 

2 consecutive source letters, there are (100-10 2) different ways. So, 

the number of selections of a sequence of letters depends on the number 

of source letters and the length of the source sequence. 

In general, suppose that s l's2'* .. 's N 
be a source alphabet. Let k 

be the number of selections from the source alphabet. Then there are Nk 

different source sequences of length k that might be. emitted from the 

source. Suppose that cl, c 2'***'cM is a code alphabet. Let the length 

of a code word be L. Since all code words have the same length, then the 

number of different code words is HL 

From Section 2.1,, each source sequence of. length k must correspond 

to a separate code word. This is not possible unless there are at least 

4 
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as many code words as there are source sequences (Johns, 79; Callager, 68). 

So, to find the length of a code word (i. e. L) the following condition 

is satisfied: 

MLýNK 

L log M >, K log N 

L >, K log N 
log H 

log N For K-1, the minimum length of a code word is 
log M. For example, suppose 

that N=4, and at each time only one source letter (K-1) is encoded into 

a sequence of binary digits (M=2). Then: 

L >, 
log 4 

-ý log 4-2 binary digits log 22 
So, all code words must be at least of length 2. See Table 2.1. If N-6 

then 
Lý log 26 :ý2.58 binary digits 

L must be an integer number, so the minimum length of a code word is 3. 

Encoding and decoding of source sequences using fixed-length codes 

are trivial. Both procedures require a dictionary of all source letters 

and their corresponding code words to be consulted. Almost all current 

computer systems use a fixed-length code for transforming or storing 

characters. Nevertheless, this class of codes does not, in general, 

provide a minimum average code word length per source letter. This will 

be explained in Section 2.5. 

2.2.2 Variable-Length Code 

In a variable-length code, the length of a code word for a source 

letter may be different from that of the code word for another source 
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letter. Choosing different lengths, for the code words represents a 

statistical point of view, that is the source letters of a source 

alphabet are all used with different frequencies (i. e. have different 

probabilities). Consequently, a code word with a short length should be 

assigned to a high frequency source letter, and a long length code word 

assigned to a low frequency source letter. 

If the source letters are used with about the same probability, 

little extra compression will be achieved by using a variable-length 

code rather than by a fixed-length code (section 2.2.1) (Holborow, 

McNemar and Stoneburner, 76). Hence a fixed-length code may be regarded 

as a method for encoding source letters which have a uniform probability 

distribution. However, if the statistics describing the usage of source 

letters are known accurately, the use of a correctly chosen variable- 

length code will produce a total code length much less than that obtained 

by a fixed-length code. 

Before discussing the ways of constructing a variable-length code, 

it is important to mention that the code, which will be implemented in 

this study, must satisfy the properties in Section 2.1 (i. e. an 

instantaneous code). A necessary condition imposed on an instantaneous 

code is that no code word is the prefix of any other code word. This 

condition is called a prefix condition. 

2.2.2.1 How to Construct a Variable-Length Code - Method 1 

Let S be a set of N source letters (slgs 
2' eggs N 

1. Each sI has a 

propability p(s 1, <i, <N. Ut'M-be.. the number of code letters in the code 
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alphabet C. Divide the source letters into M subsets making the 
1 

probability of each subset as close to jj aa possible (Johns, 79; 

Gallager, 68). Assign a different code letter to each of these subsets. 

If a subset has only one source letter, then the process on that subset 

will terminate. Divide each subset into M approximately equiprobable 

subsets, and assign to each new subset a different code letter. Continue 

in this process until each subset contains only one source letter. 

As an example, suppose that S=fs l's2's3's4 
I and the probability of 

each source letter as shown in Table 2.5. Let C=(O, I) i. e. M-2. Then 2 

subsets {fs'), {s s 11 are obtained each with probability -1. Assign 0 
12 3`94 2 

Source Prob. Step 1 Step 2 Step 3 Code p(s )--I- 

m 

s1001 22 

s11 10 10 
1 

2422 

110 110 
1 

323 

23 

TABLE 2.5: An instantaneous code 

to the first subset, and 1 to the second subset (step 1). Since the 

first subset has only one source letter, i. e. sl, then the process is 

terminated, and sI gets code word 0. Divide the second subset into two 

subsets Qs 1, {s s 11, each with probability . 
1. Assign 0 to the first 

2 3' 44 

subset, and 1 to the second subset (step 2). Since s2 is the only source 
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letter in the subset, then it gets code word 10. Finally, divide the 

second subset into two subsetaUs ), {a 11, each with probabilit., 
1 

34 8' 
Assign 0 to the first subset, and 1 to the second subset (step 3). The 

process is terminated, s3 gets code word 110, and s4 gets code word 111 

(see Table 2.5). The code satisfies the condition in Section 2.1; 

therefore it is an instantaneous code. 

If the division can be achieved such that all subsets are equally 

probable at each step, then a relation can be established between the 

probability of a source letter and the code word length. That is: 

P(s 
m 

where II is the code word length of the source letter s 

2.2.2.2 How to Construct a Variable-Length Code - Method 2 

For M-2, there is another way of constructing an instantaneous code 

(Abramson, 63). That is by assigning 0 to the first source letter and 1 

to the remaining source letters. The first source letter gets the code 

word 0. Select one source letter from the remaining letters and assign 0 

to its code word which becomes 10. Assign 1 to the remaining source 

letters. continue with this process until no more selections can be 

made. For example, suppose that there are 4 source letters s1 's 2' s3 's 

Let M=2 i. e. C=(0,1), then assign 0 to sl, and 1 to S2's3 and s4 i. e. 

s2 

s3 

Sý 1 
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The code word for s1 is 0. Select s2 and assign 0 to it. Assign 1 to 

s3 and a 4' 
i. e. 

S0 

s2 10 

s3 11 

s4 11 

So, the code word of s2 is 10- In the last selection, assign 0 to S3 

and 1 to s 4' i. e. 

91U 

S2 10 

S3 110 

s4 

S3 gets the code word 110, and s4 gets 111. 

For four source letters, an instantaneous code consists of four 

code words which can be obtained. As mentioned above, the shortest code 

word is assigned to the highest frequency source letter and assign the 

longest code word to the, lowest frequency source letter. 

Although methods 1 and 2 can construct an instantaneous code, they 

cannot always generate optimal codes. A well known method used to 

generate an optimal variable-length code is called Huffman's method. It 

is explained in Section 2.7. This method will be applied to the encoder 

and the decoder program 

4 
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2.3 TREE REPRESENTATION OF CODE WORDS 

Another way ofdescribin3 a set of code words for an instantaneous 

code is by building up a tree (Johns, 79; Gallager, 68). A tree (sometimes 

called a rooted tree) is a finite set of points (nodes) connected by lines 

(branches) which satisfies the following properties (Page and Wilson, 73; 

Hopcroft and Ullman, 69). 

1. Any two nodes in a tree are connected by a unique path (sequence of 

branches). The branch leaves one node and enters another node. 

2. There is exadtly one node which no branch enters. This node is 

called the root. 

3. Exactly one branch enters every node except the root. 

A node . 
'with at least one branch leaving it, is called a branch 

node (or non-terminal node). A node wUh- no branch leaving is 

called a terminal node. For example, in Figure 2.1, the tree is a rooted 

tree (node I is the root). It has 8 nodes and 7 branches. Nodes (1,2,3) 

are norr-terminal nodes, and nodes (4,5,6,7,8) are terminal nodes. 

level 11 root node 

order I level 22 3, 

branch 

non-terminal node 

order 2 level 3.. 4-**" 5N 6Z 7N 8'ý'*4-- terminal node 

FIGURE 2.1: A rooted tree 

The level of a node in a tree is the number of nodes passed through 
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on the path from the root to that node (. inclusive of both the root and 

the node). For instance, node 2 is at level 2 because on its path there 

are only 2 nodes (node 1 and node 2). The order of a tree is the number 

of levels excluding level 1 (the root) which is assumed to be of order 0. 

For a particular order, the number of nodes is equal to the number of 

branches coming from each node in the previous level. The set of all 

nodes n, such that there is a branch leaving a given node m and entering 

n, is called the set of direct descendants of m. A node is called a 

descendant of node m if there is a sequence of nodes nl, n 2'* ., n k such 

that n1 -M, nk =n, and for each i, n i+1 is a direct descendant of n i* 

So far, a general illustration of a tree has been given. A special 

case of a tree in which each node has exactly zero or two leaving branches 

is called a binary tree (Figure 2.2). A non-terminal node has two leaving 

branches, and a terminal node has zero leaving branches. 

FIGURE 2.2: A binary tree 

Suppose that the code letters are binary digits (0,1), then a 

binary tree is required to be constructed. To construct the code'in 

Table 2.5, start from the root (level 1) of the tree. Two branches 

corresponding to the choice between 0 and I exist which lead to the 

second level (order 1) of. the tree (Figure 2.3). In this levelp one node 
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becomes a code word (0),. and the second node represents the first code 

letter of the following code words. Another selection between 0 and 1 

is made from the second node. leads to the third level of the tree. 

root first level 
0/1`1ý 1 

second level 

10 third level 

116 liý ... fourth level 

FIGURE 2.3: A tree for an instantaneous code 

Again, two nodes exist, one node becomes a code word (10), and the second 

node represents the next code letter of the following code words. 

Similarly, the fourth level of the tree is obtained from the previous 

level. This level has 2 nodes representing 2 code words (110 and 111). 

Generally, by starting from the root, the successive letters leading to 

a terminal node represent a code word of a source letter. 

The process of branching from one level to another, away from the 

root, can be done on any node (except terminal nodes). If all nodes at 

one level have either zero or two leaving branches (Fig. 2.4); this will 

lead to a full tree. 

. 10 

. 10 1% 

FIGURE 2.4: A full tree 
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2.4 TRE KRAFT INEQUALITY 

In Section 2.1, some constraints on the code word lengths of a 

prefix condition code have been discussed. Those constraints concern 

the quality of code words. It is possible to express the constraints in 

a quantitative fashion. The expression is provided by the following 

theorem. 

Theorem (Kraft): A prefix condition code exists for code words of lengths 

ZVI 2 9.0.9k N 
if, and only if, 

N 
II 

'< 1 (2.1) 
:1 Mlk 

where M is the number of different letters in the code alphabet. 

Proof 1: (Abramson, 63; Gallager, 68): 

Part Q: Sufficient condition. 

Let I l'Z2'*-'ZN 
be code word lengths satisfying the inequality 

N1 
:ý1 

kil Mik 

These lengths may or may not be all distinct. Consider all code words 

of the same length at one time. Therefore, let n1 be the number-of, code 

words of length 1; n2 be the number of code words of length 2; etc. If 

the largest of the ZI -L then 

nN 

The sunimation of (2.1) contains n terms of-!; n terms of -L; etc. It 
IM2M2 

may then be written as n. 
-" '< 1 (2.2) 

1-1 MI 
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On multiplying (2.2) by Mt 

t n. M z IM 
ill M 

or 
Z-i z 

nIMM 

n1M 
Z-1 

+ nP 
Z-2 

+ nP 
t-3 

++nM 

Z- L-1 Z-2 
nL 1< M nlM nP ... n Z-1 M 

By dropping the term nz and dividing by H 

n 1-1 <M 
Z-1 

-n1 
z-2 

-n2M 
z-3 

- ... -n L-2 
m 

Continue dropping the subsequent terms and dividing by M each time, 

n3M3n1M2-n2 

n2M2n1M 

111 N 

For n1 (the number of code words of length 1), M possible such words 

can be formed-using a code alphabet of M code letters. Since n 11<M, 

select n1 code words arbitrarily. Then M-n 1 code letters were not used 

as code words. They are prefixes of length 1. By adding one letter to 

the end of each of these permissible prefixes, a number of code words 

of length 2 could be formed i. e. 

(M-n 
1 

)M -M2 -n 1M 

From the inequality above it is possible to select n2 code words 

arbitrarily from among M2 -n 1M choices; then 

(M 2 
-n 1 M) -n2 

were not used as code words. By adding one code letter, there are 

(M 2 
-n 1 M-n2)M =M3 -n 1M2 -n 2M 
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permissible prefixes of length 3. It is certain according to the above 

inequality that no more than this number is needed. So, n3 code words 

may be selected arbitrarily. Proceed in this way until all code words 

have been formed. 

Part ii): Necessary condition: 

To prove that equation (2.1) is a necessary condition, the arguments 

already used are reversed. 

End of Proof 1. 

Proof 2: (Johns, 79): 

Draw a full tree which has M branches coming from each node (Figure 

2.6). There are M nodes of order 1, M2 of order 2,..., Mk of order k, etc. 

01 
0k4 

. nodes of order 1 

. nodes of order 2 

.. * nodes of order 3 

FIGURE 2.6: The full tree of order 3 where M-2 

Each node gives rise to a code word. M code words of length 1 are 

available at order 1, M2 code words of length 2 are available at order 

2, and so forth. 

Let Z l'12"***"*tN satisfy (2.1). If 9,1s the largest of Li1, <i, <N, 

then the full tree would be of order 1. and the tree representing the 

code will be embedded in it (in Figure 2.6 the tree (solid) embedded in 

the full tree (dashed)). 
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Arrange the lengths in an ascending order k 'a choose any 1 

node of order Z1. say xl, in the full tree as the first code word. 

Eliminate all the branches leaving xl, All nodes on the full tree of 

each order greater than or equal to L are still available for use as 

code words except for the fraction -I. - that stem from node xV Choose 

M 
any available node of order Z 

2' say x2, as the second code word. 

Eliminate all the branches leaving x 2* All nodes on the full tree of 

each order greater than or equal to It are still available for use as 2 

code words except for the fraction I+ Repeating this process 

will lead to the situation that after choosing xk (k<N) as the k th 
code 

word, all nodes in the full tree of each order greater than or equal to 
kI 

k are still available except for the fraction I- stemming from x k j=l 
Mzk1 

to xk. From (2.1) this fraction is always less than 1 and so nodes are 

still available for further code words. Therefore the procedure can be 

taken as far as xN* 

Conversely, the tree representing any prefix condition code can 

be embedded in a full tree whose order is the largest of the code word 

lengths. A terminal node of order IV in the tree representing the code, 

has stemming from it a fraction 1 
of the terminal nodes in the full 

MIk 
tree. But the sets of terminal nodes in the full tree stemming from 

different terminal nodes in the tree are disjoint on account of the 

prefix condition. Hence these fractions can sum to at most 1 which 

yields the equation (2.1). 
End of Proof 2. 
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To show whether a given sequence of code word lengths is acceptable 

as the lengths of the code words for an instantaneous code; examine the 

following sets of code lengths (Table 2.6). 

Source Code a Code b, Code c Code d 

s1 00 000 

s2 01 01 10 10 

s3 10 Oil 110 110 

s4 11 0111 11 1110 

TABLE 2.6: Sets of code lengths 

In binary code letters, the inequality becomes 

N1 

ý< 1 
kil 2 

1k 

For code a4 
x111+I+ 

k-l 2 
Ik T+T44 

which satisfies the Kraft' s inequality. This means that there is an 

instantaneous binary code with four code words each of length 2. For 

code b4 

kXl 
_Zk m -2 +T+ -6 + 76 
2 

which satisfies the Kraft's inequality. For code c 

49 
2ý+V k-l 2 

1k 

Here, the lengths do not satisfy the Kraft's inequality and therefore it 

could not possibly be an instantaneous code. 

Kraft's inequality can help to find a code word length for a set of 
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words having the same length. For example, suppose that there are 4 code 

words, then 4 

or L>, 2.2 

tk 

Therefore, the length should at least be equal to 2 in order to satisfy 

Kraft's inequality (see Table 2.6 code a). 

Kraft's theorem provides a sufficient condition on the word lengths 

of a code by showing that it is possible to construct a prefix condition 

code with the prescribed word lengths. However, it does not say that any 

code satisfying the inequality is a prefix condition code. For example, 

in Table 2.6, code b is not a prefix condition code. Nevertheless it 

satisfies Kraft's inequality. So, it is possible to construct a prefix 

condition code with the prescribed word lengths (see code d). 

The relation between a uniquely decodable code and the Kraft's 

inequality is provided by the following theorem (Johns, 79). 

Theorem (McMillan): If a code is uniquely decodable with code words of 

lengths 111 2'-, ZN then'the inequality of Kraft's theorem is satisfied. 

Proof: Let n be any arbitrary positive integer, then 

NI)n. N1N1NI 
I tJ 

k 
11 

Mlkl 
kl-l lk ", 01 

m122k -1 'tk 

NxN 

klml k 2=1 kn -1 

I 

mz1 
+t k2+... +z 

n 

Now Ik +9, k+... +L k 
is the number of code letters in a sequence of n 

code words. Let r 
3. 

be the number of sequences of n code words which 

contain i code letters. Let Imax be the largest of Z 1"2'***'tN* 
The 
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value of i could not be less than 1 letter nor more than nZ Hence 
max 

Nn nt max r. 

I 

lkýl 

MJ 

ýi-i 

MI 

If the code is uniquely decodable, then all code words with a length of i 

code letters are distinct. Thus 

rM 

i. e. rI can not exceed the maximum number of different sequences of i code 
i 

letters which is M Therefore 

INn nt max M 1. 

kil M 
tk) 

I 
i-I Mi 

nZ max 

,< nt max 

1 
ý(nt 

max) 
1/n 

m 
lk 

By allowing rrý-, the right-hand side tends to unity. Therefore, 

N1<1 

kil MZk 

which satisfies Kraft's'inequality. 
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2.5 ENTROPY 

It is mentioned, in Section 2.2, that for a code alphabet M there 

are ML equally likely words in which each word contains a number L of 

separate code letters (not necessarily all different). Each of these 
I 

words can be assigned to a different letter from the source alphabet S. 

Thus the amount of information gained when a source letter is encoded is 

represented by L code letters. Hence it is possible to measure the amount 

of information per source letter. 
L 

Let D be the number of different words, let M-2 i. e. (0,1). Then D-2 

To measure the information, the logarithmic method is used (Young, 71; 

Gallager, 68) 

log2 D-L 1082 2 

since 1092 2-1 

then L= log 2D 

Thus L is equal to the logarithm to the base 2 of the number D of different 

equally likely words. The probability of any one of the D different 

equally likely words is . 
1. So D 

-log2 D 

m -log2 pi 

which means that, the amount of information obtained from a source letter 

Si is equal to -log 2 
(pi). In general, let s 1"s2'* .. 's N 

be a sequence of 

N different source letters. Each letter has a probability p(s i)=Pip 
N 

with 0, <Pi, <l and 
i11 

pi -1 then the self-information of the letter sI is 

defined as (Johns, 79) 
26 

I(s -log 2 pi 
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The base for the logarithm fixes the unit of information. Namely, it 

determines the numerical scale used to measure information. With base 2, 

the self-information is measured in bits (an abbreviation of binary digits). 

Since 0, <pi$l, then I(si) is always positive and its value'depends on the 

probability of the letter concerned. That is I(s i) increases when pi 

decreases, and vice versa. For example, suppose that pi 
I 

then 2 

-log 

=1 bit 

one bit is the amount of information obtained when one of two possible 

eqiially likely letters is received. Let piml, then 4 

I(S -log 24 

-2 bits 

Two bits are obtained when one letter is chosen at random from 4 different 

letters. Note that, when the probability is decreased, the self-information 

is increased. 

The average ayn unt of information obtained per letter from a source 

S, or the average of the self-information, is called the entropy of 

(Johns, 79) i. e. 
N 

H(S) -pI As 

N 
or H(S) -IA 1092 Pi bits- 

01 

As an example, consider the source S=(s ) with pl- 
I 

9P 
11 

l's2, s3's4 2 2ý4-'V3=14 8' 

Then,, the average amount of information obtained per source letter is 

4 
H(S) Z? -Ip log 

iml i. 2 pi 

11- 
.1 log .1- .1 log .1-i log 1 

2 log2 2424828828 
1+L+3+3 
2288 
3 
-Z bits. 
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If H(S) is the entropy of a source letter, then a sequence of source 

letters can not be represented by a sequence of bits using fewer than 

H(S) bits per source letter on the average (Gallager, 68). However, it 

can be represented by a sequence of bits close to H(S) bits per source 

letter on the average. It is mentioned that the self-information of a 

letter increases when the uncertainty of that letter grows (the probability 

of the letter decreases). Hence, the entropy may be regarded as an average 

amount of uncertainty. 

From the definition of the entropy, log 
2pi'<o 

for all Oýpi, <l, thus it 

can never be negative. Let one letter sj have probability one (pj-1) and 

the remaining letters have zero probabilities in a source S of N letters. 

Then N 
H(S) =- 

iýl 
Pi log 2 pi 

, ý- -(O+O+... +l log 2 
(1)+0+... +0) 

since log 2 
(1) =0 

then H( S) is 0 

i. e. the amount of uncertainty is zero; namely it is certain that the 

letter si is received. 

iqs weLt as . ýL Lowf-r Lýocknct of -ae-ro ther-e- j! ý- an apper boand. - 

which the entropy will never exceed. This limit is log2 N (Abramson, 63). 

Consider the quantity 
N 

1092 N-H(S) - log 2N+p1 log 2 pi 

NN 
= 

illpi 
log2 N+ 

illpi 
log2 pi 

N 

illpi 
log 2N pi 
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I nNP. 
since log 2 Npi =I, n2 

I 

and -1 log2e t n2 

therefore log 2 Npi - knNPi 1082 e 
N 

Thus log 2 N-H(S) = log 2ep. InNp (2.3) 
2. 

From the relation between the natural logarithm of a variable x and the 

value (x-1), it is found that 

Znx< x-I (2.4) 

with equality if and only if x-1. 

By multiplying (2.4) by (-l) 

Ln .1ý, -- 1-x (2.5) 
x 

Assume - Npi 
x 

Npi 

From (2.5) kn Npi Z1 (2.6) 
Npi 

From (2.3) and (2.6) 
N 

log N-H(S) >, log e pi(l 22 Npi 

N 
log 

2 e( Pi 

a log 2 e(1-1) 

ý0 

From (2.4), the equality obtains when 1 for all i. Therefore 

1 
Npi 

H(S)-log 2N only when pi N 
for all i. Hence the maximum value of the 

entropy is exactly log 2N 
if and only if all the source letters have 

equal probabilities. For example, the entropy of 4 source letters 
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s each having a probability equal to -L is 
l's2, s3, s4; 4 

4 
H(S) -- P3. log2pi 

= -4 log 
424 

-2 bits 

- log 24 
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2.6 AVERAGE LENGTH OF A CODE WORD 

Let S=fs l's2' 0.01S NI 
be a sequence of source letters with their 

corresponding probabilities Pl'p2"**'PN . Let cl, c2,. *etc N 
be a sequence 

of code words; such that each sI can be transformed into a code word cip 

1, <i, <N. Let Z V12' . 9t N 
be the lengths of the code words. Then the 

average length of a code word I 
av 

is defined as: 

N 

av 
pi Ii 

The relationship between the average code length (Lav) and the 

entropy (H(S)) can be obtained as follows (Abramson, 63; Hamming, 80). 

From the Kraft inequality (Section 2.4), let M-2, 

N 
J 

jmi 21 

2 
1 

be regarded as a probability distribution where 

N 
x. 1 

3. 
i=1 

Consider the expression involving two probability distributions xI and pi 

X. 1NX. 
p. log P-) = -i- n2 p. Xn 

12 pi I Pi 

From the relation (2.4) 

xi1Nx. 
p. log ip (-L - 1) 

IL 2 i-n-2 Pi Pi i. i 

1N 
-Z -j (xi - Pi) Ln2 i-i 

1NN 
in-2 xi -Z pi 

,< 
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or log 1 log 1 P. - Pi 
i-1 12 pi iml 2 

N1 
since H( S) P. log 

12 pi 

N1 
Then H(S) pI log 2 

N 

1< Pi log 2 2 

< 2-ti) pi (1082Y log2 

N 
log 2y+i11 Pi ti log 22 

since y, <l, then log 2y'<O' N 
Therefore H (S), < pili or H (S)*Z 

av 
(2.7) 

The necessary conditions for the equality of (2.7) are 

y1 

and pi xi 9 for all i 

2-ki 
y 

2-k' 

By taking logarithms to the base 2 of both sides 

log 2Pi- -Z 1. 

or -1092 pi =Ii 

Thus, for an instantaneous code, L 
av must be greater than or equal to 

the entropy. Furthermore, t 
av can achieve the equality if and 6nly if 

i =-log 2pI 
for all i. 

Given a sequence of source letters and their corresponding probabilities, 
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a coding technique known as (Shannon-Fano coding) can be applied to 

obtain the code word length for each source letter directly from the 

corresponding probability, such that 

-log 2 pi '< Zi < -log 2pi + 
.1 

The implementation of this method is trivial and satisfies (2.7). 

However, it does not generate optimal codes as it will be found in 

section 2.7. 

Let slvs 2's3's4 
be a sequence of source letters, let the probability 

of each source letter pimm 
1 

then 4 
4 

H(S) -i pi 107'2 pi 

-4 11 T 0'2 4 

2 bits 

since ti>, -log 2pi 
1 

>'-'-'2 4 

>, 2 bits 

then the minimum value that Ii can get is 2 

4 
z 
av mI piti 

imi 

4*1* 4 

2 bits 

Therefore H(S) - Zý 
av 

Suppose that the probabilities of-sls s are 
11 

2' 3's4 P-S'12'12 

respectively. Then 

111121 
H(S) ý -(i log2 1+T log2ý79 + T2 1092 1ý23 

- 1.623 bit-s 
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-log 
1 

22 

1 bit 

Z> -log 
1 

2'23 

> 1.58 

The closest integer to 1.58 is 2, so t 2ý 2 bits. 

>, -log 
1 

32 12 

>, 3.58 

so 13mx4 
4m 

4 bits 

z 
av - Pit i 

+ 1+ -1 *2+ -I- *4+1* 3 12 12 

1.833 bits 

Therefore H( S) < P. 
av - 

The bounds of Z 
av 

are formally provided by the following theorem 

(Johns, 79; Gallager, 68). 

Theorem: For any uniquely decodable code 

z>H 
(u) 

av 0 log M 

Code words can always be chosen to satisfy the prefix condition and 

<H 
(u) 

+ 
av log H 

where u is a set of letters with their probabilities. 

Proof: Let Pl'p2'***9pN be the probabilities of the source letters, and 

let Jt 1'*tV . **, )I N 
be the code word lengths. 

H(U) 
av 

log XI pi log pili log M 
pi i=1 

og log -1- T. pi M 
Pi + pi 

NI 

ill 
pi log 

M 
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since Ln x- 
log x 
log e 

logx- Inx loge 

Using the inequality In xs x-l for x>0 

or log x< (x-1) log e 
N1-i) 

H(u) - Xav log M$ log ei11M zi 

NN 
log eI-I Pi) 

m"i ini 

log e 
iim 

since the Kraft's inequality 

N 

1M 

is valid for any uniquely decodable code, then, 

H (u) -I av 
log M<0 

or 
1< 

H (u) 
av log M 

The equality occurs only when pi 2,1, 
<i, <N. 

M 2. 

In the second part of the theorem, only the probabilities pi of the 

source are given and it has to be shown that lengths can be obtained for 

the code words of a code satisfying the stated condition. If the code 

word lengths did not have to be integers, then 1 
2. could be obtained to 

satisfy, 1 
Fi -m li , 1*i, <N. 

However, by choosing Zi to be the integer satisfying 

II 
Pi <11<i, <,. N (2.8) 

Summing over N, the left-hand side of (2.8) becomes 

N1N 
I- -T. -- Ip 

1M i-1 

,<I 
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which satisfies the Kraft's inequality. Therefore a prefix condition 

code exists with these lengths. Taking the logarithm of the right-hand 

side of (2.8) 

log Pi < log 

log Pi < (1-1j) log M 

-log Pi > (Ii-1) log m 

-log P. 

I 
< log M+ 

Multiplying the above by pi and summing over N, then 

N N pi log p. N 
i Pit i <- i 108 R 

Pi + 
1 

i i i , i 1 

<H 
(u) 

+ 
av log M 

which satisfies the stated condition. 

From the second example in this section, 

H(S) = 1.623 bits 
k 

and z 
av = 1.833 bits 

therefore 1.623 < 1.833 < 1.623 +I 

which satisfies the conditions in the above theorem. So, it is possible 

to construct a prefix condition code from the specified lengths of the 

code words. 

0 
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2.7 HUFFMAN CODES 

In any code, the average code word length can not be less than the 

entropy of the code. But it can be very close to it. This can be 

achieved only when the lengths of the code words are variable. That is, 

by assigning short code words to highly probable source letters, and long 

code words to the least probable source letters (see Section 2.6). However, 

there is no guarantee that an optimal coding can be obtained from the above 

assignment. For example, consider the codes in Table 2.7. Both codes (a 

and b) are uniquely decodable, and satisfy the Kraft's inequality. 

Source. Pi -log2 P; III code a code b 

2 
0 0 

2 
1 
3 1.58 2 10 10 

s 
1 3.58 4 1100 110 

3 12 

8 
1 3.58 4 1110 4 12 

TABLE 2.7: Uniquely decodable codes 

The entropy of the source is 
4 

H(S) pI log Pi 

1+1.58 + 3.58) 23 12 
1.623 bits. 

The average length of the code a is 
4 

z 
av pizi 

1+I*2+4+4 
3 12 12 

1.833 b1ts. 

It is bounded by H(S) I 
av 

< H(S) 
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To find the average length of the code b 

r= -1 *1 + -1 *2 + -I- * 3+ -I- * 
av 2 3 12 12 

-'1.667 bits. 

Again, it is bounded by 

H(S) -e Z' < H(S) +1 
av 

Since the entropy H(S)-l. 623 bits represents the minimum average length 

that can be achieved, then the nearer the average length of a code to the 

entropy, the more optimal a code would be. Therefore code b is more nearly 

optimal than code a. A well known optimal code is called the Huffman code 

(Huffman, 52; Maurer, 69; Wells, 72; Abramson, 63; Harming, 80). The method 

of constructing Huffman codes is based on the construction of a probability 

tree (for simplicity, a binary tree is assumed), 

Let sl9s 2' go's N 
be a sequence of source letters, and p l'p2'**"PN N 

be a set of probabilities such that p(s i )-pi, and I pi -! 1. Arrange 

the probabilities in descending order, i. e. 

P1 >' P2 :ýý: pN 

these will represent the leaves of the tree. Form a new node by grouping 

the two least probable nodes. Now, the new node has a probability equal 

to the sum of the probabilities of the nodes forming it. The remaining 

leaves and the new node will form a new set of nodes which contains one 

less node. The nodes should be rearranged to keep the probabilities in 

descending order. Form a node as above. Repeat this process until the 

tree is completed (i. e. until the last node (the root) has a probability 

equal to one). For a given N source lettersthe procedure is terminated 

after N-1 groupings. Assign the digits 0 and 1 to the branclýes at each 

node in an arbitrary way. The code of each source letter is determined 
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by listing the digits which lie between the root of the tree and the leaf 

that corresponds to the source letter. Any source letter may be reached 

from the root in one and only one way. Fig. 2.7 shows an example of a 

binary tree constructed for 6 source letters. By assigning the digits 

0 and 1 to the branches of each node in the tree, a Huffman code is 

Source Pi 

s1o. 4 1.0 

s2o. 3 0 0.6 

s30.1 
1 0.3 

s40.1 o. 2 

s 0.06 01 
5 7,71 

0.1 s60.04 
> 

FIGURE 2.7: Generating a binary tree 

generated for the specified source. Fig. 2.8 illustrates the code of 

each source letter obtained from the above binary tree. 

