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Abstract 

The formation of stearate on precipitated calcium carbonate (PCC) and 

magnesium hydroxide has been examined. The object of coating the filler surface 

is to achieve improved mechanical properties in the resulting composite material. 

The coating of a filler with stearate allows the modification of the energies of 

interaction so as to improve dispersion and alter the mechanical properties of the 

interphase region. In this work the use of Fourier transform infra-red 

spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen 

adsorption isotherm analysis, thermal gravimetric analysis (TGA) and carbon

hydrogen-nitrogen combustion analysis (CHN) have been used to characterise the 

stearate on the surface of the calcium carbonate filler. New methods for the 

estimation of fractional coverage and coating thickness calculation have been 

developed. Using dynamic mechanical thermal analysis (DMT A) the effects of 

the coating on the interphase region of the composite have been demonstrated . 
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Chapter 1 Introduction 

1.1 General Background 

The plastics industry provides a vast and lucrative market for industrial fillers. 

This has grown an average of 9% per year over the past decade into a $23 billion 

global business, with over 37% of all thermoplastics, thermosets and elastomers 

being compounded and reinforced with fillers and fibers. The industry is both 

demanding and competitive. To remain competitive any mineral supplier must be 

prepared to make sure their product meets stringent specifications. The need to 

invest in research and development in order to keep in line with market 

requirements is becoming evident. 

Fillers are added at the compounding stage as low cost inert fillers, extenders, or 

reinforcement or functional fillers. The addition of inorganic material in the form 

of minerals offers both benefits and disadvantages to the polymer system. The 

disadvantages that result from the incompatibility of the filler and the polymer 

phases can often be reduced or eliminated by the use of surface coatings. To 

optimise the polymer composite properties it is necessary to control the interaction 

of the surface and the polymer. By producing fillers of a known composition, 

particle size and distribution, morphology and coating we are at a point at which 

we are able to begin to quantify the effects of the above factors on the mechanical 

properties of the polymer composite. When this correlation of surface 

characteristics with composite properties has been achieved, the need for the 

'blind' engineering of composites will be eliminated. Commercially this will 

make the filler industry more dynamic. They can become proactive rather than 

reactive in respondi~g to the needs ofthe plastics industry. 

Research has mainly been directed at improving the composite with a coated filler 

rather than a co-ordinated approach of a complete fundamental surface analysis, 

industrial process optimisation and mechanical analysis. Improvements in 
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composite properties are most easily achieved by altering the processing 

conditions. The alteration of processing conditions does not though allow a 

detailed determination of the effects of surface modification. In this work, we 

concentrate on the surface and interfacial chemistry of the system. 

1.2 Objectives 

The objective of this study is to characterise the mineral surface, prior to and after 

coating. From this the coating structures can then correlated with the mechanical 

properties of the resulting polymer composites. 

The research can be divided into three sections 

• The characterisation of the level and extent of coating. 

• The elucidation of the effect of filler coating on the interphase region of 

the polymer composite. 

• The correlation of surface characteristics with the mechanical properties. 

The fillers used are calcium carbonate and magnesium hydroxide. These have 

been coated with either stearic acid or a stearic acid salt. Incorporating the 

calcium carbonate into an unplasticised grade poly(vinylchloride) (uPVC) has 

produced 'ideal' composite materials. 
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Chapter 2 Literature Review 

2.1 Polymer Composites 

A composite is defined as a mixture of two different component phases which are 

separated by an interface or interphase region. The interaction across the interface 

plays an important role in controlling the mechanical characteristics of the 

composite. Research in the field of composites 1,2 and filled polymers 3,4 is well 

documented. 

Page 21 



2.2 Industrial Application 

Pure polymers are not generally the optimum materials for the best performance 

of the final product; additives are frequently employed to enhance a particular 

property. The blend of polymer and suitable additives, of which fillers are a 

particular group, when compounded together, are generally known as plastics. 

The selective use of fillers allows the unfilled material to be enhanced. As a result 

fillers are employed to obtain the following effects: 

• Added stiffness, rigidity and hardness 

• Controlled thermal expansion and shrinkage 

• Improved heat resistance 

• Increased strength and reduce creep 

• Modified rheological properties 

• Improved surface quality 

• Modified flow and processing characteristics 

• Reduced cost 

The selection of polymer and filler for the final plastic is dictated by the cost of 

the manufactured product. A summary of the main industrial plastics, fillers, and 

coatings can be found in the following sections. 

2.2.1 Industrial Plastics 

The plastics industry continues to introduce new and modified polymers into the 

plastics market. A summary of the most common plastics can be found in Table 

1. Values for the glass transition point (Tg) and the melting point (Tm) given in 

the table are approximate and may vary with the type and quantity of additive 

used. It can be used though as a comparison of industrial plastics. 
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Polymer Tg 
(0C) 

Tm 
(0C) 

Properties Applications 

Poly( ethylene) -70 120 Insulation, chemical Films & sheets, wire 
PE resistance, poor cable and pipes 

creep, opaque. injection and blow 
moulding. 

Poly(propylene) 0 170 Chemical resistance, Films, spun fibres, 
PP poor low temp mouldings and 

properties, opaque. extrusions. 
Poly(styrene) \00 Am Amorphous, Rigid packaging, 
PS transparent, poor foam products. 

chemical resistance, 
brittle. 

Poly(acylonitrile \00 Am Opaque, better Rigid packaging, 
butadiene styrene) chemical resistance plated electro parts, 
ABS than PS. low cost engineering 

polymer. 
Poly(vinylchloride) 80 Am Rigid, tough, good Used with 
PVC flame retardant plasticisers to 

properties, good produce sheets, 
chemical resistance. pipes, bottles, 

cables, coated 
fabrics. 

Poly(methyl 1\0 Am Transparent, good High strength 
methacrylate) weathering transport glazing, 
PMMA properties, good signs. 

scratch resistance, 
poor chemical 
resistance. 

Poly( carbonate) 150 Am Poor weathering and Electrical goods. 
PC chemical resistance. 
Poly(amides) 270 Hard, opaque, good Engineering plastics, 
(Nylon 6,6) solvent resistance, fibres. 

good abrasion, low 
friction properties. 

Poly( ethylene 80 260 Amorphous or Bottles, containers, 
terepthalate) crystaline, good tapes, metalized 
PET electrical properties. films. 
Poly(formaldehyde) 175 Low friction, high General engineering 
PF creep resistance, applications. 

high crystallinity. 
Poly(tetrafluoro 380 Good chemical Non-stick 
ethylene) resistance, poor applications, 
PTFE creep resistance, gaskets, chemical 

opaque,good resistant 
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electrical properties. applications, 
lubrication, medical 
applications. 

Poly(sulfone) 200 285 High service temp, High temp light 
low flammability. holders, electrical 

connectors. 
Poly( ether ether 145 345 High service temp, High temp 
ketone) good chemical applications, cable 
PEEK resistance, low insulation, valves 

flammability. and engine 
components. 

Poly(urethane) - - Main use in cross Reactive processing, 
PU linked form. cellular foams. 
Epoxy - - Cross linked. High strength 

applications, GRP, 
CRP. 

.. 
(Values ofTg and Tm are approximate, and vary a great deal when additives are 

used, Am = Amorphous) 

Table I Summary of commercial polymers used and their applications 

2.2.2 Industrial Fillers 

The plastics industry provides a large lucrative market for industrial fillers. By 

volume, the most widely used fillers in plastics are calcium carbonate (50 %), talc 

(20%) and mica (10%). Precipitated calcium carbonate (PCC), in particular, is 

rapidly increasing its market share with an annual growth approaching 15 %. 

Vast quantities of minerals are used as functional fillers and extenders in plastics, 

rubbers, mastics etc. Each mineral is capable of modifying different physical and 

chemical properties. Variations within a mineral category can also result in 

variations in properties. Historically, the main use of fillers has been to reduce the 

cost of the polymer composite. However, the use of fillers to provide improved 

mechanical properties is now the most common reason. Current research is aimed 

at further understanding and improving the mechanical properties. Research in 

the areas of fillers to provide improved flame retardency and chemical resistance 

is also in progress. A summary ofthe main industrial minerals used in plastics 
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can be seen in Table 2. 

Mineral Major Resins Functions 

Aluminium ABS, TPES*, LDPE, Extender, flame retardant, smoke 
trihydrate (A TH) PVC, epoxy, suppressant. 

phenolics, PV 
Barytes PV Filler & white pigment, increases SO, 

friction and chemical resistance. 
Calcium carbonate ABS, fluoroplastics, Most widely used filler, improves 

polyolefins, PS, flexural modulus & surface finish, 
PVC*, epoxy, controls viscosity. Natural and 
phenolic, PV synthetic (PCC) forms available. 

Felspar/nepheline Acrylic, cellulosics, Speciality filler, easily wetted and 
syenite PP, PS, PVC*, epoxy dispersed, allows transparency, 

weather and chemical resistance. 
Kaolin Nylon, polyolefins, Hydrous or calcined grades, largest use 

PV, PVC in wire & cable, SMC,BMC and vinyl 
flooring, rheological modifier, cost 
reduction, improves finish. 

Mica ABS, fluoroplastics, Flake reinforcement, improves 
nylon, PC, PP*, dielectric, thermal and mechanical 
polyolefins, properties, low cost. 
thermosets 

Silica ABS, polyolefins, PS, Filler, extender, reinforcement, 
PVC, PV, epoxy* thickens liquid systems, thixotropic 

agent, flatting agent, avoids plateout in 
PVC. 

Talc Nylon, polyolefins, Filler, extender, reinforcement, higher 
PVC, phenolic, PV, stiffness, improves tensile and creep 
PS*,PP* resistance. 

Wollastonite Nylon, PC, PS, Improves strength, lowers moisture 
polyolefins, absorption, raises heat and dimensional 
thermosets stability, improves electrical 

properties, reinforcement. 
* mdlcates mam consummg resm 

Table 2 A summary ofthe main industrial minerals used in plastics and their 

functions 

Page 25 



2.2.2.1 Calcium Carbonate 

It is used in both natural and synthetic forms in the rubber, plastic and paper 

industries. In these applications, surface properties play an important role in 

determining its effectiveness as a bulk filler or as functional component in the 

product. 

Calcium carbonate filler type Example uses 

Dry ground limestone rubbers, adhesives, putties and 
textural paints. 

Wet ground limestone caulk, sealants and latex based 
paints. 

Coated limestone all polymers. 
Coated precipitated elastomers, PVC, PU and 

thermosets. 

Table 3 Industrial uses of calcium carbonate fillers 

Calcium carbonate occurs naturally as limestone and is a consolidated 

sedimentary rock. The most well known types oflimestone are chalk and marble. 

Commercially viable deposits occur throughout the world. The deposits differ 

considerably not only in purity, but in size and formation route. The deposits that 

form the limestone are usually organic in origin. Chalk formations are soft 

textured limestones, which were laid down in the Cretaceous period (70-130 

million years ago). Marble is a metamorphic rock, formed by the recrystallisation 

of the limestone under extreme temperatures and pressures. They often contain 

large quantities of magnesium based impurities which have been introduced from 

the sea water in which the deposition occurred. 

Calcium carbonate is also produced synthetically by a number of methods. The 

most common technique involves blowing carbon dioxide through a slurry of 

calcium hydroxide (milk oflime). The calcium carbonate can exist in three 

crystal forms, aragonite, calcite and vaterite, although calcite is the only form of 

real significance. The physical properties are summarised in greater detail in 
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section 2.6.4. 

Research in the field of calcium carbonate based fillers is vast. The high surface 

energy and basic nature of calcium carbonate makes its reaction with organic 

acids and the associated reduction of surface energy especially interesting. The 

technique has been used for many years 5. Investigations include not only the 

coating by simple organic molecules but also the coating of the filler by anionic 

and cationic polymers 6. 

Conventional coupling agents do not perform well with PCC, although coupling 

may be brought about by the reaction with unsaturated polymers 7. Sodium 

polyacrylate was observed to both adsorb on and promote dissolution of polished 

limestone surfaces in alkaline CaS04, and that cationic starch adsorbed at low 

concentrations caused mineral dissolution at higher concentrations. It was also 

shown 8 that the surface morphology of the mineral plays a key role in the 

adsorption of water. 

Research has shown 9 that precipitated calcium carbonate powders can be coated 

by suspension and dry coating methods. The effect of coating with 

monofunctional and difunctional acids has been investigated. It has been shown 

that varying the acid concentration and type has an effect on XPS and DRIFT 

spectra. It has also been shown 10 that varying the acid chain length or 

functionality also effects the coating level. 

2.2.2.2 Magnesium Hydroxide 

Magnesium hydroxide is a white crystalline filler. Magnesium hydroxide 

decomposes endothermically with the evolution of inert gases at the temperatures 

at which polymers pyrolyse. Alumina trihydrate (A TH) is the main filler used 

where flame retardant properties are required. The onset of decomposition of 

A TH occurs at around 200 ?C. This is unfortunately below the minimum process 
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temperatures of many thermoplastics. In comparison magnesium hydroxide is 

stable at these processing temperatures and starts to decompose at around 300°C. 

Its main applications utilise its flame retardant properties e.g. EV A copolymers 

for electrical wiring. Significant flame retardant properties are only achieved at 

relatively high filler loading, so that the improvement of the filler-polymer 

interaction is of significant importance. 

Three forms of magnesium hydroxide are available; natural, synthetic large 

crystals and synthetic sea water. Natural deposits of magnesium hydroxide exist 

although the high level of impurity often makes them unusable as a filler. The 

large synthetic crystals are produced by two main routes, hydration of magnesium 

'd 11 b h ... f . I b h dd" f b 12,13 OXI e , or y t e precIpItatIon 0 a magnesIUm sa t y tea ItIOn 0 a ase . 

If these process are controlled a pure morphologically desirable product may be 

obtained. The most common form of production is known as the 'sea water' type. 

Magnesium hydroxide is precipitated by the reaction of magnesium salts in sea 

water on the addition of lime. Magnesium hydroxide is an intermediate in the 

production of magnesium oxide refractories, so that this process is in principle 

fairly cheap. The quality of the filler produced (size, porosity, morphology, and 

impurities) can vary greatly and as a result is far from ideal. The use of 'sea 

water' based magnesium hydroxide is widespread, and the improvements that may 

be obtained by surface modification are of particular interest. 

A great deal of research has been done into the use of magnesium hydroxide as a 

filler. Because it is industry orientated, mechanical tests are usually employed so 

that the system can be optimised 14. Coating of the filler is widely used and there 

. .. hi' ~14 are many papers InvestIgatIng t e resu tant propertIes . 
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2.2.3 Industrial Filler Coatings 

The need for filler surface treatment comes about as a direct result of the 

requirement of the plastic industry for high performance fillers for the modem 

market. 

To optimise the composite, modification of the polymer-filler interaction is 

required. This can be done in three ways: 

• Modification of the polymer 

• Incorporation of an additional 'third party' additive 

• Modification of the filler surface 

Modification of the polymer may be performed by the incorporation of functional 

groups 2. The incorporation of additional additives during compounding may 

result in the migration of the additives to the filler 15, or alternatively the 

incorporation of fatty acid soaps may be used as a lubricant to somewhat rectify 

changes in viscosity and melt properties imposed by the use of fillers. 

Filler modification provides the most controlled and varied approach to the 

modification of the polymer-filler interaction. The action of the coating on the 

polymer-filler interaction can be summarised in two areas; coupling and wetting, 

although the nature of coupling agents often results in reduced wettability. 

Wetting agents serve to wet out the filler; to allow a stable, homogeneous 

dispersion to be made in the polymer matrix and to reduce the viscosity of the 

plastic melt. This allows higher filler loadings to be incorporated into the polymer 

matrix, producing cost economies and improved physical properties of the final 

product. 

Coupling agents act by modifying the interfacial region between the inorganic 

filler and the organic polymer to provide a more controlled bonding between the 
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two. At the same time coupling agents also reduce the wettability. 

The choice of using a coated filler is determined by the improvement in the 

mechanical property and the economic penalty incurred. As a result, when 

selecting a filler, one must carefully review its morphology and properties as well 

as its interactions with the polymer matrix. 

A summary of the main categories of coating agents may be found in Table 4. 

Not all types are used industrially on a bulk scale. 
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------- - - - -

Modification agent Mode of action Use 
Silane .u Possesses a -Si(OR)3 group Silica, silicates, clays, 
Coupling Agents which can be hydrolysed to wollastonite and alumina 

bond with the filler. At the trihydrate. 
same time an organo-functional Suitable for unsaturated 
group is available to bond to the polyesters, epoxies and 
polymer. thermoplastics. 

Titanate ., React with free protons at the Calcium carbonate, 
Coupling Agents inorganic interface, resulting in wollastonite. 

monomolecular layers of Suitable for thermo and 
organofunctionality, which in thermoset plastics. 
turn bond the two components. 

Zircoaluminate •• Comparable to silane coupling Silica, clay, calcium 
Coupling Agents agents, but are soluble in carbonate, alumina 

aqueous environments. trihydrate and titanium 
dioxide. 

Hydrophobic" These reagents wet the filler by All minerals, but agent 
Wetting Agents displacing the air / water used is specific to the 

normally surrounding the filler, acidiclbasic nature of the 
and encapsulating it with a filler. 
chemical compatible with the Mainly used in blow 
organic polymer. (BMC) and sheet (SMC) 

moulding compounds, 
filled thermoplastics. 

Fatty Acid Ester" Surface treatment of filler, with Can be applied as a pre-
Coupling / Wetting the fatty acid, These reagents treatment, or in-situ, it has 
Agents have been found to improve been successfully applied 

processibility and physical to calcium carbonate, 
properties. aluminium trihydrate. 

Organosilicone Follow modes similar to the Calcium carbonate, mica, 
Coupling / Wetting silane and hydrophobic wetting talc and alumina 
Agents agents. trihydrate. 

Successfully used with 
polyolefins. 

Table 4 A summary of coating reagents 20 used for the modification of the filler 

surface 

Comparative research looking at different coating materials has been undertaken 

on many occasions 21. Other techniques for coating include phosphate treatment 22 

23 and plasma treatment . 
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2.2.3.1 Coating Methods 

The surface treatment of the filler may occur at anyone of the three stages 

described below: 

• Coating during filler production e.g. PCC 

• Coating after filler production e.g. naturally occurring materials 

• Coating during compounding e.g. in-situ coating 

The third route although not a coating process does allow the modification of the 

interphase region. The coating processes may be divided into three categories: 

• Aqueous phase coating. e.g. PCC with stearic acid in water 

• Non aqueous phase coating e.g. PCC with stearic acid in toluene 

• Dry coating e.g. Kaolin with stearic acid with external and shear heating 

There are many advantages and disadvantages to each technique most of which 

are related to improved physical properties, better levels of processability or a 

more marketable product. Aqueous phase processes are best associated with 

coatings added during filler production. Dry coating processes are best associated 

with coatings added after filler production. Solvent-based processes are generally 

not used in industry because of solvent restrictions and the drive towards safer 

aqueous based processes. As a result these are mainly used academically for the 

production of controlled coatings. 
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2.2.3.2 Stearate based coati ngs 

Stearate coatings can be produced by all the methods described in section 2.2.3.1 

Coating Methods. Both ammonium and sodium hydroxide are used industrially to 

produce stearate-based salts. This allows the incorporation of the cheaper natural 

formulations of long chain fatty acids into the reaction process as soluble 

stearates. Various stearate salts are commercially available. The use of a base to 

produce a stearate salt introduces the pH variable into the coating process. 
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2.3 Polymer-Filler Interactions 

Interfaces involving polymers are generally of finite width. The polymer nearest 

to the filler surface may be adsorbed, and consequently differ from the bulk 

polymer. Filler surfaces may themselves show a gradation in properties with 

depth. The region around the interface over which the material differs from the 

bulk phase is sometimes called the interphase. In highly filled plastics the 

interphase may make up a significant proportion of the composite. 

The 'ideal' polymer-filler interface would consist ofa two dimensional plane 

between two homogeneous phases. However even the simplest interface, without 

the presence of strongly interacting groups, results in polymer being adsorbed at 

the interface, and the formation of an interphase region. The size of the interphase 

varies and is discussed later (Section 2.4 Filler, Polymer Interphase). 

INTERFACE INTERPHASE 

2 2 

nterface Region Interphase Region 

"The boundary or surface between Mo different, liThe boundary region betv.een a bulk resin or 
physically distinguishable media" polymer and an adhered in iMlich the polymer has 

a high degree of orientation to the adhered on a 
molecular basis~ 

Figure I ASTM definition of interface and interphase region 
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----------

The original purpose of adding low cost mineral fillers to high cost polymers to 

form composites was one of cost reduction. The extent of 'filling' is limited only 
I 

by the detrimental effect ofthe filler on the mechanical properties of the plastic. 

The detrimental effect can largely be attributed to the compatibility problems 

associated with adding an inorganic polar solid to a largely non-polar organic 

matrix, resulting in poor dispersion and stability. A poor distribution of filler and 

a low level of dispersion can lead to the production of non-homogeneous final 

products. 

The simplest powder dispersions are generally unstable. The stability ofthe 

dispersion depends on the rate at which the balance between interfacial tension, 

viscosity and density difference are achieved. For thermoplastic melts the rate at 

which separation of the phases might occur is insignificant. During normal 

processing the thermodynamic-kinetic balance is such that 'stable' dispersions are 

readily formed. These filled polymer melts constitute kinetically stable 

dispersions. Viscosities are such that filler particles do not settle o'ut at any 

appreciable rate even when they form agglomerates. Nevertheless the state of the 

dispersion and therefore the interface properties strongly affect the final end 

properties. 

Filler-filler interactions per unit area are stronger than polymer-polymer 

interactions. Because agglomerates often contain (per unit area of contact) a small 

number of high energy filler-filler interactions compared to the large number of 

low energy polymer-polymer and polymer-filler interactions, these agglomerates 

often constitute weak points in the composite. Agglomerates will tend to form in 

those melt systems in which the filler-filler energy is more favorable e.g. the 

polymer-filler interfacial energy is high. In industrial processes, where 

agglomeration occurs, particle-particle interactions are such that compounding can 

cause damage to the filler. 

The testing of mechanical properties is fraught with problems. The relationship 

between interface and interphase characteristics and mechanical properties are 
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difficult to demonstrate due to variations in the methods of compounding, 

processing and testing. The lack of a complete understanding of these techniques 

and their relation to the exact macroscopic behavior of the polymer and its effect 

on any interface makes the correlation of mechanical properties to molecular 

characteristics very difficult. 

Three concepts; wetting, adhesion and dispersion may be used to describe the 

filler-polymer interaction. There is a general correlation between wetting, 

adhesion and dispersion, although they are not a prerequisite for one another. 

Poor dispersion in a filled system will manifest itself in the rheology of the filled 

melt even when agglomerates are well wetted. An agglomerated system may 

nevertheless show good adhesion across the filler-polymer interface. Poor levels 

of wetting and adhesion often produce other detrimental properties e.g. 

encourages attack by moisture and other corrosives. 

2.3.1 Wetting 

Wetting of solids by liquids can be defined as the extent to which a liquid makes 

contact with a surface. In polymer composites it is therefore characterised by the 

extent of direct interfacial contact and the ease with which this is achieved. 

Figure 2 Schematic representation of a liquid drop at a surface 

Wetting is generally quantified by the contact angle of a liquid on a surface at 

equilibrium. This is described by Young's equation: 
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1sv = 1 SI. +1lycos B 

Equation I 

where: 

1 sv is the specific surface free energy of the solid in equilibrium with the vapour 

of the contact angle liquid, 

1 SI. is the free energy ofthe solid-liquid interface, 

1lY is the surface free energy of the liquid, 

B is the contact angle of the liquid drop on the surface. 

Ideally, for complete wetting B should be zero. Analysing this equation it can be 

seen that this can be achieved in one of three ways; 1 sv can be raised, 1 SL 

lowered or 1lY lowered. 

Practically this can be achieved by: 

• Reducing the surface tension (1 IY) by judicious choice of an additive 

which would diffuse to the surface. 

• Modifying the energy of the interface between the two phases ( 1 SI.)' This 

may be achieved by the incorporation of interfacially active additives. 

• Manipulation of the surface energy of the phase to be dispersed (1 sv). 

This may be achieved by the use of suitable surface treatments. 

