Loughborough University
Browse
CIRP MD final.pdf (492.71 kB)

Finite-element simulations of split Hopkinson test of Ti-based alloy

Download (492.71 kB)
journal contribution
posted on 2011-04-14, 10:23 authored by Murat Demiral, Tonu Leemet, Mikko Hokka, Veli T. Kuokkala, Anish RoyAnish Roy, Vadim SilberschmidtVadim Silberschmidt
Ti-based alloys are extensively used in aerospace and other advanced engineering fields due to their high strength and toughness, light weight, excellent corrosion resistance and ability to withstand extreme temperatures. Since these alloys are hard to machine, there is an obvious demand to develop simulation tools in order to analyse the material's behaviour during machining and thus optimise the entire machining process. The deformation processes in machining of Ti-alloys are typically characterized by high strains and temperatures. Split Hopkinson Pressure Bar (SHPB) technique is a commonly used experimental method to characterize the material behaviour at high strain rates; the stress-strain relation of the material is derived from the obtained experimental data. A computational study on a three-dimensional finite element model of the SHPB experiment is performed to assess various features of the underlying mechanics of deformation processes at highstrain and -strain-rate regimes. In the numerical analysis, an inhomogeneous deformation behaviour is observed in the workpiece at the initial stages of compression contrary to a standard assumption of stress and strain homogeneity in the specimen.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Citation

DEMIRAL, M. ... et al, 2011. Finite-element simulations of split Hopkinson test of Ti-based alloy. Advanced Materials Research, 223, pp. 296-303.

Publisher

© Trans Tech Publications

Version

  • AM (Accepted Manuscript)

Publication date

2011

Notes

This article was accepted for publication in the journal, Advanced Materials Research [© Trans Tech Publications]. The definitive version is available at: http://dx.doi.org/10.4028/www.scientific.net/AMR.223.296

ISSN

1022-6680

Language

  • en