Source Pi code 

s1o. 4 1 

s2o. 3 00 - 

S30.1 Oil pi'i 2.2 bits 

s40.1 0100 

S50.06 01010 

S6 m4 01011 

FIGURE 2.8: Huffman code 

A Huffman code is a prefix condition code in which no code word is a 

prefix of any other code word. The shortest code word is assigned to the 
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most frequent source letter. That is when the probabilities are arranged 

in descending order, the lengths of code words come out in ascending order. 

The last two codes are identical except the last digit. Huffman code is a 

minimum redundancy code. That is the average number of bits required to 

encode a source letter is a minimum. 

it is easy to construct manually the probability tree, and from it, 

the Huffman code for a sequence of source letters. Nevertheless, Schwartz 

and Kallick (Schwartz and Kallick, 64) described a computer program which 

generates an optimal code based upon Huffman's method. Generally, the 

program reads a set of frequencies of source letters, constructs a frequency 

tree and then assigns codes. 

To prove that Huffman code is optimal, assume that there is a shorter 
aae, "65 It 

code withAcode length L' and 

L' <L 

where L is the length of Huffman code. Construct a coding tree for each 

code, and try to compare them. The two least probable nodes have identical 

codes except the last digit, which means that they have the same length. 

Suppose that the nodes are np and nq with the probabilities pp and pq 

respectively. Assume that the code lengths are Ip and Zq. Then Ip -Z q 

so the average code length of these nodes would be 

ppp+ZAý 
XP (p 

P+pq) 
The common node (the new node occurs as a consequence of grouping nP and 

nq) which is in the higher level of the tree has a code length equal to 

(jtp"l) and a probability equal to (p 
P+pq 

), so the average code length 

would be 

(Lp-')(P*p+pq) m Lp(pp+pq)-(Pp+pq) 
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Therefore, as the tree is reduced, the code length is shortened by the 

amount: Pp+ pq 

This process can be done on the next two least probable nodes, ... and so 

on. By applying this to both the coding trees, it is easy to see that 

both are decreased by the same amount. Thus the amount of inequality 

between their lengths remains unchanged. Since in the Huffman code the 

code length of the last two nodes is 1; for the other, it must be less 

than 1, which is impossible. Therefore, the Huffman code is the shortest 

possible code. 
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2.8 MINIMIZING THE LONGEST CODE AND TOTAL NUMBER OF DIGITS 

It has been shown, in Section 2.3, that the probability tree is 

constructed by merging two nodes which have the lowest probabilities, 

and this process of merging continues until only one node (the root) 

remains. Each branch of a node has assigned a digit. Therefore the code 

of a source letter is the sequence of digits along the path which starts 

from the root and terminates in the leaf. In other words, it is equal to 

the number of mergings on the path of a source letter. So, if it is 

possible to reduce the number of mergings on different paths in the tree, 

then it will minimize some code word lengths, and hence, the number of 

digits of all code words will be minimized. 

In Huffman's method, the merge among equiprobable nodes (including 

the leaves) can be done by choosing any two nodes without affecting the 

average code length. That is, when two nodes are merged, and there exists 

a number of nodes which have probabilities equal to the probability of the 

new node, then it can inmediately merge this new node with any other node 

of the same probability. Hence, a new digit is added to the code words 

of the specified source letters. 

Schwartz (Schwartz, 64) showed a method of merging equiprobable nodes 

called bottom merge, such that the average code length remains unaffected, 

but minimisesthe longest code word and the total number of digits. The 

way is to place the new node at the top of the nodes which have equal 

probabilities (Fig. 2.9a). This will avoid, if possible, an immediate 

merging with another node, and therefore not assigning a new digit. For 

instance, consider the example in the previous section (Figures 2.7 and 

2.8), It is easy to notice that, after merging s5 and s 6' the new node 

4 
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(with probability 0.1) is immediately merged with s 4' Consequently, a 

new digit is added to the codes of both s6 and s 5* However, by applying 

a bottom merge, the new node will be placed above s 3' and the next merge 

will be between s4 and s3 (Fig. 2.9b). The new code words of the same 

source letters is mentioned in Fig. 2.10. 

By comparing the codes in Figures (2.8 and 2.10)0 it is found that 

the codes of both s5 and s6 are reduced from 5 bits to 4 bits. The total 

number of digits of the code in Fig. 2.8 is 20, whereas, in Fig. 2.10 it 

is 19. Notice that the average code length is the same in both codes. 

Source Prob. Steps 
12345 

S 0.4 0.4 0.4 %, 0.4 0.61 1.0 

S 0.3 -k 0.3 0.3 1 
.30.4 

J 

s 0.1 '440.1 0.2 0.3 L 
3 

S40.1 -S, 0. , 14 0.1 L 

S 0.06 0.; 

s0 . 04 6 

a. An illustration of bottom merging 

Source Prob. 

s o. 4 
1 1.0 

s o. 3 0 26 

s 0.1 :: ýý ""- ----;, o 
5ý, 

3 0.2 

s 0.1 3 
40 

s50.06 0 

s60.04> 

b. A probaLlity tree (binary tree) 

FIGURE 2.9: Generating a probability tree by using bottom merging 
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Source Prob. Code 

s o. 4 1 1 

s o. 3 01 2 

s3 0.1 0010 

s4 0.1 0011 

s5 0.06 0000 

s6 0.04 0001 

FIGURE 2.10: A Huffman code 

Pit i-2.2 bits 
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A computer program (data file) usually contains data causing 

redundancy such as spaces, zeros, keywords, common words, and comments, 

which occupy a considerable space compared with the overall storage used 

by the program. It can be transformed into another file which reflects 

the same information as in the original file. The transformed file can 

occupy less storage, and is called a compressed file. The transformation 

method is called a data compression method. Different techniques are used 

to compress data files (Martin, 76). Each technique used depends on the 

nature of the file, whether it contains a lot of spaces and zeros, or 

contains many common words ... and so forth. This chapter illustrates a 

special type of data file in which the data is partially generated by a 

context-free grammar, and tries to explain different compression methods 

implemented on such files. 

In Section 3.1, some definitions are given concerning the language 

and grammars. The derivation of a string of symbols from a grammar is 

explained in Section 3.2. Section 3.3 explains the rightmost derivations. 

In Section 3.4, the probability of a string and hence a language generated 

from a probabilistic grammar is illustratedL Comp'ression and decompression of 

data is introduced in Section 3.5. Ways of encoding a data file character by 

character, are explained in Section 3.6. Sometimes instead of encoding 

one character at a time a string of characters (word) is encoded. 'This 

is explained in Section 3.7. In Section 3.8, an encoding of a structured 

data file is shown. Finally, different ways of evaluating the encoding 

methods are explained in Section 3.9. 



47 

3.1 DEFINITIONS 

An alphabet of a language is any finite set (T) of symbols. From 

this set, strings of finite lengths can be composed. Each string is called 

a sentence. A language over a set (T) of terminal symbols is a subset of 

all strings (sentences) over T. Usually, these symbols are not all of equal 

importance, and henceAcan apply a measure on each one of them (Booth and 

Thompson, 73). If each measure is bounded by zero and one, and the total 

is equal to one, then it is called a probabilistic measure of the symbol. 

Let T be a finite set. A language L over a set (T) is a probabilistic 

language if there exists a probability measure p(X) for each %EL such that 

0, <p(x), <l and I p(x) =1 (Thompson and Booth, 71; Thompson, 74). P(x)-O 
x =L 

means that x will never occur. If x is certain to occur then p(x)-l. 

Although any subset of strings over T is a language, the emphasis will be 

placed on a structured language generated by a type of grammar called 

context-free grammars. McGettrick (McGettrick, 80) explains in detail 

the relations between the languages and the grammars. 

A context-free grammar G is a four-tuple G=(N, T, R, S) where: 

N-{v 1'v2' . **pvk) is a finite set of non-terminal symbols; 

T=fal, a 2' ..., a mI 
is a finite set of terminal symbols; 

R=frl, r 2'0 .., r nI 
is a finite set of productions of the form 

V 3. : =aj ,viGN, j, E=-(N U T) 

where (N U T) is a finite non-empty set of grammar symbols; (N U T)* is 

either non-empty set or empty; 

S is an initial symbol. 

From now on, every grammar mentioned is considered to be a context- 

free grammar. The follovinj notation will be used: 

x t=L 
means that x will never occur. If x is certain to occur then P(x)-l. 

Although any subset of strings over T is a language, the emphasis will be 

placed on a structured language generated by a type of grammar called 

context-free grammars. McGettrick (McGettrick, 80) explains in detail 

the relations between the languages and the grammars. 

A context-free grammar G is a four-tuple G=(N, T, R, S) where: 

N-{v 1'v2' . **pVk) is a finite set of non-terminal symbols; 

T=fal, a 2' ..., a MI 
is a finite set of terminal symbols; 

R=frl, r 2'0 .., r nI 
is a finite set of productions of the form 
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(AqBqC.... YZI to denote non-terminal symbols; 

{a, b, c,..., y, z) to denote terminal symbols; and 

to denote sets of grammar symbols. 

The set of strings of terminal symbols generated by a context-free grammar 

is called a context-free language. Another definition of a context-free 

language is mentioned in the next section. 

For example, let v-{E, F); T-{i, d, +, *, (, )); S-E; and the set of 

productions 
E: - E+F 

E: - EF 

E: - F 

F: - (E) 

F: - i 

F: - d 

then the grammar is a context-free grammar. The strings i+d, (d*i), i+d*d 

are subsets of the language generated by the above grammar. 

If each production in a context-free grarmnar is assigned a probability 

then the grammar is a stochastic (probabilistic) context-free grammar 

(Hutchins, 72a; Thompson and Booth, 71; Thompson, 74) which is a five tuple 

G-(N, T, R, P, S) where: 

N-{vl,, v 2' .. 09 Vk' is a finite set of non-terminal symbols; 

T-{a,, a 2' ..., a mI 
is a finite set of terminal symbols; 

R-{rl, r 2* .... rnI is a finite set of productions of the form 

vI :- aj .v i- 
E N, aiE (N U T) * 

For each non--terminal symbolp there is a group of productions Rip 

such that all productions in each group have the same v.. I 
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P- {Pl9p2'**"pn I 

is a finite set of probabilities, p, is the probability that rj is chosen; 

S-v 
1 

is the initial symbol. 

A probabilistic grammar is said to be. normalized (proper) (Huang and 

Fu, 71; Thompson, 74) if and only if 

I 
pj R. 

1. 
for all productions which have the same left-hand side symbol. For example, 

the granunar 

E: - E+F 0.3 

E: = E*F 0.2 

E: - F o. 5 

(E) 0.2 

i o. 4 

F: - d o. 4 

is a proper probabilistic grammar. 
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3.2 DERIVATIONS AND DERIVATION TREES 

In a context-free graymnar G, a production of the form 

Aa 

means that at certain step in the parsing process the non-terminal symbol 

(A) can be substituted by a set of grammar symbols (a). This substitution 

is called a derivation of a from A, and is written as Ala where A: =a is 

a production in G. So aAMyO means that the string aAO directly derives 

the string ayO if A: =y is a production in G. If there are a sequence of 

derivations, i. e. 
a1 =0- a2 -*. a3n 

this means that a1 indirectly derives an, and can be written in a short 

form as a1a 

If a derivation always occurs on the first non-terminal symbol in a 

string of grammar symbols, i. e. aAMyS where A: -y is a production and a 

is a string of terminal symbols or empty, the derivation is called a left 

most derivation (Aho and Ullman, 77). Top-down parsing methods implement 

this type of derivation. Details of top-down methods are explained in 

the next chapter. If the derivation always occurs on the last non-terminal 

symbol of a string of grammar symbols, i. e. aAMy$ where A: -y is a 

production and 0 is a string of terminal symbols or empty, then it is 

called a right-most derivation. Bottom-up parsing methods implement 

right-most derivations which are explained in detail in the'next chapter. 

As an example, consider the following grarnmar: 

S: -AA 

A: -aA 

A: -b 

To derive the string aabb from (S) using left-most derivations, use the 

first production, 
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S '* AA 

The first (A) is a non-terminal symbol, it can derive the string (aA). 

So S"*AA-$aAA. Again, the first (A) can derive the string (aA); i. e. 

S="AA="aAA-*'aaAA. Now the first (A) can derive the string (b) by using 

the last production. Then S9*AAI*aAA-*IaaAA-IaabA. Do the same thing to 

the last (A): 

S -IAA ="aAA =O'aaAA -laabA I*aabb. 

It can be expressed as 

S O*aabb 

To derive the same string by using right-most derivations, the sequence 

of derivations would be: 

S ý*AA -IAb -O'aAb -IaaAb -*aabb 

A graphical description of a derivation can be expressed in the form 

of a tree (see Section 2.3) called a parse (derivation) tree. This tree 

shows the hierarchical syntax structure of sentences that is implied by the 

grammar (Aho and Ullman, 77). 

Let G=(N, T, R, S) be a context-free grammar. A tree is a derivation 

tree for G if (Hopcroft and Ullman, 69): 

1. Every node has a label which is a symbol of either N or T. 

2. The label of the root is S. 

3. If a node n has at least one branch leaving it, and has label A, then 

A must be in N. 

4. If nodes nl, n ,n are the direct descendents of node A in order 2` k 

from left to right with labels Al, A 2'**" Ak respectively, then 

A: = AIA 2" , *'Ak 

must be a production in R. 
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To construct a parse tree, let aan be realized by a1 -11 a2 -0, 

=*a 
a 

where a1 is the root of the tree. Below a1 place a list of nodes 

equal to the number of symbols in a 2' Each nodellabelled by a symbol 

in a 2* Connect the root by a directed line to each new node. Assume the 

tree has been constructed until a i-l* ai is derived from ai_l by applying 

a specific production to a non-terminal symbol (A) in a i_l* Now, below 

the node labelled (A), list nodes labelled by the right hand side of that 

specific production, and draw directed lines from (A) to each node in the 

list. Fig. 3.1 shows the steps of construction a parse tree for the 

string aabb using left-most derivations. 

S Mo. S a$, SS 

aAa 

=: I. 
S 

A 

CL 

a a 

FIGURE 3.1:. Building a parse tree 

S 

b 

k 
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Any sequence of granimar symbols produced as a consequence of a 

derivation is called a sentential form of the grammar G. If a sentential 

form has only terminal symbols, then it is called a sentence generated by 

the grammar. The set of sentences generated from a grammar is called a 

language. So, a language generated by a context-free grammar G can be 

defined as L(G)-{aE=-T* S "a). That is the set of strings of terminal 

symbols which can be derived from the initial symbol S. If for each aET* 

there exists a probability p(a) then the language is called a probabilistic 

language (see Section 3.4). 

There is a connection between the probabilities of the productions 

in the grammar and the probabilities of the sentences in the language which 

is exploited in Chapter 7. 
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3.3 HANDLES 

At each step in the right-most derivation, the non-terminal symbol 

Is replaced by the right-hand side of the production concerned. For a" 

right sentential form, the right-hand side of that particular production 

is called a handle (Aho and Ullman, 77; Lewis II, Ros'enk, rantz, Stearns, 76) 

which is very important in bottom-up parsing (see next chapter); that is 

right-most derivations in reverse. For example, consider the derivations 

S aAy -0' aSy 

where a is a string of grammar symbols, y is a string of terminal symbols, 

and A: =$ is a production. Then a is a handle of the right sentential form 

aay and can be replaced by the symbol (A) to produce the previous right 

sentential form aAy. The production A: -$ is called a handle production. 

In general, a handle of a right sentential form is the replacement 

of the right-hand side of the last production applied in a right-most 

derivation of the right sentential form. The last production applied in 

a right-most derivation of a right sentential form is a handle production. 

If a right sentential form can have at most one handle and one handle 

production, then the grammar is unambiguous. 

Consider the grammar in the previous section which derives the string 

aabb using right-most derivations. The handle, and the handle production 

of each right sentential form is 

Derivations Handle Handle Production 

S AA AA S: =AA 

A b A: =b 

aAb aA A: -aA 

aaAb aA A: -aA 

aabb b A: -b 
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In bottom-up parsing, the above derivations will occur in reverse, i. e. 

Right sentential form Handle Handle Production 

aabb b A: -b 

aaAb aA A: -aA 

aAb aA A: -aA 

Ab b A: -b 

AA AA S: -AA 

S 

This can be interpreted as pruning the derivation tree. The tree leaves 

corresponding to the right-hand side of the production would be deleted, 

and the node, labelled by the left-hand side of the production, in which 

the deleted leaves are the direct descendents, becomes the leaf of the new 

tree. 

A 
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3.4 PROBABILISTIC CONTEXT-FREE LANGUAGES 

To find the probability of a string a of symbols in a language L 

generated by a probabilistic grammar, consider the sequence of derivations, 

i. e. S -*'a 1 0* * o. 0* a 

where S is the start (initial) symbol, a1 derives from S if S: -a 1 
is a 

production with a probability p l' Now, a1 occurs with probability pl. 

The second production is applied to one non-terminal symbol in a,, say (A), 

where A: -$ is a production with P2 as its probability. If al-yAý, where 

y and ý are sets of terminal and grammar symbols respectively, then 

a2 -yaý with probability p 1P2 
(Booth and Thompson, 73; Huang and Fu 71). 

The third production is applied to another non-terminal symbol (usually 

the left-most) from a2 to result in a3 with probability p lp2p3 ; and so forth. 

The probabilities associated with the productions are assumed to be 

independent. If k productions are required to derive a, it follows from 

the independence of the productions that the probability of generating a 

by means of one of the N derivations is equal to the product of the 

probabilities of the sequence of the productions used in the derivation, 

i. e. 
P(a) - Plp2'***'Pk 

k 

- TTpi 
i=l 

For an unambiguous graymnar, the probability of all strings aGL would be 
k 

p (a) -I TTP 
I L i=1 

If I p(a) -1 for all aEL of finite length then the production 
a EL 

probabilities are said to be consistent, and the grammar is said to be 

consistent. More discussion of consistent grammars can be found in 

Chapter 7. 
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3.5 COMPRESSION AND DECOMPRESSION PHASES 

In a compression phase, Fig. 3.2(a), symbols are input to a program 

called compressor (or encoder) which produces as an output a sequence of 

code symbols. The codes are output either from some computational trans- 

formation or from a table. In the latter case, characters, words, or strings 

of characters from the input are selected and replaced by code words 

generally of shorter length than the original elements. The sequence of 

code symbols is the compressed form of the input symbols. To recover the 

original information from compressed data, a decompression, Fig. 3.2(b)9 

must be performed. The program (decoder) uses the same technique as the 

compressor program. If a computational transformation was used during 

the encoding process, then the decompressor uses the same process but in 

reverse. If a table is used in the encoding process, then with a related 

table the decompressor can restore the original input symbols. 

t Storage 
device 

Compressing 
program 

I 

I Compressed datal 

Storage 
device 

(a) 

I Compressed datal 

Decompressing 
program 

I 

I Output I 

(b) 

FIGURE 3.2: Compression and decompression phases 
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The decompression methods can be divided into two different classes 

called reversible or irreversible (Schuegraf, 76). If the output of the 

decompression program is not an exact copy of the original input, then 

the method is called irreversible. If the output produced by a decompression 

program is the exact copy of the input, 'then the method is called 

reversible. Usually with the latter method a table is used. 

The table used by both encoding and decoding methods must be 

determined before startingýthe actual encoding and decoding of symbols. 

The construction of such tables depends on the language elements and the 

statistical analysis of those elements. 

In the following discussions concerning the decoding of files, only 

reversible methods will be explained because the decoder must provide an 

output file exactly the same as the original one. 
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3.6 CHARACTER ENCODING 

In a. eharar-ter--enc-odin5 H of a. finite ýset 7-', N? - each character aL 

in T maps onto a code cL in H. So, the encoder reads one character at 

a time and generates the corresponding code. This process continues until 

there are no more characters to be coded. If there is a sequence of 

characters a1a2a 3' ... a n 
in a probabilistic language, then the sequence of 

codes u1u 2' O.. Pu n corresponding to those characters is in the code 

language. The properties of the code language are the same as those of 

probabilistic language. (Thompson and Booth, 71), that is the code language 

is a probabilistic language, and if the source language is context-free 

then the code language is context-free as well. 

Different techniques are used for encoding characters. Nevertheless 

the most popular technique is Huffman method (explained in Section 2.7). 

Hahn (Hahn, 74) explains a method of encoding a sequence of characters 

after squeezing off the leading and trailing blanks, the remaining 

characters are encoded in groups of a fixed length as unique fixed point 

numbers. The characters are encoded according to their positions in a 

dictionary comprising all those characters. The unique fixed point 

number representing a group of characters is constructed from: 

pjB 
N-1 

+ P2 B N-2 
+ ... +P N-1 B+ Pn 

where Pl'p2"**IPN are the positions of characters in the dictionary. 

B is the number of characters in the dictionary; and N is the length 

of each group. For example, suppose that B=10, N=4, and the symbols to 

be encoded have the positions 7,5,8,9,4,2,6 and 3 in the dictionary. 

These symbols would be encoded in two groups. The first group having 

the value 7* 10 3+5* 
10 2+8* 10 +9= 7589 ; 

and the second group having the value 
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32 4* 10 +2* 10 +6* 10 +3- 4263 

The value of B can be less than the actual number of elements in the 

dictionary. The first B-1 elements comprise the primary dictionary, the 

B th 
position is used as an escape character and is coded as 0. This allows 

the dictionary to extend beyond B. So, more characters can have positions 

in the range B+l to 2B-1, and so on. So, a character with position 12 is 

encoded as 02 (B-10). For example, to encode the symbols having the 

positions 7,12,2 would be 

10 3+0* 10 2+2* 
10 +2- 7022 

The way of storing the encoded data is to store the number of leading 

blanks followed by the number of characters encoded followed by the codes. 

The problem with this method is when a character is encountered which 

has not already been in the dictionary. It must be added to the dictionary 

before the start of the encoding process. Later when decoding takes place, 

the same character positions in the dictionary will be used to produce 

the original sequence of characters because the dictionary is written as 

the first record of the encoded file. 

There is another technique concerning identical characters 

especially blanks and zeros (Smith, 76); that is instead of generating 

a code for each character, the encoder counts them and generates the 

number of occurrences followed by a code of one item only. For example, 

five zeros could be encoded as 50. 

When Huffman code is applied, there are no delimiters between the 

sequence of codes. So the decoder must know when to consider the 

received sequence of code symbols as a complete coding for a character. 

But since Huffman codes are uniquely decodable, then if the first k 
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code symbols received are not a coding for any character in the set T, 

then the decoder must read another code symbol and check again. Once 

the sequence of code symbols matches one of the coding of characters 

then the corresponding character is output and the next received code 

symbol is considered as the first symbol of the coding of the subsequent 

character. The exact sequence of characters will be obtained during a 

decoding process. For the encoder and the decoder programs, Huffman code 

will be implemented to encode and decode characters. 
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3.7 WORD ENCODING 

Instead of encoding character by character, here a group of characters 

(word) is encoded at a time. So for a set of Words in a language, there is 

a code corresponding to each word such that the encoder does not output 

the code until all the word has been read. Huffman code (explained in 

Section 2.7) is used to find the codes. However, Huffman code can only 

be constructed over a finite set of words. So if a probabilistic 

language is not finite, it may be approximated (Thompson and Booth, 71). 

That is by ordering the words x 2. 
EL in decreasing o rder of their probabilities 

P(X and then selecting the words in order until 

n 

illp(xi) 
- (1-C) 

Now, the new probabilistic language j: contains n words plus one word 

(dummy) which, has a probability e. If a code is constructed for each 

word in Z, then the encoder outputs a code for each word in L which is 

in L. However, for a word in L which is not in L, the encoder might 

report an error or generates the code of the dummy word. 
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3.8 PARSING ENCODING 

The input generated from a context-free grammar should be parsed 

before allowing the encoder to generate any code (Thompson and Booth, 71). 

A code is constructed over a set of productions which have the same left- 

hand side (say Ai)i. e. a set of productions belonging to a non-terminal 

symbol (A i ). This set belongs to a probabilistic grammar which generates 

the probabilistic language to be encoded. Each production in the set is 

assigned a code. Obviously the total probabilities of the productions in 

one set is equal to one. Then for optimal code Huffman method is applied 

to generate a suitable unique code for each production in the set. The 

method is applied to all sets in the probabilistic grarnmar, and hence the 

sets have independent codes. It is possible that more than one set has 

the same code. However, this does not cause any problem to the encoder 

program because during the parsing process, the program recognizes the 

exact production of the set and then generates its code. For example, 

consider the following grammar: 

Productions Probabilities Huffman Codes 

1. E: -E+F 0.3 00 

2. E: =E*F M 01 

3. E: -F 0.5 1 

4. F: -(E), 0.2 01 

5' F: -i o. 4 00 

6. F: -d o. 4 1 

There are two sets: the first set has the productions (1-3), and the 

second set has the productions (4-6). The codes of both sets are exactly 

the same. However, although the productions, 
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E: -E+F 

and F: -i 

have got the same code (00), they are treated completely different by the 

encoder program. The same argument applies to the decoder program. 

The way used for encoding a string of symbols (Hutchins, 72a) is to 

parse the symbols, list the productions used in the parse in the order in 

which they appear in the left-most derivation, concatenate the code words 
t 

corresponding to the productions in the list . This will form the coding 

of the string. The parser does not need to know all the productions before 

outputting the codes. It can generate a code as soon as a production has 

been recognized. Note that, although a set might have only one production, 

the encoder generates its code when the production is recognized by the 

parser. 

The decoder must translate a string of code symbols from the input 

stream into a string of productions which can be used to construct a parse 

tree. The decoder contains a stack, a code table holding the productions 

with their codes, and the productions of the grammar. The decoding 

procedure would be: 

1. Begin with the initial symbol of the grammar on the stack. 

2. By examining the top of the stack and checking the code table, 

determine the next code word. 

3. The word taken from the input determines the next production. 
Apply the production*to the stack and remove the code word from 

the input. 

t Note that there is a code for every production in the Zist, ever). tkoaSh 

some productions are certain to occur., i. e. they do not need any 

code to be generated. 
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If any terminal symbols on the top of the stack, output them. 

5. If the stack is not empty, then go to step (2); otherwise a 

complete string has been decoded. 

The decoder can be decomposed into two operations, the first segmenting 

the input stream, and the second operating the stack to reconstruct the 

string. The problem with the decoding process is that the code words are 

variable length codes (Huffman codes). So care must be taken when reading 

a code word. 
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3.9 MEASURES OF DATA COMPRESSION 

Before discussing the design and the implementation of the encoder, 

it is necessary to explain the measures used for evaluating different 

encoding techniques. The first measure expresses data compression results 

in terms of the average number of binary digits that are required to encode 

a given character (Martin, 76). The second measure is to compare the 

"i", M" 
entropy (i. e. the theoretical minimum length), and theA-length of the 

compressed data (Schuegraf, 76). That is 

E Theoretical minimum length of compressed data 
klvtr,, jr- Length of compressed data 

N 

illpi 
log2(pi) 

N 

illpi 
li 

The values of E are always less than or equal to one, and the maximum 

of one is obtained only when 

li - -log2(pi) 

In other words, E is equal to one only when the average length of the 

compressed data is equal to the entropy. The last type of data 

compression measure is to find the ratio of the size of the compressed 

data to the size of the data in its original form, i. e. 

S. Length of compressed data 
Length of original data 

An encoding method is said to be optimal under some specific 

condition if the average length of an encoded string is less than that 

for any other encoding method under the same condition (Thompson, 71). 



CHAPTER 4 

LR PARSING 
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This chapter discusses the main methods; or checking the syntactic 

structure of an input generated from a context-free grammar. - and proviyV 

its validity. These methods'are called parsing methods, and the programs 

are called parsers. The parser tries, during its process to construct a 

parse tree for the specified input. Accordingly, parsers fall into two 

main classes called top-down parsers and bottom-up parsers (Gries, 71; 

Aho and Ullman, 77). One type of top-down parsing method is called 

Recursive-Descent* An example of bottour-up parsing is called LR(K) parsing 

which is the most attractive method among the same class of parsing methods 

for practical context-free grammars. L stands for reading the input from 

left to rightq R for producing a right parse, and K for the number of 

Lookahead symbols. In practice, K is always 0 or 1. 

The LR parsing method was originally described by Knuth (Knuthl 65). 

The algorithm explains how to construct the set of states from the gramm r; 

and how the parser works with the help of a stack. However, the method was 

not practically efficient because of the waste of space and time. A simple 

method called SLR(K) parsing is explained in DeRemer, 71; Bornat, 79: and 

Aho and Ullman, 77. However, for some grammars, it failed to produce 

parsers. More general methods called LR(l) and LALR(l) are used to 

construct LR parsers (Pager, 77; Aho and Ullman, 77; Bornat, 79). A 

general survey of LR parsing including the construction of the set of 

states and also the parsing tables is contained in Aho and Johnson, 74. 

Different optimization techniques are used to reduce the size of 

the parser, and also to speed-up its execution. These techniques are 

explained in detail in Aho and Ullman, 72; Anderson, Eve and Horning, 73; 

Aho and Ullman, 73; Demersý, 75; Joliat, 76. 
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Attempts have been made to generate automatically LR parsers from 

a set of productions. One such generator is called YACC (Johnson, 78). 

Section 4.1 explains briefly the two classes of parsing methods. 

A Recursive-Descent parsing method is explained in Section 4.2. In 

Section 4.3, the general construction of LR parsers is shown. The 

algorithm of LR parsing is illustrated in Section 4.4. The way of 

constructing the items and hence, the set of states is explained in 

Section 4.5. Section 4.6 illustrates how to construct the parsing tables 
I 

from the set of states, The construction of SLR(K) parsers is mentioned 

in Section 4.7. The construction of LR(l) parsers and LR(l) parsing 

tables is illustrated in Sections 4.8 and 4.9 respectively. Sections 

4.10 and 4.11 are respectively concerned with the construction of LALR(l) 

parsers and LALR(l) parsing tables. Section 4.12 shows some techniques 

used to optimize the parsing tables. Finally, an explanation of the 

parser generator called YACC is given in Section 4.13. 
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4.1 PARSING METHODS 

During the validation process, the parser tries to build up a 

syntax tree (or parse tree) for the specified input string, according 

to the sequence of productions used. The completion of the tree means 

that the input is syntactically correct and no error is reported. 

Referring to the way in which the syntax trees are built, the parsing 

methods can be divided into two categories, top-down and bottom-up. 

4.1.1 Top-Down Parsing Method 

In this method, the parser tries to find a left most derivation for 

an input string. Equivalentlyt the parser attempts to build a parse tree 

by starting from the root and working down to the leaves. The leaves 

represent terminal symbols, and the remaining nodes (including the root) 

represent non-terminal symbols (i. e. the left-hand side of the productions). 

For example, consider the grannnar 

S: -aAd 

A: -bb - 

A: -c 

and the input abbd. To build up a parse tree for the input, create a 

tree consisting of only one node labelled S. Since the first input 

character is a. then use the first production to expand the tree, i. e. 
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The left-most leaf, labelled a, matches the current input character. 

The next input character is b which becomes the current input charactere 

Since the next leaf is a non-terminal symbol* then it is possible to 

expand it by using the second production. The tree becomes: 

S 

a 
d 

bb 

Now, the leaf labelled b matches the current input character. The next 

input character is b which matches with the next leaf labelled b. The 

next input character is d which matches with the last leaf labelled d. 

The tree is completed without any error. Hence the input abbd is 

syntactically correct. 

The important factor when writing a top-down parser is to prepare 

a grammar which is suitable for top-down parsing. once this has been 

done, it is easy to write a parser, The main problems which have to 

be overcome when preparing a grammar are backtracking and left recursion. 