It must be remembered that the Young equation describes the action of wetting at 

equilibrium. This equilibrium is not instantaneous and is dependent on the 

balance between the driving force for wetting and the viscosity of the fluid, In the 

case of industrial processing of polymer melts, viscosities can be very high (\00 -

1000 Pa s). As a result equilibrium is not easily achieved. 

Various relationships have been proposed for calculating the rate of spontaneous 
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wetting. A widely accepted estimate of the time scale for spontaneous wetting can 

be made using the Wash burn 24 equation (Equation 2) which describes the rate of 

fluid rise in a vertical capillary: 

dh = R' 2y /.v cosB + h 
dt 87Jh R pg 

where: 

h is the height, 

t the time, 

R the capillary radius, 

7J the viscosity, 

Y l.v the surface tension, 

B the contact angle, 

p the density, 

g the gravitational acceleration. 

Equation 2 

These calculations are for an ideal situation. In reality other factors, e.g. 

impurities, are involved and these perturb the contact angle to either an advancing 

or receding position. 

2.3.2 Adhesion 

Adhesion can be described as the intimate sticking together of surfaces so that 

stress can be transmitted between them. 

Adhesion requires the contact of two phases .. For this to occur wetting must have 

already occurred. From this we may conclude that the unwetted areas make no or 

only a small contribution to the overall adhesive strength. These areas of low 

strength during failure act as points at which the fracture propagation can occur. 
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For an 'ideal' interface we can use the following equations to begin to understand 

the relationship between the adhesion, wetting and the surface energies of the 

phases. 

The thermodynamic work of adhesion W AD may be described as the reversible 

work done per unit area in separating an interface. Dupre proposed therefore that 

WAD may therefore be considered as the total of the surface free energies minus 

the interfacial free energy. The Dupre equation states: 

WAD = Ysv + Y LV - Y SI. 

Equation 3 

where: 

Y.w. is the interfacial free energy, 

Ysv is the surface free energy of the solid component (filler), 

YJ.v is the surface free energies of the liquid component (polymer). 

Modifications to the filler surface, incorporation of proactive compounds to 

produce covalent bonds or cause mechanical molecular entanglements, may lead 

to enhanced adhesion. Due to viscoelastic effects, these changes will be small 

when considering the energy to create a fracture. Surface modification can also 

result in a reduction of WAD' This can be attributed to a reduction in bonding 

across the interface. 

The strongest adhesion will occur when covalent bonds are formed across the 

interface. Interfacial modification is frequently designed to produce these. If 

covalent bonding does not exist, Hydrogen Bonds, Keesom (dipole-dipole 

interactions), Debye (dipole-induced dipole interactions) or London dispersion 

(transient induced dipole-induced dipole interaction) forces across the interface 
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must provide the means to transmit stress. These are one to two orders of 

magnitudes smaller in strength (energy) when compared to covalent bonding. 

From this we may conclude that, all other factors being equal, the stronger the 

molecular interactions between the phases the greater the adhesive strength. 

Roughness can increase the work of adhesion by simply increasing the surface 

area. However it can also improve adhesion by providing sites for mechanical 

adhesion. This technique can be used when one of the phases is in the liquid state 

during processing. On curing or cooling the trapped solid can only fail by a 

cohesive mechanism. Given the fact that polymer composites are often formed 

when the polymer phase is in the liquid state this mechanism may make a very 

significant contribution to adhesion. 

Figure 3 Liquid resin wetting a porous surface. When this solidifies on cooling or 

curing, a mechanically interlocking interface is formed 

In composite systems in which both phases are polymeric, adhesion at the surface 

can also be attributed to molecular entanglements in the interphase region. On a 

molecular layer these are analogous to the macroscopic interlocking of chains, 

which provide mechanical adhesion. Adhesion of this form can only occur if 

thermodynamic and entropy requirements are satisfied. For this to occur the 

polymer chains of the 'filler' must be ofa similar polymeric nature to that of the 
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polymer matrix. However, the presence of similar polymeric chains does not 

ensure the good interlocking of chains. 

2.3.3 Dispersion 

Dispersion requires the creation of large interfacial areas and is therefore easier 

when interfacial energy is low. As Equation I and Equation 3 indicate this will 

generally be the case in systems in which wetting is good, and the work of 

adhesion ( WAD) is strong. 

When interfacial energy is high a good level of dispersion may be obtained if 

extra energy is expended in the processing stage. If processing parameters are 

altered to provide this energy, a kinetically stable dispersion can be achieved. 

The degree of dispersion describes the state of distribution of the filler in the 

matrix. In a filled system good dispersion corresponds to stable individual 

particles and poor dispersion to filler agglomeration. 

Nevertheless, the state of the dispersion and therefore the interface properties 

strongly affect the end properties. If agglomerates contain 'weaker interactions' 

(the sum of all filler-filler interaction as a function of the total filler surface area) 

than those of the polymer interactions, then the agglomerates will constitute weak 

points in the composite. If an industrial plastic processing method is used, for a 

fixed set of processing parameters the level of dispersion achieved is generally a 

function of the surface energy of the filler. The optimisation of the industrial 

processing parameters is often not sufficient to generate similar levels of 

dispersion for different surface energy fillers. 

Agglomerates will tend to form in those melt systems in which the polymer-filler 

interfacial energy is high. In industrial processes, where agglomeration occurs, 

particle-particle interactions are such that extreme compounding can cause 

damage to the filler. 
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Ifthe effect of the filler surface is to be established, the level of dispersion and the 

treatment ofthe composite components must be kept constant. In this case the 

changes in the only property being varied, the filler surface, can be correlated 

directly with the mechanical properties of the composite. 

The variation in mechanical properties of polymer composites is often stated to be 

h I f d· . 25,26 t e resu t 0 poor IsperslOn . 

2,3.3.1 Dispersion Analysis 

The effect of dispersion on the mechanical properties is often seen in visual 

observations of the failure surface. The comparative analysis of dispersion is best 

made prior to mechanical analysis. Methods of dispersion analysis may be split 

into two categories: 

• Visual observations 27 e.g. optical microscopy, SEM, elemental maps . 

• Scattering techniques e.g. small angle light scattering . 

Transmission optical microscopy is often used to assess the dispersion of large 

filler particles. By analysing layers of 25 f.lm pp it has been shown that the level 

of dispersion of 10-20 f.lm talcs and shale could be determined 28. In the case of 

smaller filler particles, scanning electron microscopy is used to provide higher 

levels of resolution. Experimental preparation is usually reliant on the samples 

being microtomed, although low temperature plasma etching has been used with 

some success 29. Microtomed samples often exhibit sample damage 27. This 

damage may often be reduced by the use of a cryomicrotome. The contrast 

between filler, coating and polymer, can often be improved by either dissolving" 

the filler 27, or by dissolving the coating 30. 
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2.3.4 Surface and Interfacial Energies 

The thennodynamic work of adhesion (WAD) is the reversible work done in 

separation of unit area of interface between two phases (A and B). Dupre pointed 

out this could calculated by considering the interfacial energies. Good and 

Girafalco 31,32,33,34 introduced the interaction parameter <p, with which the 

thennodynamic work of adhesion between two phases could be evaluated. 

Equation 4 

The interaction parameter may be estimated from the molecular properties of both 

phases 35,36, with general values of <p falling in the range 0.5-1.2. The difficulty 

with this approach is the calculation of <p which is lengthy and requires precise 

knowledge of the surface being studied; this is seldom available in practice. 

. . 37383940 F owkes proposed the theory of fractIOnal polarity , , , . He suggested that the 

surface free energy of a solid could be given by the sum of several independent 

contributions from dispersion interactions, hydrogen bonding etc. 

D P H 
Ysv =Ys +Ys +Ys 

where: 

Y sv is the surface energy of the solid, 

Y ~ is the dispersion component of surface energy, 

yt is the polar component of surface energy, 

yff is the hydrogen bonding component of surface free energy. 

Equation 5 

Often the hydrogen bonding component and polar component are encompassed in 
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a single tenn. 

For interfaces involving one non-polar material, the interactions contributing to 

the thennodynamic work of adhesion must consist principally of dispersion 

forces. F owkes suggested that for a saturated hydrocarbon and a solid surface, 

where only dispersion forces may operate, the thennodynamic work of adhesion 

could be given by the following relationship using the geometric mean 

approximation for dispersion force interactions. 

W 2( D D)Y, 
AD = Ys YL 

Equation 6 

Owens and Wendt 41,42 employed the theory offractional polarity and suggested 

that polar interactions, including hydrogen bonds, could also be estimated by a 

geometric mean, leading to a more comprehensive relationship between the 

interfacial free energy and its components, 

Equation 7 

Equation 7 is frequently used to estimate the thennodynamic work of adhesion, 

but is not without critics. There is some debate about whether the geometric mean 

approach is the best way of approximating the polar interactions at an interface. It 

has been suggested that the geometric mean could be replaced by the arithmetic, 

d . anh . h . 43,44,45,46 D . h .. qua ratIc, annomc, or armomc means . esplte t e approXImatIOns 

involved the geometric mean approximation is popular and widely used. 

F owkes has suggested that polar interactions across an interface can be thought of 

. fL"d/b' . 47,48,49,50 A W h In tenns 0 eWls aCI ase InteractIOns . s a consequence, AD' t e 
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work of adhesion may be written in (erms of the work of adhesion due to 

dispersion interactions, WD, and the work of adhesion due to acid-base 

interactions, W AB (Equation 8). 

Equation 8 

Drago 51 developed a theoretical approach for relating the enthalpy of interaction 

with the acidity and basicity of the interacting species, by allocating constants to 

define the strength of acids. These are the E and C constants, which represent the 

electrostatic and covalent, or hard and soft contributions to the acidity and basicity 

of the compound. 

Equation 9 

The constants are determined from calorimetric measurements, and are applied to 

the acids and bases. These do not necessarily relate precisely to the electrostatic 

and covalent contributions of the acid-base interactions. This approach has much 

to commend it, and it has been used successfully. However it can be difficult to 

find the appropriate Drago coefficients 52,53 that describe the acid-base properties 

of the materials involved. The applicability of Drago coefficients in surface 

studies is also debatable. 

These theories predict that coating an inorganic filler with an inert non-polar 

organic coating will reduce the surface energy of the filler, and the work of 

adhesion between filler and a non-polar polymer will fall as a result of reduced 

dispersion interactions. Greater reductions are predicted for inorganic fillers in 

polar polymers where polar and hydrogen bonding interactions need to be 
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considered. 

Measurement of surface energies is difficult, but some measurements have been 

made. They are dependent on adsorbed molecules and contaminants. Estimates 

of the energy of interaction at filler surfaces can be obtained from gas adsorption 

measurements such as adsorption isotherms 54 and inverse gas chromatography 

17,55,56 Th h fi d d . . c: . ese measurements ave con Irme a re uctlOn III surlace energy as a 

result of the presence of organic coatings. Alternatively interactions may be 

studied in the liquid phase using contact angle measurements 57,58, heats of 

. . 59 fl . I' 60 h' I . k' 61,62 d '11 . ImmerSIOn , ow mlcroca onmetry , t III ayer WIC mg an capl ary nse 

methods 63. 

2.3.5 Polymer Adsorption 

Even the simplest filler surface with no strongly interacting groups exhibits a 

filler-polymer interaction. 

A high energy inorganic filler surface is such that polymer will be adsorbed onto 

the surface 64. Conformational analysis would suggest that polymers adsorbed on 

the surface are adsorbed in more than one place. The desorption of the entire 

polymer chain is determined by the equilibrium of adsorption and desorption of 

multiple segments. Due to the probability of all the segments being desorbed at 

the same time, the release of the polymer molecule is unlikely. Adsorption of 

mUltiple segments would result in the formation of a phase around the filler quite 

different to that of the bulk. 
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2.4 Filler, Polymer Interphase 

One might assume that the most compatible coating material would be an 

independently applied coating of the polymer itself. The benefits of this type of 

coating are not as well defined as one might think. The polymer-polymer 

interface or the coating-polymer interface is extremely complicated. The filler

polymer interaction has been previously described. (Section 2.2.3 Industrial Filler 

Coatings). 

It has been experimentally shown that in a silica filled PE composite a 3 nm layer 

of bound polymer can be found on the silica after fracture 65. From.this we 

conclude that either cohesive matrix failure has occurred or a weak 'interface' 

between free and bound polymer exists. These hypotheses would suggest that 

chemically adsorbed chains and similarly free chains are not identical in character 

and may not be fully miscible. This is particularly significant since a common 

approach to filler coating is to attach polymer chains to the surface. To further 

utilise the ability of the filler to provide reinforcement, we must try to improve the 

bound polymer-polymer interface. A description of this theory and technology 

can be found in, Section 2.3.2 Adhesion. 

As discussed in Section 2.2.3 Industrial Filler Coating, two types of coating 

materials can be applied to fillers; coupling agents and wetting agents. Wetting 

agents act to reduce the filler-filler interaction. If all other variables are constant, 

and there is no interaction between the filler and the polymer, then the overall 

adhesion between the filler and the polymer matrix will be reduced. Coupling 

agents provide sites at which 'bonds' between the coating and polymer can be 

formed, thus improving adhesion across the coating-polymer interface. The 

phenomena of wetting agents (stearic acid) reducing adhesion is widely reported 
66 
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(A) 

(A) 

(B) 

(C) 

(D) 

(B) (C) (D) 

High density of low molecular weight grafts - poor coupling. 

Comparable to the use of a wetting agent. 

Coupling agent coated filler, low density of high molecular weight 

grafts - moderate coupling. 

High surface energy filler, low density of high molecular weight 

grafts - poor coupling. 

Moderate density of high molecular weight grafts - good coupling 

Figure 4 A diagram showing the interactions of chains grafted to the filler surface 

with free polymer chains 

The reactive sites of the coupling agent generate chemical bonds, these bonds 

favour the formation of molecular entanglements (B), rather than the multiple 

segment adsorption that would occur in the case of an uncoated filler with a 

similar amount of polymer adsorbed. 

The thermodynamics of the mixing of chains grafted to a surface and otherwise 

similar free chains has been investigated 67. De Gennes predicted that, as the 

density of grafting increases and/or as the molecular weight of the free polymer 

increases, free chains will be expelled from the grafted layer. The basic driving 

force for this is the reduction in entropy when free chains penetrate a dense 

coating of attached chains. As the number of individual chains grafted per unit 
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area increases the constrained chains become more extended. Any free chains 

entering this system would have their conformational freedom reduced, and in the 

(unrealistic) limit of fully extended 'toothbrush like' grafted chains would 

themselves have to adopt an extended rod-like conformation to mix with the 

grafted layer. Experimental confirmation of this has been obtained for a PMMA 

matrix filled with glass beads system, to which PMMA has been grafted 68. 

The width of the interphase in a PS-PMMA system is estimated to be around 5 nm 

wide. For a 10% blend of PS in PMMA with an average particle size of 0.1 pm, 

the interphase is calculated to constitute around 3% of the bulk polymer matrix 69. 
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2.5 Mechanical Properties 

The mechanical properties of a composite are detennined by the filler's 

reinforcing ability. This is detennined by the filler's size, shape, size-shape 

distribution, pre-treatment, method of compounding, processing and post 

processing operations. Usually the reinforcement is defined in tenns of a 

particular property of interest, e.g. impact strength or modulus. Mechanical 

properties in filled systems are limited by the ability of the interface to transfer 

stress. For this reason surface modification may be introduced to promote 

adhesion. Thus in filled polymer composites, a surface active agent coupling the 

dispersed phase to the matrix is commonly present. Many properties of 

multicomponent systems are indirectly influenced by the interface through its 

influence on powder morphology. 

The physical effects of filler addition are summarised in the table below. 

Physical Property Description of changes 
Modulus Increase in stiffness (creep/deformation resistance and 

hardness. 
Yield strength Modest increases. The strength of filled compounds is 

difficult to predict since it is dependent on a number of 
different parameters, including, dispersion, particle size 
and shape and the polymer-filler interaction. 

Ultimate properties Ultimate properties are difficult predict due to the 
complex relationships involved in the polymer-filler 
interaction. 

Table 5 The physical effects of filler addition to a polymer 

Key factors in the production of a successfully filled composite include both the 

compound specification (filler particle characteristics) and additional factors that 

are dependent on the processing conditions. 

Page 50 



r. 

2.5.1 Filler Loading 

The extent of filling in a polymer is limited by the detrimental effect of the filler. 

It is convenient to discuss filler concentrations in terms of the reduced volume. 

~_ tP/ 
- / tPlII 

Where: 

tP is the reduced volume, 

tP is the filler volume fraction (packing fraction), 

tP m the maximum filler loading. 

Equation 10 

Ifwe consider the filler as an inert object, the volume fraction tPm is normally 

determined by the filler geometry (Section 2.5.5 Filler Particle Size Theory, 

Table 7). 

For the majority of properties the fqllowing graph describes the variation in a 

property with increasing filler loading . 

• 
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Property 

o 0.5 

~ 

1.0 

rPm 

Figure 5 Summary ofthe relationship between many physical properties and the 

filler content in a composite 

The optimal loading rP'P is dependent on the property of interest. For modulus, 

compressive strength and dielectric constant optimal properties are obtained at a 

maximum loading ('i = rPm)' whereas for tensile yield stress or strain, maximum 

strain at break and permeability the optimal loading is achieved when 'i :-:; 0.5rP", . 

In general the solid-solid interactions are stronger than those for the solid-liquid 

interface. As a consequence the solid particles tend to aggregate. Aggregation 

causes an apparent increase of filler loading at a given concentration. This results 

in an effective decrease of rPm. Since the interfacial properties are inversely 

proportional to the particle radius, the severity of aggregation tends to increase 

with a decrease in particle size. 

2.5.2 Industrial Processing Parameters 

Fillers can be mixed with polymer in a number of ways, depending on the nature 

of both ingredients. Some of the processes that must occur are defined as: 
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• The elimination of adsorbed volatiles e.g. H20 

• The breaking down of the aggregates, securing total wetting of each 

particle by the matrix 

• The uniform distribution of the particles within the system without 

excessive attrition 

Bonding may be improved by the surface treatment of the fillers, and effective 

dispersion is achieved by destroying any tendency towards particle agglomeration' 

by using purpose designed screw configurations in compound extruders 3. 
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2.5.3 Coating Effects 

The basic role of an interfacial agent is to reduce the solid-solid interactions and to 

facilitate dispersion. Since agglomeration leads to higher effective volume 

fractions of filler at constant loading, the pre-treatment of a filler often results in a 

reduction in viscosity. The interfacial agents effectively remove or suppress the 

three dimensional composite structure responsible for yield behaviour, and lower 

the shear viscosity at low deformation rates by orders of magnitude. In other 

cases the addition of proactive coatings to the filler often cause polymer 

immobilisation on the filler surface thus increasing the apparent volume fraction 

and viscosity. 

The coating of powders has been shown to reduce surface energies 1,21,70. The 

reduction of surface energy results in a reduction in agglomeration, and an 

improvement in dispersion and· overall filler compatability. It can be seen that 

after coating the surface energy of the filler has been reduced to that comparable 

to the polymers in which they are to be incorporated. Values obtained for surface 

energies can be seen in Table 6. 

Filler Surface Energy 
(mJ m-2

) 

Diamond 10,000 * 
Glass 1,200 * 

Calcium carbonate 65-70 
Stearate coated calcium carbonate 28 

Polymers 15 - 60 
Polypropylene 31 

(* In practice these values are never achieved) 

Table 6 Surface Energies of fillers and plastics 4 

The addition of fillers to polymers to improve properties are widely reported. The 

use of coatings to enhance these mechanical properties are also well documented. 

For example the addition of 40 % by weight of untreated mica to PP increased the 

flexural modulus from 1.8 to 5.4 GPa. When mica was treated with 0.5 % si lane 
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the modulus is further increased to 7.5 GPa 71. 

2.5.4 Engineering Models 

The mathematical prediction of the filler's effect on a mechanical property ofa 

composite, e.g. modulus, is the aim of any applied surface science experiment. 

Because the modulus is a bulk property, as is viscosity, the modulus of the filled 

materials has been represented by a large number of equations. A number of 

scientists have predicted the effect of the filler on the strength of the composite. 

The simplest equation is based on the rule of mixtures and has often been used as 

a first approximation, 

where: 

E, is the modulus of elasticity of the composite, 

Em is the modulus of elasticity of the matrix, 

E f is the modulus of elasticity of the filler, 

t/J f is the volume fraction of the filler. 

Low filler concentration (Einstein 7\ 
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Equation 12 



High filler concentration (Guth 73). 

A more rigorous approach was developed by Kemer 74. 

Gf~j /[(7 - 5v)G" + (8-lOv)Gj J+~j /[IS(I-v)] 
Ec = Gm~j /[(7 - 5v)G" + (8 -IOv)Gj J+ ~j /[15(1 -v)] 

where: 

G f is the shear modulus of the filler, 

Gm is the shear modulus of the matrix, 

v is the Poisson ratio of the polymer. 

Equation 13 

Equation 14 

A substantial amount of work has been done attempting to predict the strength and 

toughness of filled plastic. However, except in a few cases, there is no general 

predictive theory of ultimate properties for filled polymers. Unlike fibrous 

composites, the prediction of particulate composite strength is a controversial 

subject. Although investigations have produced a large number of both theoretical 

and empirical equations, there is no unifying theory for general prediction 75 

These siinple models predict that at low filler concentrations there is a reduction 

in strength. This is because the simplest strength prediction models are based on 

the area reduction of the matrix in the presence of fillers. These models assume 

that there is no adhesion between the fillers and the matrix and the reduction in 

composite strength is due to the reduction of the matrix area: 
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where: 

O'c is the composite strength (modulus), 

O'm is the matrix strength (modulus), 

Equation 15 

Am and Ac are the matrix area without fillers and matrix area in the presence of 

filler. 

The area ratio may be expressed as a function of the filler volume fraction. 

Equation 16 

in which the parameter a is dependent on the type of filler distribution. 

Furthermore rigorous approaches have been proposed to predict the ultimate 

tensile strength of particulate-filled polymers 76,77. The model relates the tensile 

strength to the volume fraction ofthe filler, the elastic moduli ofthe two phases as 

well as the shape, size and interfacial adhesion between the filler and the matrix. 

The model also predicts that the effect of particle size is felt only when the 

particle diameter is greater than a critical value. The ultimate tensile strength is 

thus given by: 
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where: 

a' is the ultimate tensile strength, 

d is the particle diameter, 

r SI. is the work of adhesion between the filler and the polymer. 

2.5.5 Filler Particle Size Theory 

Equation 17 

The interaction of a filler particle within a matrix has been demonstrated 65. If we 

assume that individual polymer chains coat individual filler particles, we may 

assume that the bound volume fraction of polymer is dependent on the surface 

area / particle geometry. 

The effect of particle radius on the surface area per unit mass (specific surface 

area) of a calcite particle is described below (Calcite density 2710 kg m-\ 
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Particle Radius (nm) 

Figure 6 Effect of particle radius on the surface area per unit of calcite 
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If we try to pack spheres of the same size, we may consider a number of different 

conformations. The conformation dictates the quantity of polymer that is required 

before voids form within the composite. The volume fraction of the space 

occupied by the sphere is known as the packing fraction. The two conformations 

of interest are known as close packed (packing fraction 0.74) and simple cubic 

(packing fraction 0.52). Random loose packing is determined to be of the order of 

0.64. These packing fractions can be determined for other filler types. The 

packing fraction becomes increasingly important as the filler geometry changes 

and moves further away from a sphere. 

Filler Type Packing Confirmation Packing Fraction 
Sphere Hexagonal 0.74 
Sphere Face centered cubic 0.74 
Sphere Body centered cubic 0.60 
Sphere Simple cubic 0.52 
Sphere Random 0.64 

Irregular Random 0.64 
Fibres Random (LID - 5: I) 0.52 
Fibres Random (LID - 20: I) 0.20 
Flakes Random (Lit - 56:1) 0.33 

Table 7 Maximum packing fraction of selected fillers 78 

2.5.5.1 Bound Matrix Fraction 

If we use a simple cubic model, we can consider the effect of particle radius I 

surface area on the 'limiting' loading levels. From this we can show that as the 

particle radius increases, the volume (Figure 7) and the mass fraction (Figure 8) of 

bound polymer will decrease. (upVe Density 1200 kg m-3
). The figures assume 

that a 3 nm bound matrix layer is formed 65. Estimated values of up to 20 nm 

have been reported in the literature 79. 

If particles of radius 10 nm were available, the quantity of fraction of bound 
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polymer (50%) could be easily detected by techniques sensitive to polymer 

mobility e.g. DMTA. At larger radii (smaller surface areas) the fraction of bound 

matrix decreases considerably, this reduces the possibility of detection. As a 

result composites of the highest filler loading possible are required. 

100% 
,e e.... 90% 
Cl> 80% 
E 
::J 70% 
0 60% > • Unbound Matrix 
,.. 50% .0 • Bound Matrix 
Cl> 40% 
Cl 

30% .. - • Particle 

I: 20% Cl> 
u 10% ~ 

Cl> 
Cl. 0% 

10 20 40 60 80 100 

Particle radius (nm) 

Figure 7 Effect of calcite particle radius on the percentage volume composition of 

a uPVC-calcite composite (simple cubic model) 
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Figure 8 Effect of calcite particle radius on the percentage mass composition of a 

uPVC-calcite composite (simple cubic model) 
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Figure 9 Graph showing the bound matrix fraction generated by different calcite 

particles (simple cubic model) 
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2.6 Filler Coating Theory 

The quantity of coating material used is often described industrially in terms of 

the weight percentage of the acid added to the total material. Although this is easy 

to use industrially it does not allow the cross comparison between different 

coating materials and different fillers. The concept of a 'theoretical monolayer' is 

used to enable the cross comparison of results. 

2.6.1 A 'Monolayer' Coating 

When the stearate reacts with the filler, it finishes with the polar head group 

interacting with the surface. Theoretical analysis of the chain conformation 80 may 

allow the prediction of the space occupied by the stearate molecule. 

Maximum Packing 
Model 

Stearate chains lay above 
the reacted site. 'Brush' 
Model 

AREA = 20 x 10.20 rn2 

Layer Model 

Stearate chains lie on the surface. These 
can be displaced by the further addition of 
stearate ions. 

AREA = 114 x 10·20 rn2 

Figure 10 Pictorial representation of the monolayer assumption 

If it is assumed that the stearate molecules are adsorbed in a close packed 'brush' 

type configuration as shown in Figure 10, with each head group occupying 
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20 X 10"20 m2
. Knowing the specific surface area, it is possible to calculate the 

number of stearate molecules required to give complete coverage. 

If the chain is fully extended, the length of the chain has been calculated to be 

A 64 equal to 2.43 nm (24.3 ) . 

Alternative configurations must be considered when more complicated molecules 

are used. A looped structure may also be considered if a bi-functional acid is 

used. 

2.6.2 Surface Reactive Sites 

The size of the 'footprint' of the coating molecule is only one factor in 

determining the quantity of coating required for a theoretical monolayer. The 

orientation ofthe coating molecule and the number of reactive sites must also be 

considered. 

Without taking coating steric factors into consideration the completeness of the 

coating can be visualised (Figure 11). The completeness of the coverage can be 

described as a function of the number of reactive sites per unit coating footprint 

area i.e. a low number of reactive sites will result in an incomplete coating. 
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Coating Configuration 

Limiting Factor 

AREACTlVE > ACOATlNG AREACTlVE = ACOATlNG 

S~e 

AREACTlVE < ACOATlNG 

Figure II 20 Graphical representation of the coating coverage limiting factor, the 

area per reactive site or the footprint area ofthe coating molecule (Ignoring chain 

mobility) 

In the case of AREACTIVE > ACOATING the chains would relax (try to lay on their 

sides) and form a thinner more complete coating. 

2.6.3 w/w v's Monolayer-Surface Area Relationship 

Considering the surface area in terms of the number of mono layers is helpful 

when trying to visualise the coating formation. The conversion between the two 

sets of units is simple (Figure 12). If this is taken into account materials with 

surface areas of20 m2/g and 13 m2/g would require 0.04724 g and 0.03071 g of 

stearic acid respectively per gram of filler to form a single monolayer. 
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Figure 12 Effect of the specific surface area on the w/w - monolayer relationship. 

2.6.4 The Coating Reaction 

A general reaction scheme for the reaction of calcium carbonate and stearic acid 

may be proposed. (This must be revised when we think about the reaction at the 

surface). 

CaCO J + 2C17 H"COOH => Ca[C17H"COOl, + H,CO J 

Equation 18 

This reaction is most likely to occur with the formation of a stearate salt with the 

cation: anion ratio of 1: 1. Formation of a bound salt with the ratio 1:2 is unlikely 

to occur since bonding of the molecule to the surface will be sterically hindered. 
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HOOC-C17H35 ----. - - y~" .;C-C17H35 

o 

Figure 13 Schematic of the chemical reaction at the surface 

The effectiveness of the coating processes defined in section 2.2.3.1 Coating 

Methods are dependent on the physical properties of the coating materials and the 

filler. The physical properties 81 are shown in Table 8 and Table 9. 

Compound Cold Water .' Hot Water 
(g/lOOml) (g/lOOml) 

Stearic acid Insoluble -
Ammonium stearate Very Soluble -
(Mixed) 
Sodium stearate 0.004 -
Calcium stearate 0.004 -
Magnesium stearate 0.003/0.004 0.008 
Zinc stearate Insoluble 

Compound Cold Water Hot Water 
(g/lOOml) (g/lOOml) 

Calcium carbonate 0.0014 0.0018 
(Calcite) 
Calcium hydroxide 0.185 0.077 
Magnesium carbonate 0.0106 -
(Magnesite) 
Magnesium hydroxide 0.0009 0.004 
(Brucite) 

Table 8 Tables of solubility data 81 
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Compound M.Wt Densi!l Mpt 
(amu) (kg m- ) (Oq 

Octadecane 254.51 776.8 28.18 
Stearic acid 284.50 940.8 71.5 
Ammonium stearate, 586.00 - 110 
stearic acid (mixed) 
Sodium stearate 306.47 - -
Calcium stearate 607.04 - 179-180 
Magnesium stearate 591.27 - 86-88 
Zinc stearate 632.33 - 130 

Compound M.Wt Densi!l Mpt 
(amu) (kg m- ) (Oq 

Calcium carbonate 100.09 2710 1339 
(Calcite) 
Calcium hydroxide 74.09 2240 580 
Magnesium carbonate 84.32 2958 350 
(Magnesite) (decompose) 
Magnesium hydroxide 58.33 2360 350 
(Brucite) (decompose) 
Magnesium oxide 40.31 3580 2800 
(Periclase) 

Table 9 Tables of physical constants 81 

2.6.4.1 Aqueous Phase Reaction 

When dissolved in water calcium carbonate (CaC03(s) will produce the following 

chemical species: 

The chemical reactions are shown in Figure 14. The redistribution of these 

chemical species will, under most conditions, result in the charging of the calcite 

surface. The surface charging is therefore the result of ion dissolution - ion 

adsorption processes. 
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There are a large number of reaction possibilities and rate constants that describe 

the behavior and interaction of the chemical species produced when calcium 

carbonate is dissolved in water 82. These can be further complicated by the 

presence of other ions and organic matter 83. As a result the system for coating 

calcium carbonate from an aqueous solution is an extremely complex reaction to 

model. 

+ H20~i 
H2C03 + 

~i 
CO2(g) + H2O 

CaC03(s) 

+ 

CaC03(aq) ~ CaHC03 + • 

Ca(OHlz(aq) 

~i 
Ca(OHlz(s) 

Figure 14 Diagram of the reactions that occur between the chemical species 

produced when calcium carbonate dissolves 

The electrokinetic behavior of calcite has been studied by many authors under a 

wide variety of conditions. There have been many attempts made to model the 

calcite-water system but in general the results have been inconsistent 84. The 

variation in results is due to the calcite reactivity which strongly influences its 

surface charge and, therefore its electrophoretic mobility and electrokinetic 
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potential. In the calcite-water system there are two important factors governing 

the formation of the surface charge: 

• The concentration of the potential determining ions (Ca2+ and CaCO/-) 

• The pH, on which the concentration of the potential determining anion 

CaCO/- depends 

In the calcite-water system the charge balance of the chemical species described in 

Figure 14 can be summarised as: 

v[H+] + w[Ca2+] <=> x[HC03-] + y[CO/-] + z[OK] 

where v + 2w = x + 2y + Z 

Equation 19 

In general, PCC in distilled water at concentrations greater than 50mg/l OOcm-3 

will undergo ion dissolution and ion adsorption to form an alkali solution 

(approximately pH 9) with a positively charged surface 85. This surface charge 

can be made negative if the solution is made more alkaline. These two surface 

regimes are nominally the two possible states that must be considered during any 

coating process. The presence of organic matter in general reduces the positive 

nature ofa charged surface 83. There are a number of methods used industrially to 

produce the coating, most of which require the use of an alkali to generate the 

soluble stearate. In general in an alkaline environment the coating process occurs 

when the calcite is negatively charged. The presence of the stearate and the 

variable pH levels, in addition to the reactions described above, make the 

mathematical modeling of the coating process almost impossible. 

The solubility of the stearates at room temperature is shown in Table 8. All show 

limited solubility at room temperature. Those stearate groups in solution are 

thought to form a mixture of free surfactant and micelles. Those that are not in 

solution form a liquid crystalline phase. The critical micelle concentration (CMC) 
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for an I8-carbon alkyl chain is very low. At higher temperatures, above the Krafft 

Temperature (56°C for an 18-carbon alkyl chain) the number of stearate groups in 

solution increases rapidly forming additional micelles. 

Calcium stearate formation can be imagined to take place either at the surface or 

in the solution. These reactions will be competitive and will be dependent on the 

effects and the availability of calcium and stearate ions as described above. The 

differentiation of the bound and the unbound stearate is most frequently achieved 

by solvent extraction 19. This does not allow accurate determination of the 

formation process. 

Attempts have been made to show the effect of the filler-matrix interaction by the 

adsorption of surfactants 86. This research was based on an industrial natural 

grade chalk. The use of this data in terms of generating a model for the formation 

of a coating in a calcite-water system is hazardous. Anionic and cationic 

surfactants showed different zeta potential adsorption profiles. Both surfactants at 

low concentrations generated negative zeta potentials whilst at higher 

concentrations the cationic surfactant generated a positive zeta potential possibly 

indicating the formation of a multi layer. When the fillers where compounded the 

tensile and flexural strength was found to increase to a maximum value. This 

maximimum corresponds approximately to the formation of a monolayer. The 

increase may therefore be interpreted in terms of the adhesion between the 

components. The impact strength was shown to vary only at high coating 

concentrations. This may be explained either as a result of the formation of a 

weak interface layer, which dissipates energy in the impact tests, or the formation 

of a toughened matrix layer generated by filler surface effects. 
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- - - -----------------

2.6.4.2 Non-Aqueous Phase Reaction 

A non-aqueous phase such as toluene does not allow ion dissolution or ion 

adsorption and as a result it forms a neutral medium under which the formation of 

calcium stearate can take place. Consequently the soluble acid forms the only 

mobile phase. The formation of calcium stearate is dependent on the rate of 

arrival of the stearate at the surface and the rate of reaction. This, unlike the 

aqueous phase reaction, is an entirely surface based reaction. 

2.6.4.3 Dry Coating Reaction 

This is again an entirely surface based reaction, although it is disadvantaged by 

the lack of mobility of the stearic acid in comparison to a non-aqueous phase 

process. As a result this process is often inefficient. 
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- - - - ---------

2.7 Filler Surface Characterisation 

The filler and its coating may be characterised in a number of different ways. The 

techniques may be divided into the following groups: 

• Spectroscopic & diffraction based techniques e.g. XPS, DRIFT, XRD, 

SEM 

• Calorimetery/Adsorption techniques e.g. FMC, rGC, BET 

• Classical techniques e.g. Gravimetry, acid extraction 

• Measurement of molecular mobility/mechanical properties e.g. NMR, 

Rheological properties, DMT A 

Alternatively these techniques may be described in terms of those that measure 

actual properties and those that measure specific interactions. 

Classical and spectroscopic techniques fall into the first category. Spectroscopic 

techniques were used initially to describe the structure of the bulk materials. As 

the techniques have developed and with the introduction of computers, the 

application of these techniques to interface and interphase analysis, has become 

important 87,88,89. 

Those techniques that measure specific interactions allow the effect of any surface 

modification to be analysed in terms of the chemical or physical effects. Analysis 

may be either chemical, physical or mechanical. 

The interaction of a probe molecule allows the change in the surface chemistry to 

be analysed. Flow microcalorimetry (FMC) allows the enthalpy change during 

the adsorption of a compound on to a surface to be measured 48. The enthalpy of 

adsorption, may then be considered in terms of the acidic and basic characteristics 

of the adsorbate. When used in conjunction with an HPLC detector the technique 

is also capable of determining the quantity of adsorbate 90. An alternative 'probe' 

technique is inverse gas chromatography (rGC) 91,92. In rGC a small quantity ofa 
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probe molecule is injected into a column of the material to be analysed. The time 

taken for the probe to elute the column, compared to that of a non-adsorbing probe 

is measured and is interpreted in terms of an interaction between the probe and 

surface of the material. A mathematical treatment can then relate this difference 

in elution time to the free-energy change in the adsorption process. IGC has been 

used to study the effect of stearic acid coating on calcium carbonate 19, in which it 

was shown that the energy of interaction was significantly reduced by coating. 

The surface energy was reduced to approximately that expected for stearic acid. 

Analysis of the molecular mobility of the polymer is achievable by a number of 

techniques, the most common being DMT A and DSC. The use of electron spin 

resonance (ESR) and solid state nuclear magnetic resonance (NMR) is becoming 

more widespread 93,94. Differences in relaxation times for bound and unbound 

polymer have been observed 95,96. The introduction of either oil or a molten 

polymer to the filler allows the physical interaction of the filler with the polymer 

to be studied. Not only can the packing fraction be determined 97,98, the 

rheological properties can also analysed as a function of frequency, temperature or 

composition. 

No one technique allows a complete understanding of the coating and its 

formation. It is only through a multi technique approach that a better 

understanding of the coating can be obtained. Only those techniques used in this 

work are further described in the following sections. 
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2.7.1 Electron Microscopy 

Electron microscopy techniques are widely used in the analysis of fillers and their 

interactions with polymers. When analyzing fillers, Scanning Electron 

Microscopy (SEM) provides an excellent method of visual analysis, whilst 

Transmission Electron Microscopy (TEM) provides an excellent method of high 

resolution 'profile' analysis. Both techniques allow limited elemental analysis . 

. The formation of a stearic acid coating on glass beads has been studied using 

scanning electron microscopy 99. These beads are orders of magnitude larger than 

the filler particles analysed in this thesis. 

These techniques become especially useful when we either want to try to 

understand the level of dispersion or try to understand the mode of composite 

fi '1 1,14 at ure . 

2.7.2 Classical Analysis 

Before the widespread use of electronic analytical instrumentation, measurements 

were based on either classical wet techniques, thermal or combustion analysis. 

The analysis of the somewhat impure starting fatty acid is also of great importance 
100 

Surface acid concentration was measured by dissolving the carbonate, followed by 

ether extraction and steam extraction. This technique, although providing a 

quantitative measure of the surface coating, is time consuming and has a low level 

of reproducibility. 

The use of thermal analysis is well documented. Both thermogravimetric and 

combustion analysis are widespread in the analysis of the decomposition of both 

organic and inorganic compounds. The quantities of physisorbed and 

h . b d kn ti . f I . 101,102 C emlsor e water are own to vary as a unctIOn 0 samp e preparatIOn 

and procedural variables 103. By taking this into account thermal methods have 

been used to analyse the modifier content of fillers modified with stearic acid 
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104 IOS. . 104 , and tttanate coatmg agents . 

The use of combustion analysis or carbon-hydrogen-nitrogen elemental analysis 

(CHN) has been reported 9,14. Treatment of experimental data relies on 

assumptions of substrate and material physical properties, and combustion 

reactions/products. 

2.7.3 Gas Adsorption Isotherm Analysis 

The study of the adsorption of a molecule on the surface of both porous and non

porous media is well established, and has been well reviewed 106,107. The 

relationship between the amount of gas adsorbed and the pressure at constant 

temperature is termed the adsorption isotherm. The majority of isotherms which 

result from physical adsorption may be grouped into five classes, as shown in 

Figure 15 and summarized by Table 10, which were originally classified by 

Brunauer, Deming, Deming and Teller 108. 
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I 11 

v 

Relative Pressure, pip. 

Figure 15 Gas adsorption, Type I to V isotherm classification 

Type Description Example 
I The approach predicted by Microporous solids, having relatively little 

the Langmuir isotherm. external surface, the limited uptake being 
governed by the accessible micropore volume, 
rather than by the internal surface area. 

11 Unrestricted monolayer- Normal form obtained from a non-porous or 
multi layer adsorption. macro porous adsorbent. 

III Multilayer formation. This occurs on solids for which the adsorption 
potential is low. This is not common, and is 
often characteristic of a non-porous system. 

. . 109 
e.g. mtrogen on Ice 

IV Analogue ofll, on porous Adsorption on porous materials, where the 
adsorbents. adsorption is limited by the volume of 

V Analogue of Ill, on porous mesopores. They reflect condensation 
adsorbents. phenomena and may show hysteresis effects. 

Table 10 Table summarising the gas adsorption isotherm classification 
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Pore size distribution and surface area measurements can be extracted from 

adsorption isotherms. The most common method for evaluating the surface area 

and pore size distribution is the adsorption of nitrogen at its boiling point, 77K. 

However, the results are extremely dependent on the model used to derive the 

distribution, which has resulted in many different modelling techniques. 

2.7.3.1 Langmuir Adsorption Isotherm 

Interpretation of the Type I isotherm must account for the fact that the uptake does 

not increase continuously as in the Type II isotherm. According to Langmuir 110, 

this type of phenomena can be generated if the pores are so narrow that they can 

only accommodate a single molecular layer and thus the plateau corresponds to 

the completion of this monolayer. 

The shape of the isotherm was explained using the' classical' Langmuir model. 

Langmuir used a kinetic derivation considering the dynamic equilibrium between 

the adsorbed layer and the bulk gas phase. By using the kinetic theory of gases, 

and the assumption that the gas is adsorbed only at points on the surface, with no 

lateral gas interactions, the fractional coverage of the surface may be calculated 

from, 

n b{P/pJ 
n", l+b{P/pJ 

Equation 20 

where; 

n is the number of atoms/molecules adorbed, 

n", is the number of atoms/molecules required to form a monolayer, 

p is the gas pressure, 

p" is the standard gas pressure, 

b is a constant and is related to the adsorption energy and is dimensionless. 

Page 77 



The Langmuir adsorption isotherm is a good approximation for adsorption on high 

energy surfaces at pressures below Po. 

2.7.3.2 BET Adsorption Isotherm 

Experimental physical adsorption isotherms have shown from the early days that 

adsorption did not normally stop at a monolayer and that multi layers where 

usually present at partial pressures of greater than around 0.1 108. 

In 1938 Brunauer, Emmett and Teller III derived a kinetic theory model that 

accounted for the localised multi layer adsorption at low vapor pressures, which is 

known today as the BET model. The model has also been derived by statistical 

thermodynamic methods In By considering the rates of condensation and 

evaporation of the individual layers the volume of gas adsorbed at specific partial 

pressures may be calculated from, 

v c{pl p.,) 
~= (1-p/p,'xI- plpo +c{plpJ) 

Equation 21 

where: 

v is the volume of gas adsorbed, 

v'" is the volume of gas required to form a monolayer, 

p is the gas pressure, 

Po is the standard pressure, 

c is a constant (defined in Equation 22). 

The value of c is given by: 

Equation 22 
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The term El - EL' the difference between the heat of adsorption in the first layer 

and the heat ofliquefaction, is known as the 'net' heat of adsorption. 

Both Langmuir and BET models may be used to calculate the surface areas 113 of 

the material if the volume occupied by a single molecule of the adsorbent gas is 

known. 

2.7.3.3 Surface Heterogeneity 

Various gas adsorption methods have been used in attempts to determine the 

distribution of adsorption potentials. Such a distribution will in part be dependent 

on the nature of the substrate, but there will also be an effect due to the nature of 

the adsorbate gas. In most cases to date the distribution of site energies is 

confined to the submonolayer region. In this region the adsorption or the ., .. 

fractional coverage can be considered to be a function ° of Q, P and T, where Q is 

an adsorption energy, P is the pressure and T is the temperature. The distribution 

of sites of energy Q may be considered as a distribution functionf(Q) dQ. The 

experimentally observed adsorption isotherm will be a function ° of P and T. 

And may be described as follows: 

~ 

alp, r)= fO(Q, P, r)/(Q)iQ 
o 

Equation 23 

There are in essence two approaches to solving this equation: 

• To calculate theoretical isotherms from postulated distributions, and then 

compare these with the experimental isotherm. This technique is limited 

by the previously determined adsorption parameters 114. 
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• To make successive approximations from the experimental isothenn and 

deduce the distribution 115,116,117. 

The common factor between both methods is the reliance of the method on the 

actual function used to describe the standard local adsorption isothenn. 
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2.7.4 Infrared Spectroscopy 

Infrared (IR) spectroscopy measures the absorption of infrared radiation by the 

sample due to bending, stretching or wagging vibrations ofthe molecular bonds. 

Quantitative analysis can be carried out according to Beer's Law. The intensity of 

the absorption is proportional to the concentration of the sample. 

1 
A = log -'!. = &cl 

1 

where: 

A is the absorbance, 

1 is the intensity, 

[; is the molar absorption coefficient, 

c is the concentration, 

I is the path length. 

Equation 24 

IR is quantitative only under certain circumstances i.e. assuming the geometry and 

optics are kept constant; and the intensity of the IR is within the linear range of the 

detector. 

2.7.4.1 FTIR Spectrometer 

Quantitative analysis of the filler coating is essential in understanding the role of 

the filler-polymer interface. Infrared spectroscopy is widely used in the analysis 

of polymers and fillers. Koenig 118 and Ishida 119 produced extensive reviews of 

the principles and applications of Fourier Transform Infra Red (FTIR) analysis of 

polymers. Compared with dispersion infrared which utilised gratings or prisms to 

disperse the radiation, FTIR has the advantage of being faster and more sensitive. 

To overcome the disadvantage of the dispersive system, where much of the energy 

is lost because of the scanning nature ofthe detection system, a Michelson 
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interferometer is used. A schematic diagram of a Michelson Interferometer based 

FTIR machine is shown in Figure 16. 

M ichelson Interferometer FT Analysis 

Detector 

" " Int • 
Sample \ 

Beam Splitter 1 Path Ilfference 

"\ ~ U Four~r 
~ Transform 

'I' 
............. .. 

Source of " Radiation • , Abs. 
Moloing. IR Trace 
Mirror 

rwbve mirror to 
create different Wavelength 

path differences 

Mirror 

Figure 16 Schematic diagram of a Michelson interferometer based FTIR machine 

The improved efficiency and radiation throughput (Jacquinot's advantage) result 

in a technique with a very high signal to noise ratio. This, in conjunction with 

faster rates of data acquisition due to the continuous analysis of all frequencies 

(Fellgett's advantage) and improved accuracy in the measurement of the 

wavelength (Conne's advantage) result in a system superior to previous dispersive 

IR systems. 

2.7.4.2 DRIFT Apparatus 

Diffuse reflection spectroscopy (DRIFT) is the preferred infra-red technique for 

studying organic coatings on inorganic powders. Using this technique infra-red 

radiation diffusely scattered from the surface of the sample is collected by an 
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elliptical refocusing mirror and passed to a detector (Figure 17). Steps can be 

taken to eliminate specular reflection 120. Functional groups present in the sample 

are identified from their characteristic absorption frequencies. The technique 

appears to have some surface specificity. 

Elliptical refocusing mirror 

Figure 17 Schematic diagram of a Spectra Tech Inc. diffuse reflectance infrared 

(DRIFT) cell 

When performing DRIFT experiments, the two components of the reflected 

radiation must be taken into consideration. If the diffuse and specular components 

are not taken into consideration the spectra cannot be analysed quantitatively. In 

high concentration analyses it was shown that a 'blocker vane' was required to 

eliminate all but the reflectance that had penetrated the sample, i.e. diffuse 

reflectance 120. High concentration samples also result in the intensity of the 

adsorption being outside the linear range of the detector. 

In order to ensure that the spectra can be quantitatively analysed, the powdered 

sample must be diluted in a non-IR absorbent material, i.e. KBr, KCI, NaCI. The 

shape and particle size of both the diluent and the sample is critical 119.121. The 

quantitative nature of DRIFT has been studied extensively and reasons have been 
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d fi d .. f I· . 119 reporte or eVJatlons rom meanty . 