The problem of backtracking is that at certain state of parsing, the 

parser discovers that the way used is not the proper one. and it would 

fail to parse the remaining input characters. Thus it has to backtrack 

to a state in which an alternative way can be used. For example, 

consider the grammar 

S: -aAd 
A: -bc 
A: -bb 
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and the input is abbd. To construct a parse tree for the input, create 

a tree consisting of only one node labelled S. The first input character 

is a, use the first production to expand the tree: 

ad 

The current input character matches the left-most leaf, i. e. a. The 

next current character is b. Since the next leaf is a non-terminal node, 

then it-is possible to expand it by applying the first alternative for A. 

The tree becomes 

S 

a 

bC 

I 

Now, the leaf'labelled b'matches the current input character. The next 

current character is b, and the next leaf labelled c do not match. 

Hencel the parser could not carry on its job and it has to go back to 

the node A to see if there is another alternative for A that has not 

yet been tried which might produce a match. In going back, the current 

input character should be the one when the node A was firstly expanded, 

that is the character b. By trying the second alternative for A, the 

tree becomes, S 

a 
d 
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The leaf b matches the current character b. and the remaining input 

characters (i. e. b and d) match the last two leaves. Hence, there is 

a parse tree for the input, and the input is said to be syntactically 

correct* 

The next problem is a grammar which contains a left recursive 

production (simple recursion) i. e. a production in which the left hind 

symbol appears at the left end of the right hand side of the production. 

For example, consider the productions 

S: - S, 

S: -a 

and assume that each non-terminal symbol is represented by a procedure 

in the parser. Then from the first alternative production, the procedure 

Swill call itself an infinite number of times. 

To overcome the above problems, the grammar should be modified in 

such a way that the new grammar is structurally equivalent to the original 

one, but the input is recognized without backtracking and left recursion. 

To eliminate backtracking, try to factor out the common portions at the 

left end of each alternative. This action enables the parser to check 

these portions only once. Parentheses are used for this purpose as 

syntax notations. For example, the grannar 

S: -aAd 
A: =bc 
A: -bb 

which has a backtracking, could be rearranged as 

S: -aAd 
A: -b(clb) 
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To remove the left recursion from a productiong a better way is to 

iterate the sequence of elements zero or more times. For this purpose 

assume that brackets { and I are used. So. the productions 

S: -5, a 
S: -a 

cause the repetition of (, a) zero or more times. This can be arranged as 

S: -af, a) 

Fig. 4.1 shows the parsing trees of both the recursion and the iteration 

for the input a, a, a. Both trees are treated as equivalent. 

a 

s 

iteration 

FIGURE 4.1: Parsing trees using recursion 
and iteration 

An example of a top-down parsing method is called Recursive-Descent 

which is explained in Section 4.2. 

4.1.2 Bottom-up Parsing Method 

In this method, the parser tries to build up a parse tree for a 

given input, by starting from the terminal nodes (leaves) and building 

to the root. That is* it starts with the terminal string and replaces 

a substring of symbols by a non-terminal symbol from which the substring 

can be derived by one apýlication of a production of the grammar. Then, 

recursion 
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using the resulting string, the process of replacing a substring of 

symbols by a non-terminal symbol is repeated until the start symbol S 

is obtained. For example consider the following grammar 

S: -aAd 
A: -bb 
A: -c 

and the input abbd. The parser reads the input symbol (a) and constructs 

the tree: 
a 

then reads the next input symbol (b) and creates a single node, i. e. 

the parser reads another input symbol (b), and adds a new node, i. e. 

ýbb 

By using the second production, the string (bb) can be reduced to (A). 

So a new node is created labelled (A) from the leaves (b) and (b). 

bAb 

Now,, the parser reads the last input symbol (d) and adds a new node to 

the tree 

b 

By using the first production, the string (aAd) can be reduced to (S). 

So a new node labelled (S) is created from the nodes a. Ap and d. 
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S 

A 

Node S is called the root of the tree. At this' point, all the input 

has been read, and the parsing is completed. An example of a bottow-up 

parsing method is called LR method which is explained in detail in 

Sections 4.3-4.13. 

4 

abbd 
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4.2 RECURSIVE-DESCENT METHOD -A DETAILED EXAMPLE 

An easy way to implement top-down parsing is to create one 

(possibly recursive) procedure for each non- terminal symbol, which 

parses the input derived from that non-terminal symbol. The procedure 

is told where in the program to begin looking for its input, This can 

be found by using the right-hand side of the productions for the non- 

terminal symbol. During this process other procedures might be called. 

A parser that uses a set of recursive procedures to recognize its 

input with no backtracking is called a Recursive-Descent parser. The 

recursive procedures can be quite easy to write and fairly efficient 

if written in a programming language that implements procedure calls 

efficiently. Ifýthe programming language has not the ability to call 

procedures recursively, then a stack could be created and maintained by 

the parser (this would be a LIFO or a push-down stack). 

As an example, consider the following grammar rules (productions) 

E: =E+FIE*FIE-FIE/FIF 

F: -ilcl(E) 

It is assumed that all arithmetic operators have equal precedence. 

Since the grammar suffers from left recursion problem, then it can be 

rearranged as 

E: =F{+FI-FI*FI/Fl 

F: =il cl (E) 

There are two recursive procedures (E and F) involved recognizing the 

input. In addition assume that SCAN( ) is a procedure which reads CIA 

input character and stores its type in a variable location called token. 

From the first productiono the procedure E( ) immediately calls the 
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procedure F( ), see Fig. 4.2, and then whenever there is an arithmetic 

operator SCAN is called to advance to a new token and the procedure F( 

is called. Similarly, F( ) is coded directly from the production F, 

Note that in the programming language C the symbol (--) is used to test 

for equality, and the symbol (N) is used to mean a logical (or) operator. 

IF( ); 

while (token --'+"' token ac='-'Zle' token token 
{SCAN( ); F( 

; *; 
} 

I 

F( ) 

(If(token =-i!! token, -=c) SCAN( 

Else if (token 

{SCAN( ); E( 

If (token SCAN( 

Else error( 
II 

Else error( ); 
I 

FIGURE 4.2: Mutually recursive procedures written in C language 
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4.3 LR PARSERS 

LR(K) parsers are considered to be one of the more efficient types 

of bottom-up parsers. They can recognize most context-free languages. 

Syntax errors can be detected as soon as they occur. The input string is 

parsed in a time which is proportional to the length of the string. No 

backtracking is required. The function of the parser is divided into a 

finite sequence of steps called states. In each state, all possible actions 

that can be taken by the parser are provided. The construction of these 

states is described in Section 4.5. 

The parser consists of a driver routine, a parsing table which governs 

its operation, an input stream, and a stack (Fig. 4.3). The driver routine 

is the same for all LR parsers which reflect the parsing algorithm mentioned 

in Section 4.4. The input contains only terminal symbols and is read from 
input stream 

Ic 
S 
in 

Driver 
routine 

Pars ing 
table 

s tack 

FIGURE 4.3: LR parser 

left to right, one symbol at a time. The stack contains a string of 

symbols called states. The parsing table consists of two parts; the 

ACTION table and GOTO table. The ACTION table specifies which action is 
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going to be taken by the parser with respect to the current state and 

the next input symbol (see Section 4.4). There are four different actions: 

1. Shift the input symbol and change to a new state; 

2. Reduce by the production 

A: -a , and goto a new state; 

3. Accept the input; 

Error 

The GOTO table specifies the next state as a new current state after each 

reduction. 
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4.4 LR PARSING ALGORITHH 

For a given input, the parser starts from the initial state, parsing 

the input by consulting the ACTION table until an accept or an error action 

is encountered. 

Let {sO9sjq--*vsm I be a set of states stored on the stack, where sm 

is the current state on the top of the stack. Let ais ai+,,..., a n 
$be the 

remaining input symbols ($ is the end of input marker), aI is the next input 

to be expected by the parser. By consulting the ACTION table, the algorithm 

would be: 

1. If ACTION (current state, next input]- shift s-, then the parser shifts 

aI from the input and enters state s. The stack becomes soolseatts m so 

s becomes the current state, and the next input symbol is a i+16 
Go to 

step 1. 

2. If ACTION [current state, next input]- reduce by the production 

A: =a. 

Suppose a is a string of grmnmar symbols of length r. The parser has 

found the handle of the above production, and can now do the reduce 

action. It will remove, by starting from the top of the stack, a 

number of elements equal to the length of a which is r. Now, s m-r 

on the top of the stack. To find the next current state, consult the 

GOTO table, i. e. GOTO[s 
w-r 

+s. Push s onto stack. Since no shift 

action has been made on the input symbol, it remains as the current 

input symbol. Go to step 1. 

3. If ACTION [current state, next input]- accept, then the input has been 

successfully parsed. Here $ is the next input. 

If ACTION [current staie, next input]= error, then a syntax error has 

been discovered. 
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4.5 CONSTRUCTING THE SET OF STATES 

Before generating both the ACTION table and COTO table, it is 

necessary to construct the set of states for a particular grammar. Each 

state represents the position of the parser and the range of possible 

next actions. 

An item is defined as a production of a grammar G with a marker 

(say dot) at some position in the right side of the production. The 

position of the dot indicates that the parser has already recognized the 

string derivable from the grarnmar symbols before the dot of this particular 

production, and expecting to see the string derivable from the grammar 

symbols after the dot before making any reduction by the same production. 

For example, consider the production 

S: =aO 

Then three items can be obtained 

S: -. aa 
S: =a. 0 

S: =as. 

The first item indicates that a string derivable from a$ is expected next 

on the input. The second item indicates that a string derived from a 

has already been seen and a string derivable from 0 is expected next. 

The last item indicates that a string derivable from a$ has been seen 

and a reduction by the production 

S: =ao 

is possible. 

To indicate to the parser when it should stop parsing and announce 

acceptance of the input, a new start symbol P is added with the production 

P: -S 
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to the graurnar, because if the parser reaches a point where the marker (. ) tG 

at the right-most of the item 

P: -S. 

then the input has been accepted. 

The construction of the collection sets of items starts from the 

augmented production 

P: =S 

The first set of items must contain the item 

P: -. S 

If the marker is placed immediately before a non-terminal symbol, include an 

item with a marker in first position for each of the productions which define 

that non-terminal. Continue to apply this process until no more items can be 

added to the set of items. The included set of items is called the closure 

set. The first item with its closure set represents the first state (initial 

state). The successor states are computed by starting from the initial state. 

If a state contains items in which the marker is positioned immediately before 

a particular symbol in their productions (i. e. the marker is not at the right 

most of the items), create a new state which contains only those items such 

that-the marker is positioned immediately after that symbol. Now find the 

closure set of items of the new state as mentioned above. As an example, 

consider the grammar 

1. S: =AA 

2. A: -aA 

3. A: -b 

First, add to the grammar the following production 

0. P: -5 

Next, to construct the initial state (s 
0 

), it must contain the item: 
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P: -. S 

since the dot is immediately before the non-terminal symbol S, then the 

closure set must be obtained. The idea of finding the closure items is 

that the parser does not expect to find S as the next input, but a string of 

input symbols derivable from S. Thus s0 must also contain 

S: -. AA 

1.5 The dot, *before A which is a non-terminal symbol so the following items 

should be included in s0: 

A: -. aA 

So, 90 has four items. To find the successor states, choose the item 

P: =. S 

place the dot after the symbol S, i. e. 

P: =S. 

since the position of the dot is at the right-most, then the closure set of 

items can not be obtained. Hence the new state (s 
1) has only one item. s 

is called the finAl state. From the item 

S: =. AA 

two states can be generated (s 2 and s 3) 

s2: S: -A. A 

A: -. aA 
A: -. b 

s3: S: -AA. 

continue in this process until no more states can be created. Fig. 4.4 shows 

a complete set of states generated from the above grammar. Fig. 4.5 

illustrates the relations between different states according to the grammar 

symbols. For instance, if ýhe 
current state is s0 and the curr ent grammar 

symbol is S, then s1 would be the new current state. 



84 

s0 P: -. S 

S: -. AA 

A: -. aA 
A: -. b 

s P: - S. 

s2 S: -A. A 

A: -. aA 
A: -. b 

s3 S: =AA. 

s4 A: =a. A 

A: -. aA 
A: -. b 

s5 A: =aA. 

s6 A: -b. 

FIGURE 4.4: A set of LR(O) states 

FIGURE 4.5: A graph showing the relationships between the states 
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4.6 CONSTRUCTING LR PARSING TABLES 

This section shows how to construct the LR parsing ACTION and GOTO 

tables from a set of states (described in the previous section) generated 

from an augmented grammar GI (assuming that the original grammar is G). 

Let sosslie-ps n 
be a set of states, the elements of the-ACTION table 

are determined as follows: 

1. If A: -x. az is in s 3. 
and the successor state is sj, then set 

ACTION[i, a] to shift j. a is a terminal symbol. 

2. If A: -x. is in sip then set ACTION[i, a] to reduce by the production 

A: 

If P: -S. is in sip, then set ACTION[i, $] to accept. $ is the end of 

input marker. 

4. The remaining undefined elements are set to error. 

The elements of GOTO table are obtained as follows: 

1. If A: -. Xy is in s 3. and A: -X. y is in s, p then set GOTO[i, X] to 

X is a non-terminal symbol, and y is a grammar symbol or empty. 

2. The remaining undefined elements in the GOTO table are set to error. 

The representation of both the ACTION table and GOTO table depends on the 

number of states and the way of accessing a particular element. If the 

number of states is relatively small, then the parsing actions for each 

state can be represented by a sequence of programming language statements, 

and GOTO table can be represented by a sequence of programming language 

statements for each non-terminal symbol. For example, consider the 

construction of both the ACTION table and GOTO table from the set of states 

mentioned in Fig. 4.4. The ACTION table would be: 
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0: If (input -=ýa') shift 4; 

Else if (input =='b') shift 6; 

Else error; 

If (input --'$') accept; 

Else error; 

2: If (input =='a') shift 4; 

Else if (input --lb') shift 6; 

Else error; 

3: reduce 1; 

4: If (input =='a') shift 4; 

Else if (input --lbl) shift 6; 

Else error; 

reduce 2; 

6: reduce 3; 

The GOTO table would be: 

If (state -101) goto 1; 

A: If (state -101) goto 2; 

If (state --121) goto 3; 

If (state =-'4') goto 5; 

Howeverp for a practical grammar where the number of states might reach 

several hundreds, the above method looks impractical because of the increase 

in the size of the parser. 

The next method is to represent the ACTION table and GOTO table by 

two different matrices. For the ACTION table, each row represents a 

particular state and each column represents a terminal symbol. Each row 

of the GOTO table represents a particular state and each column represents 

a non-terminal symbol. 

4 
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In what follows (s) denotes a shift; (r i) denotes a reduction by 

the production number i; (a) denotes the accept action; a space denotes 

an error; and an integer denotes a state number. The ACTION table and 

GOTO table corresponding to the set of states in Fig. 4.4 is shown in 

Fig. 4.6. 

state ab $ SA 

0 s4s6 12 

1 a 
2 s4s6 3 

3 r1r1 r 
4 s4S6 5 

5 r2r2 r2 
6 r3r3 r3 

FIGURE 4.6: Two matrices representing the parsing tables 

Another way of constructing the ACTION table is to store the elements 

of each state separately, and try to link the states as required after each 

action. Fig. 4.7 shows the relations between the states mentioned in Fig. 

4.4. Some states are connected to the GOTO table. 
Rhift 4 shift 6 

1 
0ab 7F others771-ýý, error 

accept 
$ others error 

-IvLtt 4 shif t6 
SII 

-2-1 ab others error 

reduce 1 
S Itt 4 shif t6 

GOTO error 

reduce 2 

6 reduce 3 

FIGURE 4.7.:, Constructing the parsing table using a 
pointer type structure 
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Using matrices for constructing a parsing table is more practical 

than others because any element can be obtained in one access. Further- 

more, it is relatively easy to build and maintain the matrices. From now 

on, the parsing table will be represented by matrices unless otherwise 

mentioned. 

0 

0 
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4.7 SLR(K) PARSERS 

For K-0, the parser begins scanning the input from left to right. It 

identifies a production when it gets to the right-most symbol derived from 

that production, and each handle can be detected without looking at any 

input symbols beyond the last input symbol derived from the handle. When a 

handle is found, the parser does the same reduce action regardless what the 

current input symbol is. Such parsers sometimes called simple LR(O) or 

SLR(O). AlthoughLR(O) parsers can be constructed for different grammars, 

sometimes it is not possible because in certain states the parser can not 

decide whether to shift the input symbol or to reduce by a particular 

production without looking ahead to the next input symbol(s). This problem 

called a shift-reduce conflict. So, to solve this conflict, allow the 

parser to inspect at most K>O input symbols ahead in order to make the 

right decision. For a practical reason K=l is assumed. The parsing 

algorithm and the construction of the set of states of SLR(K) are explained 

in Sections 4.4 and 4.5. 

To find the set of lookahead symbols for each non-terminal symbol in 

the grammar, it is required to discuss two functions called FIRST and 

FOLLOW. If a is a string of grammar symbols then FIRST(a) is the set of 

terminal symbols that begin strings derived from a. For example, consider 

the productions 

A: =Bb 
B: -(A)lb 

then FIRSTM-U, bl. 

To find FIRST(A) for all grammar symbols A, apply the following rules 

until no more terminals or c (empty) can be added to any FIRST set. 
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1. If A is a terminal symbol, then FIRST(A) is (Al. 

2. If A is a non-terminal symbol and 

A: -aa 

is a production, then add a to FIRST(A). a is a terminal symbol. If 

A: 

is a production, then add e to FIRST(A). 

If A: -B 1B 2' oo., B 

is a production, then for all i such that all of Bl, B 2' ..., Bi_l are non- 

terminal symbols and FIRST(B i) contains e for add every 

non-C symbol in FIRST(B i) to FIRST(A). If e is in FIRST(B i) for all 

i=i,..., n then add c to FIRST(A). 

Let A be a non-terminal symbol, then FOLLOW(A) is the set of terminal 

symbols that can appear immediately to the right of A in some sentential 

forms. If A can be the right-most symbol in some sentential form, then 

add the end of input marker ($) to FOLLOW(A). For example, FOLLOW(A)-{), $). 

To compute FOLLOW(A) for all non-terminal symbols A, apply the 

following rules until nothing can be added to any FOLLOW set. 

1. If S is the start symbol, then the end of input marker ($) is in FOLLOW(S). 

2. If there is a production 

A: =aBO , Oie 

then everything in FIRSTO) except c is in FOLLOW(B). 

If there is a production 

A: =aB 

or A: =aBO 

where FIRST($) contains c, then everything in FOLLOW(A) is in FOLLOW(B). 

Consider the following set of productions: 
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1. A: =CB 

2. B: -+CB 

3. B: -e 

4. C: -ED 

5. D: -*ED 

6. D: -r: 

7. E: - (A) 

8. E: -i 

To compile the FIRST of each non-terminal symbol, according to rule 3, 

FIRST(A)-FIRST(C)=FIRST(E). From rule 2, FIRST(E)-((, i), then 

FIRST(A)=FIRST(C)-FIRST(E)=((, iI 

From rule 2, 

FIRST(B)={+, C} 

FIRST(D)=[*,. El 

To find FOLLOW of each non-terminal symbol, from rules (1 and 2) and the 

productions (1 and 7). 

FOLLOW (A)-{), $), 

FOLLOW(B) is equal to FOLLOW(A) according to rule 3 and the 

production 1,. i. e. 

FOLLOW(A)=FOLLOW(B)-f), $j 

From rule 2 and the production 1, every element (except c) in FIRST(B) 

is in FOLLOW(C). Also according to rule 3 and the production 1, FIRST(B) 

contains c, then every element in FOLLOW(A) is in FOLLOW(C). Therefore 

FOLLOW(C)-FIRST(B) plus FOLLOW(A) 

={+, )'. 
0$1 

I 
From rule 3 and the production 4, FOLLOW(D)-FOLLOW(C). 
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To find FOLLOW(g), according to rule 2 and production 5 every element 

except e in FIRST(D) is in FOLLOW(E). Since FIRST(D) contains C, then 

from rule 3 and production 4, every element in FOLLOW(C) is in FOLLOW(E). 

Therefore 

FOIIOW(E)-FIRST(D) U FOLLOW(C) 

After having an idea of how to compute the FOLLOW set of characters, now 

consider constructing (Fig. 4.8) a set of states with FOLLOW sets included 

from the following augmented grammar: 

1. P: -E 
2. E: -E+T 
3. E: =T 
4. T: =T*F 
5. T: -F 
6. F: - (E) 

7. F: -i 
FOLLOW(P)-{$l 

0 
P: =. E' FOLLOW(E)-{+, ), $l 

E: -. E+T FOLLOW(T)-{*, +, ), $l 

E: -. T FOLLOW(F)-{*j, +, ), $l 

T: -. T*F 

T: -. F 

F: -. (E) 

F: =. i 

P: =E. 
E: -E. +T 

E: =E+. T 

T: -. T*F 

T: -. F 

F: -. (E) 

F: -. i 
4 
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s3 E: =E+T. 
T: -T. *F 

s4 E: -T. 
T: -T. *F 

s5 T: =T*. F 
F: -. (E) 

F: -. i 

s6 T: -T*F. 

s 
,7 

T: -F. 

s8 F: =(. E) 

E: -. E+T 
E: =. T 
T: -. T*F 
T: =. F 
F: =. (E) 

s9 F: =(E. ) 

E: =E. +T 

s 10 F: =(E). 

s 11 F: =i. 

FIGURE 4.8: A set of SLR(l) states 

State 0 expects either the input symbol "C' in order to shift it and goto 

state 8, or the symbol "i" in which the action would be to shift the input 

symbol and goto state 11. In state 3 there are two actions (reduce when 

the first item is implemented, and shift when the second item is used), 

one of them must be chosen by the parser. For SLR(O) this case causes a 

shift-reduce conflict because it can not decide whether to make a reduction 

by the production number 2 pr to shift and goto state 5. The same conflict 
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occurs in the state 4. Hence, it is not possible to construct a SLR(O) 

parser from the above grammar, 

However, for K-1, the shift-reduce conflict mentioned above will 

disappear because the parser can check the next input symbol and accordingly 

decides which action should be done. For example, if the parser is in the 

state 3, it checks the next input symbol, for (*) a shift action is required, 

if the input symbol is either or 11$11 then a reduce action is 

required otherwise an error has occurred. The same argument applies to 

the state 4. So, it is possible to construct a parsing table from the 

above set of states. The parser which has such parsing table is called 

an SLR(l) parser. 
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4.8 LR(l) PARSERS 

It was mentioned in the previous section that SLR(l) method can solve 

some conflicts which the SLR(O) method can not handle. Nevertheless there 

are conflicts that can not be solved by looking at a symbol in the FOLLOW 

set. In such a case it is not possible to construct a SLR(l) parser, and 

the grammar is not SLRM. For example, consider the following augmented 

grammar: 

P: =S 

S: -A=B 

S: -B 

A: -*B 

A: -i 

B: -A 

The set of states together with their FOLLOW sets is shown in Fig. 4.9. 

In state 2, suppose that the next input symbol is (-), then the first 

item causes a shift action and goto state 3, whereas the second item causes 

a reduce action by the production 

B: -A 

because the symbol (-) is in the FOLLOW(B). This situation causes a 

shift-reduce conflict on the input symbol (-). So, the grammar is not 

SLRM - 

Another problem which causes a conflict is when a state has two or 

more completed items (a completed item is one in which the marker is at 

the right-most position in the right part of a production) with a common 

0 P: -. s $ 
S: -. A-B $ 

S: =. B $ 

A: -. i 

A: -. *B 

B: -. A 
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P: -S. $ 

s2 S: -A. -B 
B: =A. 

s3 S: -A-. B 

B: -. A 

A: -. i 

A: -. *B 

s4 S: -A-B. 

S: =B. 

s6 A: -i. 

s7 A: =*. B 

B: -. A =0$ 
A: -. i 

A: -. *B 

A: -*B. 

FIGURE 4.9: Non SLR(l) states 

input symbol in the FOLLOW sets of these items. With respect to this 

input Symbol, if a reduce action is required then the parser can not 

decide by which production the reduction should be made. This type of 

conflict is called reduce-reduce conflict. For example, consider the 

following augmented grammar 

P: =S 
S: =V=E 
V: -i 
V: -R! E 

E: -V 
E: -R 
R: -i 

The set of states of the above grarmar is shown in Fig. 4.10. State 5 
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shows a reduce-reduce conflict. (V) can be followed either by (-) or ($), 

(R) can be followed either by or ($) in some sentential form. So 

SLR(l) method can not solve this conflict because if the next input symbol 

is (-) then it can not decide whether to. - reduce by the production 

V: '4 

or by the production 

R: i 

Hence the above grammar is not an SLR(l) grammar. 

It is possible to make the parser choose arbitrarily between conflicting 

actions and continue in the presence of conflicts. For instance, the 

conflict in state 5 can be resolved by looking at the next input symbol, 

if it is (-) then reduce by the production 

V: =1 

and if it is (! ) then reduce by the production 

R: -i 

Another way for solving conflicts is the inclusion of more information 

in the state. The information allows the parser to know exactly which 

input symbols can follow a handle for which there is a possible reduce action. 

0 
P: -. s $ 

S: -. V-E $ 

V: -. i 

V: -. R! E 

R: -. i 

P: =S,. .ý$ 

s2S: -V. =E $ 
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83: S: -V-. E 
E: -. V wo$ 
E: -. R te 

v: -. i le 
V: -. R! E 

R: -. i 

S: -V-E. 

V: -i. 
R: -i. 

s6V: -R.! E 

s7V: -R.. E 

E: -. V 

E: -. R 
v: -. i 

V: -. R! E 
R: =. i 

a8: V: -R! E. 

FIGURE 4.10: Non SLRM states 

The extra information is incorporated into the state by redefining 

items to include one or more terminal symbols as a second component. The 

general form of an item becomes: 

A: =a. 0, Zs 

where A: =aO is a production, and (t 
s 

is a set of terminal symbols (the 

set might include the end of input marker). If the expected number of 

terminal symbols from 4s) is 1, then the item is called LR(l) item. The 

first component is called the core of the item, and the second component 

is called the lookahead set of the item. If 0 is not empty, the lookahead 

set has no effect on the item. But an item of the form 
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A: -a., I 

calls for the reduction by the production 

A: 

only when the next input symbol is in (Z 
S). 

The way of constructing LR(l) states is the same as mentioned in 

Section 4.5 except that the lookahead set of each item should be taken into 

consideration. Suppose that 

A: =a. BB, Is 

is an item where B is a grammar symbol, and . 
(Z 

S) 
is a lookahead set, then 

the successor item on B is 

A: -aB. 0, L 

the lookahead set remains unchanged. To find the closure set, suppose that 

a state contains the item 

A: =a. Ba Zs 

where B is a non-terminal symbol, include the items 

B: = y, nt 

for each production of the form 

B: =y 

If 0 is empty, the new lookahead set (nZ ) will contain the set (I 
.ss 

otherwise (n1s) will contain FIRST($t 
S). 

If a set of items in a state 

contains identical core, e. g. 

A: -a. $ zs1 

A: -a. B Is 2 

but different lookahead sets, then these items must be merged into a single 

item which has the union of the lookahead sets of all the items, e. g. 

A: '-a. 0, Is1Uts2 
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As an example, consider the following augmented grammar: 

P: =s 
S: -AA 
A: -aA 
A: -b 

The first item is 

P: -. S 

since S is a non-terminal symbol, then include the item 

S: -. AA 

the input symbols following S are empty, so the lookahead set of the new 

item is ($), i. e. 

S: -. AA 1$ 

(A) is a non-terminal symbol, includes the set of items with their lookahead 

set which is equal to FIRST(A). According to the rules mentioned in Section 

4.7, FIRST(A) contains (a) and (b), then 

A: -. aA a, b 

A: -. b a, b 

None of the new items has a non-terminal symbol immediately after the dot, 

therefore no more items can be added. So the initial state is 

s0P: -. S $ 

S: -. AA $ 

A: -. aA a, b 

A: -. b a, b 

The lookahead set of the successor item remains unchanged then 

S1: P: - S. $ 

continue in this process until no more states. can be added. The complete 

set of states is shown in Fig. 4.11. By comparing the set of LR(O) 

states in Figure 4.4 with the set of LR(l) states in Figure 4.11, 
4 
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notice that the LR(O) states are identical to some LR(l) 

states (ignoring lookahead sets).., The extra states are caused by the 

lookahead sets. For instance, in Fig. 4.11, states 4 and 7 are identical 

except for the lookahead set of each item. This situation does not happen 

in LR(O) states. 

s0 P: -. S $ 
S: =. AA $ 

A: -. aA a, b 

A: -. b it 

s1 P: -S. $ 

s2: S: -A. A $ 

A: -. aA $ 

A: -. b $ 

s3: S: -AA. $ 

s: 4 A: -a. A a, b 

A: -. aA tv 

A: -. b it 

s5: A: -aA. a, b 

s6: A: -b. a, b 

s7 A: =a. A $ 

A: =. aA $ 

A: -. b $ 

s8 A: -aA. $ 

s9 A: =b. $ 

FIGURE 4.11: LR(l) states 
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4.9 CONSTRUCTING LR(l) PARSING TABLES 

Let G be an augmented grammar. Let '800sil ... Isn) be a set of states 

constructed as in the previous section. The elements of the ACTION table 

are determined as follows: 

If [A: -a. aO, 1 
s] 

is in s 1. and the successor state is sj, then set 

ACTION[i, a] to shift j. (a) is a terminal symbol. 

2. If[A: =a., t 
s] 

is in sip then for all (a) in (Z 
s 

), set ACTION[i, a] 

to reduce by the production 

A: =a 

3. If [P: -S., t 
s] 

is in si, and ($) in (I 
s 

), then set ACTION[i, $] 

to accept. 

4. The remaining undefined elements are set to error. 

The elements of GOTO table are obtained as follows: 

If [A: =. Xy, t 
s] 

is, in sI and [A: -X. y, t 
s] 

is in s, * then set GOTO[i, X] 

to j. X is a non-terminal symbol and y is a grammar symbol or empty. 

2. All undefined elements are set to error. 

The representation of both tables is the same as in Section 4.6. 
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4.10 LALR(I) PARSERS 

It was mentioned in Section 4.8 that LR(l) method solves the conflicts 

encountered with LR(O) and SLR(l) by including a lookahead set of input 

symbols with each item. But this requires a much larger number of states. 

This section discusses a method which uses LR(l) algorithm for resolving 
AAA 

conflicts but uses no more than the number of LR(O) states4is called LALR(l) 

(LookAhead LR). 

The reason for the smaller number of states is the merge of all sets 

of items that have the same core into one set of items, and the new lookahead 

set will be the union of lookahead sets of the merged sets of items. The 

number of the new sets of items is exactly equal to the number of LR(O) 

sets of items (i. e. sets of states). 

Consider the LRM states mentioned in Fig. 4.11, the cores of the 

items in the states 4 and 7 are identical. So, it is possible to merge 

them into one state (say s 47 
) i. e., 

s 47 A: =a. A a, b, $ 

A: -. aA a, b, $ 

A: =. b ab, $. 

Actually the merge has no effect on the parser because there is no reduce 

action, and it is clear that if the next input symbol is neither a nor b, 

an error will occur. The set of states 5 and 8 are identical and can be 

merged into one state (say s 58 
), i. e. 

s 58 : A: =aA. a, b, $ 

The same situation occurs with the states 6 and 9. The complete set of 

LALR(l) states is shown in Fig. 4.12. The number of LALRM states is 

equal to the number of LR(Q) states (see Fig. 4.4). 
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s0 P: -. S $ 
S: -. AA $ 

A: -. aA a, b 

A: =. b it 

s1 P: =S. $ 

s2: S: -A. A $ 

A: =. aA $ 

A: =. b $ 

s3: S: -AA. $ 

s 47 A: =a. A a, b, $ 

A: -. aA is 

A: =. b It 

s 58 : A: =aA. it 

s 69 : A: -b. it 

FIGURE 4.12: LALR(l) States 

If a set of LR(l) states has no conflicts, and all states having the 

same core are merged into one state with a lookahead set equal to the union 

of all lookahead sets of the merged states, then it is possible that the new 

set of states will have a reduce-reduce conflict. For example, consider the 

following augmented grammar 

P: WS 
S: =aAd 
S: -bBd 
S: -aBe 
S: =bAe 
A: -c 
B: =c 

The set of LR(l) states (Fig. 4.13) has no conflict. So the grammar is 

LR(l) grammar. Notice that the cores of the states 6 and 7 are the same. 
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They can be merged into one state (say s 67 
) i. e., 

s 67 A: -c. d, e 
B: -c. e, d 

This state has a reduce-reduce conflict because with the input symbol 

(either d or e) the parser can not decide which reduce action should be 

performed. Hence, the grammar is not LALR(I). However such cases are rare 

s0 P: -. S $ 
S: -. aAd $ 

S: -. bBd $ 

S: =. aBe $ 

S: =. bAe $ 

s1 P: ms. $ 

s2 S: -a. Ad $ 

S: =a. Be $ 

A: -. c d 

B: =. c e 

s3 S: -aA. d $ 

s4 S: -aAd. $ 

s5 S: -b. Bd $ 

S: =b. Ae $ 

A: -. c e 
B: -. c d 

s6 A: -c. d 

B: =c. e 

s7 A*. =c. e 

B: =c. d 

s8 S: =bB. d $ 

s9 S: =bBd. $ 

a 10 
S: =aB. e $ 
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s 11 : 
S: -aBe. 

s 12 : S: =bA. e$ 

s 13 : S: =bAe. $ 

FIGURE 4.13: LR(l) states 

in real life grammars, and in practice, LALR(l) parsing method is considered 

to be the most practical method. 

I 
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4.11 CONSTRUCTING LALR(l) PARSING TABLES 

The general idea is to construct the set of LR(l) states and if no 

conflicts arise, merge the states in which all items have the same cores. 

The parsing table is constructed from the new set of states. 

Let G be an augmented grammar, the algorithm of constructing the 

parsing table will be: 

1. Construct the set of LR(l) states. Let this set be s O'si, Soots no 
2. Merge all states in which the items have a same core into one 

state. The new lookahead sets will be the union of the lookahead 

sets of all the items merged. 

3. The elements of the ACTION table can be constructed from the new 

set of states in the same way as mentioned in Section 4.9. 

The elements of GOTO table can be constructed as follows: 

1. Let {sOps1p ... 9sn I be a set of states having the same core and 

merged into one state (say s). Suppose that GOTO [solX]- yot 

GOTO[s,, X]-yl,..., GOTO[s 
n'X]. Yn* Then yo, yl,..., yn have the 

same core and can be merged into one state (say y). Now, set 

GOTO[s, X] to 

2. All undefined elements are set to error. 

The representation of both tables is the same as in Section 4.6. 
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4.12 OPTIMIZING THE PARSING TABLE 

There are two main factors that should be taken into consideration 

during the construction of the parser. They are the size and the speed. 

of the parser. As mentioned in Section 4.3 the main part of an LR parser, 

which occupies a large amount of space, is the parsing table. So any 

reduction in the size of the parsing table will have an effect on the size 

of the parser as a whole. 

As far as the ACTION table is concerned, some states have identical 

parsing actions. These states can be merged into one state. For example, 

in Fig. 4.14, states 0,2 and 47 are identical and can be merged into one row. 

states ab$ 

0 s 47 s 69 
1 a 
2 s 47 s 69 
3 r 
47 s 47 s 69 
58 r2 r2r2 
69 r3 r3r3 

ACTION TABLE 

SA 

FIGURE 4.14: LALR parsing table constructed from Fig. 4.12 

The ACTION table becomes 

ab$ 
0,2,47 s 47 s 69 

1a 

3r 

58 r2r2r2 

69 r3r3r3 

similar merging could bý done with the GOTO table. 
I 

GOTO TABLE 
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It has been mentioned earlier that all undefined elements in GOTO 

table are set to error. However, in practice these entries will never 

be used because the function of GOTO table is just to specify the next 

state after a reduce action has been carried out. Moreover, any error 
;5 

will be caught while the parser A consulting the ACTION table. Hence, each 

row in GOTO table in which all elements are undefined can be erased. For 

example, GOTO table in Fig. 4.14 will be 

SA 

012 

23 

47 58 

To reduce further the size of the parsing table and increase the speed of 

the parser, there are some productions (single productions) which are 

semantically insignificant and are of the form 

A: 

where A is a non-terminal symbol and x is a grammar symbol. The elimination 

of reductions by such productions will improve the parsing speed because it 

allows the parser to by-pass the eliminated productions during a parse. For 

example, consider the following augmented grammar: 

P: -$ 
S: =S, B 

S: -B 
B: -a 
B: =b 

The set of LALR(l) states constructed from the above grammar is shown in 

Fig. 4.15. 
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s0P: -. S $ 

S: -. S, B 1$ 
S: -. B It 

B: -ý. a of 

B: -. b it 

s P: -S. $ 

S: -S. 9B 1$ 

s S: -S, B 1$ 2 
B: =. a 
B: -. b 

S3S: =S, B. 1$ 

S4S: =B. it 
. 

s5B: -a. of 

s6B: =b. if 

FIGURE 4.15: A set of LAIR(l) states 

After recognizing an input symbol and reducing it to B, the parser at 

state 0 consults GOTO table to find the next current state, which is state 4. 

Here, the parser will do a reduce action by the single production S: -B. 

Now, the current state is state 0. Again, the parser consults GOTO 

table to find the next state which is state 1. The last reduce by the 

production S: =B can be avoided by letting the parser go directly to state I 

rather than state 4. The size of the ACTION table is reduced by eliminating 

state 
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4.13 AUTOMATIC GENERATION OF LR PARSERS 

It has been shown that a lot of manual work is necessary to construct 

the set of states and subsequently both the ACTION table and GOTO table. If 

there is an automatic generation of such states and tables by a program 

which accepts a context-free grammar as an input and produces a set of 

states and parsing table as an output, it will save a lot of time. 

Fortunately, there exists such programs, such as the YACC program (Yet 

Another Compiler-Compiler) which is written in the programming language C 

and runs under UNIX. The user provides YACC with an input file, and YACC 

builds the LALR(l) parser. This includes the construction of the states. 

The input consists of three sections, the declarations, productions and 

programs. They are separated by '%%' marks, i. e., 

declarations section 

productions section 

programs section 

The first and last sections are optional, and when they are omitted, the 

layout of the input looks like 

productions section 
C"h 0"9 

The productions section consists of one or more productions and-'has the 

following form, 

A: BODY ; 

where A is a non-terminal symbol (left-hand side of the production), and 

BODY is the right hand side of the same production. The colon and the 

semi-colon are YACC punctuations. If there are several productions with 
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It can be used to avoid rewriting the the same left hand side, the mark 1. 

left-hand side. The semi-colon at the end of a production must be dropped 

before '. ". For example, -the productions 

A: aAb 
A: bBc 

A: cCd 

can be written as 

A: aAb 
bBc I! 

cCd ; 

All norr-terminal and terminal symbols must be known to YACC. This is done 

by declaring all terminal symbols in the declarations section. Any name 

not defined in the declarations section is assumed to represent a non- 

terminal symbol. The terminal symbols are defined as 

%token namel, name2, 

If there are no conflicts-then the user need not supply anything more than 

the grammar. But when there are shift-reduce or reduce-reduce conflicts, 

YACC still prod4ces a parser. It does this by selecting one of the valid 

choices as-follows: 

l.. If there is a shift-reduce conflict, then a shift action is 

selected. 

2. If there is a reduce-reduce-conflict, then reduce by the 

production listed first in the original input. 

If the user is satisfied with the default selections, provided by YACC, 

this will resolve the problem. However, it is possible for the user to 

provide more information to help YACC resolve the conflicts. This extra 

information is to specify the precedence and the associativity to the 
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terminal symbol& in the declarations section. This is done by a series 

of lines beginning with a YACC keyword: %left, %right, or %nonassoc, 

followed by a list of terminal symbols. For example, consider the 

production, 

E: =E I*'E 

then with the input of the form E*E*E the parser can treat it either as 

(E*E)*E or E*(E*E) which causes a conflict. So if (*) is chosen as left 

associative, i. e. 

%left '*' 

then the input is treated only as(E*E)*E, whereas, if (*) is chosen as 

right associative, i. e. 

%right '*I 

then the input is treated only as E*(E*E). Therefore the conflict is 

resolved when the associativity of the symbol (*) is specified. 

All of the terminal symbols on the same line are assumed to have the 

same precedence level and associativity. The lines are*listed in order of 

increasing precedence. For example, in the following declarations 

%left 

%left 

and (-) are left associative, and have lower precedence than (*) and 

which are also left associative. YACC checks the precedence of the 

terminal symbols, if they are the same then it can apply the associativity 

to them. 

When the input is 
_rcAA,! 

by YACC program, an output file is produced. 

This can be compiled to get an executable parser program. An optional file 

can also be produced by YACC. This file contains a description concerning 

the set of states, and also details about the conflicts that might exist. 



CHAPTER 5 

THE ENCODER 



114 

Fot a given probabilistic context-free grammar G, a design of an 

encoder program is discussed in which whenever a valid input sequence 

of symbols is in the language generated by G (together with editing 

characters and perhaps comments) a corresponding sequence of code words 

is generated by the encoder. In general, the function of the encoder is 

to start at a certain state (initial state), encode the input by following 

some intermediate states, and terminate atacertain state (final state). 

In any state, only one action is chosen, and when one action is chosen 

there is no way that, after a while, the encoder will go back and choose 

an alternative one. Thus there is no backtracking. 

Section 5.1 illilstrates the basic model of the encoder. Section 5.2 

explains the encoding of the grammatical symbols of the input and 

illustrates its work. The construction of the encoder program is explained 

in Section 5.3. Different ways of encoding editing characters are explained 

in Section 5.4. The encoding of comments is illustrated in Section 5.5. 

Section 5.6 explains the encoding of names and numbers (identifiers). 

The encoding of strings is explained in Section 5.7. An optimization has 

been done on the size of the parsing table in order to reduce the total 

space of the encoder. This is mentioned in-Section 5.8. Section 5.9 

illustrates the construction of the encoding table which depends on the 

way of constructing the ACTION table. Section 5.10 illustrates the 

construction of a program in which the frequencies of all possible 

symbols, required to be coded, are obtained. Finally, some sample Pascal 

programs have been submitted to the encoder to find the size of the coded 

files, and the amount of space saved. These results are recorded in 

Section 5.11. 
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5.1 THE MODEL 

The input file contains a mixture of language tokens and editing 

characters (including comments). So the data can be classified into two 

parts, the editing part which includes all editing characters and comments; 

and the grammatical part which includes keywords, identifiers, special 

symbols and strings. 

The encoding procedure, in general, will alternate between the two 

parts; that is, once the encoding of elements of the first part is 

accomplished, the encoding of elements of. the second part will start. 

Then returns to the first part, ... and so on. i. e. 

coding encoding start, enjC 
Di 

tj editing grammatical 
part part 

However, for the grammatical part, the encoder needs to parse (an LR(K) 

parsing method is used) each element of it before generating any code. 

In each state, one of the following three actions (shift, reduce, and 

accept) will be chosen and a required code will be generated. In all 

cases, the encoder shifts to the editing part except when the action is 

reduce. In this action (i. e. reduce), no change on the input symbols 

will occur, and the current token must be a language token. So, as far 

as there is a reduce action which does not alter the input file, the 

encoder does not need to shift to the editing part. Diagrammatically, 

the relation would be: 
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encoding grammatical 
part 

encodin educe 

reduce action 
reduc 

action 
ý ýaction 

F 

encodin 
editing 
s, part 

:t 

other actions I other actions 

ncoding 
other 
actions, 

Details of the encoding of each part are explained in the following 

sections in this chapter. 
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5.2 ENCODING THE GRAMMATICAL PART 

Basically, the encoder consists of: 

1. A finite set of states S-{sOvslv.. *ps n 
1; S0 is the initial state. 

2. A sequence of input symbols (I) from a context-free language. 

3. A sequence of code words represents an output (0) from a code (H). 

4. A push-dowa stack holds the current state and a grammar symbol at the top. 

5. A defining function: for a state sI on top of the stack and an input 

symbol ai from (I), the encoder transfers to a particular state sj and, 
FPL, 06ce'a 

if required, generates a code word. The state sj will be-on the top 

of the stack, and the input symbol may or may not be removed. If sj 

is not in the set S then the input ai is not an element of the language. 

The following notation will be used to express the function: 

current state: (top of the stack, input stream, output stream) -1-- 

(new top of the stack, remaining input, updated output). 

There exist a final state sz in S, and an end of input marker ($), 

such that the encoder stops the processing when the current state is 

and the input is $. 

Suppose that a1a 2'***, 
$ is a string of input symbols (including the 

V*,, Ch 
end of file marker $)*is required to be encoded. The encoder starts from 

the initial state s0 on the top of the stack as the current state, and 

the output stream is empty (e). This can be expressed as: 

s0 : (so, a 132' ..., a n 
$, e) (a 

1 siga 2a 3' ..., a n 
$'0 

1) 

Now, the new current state is s on the top of the stack, a1 is shifted 

away from the input, and a new code 01 is added to the output. Continue 

in this process until it reaches the final state. It can be expressed as: 
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8i: (asits, 0 102..., 0 k) 4- (Gst9$9010 
2'***'ok+1) 

where a is a gra-ar symbol and G is the initial symbol. To express the 

whole process: 

s0s 19.0. Ps (so, ala 2' ..., a n 
$, e) (GsII$I0l02'*`Ok+l) 

where 00 is the encoded data of the input ala .... a2 in'the 
1 2'***'Ok+l 2' n 

form of a sequence of codes. s0 S19*009s i are the states (some of them are 

repeated) used by the encoder which are a subset of S. ' Thus for each string 

of an input language, there is an equivalent sequence of'code words generated 

by a unique sequence of states. 

Transferring from one state to another is equivalent to going one step 

further to the right of the right-hand side of a particular production. 

This transfer can be represented by a sequence of code words. Apart from 

the states and terminal symbols, the stack holds non-terminal symbols. 

This occurs when a handle production has been found; the right-hand side 

of the production will be substituted by the left-hand side of the same 

production. This substitution (reduction) always occurs to the recent 

updated or read symbols (symbols which*are on the top of the stack). So 

a right-most derivation is applied everytime a handle is found. 

The sequence of proce'ssing the states can be seen as building a parse 

tree for a given input, where the input symbols represent the leaves of 

the tree, and the marker $4equivalent to recognizinjthe root of the tree (G). 

At any intermediate state, the input symbols together with the grammar 

symbols on the stack are regarded as a sentential form. Since the building 

of the parse tree starts from the leaves upwards to the root, the set of 

states involved could be treated as steps of a bottom-up parse. 
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5.3 THE ENCODER PROGRAM 

The function of the encoder program (Fig. 3.2(a)) is to compress 

partially'structured data (a program) written in Pascal language (Appendix 

A contains the full Pascal syntax). It transforms a fixed length represent- 

ation into a shorter, variable length representation. The program is 

sufficiently complex to make it difficult to understand it as a single 

entity. Therefore, it is preferable to divide the process into a number 

of small processes connected to each other. Hence, the encoder consists 

(Fig. 5.1) of two main parts, the parsin3 part and the encoding part. The 

operation of the encoder program begins'in the parsing part. The data is 

read and checking will be done as to whether it is syntactically correct 

or not. During this checking the encoder generates, 'when required, an 

appropriate code concerning the parsing, names, constants, ... etc. 

5.3.1 The Parsing Part 

The parser uses the LR parsing method which has been explained in 

Chapter 4. At any stage, the parser depends on the current state and the 

current input symbol to decide the next state. The input symbols are 

divided into 3 classes: names, constants, and special symbols. The 

classification of the symbols is the work of a routine called scanner. 

It also recognizes the editing characters (spaces, tabs and new lines), 

and the comments which could immediately be encoded because they are not 

elements of the grammar rules. Names are either'keywords such as (begin, 

end, if, ... etc. ) or user names. Numbers are either integers or reals. 

Fhen the scanner recognizes any element in each class, it passes 

information to the parser khown as a token. The same token is returned 
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for all user names. Another three different tokens are assigned to the 

strings, integers and reals. Each remaining recognized symbol - .. has 

its ova token. New names and constants are stored in a table called the 

symbol table. The algorithm for the scanner would be: 

Begin i 
If input is editing character or comment 
Then encode the input; 

read new input 
Else If input is name 

Then If it is a keyword 
Then generate the appropriate token 
Else generate a token for a user name; 

store the name in a symbol table if it isnew 
Else If input is a constant 

Then If input is an integer 
Then generate a token and store the number (if new) 

in the symbol table 
Else generate a token for a real number and store 

it (if new) in a symbol table 
Else generate a specific token 

End 

sourcL scanner fl parser encoder encoding 
progr symbols 

parsing and 
encoding tables 

FIGURE 5.1: The encoder program 

Assume that the initial state on the top of the stack is the 

current state, and the scanner provides the next'token. The parser can 

consult the ACTION table to determine the next action. For a shift action, 

the next state will be the current state and is stored on top of the stack. 

A new token will be provided by the scanner routine. If a handle is found 
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then a reduce action is required. The parser removes elements from the 

top of the stack equal to the length of the right hand side of the handle 

production. The left hand side of the handle production and the state 

on top of the stack decide the next current state by consulting the GOTO 

table. After each action, a specific code could be selected from the 

encoding tables (see Section 5.9) and passed to the encoding part in order 

to be stored on the encoded file. Before performing a new action, the 

encoder checks the token as to whether it represents a user name or represents 

a constant. In'both cases, another code is generated for each character, 

or a code representing the location of the identifier (name, or constant) 

in the symbol table would be generated (this is explained'in detail in 

Section 5.6). For a state which has only one choice, the probability of 

that choice must be one. Therefore, if the state is the current one (in 

both the encoder and the decoder) then it is certain that the choice would 

be selected. Thus it is not required to generate any code. If the final 

state is reached and the next token is end of the input file, then an accept 

action occurs, and the processing will be stopped. Usually the data 

submitted to the encoder program is already syntactically correct and no 

syntax error is expected. Nevertheless, a simple error routine is included 

in the parser. The algorithm of the parser is: 

Begin 
while the action is reduce 
do pop off the stack elements equal to the length of the handle; 

find a new current state 
generate a code if required 

end do 
if the action is shift 
then push next current state on the stack 

generate a code if required 
else if the action is accept 

then stop parsing 
else error 

End 

The complete parsing part of the encoder program can be seen in Appendix B. 
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5.3.2 The Encoding Part 

once the input symbol has been parsed, an appropriate code, if any, 

is generated. The encoder picks up the code from the encoding table and 

stores it in an output buffer (in the program, the buffer length is two 

words). Since the code is a variable-length (Huffman code), more than one 

code could'be stored in a buffer word. So, care must be taken in this 

case, especially when a code has to be stored across two words. Suppose 

that a code is required to be output, the algorithm would be: 

The (binary) code symbols are stored in a buffer so as to make the 

final output to disc file more efficient. The buffer consists of a certain 

number of computer words and one of them is partially filled to a point 

indicated by counter, i. e., 

I== 

it 

" 
IJ 

___ 

it 

J 
31 0 31 0 31 0 31 0 

word I word 2 word i (current) word n 

-counter 

Begin 
If code length + counter 4< word length 
Then shift the word to the left (code length) times; 

store the code at the right-most of the word without 
destroying the previous stored codes; 

update the counter 
Else shift the word to the left for the remaining unused 

bits in the word; 
store part of the code; 
If the word is the last in the buffer 
Then store buffer on a file 
Else prepare the next word 
clear the counter; 
store the remaining bits of the cpde in the word; 
update the counter. 

End. 

The full buffer is stored on the output file by redividing into 8 bit 
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bytes and outputtiý3. as if characters. When no more codes are generated, 

the buffer has to be flushed in order to save the significant code symbols 

in it. 

As far as encoding editing characters, names, constants, and comments 

is concerned, these will be explained in Sections 5.4,5.6 and 5.5 

respectively. The listing of the encoding routine and its relation with 

the parsing routine is mentioned in Appendix B. 
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5.4 ENCODING EDITING CHARACTERS 

Editing characters i. e. space, tab , and new line are mainly used 

to make a computer program more readable, well formatted, and also to 

separate keywords, identifiers, and numbers. Hence, in general, source 

program consist of a high percentage of those characters. They reserve 

a considerable space compared with the total area occupied by the whole 

program. So, any attempt to compress these characters and reduce the space 

which they occupy will have a direct effect on the size of the program as 

a whole. Usually, editing characters can be used anywhere in the program. 

At each time one or more characters can be used. For the editing characters, 

there are different ways of encoding them; such as character encoding, using 

counters or arrays to encode groups of characters instead of individual 

characters. So three different methods of encoding editing characters 

will be presented in subsections 5.4.1,5.4.2 and 5.4.3. 

5.4.1 Character Encoding 

The editing characters used in Pascal programs are: spaces, tabs 

and new line characters. Statistically, the most frequent editing characters 

are the spaces, followed by the tabs and then the new lines. By applying 

Huffman codes, the code of each of those characters would be: 

space 0 

tab 10 

new line 11 

Since editing characters can be placed anywhere in the program and 

also there exists a mutual knowledge between the encoder and the decoder, 

then the encoder must inform the decoder as to whether the next code 
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representý an editing character or not. This requires the generation 

of an indicator (one code symbol) before generating any code which may 

or may not represent an editing character. 

Each time an editing character has been recognized, the encoder 

generates one bit of value 1 as mentioned above, and then generates the 

code of the editing character. The format would be: 

10 space 
1 10 tab 
1 11 new line 

0 no editing character 

Indicator Code 

For example, if there are three spaces and one tab then the sequence of 

code symbols will be 
1010101 10 

But, if there are no such characters, the encoder will generate only one 

code symbol (bit) of value 0. That is to inform the decoder that no 

editing character is expected next. 

5.4.2 Using Counters 

Instead of using one editing character at a time, it is possible to 

use a sequence of subsequent characters without affecting the structure 

of the program. Hence, before generating any code, assign a counter 

(accumulator) to each type of the editing characters. This allows the 

encoder to accumulate all subsequent identical characters until the next 

character is not an editing character. Then an indicator of value 1 

followed by the total number of editing charactersfollowed by codes of all 

editing characters will be generated. Theoretically, the number of editing 
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characters which can be used between names, numbers, ... etc.. is unlimited. 

However, in practice it is limited; thus it is required to determine a 

coding scheme to indicate the total number of characters. The format 

would be: 

f ield 1 

[--. 
li f ield 2 f ield 

codes for new lines I 

"-codes for tabs 

codes for spaces 

where: 

Field 1: an indicator; 

Field 2: the number. of characters; 

Field 3: codes of the characters. 

Since the number of editing characters which are expected at each time 

is variable, this will lead to the field 2 to be of a variable length as 

well. To simplify both the encoding and the decoding processes, a fixed 

length will be assigned to field 2. Accordingly, field 2 can not hold 

any number. So a set of ranges is provided; for each range there is a 

correspondinj length assigned to field 2 such that any number within the 

range can be stored in field 2. The ranges are organized in a way such 

that. the length of field 2 is equal to or multiple of a certain length. 

Let the initial length be 3 bits, then the set of ranges would be: 

Length of field 2 

3 

6-3+3 

, 9-3+3+3 

12-3+3+3+3 

The ranize of characters 
1-6 

7-62 

63-510 

511- 
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So, if the number of editing characters is within the range 1-6, then 

only one field of length 3 bits is required. If the number of characters 

is within the range 7-62, then 2 fields each of length 3 bits are required. 

The first field must hold the maximum value (i. e.. 111). Obviously, in 

most programs, the number of editing characters is within the first range. 

Hence, only 3 bits will be sufficient. The length of field 2 could be 

changed to 2 bits or multiple of 2 bits. Assume, for example, the number 

of characters is five, then according to the above format the output would 

be: 
1 101 000010 

In the case that the total number of editing characters exceeds six 

(if the length of field 2 is 3). The encoder must generate the value 

seven (3 bits of ones) and then subtract 7 from the accumulator. If the 

remaining number is less than seven then only three more bits containing 

the new number required to be generated; otherwise generate another three 

bits of ones (value 7) and carry on subtracting as above. For example, 

if the number of characters is 7 then the output codes would be: 

1 ill 000 000001011 

The codes for 8 characters would be 

1 ill 001 0000001011 

The idea of generating extra three bits of zeros when the number of 

characters is exactly 7 is to let the decoder know that the following 

sequence of code symbols are the codes of 7 editing characters and, not 

more, because the first three bits are always (111) when the number of 

editing characters is greater than or equal to 7. Generally, the extra 

3 bits of zeros will always be added when the number of characters is a 

multiple of 7. 
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However, this method can not be applied for any combination of 

editing characters especially when the encoded file must be reversible, 

because editing characters can be used in any suitable order. So, the 

encoding of some combinations of editing characters causes the encoded 

file to be regarded as irreversible. For example, if the combination of 

editing characters is two spaces, a new line and one space; then the 

encoder could be written to print either spaces characters first or new 

line characters first, i. e. 

1 100 00011 

or 1 100 11000 

To decode the above sequences, the result would be either three spaces. 

and a new line, or a new line and three spaces; which are different from 

the original sequence of characters. One way to overcome the above problem 

is to generate a code after accumulating identical editing characters. 

Hence only one code representing the editing character will be generated 

rather than for each character. For instance, the code of the above example 

would be 
1 010 01 001 11 1 001 0 

5.4.3 Using an Array 

The length of editing sequence is unknown, but in practical actual 

programs, is mostly less than, say x. So the idea is to save editing 

characters until the next character is not an editing character, or the 

limit x is reached. Then y editing characters have been collected yýx 
to d am sent 

and ---a.,. code expressing y, 
ý' 'ry codes for each editing characteri. Values y 

of x-3 or x-7 have been tried in the encoder program. The output format 

would be: 
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1 

_____ ________ 

Field 1 Field 2 Field 3 

where: 

Field 1: an indicator; 

Field 2: a fixed size holds the number of characters; 

Field 3: codes of the characters. 

The encoder generates one bit of value 1, three bits contain the total 

number of characters, and then the codes of these characters. This way 

ensures that the encoded data is reversible. For instance the code of the 

above example would be 

1 100 00110 

If there are more than seven subsequent editing characters, then each 

group of seven characters would be treated independently. So, for each 

group, the decoder expects only three bits (field 2) containing the number 

of characters, which is in contrast with the method explained in the previous 

section. 

In the encoder program (as has been described in Section 5.3), the 

scanner routine usually checks for the existence of editing characters. 

It also stores them in an array. When the array is full or nomore editing 

characters are read, the scanner calls another procedure to generate the 

required code. The algorithm of the code generator procedure will be: 
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Begin 
If number of characters is not zero 
Then generate a code (value 1) for the indicator; 

generate the length of the characters; 
generate a code for each character in the array; 
clear the field containing the number of characters 

End 

The coding of the above algorithm can be seen in Appendix B under the name 

(editproc). 
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5.5 ENCODING COMMENTS 

A comment is usually a string of symbols enclosed by either 11{ and 

or "(* and *)" (in Pascal). It can be embedded anywhere in the program; 

and can be of any length. It has no syntactic recognition. So, the parser 

does not require to check for its existence. The only routine dealing with 

comments is the scanner which treats them in the same way as the editing 

characters. When the scanner recognizes the start of a comment, it reads 

all the characters until the end of the comment. Hence, encoding a comment 

is part of the scanner's function. The format of the code will be an 

extention to the format of encoding editing characters mentioned in (5.4.3), 

i. e. 

II F-I I III 
field 1 field 2 field 3 field 4 field 5 

where: 

Field 1: an, indicator of value 1; 

Field 2: contains zeros; (to distinguish from editing characters which 

have an entry greater than or equal to 1) 

Field 3: has value 1 if delimiters are "(* and *)", and 0 if delimiters 

are "I and I"; 

Field 4: codes of the characters; 

Field 5: delimiter code. 

Fields 1 and 2 are exactly the same as in the editing characters. 

The only difference is the value of field 2 which is zero in order to 

distinguish the comment from editing characters, because field 2 will 

never contain zero in the case of encoding editing characters. The codes 
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of the characters can be obtained from the character table mentioned in 

Section 5.9. The last field will contain either the code of "Y', or a 

special code, representing depending on the type of delimiters used. 

The routine which checks for a comment, and passes the necessary code 

to the encoding part would be: 

Begi 
-n generate a code of value 1 (field 1); 

generate a code of value 0 (field 2); 
If input is "(*" 
Then generate a code of value 1 (field 3); 

read new input; 
while "*)" has not been found 

generate character code; 
read new input 

generate. a delimiter code 
Else generate a code of value 0 (field 3); 

while input not "I" 
read new input; 
generate character code 

End 

The above routine 'Could be coded as a separate procedure or as part of the 

scanner procedure as it has been done in the encoding program (see Appendix B) 

As an example, consider the following sequence of symbols together 

with their codes (Huffman codes) 

Svmbol Probability Code 

a 0.32 01 

b 0.20 10 

0.04 1100 

0.04 1101 

0.16 001 

0.08 ill 

0.08 0000 

special'code 0.08 0001 

The codes of the following comment 
{(a * b) * al 
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would be b) 
1 00 0 ill 01 001 10 0000 001 01 1101 

For the following comment 

(*(a*b)*a*) 

The codes would be 

aba 
1 00 1 ill 01 001 10 0000 001 01 0001 

There are two rules for using comments: 

1. comment finishes at the first closing delimiter *) or I depending 

on the opening delimiter. 

2. nested comments, that is, a comment can be part of another comment, 

such as 
{start first comment {second comment) end first comment) 

or 
(*start first comment(*second comment*)end first comment*). 

So after the first closing delimiter (which belongs to the second 

comment), the encoder must carry on encoding the following 

characters (because they are part of the first comment) until it 

reaches the second closing delimiter (which belongs to the first 

comment). 

The encoder program uses the first rule for encoding comments. However, 

the second rule can be implemented with the condition that the delimiters 

of the first comment must be different from the inner comments, such as 

{start first comment(*second comment*) end first comment) 

or (*start first comment {second comment) end first comment*). 
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5.6 ENCODING NAMES AND CONSTANTS 

Non-keyword names usually consist of any combination of alphabetical 

and numerical characters including the hyphen symbol. Any unsigned integers 

or reals are considered to be constants. These names and constants 

(identifiers) are almost always repeated more than once in a source program. 

Therefore, it is necessary to pay some attention to the way these identifiers 

will be encoded. 

Assume that Huffman codes are applied to the characters and symbols 

involved. The simplest method is to generate a code for each character of 

the identifier; preceded by the number of elements involved. Specifying 

the number of elements is important to the decoder because identifiers are 

usually of variable lengths. The code can be generated everytime the encoder 

recognizes an identifier despite that some of them could be repeated 

somewhere in the program. Hence, the same codes could be duplicated in 

the encoded file which is impractical especially for long identifiers. 