2.7.4.3 DRIFT Theory 

Theories of DRIFT can be divided into two categories known as continuum and 

statistical 122. Both theories are based on the assumption that only the scattering 

centres of the sample analysed may adsorb radiation. 

Statistical models are based upon a summation of transmittances and reflectances 

from individual layers or particles. Thus, some assumptions must be made about 

the nature of these fundamental units, and the validity of the ultimate result will 

depend upon how closely these assumptions correspond with reality. Only the 

statistical models lead to expressions from which absolute absorbtivities and 

scattering coefficients can be calculated and related to the actual particle 

characteristics. 

Continuum models typically describe the scattering and adsorbing properties of a 

given medium in tenns of two phenomenolgical constants. These models may be 

regarded as varying levels of approximate solutions to the general equation of 

radiative transfer. 

In a dense scattering medium the interaction of the radiation fields can be 

considered in two parts: 

• Coherent part - largely due to the nearest neighbour interaction, this gives 

rise to the dispersion effects 

• Incoherent part - multiple scattering as a sum of the interactions 

throughout the entire medium 
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The basic concept of radiative transfer theory is that each volume element is 

irradiated by scattering from every other volume element. The equation of 

radiative transfer can be simply written as, 

Of = -KpliJx + jpiJx 

Equation 25 

where: 

131 is the change in intensity of the beam, 

-KpliJx is equal to the radiation lost due to adsorption and scattering, 

jpiJx is equal to that which in this direction from other directions, 

p is the density, 

K is the attenuation coefficient, 

j is the scattering function, 

iJx is the element of path length. 

A number of different models have been used to approximate the scattering of 

which the most common is the Kubelka-Munk continuum theory I iq. 

Kubelka-Munk theory is based upon a model in which the radiation field is 

approximated by two fluxes (1+ travelling from the sample surface, L travelling 

toward the illuminated surface). As radiation travels from the surface, its intensity 

is decreased by scattering and adsorption processes, which are assumed to be 

proportional to the thickness of the medium traversed. This is partially offset by 

scattering of the beam travelling toward the surface. The equation for the two 

beams is given by, 

OR , 
-=R -2aR+l 
SiJx 
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Equation 26 

Where S and K are phenomenological constants which describe scattering (S) and 

adsorption (K). 

I 
R - ---

I. 

Equation 27 

S+K 
a=--

S 

Equation 28 

This can be easily integrated from x = 0 to x = 00. Resulting in the well known 

Kubelka-Munk function F( R~). 

Equation 29 

2.7.4.4 Infrared Application 

Infrared is widely used in the analysis of both organic and inorganic compounds 

and the frequencies at which specific groups absorb are well documented 123,124. 

Both chemical species and chemical environment information can be obtained and 

this has been well documented 87,.11 '1 .• , •. --.. '". ':':" '.;" Before the invention of 

the modem FTIR most infrared analysis was aimed at the assignment of the 

specific vibrations in terms of their symmetry properties 125. 

The spectra obtained for the two fillers of interest have been reported. Uncoated 
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precipitated calcium carbonate values agree well with those cited in the literature 

fi I · 126,127 Th . I Id' d fi . h d 'd or ca cite . e expenmenta va ues etermme or magnesIUm y rOXI e 

. 128 129 are also m good agreement ' . 

The structure and the effect of the chemical environment on the IR adsorption 

frequency of the carboxylic acid / carboxylate group have been studied 130. 

The charge density of the metal ion has been shown to have an effect on the bond 

frequency 131,132. As the charge density of the metal ion increases the IR 

adsorption is found to move to a longer wavelength. 

The presence of electronegative substituents in the organic molecule, has been 

shown to result in a shift to a lower wave number 133. 

The effect of water on the 'external chemical environment' or the presence of 

hydrogen bonds 132,134 has been shown to result in lower stretching frequencies 

(lower wave number). 

The effect of the external physical environment, in particular the phase type and 

the packing will have an effect on the frequency of adsorption 132. The variables 

described above are inter-related and are not independent 

In summary it may be concluded that the effect of the sum of the variables 

described above will be visible in the position of the carboxylate adsorption. 

FTIR is now routinely involved in the analysis offillers l35
. It has been often been 

applied as a tool to study the surface hydration of minerals 136,137. The FTIR has 

generally been used in one of two modes. Either direct analysis of the filler by 

DRIFT 138,139,140 or by a 'dissolution method' 17. This 'dissolution method' 

works by comparing unreacted or unbound material dissolved in a suitable solvent 
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compared to a predefined calibration curve. 

DRIFT has shown that the coating reaction continues beyond that required to form 

one theoretical monolayer 141. This additional unbound coating has been shown 

to be removed when exposed to a solvent extraction 139. 
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2.7.5 X-ray Photoelectron Spectroscopy 

XPS is now a well established surface analysis technique providing quantitative 

elemental analysis (all elements except hydrogen) in the outer 2-5 nm of solid 

surfaces. In XPS the sample is irradiated with soft X-rays and the photoelectrons 

generated are collected and energy analysed to yield a spectrum. The 

photoelectron energy is directly related to the binding energy of the electron to the 

core level. 

K.E.=hu-BE.-0s 

where: 

K.E. is the kinetic energy of the photoelectron, 

h u is the photon energy, 

B.E. is the binding energy, 

o is the work function of the spectrometer. 
s 

- ... ~ ....... ~ .... .---- ~ or 2p 

~
---t.'--4.'------ Lt or 2s 

Photon .'" ~hotoelectron 
---=eOf-' ...... ~---- K or Is 

Figure 18 Schematic diagram of X-ray induced photoemission 

Equation 30 

High energy resolution spectra may be used to study the surface chemistry and 

identify the functional groups present at the surface in addition to providing the 

elemental composition. Since the technique provides quantitative data it is 

possible to relate the extent of coating measured by XPS to the mechanical 

properties of the composite. 
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2.7.5.1 XPS Apparatus 

X-ray photoelectron spectroscopy makes use of soft X-rays, generally Al Ka 

(1486 eV) or Mg Ka (1254 eV). These X-rays penetrate the material travelling 

approximately 7 !lm or more. As described in section 2.7.5 X-ray Photoelectron 

Spectroscopy, the X-rays will induce the photoemission of photoelectrons in the 

solid. Electrons generated through a photoemission process from a core level 

have a very short inelastic mean free path (IMFP) or attenuation length, so only 

those generated within 2-5 nm of the surface escape. Therefore the technique is 

extremely surface specific. A schematic diagram of the set up required for a XPS 

system can be seen in Figure 19. 

Vacuum System 
Energy Analyser 

Detector 
/ TT 

counts~ 
/ 

/ /Electron 

Sample Escape Depth 2nm 

Figure 19 Schematic diagram of an XPS system 

2.7.5.2 XPS Analysis 

XPS is a commonly used technique; its photoemission energies and the nature of 

chemical shifts are well documented. In the beginning, quantification was 

achieved by considering the composition averaged over the sampling depth by 

relating the intensities of those measured to those of bulk reference standards 142. 
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However, the need for the measurement of the outermost atomic layer has resulted 

in the need to consider more accurately the electron sampling depth. To a first 

approximation the electron sampling depth obeys a universal curve (A oc E If' ). 

Initially it was considered that the depth of analysis could be derived from the 

electron's inelastic mean free path (IMFP) and a knowledge of the sample 
143 geometry . This was later referred to as the effective attenuation length (EAL) 

144 

This approach was summarised, to make it one equation per situation; elements, 

inorganic compounds, organic compounds. The equations were applicable to 

electron energies between I to 10,000 eV. The predictions are significantly more 

accurate for electrons above 150 e V. A summary of the equations can be found in 

Table 11. 

Electron Source IMFP\"J) or EAV"'~J 

Element 538 ()If' AM = -,- + 0.41 aE monolayers 
E 

Inorganic Compound 2170 ()1/' . AM = 7 + 0.72 aE monolayers 

Organic Compound 49 If' AM = -, + 0.1 lE mgm·' 
E 

where a IS the monolayer thickness ID nanometers. 

Table 11 Summary of equations for electron inelastic mean free paths (IMFP) (as 

defined) 143 or effective attenuation length (EAL) 144 

These equations have allowed analysts to attempt to quantify overlayer thickness. 

The inelastic mean free path is an intrinsic property of the material under analysis. 

It is defined as the average of the distances measured along the trajectories, that 

particles of a given energy travel between inelastic collisions in a substance. This 

was soon considered to be inappropriate for overlay er thickness calculations. The 
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'attenuation length' (AL), was thought to be more appropriate. The use of ALs 

does allow a more accurate quantification of the system being studied in 

comparison to IMFP's. This is because the 'standard IMFP equations' (Table 11) 

do not consider the contributions of a number of secondary effects. The most 

notably being elastic scattering, as shown by Monte-Carlo simulations 145. The 

ALs are typically found to be 10-25% shorter than IMFPs 146. Semi-empirical 

equations have been developed 146 (CS 1 and CS2) that allow easy estimation of 

ALs in any solid over the energy range 100-2000eV. 

Matrix Attenuation Length Equation 

Lattice Parameter and Density Unkown Equation CS I (monolayers) 

AAL =0.160{ O'S[ t ) (4} Z' In E/27 +3 

Lattice Parameter and Density Known Equation CS2 (monolayers) 

AAl =0.316a
3
/
2
{ 045[ t ) (4} . Z' In E/27 + 3 

where a IS the monolayer thIckness III nanometers. 

Table 12 Summary of equations for attenuation lengths (AL) (as defined) 146 

These most recent equations have also generated great interest regarding thei~ 

validity. It was suggested that they did not consider the effect of photo-ionization, 

although recent work has shown that at an analysis angle of greater than sixty 

degrees, samples tend to show an insensitivity to anisotropy 144. Another 

shortcoming of these equations is that they do not allow for different levels of 

back scattering. This effect typically generates a 1-3 % variation in calculated 

film thickness (Important in Auger Electron Spectroscopy (AES». 

A great deal of further work has been done to calculate more accurately the IMFP 

of elements in pure solids 147. Alternative more complicated variations of these 

equations have been proposed by Bethe 148 and Tanuma et al. 149. (Equation TPP-
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2M). Recent work has also considered the effect of elastic scattering off nuclei 

IS0, and the use of the transport mean free path function (TrMFP) to describe it. A 

new term mean escape depth (MED) is introduced as a measure of surface 

specificity, and is defined as the average depth normal to the surface from which 

h 'fi d . I d" 144 t e specl le partlC es or ra latlOn escapes . 

The most accurate methods of calculating the attenuation length and the 

improvements in accuracy are unfortunately outweighed by other experimental 

considerations in overlayer thickness calculations. In the author's opinion at 

present the CS 1 and CS2 equations proposed by Cumpson and Seah 146 provide 

the best method for estimating attenuation lengths for practical analysis. 

Presently three methods are used. Two are based on the properties of the 

photoelectron emission, and the third is based on ion bombardment. Ion 

bombardment is known to result in the undesired effects such as preferential 

sputtering, atomic mixing and loss of chemical information. 

Ofthe two 'photoelectron emission' methods, estimation of the coating thickness 

is most easily achieved by the measurement ofthe relative intensity of the 

photoelectron peaks due to coating (ICOA TlNG) and substrate (ISUBSTRA Td. This is 

described in Section 4.5 XPS Results. The assumption that the attenuation lengths 

are the same in both the substrate and coating is only valid in a very few cases 151. 

Previous practical experimental estimates have failed to allow for a variation in 

attenuation length or sample geometry. Failure to allow for these factors may 

result in the answer being in error by a factor of two or more. 

If it is assumed that the coating is uniform over all the particles, the thickness can 

be estimated by considering the effect of the coating on the attenuation of the 

photoelectrons emitted from the sample. Two models have been investigated: 

photoemission from a coated flat sample and a coated sphere. These models may 

be considered to be the most extreme conditions for analysis. A true 
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representation of the sample geometry should lie somewhere between them. 

The alternative 'photoelectron emission' approach suggested by Tougaard 152, 

proposes that composition information may be obtained by studying the 

background shape of the peak. It is proposed that electrons originally excited at 

some depth in the solid lose energy on their way out to the solid surface. The 

peak shape in the measured energy spectrum is distorted as a result and the 

distortion depends on the path travelled. From this we may conclude that 

information on depth composition is contained within the region around the XPS 

peak. 
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2.7.6 X-ray Diffraction 

This is a widely used method for determining the structure of crystals. By 

directing a monochromatic beam of X-Rays at a crystal and then measuring the X

Ray reflections from the atomic planes, the arrangement of atoms in the crystal 

can be deduced. In essence: 

• X-rays are diffracted by each individual atom. 

• The combined effect of all the atoms in a single plane is to produce a 

reflected beam at the same angle to the crystal plane as the incident beam. 

• The reflections from similar planes should reinforce one another at certain 

angles. If this third condition is met, the following equation, known as 

Bragg's law, gives the angle of 'reinforced reflection'. 

The positions at which diffractions occur is given by Bragg' s law, 

nt.. = 2d sine 

where: 

n is the order of the reflection, 

A is the wavelength, 

d is the lattice plane separation. 
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Figure 20 Schematic representation of Bragg's law of the 'reinforced reflection' 

For a cubic lattice the unit cell dimension d is related to the interplanar (hid) 

spacing by the following equation where a is the lattice parameter. 

d= a 
.Jh' +k' +/' 

Equation 32 

Both magnesium hydroxide and calcium carbonate have hexagonal lattices. The 

unit cell dimension d is related to the interplanar (hkl) spacing by the following 

equation where a is the lattice parameter. 

. , it' (, hk k' ) it' , 
Sill Bhkl =--, h + + +--,/ 

3a 4c 

Equation 33 

X-ray diffraction is used in two ways; single crystal or powder. By using a 

powdered sample it is assumed that we have all planes available for reflection. By 

altering the angle of incidence to the sample different intensities of X -ray are 

reflected. This variation of intensities can be recorded as a function of B. The 
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intensities corresponding to different angles may be assigned to different planes. 

From this assignment values of the lattice parameter (a) can be calculated. Tables 

of lattice parameters and their corresponding planes can be used to identifY the 
153 compound . 

Previous work has shown 154 that some crystalline magnesium stearate was 

detected in magnesium stearate coated magnesium hydroxide (5 monolayer). 

Diffraction analysis of magnesium stearate is common as it used extensively as a 

lubricant not only in the plastics industry, but also in the pharmaceutical industry. 

Analysis of the magnesium stearate form on its chemical, physical and lubricant 

.. . 155,156 X R d'ffi' h b h properties IS extensIve . - ay I ractlOn patterns ave een s own to 

vary as a function of water content, preparation method and mechanical treatment. 

2.7.7 Dynamic Mechanical Analysis (DMA) 

Materials respond to an applied stress or strain by dissipating energy in the form 

of heat (viscous dissipation), storing the energy elastically, or through a 

combination of these two mechanisms. Dynamic mechanical testing makes it 

possible to measure both of these properties. 

The dynamic mechanical method assesses the structure and properties of solids 

and viscoelastic liquids via their dynamic moduli and damping. In particular, 

changes in these parameters are studied as a function of temperature and applied 

frequency. The method has great sensitivity in detecting changes in internal 

molecular mobility and in probing phase structure and morphology. 

When a sinusoidal stress is applied to a 'perfectly' elastic solid the deformation 

and hence the strain, occur exactly in phase with the stress. However, when 

applied to a polymer, when some internal molecular motion is occurring in the 

same frequency range as the impressed stress, the material responds in a 

viscoelastic manner and the strain response lags behind the stress. 
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Figure 21 Schematic representation of the response of viscoelastic material to an 

applied sinusoidal stress 

The mode ling 157 of the viscoelastic response of the material is considered in 

terms of a combination of perfectly elastic and perfectly viscous responses. 

Hooke's law is used to describe the elastic or 'spring' like component, and 

Newton's law is used to describe the viscous or 'dashpot' like component of the 

viscoelasticity. The most common viscoelastic models consider the 'spring' and 

'dashpots' either in series (Maxwell model) or parallel (Voigt model). These 

enable the retardation time (Voigt model - the time taken for the strain to reach 

(I-lie) of the equilibrium value) and the relaxation time (Maxwell model- the 

time taken for the stress to decay to lie of the original value) to be analysed. The 

ability to analyse the time-dependence of the retardation and the relaxation at 

different temperatures enables the effect known as the time-temperature 

superposition principle to be observed. This ability to compare a frequency to a 

temperature is described by the universal Williams-Landel-Ferry equation (WLF 

equation). 

The techniques of thermal and dynamic mechanical analysis are combined in a 

technique known as Dynamic Mechanical Thermal Analysis (DMT A). A loss 

peak in the temperature plane occurs when the frequency of a motional process 
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coincides with the impressed (measurement) frequency. This peak may be used to 

characterize the molecular mobility 158. 

This technique detects the changes in internal molecular mobility of the polymer 

chains. As a result, this technique is ideal for detecting the individual effects of 

the components within the composite, and the interaction of the components. 

The causes of the variations in the molecular mobility of the polymer chains in the 

composites are summarised in Table 14. 

. 159160161 In DMT A the followmg can be defined • . . 

Symbol Title Description 
E* Dynamic Young's modulus This is the sum of the resolved, in and out 

of phase modulus components of the 
strain. (E* = E' + iE") 

E' Storage modulus Is the elastic response and corresponds to 
completely recoverable energy. 

E" Loss modulus Is the viscous response corresponding to 
energy lost through internal motion. 

tan 0 Loss tangent Is the tangent of the loss angle (tan 0). 
This is dimensionless and is equal to the 
ratio of energy lost (dissipated as heat) to 
energy stored per cycle. 

Table 13 Summary of dynamic mechanical analysis terms 
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Type Cause Description 
Internal Wetting The level of contact between the two phases. 
Internal Adhesion The adhesion between the two phases. 
Internal Dispersion The distribution of the two phases. 
Internal Composition The composition will alter the number/type or molecular 

distribution ofthe phases. 
External Production The type of processing, can effect all the internal 

parameters. 
External Thermal History The rate of cooling or heating can effect the 

crystalisation and the orientation of the polymer chains. 
External Chemical The presence of small molecules, e.g. solvents. These 

Environment can act as plasticisers or 'lubricants' in composite 
system. 

External Physical The temperature and/or additional external sources of 
Environment energy can alter the mobility of the molecules. 

Table 14 Summary of parameters affecting the mobility of polymer chains in 

composites 

All the external parameters may be said to define the extent to which the internal 

parameters occur, although they themselves do not alone determine the internal 

parameters. When attempting to analyse the effects of one ofthe internal causes 

for a difference in the internal molecular mobility it is important to ensure that all 

the other variables remain constant. The application of dynamic mechanical 

thermal analysis to the study of polymer composites is widespread 161,162. 

Different modes of mechanical vibration enable a wide number of materials to be 

d · d 162 stu le . 

As discussed in section 2.5.5.1 Bound Matrix Fraction, the quantity of polymer in 

the 'interphase region' is small. As a result, variations in the external parameters 

must be kept to a minimum. An understanding of the interactions and the 

I· .. f h' . d 163,164,165 'f d" f ImItatIOns 0 t e eqUIpment are reqUIre 1 an accurate etermmatlOn 0 

the results is to be achieved. 
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Initial analysis of the mechanical properties of filled composites )66 indicated a 

discrepancy between theoretical predictions and experimental results. The 

models of Einstein and Guth discussed in section 2.5.4 Engineering Models were 

shown to be unable to explain the observed results. For the interpretation of these 

results, where it is assumed that no interaction of the two phases, the following 

b 'd d )67 may e cons) ere . 

where: 

Oc is the damping factor of the composite, 

Op is the damping factor of the polymer, 

o F is the volume faction of the filler. 

Equation 34 

A simple correction factor B has been applied to this to allow for a bound region. 

B is related to the effective thickness of the interphase layer. 

Equation 35 

where B is given by, 

Equation 36 

where R is the radius ofthe dispersed particle and !!.R is the thickness of the 

bound layer. 
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Some results of the analysis of the interfacial interactions have shown promising 

results 168. Composites were made from chlorinated polyethylene (CPE) and 

rutile fillers with differing acid base properties. The thickness ofthe bound layer 

was estimated to increase as the bascicity or acidity of the filler increased. A 

neutral filler was still seen to have a bound layer. From this it may be concluded 

that acid-base interactions are not the only interactions to result in a bound layer. 

A maximum thickness was found to exist, suggesting that the acid-base 

interactions only affect the polymer up to a certain distance from the surface of the 

filler. 

As discussed in section 2.5.5.1 Bound Matrix Fraction, the analysis of a high 

surface area filler will show a larger effect. On the analysis of a composite of 

polyethylene glycol and a high surface area silica an increase in Tg was detected 
169 This phenomenon has subsequently been modelled in terms of an interphase 

170 The mode ling ofthis theory has shown that for glass sphere filled high 

density polyethylene (HOPE), the immobilised layer is smaller at higher 

temperatures 171. The surface treatment of the glass spheres with a coupling agent 

was also seen to raise the temperature at which the maxima of the loss tangent 

occured. 

The effect of the filler on the crystallization process of the polymer in composites 

has been investigated. It has been shown that in the case of polypropylene (PP) 

and silica, the level of crystallinity increases as the filler size decreases 172. A 

broadening of the loss peaks were assumed to occur as a result of the generated 

grain boundaries of the composite or the crystalline boundary in the pure PP. The 

coating of magnesium silicate with n-decylaldehyde in a PP matrix was observed 

to increase the level of crystallinity above that observed for the untreated silicate 
173 

The analysis of calcium carbonate filled polyethylene has taken place although the 

I . I' 174 resu ts were mconc uSlve . In all work mentioned (except reference 168, 
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where the author acknowledges or although does not comment further) the authors 

have failed to take into account or have not indicated whether the parameters in 

Table 14 remain constant. 

i 
~ 

! , 
'J 

Figure 22 Mechanical head of a PL-DMT A showing the essential features of 

sample mounting, vibrator system and transducer 
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Figure 23 Dual cantilever clamping of small rectangular bar sample 
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Chapter 3 Experimental 

3.1 Experimental Coating 

The precipitated calcium carbonate (PCC) grade selected was the uncoated 

Winnofil product supplied by Solvay Specialty Chemicals formally Zeneca 

Resins, The nitrogen BET surface area of this filler was of approximately 

20 m2g-l . 

The magnesium hydroxide grade selected was the Premier Periclase DP393. This 

grade is manufactured from sea water by a precipitationlrecrystallisation process. 

The nitrogen BET surface area of this filler was approximately 13 m2g- l
• A 

particle size of 0.75 ,urn (d-50) was measured using a Coulter counter 14. 

Two grades of stearic acid were used. The Sigma-Aldrich SLR grade (99 %) was 

used for the bulk coating process, and the Sigma-Aldrich grade (99.9+ %) for the 

laboratory based process. A BDH (purifed grade) sodium stearate was also used as 

an alternative to stearic acid in the coating process. 

3.1.1 Coating Levels 

Coating levels are defined as fractions of a monolayer, as defined in Section 2.6.1 

A 'Monolayer' Coating using the specific surface areas given in Section 3.1 

Experimental Coating. 

3.2 Experimental Preparations 

A number of experimental techniques have been used in the preparation of coated 

filler particles. 
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3.2.1 Wet Coating Preparations 

3.2.1.1 Ammonium Stearate Coating 

Stearic acid neutralised with excess ammonia was used to coat the sample. The 

wet coating method is based as much as possible on the industrial preparation 

technique used by Zeneca Resins. 

For the large-scale manufacture of samples an aqueous slurry of calcium 

carbonate particles was placed in a water bath at a fixed temperature and coating 

material added. For the laboratory scale production of samples the slurry was 

dried and ground to determine the exact quantity of filler to be used. 

The reaction process is summarised in Figure 24. 

Addition of preprepared 
stearate solution at 60 
QC, added over a 5 
minute period 

200ml CaC03 
slurry 

Reacted at constant 
speed for 30 minutes, 
then washed and 
filtered 

Constant 
temperature 
water bath 

Figure 24 Diagram of apparatus and timings used in the preparation of coated 

calcium carbonate samples 

3.2.1.2 Stearic Acid Coatings 

Coatings formed from stearic acid were prepared in the same way as in section 

3.2.1.1 Ammonium Stearate Coating, except that the stearic acid was added 

directly to the reaction vessel. 
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3.2.1.3 Sodium Stearate Coating 

Coatings formed from sodium stearate were prepared in the same way as in 

section 3.2.1.1 Ammonium Stearate Coating, except that the sodium stearate was 

added directly to the reaction vessel. 

3.2.2 Organic Solution Coating Preparations 

Previous experiments have shown 19 that an alternative wet coating route to the 

production of a coated PCC is available. The process of stearic acid adsorption is 

slow and equilibrium at 30°C is obtained after around 24 hours. In this system 

two forms of adsorption take place; physical adsorption and chemical adsorption. 

The two types have been differentiated by the use of a hot toluene extraction. The 

physical adsorption follows a type 11 adsorption isotherm, suggesting the 

formation of multi layers at high concentrations. The chemical adsorption follows 

a Langmuir type isotherm, indicating the formation of a monolayer of stearate. 

This route has been used to produce the organic solution coated PCC samples. 

3.2.3 Dry Coating Preparations 

The dry coating proccess is widely used industrially where the coating is added to 

the filler after production. Small scale dry coating was carried out in a Waring 

Blender 14. The stearic acid is added to the blender over a period of five minutes. 

Heating takes place only after the acid has been added. The sample was heated to 

a maximum of95 °c at a speed of7000 rpm. Variation in temperature ofthe 

vessel was monitored and can be seen in Figure 25. 
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Figure 25 Variation in processing temperature as a function of time for the Waring 

blender (External Heat - 10 minutes onwards, Speed 3 - 7000RPM). 

3.2.4 Polymer Composite Preparation 

Polymer composite samples were produced using EVIPOL SH6520, an 

unplasticised polyvinylchloride (uPVC). To produce a 'ideally' filled polymer 

composite the coated and uncoated filler powder must be dispersed to a similar 

extent. Comparative mechanical analysis can only take place on identically 

dispersed composites. 
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Stage 1 

FaJer + THF 

ULTRASONIC BATH 

5 minutes 

Stage 2 

Filler + THF + uPVC 

HOT WATER BATH 
SOoC 

15 minutes 

Stage 3 

Filler + THF + uPVC 

HOT WATER BATH 
80De 

approx. 2 hours 

Stage 4 

Filler + THF +uPVC 

FILM CAST 

Figure 26 Schematic diagram of the 'ideal' polymer composite production process -.. 

It is hoped that a 'ideally filled' uPVC polymer has been produced by the 

dispersing of the filler in THF. The agglomerates in the filler powders have been 

removed by the use of stirring and an ultrasonic bath. The uPVC was then 

dissolved in the THF - filler mixture at 60°C, uPVC was added at a rate of 

approximately 0.5 g s·'. Incorporation was improved by the use of further stirring. 

After 15 minutes the water bath was raised to 80°C. THF was evaporated until a 

known volume of polymer remained. The paste was then cast and excess THF 

removed in an oven at 50°C for 24 hours and then a vacuum oven at 80 °c for 24 

hours. 

Cast composite samples were then preheated to 90°C for 10 minutes and pressed 

using a FTIR constant thickness press at 120°C for 10 minutes. On removal of 

the press containing the composite, the constant thickness maker was cooled for 

20 minutes using tap water, and then the pressed composite removed. DMT A test 

pieces were then cut from the pressed composite. Every effort was made to 

ensure a similar thermal history for each set of polymer composite samples. 

The reaction process was tested to ensure that no side reactions or coating loss 

was incurred during the composite production process. 
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3.3 Experimental Analysis 

3.3.1 Electron Microscopy 

Electron microscopy was employed to quantitatively assess the shape, size and 

degree of agglomeration of the filler samples. The samples were viewed using 

three different electron microscopes. 

3.3.1.1 Scanning Electron Microscopy 

Calcium carbonate samples were analysed at ICI Wilton using a high resolution 

Hitachi S4000 FEG-SEM. Magnesium hydroxide samples were analysed using a 

Jeol JEM-l OOCX transmission electron microscope (TEM) in the scanning mode 

by F. Page from IPTME, Loughborough University. In both cases samples were 

mounted on aluminium stubs and gold sputtered to reduce sample charging. 

3.3.1.2 Transmission Electron Microscopy 

Calcium carbonate samples were analysed at ICI Wilton using a Philips 400 FEG

TEM. Transmission electron micrographs were then analysed using computer 

based image analysis to allow the particle size distribution to be determined. 

3.3.2 Thermal Analysis 

3.3.2.1 CHN Experimental Analysis 

Carbon Hydrogen Nitrogen (CHN) elemental analysis was carried out on a Perkin 

Elemer 2400 CHN analyser in the Chemistry Department, Loughborough 

University by A. Daley. Complete combustion of the flammable matter occurs at 

900 QC in a pure oxygen atmosphere. 

3.3.2.2 Thermogravimetric Experimental Analysis 

Tests were carried out using a Mettler TGA-50 linked to a TC-ll processor. Data 

was analysed using the T A-72 software. All tests were carried out in Zeneca, 
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Lostock. The test procedure was carried according to a test protocol developed 

by Zeneca 175 This protocol relies on a two stage heating process. The first in 

which water is removed, and the second in which the quantity of calcium stearate 

is calculated. 

3.3.3 Gas Adsorption Isotherm Analysis 

Nitrogen adsorption isotherms were measured using a Micromeritics ASAP 

20 I OC Analyser. Samples were analysed after outgassing for 24 hours at 383 K. 

Weighed samples of calcium carbonate were prepared by outgassing for a 

minimum period of 24 hours at 110 QC on the degas ports of the analyser. 

Adsorption isotherms were generated by dosing nitrogen (>99.99 % purity) onto 

the adsorbent contained within a bath of liquid nitrogen at approximately 77 K. 

3.3.4 Infrared Spectroscopy 

3.3.4.1 DRIFT Experimental 

Infra-red spectra were recorded on a Nicolet 20 DXC spectrometer with a 

Spectratech diffuse reflection attachment. Samples were dispersed in ground 

spectroscopic grade KBr prior to analysis. The sample loading was I % by weight 

in the KBr. The same batch of ground KBr was used for all samples to keep 

particle size consistent. The average particle size was in the region of 20 microns. 

Diffuse reflection spectra can be used quantitatively, but samples must be 

prepared and the results interpreted with care. The infra-red spectra obtained 

depend strongly on the shape and size of the powder particles used and the size of 

the diluent particles. One practical problem is that it can be difficult to achieve the 

same degree of dispersion of the coated and uncoated filler in the KBr. To 

achieve a sufficient level of dispersion, samples were shaken for six periods of 5 

minutes. 

Interpretation and spectra manipulation was achieved using the Nicolet OMNIC 
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software. Water vapour detected in the sample spectra was subtracted, using 

water vapour standards created using the background KBr. All spectra have been 

obtained in absorbance units, and converted to Kubelka-Munk units after water 

vapour subtraction. 

To get a measure ofthe coating achieved the absorbance indicative of the coating 

can be related to the amount of material present. In the case of calcium carbonate, 

an uncoated sample must be subtracted from the coated spectra, to remove the 

background absorbance. The extent of subtraction required was determined by the 

removal of the calcite (2650-2400 cm· l
) peak from the resultant spectrum. The 

area under the C-H band (3000-2800 cm· l
) can then be effectively ratioed to that 

under the carbonate band (2650-2400 cm·I). In the case of magnesium hydroxide 

the area under the C-H band (3000-2800 cm-I) can be ratioed to that under the 

hydroxide band (3750-3600 cm-I). 

3.3.5 X-Ray Photoelectron Spectroscopy 

Samples of powder were placed in a sample tray for XPS analysis. Spectra were 

recorded on a VG ESCALAB spectrometer using Al Ka (1486 eV) radiation. 

Pass energies of lOO and 20 eV were used for the broad scan and high resolution 

spectra respectively. Binding energies are referenced to adventitious carbon at 

284.6 eV. 

Peak area and composition analysis was made using the in-house XPS Data 

System V2.2, high resolution curve fitting was completed using XPSPEAK 

shareware software designed by Raymund Kwok. Curve positions were fixed 

relative to the adventitious carbon peak and were fitted with a 15% Lorentzian

Gaussian curve, 

Quantification was achieved by measurement of peak area after subtraction of a 

Shirley type background, with appropriate corrections made for photoelectron 

. 176. I' fi h 143 I .. 177 cross-sectIOns , me astlc mean ree pat s , energy ana yser transmission 
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and angular asymmetry in photoemission 178 when required. Re-analysis by XPS 

of several samples after the initial analysis showed no significant changes in 

surface composition, indicating that no significant radiation damage had occurred. 

3.3.6 X-Ray Diffraction 

X-ray diffraction patterns were collected using a Phillips X50 diffractometer 

operating with copper K-alpha radiation. The diffraction data were collected over 

a period of 40-60 minutes using a 2 e step of 0.02 degrees between 2 to 40 

degrees. Data evaluation was performed using Hilton Brookes software. 

3.3.7 DMTA Experimental Analysis 

Dynamic mechanical responses to forced oscillations were measured using a 

Polymer Laboratories - DMT A MKIII analyser. The samples were analysed using 

a small bending frame in the dual cantilever mode, with a free sample length (L) 

of 5 mm. Responses are measured at three frequencies, 0.1, 1, 10Hz. The test 

samples were prepared as described in section 3.2.4 Polymer Composite 

Preparation. 

Page 113 



Chapter 4 Results 

4.1 Electron Microscopy 

Electron microscopy of the samples has enabled the detennination of the particle 

morphology and particle size distribution. Scanning electron microscopy of 

composite materials is mainly limited to composite failure mode analysis. 

However it is able to provide a valuable insight into the geometric nature ofthe 

primary particles. Transmission electron microscopy provides an excellent way to 

analyse the particle size distribution of the filler, and also the distribution of the 

filler within the composite. 

4.1.1 Calcium Carbonate 

Samples analysed by scanning electron microscopy and transmission electron 

microscopy are not those used in the coating and mechanical analysis. The 

samples used in the experimental analysis in this thesis are comparable to the 

'good' samples shown in Figure 27. 

4.1.1.1 Scanning Electron Microscopy 

The primary particulates produced by precipitation shown in Figure 27, are 

spherical or cuboid in nature. This particulate (Iow L:D) ratio is maintained on 

coating (Figure 28). 
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Figure 27 Scanning electron micrograph of precipitated calcium carbonate 

Figure 28 Scanning electron micrograph of ammonium stearate coated 

precipitated calcium carbonate 
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4.1.1.2 Transm-ission Electron Microscopy 

The resolution obtainable through transmission electron microscopy (TEM) is 

approximately 10-100 times, that can be achieved by scanning electron 

microscopy. This increase in resolution is balanced against a loss in three 

dimensional spatial resolution (depth of field). 

Transmission electron micrographs (Figure 29) of the filler enable an exact 

particle size distribution to be calculated (Figure 31). 
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Figure 29 Transmission electron micrograph of precipitated calcium carbonate 

(Scale 1:150,000) 
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Figure 30 Transmission electron micrograph of badly precipitated calcium 

carbonate (Scale 1: 150,000) 
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Figure 31 P_article size analysis of transmission electron micrograph of 

precipitated calcium carbonate 
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Figure 32 A comparison of transmission electron micrograph particle size analysis 

distributions of 'good' and 'bad' precipitated calcium carbonate 

Further analysis of these distributions (Table 15) enables the direct validation of 

other experimentally determined phenomena e.g. BET surface area. Variations in 
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the experimental analysis of the surface area of the filler by gas adsorption and 

BET analysis can be explained in terms of the particle size distribution. 

Parameter Good 
Sample 

Mean Radius (run) 35.57 
Mean Diameter (run) 71.14 

Surface Area (m"/g) (calculated from average radius) 31.12 

Surface Area (m"/g) (calculated from individual radius) 28.51 

Surface Area (m"/g) (experimental BET estimation*) 25.0 

* Smgle Pomt BET analysIs 

Bad 
Sample 
58.51 
117.02 

18.92 

12.83 

17 

Table 15 Particle size analysis of transmission electron micrograph of precipitated 

calcium carbonate 

4.1.2 Magnesium Hydroxide' 

4.1.2.1 Scanning Electron Microscopy 

A scanning electron micrograph of the filler (Figure 33) has been used to 

determine magnesium hydroxide filler shape. This filler may be described as . 

being made up of 'plate like agglomerates' with a particle size typically below 
14 

1,um . 
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Figure 33 SEM photo-micrograph showing uncoated magnesium hydroxide (Scale 

1 :20,000) 

4.1.2.2 Transmission Electron Microscopy 

The complex shape and particle size distribution of the magnesium hydroxide, 

renders the analysis of the filler by TEM inappropriate. 
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4.2 Thermal Analysis 

Thermal analysis tools allow the analysis of the quantity of coating material 

present on the coated filler. Neither of the thermal tools used showed the location 

of the coating. The tools do provide excellent, quick, semi-quantitative tools for 

the analysis of the stearate coating. 

4.2.1 CHN Analysis 

CHN analysis is a tool that enables the overall calculation of the quantity of 

coating present in the system to be calculated. 

4.2.1.1 Calcium Carbonate 

Both carbon an~hydrogen concentrations from CHN results can be used to 

analyse the coated material. 

Analysis of hydrogen data is the most simple. Data can be easily interpreted in 

terms of the coating material. Analysis ofthe carbon contained within the 

carbonate of the filler is more difficult. The carbon detected from the carbonate 

must be subtracted ifan accurate measure of the coating is to be made. If the 

composition of the coating and the filler is the same as their empirical formulae, 

and they undergo complete decomposition, the coated filler would be expected to 

generate the results shown in Figure 34. 
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Figure 34 Theoretical CHN decomposition profile for stearic acid coated calcium 

carbonate (assuming empirical composition) 

The theoretical decomposition is based on the empirical formula of calcium 

carbonate i.e. 12 % of the weight of the atoms present in the molecule are due to 

carbon. In experimental analysis of uncoated calcium carbonate this value is 

calculated to be 11.7 %. In modeling the data this figure is used to subtract the 

carbon produced by the decomposition of the calcium carbonate from the total 

carbon produced during the decomposition of the coated filler. 
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Figure 35 Coating level estimation by carbon CHN analysis of stearic acid coated 

calcium carbonate 

The results of the carbon CHN analysis are shown in Figure 35. Analysis of the 

carbon data can be made by either the subtraction of carbonate carbon by an 

estimation based on the empirical formula of calcium carbonate (Theory (12 0.;0 

carbon», or by an experimentally determined values (Adj. Theory (11.7 % 

carbon». 

The results of the hydrogen CHN analysis are shown in Figure 36. Two 

calculations have been made. One is based on the assumption that all the hydrogen 

detected is the result of the coating, the other is based on a constant amount of 

hydrogen (0.1 % (the result of water» being subtracted from the total hydrogen 

detected. 
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Figure 36 Coating level estimation by hydrogen CHN analysis of stearic acid 

coated calcium carbonate 

4.2.1.2 Magnesium Hydroxide 

Both carbon and hydrogen CHN results can be used to analyse the coating 

material. Analysis of the hydrogen data is less accurate, and must also undergo 

subtraction to account for the hydrogen contained in the hydroxide. 

The coatings estimated by the analysis of the carbon detected are shown in Figure 

37. 
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Figure 37 Coating level estimation by carbon CHN analysis of stearic acid coated 

magnesium hydroxide 

4.2.2 Thermogravimetric Analysis 

The thermogravimetric technique developed by Zeneca for the quality control of 

the production plant coating was applied to a number of laboratory and batch. 

production samples. This technique consists of a two stage heating process, and is 

described in further detail in Section 3.3.2.2 Thermogravimetric Experimental 

Analysis. This technique indicates that coatings produced by dry coating the 

sample often result in the presence of acid. 

4.2.2.1 Zeneca Batch Coated Samples 

The analysis of coatings by thermogravimetric methods produced by the 

ammonium stearate method, are shown in Figure 40. No acid was detected by this 

technique in the range of samples analysed. Examples of the thermogravimetric 

analysis are shown in Figure 38 and Figure 39. 
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Figure 40 Coating level calculated by thermogravimetric analysis of ammonium 

stearate coated calcium carbonate 

4.2.2.2 Sodium Stearate Coated Samples 

The analysis of coatings produced by the sodium stearate method using 

thermogravimetric methods are shown in Figure 41. A decomposition in the first 

heating phase, with a profile similar to stearic acid was detected by this technique 

for a sample with a coating level of 4 monolayers (this was determined to be 

approximately equivalent to 3700 ppm stearic acid). 
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Figure 41 Coating level calculated by thermogravimetric analysis of sodium 

stearate coated calcium carbonate. 

4.2.2.3 Stearic Acid Coated Samples 

The analysis by thermogravimetric methods of coatings produced by the stearic 

acid method are shown in Figure 42. These samples displayed a greater scatter 

than those seen in other TO analysis (Figure 40 & Figure 41). A decomposition in 

the temperature range normally expected for stearic acid was detected by this 

technique for a sample with a coating level of 0.75 monolayers (this was 

determined to be approximately equivalent to 8200 ppm stearic acid). 
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Figure 42 Coating level calculated by thermogravimetric analysis of stearic acid 

coated calcium carbonate 

4.2.2.4 Dry Stearic Acid Coated Samples 

Thermogravimetirc analysis can be easily used to identify the presence of 

unreacted stearic acid. When precipitated calcium carbonate is dry coated with 

sufficient stearic acid to produce a I monolayer coating. Approximately 15 % is 

found not to have reacted to form calcium stearate. The thermogravimetric trace 

for a sample coating stearic acid and calcium stearate can be seen in Figure 43. 
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4.3 Gas Adsorption Results 

Analysis of gas adsorption data is usually done using either the BET or Langmuir 

models. Both the BET and the Langmuir models, assume the adsorption of a gas 

on a homogeneous surface. For a partially coated filler we know this to be untrue. 

Ifwe assume the high surface energy (CH) has a c constant of580 and the low 

surface energy surface (cd a c constant of20 the adsorption isotherms shown in 

Figure 44 would be expected (These values were experimentally calculated.). 
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Figure 44 Calculated BET adsorption isotherms for a uncoated, partially coated 

and coated filler 

If these isotherms are then analysed using the BET equation, allowing the volume 

of gas required to form a monolayer (Vm) to remain constant for all samples, then 

the partially coated sample is calculated to have a c value of 58. The relationship 

between the level of coverage and the calculated c value is not a linear 

relationship. 
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4.3.1 Dual BET Adsorption Isotherm Theory 

As discussed, the homogeneous energy or single site adsorption model is 

inappropriate for the analysis of partially coated fillers. As a result the single site 

adsorption models has been expanded to a dual site model to take into account 

heterogeneous nature of the surface. 

4.3.1.1 Single Site Adsorption 

The BET equation for a single energy site is written as, 

Equation 37 

where 

V is the volume of gas adsorbed, 

Vm is the volume of gas required to form a monolayer, 

P is the gas pressure, 

Po is the standard pressure, 

c is a constant (defined in Equation 22). 

This is rewritten in a linear form as: 

P 1 c-l P =-+--.-
v(Po - p) Vmc Vmc Po 

Equation 38 

From this the Vm (cm3.g' l ) and the cconstant can be calculated. From this 

information the surface area and the latent heat of adsorption of the first layer can 
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be calculated. 

Equation 39 

where 

V.? = 24790cm3mar' is the volume occupied by 1 mole of gas at 1 bar pressure at 

298.15K, 

NA = 6.022xI0 23 mar' is Avogadros constant, 

0= 0.1620nm 2 is the molecular cross section of nitrogen. 

(EA-Cd/HT 
c=e 

where: 

EA is the latent heat of adsorption of the first layer, 

Ev is the latent heat of vaporisation of the adsorbate in the liquid state. 

4.3.1.2 Multi Site Adsorption 

Equation 40 

We consider a mixture of high and low energy sites on discrete bodies and neglect 

lateral interactions of adsorbed molecules. The model assumes there is adsorption 

at specific energy sites, or that the adsorption at each site is a function of surface 

energy, temperature and pressure. 

For two different energy sites, there are two different c constants, CH and CL, for 

the high and low energy sites. The fraction of high energy sites is defined as H 

and the fraction oflow energy sites is known as L. We can rewrite the amount 

adsorbed at a relative pressure in terms of the sum of the fractional coverage of 
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each site. 

v 
v;" 

Equation 41 

If the sum of the sites is given as H + L = I, then the fractional coverage oflow 

energy sites is given as, 

v CH(;') 

L= 

--

(1-(;')).[1 +(cH -1).(;')] V .. 

c1.(;.) cH(;.) 

(1-(;.)HI+k -1).(;')] 
-

(1-(;') HI +(CH -1).(;')] 
Equation 42 

The fractional level of coverage L can also be described as the level of coverage 

or the coating coverage. 

The determination of the fraction of the total number of sites that is of a specific 

energy can be achieved by allowing the developed model to estimate all variables, 

or to restrict the number of variables, and specify either theoretical or 

experimental constants. In this work we have chosen to use the values of the 

constants determined by experimental means. 
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The value of Vm used in the experiments was measured from the single BET 

adsorption isothenn analysis of an uncoated calcium carbonate sample. The value 

of the c constant corresponding to the high energy site (CH) 580 was calculated at 

the same time. A fully coated sample was used to calculate the value of the c 

constant corresponding to the low energy site (Ct). The c constant was calculated 

using the Vm calculated earlier and was found to equal 22. 

4.3.2 Dual BET Adsorption Isotherm Validation 

BET isothenn assumes no lateral interactions of the gas molecules that are 

adsorbing on to the surface. From this we may assume that it is not possible to 

detennine the exact surface coating configuration using gas adsorption data alone. 

A partially coated filler can be experimentally compared to a mixture of coated 

and uncoated fillers. The coating equivalence is described in Figure 45. 

--
4x1/4 = 

()() 
00 
2x112+(2xO) 

--
= 

eo 
00 

1x1+(3xO) 

Figure 45 Diagramatic representation of the 'coating equivalence'. A partially 

coated filler can be experimentally compared to a mixture of coated and uncoated 

fillers 

From this we may conclude that the dual BET adsorption isothenn model 

proposed can be tested by fitting the proposed adsorption isotherm model to 

measured adsorption isothenns of mixtures of coated and uncoated calcium 

carbonate. 

When this is done and the isothenns fitted using a least squares regression 

analysis, the following results are obtained 
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Figure 46 Validation ofthe dual BET adsorption isotherm model using mixtures 

of coated and uncoated calcium carbonate 

By using regression analysis and the dual BET adsorption model, we are able to 

show that the fraction of coated material in the analysed mixture can be estimated. 

The fit of the expected and estimated values for the level of coverage L is almost 

perfect. 

4.3.3 Calcium Carbonate - Sodium Stearate Coatings 

Using the dual adsorption isotherm approach the level of coverage of the coating 

material added to the filler can be estimated. 
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Figure 47 Figure showing the level of coverage calculated for fillers coated with 

different amounts of sodium stearate using the Dual Adsorption BET Isotherm 

From this we may conclude that the 'complete' coverage of the filler by the 

coating material occurs when enough coating material is added to form 0.6 

theoretical monolayers. 

For this type of coating system the model will fail above a coating coverage of I. 

It does not take into account the 'alternative' locations of the additional coating 

material in the system and the effect of this on the initially specified constants. 
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(1700 cm-I) can be detected if it is present. 
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Figure 48 DRIFT spectra of stearate coated and uncoated calcium carbonate 

On the precipitated calcium carbonate particles used detection limits of 0,05 of a 

monolayer and less can be achieved, For a single monolayer coating the 

measurement has a standard deviation of2%, 

The intensity of the C-H vibrations of the alkyl chains can be seen visually to 

increase as a function of the amount of coating material added (Figure 49), 
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Figure 49 Quantitative DRlFT for ammonium stearate coated calcium carbonate 

showing the increase in C-H bands with coating level 

4.4.1.1 Ammonium Stearate 

Coating the surface using ammonium stearate gives rise to new bands at 2800 -

3000cm· l
. This can be assigned to C-H vibrations in the alkyl chain of the 

stearate. No signals attributable to ammonium ions are detected and the presence 

of absorption at 1580 cm·1 indicates the coating has reacted on the surface to 

produce calcium stearate. No unreacted stearic acid (1700 cm· l
) could be 

detected. 