The method applied by the encoder program distinguishes between new 

identifiers and already existing identifiers. For an already existing 

identifier, the encoder generates a sequence of code symbols different 

from the sequence of code symbols generated when the same identifier was 

firstly recognized as a new identifier. Hence, it considers two different 

formats for encoding such identifiers with the help of a lookup table 

called symbol table. The first format used for all new identifiers which 

are immediately stored on the symbol table, and the code is regarded as 

the sequence of codes of each character of the identifier. It consists 

of three fields: 

field 1 field 2 field 3 
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where: 

Field 1: one bit of value 0 which means that the identifier is a new one; 

Field 2: 3 or multiple of 3 bits which is used to store the length of the 

identifier; 

Field 3: the code of each character. 

The way of constructing field 2 is exactly the same as explained in 

the construction of field 2 in Section (5.4.2). As an example, consider 

the encoding of the identifier (abcd) where the codes of a, b, c, and d are 

00,01,10 and 11 respectively. According to the first format, the sequence 

of bits generated is 

1 100 00011011 

abcd will be stored in the next available element in the symbol table. 

The second format is applied only when the encoder recognizes an 

identifier which already exists in the symbol table. ' So instead of 

generating a code for each character of the identifier, the encoder only 

needs to generate the location of that identifier in the symbol table., 

The format consists of two fields 

[71 11 
f ield 1f ield 2 

where: 

Field 1: one bit of value 1 which means that the identifier already exists 

on the symbol table; 

Field 2: holds the position of the identifier in the symbol table. 

For example, if the identifier (abcd) is required to be encoded again, 

taking into consideration that it is stored in the location zero in the 

symbol table, then the code would be 
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1 

which is rather short compared with the previous code generated for the 

same identifier. 

The problem here is to find the size of field 2. A simple way is to 

assign a fixed length depending on the maximum number of identifiers which 

can be stored in the symbol table. This maximum number is actually equal 

to the size of the symbol table. For instance, if the size of the symbol 

table is 256 (0-255) then a field of length 8 bits is sufficient to hold 

the maximum number, i. e. 256. However, it. is possible to optimize the 

length of field 2 by assigning a variable length rather than fixed length. 

For instance if there is only one identifier in the symbol table, then a 

size of one bit would be'enough. For three identifiers', two bits are 

necessary and sufficient to hold that number. 

To seek a general way of recognizing the size of field 2, consider 

the following two ideas: 

1. Table lookup: the relationship between the locations and the length 

of field 2 can be expressed in the following table: 

Locations Length of field 2 

0-1 1 bit 

2-3 2 bits 

4-7 3" 

8-15 4 It 

16-31 5 

32-63 6 

64-127 7 

128-255 8 

Thus if the start location numbers which cause an increase in the size 
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of field 2 are stored in an array, then it would be possible to seek 

the correct length by finding the location of the smallest number in 

the array which is greater than the location of the current free 

element in the symbol table. For example, suppose that the size of 

the symbol table is 256, then from the above table, the length required 

is 9. 

2. The length of field 2 can be expressed by means of logarithms to the 

base 2 of the current free location. Suppose that n is the current free 

location, then 

. 
INTeger value of 1092 (n)+1 will be the size of field 2. 

For example, INT(log 2 
(4))-2 

2+1-3 bits 
are required when the location is 4. For the location 9 

INT (1092 (9))-3 

3+1=4 bits 

are required. 

The implementation of the first method is a straight-forward -process 

and it does not require a lot of calculations in order to obtain the field 

length. But the second method needs a special routine to deal with the 

logarithmic function and then find the integral part of the result. This 

required a considerable computing time especially when the procesi-repeated 

many times during the encoding procedure. Hence the first method is more 

economical than the second method and will be used by the encoder'program. 

Whatever method used to find the length of field 2, there must be an 

agreement between the encoder and the decoder on the way of recognizing 

new and old identifierso and also on constructing the symbol table. That 
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is when the encoder stores a new identifier in a particular location in 

the symbol table, the decoder, when it recognizes the code of the same 

identifier, must store it in the same location in its own symbol table. 

Thus the sequence of the identifiers in the symbol table must be the same 

in both the encoder and the decoder. This is important because when the 

encoder generates a code for an old identifier using the second format, 

the decoder must know (with the help of the indicator) the length of 

field 2, -and also the correct identifier which has been stored in the 

symbol table. 

In a block structured languages identifiers are defined either 

globally which means that they are accessible throughout the program, or 

locally which means that they are accessible only inside a part of the 

program (usually procedures). So. the construction of the symbol table 

in the simple way (as mentioned above) comes because of the assumption 

that all identifiers are considered to be global. For instance, the 

encoder treats both an identifier defined outside a procedure (i. e. global 

to the procedure)9 and another identifier which has the same name defined 

inside the procedure (i. e. local to the procedure) equally the same despite 

the fact that they are independent. The first identifierAConsidered by 

the encoder as a new one; whereas the latter is, considered as an already 

existing one. Actuallyt this is preferable because the encoder does not 

need to generate a code for each character of the second identifier, 

instead it generates only its location in the symbol table. 

Another method can be used to construct a symbol table, that is when 

the encoder differentiates between global and local identifiers. It should 

generate a code for a local identifier as if it is a new one even if there 
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exists a global identifier which has the same name., When a local 

identifier becomes unaccessible (not valid outside the procedure in which 

it has been defined), the encoder should remove it from the symbol table. 

As an example, consider (abc. Imn and temp) are three global 

identifiers, and (temp) is a local identifier defined inside a procedure. 

The symbol tables look like: 

first method 

abc 

global Imn 

temp 

second method Qhili-- 
rea. din3 procecLare 

I ab cI 

second method after 
proc. li(xs been react 

II abc 
I 

global iI tm I global jI Pm I 

temp 

local temp 

II 
temp 

I 

As a second example, reconsider the first example but assume that the 

global identifier (temp) does not exist. The symbol tables would be: 

first method second method whiLe- second method after 
rea-dirv3 pmc-edure-- proc. has been rea-cL 

abc abc abc 
global global- 

global hm 

local 

The first method is very simple and does not require much calculation to 

find any identifier. The size of the symbol table might be bigger or 

smaller than the size of the symbol table used by the second method 

depending on the structure of the Pascal program. The first method has 

been implemented by the encoder for simplicity and because the second 

method is not uniformly superior. 
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Usually the scanner recognizes all the identifiers, then searches 

the symbol table for such identifiers. The search routine would be: 

Begin 
For all identifiers in symbol table 

If the input identifier exists 
Then save the location; 

return 
Store the identifier in the symbol table; 
Increment the indicator 

End 

After the parsing process, a code must be generated representing the 

input identifier. The routine would be 

Begin 
If old identifier 
Then begin generate a code of value 1; 

find the length of field 2; 
output the location of the identifier in the 

symbol table in required length 
end 

Else begingenerate a code of value 0; 
output the length of the identifier; 
generate a code for each character 

end 
End 

The coding of the above routines can be found in Appendix Bg under the 

names (lookup) and (check) respectively. 
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5.7 ENCODING STRINGS 

A string is any finite sequence of symbols enclosed by the symbols 

"31 and 0% such as 
'this is a string) 

It is considered as an element of the grammatical part, and hence it is 

a language token. The symbol can be used inside the string, but it 

has to be doubled in order to discriminate it from the end of the string, 

so this allows strings to be nested. 

The encoding of a string is almost straightforward; as soon as the 

scanner recognizes the first delimiter (3), it passes a token to the 

parser in order to check its syntax, and then generates the grammatical 

code. Now, the encoder starts generating the codes of all symbols 

belonging to the string until the last delimiter. In the encoding process 

the character encoding table will be consulted. At the end of the 

encoding, no code will be generated for the end delimiter, instead, a 

special code representing the end of the string will be generated. This 

allows the decoder to recognize the end of the string; otherwise it can 

not be sure whether the symbol ()) is the end delimiter or it is a symbol 

within the string. Assume the first symbol is available to the encoder, 

the algorithm of generating the code of each symbol would be: 

Begin while the symbol is not 
(generate its code; 
read new symbol 

read new symbol; 
If the symbol is 
Then generate twice the code of "s"; 

read new symbol; 
start the algorithm again 

Else generate a code for the end of string 
End. 
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5.8 OPTIMIZING THE PARSING TABIES 

It has been mentioned in Chapter 4. that the parsing table (ACTION 

and GOTO tables) is constructed from a set of states of a particular 

grammar. For a practical grammar in which the number of states might 

reach several hundreds, this will lead to a large parsing table which 

is difficult to implement on a computer system. one technique (see 

Section 4.12) used to reduce the size of the ACTION table is to merge all 

identical states into one state. This section discusses another way of 

reducing the size of the ACTION table which depends to a certain extent 

on the elements of the table. That is, a table in which different rows 

have elements doing the same function. For example, consider the 

following table 

row no. 2 3 45 67 8 

x x x 
2 x 
3 x x x x 
4 x x x 
5 x x x 
6 x x x x 
7 x x x 
8 x x x x 
9 x 

9*8- 72 

where the elements marked by (x) are all different in their functions 

within each row, and the blank elements are doing the same function 

within each row. Then, it is possible to construct an equivalent table 

to the original one but with all blank elements replaced by only one 

elements The new table now has. rows with different lengths. So, it 

can be divided into a number of subtables, each has rows of equal lengths. 
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The above table could be divided into three subtables as follows: 

2 3 41234512 

xx x a3xxx a7 2 xa a 
4 xx x 9[ a6xxxxax a] x 
5 xx x a8xxxxa Tota3 
7 xx x aJ4*4-16 3*5-15 2*2-4 35 

(a) represents a blank element'in the original row. 

This way of reducing the'size of a table could be implemented on 

the ACTION table. It has been assumed that the data file submitted to 

the encoder program4already syntactically correct. Nevertheless, an 

error could be detected during the parsing process. So any error might 

occur, the error routine generates a trivial message. Since there is 

a significant proportion of error elements in the ACTION table (the same 

thing happens with reduce actions), therefore it is worth applying the 

above technique in order to reduce its size. Generally, the construction 

of the subtables could be done as follows: 

1. Put all identical states (the states in which all expected inputs 

are identical) into a subtable. 

2, Add the state in which all the'expected'inputs are part of the 

expected inputs of a state belonging to any subtable, to that 

subtable. 

3. Put all unique states into one subtable. 

4. Substitute all columns which have only an error action by one 

column doing the same action. 

5. In step (2), if a state can be part of more than one subtable, 

then choose a subtable which has less number of columns. 
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If each row in a subtable has only identical reduce actions, then 

substitute each row by a new row having only one reduce action 

(i. e.. one column). 

The above technique is. implemented on the ACTION table used by the 

encoder program. The size of the ACTION table is 

312 * 63 - 19656 memory units 

because there are 312 states generated by the YACC program, and 63 tokens 

(including the end of file marker). This table is divided into 12 

different subtables as follows 

Table number Size 

0 84*1 

1 22*3 

2 16*3 

3 12*5 

4 14*5 

5 7*3 

6 29*22 

7 50*17 

8 12*11 

9 7*12 

10 13*9 

11 6*16 

mapping tables 

Total 

84 

66 
48 
60 

70 
21 

638 
850 
132 
84 

117 
96 

2266 

1378 

3644 

obviously, reconstructing the ACTION table into a new form requires 

two different mapping tables. The function of the first table is'to 

locate the position of a state in a particular subt able. So each raw 

has information concernifig one particular st I ates the'information 



145 

determines the subtable containing this state, and also the row number 

within the subtable. Diagrammatically, it is illustrated in Fig. 5.2. 

state 
no. 

0 
1 
2 

3 
4 

5 
6 

7 
state table 

FIGURE 5.2: The state table 

I ACTION subtables 

2 

As. far as the second table is concerned, its function is to re- 

number the tokens. Within the ACTION table, tokens must have-unique 

numbers. This is the same within each subtable. But a token might have 

or have not the same token number in different subtables. Each row 

number in the mapping table represents a token number passed by the 

scanner routine. The row has 12 elements (because there are 12 subtables), 

each element has a value representing the new token number for the 

specified token in the appropriate subtable. This is illustrated in 

Fig. 5.3. Both these tables require extra space equal to 1.378 memory 

units. Therefore a tremendous amount of space has been saved by 

implementing the splitting method on the ACTION. table. 

To access any element, in the ACTIO-I tables itis required to access 

the mapping tables to find the exact subtable, the row number, and the 

0 
1 
2 

3 

0 
1. 
2 

column number. Then the specified element can be found easily. Thus 

table row 
no. no. 
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Token Token no. in 
no, subtables 

123 

0 
1 
2 

3 
S 
S 
S 

I 

3 e.. 
_ 

FIGURE 5.3: The token table 

there are calculations before the element can be accessed. This will 

inevitably slow the parsing process. Hence there is a trade-off between 

the space and the speed. 

As far as the GOTO table is concerned, assume that the optimization 

methods mentioned in Chapter 4 are applied. Since any syntax error could 

be discovered earlier when the parser consults the ACTION table, and there 

is no chance of an error in the GOTO table; therefore it is possible to 

reduce the size of the GOTO table further by exploiting the blank elements 

in each row. This could be done as follows: 

1. Start from the right-most column in the table (say j); 

2. If there is a column i such that for all rows r, GOTO[r, i] is a blank 

element and GOTO[r, j] is non-blank then move GOTO[r, j] to GOTO[ri]. 

Else go to step 

Eliininate the right-m6st column (i. e. j) ; go to step 

ACTION subtables 
1 

4.. - 123... 

Stop. 
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Instead of choosing the right-most column each time, it is possible 

to start from the second column and look for the possibility of moving it 

to the left. It must be done for each column until the right-most column. 

To illustrate the reconstruction of the GOTO tableg consider the following 

table: 
012345 

x0xIx2x4 

.x1x2x3 
x1x3x5 

x2 

Lx2 

where xi means a state number in column i. 

6 

x6 

x6 

x6j 
1, 

The elements of column 6 can 

be moved to their corresponding elements in column 0. So any reference to 

an element in coli, = 6 must be diverted to coli, = 0. Column 5 can be moved 

to column 2; and column 4 moves to column 3. The new table would be: 

0123 

x0x1x2x4 

x6x1x2x3 

x6x1x5x3 

x2 

Lx6x2 

A mapping table is required to direct the parsing program to the new 

column number, i. e. 

6 

01 

Obviously, another mapping table is required because of the previous 

optimizations (Section 4.12) which directs the parsing program to a new 

raw in the table. 
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In the encoder program, the size of the GOTO table before reducing 

the number of columns is 

39 rows * 50 columns - 1950 

whereas after the reductiont becomes 

39 rows * 22 columns - 858 

plus the size of the mapping table which is 50, i. e. 

858 + 50 - 908 

Finally, to understand practically the construction of both the 

ACTION table and the GOTO table of the encoder program, a simple example 

will be given below. Suppose that a context-free grammar is given as 

f ollows: 

1. S: -E 
2. E: =O 
3. E: =EPO 
4., P: -+ 
5. p: m- 
6. P : -* 
7. P: -/ 
8.0: MV 
9.0: =c 

10.0 09- (E) 

11. V: =i 
12. V: =i! 0 

Then the ACTION table generated from a set of. states would be 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

c(i)+-*/$ 

s7s 11 s8 
s 14 s 15 s 16 s 17 a 

R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 

s7 s 11 s8 
R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 
R8 R8 R8 R8 R8 R8 R8 R8 R8 R8 
Rg Rg Rg Rg Rg Rg Rg Rg Rg Rg 
R1, R1, Rll Rll Rll Rll Rll Rll S9 R1, 

s7 s 11 s8 
R12 R 12 R 12 R 12 R 12 R 12 R 12 R 12 R 12 R 12 
s7 s 11 s8 

12 s 13 s 14 s 15 S 16 s 17 
13 R 10 R 10 R 10 R 10 R 10 R 10 R 10 R 10 R 10 R 10 
14 R4R4R4R4R4R4R4R4R4R4 
15 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 
16 R6R6R6R6R6R6R6R6R6R6 
17 R7 R7 R7 R7 R7 R7R7 R7 R7R7 

where si-shift aýd goto'state i. Rj -reduce by the production number j, 

a-accept, empty places mean errors, and $-end of program. 

The states 1,4,9 and 11 are identical and can be grouped in one 

subtable. The states 2,8 and 12 are unique. Finally, the states 3,5-7, 

10,13-17 are identical in their actions and can be grouped in one sub- 

table, Therefore 3 subtables can be constructed; 

Subtable 1: Ci others 
I s s s E 7 11 8 
4 s s s E 7 11 8 

s s s E 7 11 8 
s s s E 7 11 8 

The size is 

4*4- 16 

where E-error. 
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Subtable 2: 

2Es 
14 

8R 
11 R 11 

12 s 13 s 14 

Subtable 3: 

s 15 

s 15 

others 

s 16 

s 16 

$ others 

s 17 aEE 

R 11 R 11 s9R 11 
s 17 EEE 

the size is 

3*8- 24 

3R2 

5R3 

6 R8 
the size is 

9 10 *1- 10 10 R12 
13 R 10 
14 R4 
15 R5 
16 R6 
17 R7 

Two mapping tables are required to specify the exact element. 

state table and token table. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

col. no. 
subtable 

12 

c 1 8 1 
C 2 8 1 
i 3 8 1 
) 4 1 1 
+ 4 2 1 
- 4 3 1 
* 4 4 1 
I 4 5 1 

4 7 1 
$ 4 6 1 

the size is 

17 *2- 34 

token table 

These are 

the size is 

10 *3- 30 

state table 

Table no. Row no. 



151 

The size of the original ACTION table is 

17 * 10 - 170 

The total space required by the subtablesand the mapping tables is 

50 + 64 - 114 

After removing the blank rows, the GOTO table would be: 

1234 

11236 

2 4 

4 5 6 

9 10 6 

11 12 3 6 

12 4 

the size is 

64- 24 

To move the columns to the left in order to reduce further the size of 

the table; it becomes 

1 2 3 

1 2 6 3 

2 4 

4 6 5 

9 6 10 

11 12 6 3 

12 4 

the size is 

6*3- 18 

/ 

Again, a mapping table is required to specify any element in the table: 

column no. 

234 
the size is 

21324*1-4 

So,, the total space required is 22. 
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5.9 CONSTRUCTING THE ENCODING TABLES 

Codes required to be available to the encoder program can be expressed 

in two groups. The first group comprises codes representing the parsing 

routes. So each state has its own codes (Huffman codes), and when the 

parsing action is completed, the necessary code'(if required) should be 

generated by passing the sequence of code symbols to the encoding part, 

and then stored on the encoded file. Hence, the codes are organized in 

a set of tables corresponding to the ACTION subtables which have been 

organized in Section (5.8). Each element of the table consists of two 

fields (Fig. 5.4), the-first one holds the length of the code, and the 

state 
no 0 

0 

--#code 

code length 

FIGURE 5.4: A row of an encoding subtable 

second field holds the code itself. The mapping function will be exactly 

the same as the mapping function of the ACTION table; hence only one 

function will be sufficient for both. It might happen that all the 

elements in a table have zero length codes. This occurs when each state 

in the corresponding ACTION subtable has only one choice. So, the encoding 

subtable can be removed. 

The second group consists of codes (Huffman codes) of all possible 

characters that might be used in the program which need to be encoded. 

0 

Tokens 

23 
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A table of size equal to the number of characters involved is constructed. 

Each element of the table consists of two fields (Fig. 5*5). The length 

of the code, and the code. The table is organized in ascending order 

according to the order of characters recognized by the computer. 

code code length 

row representing 
one character 

FIGURE 5.5: Character table 
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5.10 THE FREQUENCY PROGRAM 

The function of the frequency program is to provide information 

needed for constructing the necessary codes which will be used by the 

encoder program. The information is regarded as the frequencies of 

different symbolsq and also all possible options acquired in each state. 

Thusp the program can be divided into two different phases; a parsing 

phasel and a statistical phase. The first phase checks the syntactic 

structure of the input data before finding the frequencies, The parsing 

method used is LALR(l) as explained in Chapter 4; and the construction of 

the parsing table (both the ACTION table and GOTO table) is exactly as 

explained in Section (5.8). The second phase counts the frequency of each 

option in each state, and also the frequency of each character involved in 

identifiers (names and constants), strings and comments. Editing characters 

are independently treatedo and hence a space character (for example) inside 

a comment is considered different from a space character treated as an 

editing character. The way of storing the frequencies of each state is 

to construct a set of tables equal to the set of ACTION tables. Each 

element of a frequency table is a counter of a particular action in a 

specific state. Obviously, for a state which has only one option, no 

counting is required because the encoder does not need to generate any 

code for an action which is certain to occur in a state, Another case 

occurs which does not need to find the frequency, that is when a state 

has only two options. Then whatever the frequency of each option, assign 

a code of value 1 (one bit only) to one option, and a code of value 0 to 

the other. 

A set of Pascal progýams of different sizes has been submitted to the 
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frequency program in order to get the occurrences of all possible 

charactersq and also the frequencies of each action in all the states. 

For each state, Huffman method is applied to find its codes. Also the 

method used to provide codes for each character. These codes are used 

by the encoder program (Section 5.3). and stored in the encoding tables 

(Section 5.9). The frequencies were computed over 21 Pascal programs 

containing a total of 115,119 characters. 
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11 EXANPLE 

Samples of Pascal programs have been chosen to be encoded to see the 

size of the encoded file of each program. (Table 5.1). 

Program size 

1231 

378 

461 

822 

137 

141 

148 

4266 

Encoder 1 Encoder 2 Encoder 3 

504 472 464 

172 168 160 
220 220 208 
280 256 256 

60 60 60 

72 68 68 

72 72 68 

1620 1560 1528 

TAKE 5.1: Sample programs 

All the three encoder programs which output the encoded files are the 

same except in the way of encoding editing characters (see Section 5.4). 

The first file produced by an encoder program using a counter for each 

type of the editing characters. The second file produced when the encoder 

uses an array of size 7; the size of field 2 will be 3. The last file 

produced by an encoder uses an array of size 3, and the size of field 2 

is 2, The last encoded f ile is the OPtimal among the others because the 

number of editing characters between terminal symbols is, in practice, 

one or two characters. Hence the field 2 of size 2 instead of 3 would be 

enough. 

Table 5,2 illustrates in more detail the sizes in bits of different 

elements of the programs and their corresponding encoded version. The 

size of 
I 

the data file in bits equals the number of characters multiplied 

by 8 bits (the number of bits for one character). Mostly the size of the 
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Editing chars. Comments Strings Identifiers Others Size Waste, 

original 224 0 0 576 296 1096 
encoded 130 0 0 270 60 460 20 

232 0 0 472 424 1128 
158 0 0 271 93 522 22 

248 0 0 472 464 1184 
166 0 0 269 94 529 15 

4248 2848 2056 16992 7984 34128 
2970 1662 1094 4294 2173 12193 31 

2176 464 312 4152 2744 9848 
1242 286 220 1280 673 3704 8 

552 320 24 1104 1024 3024 
374 230 10 457 187 1258 22 

1696 0 152 2712 2016 6576 
913 0 76 632 403 2024 24 

584 0 240 1208 1656 3688 
515 0 114 621 407 1657 7 

TAKE 5.2: Encoding sample programs 

encoded file in characters does not represent the actual file size 

because some bits have to be added to the last output buffer in order to 

make it full before storing it. (Waste in table above). The number of 

bits added to the buffer depends on the size of the buffer, and its 

range would be between zero and the size of the buffer minus one. 

As far as the speed is concerneds the execution time of the encoder 

has been compared with the compilation time of Pascal programs (Tables 

5.3 and 5.4). This is because both programs (i. e. the encoder and the 

compiler) have parts of their jobs in common such as scanning the input 

and also the parsing which is the main phase of both programs, The real 

time is the interval time between the execution command and the end of 

the execution response. The user time is the actual execution time of 
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the program. The system time is the time spent by the system to be 

ready for the execution of the program. 

program size real user system 

1231 20.0 4.3 2.5 

378 19.0 3.2 2.3 
461 20.0 2.6 2.7 
822 19.0 3.4 2.6 
137 20.0 3. o 2.5 
141 19.0 3.0 2.6 
148 18.0 3.1 2.4 

4266 23.0 6.5 2.4 

TABLE 5.3,: Compilation time 

program size real user system 

1231 10.0 0.7 1.6 

378 10.0 o. 3 1.2 
461 10.0 0.3 1.4 
822 9.0 0.5 1.3 
137 9.0 0.1 1.5 
141 9.0 0.1 1.1 
148 9.0 o. 2 1.2 

4266 14. o. 3.2 1.9 

TABLE 5.4: Encoding time 



CHAPTER 6 

THE DECODER 
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It has been mentioned in the previous chaptera that the coded file 

should be reversible, and accordingly the encoder was designed with this 

in mind. This chapter discusses the construction of the decoder (Fig. 

3.2(b)) which accepts the coded file as an input and produces as an output 

a file identical to the original one. 

The method used for constructing the decoder depends to a certain 

extent on the encoder, and the strategy used for constructing the codes. 

So some subjects which have been explained in the previous chapter will 

not be explained again in this chapter, and only a reference will be made 

in the appropriate place. 

Section 6.1 introduces the basic model of'the decoder. Section 6.2 

defines the decoding of the gramatical symbols and illustrates its work. 

Section 6.3 illustrates the construction of the decoder program. The way 

of decoding editing characters and comments is explained in Section 6.4. 

Section 6.5 explains the decoding of identifiers (names and numbers). 

Section 6.6 explains the decoding of strings. The codes and other 

information required by the decoder are stored in tables which are explained 

in Section 6.7. Finally, some coded files have been decoded and compared 

with the original files. This is mentioned in Section 6.8. ' Also, the speed 

of the program is mentioned. 
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6.1 THE MODEL 

The coded file, which is the input to the decoding program consists 

of a sequence of codes representing both the editing characters (including 

comments) and the grammatical symbols of a context-free language. So, the 

codes can be separated into two parts; in the first part, the codes represent 

the editing characters; the codes of the second part represent the grammatical 

symbols. The decoding model, accordingly, consists of two sections. The 

first section deals with the decoding of editing characters; whereas the 

second section deals with-the decoding of the grammatical symbols. The 

decoding process will alternate between these sections, i. e. 

start 
Decoding 
editing 

part 

LI 
Decoding 
grammatical 

part -. 00 

For decoding the grammatical part, the same parsing method (LR(K)) used by 

the encoder (Section 5.1) will be used to select the exact codes and output 

the required symbols. The decoder needs to parse each code before generating 

any output. So in the reduce action, no more, codes will be selected and 

the decoding process does not change to the decoding of editing characters. 

This will be repeated until no more successive reduce actions occur. 

Diagrammatically, the relation between the two sections of the decoder 

would be: 

start Decoding 
editing 

part 

d de din ecoding 
p grammaticall part 

redu Decoding 

gc tio 
r 

actions rredduucee 

t 

ther 
aactionn 

actions 

0 

other 0 
Decoding actions 

co g 

other 
actions 

d 

Details of decoding each part will be discussed in the following sections 

of this chapter. 
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6.2 DECODING THE GRAMMATICAL PART 

The decoder consists of 

1. A finite set of states S-{s O"ll"'s'n 
1; s0 is the initial state. 

2. A sequence of code words from the code alphabet C.; stored on an input 

f ile. 

A push-down stack holds the current state and a grammar symbol at the top. 

A sequence of symbols (characterst numbers and special symbols) represents 

the output file. 

5. A defining function: for a state si as the current state on the top of 

the stack; and a code word ck from the input file, the decoder transfers 

to a particular state s3 and, if required, generates the appropriate 

output symbols. si will be on the top of the stack. If si is not in S, 

then an error has occurred. The code word may or may not be removed 

from the input file. 

6. There exists a final state s, in S, such that the decoder stops the 

decoding process when the current state is s,, 

The input file is actually the encoded file generated by the encoder. ' 

Hence the output file generated by the decoder should be the same as the 

original file. The decoder works in a similar way to the encoder (Section 

5.2) except that the input and the Output files of the encoder become the 

output and the input files of the decoder. Briefly, the work of the decoder 

could be arranged in steps as: 

1. Start from the initial state as the current state. 

2. If necessary, find the next allowable code word from the input file. 

3. The current state and the word recognized in step 2 determine the next 

current state. 
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4. If any terminal symbols have been recognized, write them on the 

output file. 

5. If the final state has not been reached, then goto step 2; otherwise 

stop and the input file has been decoded. 
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6.3 THE DECODER PROGRAM 

The program consists of two parts. 0? ig. 6.1). The decoding part and 

the parsing part. 

Encoded Decoding Parsing 
output data 

part part 

Parsing tables 
and 

Decoding tables 

FIGURE 6.1: The decoder program 

The way of constructing the parsing part and its function is exactly 

the same as explained in Section (5.3.1) except that instead of the scanner 

routine which reads the input and passes tokens to the parser, a decoding 

part is constructed which supplies the parser with the necessary information 

such as tokens, and codes for reduce actions to decide which action is going 

to be the next. It includes routines for decoding editing characters, 

comments (Section 6.4), and identifiers (Section 6.5). For the decoding 

part, suppose that the coded input file already exists, and the decoding 

tables (Tables I and 2 described later in Section 6.7) have been constructed. 

The information required to make the next decoding step is obtained either 

directly from Table 1, or from the input file. The choice depends on the 

actions-listed for the current parsing state. If only one action is list etj 

the decoding part can provide it without reading any code from the file. 

If more than one action exists in a state, then the decoding part should 
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get code symbols from the input file, and with the help of Table 2. it 

is possible to find the exact action and then pass it to the parser. The 

problem with the input file is that the code words are all of variable- 

lengths (Huffman codes), and the same code word could be used for more than 

one token or one token might have more than one code word. The decoder, 

nevertheless, recognizes this problem; so at each state there is a unique 

code for each action, and the codes of each state are uniquely decodable. 

The routine for recognizing all tokens and the reduce action would be: 

Begin 
Find the element of the current state from Table 1; 
If the element is a reduce action 
Then return to the parser 
Else. if it is a token number 

Then pass it to the parser 
Else if it is an address to a location in Table 2 

Then identify the next code 
Else error 

End 

The routine of identifying the next code would be 

Begin 
Get one bit from the input file; 
While the element of Table 2 is a location of a new row 
Do find the new row; 

Get next bit from the file 
If the element is not a reduce action 
Then pass it as a token 

End 

When the parser recognizes a token which causes a shift action, it 

will check for the type of the token. If it is a keyword, the parser will 

recognize which keyword it should be, and then output it. In the case of 

an identifier the routine mentioned in Section (6.5) will be called. If 

the current token represents a string then the output of the sequence of 

characters involved will be the same as outputting the characters of a 

comment. Hence the routiný mentioned in Section (6.4) which is used for a 
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comment would be used to output a string. Additional checking should be 

added to secure the end of a'string, and then output the closing delimiter. 

It is assumed that the encoded file should be syntactically correct. 

Nevertheless, the decoder program checks for any error which might occur 

as a consequence of corrupted data. The program listings of the parsing 

part and the decoding part together with other related routines can be found 

in Appendix C. 
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6.4 DECODING EDITING CHARACTERS AND COMMENTS 

The methods used for decoding editing characters reflect the encoding 

methods of those characters which have been mentioned in Section 5.4. So 

as soon as the decoder recognizes the value of the indicator as one, it 

will definitely know that the following sequence of bits represents a string 

of characters starting with at least one editing character or a comment 

(Section 5.5). The codes used by the encoder are variable-length (Huffman 

codes), and no code is a prefix of another code. Hence, for encoding 

character by character, the decoder can recognize a character without any 

doubt that the code might be, a prefix of another code which represents 

another character. Since the code in this case is very simple, i. e. 

space 0 

tab 10 

new line 11 

then the decoder does not need to build a decoding table, instead of 

simple routine will do the job, i. e. 

Begin 
Get a bit; 
If the bit is zero 
Then output a space 
Else get next bit 

If the bit is zero 
Then output a tab 
Else output a new line 

End 

In the case of using counters in the encoding process, the decoder 

needs to know the number of characters expected next. Suppose that the 

length of field 2 is 2 bits (i. e. counts maximum 3 characters), the decoder 

reads these 2 bits and checks with, the number 3; if the number is greaterr- 

than or equal to 3 then reads the next 2 bits and checks again as above. - 
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In such case the decoder should accumulate the number in order to find 

the total number of characters. The above routine will be repeated as 

many times as the total number of characters. If an array was used in the 

encoding process, the decoder will behave in the same way as above except 

that only one field 2 exists. 

Decoding a comment involves decoding the delimiters and the string 

of symbols bounded by them. Each symbol can be decoded by searching a 

tree which recognizes all possible symbols. The tree can be constructed 

as a 2-dimensional table (Fig. 6.2) in which row has 2 elements. The 

value of each element could either be a character, or an address to another 

row in the table. For a binary digit, the first and second elements can be 

rows 

1 

2 

3 

Bit 0 Bit 1 
(First element) (second element) 

( 

A B 

) 

C D 

A 

represents C0 

B 000, 

the tree 1 
D 

FIGURE 6.2: An example of a character table 
consists of 4 characters 

accessed when the code symbols are respectively zero and one. For example, 

from Fig. 6.2, by starting from row 1, if the next bit is zero, the value 

of the first element is an address points to the second row. Suppose that 

the next bit is 1, then the value of the second element represents the 

character B. 

The existence of a comment comes from checking the field 2 length 

for the value of zero. The next step is to check for the type of delimiters 

used. If the value of the next bit is one, then the delimiters are "(* and 
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*)"; otherwise they are N and 111. The routine for outputting a comment 

would be: 

Begin 
If the field 2 length is zero 
Then If the next bit is one 

Then output 
Else output 
decode characters until the next delimiter 

End 

The routine of finding each character would be 

Begin 
Start from the beginning of the character table; 
get a new bit; 
While the element is an address 
Do find the next row; 

get a new bit; 
If character represents 
Then output "*)" 
Else If character is "I" and the opening delimiter was 
Then output ")" 
Else output the character; 

start the routine again 
End 

The coding of the above routines can be found as two separate 

procedures in Appendix C called (edit proc), and (rd chars). After 

decoding editing characters or comments, there is a chance that the next 

code symbols represent new editing characters, or another comment. In 

this case the same routines will be repeated. 
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6.5 DECODING NAMES AND CONSTANTS 

The method used to decode names and constants (i. e. identifiers) 

should be influenced by the way of encoding such identifiers. Otherwise 

the decoder would fail to provide a decoded file. As it has already been 

mentioned in Section (5.6) 2 formats have been used for encoding new and 

old identifiers with the help of a symbol table. The decoding method has 

to recognize these 2 formats in order to decide whether the next identifier 

is a new one or it already exists in the symbol table. 

If a new identifier (the first bit has value 0) is expected next, 

the decoder should. (according to the first format) find the length (number 

of characters) of this identifier and then output each character of it by 

recognizing their codes in the coded file. The new identifier must be 

stored in the current free location in the symbol table just in case the 

same identifier may occur again. The location of the identifier in the 

symbol table will be exactly the same location of the identifier when it 

was first encoded. 

The decoder should know that the field 2 is of fixed number of bits 

(3 bits), and it could be repeated. As far as recognizing each character 

from the sequence of code symbols which follows field 2 is concerned, the 

decoder consults the character table, mentioned in Section (6.4), to output 

the exact characters of the identifiers. The identifier will later be 

stored in the symbol table. For example, suppose that 

0 Oil 010011 

is a sequence of code symbols represents an identifier, and the character 

table is bit 0 bit 1 

__ ___ 
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Then the first bit indicates that the identifier is a new one. The next 

3 bits have value equal to 3 (the number of characters). Then according 

to the character table, (01) represents b, (00) represents a, and (11) 

represents d. 

When an old identifier (the first bit has value 1) has been recognized, 

it must be in the symbol table, and the following sequence of bits in the 

coded file represents the location of the identifier in the symbol table. 

The decoder must find the exact number of bits concerned. It will apply 

the same method used by the encoder (see Section 5.6) which decides the 

size of this field. As soon as the location is recognized, the decoder 

can easily output the identifier. The routine for decoding identifiers 

would be 

Begin 
If the next bit is one 
Then find the location in the symbol table; 

output the identifier 
Else find number of characters; 

store identifier in the symbol table; 
output the identifier; 
increment the symbol table pointer 

End 

The method of finding the location of an identifier in the symbol table 

reflects the method used by the encoder. It checks the length of the field 

2 and then finds its value. The routine of finding the number of characters 

is 

Begin 
get 3 bits; 
accummulate the number; 
If the number equal to 7 
Then repeat the routine 

End 
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6.6 DECODING STRINGS 

The decoding-. of each symbol in a string is similar to decoding the 

elements of a comment (Section 6.4). As soon as the parser recognizes a 

string (i. e. recognizes a code which is representing a string token), the 

decoder starts decoding and outputting all symbols belonging to the string 

until it reaches the, delimiter code (a special code indicating the end of 

the string which is generated by the encoder). Obviously, the delimiters 

"v and "' are included in the output. 

The routine for finding each character is a modified version of the 

routine mentioned in Section 6.4. It becomes: 

Begin 
start from the beginning of the character table; 
get a new bit; 
while the element is an address 
do find the next row; 

get a new bit; 
if character represents end of string 
then output the symbol "i, "; stop; 
Else if character represents 
Then output "*) it; stop; 
Else If character is "I" and the opening delimiter was 
Then output "I"; stop; 
Else output the character; 
Start the routine again; 

End 
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6.7 CONSTRUCTING THE DECODING TABLES 

The information in the decoding tables is classified into 2 groups. 

The first group helps to recognize characters and symbols of comments, 

strings, and identifiers. The construction of this group has been mentioned 

in Section (6.4). The second group, with the help of the coded file, directs 

the parser to the ýext state, and if required, outputs the appropriate words 

such as keywords or special'symbols. Thus each state has required some 

information to deal with it. This depends on the type and number of actions 

permissible in the state. A state might require only one action such as 

shift or reduce; or one of many possible actions is required. If there is 

only one choice, the decoding table can pass it directly to the parser 

without reading any code'symbols from the coded file. This is true because 

the encoder in such cases does not need to generate any code (i. e. an action 

which is certain to occur). For a state which has different choices of 

actions, a tree is constructed. The decoder needs only to read code symbols 

from the coded file and follows the appropriate path to decide the exact 

action. Hence, two different decoding tables are required (Fig. 6.3). 

FIGURE 6.3: Decoding tables 

Table 1 has elements equal to the number of states used by the parser. 

Table I Table 2 
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This table should be consulted first before reading any codes. Each 

element has one of three different values: 

A value representing a token number, 

2. A value representing a reduce action, 

3. A value representing a pointer to a specific location in table 2. 

The first and the third values are within two separate ranges so that the 

decoder can distinguish between them. For example, the token numbers are 

within the range (1000-1062), and the pointers are within the range (0-683). 

The first and second values occur when a state has exactly one action. 

Table 2 is regarded as the concatenation of different tables which have 

the same format. Each individual table represents a code tree for a 

specific state, and the construction of these tables is exactly as the 

construction of the character table which has been mentioned in Section (6.4). 

The value of each element could either be an address, or a token number, or 

a value represents a reduce action. The concatenation of those tables into 

one large table necessitates storing their start locations in table 1. 

In the case of a state which has different reduce actions'depending 

on the next input, each action has its own code. Table 2 uses these 

different codes to inform the parsing part of the decoder which production 

to reduce by. For example, consider the following state: 

state i 

a shif tj 00 

b shif tk 01 

c reduce x 10 

others reduce y 11 

part of Table 2 would be 
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For the code (10), the symbol (c) will be passed to the decoder, and 

frou the ACTION table, the action will be a reduce by the production x. 
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6.8 EXAMPLE 

The same samples of Pascal programs mentioned in Section (5.11) which 

have been encoded by the encoder program are applied to the decoder program 

(Table 6.1). The size of each file produced by the decoder program is 

exactly the same as the size of the original file. So, there is no loss in 

characters. and more important, the layout of the new file is exactly similar 

Program number Originil Size Encoded Size Decoded Size 

1 1231 464 1231 
2 378 160 378 
3 461 208 461 
4 822 256 822 
5 137 60 137 
6 141 68 141 
7 148 68 148 
8 4266 1528 4266 

TABLE 6.1: Decoding samples of Pascal programs 

to the original file, i. e. the encoded file is reversible. 

Again, the execution time of the decoder program (Table 6.2) has been 

compared with the compilation time mentioned in Table (5.3). 

Program number real user system 

1 7. o 1.1 0.9 
2 5. o 0.4 0.7 
3 6. o 0.5 0.9 
4 6. o 0.6 0.8 
5 6. o 0.1 0.8 
6 6. o 0.1 0.9 
7 6. o 0.1 0.9 
8 10.0 3.8 0.9 

TABLE 6.2: The execution times of the decoder 

The execution time of the decoder is similar to the execution time 

of the encoder. But it takes less time to decode a file than compiling 

the original file. The explanations of different times (real, user, system) 
I 

are mentioned in Section (5.11). 



CHAPTER 7 

CONSISTENT GRAMMARS AND 

THE PROPERTIES OF A LANGUAGE 
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Probabilistic languages and grammars have been defined and the 

relation between them has been studied in Chapter 3. This chapter 

discusses a probabilistic grammar that can generate a probabilistic 

language. The grammar is called a consistent grammar. By examining the 

structure of a consistent grammar, it is possible to discover interesting 

properties such as the average length of a string 
t (average program size). 

Each string has to be parsed before encoding it; this requires the 

derivation of the string from the grammar rules. So from the grammar, 

the average number of derivations required to parse a string of symbols 

from a probabilistic context-free language can be obtained. Another 

important subject of this chapter is to find out the average length of a 

coded file generated by the LR encoder. This will be used as the basis 

for testing the efficiency of the method. 

Section (7.1) provides some definitions and notation concerning 

matrices which will be used throughout the chapter. In Section (7.2), 

the expectation matrix is constructed from a probabilistic grammar. From 

this matrix, it is possible to prove the consistency of the grammar. The 

method of obtaining the average length of a string of symbols is described 

in Section (7-3). Any string has to be derived from grammar rules 

(productions). The average number of derivations is explained in Section 

(7.4). In right-most derivations, each syntactically correct string can 

be represented by a set of states. The average number of states is explained 

tNote in this chapter "string" refers to a compZete sentence in a 

context-free Zanguage. 
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in Section (7.5). Section (7.6) illustrates the probability distribution 

of each state. The minimum length of a coded file is explained in Section 

(7.7). In Section (7.8), the average code length of a coded file is 

illustrated. Finally, a comparison, through an example, between two 

different encoding methods using the parsing encoding technique is explained 

in Section (7.9). 
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7.1 NOTATION AND DEFINITIONS I 

Some notation, and definitions are given in this section which will 

be used in the following sections of this chapter. These fundamental 

definitions can be found in most books which deal with matrices such as 

Campbell, 65; Wilkinson, 65; and Jennings, 77. Denotations: 

(n*n) matrix 

A71 The inverse of the matrix A 

AT The transpose of the matrix A 

det(A) - The determinant of the matrix A 

INI - Length of the vector N 

I- Identity matrix. 

An eigenvalue and corresponding eigenvector of a matrix satidfy the 

property that the eigenvector multiplied by the matrix yields a vector 

proportional to itself. The fundamental algebraic eigen-problem is the 

determination of those values of X for which the set of n homogeneous 

linear equations in n unknowns 

Ax - Xx 

or 
(A-U) x- (1) 

has a non-trivial solution. X can be obtained as 

det(A-XI) -0 

The values of X are called the eigenvalues of the matrix A. Corresponding 

to any eigenvalue X, the set of equations (1) has at least one non-trivial 

solution x. Such a solution is called an eigenvector corresponding to the 

eigenvalue. If x is a solution of (1), then kx is also a solution for any 

value of k. It is convenient to choose k so that the eigenvector has some 
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desirable numerical property, and such vectors are called normalized vectors. 

The eigenvalues of AT are, by definition, those values of X for which 

the set of equations 
T XY- 

has a non-trivial solution. These are the values for which 

de-t(AT-XI) 

and since the determinant of a matrix is equal to that of its transpose, 

the eigenvalues of AT are the same as those of A. 

If pairs of rows and corresponding columns of a matrix are inter- 

changed, the eigenvalues remain the same. 

Given a matrix A and a scalar c, then cA is a matrix of the same size 

as A, in which every element in it is the result of multiplying every entry 

of the matrix A by the' scalar c. 
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7.2 CONSISTENT GRAMMARS 

The aim in this section is to determine necessary and sufficient 

conditions on a probabilistic context-free grammar to ensure that the 

summation of probabilities over all strings of a context-free language (L) 

must total one, i. e. for all a in L 

I P(a) 
dG L 

This can be achieved by examining the probabilistic context-free grammar 

which generates (L). The probabilistic grammar which satisfies equation 

(1) is called consistent grammar (Wetherell, 80). Therefore, it is 

necessary to study the conditions under which the grammar is consistent. 

For a context-free grammar, all the productions have the form 

A: =a 

where a may contain either zero, one, or a number of non-terminal symbols. 

For example, the production 

A: =aABcC 

has got one A, one B and one C. So during the derivation process, if (A) 

is substituted in a sentential form, this rule will produce another (A), 

one B and one C. The occurrence of each non-terminal symbol can be defined 

in the following matrix (Wetherell, 80). 

Definition: The matrix C has IRI rows indexed by the productions and IVNI 

columns indexed by the non-terminal symbols. * Element c 13 
is the number 

of occurrences of non-terminal symbol v3 on the consequence of the production 

Ri 9 i. 
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v2v3v 

c 11 c 12 c 13 c 1N 

R2 c 21 c 22 c 23 c 2N 

R 3 

Rk ffkl Ck2 c k3 c kN 

Each production has a probability attached to it; the probabilities can be 

arranged in a matrix defined as follows: 

Definition: The matrix Q has IV 
NI rows indexed by non-terminal symbols and 

IRI columns indexed by productions. An element q,, is the probability of 

the production Rj which has the non-terminal V 
2. as its premise and zero 

otherwise, i. e. 

RI R2 R3 --Rk 

v1 q 11 q 12 q 13 lk 

v2 q 21 q 22 q 23- q 2k 

v N q LNI q N2 qq N3 Nkj 

Multiplying the matrix Q by the matrix C produces a square matrix 

(E) in which each element eij represents the average number of Vis expected 

each time V. is re-written. In other words, eij is the expected number 

of Vis in the consequences of the productions in which VI is the premise of 
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those productions. The matrix (E) is called the expectation matrix, or 

the first moment matrix. For example consider the following productions, 

Probability Productions 

R10.5 A: -a 

R20.5 A: -AB 

R3MB: -cb 

R4o. 2 B: -bA 

Then the matrices C and Q would be 

AB 

R10J 

CR211 
R300 

R41.1 Od 

R1 R2 R3 R4 

A .5 0.5 0 0 ] 

B0 0 0.8 0.2 

The expectation matrix E is 

E Q*C 
0 0 

5 0.5 0 0 ] 

0 0 M 0.2 0 0 

Ll 01 
A B 

A, 5 0.5 1 

B 0.2 0 

So this means that: 
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An A generates an A-! the time 2 

aB -1 the time 2 

B generates an A-! of the time 5 

and aB never. 

The expectation matrix provides useful means to prove the consistency of 

a probabilistic grammar, and also to find the average word length of a 

language (Section 7.3), and the average derivation length (Section 7.4). 

For a square matrix (E) the modulus of the largest eigenvalue of (E) 

is called the spectral radius p(E). If (E) is the expectation matrix 

computed from a probabilistic grammar, and p(E)<l, then the probabilistic 

grammar is consistent (Wetherell, 80) or strongly consistent (Booth and 

Thompson, 73). For instance, the above (E) matrix has eigenvalues 0.6532, 

and -0.1532. Both of them are less than one. So the grammar is consistent. 

Another way which can be used to show that p(E)<1 isa5ScAlows 
.- 

1. Set x=E 

2. For each row of x, sum the absolute values of the elements of the 

row. If all the row sums are less than one, halt and the answer 

is p (E) <1 

3. Otherwise, set x=x*x and go back to step 2. 

For example, let 

,50.5 
X 

0.2 Ol 

The first row sum is 1 and the second row sum is 0.2. Since the 

first row is not less than 1, then perform the third step, i. e. 
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0 
X2 

35 0.251 

0.10 0.10 

From step 2, the row sums of x2 are 0.60 and 0.20. Both are less than 

1. So p(E)<l. Hence the grammar is consistent. 

Each element of the expectation matrix (E) (i. e. e ii ) represents the 

average number of Vis expected when Vi is rewritten exactly once. In other 

words, (E) is a matrix of averages for one-step derivations; (E 2) is the 

expectation matrix for two-step derivations; 
... and so on. In a zero-step 

derivation, a non-terminal derives exactly and only itself. Thus, (E 0) is 

equal to the identity matrix (I). Now, for derivations of all lengths, the 

expectation matrix would be 

EE 
i=O 

so, e"O is the average number of V. s to expect after an arbitrary derivation ii 3 

beginning with V i* To simplify E"*, 

EIE 
i=O 

I+E1+E2+ 

I-E 

= (I-E)-l 

The sum converges whenever E is small enough. Fortunately E is small 

enough exactly when the spectral radius p(E) is less than one. For a 

consistant grammar, p(E) is less than one, and hence 

CO -1 E ax (I-E) 

E"* is called the non-terminal expectation matrix. 
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7.3 AVERAGE WORD LENGTH (AWL) 

For a-probabilistic. language L, the average word length (AWL) is the 

average number of terminal symbols in a string obtained from the language 
t 

Suppose that s is a string in L, and I(s) is the length of the string, then 

the (AWL) of the language is defined (Booth and Thompson, 73) as: 

AWL - ýý I(S)p(s) 

Were p(s) is the probability of the string s. 

Finding the (AWL) from the language is difficult because of the problem 

of finding all possible strings of the language. However, from the relation- 

ship between the probabilistic languages and the probabilisitic grammars 

generating them, it is possible to find the AWL from the grammar rules 

(productions). Let the productions of a probabilistic context-free grammar 

be specified as follows: 

A1 : mß 11 

12 A1 : =ß 12 

p lk A1 : =ß lk 

p 21 A2 : =O 21 

nl 
: An : -ß nl 

p 

nk 
: An : =ß nk 

n 

where, in general, a non-terminal AI is re-written by the string with 

tNote that the average word length is not the average1ength of 

individual words but the average length of a -string measured in words 
i. e. average string length. AWL is used here for comPatibiZity with 

other research. 



186 

probability pij. The'string Iij is a combination of terminal and non- 

terminal symbols. So for each production, the average number of terminal 

symbols can be expressed as the number of terminal symbols plus the average 

number of terminal symbols obtained from the non-terminal symbols. Since 

there are usually . severat i., - productionswhich have the same premise-t, then 

the average number'of terminal symbols generated by the grammar with A. as L 

the initial symbol is equal to the average number of symbols of all productions 

which rewrite A io For example, consider the following probabilistic context 

free grammar G-(T, N, R, P, S) where 

T-{a, b, cl; N={A, B); S-{Aj; P and R 

R2 

R3 

R 

0.5: A: -a 

0.5: A: -AB 

0.8: B: =cb 

0.2: B: -bA 

Then the average length of all symbols generated by G with A as the initial 

symbol is 
nA - 0.5 *1+0.5 (n 

A +nB) 

and for B 
nB - 0.8 *2+0.2 * (1 +nA 

To express formally the value of n, let: 

MO number of terminal symbols in Oij; 

nI- average length of all words generated by G with AI as the 

initial symbol; and 

qi(O ij 
)- number of occurrences of A, in the consequence $ijo 

Then 3. n 

ni Pij Waij +I nxqx($ij)) 
X. 1 
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The AWL of the language generated by G. can be obtained by the 

following theorem (Booth and Thompson, 73). 

Theorem: Let L(G) be generated by a strongly consistent context-free 

probabilistic grarnmar G. Then the AWL of L(G) is 

AWL - ftOO 
... 0](I-E)-'T 

where E- expectation matrix (first moment matrix) 

T- [t 
i column vector; such that 

k. 
I 

tIP ii M(a ij j-1 

= average number of terminal symbols generated when AI 

is rewritten; 

I- identity matrix. 

Proof: For any i 

ni mip ii {m (s ii 
)+j 

imi x-1 
k. 

k 
EI Pi 
j-i jmj 

xqx Ij 
)I 

n 
p 

2.3 nxqx(a 

k. k. 
n 3. 

p M(a + 

x! 

ýP3. 
j qx (a 

Lj nx 
j=l ii iI J=j 

Then for the entire grammar 

n2 

k1k1 

qpq i ýii 1 li li 2 li 
j-i j. 1 

k2k2 
i p2jql(ß 2i 

)i 
ýj2i 

q2 (ß 
2i) 

kk 
En Pnj q10 ni 

)- in Pnj q2 (11 
ni 

) 
ii. j i-i 

n2 

k1 

pJ M(a 
Jul J 

k2 

p2i mo 2i 

k 
n 

Pnj M(o 
nj 
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The square matrix is the expectation matrix E. Let N denote the column 

vector [n 
i 

], then 

N= EN +T 

solving for N gives 

N= (I-E)-lT 

where (I-E)-l exists if E has no eigenvalues with unit magnitude. This 

condition is guaranteed if G is a strongly consistent context-free grammar. 

The average word length for the overall grammar -n1 because A1 is the 

start symbol, so 

AWL- [100 
... O]N 

= [100 ... 0](I-E)-'T 

End of proof. 

From the above example 
E 

0.5] 

0 0.20.0 

the eigenvalues are 0.65, and -0.15. Thus the grammar is strongly 

consistent. 5*1 + 0.5*0 5 

0.8*2 + 0.2*1 

rl 

8] 

-1 
5 -0. 

-0.2 0 

[2.5 1.25] 

05 0 .51.25 
Therefore [2.5 1.25 .5 

a AWL [10] 0 .51.25] 10 8] 

3.50 terminal symbols per string 

Wetherell (Wetherell,. 80) explains another way of finding the AWL 



189 

which leads to almost the same equation as mentioned above. The method 

is to find the expected number of each terminal symbol after one rewriting 

of each non-terminal symbol. The resulting matrix S will eventually be 

multiplied by the non-terminal expectation matrix E** (see Section 7.2) to 

yield matrix W. If AI is the initial symbol then the sum of the elements 

of the A1 th row of W is the AWL, i. e. 

'n W=ES 

AWL - sum of the elements of the first row of W 

First row of W- [100 
... O]E**S 

- [100 ... 0](I-E)-ls 

To find the elements of the matrix S, 

S Q. D 

where Q is a matrix which has INI rows indexed by non-terminal symbols and 

IRI columns indexed by productions. The element Qij has value Pij if 

production Ri has non-terminal A3. on its left and value zero otherwise. 

The matrix D has IRI rows indexed by productions and ITI columns indexed 

by terminal symbols. The element D 
Ij 

has as value the number of times 

terminal T. occurs on the right-hand side of the production R.. From the 
1 3. 

example above: 
.50.5 00 

Q000.8 
0.2] 

10 6' 

D000 
011 

01 01 

S Q. D 
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e5 095 

00 

050 

0 1.0 

Therefore 

2.5 

First row of W [10] 

_0.5 

0 1 0 6, 

0.8 ob 2] 0 0 0 

0 1 1 

0 Lo 1 oJ 
0.81 

1.25 0.5 00 

1.25 0 1.0 0.8- 

1.25 1.25 1.0 

0., 25 1.25 1.0 

[1.25 1.25 1.0] 

AWL 1.25 + 1.25 + 1.0 

3.50 terminal symbols Per string 
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7.4 AVERAGE DERIVATION LENGTH (ADL) 

It has been mentioned in Section (3.2) that a string of symbols 

from a language L can be derived from the set of productions of a context- 

free grammar which generates L. In each derivation, a particular production 

is used, which is considered as one step in completing the derivation of 

the string. So the derivation length of a string by starting from a non- 

terminal symbol represents the number of steps required to complete the 

derivation. Suppose that S is the initial state, then the average derivation 

length ADL(S) of a derivation beginning with the non-terminal S is the 

expected number of steps in a derivation beginning in S and ending with 

a terminal string (Wetherell, 80). Since the length of a derivation is 

exactly equal to the number of non-terminals introduced (each non-terminal 

requires one application of a production rule to be replaced), then from 

the non-terminal expectation matrix E00, each element represents the average 

number of occurrence of the particular non-terminal symbol produced during 

the derivation of a string by the first non-terminal symbol. Assume that 

A1 is the initial symbol, then the sum of the elements of the A1 th row of 

E CO is the ADL (A, ). From the example in Section (7.3) 

2.5 1.2 

0.5 1.25 il 

ADL(A) - 2.5 + 1.25 

w 3.75 

This means that the average derivation will have under four production 

applications before a terminal string is reached. 

To find formally the ADL, let G-({S-vl, v 2'0*0'v k' T, R, P, S) be a 
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probabilistic context-free grammar. The following definitions are made 

(Hutchinsq 72b; Feller, 57). 

Definition: dis, i-1,2,..., k are discrete random variables representing 

the number of steps necessary to complete a left-most derivation of a 

terminal string from vI. 

Definition: qi(n)-p(d i -n), i-1,2,..., k. 
to 

Definition: For each i-1,2,..., k, Fi (s)- Iq3. Ws n. Fi (s) is the 
Sequawce . n- 

generating function for the A, {q, (n) 
, and 'n-0 

cc 

n 

10 qi(n) =Fi (1) =1 

Definition: Let {a and {b be any two4emStls. The new -4! {c is called 

the convolution of {a 
iI and {b 

iI and will be denoted by 

{c 
iI- 

{a 
iI *'{b 

i) 

where crý aob r 
+a 1b r-1 

+ *** +a 
r_lbl+a r 

bo. 

Since v1 is the initial symbol, d1 is the random variable for left- 

most derivation length of strings in the language L generated by G, and 

q (n) is the probabilitY that left-most derivation requires n steps for 
1 co 

completion. So Iq1 (n) -F1 (1) is the probability of completing a 
n-1 w 

derivation. The average derivation length is equal to I nq 1 
(n) - Fl(l). 

n-0 
Assume D, =ADL(V 1 

). 

Consider R., the set of productions applicable to Vis R 2. 
P 

rvI -). a1V1a2v2 clk(j v k(j 1) 

p j2 
rj 

2v 

p 
rj 

m 
vi -), 

jm 

32v32 
a 

32 
v 

j2 j2 
v 

j2 

1122 ak(i 
2 

)- k(i 2) 

CL 
mylm amvmm-m 22-*** cýc (im) Vk (im) 
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Jk 
where at is an arbitrary string of terminal symbols. If n steps are 

required to derive a string of terminal symbols from V, 9 then (n-1) steps 

are required to generate the terminal substring from V'k v'k v 
Jk 

12 kU k) 
by assuming that rIk production is used with probability p, 

ko 
So the 

probability that n steps are required for completing a string of terminal 

symbols from V. is 
I 

q i(n) - pj q11 (n ) qj (n ) ... qj 
1 

1nI +n 2 +.. 
Z+nk(il)-n-1 

1122 k(jl) 

+pj 4q2 
(n )q 

J2 
(n qj2 (nk (j 

2) 
2n1 +n 2 -nk (i 2) -n-I 1122k (i 2) 

m +pj q m(nl)q (n qjm 
m1 

+n 2 +. . 
4nk 

(j 
2) -n- 122k (i 

From the definition abgve 

qi (n) - pj (q *qq (n-1)) 
12k (3 

3221 
+ pj 

2 
(q 

1*q2**. * *qk0 
2) 

(n-1)) 

+ pj (q 'a *qq 1n. 

ra 
12 k(j 

m 

From (Feller, 57, and Hutchins, 72b) the generation function for the 

convolution of two sets is the product of their generating functions. 

If F(s) is the generating function of {q(n))** then the generating n-O' 

function for {q(n+1)1'0 is SF(S). 
n--O 

F. (s) - pj S(F (S)y (S) ... F 2k 

21232 
+ pj S(F (s)F, 

212 
(S) ... Fk (i 

2)(s)) 
S 

S 
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iij 

+ pj s(F, M(s)F M(s) 
... FMj (s)) 

m2 
k( 

m 

sI pj 
hýýFj 

(s) 

r ER t-1 t 

Since i-1,2,..., k, then there are k equations relating to the k unknown 

generating functions. The equations are non-linear in the Fi (s). By 

differentiating the above equation 
k(j) 

V(s) pj (I 'Fj (s) ITFj 
3. Srj 

;ERI 
t-l t kOt k(s)) 

By letting D -F! (l), F (l)-l, i-1,2,..., k, then, i 3. i 

( 
k(j) 

Fti 1+ pj It 
C-R. t=i 

J-+ pj(n(j, l)F" 
i 

W+ 
... + n(j, k)Fý (1)) 

r. ER. 
jI 

1+a Fll(l) + ai2F2'(l)+ ... + ai ii k7ký(') 

+ il D+a i2 D2++a ik Dk 

k 
a it DI 

Let D= (D 
i]a column vector, i-1,2.... 

, k, and 

1= [1] a column vector of size k 

Then D-1+ ED 

or 
(I-E) D 

or D= (I-E)-ll 

Therefore ADL(V DI 

sum of the elements of the first row of the 

expectation matrix. 
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For instance, from the expectation matrix mentioned above 

05 
ADL (A) 

[2.5 1.2.5] 

0 .51.25 

2.5 *1+1.25 *1 

3.75 
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7.5 AVERAGE NUMBER OF STATES (ANS) 

Any string of symbols from a language generated by a context-free 

grammar has to be recognized (parsed) before storing its code. The 

recognition can be represented by a unique sequence of states. Each state 

is selected, either as a consequence of a shift action or a reduce action, 

from the previous state. The number of shift actions is equal to the number 

of terminal symbols in the string (including the end marker). In the right- 

most derivations, a reduce action is equivalent to a derivation step in the 

left-most derivations; because in the reduction step, the consequence of a 

particular production will be replaced by its premise; whereas in the 

derivation step, the premise of a particular production will be substituted 

by its consequence in the sentential form (see Section 3.2). So the number 

of reduce actions ispqual to the number of derivations of the string. 

Therefore, the set of states which represents a string of symbols can be 

divided into two subsets (see the example in Section 7.9): 

1. The states which cause shift actions; and 

2. The states which cause reduce actions. 

In general, assume that 

NS - s198 V-'sn 

be a set of states represents a string of sYmbols where 

I=SI 's 2'***, Si cause shift actions; and 

j=S1 's 2' *.. Is i cause reduce actions; 

such that I+J-n. 

Then NS -I+J 

The average of (I) is the average word length (AWL) which was explained 

in Section (. 7.3); and the average of W would be the average derivation 
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length (ADL) which was explained in Section (7.4). So 

the average of (NS) - AWL + ADL 

Assume that [A] - the expectation matrix; 

[ti] = the column vector as defined in Section (7.3) 

Then 
ANS = [1000. 