By comparing the intensities ofthe peaks that are a direct result of the coating 

(Section 3.3.4.1 DRlFT Experimental) a measure of the extent of coating can be 
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achieved. The ratio of the peaks measured in absorbance units is shown in Figure 

50. 
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Figure 50 Effect of the quantity of coating material added (as ammonium stearate) 

on the FTIR absorbance ratio (C-H band (3000-2800 cm· l
) divided by the 

carbonate band (2450-2650 cm-I» 

When working in the DRIFT mode, Kubelka-Munk units are commonly used as 

an alternative to absorbance units. Both Kubelka-Munk and absorbance ratios are 

seen to increase linearly as a function of the coating material added. 
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Figure 5 I Comparison of the absorbance and Kubelka-Munk ratios calculated 

during FTIR analysis (C-H band (3000-2800 cm-I) divided by the carbonate band 

(2450-2650 cm-I» 

4.4.1.2 Sodium Stearate 

Coating the surface using sodium stearate gives rise to new bands at 2800-3000 

cm-I which may be assigned to C-H vibrations in the alkyl chain of the stearate. 

No residual stearic acid (1700 cm-I) could be detected. 

By comparing the intensities of the peaks that are a direct result of the coating 

(Section 3.3.4.1 DRIFT Experimental) a measure of the coating can be achieved. 

The intensities of the absorbance ratios are shown in Figure 52. The variation in 

the FTIR absorbance ratio as a function of the coating material added is a 

constant. 
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Figure 52 Effect of the quantity of coating material added (as sodium stearate) on 

the FTIR absorbance ratio (C-H band (3000-2800 cm-I) divided by the carbonate 

band (2450-2650 cm-I» 

Sodium stearate is partially soluble in water. Over a fixed period of time (30 

minutes) the coating produced is seen to vary as a function of the coating 

temperature .. 
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Figure 53 Effect of temperature on the FTIR absorbance ratio (C-H band (3000-

2800 cm-I) divided by the carbonate band (2450-2650 cm-I» produced when 

sufficient sodium stearate is added to produce a coating equivalent to a monolayer 
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4.4.1.3 Stearic Acid Coatings 

Coating the surface with stearic acid gives rise to new bands at 2800-3000 cm-I, 

which may be assigned to C-H vibrations in the alkyl chain of the stearate. 

Unreacted stearic acid (1700 cm-I) could be detected in those samples produced at 

room temperature. 

By comparing the intensities of the peaks that are a direct result of the coating 

(Section 3.3.4.1 DRIFT Experimental) a measure of the coating can be achieved. 

The intensities ofthe absorbance ratios are shown in Figure 54. 

When stearic acid is added at different temperatures, the level of the organic 

matter increases as the temperature increases. Unreacted stearic acid is visible at 

temperatures below that ofthe melting point of the stearic acid. 
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Figure 54 Effect of the quantity of coating material added (as stearic acid) on the 

FTIR absorbance ratio (C-H band (3000-2800 cm-I) divided by the carbonate band 

(2450-2650 cm-I)) 
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4.4.1.4 Zeneca Ammonium Stearate Coatings 

Large batch samples (I kg) of coated calcium carbonate where produced using the 

Zeneca facilities at Lostock. The level of stearate detected is seen to increase as a 

function of the coating material added in the coating process. It is known that 

during the batch coating procedure different levels of coating can be measured if 

samples are collected at different sample 'run-off times (different positions in the 

reaction vessel). 
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Figure 55 Effect of the quantity of coating material added (as ammonium stearate) 

on the FTIR absorbance ratio (C-H band (3000-2800 cm-I) divided by the 

carbonate band (2450-2650 cm·I» when produced on a batch scale 

4.4.1.5 Stearic Acid Dry Coated 

As discussed in Section 2.2.3.1 Coating Methods, stearate coatings are often 

produced by a dry coating procedure. The FTIR spectra of the dry coated filler 

(Figure 56) is similar to that of the wet coated filler (Figure 48), except that close 

inspection of the spectra indicates a residual stearic acid peak (approximately 

1700 cm·I). This is discussed further in Section 4.4.1.9 Comparison Of Coating 

Peaks. 
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Figure 56 DRIFT spectra of dry stearate coated and uncoated calcium carbonate 

4.4.1.6 Sodium Stearate Blended 

DRIFT analysis is sensitive to the location of the stearate within the system. To 

test this sodium stearate was blended (mixed with no heating, just shaking) with 

precipitated calcium carbonate, and then analysed. As expected, the blended 

samples had a lower level of absorbance when compared with the wet coated 

samples. This can be seen in Figure 57. This would indicate that FTIR has some 

surface specificity. 
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Figure 57 Diagram showing the FTIR absorbance ratio of a sodium 

stearate/calcium carbonate mixture compared to a wet coated sodium stearate 

sample 

4.4.1.7 Comparison Of Wet Coating Methods 

A number of methods have been used in attempts to produce a stearate coating. 

When a comparison of the FTIR absorbance ratios is made for the same level of 

stearate addition (1 monolayer) a variation in the absorbance ratio measured is 

detected (Figure 58). 
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Figure 58 Comparison of stearate coatings produced by different methods 

measured by FTIR absorbance ratio (C-H band (3000-2800 cm-I) divided by the 

carbonate band (2450-2650 cm-I» 

It has been found that under the same controlled laboratory conditions the sodium 

and ammonium stearate preparations produce the same absorbance ratio and were 

found to be the most efficient methods. 
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Figure 59 Comparison of the FTIR absorbance ratios (C-H band (3000-2800 cm-I) 

divided by the carbonate band (2450-2650 cm-I)) produced, by the varying 

quantities of sodium and ammonium stearate added 

4.4.1.8 Comparison Of Coating Material Peaks 

To aid in the assignment of the characteristic coating peaks the coating materials 

have been analysed (Figure 60). The environment of the carbonyl group can be 

seen to have a profound effect on the position of the peak. Ammonium stearate 

has been manufactured but exists in equilibrium with stearic acid. 
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Figure 60 DRIFT spectra of different coating compounds. (please note peak sizes 

are not comparable (SA = Sigma Aldrich» 

4_4.1.9 Comparison Of Coating Peaks 

One of the principal advantages of FTIR is the high signal to noise ratio in the 

spectra which allows spectral subtraction to detect weak absorbances. The 

characteristic stearate peaks are obscured by a fundamental stretching frequency 

of the calcium carbonate. This fundamental band can be subtracted allowing the 

resultant spectrum to be analysed. Example subtraction spectrum can be seen in 

Figure 61 . A summary of the peak positions can be found in Table 16. 
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Figure 61 Comparison of the carbon-oxygen bond absorption frequency as a 

function of the stearate coating process 

1500 

Similar peak structures can be seen at different coating levels within each coating 

technique. Different peak positions signify either diiferent physical or chemical 

environments. The main bond type investigated is the carbonyl bond 

characteristic of the acid and the stearate. The different environments may be due 

to the change in the nature of the calcium ion; free or surface bound, hydrated or 

unhydrated. The environment of the coating can be modified (Figure 62). 
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Figure 62 Comparison ofthe carbonyl bond absorption frequency for different 

coating conditions 
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Figure 63 Comparison of the sodium stearate coated calcium carbonate, C=O 

bond absorption frequency, as a function of the washing process 
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In the case of a high coated sodium stearate sample (4 monolayer), the loss of 

peak shape due to the further drying can attributed to the change in water of 

crystallisation. Washing in dichloromethane (DCM) probably results in the 

removal of unbound calcium stearate. With this information an attempt at an 

analysis of the peak structure can be made (Table 16). 

A summary of the main sharp peak positions can be seen in Table 16. Using this 

table a number of peaks that occur as a result of the different coating processes 

can be identified. Other peaks may be obscured, as a result of the main peaks 

being more intense . 
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Table 16 Summary of IR characteristic peaks of coating materials and coated 

precipitated calcium carbonate samples 
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By comparing peaks that are characteristic of the particular coating processes with 

the reactants and th-e reference materials it is possible to propose chemical 

assignments to the peaks. These proposed assignments are discussed in Section 

5.4.2. 
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4.4.2 Magnesium Hydroxide 

4.4.2.1 Sodium Stearate 

Coating the surface using sodium stearate gives rise to new IR absorption bands at 

2800-3000 cm", These may be assigned to C-H vibrations in the alkyl chain of the 

stearate, Signals that could be attributed to sodium stearate (1553 cm") are not 

detected, The presence of an absorption at 1578 cm" indicates the coating has 

reacted to produce magnesium stearate, 

The experimental values obtained for the magnesium hydroxide agree well with 

the literature values 128,129, 
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) 

Figure 64 DRIFT spectra (4000 - 1000 cm") of sodium stearate coated and 

uncoated magnesium hydroxide 

Studying samples by DRIFT results in the analysis of bulk, surface and coating 

chemistry, Spectral subtraction works effectively if the chemistry of the filler and 

the coating remains unaltered during the coating process, If a bond is formed 
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between the surface of the filler and the coating, the coated filler will not exhibit 

these characteristics. The surface chemical characteristics of the filler can be said 

to have changed. 
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Figure 65 DRIFT spectra (2000 - 1000 cm-I) of magnesium carbonate, sodium 

stearate coated and uncoated magnesium hydroxide, and the resultant spectral 

subtraction 

In Figure 65 peaks at 1484 and 1423 cm-I in the uncoated sample are not present 

in the coated sample. The absence of these peaks in the coated spectra will give 

rise to negative data points in the spectral subtraction of these regions. These 

peaks are indicative of magnesium carbonate being present in the uncoated filler, 

but not in the coated filler. As this is a surface reaction it is thought that the 

carbonate species consumed in the coating process is are surface specific species. 

Diffuse reflection spectra can be used quantitatively but samples must be prepared 

and the results interpreted with care. The infra-red spectra obtained depend 

strongly on the shape and size of the powder particles used and the size of the 

diluent particles. One practical problem is that it can be difficult to achieve the 

same degree of dispersion of the coated and uncoated filler in KBr. It is necessary 
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to establish whether the technique can be used quantitatively for the filler coating 

system studied. In some instances it is convenient to take ratios of peaks, one 

characteristic ofthe coating and another characteristic of the powder. 

In Figure 66 the area under the C-H band (3000-2800 cm-I) has been ratioed to 

that under the hydroxide band (3750-3600 cm"). The linear increase in both 

formats is only applicable to thin coatings. At higher coating levels linearity 

would not necessarily be expected. 
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Figure 66 DRIFT ratio analysis of sodium stearate coated magnesium hydroxide 

(C-H band (3000-2800 cm") divided by the hydroxide band (3750-3600 cm-I)) 
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4.5 XPS Results 

XPS offers the user a high level of surface specificity and chemical selectivity 

(see Section 2.7.5 X-ray Photoelectron Spectroscopy). If the location of the 

coating is unknown a multi technique approach can be used to solve this problem. 

This level of specificity enables the user to determine if the coating is present at 

the surface and how thick the coating is. The chemical selectivity enables the user 

to gather some data that can indicate the type of coating. 

To utilize XPS to its fullest potential, the system to be analysed must first be 

evaluated and modelled if appropriate, to enable maximum knowledge to be 

extracted from the data. 

In the analysis of the XPS data as discussed in Section 2.7.5 X-ray Photoelectron 

Spectroscopy the CS2 approximation of the attenuation length has been used as 

the most appropriate method for the calculation of the attenuation length 146. 

The following values have been calculated using an MS Excel template. 

System Stearate Coating on Calcium Carbonate 
Source Al Al Al Al Al Al 
Photon Energy 1486.6 1486.6 1486.6 1486.6 1486.6 1486.6 
Element C C 0 C C 0 
Level Is 2p Is Is 2p Is 
Binding Energy 287 347 531 287 347 531 
Material Coating Coating Coating Calcite Calcite Calcite 
Density 777 777 777 2710 2710 2710 
RMM of Matrix 284.48 284.48 284.48 100.09 100.09 100.09 
E 1199.6 1139.6 955.6 1199.6 1139.6 955.6 
A 0.8472 0.8472 0.8472 0.3944 0.3944 0.3944 
AL (a) 44.1 42.7 38.1 20.6 19.8 17.5 

Table 17 Summary of attenuation length calculated using the CS2 equation 146 

used in the coating thickness analysis of stearate coatings on calcium carbonate 

(calcite) 
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System Stearate Coating on Magnesium Hydroxide 
Source AI AI AI AI AI 
Photon Energy 1486.6 1486.6 1486.6 1486.6 1486.6 eV 
Element C Mg 0 Mg 0 
Level Is 2p Is 2p Is 
Binding Energy 287 90 531 90 531 eV 
Material Coating Coating Coating Brucite Brucite 
Density 777 777 777 2360 2360 kgm-3 

RMM of Matrix 284.48 284.48 284.48 58.33 58.33 Amu 
E 1199.6 1396.6 955.6 1396.6 955.6 eV 
A 0.8472 0.8472 0.8472 0.3450 0.3450 
IMFP (a) 44.1 48.9 38.1 23.2 17.5 A 

Table 18 Summary of attenuation length calculated using the CS2 equation 146 

used in the coating thickness analysis of stearate coatings on magnesium 

hydroxide (brucite) 

System Stearate Coating on Magnesium Oxide 
Source AI AI AI AI AI 
Photon Energy 1486.6 1486.6 1486.6 1486.6 1486.6 
Element C Mg 0 Mg 0 
Level Is 2p Is 2p Is 
Binding Energy 287 90 531 90 531 
Material Coating Coating Coating Periclase Periclase 
Density 777 777 777 3580 3580 
RMM of Matrix 284.48 284.48 284.48 40.31 40.31 
E 1199.6 1396.6 955.6 1396.6 955.6 
a 0.8472 0.8472 0.8472 0.2654 0.2654 
IMFP (a) 44.1 48.9 38.1 18.2 13.7 

Table 19 Summary of attenuation length calculated using the CS2 equation 146 

used in the coating thickness analysis of stearate coatings on magnesium oxide 

(periclase) 
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4.5.1 XPS Thickness Models 

4.5.1.1 Geometric XPS Theory 

The intensity of a photoelectron peak is given by 

where: 

I A is the intensity of the photoelectron peak, 

X is the X-ray flux, 

fJ A is the photoelectron cross section, 

r A angular asymmetry parameter, 

T(EJ is the transmission function of the spectrometer, 

n A is the number density of atoms of type A, 

Equation 44 

x is the depth perpendicular to the surface from which the electron escapes, 

A A is the electron escape depth, 

B is the take off angle. 

This assumes the sample has a uniform composition as a function of depth, and 

that there is equal illumination of the sample by the X-rays. 

4.5.1.1.1 Flat Model 

A general description of the intensities of photoelectrons emitted from the 

substrate and coating at take-off angle e can be developed. 
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Photoelectron Emission 

Figure 67 Diagram representing the photoemission from a flat coated surface 

The intensity of the coating is given by 

Equation 45 

where; 

le is the intensity of the coating from photoelectron peak per unit area of surface, 

Ac is the attenuation lengths of the photoelectron in the coating, 

n, is the number density of coating atoms present in the coating, 

d is the thickness of the coating. 

On integration this gives 

which equates to 
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Equation 47 

The intensity of the substrate through the coating is given by 

Equation 48 

where; 

Is is the intensity of the substrate photoelectron peak per unit area of surface, 

As is the attenuation length of the photoelectron in the substrate, 

n, is the number density of substrate atoms present in the substrate, 

Asc is the attenuation length of the substrate element in the coating, 

d is the thickness of the coating. 

On integration this gives 

which equates to 
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Combining Equation 47 and Equation.50 gives the general equation for the 

analysis of coating thickness of a coated flat substrate at take off angle B. 

Equation 51 

In the case of no coating on a flat surface Equation 50 reduces to 

Equation 52 

4.5.1.1.2 Spherical Model 

Photoelectron Emission 
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r 

Figure 68 Diagram representing the photoemission from a coated sphere 
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To analyse the photoelectron emission from the sphere one must consider the 

emission in the direction of the analyser. As can be seen from the diagram this 

results in different take off angles from the surface. As a result we must consider 

rings of radius r, on a sphere of radius R. The intensity of the photoemission from 

the sphere is then the sum of the intensities of the emissions from the rings in the 

direction of the analyser. 

The relationship between the radius of the rings and the radius of the sphere is 

given by 

r 
-= cosB 
R 

The area of the ring is given by 

ARlNG = 2nr x R.dB 

Substitution of Equation 53 in Equation 54 gives 

A
R'NG 

= 27rR 2 cos B.dB 
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Figure 69 Diagram representing the photoemission of the infinitely small ring 

A ring of infinitely small area can be considered to be flat. Therefore the intensity 

ofthe emission from the coating, on a surface at a take off angle e, is given by the 

combination of Equation 47 and Equation 55. The total intensity of the coating is 

given by 

d )).COSB.dB 
Ac sinB 

Equation 56 

The total intensity of the emission from the substrate, at a take off angle e, is 
given by the combination of Equation 50 and Equation 55. The total intensity 

from the substrate is given by 

K 

frow 
= XCTsYsT{Es )nsAs·27rR' fSinB.cosB.exp( d ).dB 

Asc sinB 

Equation 57 
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Combining Equation 56 and Equation 57 gives the general equation for the 

analysis of coating thickness on a coated sphere 

j 7VTAL 
C 

In the case of no coating on a sphere Equation 57 reduces to 

o 

On integration this gives 

Which reduces to 

Equation 58 

Equation 59 

Equation 60 

Equation 61 

This is the same as Equation 52, except the area subtended in Equation 61 is a 

circle (trR'). 

Page 168 



4.5.1.2 'First' Generation Models 

The following equations have been used to estimate the layer thickness; for the 

flat model (Equation 62) (assuming normal take off from the flat surface) and for 

the spherical model (Equation 63). 

If the photoelectrons characteristic of the substrate and coating are ofa similar 

nature Equation 51 and Equation 58 can be reduced to give, 

I 10TAI, 
C 
1()1'A.l. 

Is 

Equation 62 

H 

AcIsinB.cosB.(I-exp(- ~ )).dB 
" Ac smB 

" , . (d ) As JsmB.cosB.exp - . .dB 
" Ac smB 

Equation 63 

The first generation model allows coating thickness calculations when the relative 

sensitivity factors of elements are unknown. This can be achieved by generating a 

theoretical graph on which the intensity ratio calculated can be interpreted in 

terms of the coating thickness (d). 

4.5.1.3 'Second' Generation Models 

In the 'second' generation model we attempt to take into account the systems in 

which the two elements analysed are of different binding energies. 
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Equation 62 and Equation 63 are only valid for the analysis of two chemically 

shifted peaks of the same energy, one each from the coating and substrate. The 

equations must be modified to take into the other factors shown in Equation 44. 

The following equations have been used to estimate the layer thickness; for the 

flat model (Equation 64) (assuming normal take off from the flat surface); for the 

spherical model (Equation 65). 

Equation 64 

jTOTAI. 
C 

H 

As ISinB.cosB.exp( d. ).dB 
o Asc smB 

1UrAI. 
Is 

Equation 65 

4.5.1.4 'Third' Generation Models 

In the 'third' generation model we attempt to take into account the systems in 

which the two elements analysed are of different binding energies, and one of the 

elements analysed is present in both the substrate and the coating. 

Equation 64 and Equation 65 must be modified if the element used in the coating 

is also present in the substrate. A simple formula of the photoemissions can be 

applied. 
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1 COATING ELEMENT I COAl1NG + I(COATlNG IN SUBS'TRATE)-COAT 

ISUBSTRATE _ELEMENT J SUBSTRATE 

Equation 66 

Equation 64 and Equation 65 can then rewritten as 

n A exp(-~) ss, 
ASC 

Equation 67 

[[
ncAe ~sino.cosO.(I-exp(- ~ )).dO] + [nCSAes ~sino.coso.exp( ~ ).do]l 

o Ac smO 0 Ae smO 

K 

2 • (d) nsAs JsmO.cosO.exp - . .dO 
o Ase smO 

Equation 68 

where: 

nes is the number density of the element characteristic of the coating in the 

substrate, Aes is the attenuation length of the element characteristic of the coating 

in the substrate. 
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4.5.1.5 'Fourth' Generation Models 

4.5.1.5.1 'Fourth' Generation Model Extended (Part 1) 

The 'second' and 'third' generation equations assume that the signal comes from a 

uniformly coated sample. At low levels of coverage this cannot be true. The 

intensity of a photoelectron peak ratio is not only dependent on the parameters 

listed in Equation 44, but it is also dependent on the area of analysis. A modified 

set of equations is required. In this model we attempt to take into account the 

systems in which the substrate is partially coated and the two elements analysed 

are of different binding energies. 

When XPS is used in conjunction with a technique capable of determining the 

fractional coverage (Dual BET Isotherm) further information can be obtained. 

Path of photoelectrons to 
be analysed 

Figure 70 Diagram showing the origins of photoelectron peaks analysed using the 

simple flat and spherical models 
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Fractional Surface Coverage L 

Path of phl~toelelctrlllHS 

Figure 71 Diagram showing the origins of photoelectron peaks analysed using the 

fourth' generation (part I) flat and spherical models 

Similar models can be drawn for the spherical surface. In the case of the spherical 

model shadowing effects of the coating on the substrate peak are neglected. 

This model is an extension of the 'second' generation model. The 'second' 

generation equations can be further rewritten if the level of sample coverage is 

taken into account. Simple coverage theory can be summarised in Equation 69. 

ICOA1'_TOTAL 

I.'wB.\'TRATE _ TOTAL = L(J SUB'TRATE-COAT ) + (1- LXI SUB.ITRATE ) 

Equation 69 

where the intensities J are the unit area intensities. When this summary is 

reapplied to the simple flat (Equation 64) and spherical models (Equation 65) 

equations can be rewritten. 

Combining Equation 64, Equation 52 and the simple coverage theory gives 
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lCOATlNG 

ISUBSTJUTE 

Equation 70 

Combining Equation 65, Equation 61 and simple coverage theory gives 

17VTAl
• L[nCAC fSino.cosO{I-exp( Ac~no )}dO] 

COA71NG (J' c r cT(Ec) 

I.~~~;:iuTE = (J'srJ(Es ) '-L--;[-nS-A-'S~' "-uS-S-in-o-.-co-s-o-.e-x-p-(--d-.--)-.d-O']-+-(-I--L--')-nS-A-
S 

AscsmO 2 

Equation 71 

4.5.1.5.2 'Fourth' Generation Model Extended (Part 2) 

The 'second' and 'third' generation equations assume that the signal comes from a 

uniformly coated sample. At low levels of coverage this cannot be true. A 

modified set of equations is required. In this model we attempt to take into 

account the systems in which the substrate is partially coated and the two elements 

analysed are of different binding energies and one of the elements analysed is 

present in both the substrate and the coating. 

This model is an extension of the 'third' generation model. When the simple 

coverage theory (Equation 69) is applied to the 'third' generation models, 

Equation 67 and Equation 68 must be rewritten. 
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Path of photoelectrons to be analysed 

I(COATING ELEMENT IN SUBSTRATE) I(COA TlNG ELEMENT IN SUBSTRA TE)-COAT 

ISUBSTRATE ISUBSTRATE -COAT 

Figure 72 Diagram showing the origins of photoelectron peaks analysed using the 

'fourth' generation (part 2) flat and spherical models 

Simple coverage theory (Equation 69) when applied to the 'third' generation 

models must be expanded. When expanded Equation 72 is obtained 

I COAT 1UrAL 

1 SUBS7RATE _roTA/' 

L(ICOATING + J(COATING HEMENT IN SUBSTRATE)-COAT)+ (1- L)J(COAl1NG ELEMENT IN SUBSTRATE) 

Equation 72 

Combining Equation 72 and Equation 67 gives 
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J COATING _ELEMFflT 

I SUBSTRATE _ ELEMENT 

Combining Equation 72and Equation 68 gives 

7urAL 
iCOA71NG _ EI.PME."NT 

JTOTAI. 
.\'UR\'1RATE _ ELEMENf 

----------------------------

Equation 73 

Equation 74 

The effect of partial coverage on the XPS ratio and the estimate coating thickness 

can be seen in Figure 73 and Figure 74. The coating coverage can be seen to have 

most effect on the flat model. 
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Figure 73 Effect of the fractional coverage on the 'fourth' generation flat model 

XPS carbon/carbon ratio 
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Figure 73 Effect of the fractional coverage on the fourth' generation flat model 

XPS carbon/carbon ratio 
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Figure 74 Effect of the fractional coverage on the 'fourth' generation spherical 

model XPS carbon/carbon ratio 
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4.5.1.6 Effect of Density 

The results of the data are open to interpretation, as a number of the parameters 

are based on semi-quantitative estimations. There are two parameters that fall into 

this class. The effect of the density on the model is shown in Figure 75. 