... 0] (A] (t I+ (1000, 
... 0] (A) [I] I 

(100 ... 01 (A] ([til+[ 1) 

From the definition of the addition of two matrices mentioned in Section 

(7.1). 

ANS = [100 ... 0] [A] [t 
i +II 

or 
let e.. be the expected occurrence of the non-terminal symbol v, 

P(V i) be the probability of vI 

#T be the number of terminal symbols in a production j IE R 
2. 

Then 
ANS = AWL + ADL 

= (e 
1e2e3 *** e O[ti] + ADL 

Since ADL e1 +e 2 +... +e k 

e. 
P(V =I ADL 

then ANS - ADL[p(v 1) P(v2) ... P(vk)][ti] + ADL 

k 
= ADL P(vi pj # T) + ADL jGRi 

k 
= ADL P(v i pj # T) + 1] 

jC- RI 

An example of obtaining the average number of states is mentioned in 

Section 



198 

7.6 THE PROBABILITY DISTRI13UTION OF THE STATES 

It has been mentioned that for a context-free grammar. a finite set 

of states could be generated (using YACC program) to encode (or decode) 

any string of symbols from the language generated by the grammar. The 

transition between the states is not independent; each state has certain 

connections in which it can be entered, and it can exit to other particular 

states. So the probability of being in a state depends on the previous 

state (conditional probability), and is noted as p(alb) which means the 

probability of seeing the state (a) given that (1) the state (b) has just 

been seen. 

For a set of n states, a convenient way of describing the relation 

between the states is to arrange the probabilities in matrix form 

(transition matrix) where each row represents the current state, and each 

column represents the next state. The matrix entry is the conditional 

probability (Fig. 7.1). The sum of the elements in each row is equal to 

abC4.. 

a p(ala) p(bla) p(cla) 

b p(alb) p(b1b) p(c1b) ... 

C 

FIGURE 7.1: Transition matrix 

one. For example, suppose that a, b and c are three states with the 

following probabilities I 

p (a I a) - -1 , p(b p(cla) 333 
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p(Alb) - -1 , 4 p(bib) - -1 2 p(clb) - .1 4 

p(a1c) - -1 , 4 p(b[c) - .1 4 p(CIC) - -1 2 
Then the transition matrix would be: 

a b c 
r1 1 11 a (. 

1 ii 
1 1 C 

Assume that l)l'p2'***'Pn be the probability distributions of the states 

s l's2'***'sn respectively. The relations between the probabilities can 

be easily derived. For example, there are maximum n states in which a 

new state can be seen. If state 1 is the current state, then state 1 will 

be the next state with probability p(111); if state 2 is the current state, 

state 1 will be the next state with probability p(112),..., and so on. In 

general, the probability of each state would be: 

p(l)p(111) + p(2)p(112) ++ p(n)p(lin) p(l) 

p(l)p(211) + p(2)p(212) ++ p(n)p(21n) p(2) 

p(l)p(nll) + p(2)p(n[2) + ... + p(n)p(nin) - p(n) 

The above set of equations is arranged as follows (Hamming, 80): 

(p(l),, p(2) ... p(n)) 
transition 

matrix 
(P(I). p(2) ..... p(n)) (1) 

6- j 

where p(l)+p(2)+... +p(n) - 1. This indicates that the probabilities of 

the states remain unchanged-through shifts in time. From the above example: 
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p (b), p Cc) ) 

1 1- 
3 3 

4 2 4 

1 1 1 
L4 4 2j 

This is equivalent to the equations 

p(a) + -1 p (b) + -1 p (c) -6 p (a) 44 

p(a) + -1 p (b) + -1 p (C) -p (b) 24 

p (a) +Ip (b) +Ip (C) p (C) 42 

It is known that 

p (a) +p (b) +p (c) -1 

By solving the above equations 

p (b) p (c) 

mpp (c) ) 

Equation (1) can be used for limited transition matrix. Nevertheless, it 

can be reorganized in a way suitable for obtaining the probability 

distributions for large numbers of states with the help of computer routines 

which are already available for users. Assume that (A) is the transition 

matrix and (A T 
is the transpose of (A). Equation (1) can be written as 

PTA-PT 

where (P T) 
is the row vector (pl'p2, ***-Pn ), then 

T 
AP=P (2) 

It can be shown that equation (2) has a non-trivial solution POO and one 

of the eigenvalues of AT is equal to unity. In this case P will be equal 

to the normalized eigenvector corresponding to the eigenvalue of 1. From 

the properties of eigenvaluea (Jennings, 77), --_. .a matrix has the same 
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eigenvalues as its transpose. So to prove that one of the eigenvalues is 

one, it is necessary to show that 

det(A-I) -0 

where I is the identity matrix. Suppose that a ij is an element of the 

i th row and j th 
column in (A). Then 

a 11-1 a 12 a 13------- a ln 

a 21 a 22-1 a 23- a 2n 

det(A-I)=det I 

a nl 
a n2 aa 

n3 -1 L nn ] 

Any row or column can be added to any other row or column of the matrix 

I without affecting the value of the determinant (Campbell, 65). So add all 

the columns j-2,3,..., n to the first column, then 

det(A-I). =detl 

-n j1a 
lj a 12 -a ln 

n 
a 2j -1 a 22-1 a 2n 

n 
il a nj -1 a n2 a nn-1 

-0 

since the silmation of the elements of any row is equal to 1, i. e. 

a 

Then r r-o 

det(A-I)-det 

a 12 a In 

a 22-1-- -a 2n 

a 
n2 nn -1 
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Since the first colimm of the above matrix is all zeros, then (Campbell, 

65): det(A-I) -0 

Therefore one of the eigenvalues of the matrix (A T) is 1. Hence equation 

(2) has a non-trivial solution PJO. Notice that equation (2) has multiple 

solution vectors. That is if P is one solution then aP is a solution as 

well, where a is a constant (see Section 7.1). The correct solution can be 

found by using the fact that 

n I P. 
j=l 3. 

Therefore, once the vector (x) has been evaluated, then, 

p= ax 
p 

where a -_ 
x 

1 

n 

ill 
X 

As an example, consider the above transition matrix 

4 

AT 3 

L3 

21 
3 

det(AT-I)-det 
1 
3 

I Li 

2(i 
_I "-54 It) - T(- T- Ift-) + T(T2 +V 

23+ 
.1*3. +1*3 S 16 4 12 4 12 

= 



For the eigenvalue of 1 

x 0 
a 

(A -I) xb 0 

X ci 

2 
3 xa 

3 xb 

1 
L. - 

3_ 4 2j x 
L cJ 

2 1 1 Xa + xb + X 0 
C 

xa xb + X0 
C 

x 3a + Xb ;. 4 x0 2c 

By simplifying the above equations 

Xb x C 
3 

x a4 "b 

For xb-1 
X1 C 

3 
and xa4 

since p a+pb 
+PC 

Then am1 3+1+ 
w 

Therefore ax 
3- 
4 

-3- 
11 
4 

4 

4 
rid 

i. e. pa 11 'b 'c 11 

,6 

0 

203 
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7.7 MINIMUM CODE LENGTH (MCL) 

Let a be any string from the language (L) with probability p(q), 

then the minimum code length would be (Hutchins, 72a), 

H -- 
1p (a ) 1092P((I) 

CIEý 

This can be achieved from the derivation steps and the productions which 

generate the language. From the definition of the grammar (Section 3.1), 

let pj (j-1,2,,,., m) be the probability of each production in R. (i-1,2 n) 

in which vI is the premise with probability p(v i ). Then 

h. --1 3. jE: - RL 
pi log2(pj) 

is the minimum code length of a particular state vI. Now the minimum code 

length per non-terminal symbol would be 

H=I P(V i )h i 

In the derivation process (left-most derivation), each non-terminal 

symbol. is substituted by a particular production which is considered as 

one step of the process. From Section (7.4); D1 would be the average 

number of derivation steps required for deriving a string. Hence, 

MCL - DI H 

k 
Dl IP (Vi )h i imi 

In the right-most derivation, assume that s l's2'***'Sn 
is a set of 

states which is used to encode any string from the language (L), and each 

state has got m choices. Let the probability of each choice be pj, 

Then m 

:L jll'3j 
log2(pj) 
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be the minimum code length for a particular state (s i 
). The minimum 

code length per state would be p(s2. )h3. where P(si) is the probabil 

of the state sI Since each string can be represented by a set of st 

From Section (7.5), let N be the average number Of states required to 

n 
code length per state would be P(s 

2. 
)h 

3. 
where p(s is the probability 

of the state sI Since each string can be represented by a set of states. 

encode a string, then the minimum code length per string would be 

n 
MCL N p(s 3. 

)h 
3. 

An example of finding the MCL of a string is mentioned in Section (7.9). 
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7.8 AVERAGE CODE LENGTH (ACL) 

To determine the average length of the coded string generated by 

the encoder, assume that: 

c(r i) is the code of each rule ri; 

Z(c(r i 
)) is the length of the code. 

Then for each non-terminal symbol v, p i-1,2,..., k 

206 

IIWj ZR 

i 
pj Z (c (r i )) 

would be the average code length of the code for RI- Since there are k 

non-terminal symbols, each has a probability p(v i-1,2,..., k, then 

the average code length for each norr terminal is 

k 

illp 
(vi) 

In a left-most derivation, the replacement of a non-terminal symbol 

by the consequence of a particular production is considered as one step 

in the derivation process. Hence the average number of non-terminal 

symbols is equal to the average derivation length of the string. From 

Section (7.4) the average derivation length Dl can be obtained* Therefore 

the average code length per string would be (Hutchins, 72a): 
k 

ACL - D1 P(v Z. 

For the right-most derivation, assume that s be a set l's2"**'sn 

of states in which a string can be encoded. Let 

P(s i) be the probability of si; 

C be the code of each choice in the state 

t(c i) be the length of the code; 

p, be the probability of each choice in the state 
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Then the average code length for a particular state is 

m 
Z 

jL 
pjt(ci) 

Now, for the set of state, the average code length per state is 

n 
P(s 

From Section (7-5), let N be the average number of states required to 

encode a string. Then the average code length per string would be: 

n 
ACL -NI P(s 

_An example of the average code length per string is mentioned in Section 

. (7-9)- 
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7.9 COMPARISON 

The main objective of designing a compression method is to encode 

a sequence of source letters into a form such that the encoded data can 

0 ccupy as li ttle storage space as possible. Obviously, all compression 

methods have the ability to compress data but it has to be decided which 

method is the optimal. Therefore, a comparison between different compressing 

methods is necessary to decide which method does use less storage for the 

encoded file. 

Two practical comparisons exist. The first is to find the number of 

binary digits that are required to encode a given source letter by these 

methods. The second is to f ind the ratio of the size of the encoded data 

to the size of the data in its original form (Section 3.9). 

The encoding method (explained in Chapter 5) has been implemented on 

Pascal language, and some Pascal program have been used as sample data 

(Section 5.11). However, the language itself has not been used for comparing 

the encoding method with an already existing encoding method because of 

the difficulties of obtaining the probability of each state (there are 

raore than 300 states) which require the construction of the transition 

matrix, and also the construction of the expectation matrix. So, it is 

, lot possible to calculate the average length of a program (AWL), and also 

the average length of the encoded file (ACL). Instead, a simple language 

is used for comparing the encoding method with another method using a 

parsing encoding technique. The set of productions (rules) of that 

language is listed in Fig. (7.2) together with the frequency, probabilityv 

and the code of each production. The frequencies are obtained from six 

simple programs (Fig. 7.3). The full listing of these programs is in 
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Appendix E. Note that the programs are syntactically correct but have no 

semantic meanings. 

Freq. Prob. Length Code 

1. prog: =series 

2. series: -series; stmnt 

3. : wstmnt 

4. stmnt: -var-exp 

5. exp: -exp+factor 
6. : -exp-factor 
7. : =exp*factor 

8. : =exp/factor 

9. : =factor 

10. facton-var 

11. : -const 

12. : -(exp) 

var: -a 

: -b 

: WC 

:. Z 
const: -0 

: -1 

: -2 

: -9 

33 0.846 0 
6 0.154 1 

24 0.157 3 001 
21 0.137 4 0000 
36 0.235 2 01 
12 0.079 4 0001 
60 0.392 1 1 

96 0.628 1 0 
36 0.235 2 10 
21 0.137 2 11 

FIGURE 7.2: Grammar rules 
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program I 

of 2 

it 3 

prog. size 
176 

62 
112 
53 
71 

166 

FIGURE 7.3: Sample programs 

The proposed compression method tries to encode a source file by 

building up a syntax tree of that file starting from the leaves upwards 

to the root. Hence, a bottom-up parsing method is required to do the 

encoding. So, an LR(K) parsing technique is used. But, the compression 

method which already exists, tries to encode a source file by building up 

a syntax tree starting from the root downwards to the leaves. So, a top- 

down parsing method is required to do the encoding. An example of such a 

method is a Recursive-Descent (R-D) technique. 

The above grammar rules are not suitable for R-D parsing technique, 

because of the problem of left recursion. Hence, a slight modification 

is required to some productions which does not affect the overall outcome. 

The modified rules are: 

series: - stmnt [; stmnt) 

exp: - factorf(+I-I*I/) factor) 

An encoded file size depends on the number of bits generated for 

the letters, digits, editing characters (spaces and new lines), and for 

the parsing. If its assumed that the ways used for encoding those letters, 

digits, and editing characters are identical, then the comparison will 
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depend only on the number of bits generated by the encoder for the parsing. 

That is, the less number of bits genera ted by one method, the better that 

method is. 

By implementing both methods on a number of sample programs, the 

following two tables (7.1 and 7.2) have been prod uced. 

Prog. size -Bits for Bits for 
Total Bits for Size in 

in bytes chars. edit. chars. parsing bytes 

176 170 408 578 160 96 

62 61 138 199 58 40 

112 121 248 369 97 64 

53 60 108 168 53 32 

71 80 156 236 68 40 

166 165 374 539 149 88 

640 657 1432 2089 585 360 

TABLE 7.1: Encoding program using R-D parsing 

Prog. size Bits for Bits for 
Total Bits for Size in 

in bytes chars. edit. chars. parsing bytes 

176 170 408 578 149 96 

62 61 138 199 55 32 

112 121 248 369 96 64 
53 60 108 168 53 32 

71 80 156 236 70 40 

166' 165 374 539 140 88 

640 657 1432 2089 563 352 

TABLE 7.2: Encoding programs using LR parsing 

It can be seen that the number of bits generated for characters and 

editing characters by both methods for each sample program is identical. 
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Whereas, the average number of bits generated for the parsing by the 

proposed method (Table 7.2) is less than that of the already existing 

method (Table 7.1). This means that the proposed method can build a 

syntax tree with less number of bits required to be encoded. Hence, the 

average encoded file size generated by the proposed method is smaller 

than that generated by the existing methodý 

In general, one or both of the following two reasons cause a reduction 

in the number of bits generated by the proposed method: 

1. In the existing method, the frequency of each grammar rule is 

fixed (i. e. the code is fixed), that is, whenever a rule is 

recognized during a parsing process, the same code is generated. 

For instance, whenever the rule 

exp: -exp*factor 

is recognized, always 4 bits are generated. But in the proposed 

method, the frequency of each input symbol is fixed within each 

state (Appendix D), not for all states. That is, the same input 

'might'have different'frequencies in different states. Therefore, 

the code length is varying from one state to another. For 

instance, in state 8 the symbol * requires 2 bits, whereas in 

state 17 requires 3 bits. So, the code of the expression aft 

is different from the code of the same expression inside paranthesis. 

2. It is considered that the average code length (i. e. average 

number of bits) generated for any tree could be minimized by 

t In the existing method, no code was generated for productions which 

were certain to occur. 
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reducing the number of levels that the tree has. 

In the existing method, the parsing starts at the root and goes down 

level by level until the process is completed. If at certain levels more 

than one option exists in a node, then a code should be generated by the 

encoder to indicate which grannar rule is applied. For instance, consider 

the following simple grammar rules with their frequencies and code lengths: 

Freq. No. of bits 

A: -B 20 1 bit 

:. a7 1 bit 

B: =b 17 1 bit 

: =c 3 1 bit 

the parsing tree would be: 
A level 

B level 2 

bc 

which has ý levels. 

When the parser is at level 1, it only derives either a or B, and 

rom B, it derives either b or c. So, in order to parse c, the parser 

should pass through B, i. e. W* Bý* c. 

The symbol (a) requires 1 bit to be recognized. But (c) and (b) 

need an extra bit (whatever their frequencies are). This extra bit is 

generated when the parser has to choose B out of two choices. 

However, at any state in the proposed method, the parser can 

recognize all expected input symbols (i. e. it allows a widespread of 

options). This sometimes allows the parser to reduce the input according 

to a specific rule (i. e. goes up one level higher) without a need to generate 
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any extra code. In other words, the parser can by-pass this level to a 

higher one. For'instance, state 0 (Fig. 7.4) which examines the first 

input derived from A is expecting a, b or c. 

A level 1 
/I\ 

abc 

1ý 
Any input could be reduced to A without generating any extra code. 

state 0: prog: =. A$ 

as3 
bs4 

cs5 

others error 

state 1: prog: -A. $ 

$ accept 

others error 

state 2: A: -B. 

rI 

state 3: A: -a. 

r2 

state 4: B: =b. 

r3 

state 5: B: -c. 

r4 

FIGURE 7.4: A set of states for the above example 

To compare the number of derivations in R-D parsing method with the 

number of states used by the LR parser for the same string of symbols, 

consider the R-D parsing for the following string x-a*b; y-l. From the 
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productions mentioned eariler in Fig. (7-2) . the set of derivations is 

prog series 

series; stmnt 

-*, stmnt; stmnt 

-0-var=exp; stmnt 

=O, x--exp; stmnt 

=* x=exp*factor; stmnt 

=*-x-factor*factor; stmnt 

x--var*factor; stmnt 

x-a*f actor; stmnt 

x=a*var; s tmnt 

-I, x-a*b; stmnt 

2* x-a*b; var=exp 

-0- x-a*b; y=exp 

=$-x-a*b; y-factor 

x--a*b; y=const 

x=a*b; Y-1 

The derivation length is 16. Obviously, 5 derivations are part of the 

scanner's job (see Fig. 7-5)o Therefore, the parser needs only 11 

derivation steps in order to complete the recognition of the above string. 
prog 

series 

parser's job series 
exp 

var 
nt 

factor 

r exp 
Is 

t /If 
ctor 

exp *I 

scanner's job 
I- 

var factor 

var b 

a 
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To parse the same string using LR parsing method (the set of states 

generated by the YACC program is listed in Appendix D). Assume that (S. ) 

means shift the symbol -; and (R 
5) means reduce by the production number 5. 

Then the sequence of states would be: 

sxssR 10 R9 S* 

0s4s6s 10 s9888 15 

Rjo RRRS. 
S 10 s 20 S8s3s2s5 

ssRRR 
s4 -* 

=S6 
-* 

1S 
11 -* 

11 
S9 -* 

9s8 ý4 
s3 

R2R1s lend 
-+ s24. s1 accept. 

The total number of states is 21,11 states occur due to reduce actions, 

and 10 states occur due to shift actions. Assume that each derivation in 

R-D method represents one state in the parsing process, then the total 

number of derivation steps in R-D is the same as the number of reduce 

actions in IR. 

7.9.1 Us_ing Left-Most Derivations 

To find the. average word length of a string generated from the 

grammar mentioned in Fig. (7.2); the average code length; and the minimum 

code length of the encoded file. By implementing the left-most derivations, 

the first step is to construct the expectation matrix from the productions, 

then find the non-terminal expectation matrix. 
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prog series stmnt exp factor 

01 0 0 0 

200.846 1 0 0 

300 0 1 0 
E 

400 0 0.608 1 

500 0 0.137 0 

-1 0 0 J 

0 0.154 -1 0 0 

(I-E) 00 1 -1 0 

00 0 0.392 -1 

LO 0 0 -0.137 

6.494 6.494 25.465 25.465 

0 6.494 6.494 25.465 25.465 

001 3.922 3.922 
-1 

000 3.922 3.922 

LO 00 0.537 1.537 

The average derivation length is 

ADL -1+6.494 + 6.494 + 25.465 + 25.465 

- 64.918 steps 

There are 5 non-terminal symbols, the probability of each of these symbols 

would be 

p(prog) 0. 
64.918 

015 

p(Aeries)- 0.1 

p(stmnt) - 0.1 
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p(exp) - 0.392 

0(factor) - 0.392 

The average word length would be 

I 1 6.494 

0 6.494 

AWL - (100001 00 

00 

LO 0 

6.494 25.465 25.46ý 0- 
6.494 25.465 25.465 0.846 

1 3.922 3.922 1 
0 3.922 3.922 0.608 
0 0.537 1.537J Ll . 137J 

- 6.494 * 0.846 + 6.494 + 25.465 * 1.745 

= 56.424 

Now to find the minimum code length per string; first try to evaluate the 

minimal average code length obtained from each state: 

hI-- 
JJRi 

Pj log 2 
(pi) 

=0 

h2m- (0.846 log 2 0.846 + 0.154 log 2 0.154) 

- 0.619 

h3 =0 

h4 (0.392 log 2 0.392 + 0.157 log 2 0.157 + 0.137 log2 0.137 

+ 0.235 log 2 0.235 + 0.079 log 2 0.079) 

- 2.121 

h5 = -(0.628 log 2 0.628 + 0.235 log 2 0.235 + 0.137 log 2 0.137) 

- 1.306 
5 

H- P(v. )h. 
3. 

. 0.1 * 0.619 + 0.392 * 2.121 + 0.392 * 1.306 

- 1.405 

q 
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So the minimum code per string is 

MCL - ADL *H 

- 64.918 * 1.405 

= 91.210 bits 

The average code length per a state is 
5 
I P(v i) 

lpjgj 
i=l i 

0.1(0.846+0.154) + 0.392(0.392+0.157*3+0.137*4 

+0.235*2+0.079*4)+0.392(0.628+0.235*2+0.137*2) 

1.499 bits/state 

Now the average code length per string would be 

ACL - ADL *I 

- 64.918 * 1.499 

- 97.312 bits. 

7.9.2 Using Right-Most Derivations 

For the right-most derivations, the average number of states would be: 

ANS - ADL + AWL 

= 64.918 + 56.424 

= 121.342 states 

or 1 I 6.494 6.494 25.465 25.46! T 1 

0 6. *494 6.494 25.465 25.465 1.846 

ANS - 1100001 0 0 1 3.922 3.922 2 

0 0 0 3.922 3.922 1.608 

10 0 0 0.537 1.537 L2.137J 

1+6.494 * 3.846 + 25.465 * 3.745 

121.342 states 



220 

From the state probability (Table 7.4), and the frequency of choices in 

each state (Appendix D), it is possible to find the minimum code length 

of a state: 
22 

H--i0 P(s i) jEE 
I 

S. 
pi log2 (pi) 

- 0.0499 * 0.619 + 0.0499 * 1.423 + 0.1339 * 2.065 + 0.027 * 0.703 

0.0309 * 1.417 + 0.027 * 0.863 + 0.047 * 1.123 + 0.0158 *1 

0.063 * 1.749 

- 0.643 bits/state 

Now, the minimum code length per a string of symbols is 

MCL - ANS *H 

- 121.342 * 0.643 

- 78.024 bits 

From Table (7.4), the average code length of a state is 

22 
I P(s I) jr= 

IS P-1. 
i-O ,iJ 

0.0499 + 0.0499 * 1.436 + 0.1339 * 2.154 + 0.027 * 1.19o 

+0.0309 * 1.542 + 0.027 * 1.286 + 0.047 * 1.278 + 0.0158 * 1.5 ý 

+0.063 * 1.857 

- 0.725 bits/state 

So, the average code length per string is 

ACL m ANS *Z 

121.342 * 0.725 

= 87.973 bits 

I, 
if a fixed code length for each character (8 bits) is usedv then the 

average code length would bp ACL - 56.414 *8 

- 451.312 bits 



221 

code 
character frequency length character 

39 39 

36 3q 

33 4k 

+ 24 4m 

21 4q 

21 44 

21 45 

1 16 5p 

a 14 5z 

c 12 50 

r 12 5f 

w '12 5 

12 5 

b 11 5s 

h 10 5t 

e86y 

x863 
d768 

76u 

66v 

2666 

n577 

TABLE 7.3: Character code lengths 

frequency code 
length 

4 7 
4 7 
3 7 
3 7 
3 7 
3 7 
3 7 
2 8 
2 8 
2 8 

8 
8 
8 
8 
8 
9 

9 

9 
0 
0 
0 
0 

Fig. (7.6) shows diagrammatically the above values. Note that the 

editing characters are excluded. 
MCL ---m ACL 

78.024 (87.973) 

LR 
0 263.115 451.312 

Rm-D 
MCL 

II ACL I 
97.312 

FIGURE 7,6: Diagram of the average code length 
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State no. Freq. Prob. pjt 3 Pj log2(Pj) 

0 6 0.008 0 0 

1 6 0,008 0 0 

2 39 0.0499 1 0.619 

3 6 0.008 0 0 

4 39 0.0499 0 0 

5 33 0.0429 0 0 

6 39 0.0499 1.436 1.423 

7 33 0.0429 0 0 

8 104 0.1339 2.154 2.065 

9 60 0.0778 0 0 

10 96 0.1238 0 0 

11 36 0.0469' 0 0 

12 21 0.027 1.190 0.703 

13 24 0.0309 1.542 1.417 

14 21 0.027 1.286 0.863 

15, 36 0.047 1.278 1.123 

16 12 0.0158 1.5 1 

17 49 0.063 1.857 1.749 

18 24 0.0309 0 0 

19 21 0.027 0 0 

20 36 0.047 0 0 

21 12 0.0158 0 0 
22 21 0.027 0 0 

TABLE 7.4: Probability distr ibutions, average code lengths 
and minimum code lengths of the states 

Suppose that the average length of a string is given, then from TaVle (7.3) 

the average code length per character is 

ypi 'i 

4.664 bits 

since the average word length of a string is 56.414, then the average code 

length would be: I 
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ACL - 56.414 * 4.664 

263.115 bits 

The efficiency of the first method (left-most derivation) would be 

97.312 0.216 451.312 

1 whereas the efficiency of the second method (right-most derivation) would be-, 
87.973 0.195 451.312 

Samples of programs (Table 7.1) have been chosen to find the average 

code length of a string: 

Total number of characters excluding the editing characters - 378 

Total number of bits generated - 1242 

378 
AWL -6 63 characters 

ACL = 
1242 

- 207 bits 
6 

From Table (7.2) 

Total number of bits generated = 1220 

ACL - 
1220 

= 203.333 bits 
6 

For a fixed code length per character (8 bits) 

ACL = 63-* 8 

- 504 bits 

IFig. (7.7) shows diagrammatically how far apart the average code length 

obtained from the samples, and the minimum and average code lengths 

obtained from the grammar, were in this case. 
MCL --a jr- ACL iW-" ACL 

78.024 87.973 203.333 

LR 

11 

R-D 
MCL 

II 
ACL *-. I 

ACL 

91.21 _. a X---"97.312 Xýl 207 
FIGURE 7.7: Diagram of the average code length 
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The same samples of programs (Table 7.1) have been chosen to find the 

average code length of a string. The difference here is that the editing 

characters are included. 

Total number of characters - 640 

Total number of bits generated, - 2674 

AWL = 
ý40 

- 106.667 characters 6 

ACL - 
L674 

- 445.667 bits 

From Table (7.2) the average code length of a string would be: 

Total number of bits generated = 2652 

ACL = 
2652 

= 442 bits 
6 

3: f a fixed code length per character is used (8 bits), then 

ACL = 106.667 *8 

- 853.336 bits 

Fig. (7.8) shows that the inclusion of the editing characters as part of 

the program to be encoded, increases the code length and consequently, 

the average code length becomes far from the average code length generated 

from the grammar. 

MCL "O"Zv CL ACL-ý, 
8 

LR 
78.024 

1 
F7.973 

442 

853.336 

1 
R-D 

MCL II ACL ACL,. 
_I! r 

91.21 97.312 445.667 

FIGURE 7.8: Diagram of the average code length 
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It seems that for the small grammar tested, the minimal theoretical 

average code length is 

91.21-78.024 * 100 - 14.45 91.21 

smaller for the IR method than the R-D method. However, in practice over 

the sample program used, the average code length was: 

97.312-87.973 * 100 - 9.59 
97.312 - 

smaller. 



CHAPTtR 8 

SUMMARY AND CONCLUSIONS 
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4 General definitions and illustrations have been given of the concepts 

of probabilistic context-free languages, and the probabilistic context- 

free grammars which generate such languages. The construction of the 

parsing method LR(K) has been explained. The definition and the properties 

of a code were illustrated. The method of construction of a variable- 

length code known as Huffman code has been given. 

The objectives 'Of this study were: 

1. To design a model for the compression of a text the content of which 

is partially recognized by a context-free grammar. The model was to 

be based on the parsing encodingýtechnique. 

2. To design a model for the decompression of the encoded string which 

must retain the exact original text. 

To investigate the properties of the probabilistic context-free 

language, and the probabilistic context-free grammar, 

The encoder has been implemented on the Pascal language. The results 

were encouraging since a considerable saving in storage space has been 

achieved. The encoder program consists of the parsing part and the encoding 

part. The program verifies the granmatical structure of the input by 

parsing its and then generates the required codes. The parsing method 

used was LR(K) which is the most practical method for a right-most 

derivation technique. However, two main obstacles have been found. The 

first was that the manual construction of the set of states was tedious 

and time consuming. This has been overcome with the help of the program 

generator YACC. The second obstacle was the large size of the parsing 

tables. This was optimized by splitting the ACTION table into a number 
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of subtables, and also by compressing the GOTO table. Thus the size of 

the tables was dramatically reduced. For the encoding part, it generates 

three different Huffman codes. That is, codes for the grammatical actions; 

codes for user names, constants, and comments; codes for editing characters. 

The decoder has also been implemented. The output was exactly as the 

original f ile. This has proved that the encoded data was indeed representing 

the original data. The program consists of two parts; - the parsing part and 

the decoding part. The parsing part is similar to the parsing part of the 

encoder program. For the decoding part, each Huffman code has to be 

recognized before outputting any symbol. Since Huffman codes are variable- 

length codes, then a fair amount of computer time is spent on code 

manipulations because this involved a tree search. This is acceptable 

because-computer space, not computer time, is the main concern in this 

study. However, the amount of computer time spent was small compared to 

the time spent on transmitting information to and from the storage devices. 

Since the volume of the information transmitted was reduced, thus the 

transmission time would be reduced. 

Different statistical properties have been obtained from the 

probabilistic language and the probabilistic grammar. These include the 

average size of the input string, the average size of the encoded data, 

and the average number of states required to parse a string. A comparison 

has been done with an already existing parsing encoding method using a 

simple example of a probabilistic context-free grammar. The encoding 

method discussed earlier has produced a smaller average size of the 

encoded data than the average size of the encoded data produced by the 
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other method. Nevertheless, the method can not always guarantee the 

production of a smaller size for the encoded data for any string; the 

reason for this is that in a left-most derivation process, each non- 

terminal symbol can be represented by one state, and the first terminal 

symbols derived from the non-terminal symbol represent all the possible 

choices of that state. Thus the probability of selecting a particular 

choice would always be the same every time the corresponding terminal 

symbol is expected. Hence the same code would be generated. But in a 

right-MOst derivation process, the same choices could occur in more than 

one state depending on the grammar rules. Thus a particular choice might 

have different probabilities, and hence different codes, depending on 

which state it belongs to. 

Thus the LR encoder method is feasible. It seems to be better than 

the corresponding top-down encoder on average but not for every program. 

It has also been demonstrated to be practical by using it to encode Pascal 

programs. The encoder and decoder can be used to compress programs in 

other languages (context-free languages) by changing the encoding and 

decoding tables. 
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APPENDIx A 

PASCAL PRODUCTIONS 



%token IDR DIGIT UNSREAL , 
%token STRING NOTEQ LESEQ GRTEQ ASSIGN DOTS 
%token ARRAY PACKED CONST DO FILE SET FOR 
%token TO DOWNTO IF THEN LABEL FUNCTION GOTO 
%token OF PROGRAM ELSE RECORD TYPE UNTIL 
%token VAR WHILE BEGIN END REPEAT WITH CASE 
%token IN NIL MOD NOT PROCEDURE OR AND DIV 
%token FORWARD EXTERN 
0 -. ý 
prog : PROGRAM IDR I(' idrlist 1)' 1; 1 block 
idrlist : IDR I 

idrlist 1.1 IDR 
block : lpart, cpart tpart vpart ppart spart; 
lpart : LABEL llist 

llist : DIGIT 
llist, DIGIT 

cpart : CONST clist 

clist : IDR 1=1 const 
clist IDR const 

const : int 
real 
STRING 
IDR 
f+1 IDR 
11 IDR 

: Jnt DIGIT 
+1 DIGIT 

11 DIGIT 

real UNSREAL 
1+1 UNSREAL 

1-1 UNSREAL 
tpart : TYPE tlist '; to' 

tlist : IDR 1=1 type 
tlist 1; 1 IDR 1=1 type 

type I(' idrlist, I)' 
const, DOTS const 
IDR I 
PACKED unptype 
unptype 

IDR 

,, nptype ARRAY indlist OF type 
RECORD flist END 
SET OF type 
FILE OF type 

indlist type 
indlist, 1.1 type 

flist : fpart 
fpart, 1; 1 varpart, 
varpart. ; 

fpart : idrlist 1: 1 type 
fpart 1; 1 idrlist 1: 1 type 

235 



varpart CASE IDR 1: 1 type OF varnlistj 
236 

CASE'type OF varnlist 
varnlist varnt I 

varnlist '; ' varnt 
varnt : caselab 1: 1 1(' flist 

caselab const 
caselab 1,1 const 

vpart VAR vlistd I ;1 11 

vlistd idrlist 1: 1 type 11 
vlistd 1; 1 idrlist 1: 1 type 

ppart fdec 1; 

fdec pdec 
fdec t; l pdec 

pdec PROCEDURE IDR 1; 1 blocki 
PROCEDURE IDR I(' formlist 1)' 1; ' blockl 
FUNCTION IDR IDR '; ' blockl 
FUNCTION IDR formlist IDR blocki 
IDR 1; 1 blockl 

formlist : fparam 1 
formlist 1; 1 fparam 

fparam : idrlist 1: 1 IDR 
VAR idrlist 1: 1 IDR 
PROCEDURE idrlist 
FUNCTION idrlist 1: 1 IDR 

spart : BEGIN series END 
series : stmt 

series 1; 1 stmt 
stnit : DIGIT 1: 1 st 11 

st ; 
st_: var ASSIGN expr 

IDR , 
'IDR I0 outlist )I 
GOTO DIGIT 

ýBEGIN series END 
WHILE expr DO stmt 

,, -REPEAT series UNTIL expr 
FOR IDR ASSIGN expr TO expr DO stmt 

. FOR IDR ASSIGN expr DOWNTO expr DO stmt 
IF expr THEN stmt 
IF expr THEN stmt ELSE stmt 
CASE expr OF caselimbs END 
WITH varlist DO stmt 

expr sexpr 
sexpr relop sexpr 

sexpr 1+1 term 
11 term 
term 
sexpr addop term 

term factor 1 
term multop factor 
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factor : var 1 
unsconst 
IDR I(' aparlist 
IP elmlist IP 1 
I(' expr I)' I 
NOT factor 

var : IDR 1 
var IP aparlist'll 1 
var IDR 
var ; 

unsconst DIGIT 
UNSREAL 
STRING 
NIL 

relop 

IN 
NOTEQ 1 
LESEQ 1 
GRTEQ 

addop 

OR 
multop : 1*1 

1/1 
DIV 
MOD 
AND 

elmlist : elmt 
elmlist elmt 

elmt : expr 
expr DOTS expr 

aparlist : expr 1 
aparlist expr 

caselimbs : caselimb 
caselimbs caselimb 

caselimb : caselab 1: 1 stmt 

varlist : var 
varlist var 

outlist : outval 
outlist outval 

outval : expr 11 
expr 1: 1 expr 
expr 1: 1 expr 1: 1 expr 

pdec : FUNCTION IDR 1; 1 blockl 
blockl : block 

FORWARD 
EXTERN ; 

I 
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ENCODER PROGRAM LISTING 
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# define NULL 0- 
# define stelmts 300 
# define zero 0 
# define one 1 
# define newline f\nl 
# define symlen 256 
# define idrsize 25 
0 define bufsize 2 
# define blocksize 512 
int fdl, fdw; 
char filename[14]; 
char *name; 
int pointer; /*stack pointer 
int endflag; 
int errorflag; 
int dotsflg; 
int ch; /* input character 
int class; 
int I =1; 
int d =2; 
int others =3; 
char *keyword[] 

If array" "packed", " con st", "doll "file" "set". 
"for", "to", I'downtoll , "then", " label" "function", 
"gotoll . "of", "program" . "else" . "record" . "type", "until" Illvarll "while" "begin" "end" , "repeat'l, "with'I. Ilcasell. flif". 
If in" "nil" . "mod" "not", "procedure", "or" . Itand", "divfltllforward'I. Ilextern", O 

int token; 
int-idr =61; 
int digit =62; 
int unreal =37; 
int noteq =38; 
int leseq =39; 
int grteq =40; 
int assign =41; 
int dots =42; 
int lpar =43; 
int dot =47; 
int colon =48; 
int les =57; 
int grt =58; 
int endfile =59; 
int string =60; 
int tokensH =( 

44,45,46,49,50,51,52,53,54,55,. 56); 
char *chars 
int lenth, bits; /* length and value to be encoded*/ 
struct symtag ( 

int length; 
int code; 

# include Ilrealdata" /* parsing tables 
# include "encodedata" /* enýoding tables 
int stack(stelmts]; 
int word[idrsizel; 
int upper; 
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int bufpntr; /*points to the current input in the buffer*/ 
char inpbuf[blocksizel; 
int idrposit[] =[ 

2,4,8,16,32,64,128,256); 
int symtab(symlen](idrsize]; 
int sympntr; /* symbol table pointer 
int idradrs; 
int oldidr; 
int loc; /* (editab) pointer*/ 
char editab[31; /* store editing chars before encoding 
int stnglnth =6; 
int stngcode =44; 
int cmntlnth =13; 
int cmntcode =1646; 
int n1count; 
int counter; /*no. of bits stored in a current word*/ 
int buff(bufsize]; /* output buffer*/ 
int index; /* points to a current word*/ 

nextcho /*get one char at a time*/ 
I 

int n; 
if(bufpntr >= blocksize) 

n=read(fdl, inpbuf, blocksize); 
if(n I= blocksize) inpbuf[n] = 1\01; 
if(n<=O)error(4); 
else bufpntr=O; 

I 
ch=inpbuf[bufpntr++]; 
if Uch >= IM &&eh <= 8Z8) 
else if (. ch >= 101 && ch <= 
else class = others; 
return ; 

chckidro 

register i, J, r; 
upper 0; 
while class == d 

ei (ch >= 8al Uch <= Izl»classcl; 
191 ) class = d; 

11 class == 1 11 ch == '%-') 

word[upper++] = ch; 
nextcho; 

word[upperl = 1\01; 
for (i=0; keyword[il I= 0; 1++) 
I 

for (J=O; (r= keyword[il[jl)==word[j] &&rl= 1\01; j++); 
if ( r== word[j]) 

token 
return; 

token = idr; 
lookupo; 
return; 

I 
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crname(s) /*creats an encoded file name*/ 
char *s; 

name = filename; 
while (*name++ = *s++); 
name 2; 
*name le'; 

codeproc(len, bitseq) /*generate codes 
int len, bitseq; 
I 

int temp, J, wa; 
register i; 
temp = counter + len; 
if(temp <= 32) 
1 

counter = temp; 
buff(index] = buff[indexl<< len 1 bitseq; 

bitseq <<= (32 - len); 
for(i=counter +1 ; i<= 32; 1++) 
I 

wa = bitseq & 020000000000; 
bitseq <<= 1; 
len-; 
buff[indexlzbuff[indexl<<l 1 (wa? one : zero); 

if(index == bufsize -1) /*buffer is full*/ 

J=write(fdw, buff, 8); 
index = counter = 0; 

else 
index++; 
counter = 0; 

for(i=O; i<len; i++) 
I 

wa = bitseq & 020000000000; 
bitseq <<= 1; 
counter++; 
buff[indexl=buff[indexl<<l 1 (wa? one : zero); 

I 
I 

} 

else 
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oldproco /*encode the position in symbol table of an old idr*/ 

register i; 
for(i=O; i<8; i++) if(sympntr < ldrposit[i]) break; 
i += 1; 
codeproc(i, idradrs); 

lastwriteo 

int i, j; 
for(i=counter + 1; i<= 32; 1++) buff[index] <<= 1; 
j= write(fdw, buff, 8); 

storecharo /* encode each char in a new idr or const*/ 

register ij; 
for(i=O; i< upper; i++) 

j= word[i] 
codeproc(chtab[jl. length, chtab[j]. code); 

checko /*encode idrs or constants*/ 

int i; 
if(token==idr 11 token==digit 1; token==unreal) 

codeproc(l, oldidr); 
if(oldidr==1) oldproc(); /*an old idr or const*/ 
else 

i=upper; /*new idr or const*/ 
while(l) 

if(i>=7) 

codeproc(3.7); 
i-7; 

else 
codeproc(3, i); 
break; 

storecharo; 

else if(token == string) rdstringo; 
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lookupo /*search the sym. table for idr or const; store it if new*/ 

int r; 
register ij; 
for(i=O; i<sympntr; i++) 
I 

for(J=O; (r=symtab[i][JI) == word[j] && r 1=1\01; j++); 
if(r==word[j]) /*an old idr*/ 
I 

oldidr 1; 
idradrs i; /*position in sym. table*/ 
return; 

if(sympntr <= symlen) /*new idr*/ 
I 

for(J=O; J<=upper; J++) symtab[i][j] = word[j]; 
oldidr = 0; 
idradrs =0; 
sympntr++; 
return; 

I 

else 
printf("symbol table is full"); 
exito; 

rdigito 
I 

moreo 
I 

} 

I 

while ( class == d) 
I 

word[upper++] = ch; 
nextcho; 

return; 

if( class==d) rdigito; 
else if (ch ch 
I 

word[upper++] = ch; 
nextcho; 
rdigito ; 

I 
else error(l); 
return; 

4 



243 

chckinto 

upper 0; 
rdigito ; 
if(ch==I. I) 

nextcho; 
if (class I= d) 

if(ch ==I. I) 

token = digit; 
word(upperl =1\01; 
lookupo; 
dotsflg =1; 

else error(l); 
return; 

word(upper++] 
rdigito; 
if( ch I= IEI) 

token = unreal; 
word[upperl = 1\01; 
lookupo; 
return; 

word[upperl = IEI; 
nextcho; 
more () ; 
token = unreal; 
word[upperl = 1\01; 
lookupo; 
return; 

else if(ch == IEI) 

word[upper++] = IEI; 
nexteho; 
more () ; 
token = unreal; 
word[upperl = 1\01; 
lookupo; 
return; 

I 
else 

token = digit; 
word(upperl = I\Ot; 
lookupo; 
return; 

} 
} 
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rdcomnto Pencode co=ent3*/ 

int temp; 
while(ch It 101) 
I 

codeproc(chtab[chl. length, chtab[chl. code); 
nextcho, - 

nextcho; 
if(chzzl)') codeproc(cmntlnth, cmntcode); 
el3e ( 

temp = 101: 
codeproc(chtab[templ. length, chtab[templ. code); 
rdcomnto: 

I 
return; 

I 

editproco Pencode editing chars 

char wa; 
register i; 
if (loc) 
I 

codeproc(l, l); 
codeproc(2, loc); 
for(i --0; i< loc; i++) 

wa -- editab[i]; 
if(wazz' 1) codeproc(1,0); 
el3e if(wa zz I\tl) codeproc(2.2); 
el3e codeproc(2,3); 

loc 2 0; 

rd3tringo Pencode 3tring3f/ 

while (ch Ix 1\11) 
codeproc(chtsbEchl. length, chtabEchl. code); 
nextcho; 

nextcho; 
if( chsx 1\11) 

codeproc(chtsbEch3. length, chtabEchl. code); 
codeproc(chtabEchl. length, chtab[chl. code); 
nextcho; 
rdstringo; 

el3e codeproc(3tnglnth, 3tngcode); 
return; 



chokothro 
I 

int c; 
register i; 
switch(ch) 
case 10: 

nextcho; 
if(ch == 1>1) token = noteq; 
else if (ch == 1=1) token = leseq; 
else token = les; 
if (ch == 1>1 11 ch == 1=1) nextcho; 
break; 

case 1>1: 
nextcho; 
if (ch == 1=1 )[ 

token = grteq; 
nextcho; 

else token = grt; 
break; 

case 1: 1: 
nextcho; 
if(ch == 1=1) ( 

token = assign; 
nextcho; 

else token = colon; 
break; 

case I. I: 
if(dotsflg== 1) 

token = dots; 
nextcho; 
dotsflg = 0; 
break; 

nextcho; 
if (ch == 1.1) 1 

token = dots; 
nextcho; 

else token = dot; 
break; 

case 1\11: 
nextaho; 
token = string; 
break; 

case 1\01: 
token = endfile; 
break; 

default: 
for(i =0; (c=chars[il) I= 1\01 && c I= ch ; i++); 
if (c == ch) I 

token = tokens[i]; 
nextcho; 

else error(2); 
break; 

return; 
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I 
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error(i) 
int i; 
I 

errorflag = 0; 
endflag = 0; 
switch(i) 
case 1: 

printf("lex. error real number\n"); 
break; 

case 2: 
printf(Illex. error unknown input\n"); 
break; 

case 3: 
printf(I'syntax error \n"); 
break; 

case 4: 
printf("reached end of file\n"); 
break; 

default: 
printf("unknown error\n"); 
break; 

printf(I'line number %d\n", nlcount); 
return; 

I 
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scano 
I 

while(ch==' ch=zl\nl 11 ch==111 11 ch=zl\tl 11 chz='(') 

switch (ch) 
case II: 
case I\tI : 
case I\nI : 

editab[loc++] = ch; 
if(ch==I\nl) nlcount++; 
if(loc >= 3) editproc(); 
nextcho; 
break; 

case : 
nexteho; 
if(ch I= 

token lpar; 
editproco; 
codeproc(1,0); 
return; 

else[ 
editproc(); 
codeproc(4,9); 
nextcho; 
rdcomnto; 

nextcho; 
break; 

default : 
editproc(); 
codeproc(4,8); 
while(ch I= 1P) 

nextcho; 
codeproc(chtab[chl. length, chtab[chl. code); 

nextcho; 
break; 

editproco; 
codeproc(l. 0); 
if ( class==l) chckidro; 
else if (class == d) chekinto; 
else chckothro; 
return; 

} 
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actiono /*find the action and a code to be generated with its length*/ 

register tbno, rwno, tok; 
int val; 
tbno = stab[3tack[pointerl][0]; /*table number*/ 
rwno = stab[stack[pointerl][11; /*row number*/ 
tok = toktab[token][tbnol; /*column number*/ 
3Witch(tbno) I 
case 0: 

val = tabO[rwnol; 
lenth=O; 
bits=O; 
break; 

case 1: 
val, = tabl[rwno][tok]; 
lenth = entabl[rwno][tokl. length; 
bits = entabl[rwno][tokl. code; 
break; 

case 2: , 
val = tab2[rwno][tok]; 
lenth = entab2[rwno][tokl. length; 
bits = entab2[rwno][tokl. code; 
break; 

case 3: 
val = tab3[rwno)(tok]; 
lenth = entab3[rwno](tokl. length; 
bits = entab3Crwno][tokl. code; 
break; 

case 4: 
val = tab4[rwno][tok]; 
lenth = entab4[rwno](tokl. length; 
bits = entab4[rwno][tokl. code; 
break; 

case 5: 
val = tab5[rwno][tok]; 
lenth = entab5[rwno][tokl. length; 
bits = entab5[rwno][tokl. code; 
break; 

case 6: 
val = tab6[rwno][tok]; 
lenth = entab6[rwno][tokl. length; 
bits = entab6[rwno][tokl. code; 
break; 

case 7: 
val = tab7[rwno][tok]; 
lenth = entab7Crwno](tokl. length; 
bits = entab7[rwno][tokl. code; 
break; 

case 8: 
val = tab8[rwno][tok]; 
lenth = entab8[rwno](tokl. length; 
bits = entab8[rwno][tokl. code; 
break; 

case 9: 
val = tab9[rwno][tok]; 
lenth entab9[rwno][tokl. length; 
bits entab9Crwno][tokl. code; 
break; 
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case 10: 
val = tablO[rwno][tok]; 
lenth = entablO[rwno][tokl. length; 
bits = entablO[rwno][tok]. code; 
break; 

case 11: 
val = tabll[rwno][tok]; 
lenth = entabll[rwno][tokl. length; 
bits = entabll[rwno][tokl. code; 
break; 

default : 
printf(Ilunknown table number %d\n", tbno); 
exito; 

return(val); 

parseo /*parsing routine*/ 

register temp, tpntr, nonterm; 
int nont; 
while(( temp = actiono) <0 && temp I= -500) /*reduce action*/ 

temp = temp 
if (lenth != 0) codeproc(lenth, bits); /*generate a code*/ 
pointer -= gramtab[temp][01; /* popped off the stack*/ 
tpntr stack(pointer]; 
nont gramtab[temp](11; 
nonterm = nontab(nont]; 
stack[++pointerl = gototab[gotopntr[tpntrll[nonterml; 

if ( temp >= 0 && temp < 800 ) /*shift action*/ 

stack[++pointerl = temp; 
if (lenth I= 0) codeproc(lenth, bits); 
checko; 

else if ( temp -500) 1 
endflag 0; /*accept the input*/ 
lastwriteo; /*store the buffer*/ 

I 
else error(3); 
return; 

I 
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main(argc, argv) 
int argc; 
char **argv; 

int i, num; 
for (i=l; i< argc; i++) 
I 

fdl = open(argv[il, 0); 
if(fdl < 0) printf("%s not found\n", argv[il); 
else 

crname(argv[iD; 
fdw = creat(filename, 0644); 
pointer = 0; 
stack[pointerl = 0; 
counter = index = sympntr = n1count =0; 
bufpntr = 0; 
num = read(fdl, inpbuf, blocksize); 
if(num I= blocksize) inpbuf[num] = 1\01; 
nextcho; 
scan() ; 
endflag = errorflag = 1; 
while( endflag) 
f 

parseo ; 
if(errorflag==O 11 tokenz=endfile) endflag=O; 
else scano; 

if(errorflag == 0) { 
printf("an error is occured On %s\n", argv[i]); 
close(fdw); 
unlink(filename); 

else 
printf("%s is encoded\n", argv[il); 
close(fdw); 

close(fdl); 

printf(Ilend of execution\n"); 
exito; 
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# include <stdio. h> 
# define stelmts 300 
# define symlen 256 
# define idrsize 25 
# define bufsize 128 
# define blocksize 512 
# define reduce -100 
# define reducel 100 
# define zero 0 
# define one 1 
# define binsize 683 
# include "realdata" /*parsing tables*/ 
# include "decodedatall /*decode tables*/ 
int buff(bufsizel; /*input buffer 
int idrposit[I =( 

2,4,8,16.32,64,128,256); 
char symtab[symlen][idrsizel; 
int sympntr; /* symbol table pointer*/ 
int nofchrs; 
int index; /*points to current input word*/ 
int counter; /* no. of bits read from a word*/ 
char filename[141; 
char *name; 
FILE *fd2; 
int fdl; 
int pointer; /* stack pointer*/ 
int endflag, comntflag; 
int errorflag; 
char *keyword[] 

"array", "packed", "const'l, tidoll, "file", "set", 
"for'l, "to", "downtoll, "thenll, "label", "function", 
"goto", Vfoffftllprogramll, "else", "record", 
"type", "until", "vartl, "while", Itbegin'l, "end", 

, "repeat", "with'I. Ilcasell, 'lifflt 
Ivinll, "nilll Itmod", Itnot" . "procedure" "or", 
Itand" I'd ivII , "forward" "ex tern". " 11 911o" #"<=" 911>=11 9": =11 tit, 4, " 9 it (it 'If; ti, 11.11 911: 1t off[ 11,11 Pf tltýlf 911+11 fit-" 0"*" 1 
"/"tvv="9"<"9II>"9"\OII, O); 

int token; 
int idr =61; 
int digit =62; 
int unreal =37; 
int endfile =59; 
int string =60; 
int stack[stelmts]; 
int n1count; 
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gtbito /*get one bit from the buffer*/ 

int J; 
register wa; 
if(counter >32) 

if(index== bufsize - 1) /*read a block 

j= read(fdl, buff, blocksize); 
if(j< 0) error(2); 
else index =0; 

else index++; 
counter 

wa = buff[index] & 020000000000; 
buff[index] <<= 1; 
counter++; 
return(wa ? one : zero); 

I 

binserch(pntr) /*search a binary tree*/ 
int pntr; 

register i, J, r; 
i= gtbito; 
while ((r bintree(pntrj[il) <0) 
I 

jr* (-J); 
pntr += J; 
i= gtbito; 

if(r I= reducel) token r; 
else token = 0; 
return; 

error(i) 
int i; 
I 

errorflag = 0; 
switch(i) 
case 1: 

printf("an error number in decod table\n"); 
break; 

case 2: 
printf("an error in the number of bytes read\n"); 
break; 

case 3: 
printf(I'syntax error Wt); 
break; 

default: 
printf("unknown error\n"); 
break; 

I 
printf("line number %d\n". nlcount); 
return; 

I 
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oldproco 
I 

register i; 
for(i=O* i<8; i++) if(sympntr < idrposit[ i ])break; 
return(! + 1); 

countchro /*find no. of chars in an idr or const 
I 

register i, bits, num; 
num = 0; 
for( i=l; i<= 3; 1++) 

bits gtbito; 
num num<< 11 bits; 

nofchrs += num; 
if(num== 7) countchro; 

lookupo /* print idrs or constants 

int bit, count, postion, 1, r; 
register i, j, k; 
if((bit = gtbito) ==1) /*already in symbol table 
I 

postion = 0; 
count = oldproco; /*length of the location 
for(i=1; i<= count; i++) 

bit = gtbito; 
postion = postion<< 11 bit; 

fprintf(fd2, "%s", symtab(postion]); 

else 
nofchrs = 0; /*new idr or const*/ 
countchro; 
for(i=O; i<nofchrs; i++) /* store in symbol table 
I 

J= gtbito; 
k=0; 
while ((rzchartab[k][j]) <0) 

1=r* (-J); 
k += 1; 
j= gtbito; 

symtab[sympntr][i] = r; 

symtab[sympntr][i] t\01; 
fprintf(fd2, "%s", symtab[sympntr]); 
sympntr++; 

I 
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rdcharso /* print chars of strings or comments 
I 

int k, 1, ch; 
register ij; 
while(l) 

i=O; 
J=gtbito; 
while((k=chartab[ij[j))<O) 

1=k*(-l); 
i+= 1 *, 
J= gtbito; 

ch= chartab[i][j]; 
if(chz=128)( 

fprintf (fd2, " 
break; 

else if(ch==129)f 
f printf (fd2, "*) 11) 
break; 

else if(ch==')' && comntflag ==O)( 
f printf M2,111 11) 
break; 

else fprintf(fd2, "%c", ch); 
} 
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editproc() /* output editing chars 

register i, bit; 
while(gtbito) 
II 

nofchrs=O; 
for(i=1; i<=2; i++) /*find no. of editing chars 

bit = gtbito; 
nofchrs = nofchrs<< 11 bit; 

if(nofchrs==O) /*start a comment*/ 

if(gtbito) I 
fprintf(fd2, "(*"); 
comntflag = 1; 

else I 
fprintf(fd2, "i"); 
comntflag =0; 

rdcharso; 

else[ 
for(i=1; i<= nofchrs; i++) 

if((bit=gtbito)==O) fprintf(fd2, " 11); 
else if((bit=gtbito)==O) fprintf(fd2, "\t"); 
else I 

fpr int f( fd2, n") 
nlcount++; 

I 
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chktokno 

if(token == idr 11 token digit 11 token == unreal) 
lookup(); 

else if(token== string) 
fprintf M2, " 
rdcharso; 

I 
else fprintf(fd2,11%s", keyword[tokenl); /* keyword or symbol*/ 
return; 

} 

decodeo /*decodr routine 
I 

register i, J; 
i= stack[pointer]; 
j= dcodtab[i]; 
if(j == reduce) return; 
else if (j >= 1000 && j <= 1062) token =j- 1000; 
else if Q >= 0 && j <= binsize) 

binserch(j); /* search the apprpriate tree 
else error(l); 
return; 

I 

ername(s) 
char *s; 

name 
while 
name 
*name 

creat a file name 

filename; 
(*name++ = *s++); 

2; 
Ip'; 

I 



257 

actiono /* find the action 

register tbno, rwno, tok; 
int val; 
tbno = stab(stack[pointer]][O]; /*table no 
rwno = stab(stack[pointerl](1]; /*row number*/ 
tok = toktab(token][tbno]; /*column no*/ 
switch(tbno) 
case 0: 

val tabOErwnol; 
break; 

case 1: 
val = tabl(rwno][tok]; 
break; 

case 2: 
val = tab2[rwno][tok]; 
break; 

case 3: 
val = tab3[rwno][tok]; 
break; 

case 4: 
val = tab4Crwno][tok]; 
break; 

case 5: 
val = tab5Crwno][tok]; 
break; 

case 6: 
val = tab6[rwno][tok]; 
break; 

case 7: 
val = tab7[rwno][tok]; 
break; 

case 8: 
val = tab8[rwno][tokj*, 
break; 

case 9: 
val = tab9[rwno][tok]; 
break; 

case 10: 
val = tablOErwno][tok]; 
break; 

case 11: 
val = tabll[rwno][tok]; 
break; 

default : 
printf(Ilunknown table number %d\n", tbno); 
exito; 

return(val); 
I 
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parseo /*parsing routine 
I 

register temp, tpntr, nonterm; 
int nont; 
while(( temp = actiono) <0 && temp I= -500) /*reduce action*/ 

temp = temp * (-l); 
pointer -= gramtab[temp][01; /*popped off the stack*/ 
tpntr stack[pointerl; 
nont gramtab[temp][11; 
nonterm = nontab[nont]; 
stack[++pointerl = gototab[gotopntr[tpntrll[nonterml; 
decodeo; 

if ( temp >= 0 && temp < 800 /*shift action*/ 

stack[++pointerl = temp; 
chktokno; 

else if ( temp -500) endflag = 0; /*accept*/ 
else error(3); 
return; 

I 
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main(arge, argv) 
int argc; 
char **argv; 

int i, 
for (i=l; i< argc; i++) 

fd1 = open(argv[il, 0); 
if (fdl < O)printf("%s not found\n", argv[il); 
else ( 

crname(argv[il); 
fd2 = fopen(filename, "w"); 
pointer = 0; 
stack[pointerl = 0; 
counter = 1; 
n1count = 0; 
index = sympntr = 0; 
j= read(fdl, buff, blocksize); 
editproco; 
decodeo; 
endflag = errorflag = 1; 
while( endflag) 
I 

parse() ; 
if(errorflag==O 11 token==endfile) endflag=O; 
else I 

editproco; 
decodeo; 

if(errorflag == 0) 

printf(Ilan error is occured on %s\n", argv[il); 
felose(fd2); 

else 
printf("%s is decoded\n", argv[il); 
fflush(fd2); 
fclose(fd2); 

close(fdl); 

printf(Ilend of execution\nlt); 
exito ; 

J 
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The following set of states is generated by YACC for the language 

used for the comparison. 

state 0 

$ accept:. prog $end 

var s 

9 error 

state 1 

$ accept: prog. $end 

$ end a 

a error 

state 2 

prog: series. 

series: s 
. 
eries.; stunt freq. length 

s5 33 1 bit 
161 bit 

state 

series: stmnt. 

. 

state 

st=t: var. -exp 

S6 

error 

state 

series: series;. stmt 
var s4 

-error 
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state 

stmat: var-. exp 

var s 10 
const s 

s 12 
error 

state 

series: series; stmt. 

. r2 

state 

stmnt: var=exp. 

exp: exp. +factor 

exp: exp. -factor 

exp: exp. *factor 

exp: exp. /factor 

+s 13 23 

S14 5 

S 15 26 

S16 11 

r4 39 

state 

exp: factor. 

,r9 

state 10 

factorwar. 

.r 10 

state 11 

factor: conste 

.r 11 

2 bits 

3 

2 

3 

2 

freq. length 

22 1 bit 

92 bits 

82" 
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state 12 

factor: (. exp) 

var s 10 17 1 bit 

const s 11 42 bits 

s 12 02 

* error 

state 13 

exp: exp+. factor 

var s 10 10 2 bits 

const s 11 11 1 bit 

-s 12 32 bits 

error 

state 14 

exp: exp-! tfactor 
var s 10 15 1 bit 

const s 11 62 bits 

s 12 02 

0 error 

state 15 

exp: exp*. factor 

var s 10 26 1 bit 

const s 11 62 bits 

S 12 42 bits 

error 

state 16 

exp: exp/. factor 

var s 10 61 bit 

const s 11 02 bits 

s 12 62 bits 
error 
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state 17 

exp: exp. +factor 

exp: exp. -factor 

exp: exp. *factor 

exp: exp. /factor 

factor: (exp. ) 

+ S-- 13 
s 14 
s 15 
s 16 
s 22 

error 

state 18 

1 

16 

10 

1 
21 

exp: exp+factor. 

.r5 

state 19 

exp : exp-f actor. 

.r6 

state 20 

exp: exp*factor. 

.r7 

state 21 

exp: exp/factor. 

.r8 

state 22 

factor: (exp). 

4 bits 
2 bits 
3 bits 
4 bits 
1 bit 

. 12 



APPENDIx E 

LISTS OF SAMPLE PROGRAMS USED FOR THE COMPARISON 

IN SECTION*(7,9) 



264 

i=i+1; 
w1+1'2; 
rw5+4*wh+wh+9 w) 
xw X-+O-W) g; 
dde; 
d (d b e) e; 
r (r arb* r) /c; 
n=r- d* x -e *x 



9+k2; 

b *(i + 
x +(I-w) *h 

265 
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0; 
0: 
m a; 
1/ (M-1); 
2 e/ ( c*z); 
2; 
(i- 1) *h; 
5+ 2 
a+ 5b 
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(03) /(b -2); 
g +1; 
(g*i) +J; 
h-c 



e4 +1; 
(e o) /(p q +1); 
e+d; 
a+r +y *(9 /c) 

268 
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ka+b+1; 
s= (a*4) / (z - 9); 
qq+1; 
nn *(I + 
x w* i+ (1 - w) * h; 
ce+ah; 
ccb; 
rrb; 
r (r a* r) / (b-a * c); 
kn1 

0 