XPS Ratio 4 

D 0-1 

2 

1 

o 

. 1-2 

Depth(A) 

0 2-3 0 3-4 0 5-6 

o 

'" 

Figure 75 Graph showing the effect of coating density on the thickness estimated 

from a carbon/carbon XPS ratio calculated for the flat model 
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Figure 76 Graph showing the effect of coating density on the thickness estimated 

from a carbon/carbon XPS ratio calculated for the spherical model 

As can be seen from Figure 75 and Figure 76, the effect of density can be quite 

pronounced. For a flat model, if the density used is 800 kgm -3 and the thickness is 

calculated to be 20 A, and the coating is 1000 kgm -3 the estimation would have 

been incorrect by approximately 20 %, the correct answer would have been 16.5 

A. For a spherical model, if the density used is 800 kgm-3 and the thickness is 

calculated to be loA, and the coating is 1000 kgm -3 the estimation would have 

been incorrect by approximately 20 %, the correct answer would have been 8 A. 

Page 180 



4.5.1.7 Effect of Escape Depth 

The effect of the method used to calculate the attenuation length can also effect 

the thickness of the coating that calculated (Figure 77). For example if we use the 

method proposed by Seah 143 to calculate this figure the values are some 10-25 % 

higher than that calculated by Cumpson 146. 

o 

'" 

20 

15 

~ 10 
Cl) 
Cl. 
X 

5 

o ......... 

o 

.. , .... ----
10 

,-,-.... t.... .." 

20 

" ,-
" ,,-" 

30 

, 

, 

" ,,,#,## 

" 

40 50 

Coating Thickness (A) 

____ AL - Flat Ratio 

__ AL Spherical Ratio 

IMFP - Flat Ratio 

__ IMFP Spherical 
Ratio 

Figure 77 Effect of method used to calculate the escape depth of a photoelectron 

(IMFP 143 or AL 146) 
• 

As can be seen Figure 77, the effect of escape depth chosen can be quite 

pronounced. For a flat model, if the AL was used and the thickness is calculated 

to be 20 A, and the IMFP provided a better estimation the answer would have 

been 26 A. For a spherical model, if the AL was used and the thickness is 

calculated to be loA, and the IMFP provided a better estimation the answer 

would have been 13 A. 
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4.5.1.8 Model Summary 

The models described in Section 4.5.1 XPS Thickness Models are summarized in 

Table 20. 

Model Title Description Example 
'First' Generation Simple geometric model, based on CaC03 - Substrate 

one element present in different (C analysed) 
chemical forms in the coating and Stearate - Coating 
substrate. (Makes use of high (C analysed) 
resolution XPS data.) 

'Second' Generation Extension of 'first' generation Mg(OH)z - Substrate 
model, but uses two elements (Mg analysed) 
exclusive to the substrate or Stearate - Coating 
coating. (C analysed) 

'Third' Generation Extension of 'second' generation CaC03 - Substrate 
model, but takes into account the (0 or Ca analysed) 
presence of the coating element in Stearate - Coating 
the substrate. (C analysed) 

'Fourth' Generation Model takes into account partial Mg(OH)2 - Substrate 
(Part I) coverage of a substrate by a (Mg analysed) 

coating normally analysed using a Stearate - Coating 
'first' or 'second' generation (C analysed) 
model. 

'Fourth' Generation Model takes into account partial CaC03 - Substrate 
(Part 2) coverage of a substrate by a (0 or Ca analysed) 

coating normally analysed using a Stearate - Coating 
'third' generation model. (C analysed) 

Table 20 Summary ofXPS models 
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4.5.2 Calcium Carbonate 

Once a system has been modelled the experimental work and the analysis of that 

data begins. The treatment of XPS data is complicated as only specific models 

can be used in the analysis of calcium carbonate. The models that can be used are 

summarized in Table 20. 

4.5.2.1 Ammonium Stearate Coatings 

Broad scan spectrum of stearate coated calcium carbonate allows the elemental 

analysis of the sample. In the analysis of ammonium stearate coated calcium 

carbonate, no nitrogen due to the ammonium can be detected. No nitrogen peaks 

-at 400 e V can be seen in Figure 78. -
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Figure 78 Broad scan XPS spectra of ammonium stearate coated and uncoated 

calcium carbonate 
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4.5.2.2 Sodium Stearate Coatings 

The broad scan XPS spectra of sodium stearate coated calcium carbonate is 

identical to that of ammonium stearate coated calcium carbonate. No residual 

sodium can be detected following the coating process. 

4.5.2.2.1 Sodium Stearate Coatings and the Geometric 

Model 

The geometric model is the simplest method for analyzing XPS data. Thickness 

data is not extracted, only atomic composition. The trends of rapidly increasing 

carbon content until approximately 0.6 monolayer has been added can be seen in 

Figure 79. 
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Figure 79 Atomic composition calculated by XPS of a precipitated calcium 

carbonate filler coated with sodium stearate 

This type of analysis is good for the analysis of homogeneous materials where 

Page 184 



composition does not vary as a function of depth. The coated filler is by nature 

non-homogeneous material, with the level of coating varying as a function of 

depth. 

This analysis is able to give an indication of the increasing carbon content at the 

surface of the material as the level of coating material added is increased. 

4.5.2.2.2 Sodium Stearate Coatings and the First 

Generation Model 

In coated calcium carbonate fillers we are able to gather photoelectrons 

characteristic of the substrate and the coating that are of a 'similar' energy. By 

using high resolution XPS, a small chemical shift can be seen. This allows curve 

fitting of the carbon I s peaks and the analysis of the areas of each peak by the 

'first' generation model. By analysis ofthe intensity ratio an estimation of the 

thickness of the coating can be made. 
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Figure 80 Coating thickness of sodium stearate coated calcium carbonate 

calculated using the 'first' generation XPS model 
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Using the 'first' generation model the flat model calculates a coating with a 

thickness of 20 A, the spherical model estimates a thickness of 11 A. 

4.5.2.2.3 Sodium Stearate Coatings and the Second 

Generation Model 

The first generation model cannot always be used in the analysis of coatings, as 

. not all systems have an element common to both substrate and coating, where the 

photoelectrons are distinguishable by a small chemical shift. 

If the oxygen and calcium data is used in the analysis of the coating thickness the· 

'second' generation model is not applicable. The element used in the analysis of 

the coating is also present in the substrate. If the model is used the result will 

over-estimate the thickness. 

In the case of carbon data, the 'second' generation model reduces to the 'first' 

generation model. 

4.5.2.2.4 Sodium Stearate Coatings and the Third 

Generation Model 

To make maximum use of the broad scan spectra, the 'second' generation model, 

can be easily modified to take into account the over estimate, caused by the fact 

that the intensity of the 'coating' peak also includes some intensity generated by 

the substrate. This is discussed in more detail in Section 4.5.1.4 'Third' 

Generation Models. 
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Figure 81 Coating thickness of sodium stearate coated calcium carbonate 

calculated using the 'third' generation flat XPS model 
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Figure 82 Coating thickness of sodium stearate coated calcium carbonate 

calculated using the 'third' generation spherical XPS model 
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As expected both flat (Figure 81) and spherical (Figure 82) 'third' generation 

models are in good agreement with the results obtained from the 'first' generation 

model (Figure 80). Using the 'third' generation model the flat models calculates a 

coating with a thickness of approximately 20 A and the spherical models estimate 

a thickness of approximately II A. 

4.5.2.2.5 Sodium Stearate Coatings and the Fourth 

Generation Model 

As discussed in Section 4.5.1 XPS Thickness Models, more data can be extracted 

from the XPS spectra if the data is interpreted as part of a multi technique 

approach. 

If we use the data shown in Figure 47 and assume it that the increase in coverage 

as a function of coating material added is linear up to 0.6 mono layers, and then 

becomes constant, the 'fourth' generation model can be applied to the coatings, 

and the coating thickness calculated. 

Using the 'fourth' generation model (part I) that is an extension of the 'second' 

generation model we are able to interpret the data contained in Figure 80 in terms 

ofthe fractional coverage (Figure 47). 
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Figure 83 Coating thickness of sodium stearate coated calcium carbonate 

calculated using the carbon/carbon ratio and the 'fourth' generation (part I) XPS 

models 

Using the 'fourth' generation model that is an extension of the 'second' generation 

model we are able to interpret the data contained in Figure 81 in terms of the 

fractional coverage (Figure 47). 

Using the 'fourth' generation model (part I) the flat model calculates a coating 

with a thickness of 20 A and the spherical model calculates a thickness of lOA. 
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Figure 84 Coating thickness of sodium stearate coated calcium carbonate 

calculated using the 'fourth' generation (part 2) flat XPS model 

Using the 'fourth' generation model (part 2) the flat model calculates a coating 

with a thickness of 20 A. 

Using the 'fourth' generation model that is an extension of the third generation 

model we are able to interpret the data contained in Figure 82 in terms of the 

fractional coverage (Figure 47). 
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Figure 85 Coating thickness of sodium stearate coated calcium carbonate 

calculated using the 'fourth' generation (part 2) spherical XPS model 

Using the 'fourth' generation model (part 2) the spherical model calculates a 

coating with a thickness of 10-12 A. 

4.5.2~3 Comparison Alternative Coating Methods 

A number of coating methods have been analysed. They each generate a different 

coating thickness. For comparison the carbon/carbon ratios have been analysed 

using the 'second' generation model. The results of this analysis can be seen in 

Figure 86. 
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Figure 86 Comparison of the coating thickness produced using different coating 

methods calculated using the carbon/carbon ratio and the 'second' generation. 

model 

When the stearic acid in toluene coating method is used, the thickest coating is 

produced. This coating process is known to produce some non-bound calcium 

stearate 19. On washing the coated PCC with toluene a lower thickness is obtained. 

This is calculated to be 16.3 A for the flat model and 9.3 A for the spherical 

model. 

4.5.2.4 Sample charging 

During XPS sample analysis a trend in the charging induced in the photoemission 

process was detected. Charging is seen to reduce as the coating level is increased. 

This is consistent with the theory that a coated surface is a less intense 

photoemitter i.e. ifless photoelectrons are emitted the sample is seen to charge 

less. This reduction is seen to be valid in the range of coating material addition 

from 0-0.6 mono layers. Above this level no further reduction is seen. The point 
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at which this occurs is consistent with the trends found by other techniques. 
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Figure 87 Coated Precipitated calcium carbonate, organic carbon peak charging 

referenced to adventious carbon at 284.6 e V 

4.5.3 Magnesium Hydroxide 

Figure 88 shows two broad scan XPS spectra for coated and uncoated magnesium 

hydroxide. Spectra of this type will detect all elements other than hydrogen. No 

sodium could be detected (Na(A) B.E. 497 e V). As a result all the sodium stearate 

has reacted to produce magnesium stearate. 
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Figure 88 Broad scan XPS spectra of sodium stearate coated and magnesium 

hydroxide 

4.5.3.1 Sodium Stearate Coatings 

4.5.3.1.1 Sodium Stearate Coatings and the Geometric 

Model 

The basic analysis ofthe magnesium hydroxide filler indicates a surface structure 

that is different from the expected bulk magnesium hydroxide (brucite) structure. 

This would suggest that the natural filler has a magnesium to oxygen ratio of 

approximately 1: 1, which is twice the ratio (1 :2) expected for magnesium 

hydroxide. If the atomic composition of the surface is taken as an indication of 

surface structure, we might assume that the surface has a chemical composition 

equivalent to magnesium oxide (MgO). FTIR has also indicated the presence of 

carbonate. The concentration of the magnesium indicated by the atomic 

composition is in excess of this estimation. 
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Figure 89 Atomic composition calculated by XPS of a magnesium hydroxide filler 

coated with sodium stearate 

4.5.3.1.2 Sodium Stearate Coatings and the 'Second' 

Generation Model 

The parameters chosen as the basis on which the 'second' generation model are 

based are important. As a result of the information obtained in Figure 89 analysis 

ofthe filler is based on the surface composition of the filler being closer to 

magnesium oxide rather than magnesium hydroxide. The CS2 and the solid 

properties (magnesium oxide) are based on the physical data contained in 

Table 19. 
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Figure 90 Coating thickness of sodium stearate coated magnesium hydroxide 

calculated using carbon/magnesium ratio and the 'second' generation models 
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Figure 91 Coating thickness of sodium stearate coated magnesium hydroxide 

calculated using carbon/oxygen ratio and the 'second' generation models 
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The coating was analysed assuming that the surface was composed of magnesium 

hydroxide and the thickness ofthe coating calculated from the carbon/oxygen 

ratio was found to be approximately twice that which would have been expected 

from the carbon/magnesium ratio. 

Using the spherical model, the thickness of a coating after sufficient material is 

added to produce a theoretical monolayer is calculated to be 9 A and in the case of 

the flat model 15 A. Both values fall short ofthe 24.3 A calculated 64 for the 

length of an IS-carbon alkyl chain extended perpendicular to the surface, which 

would be expected at theoretical monolayer coverage. The coating thickness is 

seen to increase as more coating material is added above the theoretical 

monolayer. The plateau is achieved when approximately one and half times the 

material required for a theoretical monolayer is added. The coating thickness at 

which the plateau is achieved is calculated to be 19 A for the spherical model and 

27 A for the flat model. These values are in good agreement with the theoretical 

value of 24.3 A calculated 64 for a close packed monolayer. 
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4.6XRD 

4.6.1 Sodium & Calcium Stearate 

X-Ray diffraction patterns where obtained for the starting stearate form, sodium 

stearate, and the final stearate fonn, calcium stearate. Diffraction patterns are 

caused by a repeated crystalline structure. If this is fonned it should be visible in 

the X-ray diffraction patterns of the coated material. The position at which this 

peak occurs is dependent on the lattice spacing. 

The diffraction patterns obtained for the sodium and calcium stearate are shown in 

Figure 92. 
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Figure 92 X-Ray diffraction pattern of sodium and calcium stearate 

The diffraction pattern obtained for these stearates is weak in comparison to that 

of the inorganic filler. The most intense calcium stearate diffraction occurs when 

29 is approximately 20.5°, this can been seen in greater detail in Figure 93. The 

calcium stearate diffraction pattern is in good agreement with that expected 153. 
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Figure 93 X-Ray diffraction pattern of sodium and calcium stearate 

4.6.2 Calcium Carbonate 

X-Ray diffraction patterns were obtained for uncoated and coated calcium 

carbonate fillers. Coatings in the range of 0 to 2 monolayers showed little or no 

change on coating (Figure 94). 

600 

500 

400 

J!I 
c 300 " 0 
u 

200 

100 

0 
0 

i 
Coating Level \ . 

..... __ --2 .. Mo_no ... la ... y .. e .. rs ____ ...... __ -.JI.~ 

r \.. 1 M:molayer 
.":.....".~';-'..I.;"~~_=~~ .... ...:...~_~-;-:::.~ ... ~,: .... .. _ . ~. !->:.;t_,.~~~j \ •• 4:""".-__ "", ..... _ "'"' l,. 

0.5 Monolayer 

Uncoated 

5 10 15 20 

28 

25 30 35 40 

Figure 94 X-Ray diffraction pattern of sodium stearate coated calcium carbonate 

(0 -2 monolayers) 
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The calcium carbonate diffraction pattern is in good agreement with that expected 
153 

To test this technique higher coating levels were produced. These spectra also 

showed little/no crystalline calcium stearate structure as expected from Figure 92 

and Figure 93. 
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Figure 95 X-Ray diffraction pattern of sodium stearate coated calcium carbonate 

(4 -12 mono layers) 

A small change in the diffraction pattern is detected at the low diffraction angles. 

These angles are at the limit of the machines detection range, and should be 

interpreted with care. 
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4.7 DMTA Analysis 

In understanding the effect of surface coating we must also understand the effect 

that this has on the mechanical properties related to the surface or composite. 

Characterisation of the composites properties in terms of the interfacial and 

interphase interactions is difficult (see Section 2.7.7 Dynamic Mechanical 

Analysis (DMA)). By keeping as many parameters as possible constant, an 

attempt has been made to characterise the mechanical properties of a composite as 

a function of only either the coating level, or the volume of filler. 

4.7.1. Dynamic Mechanical Response of uPVC. 

When templates are produced and analysed as described in Section 3.3.7 DMTA 

Experimental Analysis, the samples are found to have one transition in the 

temperature range of -50 to 100°C. This occurs at approximately 50°C (Figure 

96). 
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Figure 96 Dynamic mechanical response of uP VC 
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The position ofthe tan t5 peak is at a higher temperature than the Tg shown in 

DSC analysis. The analysis by DSC of samples of un processed and processed 

uPVC indicates that there is no change in transition caused as a result of the 

solvent processing. 

4.7.2 Dynamic Response of uPVC Composites 

4.7.2.1 Dynamic Response as a function offiller loading 

On loading the polymer with different amounts of un coated filler, the response of 

the composite produced is seen to change. The different levels of filler additions 

are compared in terms of the components of their dynamic mechanical response in 

Figure 97, Figure 98 and Figure 99. 
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Figure 97 E' Component of the dynamic mechanical response of uP VC -

uncoated filler composites (Filler composition varying as a weight filler/weight 

polymer) 

The storage modulus results shown in Figure 97 suggest that at low temperatures 

the thermal history apparently effects the recorded storage modulus. At low 

temperatures the storage modulus is also known to be more sensitive to variations 
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The position of the tan 0 peak is at a higher temperature than the Tg shown in 

DSC analysis. The analys is by DSC of samples of unprocessed and processed 

uPVC indicates that there is no change in transition caused as a result of the 

solvent processing. 

4.7.2 Dynamic Response of uPVC Composites 

4.7.2.1 Dynamic Response as a function of filler loading 

On loading the polymer with different amounts ofuncoated filler, the response of 

the composite produced is seen to change. The different levels of filler additions 

are compared in terms ofthe components of their dynamic mechanical response in 

Figure 97, Figure 98 and Figure 99. 
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Figure 97 E' Component of the dynamic mechanical response ofuPVC 

uncoated filler composites (Filler composition varying as a weight filler/weight 

polymer) 

The storage modulus results shown in Figure 97 suggest that at low temperatures 

the thermal history apparently effects the recorded storage modulus. At low 

temperatures the storage modulus is also known to be more sensitive to variations 
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in sample size. The variation in the 60/40 sample is most likely the result of the 

loading limit of the composite with filler being reached. As the point at which the 

tan 0 maxima is approached (approx. 50 oc), the thermal history becomes less 

important and is eliminated. At temperatures above the tan 0 maxima the increase 

in filler loading results in an increase in storage modulus. 
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Figure 98 E" Component of the dynamic mechanical response ofuPVC -

uncoated filler composites (Filler composition varying as a weight filler/weight 

polymer) 

From the interpretation of the loss modulus peaks (Figure 98) we might conclude 

that as the filler loading increases the position of the loss modulus peak remains 

almost constant, but the width of the peak increases with filler loading. 
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Figure 99 Tan 0 of the dynamic mechanical response ofuPVC - uncoated filler 

composites (Filler composition varying as a weight filler/weight polymer) 

From Figure 99 we might conclude that as the filler loading increases the 

maximum value of the tan 0 decreases. This can be interpreted as a direct result 

of the decrease of the quantity of polymer in the composite. The broadening is 

consistent with some chains becoming more constrained. 

4.7.2.2 Dynamic Response as a function of coating level 

On loading the filler with different amounts of un coated fi ller the response of the 

composite produced is seen to change. The different levels of filler additions are 

compared in terms of the components of their dynamic mechanical response in 

Figure 100, Figure 10 1 and Figure 102. 
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Figure 100 E' Component of the dynamic mechanical response ofuPVC - filler 

composites (50/50 FillerlPolymer loading, coating levels in w/w%) 

Above the glass transistion point the storage modulus of the different samples 

become very similar, with the coated samples having a slightly lower storage 

modulus (Figure 100). 
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Figure 101 E" Component of the dynamic mechanical response of uP VC - filler 

composites (50/50 FillerlPolymer loading, coating levels in w/w%) 
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These results show a shift in the loss modulus to lower temperatures as the coating 

level increases (Figure 101). 
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Figure \02 Tan <5 component of the dynamic mechanical response of uP VC -

filler composites (SO/50 FillerlPolymer loading, coating levels in w/w%) 

These tan <5 profiles can be separated into 2 basic profiles and one composite 

profile. A basic profile being the result of either a coated or a uncoated filler, and 

the composite being a mixture of the two. 

The effect of coating on the composite properties is a lowering in temperature of 

the point at which the tan <5 maximum occurs. 
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Chapter 5 Discussion 

Each analytical technique is discussed individually. The use of each technique as 

part of a multi-technique analysis is made. 

5.1 Electron Microscopy 

Electron Microscopy allows a visual analysis of the particle shape. Statistical 

analysis of these images enables an analysis of the particle size distribution and an 

approximation of the surface area to be made. 

5.1.1 Electron Microscopy and Gas Adsorption Analysis 

Transmission electron microscopy distribution analysis results may be used to 

verify experimentally measured BET surface area values. 

A wide particle size difference often has a detrimental effect on composite 

properties. 

Variations in particle size distribution, are often not immediately visible during 

normal quality assurance e.g. coat level analysis. These variations are easily 

detected by TEM particle size analysis. The operational cost of this technique is 

too high for the filler industry to make it a practical quality assurance technique. 

Analysis of these distributions (Table 15) allows a validation of other 

experimentally observed surface area phenomena e.g. specific surface area. 

Variations in the experimental analysis of the surface area ofthe filler by gas 

adsorption and BET analysis can be explained in terms of the particle size 

distribution. 

By establishing a link between TEM and BET analysis we are able to improve our 

knowledge of the morphology of the calcium carbonate. Under controlled 

Page 207 



conditions this can be a powerful quality assurance tool. 

5.2 Thermal analysis 

Thermal analysis is a commonly used tool in many areas of chemistry for the 

analysis not only of decomposition profiles but to measure the organic material 

present within a system. Both techniques offer a comparably quick and simple 

way to calculate the quantity of stearate within the filler system. (TGA requires 

more preparation than CHN). Neither technique allows the distribution of the 

coating over the filler to be determined. 

The CHN method, although simple and based on a semi-quantitative technique, 

suffers especially in the case of calcium carbonate from additional carbon 

decomposition products and also from low levels of sensitivity. Additional 

assumptions regarding the decomposition of the substrate have to be made when 

analysing the results and no account is taken for the amount of water contained in 

the system. With some improvement in analytical technique this approach has 

some possibilities as a method of quick and simple analysis. 

The TGA method has been developed 175 to enable accurate calculation of the 

level of coating material within the system. The major advantage of this 

technique over CHN is that one does not need to consider the decomposition of 

the filler substrate. The TGA tool has been developed so that a visual inspection 

of the TGA decomposition profile also enables the user to gather some 

information on the level of water content with the filler system and also the level 

of stearic acid conversion to stearate. 
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5.3 Gas Adsorption Analysis 

Gas adsorption is routinely used as a method of specific surface area 

determination. The values obtained have been confirmed using TEM analysis (see 

Section 4.1.2.2 Transmission Electron Microscopy). More information than just 

the specific surface area can be obtained from the adsorption isotherm. This 

technique is routinely used in industry, and the additional information that can be 

obtained from the adsorption isotherm is often not exploited. 

Gas adsorption isotherm analysis also allows the analysis of the surface energy of 

the material (see Section 2.7.3 Gas Adsorption Isotherm Analysis). Using the new 

Dual BET adsorption isotherm tool, the fractional coverage of the coating has 

been estimated. It has been found that, for the calcium carbonate filler, complete 

coverage, or a maximum reduction in surface energy occurs when approximately 

0.5-0.6 theoretical monolayers of coating material have been added to the system. 

To fully understand the dual BET adsorption we must first consider the possible 

scenariOS. 
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Figure 103 Possible coating confirmation scenarios and the effect on the coverage 

L calculated using the BET dual adsorption isotherm equation 

As discussed in section 2.6.1 A 'Monolayer' Coating, two extremes of coating 

chain conformation can be imagined. If the chains occupied a conformation 

similar to the layer model we would have expected to have seen the coating 

coverage level L reach I when 0.2 monolayer of coating material had been added 

to the system. As a result the layer model (described in Section 2.6.1 A 

'Monolayer' Coating) can be eliminated as a possible coating structure. The exact 

confirmation of the chains after the coating has been completed cannot be 

determined by Dual BET adsorption analysis alone. 
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5.4 IR analysis 

It has been shown that IR analysis in the diffuse reflectance mode is suitable for 

the analysis of the filler powders. Both quantitative data and chemical 

information can be obtained by IR analysis. 

5.4.1 Quantitative IR analysis 

Quantitative IR analysis (see Section 4.4.1 Calcium Carbonate) of the powders 

demonstrates that the coating material added to the filler is in the close vicinity of 

the surface. IR analysis alone is not able to indicate the formation of a monolayer. 

The analysis demonstrates that the coating material is still being deposited in the 

surface region above the level expected for a monolayer. Some deviation from 

this is seen at high coatings because at these levels the limited surface specificity 

of the DRIFT technique become apparent. The comparably low absorbance of 

individual stearate particles present in a mixture with the coated/uncoated calcium 

carbonate, have been shown to be a possible reason (Figure 57). A constant 

efficiency is seen for all stearate coatings on calcium carbonate and magnesium 

hydroxide. A slight variation in coating efficiency is seen for different coating 

methods. 

The difference between reacted and unreacted acid is easily detectable. This is 

useful in determining the 'real' efficiency of the coating process as a direct 

quantitative analysis does not take into account the unreacted acid that is still 

present at the surface. 

DRIFT is both surface specific and very sensitive. On 20 m2g.' particles detection 

limits of 0.05 of a monolayer and less can be achieved. This means that the 

technique is more sensitive to coatings than XPS. 

5.4.2 Surface Chemistry 

It has been shown that FTIR can be used to determine not only the quantity of the 

stearate present but also whether or not it has reacted. In the case of the dry 

Page 211 



coating method, unreacted stearic acid can be detected (Section 4.4.1.5 Stearic 

Acid Dry Coated). 

It has been shown that differences in the stearate end group configuration (the 

environment of the stearate ion) can be detected (Section 4.4.1.9 Comparison Of 

Coating Peaks). A summary of possible assignments is given in Table 21. 

Peak Position (cm-') Coating Process Chemical Nature of Peak 
1700 N/A Unreacted acid 
1680 Dry coating Unknown 
1625-1630 High level sodium Hydrated 

stearate coating calcium stearate 
1575-1580 Calcium stearate Unhydrated 

calcium stearate 
Ca(C 1sH350 2)2 

1560 Calcium stearate Surface bound 
calcium stearate 
lattice-Ca-ClsH3502 

Table 21 Proposed assignment of the IR characteristic coating peaks 

It has been shown that the peak at 1700 cm-1 is the result ofunreacted stearic acid 

(Figure 60). If it assumed that heating or washing removes water of 

crystallization, we may assume that the peak at 1625-1630 cm-1 is the result of 

water of crystallization (Figure 63) 

The reaction of the stearate to form calcium stearate can occur at either the surface 

or in solution. Due to the insolubility of calcium stearate the time period over 

which the coating occurs increases the likelihood of producing bound stearate 

decreases. An unbound stearate is more likely to be at the surface, but not bonded 

directly to the surface (Figure 62). If this assumption is correct we can assume 

that the 1575 cm-1 peak is caused by a non-bound stearate and the 1560 cm-1 is 

caused by a surface bound stearate. 

Using these peak assignments we might conclude that the Zeneca ammonium 
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stearate preparations produce less lattice bound calcium stearate than other wet 

coating techniques. The spectra of the Zeneca ammonium stearate coating has 

more in common with the 2 hour laboratory based ammonium stearate 

preparation. 

This assignment is not conclusive. The peaks that occur at 1580-1570 cm· l
, 

although distinct, are in most cases broad thus obscuring peaks that are listed in 

Table 16. Analysis of this region of the coated calcium carbonate filler spectrum 

is difficult as the subtraction is affected by the presence of the large carbonate 

band. This band is not present in magnesium hydroxide to such an extent. The 

change in spectrum (Figure 65) of the carbonate region actually provides more 

information regarding the coating process. As discussed in Section 4.4.2.1 

Sodium Stearate, a loss of a substrate peak would actually suggest a reaction at the 

surface at magnesium sites previously occupied by carbonate ions. This would be 

expected as the carbonate ion is more soluble than the hydroxide ion. No 

additional information regarding the mechanism could be obtained from this set of 

results. A more in-depth analysis of the magnesium stearate peak might provide 

information that could be applied to different aqueous based stearate coating 

processes. 

5.4.3 FTIR and Gas Adsorption Analysis 

Both FTIR (and also CHN and TGA) can be used to give a quantitative analysis of 

how much stearate is contained in the filler system. Unlike CHN and TGA that 

are entirely non-surface specific, FTIR does confirm that the stearate is present 

close to the surface. 

This means that one might assume that, as the coating level has been shown to 

increase uniformly at a constant rate of coating material addition, the coating 

forms in a maximum packing model configuration and then perhaps develops a 

multilayer and/or cluster formation. This assumption cannot be made using FTIR 

technique as it is not sufficiently surface specific. The information regarding the 

Page 213 



orientation of the coating can be best obtained using a more surface specific 

technique such as XPS. 
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5.5 XPS analysis 

5.5.1 Coating Characterisation 

Broad scan analysis enables an overview of the elemental nature of the coating 

and the substrate. In most cases the chemical information obtained is limited. 

The analysis of all samples has shown the removal of any elements indicative of 

the stearate precursor. 

5.5.2 Coating Thickness Characterisation 

The thickness of the coating can be calculated in a number of different ways and it 

is up to the user to select the most appropriate technique. The models are 

summarized in Section 4.5.1.8 Model Summary. 

For sodium stearate coated calcium carbonate all ofthe second and third 

generation models the results are consistent. The flat model predicts a thickness 

of approximately 20 A, and the spherical model predicts a thickness of 

approximately 11 A. Both these figures are below the 24.3 A 64 that which would 

have been expected if the stearate was on the surface in the maximum packing 

model confirmation. As a result we may conclude that either the coating produced 

is 'patchy' and the models used are invalid, or the coating produced is not in the 

maximum packing model confirmation and is in fact located at an angle to the 

surface (approximately 45-60 degree) or is not fully extended. Due to the nature 

of a sphere and the volume available to the coating at a fixed radius/surface area 

you would expect a coating to fall short of the expected value of 24.3 A, but not 

half that which would be expected. 

The question of the validity of the models can be answered by the use of a multi 

technique approach (Section 5.5.3 XPS and Gas Adsorption Analysis). 

In the case of magnesium hydroxide the coating thickness is seen to increase 

above that which would be expected for a monolayer. This would suggest that not 

all of the stearate ends up in a uniform layer and that the coating process is not 
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100% effective. This would possibly suggest that some independent magnesium 

stearate particles are formed. The plateau is achieved when approximately one 

and half times the material required for a theoretical monolayer is added. This 

would suggest the coating process had a coating effectiveness of around 60-70 %. 

The coating thickness at which the plateau is achieved is calculated to be 19 A for 

the spherical model and 27 A for the flat model. These values are in good 

agreement with the theoretical value of24.3 A calculated 64 for a close packed 

monolayer. The magnesium hydroxide filler is plate-like in nature. If the 

thickness is correct it would suggest that the stearate head group size is most 

likely the determining factor in controlling the amount adsorbed. and therefore the 

coating thickness, alternatively there is less than one available reactive site per 

20 x 10.20 m2 of surface. 

5.5.3 XPS and Gas Adsorption Analysis 

When XPS is used in conjunction with Gas Adsorption the maximum layer model 

shown in Figure 103, must be reviewed depending on the final position of the 

stearate chains. The final position of the stearate chains can be determined from 

the 'second' and 'third' generation XPS models i.e. the thickness at which the 

intensity ratio plateaus. 

For sodium stearate coated calcium carbonate the 'fourth' generation flat model 

predicts a thickness of approximately 20 A, and the spherical model predicts a 

thickness of approximately 11 A. Both these figures are below the 24.3 A 64. As 

discussed in Section 5.5.2 Coating Thickness Characterisation this would suggest 

that the coating chain is located at an angle to the surface. 

When this information is used in conjunction with the 'fourth' generation models 

we are able to understand the way in which the coating attaches itself to the 

surface. 

The profile of the intensity ratio for the 'fourth' generation model can then be 
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interpreted as follows. 
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Figure 104 Summary of the XPS and dual BET results expected for different 

coating configuration 

From the data we might conclude that we have a coating that is described by case 

4 (Figure 104); the chains being located at the surface, but not in the maximum 

packing model as initially expected. The combined XPS-BET result would 

suggest that the formation of the coating is not by the formation of a flat layer of 

chains but by the build up of chains, close to existing chains. The chains are most 

likely laying at approximately a 45-60 degree angle to the surface. 
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With this information in mind we might consider the reason for this. If we 

consider the initial assumptions of surface area, head group area and chain length 

to be correct, then we might conclude (as discussed in Section 2.6.2 Surface 

Reactive Sites) that for a aqueous based coating method that the number of 

surface reactive sites per unit surface area available is less than would be required 

for a maximum packing model. 

Ifwe take into account the errors discussed in Section 4.5.1.6 Effect of Density 

and Section 4.5.1.7 Effect of Escape Depth we might conclude that there is 

approximately 1 available site per 40 x 10-20 m2
. This is equivalent to 

approximately twice the area of the stearate headgroups. 

5.5.4 XPS and FTIR Coating Characterisation 

Using chemical information obtained from both XPS and FTIR we are able to 

more conclusively understand the chemical form of the stearate on the surface. 

Neither technique alone provides all the information. 

In the analysis of sodium and ammonium stearate coated calcium carbonate 

neither nitrogen nor sodium ions are detected in the XPS broad scan spectra. This 

would suggest that no pre-cursor material is present in the coated material. 

Quantitative FTIR shows that the stearate is being added to the system and that the 

material added is not present as stearic acid. From this may conclude that the 

stearate present on the filler surface is present as calcium stearate. This calcium 

stearate must be in particles in the vicinity ofthe surface (because it detected by 

DRIFT) but not in the form of a multi layer (as it is not detected by XPS). 
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5.6 XRD analysis 

X-Ray diffraction data was inconclusive. No crystalline calcium stearate was 

detected in the coated filler system using the XRD facilities available. Layer 

structures approaching 10-100 nm are required for the generation of a sharp X -ray 

line. This is con;istent with the formation of amorphous disordered layers or 

small numbers oflayers. It is possible that in the high coating level samples that 

we are analyzing concentrations below the minimum detection levels of the 

apparatus. 

Slight differences in the diffraction patterns where noticed at low values of20. 

These variations were inconclusive and require further investigation. Small angle 

X-ray scattering, or neutron scattering would perhaps be better techniques for 

analysing these variations. 
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5.7 Mechanical Properties 

The results obtained in Section 4.7.2.2 Dynamic Response as a function of coating 

level are consistent with those that would be expected for a range of materials 

with different coating levels. 

As expected in this case it has been shown that immobilized layers are formed on 

particles in which there is a large energy of interaction 65,79. These immobilized 

layers are reduced on coating as the energy of interaction between the filler and 

polymer decreases. It is well understood that at a molecular level coating the 

filler particles with an aliphatic chain will reduce the energy of interaction 

between filler and polymer. For a non-polar polymer these interactions are 

dominated by dispersion forces and the thermodynamic work of adhesion is given 

by the F owkes equation, 

W 2( /) D)Ji 
AD = rs r I. 

Equation 6 

where r2 and rf are the dispersion components of the surface excess free 

energy of the filler and polymer respectively. 

r2 Is about 40 mJ m-2 
179. It is more difficult to obtain a value for r2. Filler 

surfaces that have been exposed to air will have some hydroxylation and adsorbed 

impurities. A value of 58 mJm-2 has been measured 19 by IOC. This is 
I 

significantly lower than that calculated for an ideal clean surface, but is probably 

more representative of the situation in practice. Similarly, values of about 28 

mJm-2 have been obtained 19 for stearic acid coated fillers, which is in good 

agreement with theory and other measurements 64. Using these values the 

thermodynamic works of adhesion for uncoated and coated filler are estimated to 

be 96 mJm-2 and 67 mJm-2 respectively. Thus coating reduces the thermodynamic 
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work of adhesion between filler and polymer by 30 %. WAD of a coated filler is 

now slightly below that expected for polymer / polymer interactions of 80 mlm-2
• 

The coating of the filler is seen to affect the immobilized layer. The Tg of the 

majority of the immobilized layer has been identified, and is about 4-5 degrees 

higher than that of the bulk polymer. 
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Chapter 6 Conclusion 

It has been long established that the coating of the filler can alter the properties of 

a composite. Although well known this effect has often been poorly documented. 

The multi-technique approach to analysis has allowed a more detailed analysis of 

the filler coating. During this project it has been shown that not only the amount 

of coating present but the level of coverage can be determined. 

Electron Microscopy has been used to verify the particle size and to validate the 

gas adsorption data. Thermal techniques offer a quick and easy approach to the 

analysis of the quantity of coating material. FTIR DRIFT has been successfully 

shown to allow the quantification of the extent of system coating. FTIR DRIFT 

spectra provides detailed information on the surface chemistry of the filler. The 

use of spectral subtraction and the analysis of different fillers has enabled, a more 

detailed analysis of the coating process, than that which has been carried out 

before. The analysis has shown that chemical changes occur at the surface, and 

that altering the coating process, can have an effect on the coating. While not as 

surface specific as XPS, FTIR has a high signal to noise ratio allowing lower 

levels of coatings to be detected. 

The surface specificity of XPS allows the thickness of the surface coating to be 

estimated. Four models have been developed, and software designed that enables 

the calculation of the coating thickness for a number of different systems. These 

'fourth' generation models are the first models published that take into account the 

surface coverage of the coating, when calculating the coating thickness. 

In the case of magnesium hydroxide the stearate coating thickness is similar to 

that which could have been expected (24.3 A 64). In the case of stearate coated 

calcium carbonate the coating thickness is considerably lower than that which 

would have been expected for a monolayer. The flat model predicts a thickness of 
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approximately 20 A, and the spherical model predicts a thickness of 

approximately 11 A. From this we might conclude that there are insufficient 

reactive sites on the calcium carbonate surface to form a theoretical monolayer 

that conforms to the maximum packing model. 

The development of a new approach using the Dual BET adsorption isotherm 

model allows the calculation ofthe extent of coverage of the coating. This 

approach could be easily incorporated into routine surface area measurements, to 

give an indication of the surface coverage. 

For a true estimate of coating thickness at low levels, a combined Dual BET 

adsorption isotherm model and XPS model has been developed which allows for 

the 'patchy' nature of the surface. It has been shown that the thickness of the 

coating is constant, and that the build up of the coating is by addition of coating 

material to the surface next to existing coating material. 

The effect of filler content and coating on the mechanical properties of uPVC 

filled polymer composites has been demonstrated. This has been interpreted in 

terms of the change in filler surface energy and the reduction in the filler-polymer 

interaction. The change in mechanical properties is consistent with that which 

would have been expected from the surface coverage data. 

This work has shown that the mechanism of coating, although not yet fully known 

is one step closer. A more in-depth, multi-coating process, multi-analytical 

analysis of coated fillers will enable the understanding of the coating to progress 

further. The mechanical analysis of samples as discussed is difficult and the 

work completed in this thesis pushed the limits of the available equipment. 

Although a correlation between the coating coverage and the mechanical modulus 

has been made, an alternative mechanical analysis tool will be required to analyse 

the effect of the coating/surface energy on the filler-polymer interphase region. 
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Chapter 7 Appendices 

Appendix 1 Presentations & Publications 

Presentations 

Loughborough Fillers Symposium 11, Loughborough, UK. 

17th - 18th September 1996 

Extended Abstract & Presentation 

International Symposium EURO-FLLERS '97, Manchester, UK. 

8th 
- 11 th September 1997 

Extended Abstract, Presentation & Poster 

Chemistry Research For Britain 98', London, ui<. 
17th March 1998 

Abstract & Poster 

5th International Conference on Adhesion and Surface Analysis, 

Loughborough, UK. 

31 SI March _ 2nd April 1998 

Extended Abstract & Poster 

7th International Symposium on Chemically Modified Surfaces, Illinois, USA. 

24th _ 26th June 1998 

Abstract & Presentation 

ESCA Users Group, Chester, UK. 

6th January 1999 

Presentation 

International Symposium EURO-FILLERS '99, Lyon, France. 

6th 
- 9th September 1999 

Extended Abstract & Poster. 

Publications 

Composite Interfaces, 
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VSP, Holland 

Composite Interfaces, Vo!. 5, No.6, pp 493-502 (1998) 

"Filler Surfaces and Composite Properties" 

D. Maton, I. Sutherland, Department of Chemistry, Loughborough 

University, UK 

D.L.Harrison, Zeneca Resins UK 

Fundamental and Applied Aspects of Chemically Modified Surfaces, 

RSC Publications, UK 

Edited by l.P. Blitz & C.B. Little. Published 1999. ISBN 0-85404-714-X 

"Filler surface Characterisation and its relation to Mechanical Properties of 

Polymer Composites" 

D. Maton, I. Sutherland, Department of Chemistry, Loughborough 

University, UK 

D.L.Harrison, Zeneca Resins UK 
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Appendix 2 Visual Basic XPS Thickness Calculation 
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Only the model sub routines are listed. Excluded are print, save results, save 

variables, graphing, KE calculations, RSF data file upload, experimental data 

analysis, and error checking sub routines. 

'Flat Model 

Public Sub flatmodelO 

txtstatus.Text = "Starting Flat Model v2" 

Dim top As Single 

Dim bot As Single 

Ford=lTo500 

top = coatimfp * (coatdensity / coatmwt) * coatnd * (l - Exp(-(d /10) / coatimfp)) 

bot = subimfps * (subdensity / submwt) * subnd * Exp(-(d /10) / subimfpc) 

RatioArray( d).ratioflat = mpara * top / bot 

Nextd 

txtflatmodel.Text = "Flat v2" 

End Sub 'flatmodelO 
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'Flat Model 

Public Sub flatmodelv20 

txtstatus.Text = "Starting Flat Model v3" 

Dim top As Single 

Dim bot As Single 

For d = 1 To 500 

top = (coatimfp * (coatdensity / coatmwt) * coatnd * (I - Exp(-(d /10) / 

coatimfp») + ((subcoatimfps * (subdensity / submwt) * subcoatnd * Exp(-(d /10) 

/ coatimfp») 

bot = subimfps * (subdensity / submwt) * subnd * Exp( -( d / 10) / subimfpc) 

RatioArray(d).ratioflat = mpara * top / bot 

Nextd 

txtflatmodel.Text = "Flat v3" 

End Sub 'flatmodel v20 
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'Spherical Model 

Public Sub sphericalmodelO 

txtstatus.Text = "Starting Spherical Model v2" 

Dim top As Single 

Dim bot As Single 

Dim i As Integer 

Dim a As Single 

Dim pi As Single 

pi = 3.1415926535 

For d = I To 500 

top =0 

bot=O 

For i = I To 2000 

a = (pi / 2) • (i / 200 I) 

top = top + (coatimfp· (Sin(a) • Cos(a»· (coatdensity / coatmwt) • coatnd • (I -

Exp(-(d /10) / (coatimfp * Sin(a»») 

bot = bot + (subimfps * (Sin(a) • Cos(a» * (subdensity / submwt) • subnd • 

(Exp(-(d /10) / (subimfpc· Sin(a»») 

Next i 

RatioArray(d).ratiospherical = mpara * top / bot 

Nextd 

txtsphericalmodel.Text = "Spherical v2" 

End Sub 'sphericalmodelO 
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'Spherical Model version 2 

Public Sub sphericalmodelv20 

txtstatus.Text = "Starting Spherical Model v3" 

Dim top As Single 

Dim bot As Single 

Dim i As Integer 

Dim a As Single 

Dim pi As Single 

pi = 3.1415926535 

Ford=ITo500 

top = 0 

bot = 0 

For i = I To 2000 

a = (pil2) * (i / 2001) 

top = top + (coatimfp * (Sin(a) * Cos(a)) * (coatdensity / coatmwt) * coatnd * (I -
Exp(-(d /10) / (coatimfp * Sin(a))))) + (subcoatimfps * (Sin(a) * Cos(a)) * 
(subdensity / submwt) * subcoatnd * (Exp(-(d /10) / (coatimfp * Sin(a))))) 

bot = bot + (subimfps * (Sin(a) * Cos(a)) * (subdensity / submwt) * subnd * 
(Exp(-(d /10) / (subimfpc * Sin(a))))) 

Next i 

RatioArray( d).ratiospherical = mpara * top / bot 

Nextd 

txtsphericalmodel.Text = "Spherical v3" 

End Sub 'sphericalmodelv20 
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Public Sub flatmodelv30 

'Fourth Generation Model (Part 1) 

txtstatus.Text = "Starting Flat Model v4.l" 

Dim top As Single 

Dim bot As Single 

Ford= 1 To 500 

top = coatinglevel * (coatimfp * (coatdensity / coatmwt) * coatnd * (I - Exp(-(d / 

10) / coatimfp))) 

bot = coatinglevel * (subimfps * (subdensity / submwt) * subnd * Exp(-(d /10) / 

subimfpc)) + ((I - coatinglevel) * (subimfps • (subdensity / submwt) • subnd)) 

RatioArray(d).ratioflat = mpara • top / bot 

Nextd 

txtflatmodel.Text = "Flat v4.1" 

End Sub 

Page 232 



Public Sub flatmodelv40 

'Fourth Generation Model (Part2) 

txtstatus.Text = "Starting Flat Model v4.2" 

Dim top As Single 

Dim bot As Single 

For d = 1 To 500 

top = «coatinglevel * «coatimfp * (coatdensity / coatmwt) * coatnd * (1 - Exp(-(d 

/ 10) / coatimfp))) + «subcoatimfps * (subdensity / submwt) * subcoatnd * Exp(

(d /10) / coatimfp))))) + «(1 - coatinglevel) * (subcoatimfps * (subdensity / 

submwt) * subcoatnd))) 

bot = «coatinglevel * (subimfps * (subdensity / submwt) * subnd * Exp(-(d /10) / 

subimfpc))) + «(1 - coatinglevel) • (subimfps * (subdensity / submwt) • subnd))) 

RatioArray( d).ratioflat = mpara • top / bot 

Nextd 

txtflatmodel.Text = "Flat v4.2" 

End Sub 
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Public Sub sphericalmodelv3() 

'Fourth Generation Model (Part I ) 

txtstatus.Text = "Starting Spherical Model v4.1" 

Dim top As Single 

Dim bot As Single 

Dim i As Integer 

Dim a As Single 

Dim pi As Single 

pi = 3.1415926535 

Ford = 1 To 500 

top = 0 

bot = 0 

Fori= 1 To 2000 

a = (pi 12) * (i 12001) 

top = top + ((coatimfp * (Sin(a) * Cos(a» * (coatdensity I coatmwt) * coatnd * (1 

- Exp(-(d 110) I (coatimfp * Sin(a)))))) * (pi 14000) 

bot = bot + ((subimfps * (Sin(a) * Cos(a» * (subdensity I submwt) * subnd * 
(Exp(-(d 110) I (subimfpc * Sin(a»»» * (pi 14000) 

Next i 

RatioArray(d).ratiospherical = mpara * ((coatinglevel * top) I (((coating level * 
bot) + ((1 - coatinglevel) * (subimfps * (subdensity I submwt) * subnd) 12»» 

Nextd 

txtsphericalmodel.Text = "Spherical v4.1" 

End Sub 
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Public Sub sphericalmodelv40 

'Fourth Generation Model (Part2) 

txtstatus.Text = "Starting Spherical Model v4.2" 

Dim top As Single 

Dim bot As Single 

Dim i As Integer 

Dim a As Single 

Dim pi As Single 

pi = 3.1415926535 

For d = 1 To 500 

top = 0 

bot = 0 

For i = 1 To 2000 

a = (pi / 2) * (i / 200 I) 

top = top + «coatimfp * (Sin(a) * Cos(a» * (coatdensity / coatmwt) * coatnd * (1 

- Exp(-(d /10) / (coatimfp * Sin(a»») + (subcoatimfps * (Sin(a) * Cos (a» * 
(subdensity / submwt) * subcoatnd * (Exp(-(d /10) / (coatimfp * Sin(a»»» * (Pi / 

4000) 

bot = bot + «subimfps * (Sin(a) * Cos(a» * (subdensity / submwt) * subnd * 
(Exp(-(d /10) / (subimfpc * Sin(a»»» * (pi / 4000) 

Next i 

RatioArray(d).ratiospherical = mpara * ««coating level * top) + «(1 - coatinglevel) 

* (subcoatimfps * (subdensity / submwt) * subcoatnd) / 2») / «(coatinglevel * 
bot) + «(1 - coatinglevel) * «subimfps * (subdensity / submwt) * subnd) / 2»)))) 

Nextd 

txtsphericalmodel.Text = "Spherical v4.2" 

End Sub 
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