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ABSTRACT 

The purpose of this research is twofold - the first objective being to develop 

Markovian models that can be used to analyze the performance of the various 

medium access control protocols of slotted ring type local area networks. 

Although at the present time slotted rings do not feature in any international 

standard, the motivation for this work is that previous research has shown that 

such networks can perform exceptionally well in high speed, short packet length 

environments of the type used for transmitting integrated services such as mixes 

of voice, video and computer data. It is likely therefore that slotted rings, or 

networks based on these, will feature in the next generation of local area 

networks whose ability to efficiently transmit integrated services will be of prime 

importance. 

Various medium access control protocols are modelled and analyzed, these being 

the source deletion protocol, the destination deletion protocol, and an extension 

of the latter for carrying integrated services, the Orwell protocol. 

The second objective of the research is concerned with the modelling techniques 

used, which are based on discrete-time Markov chains. For the majority of cases, 

an exact solution to these models is intractable and the size of the state space is 

often such as to make a direct numerical solution prohibitively expensive. The 

approach taken is to use either station based or slot based models and to reduce 

the solution to finding the fixed point of some (in general) non-linear operator 

in a suitably chosen space. This fixed point approach is studied in some detail via 

its application to the slotted ring models, and the effects of various simplifying 

assumptions on the accuracy of the solutions is examined. This is done by 

comparing the results of the models with simulations. 



Perhaps the major restriction associated with the models used is that the 

network's stations must be statistically identical. This restriction is removed in the 

latter part of the thesis when the method is extended to handle networks with 

stations that are statistically different. This is done by interpreting the models 

used as discrete-time queuing networks with state dependent routing and different 

customer classes. The generality of this approach is demonstrated by applying it 

to slotted Aloha type networks in addition to slotted rings. 
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NOTATIONS 

d = Average delay (channel access delay) 

d; = Average delay (channel access delay) for station i 

Di = The maximum number of calls a station in the Orwell nng is 

Dmax 

K 

L 

Ld 

currently supporting 

= Maximum number of calls a station is allowed to support in the 

Orwell ring 

= Total number of stations in the network less one 

= Total bits per slot 

= Class 1 data bits per slot 

m\,2.,(K) = Probability of station i being in the idle state (Slotted Aloha 

networks) 

M = Total number of slots in the network 

N = Total number of stations in the network 

p = Packet arrival probability (Slotted Ring networks) or retransmission 

probability (Slotted Aloha networks), the units of which depends 

upon the model 

p; = Packet arrival probability (Slotted Ring networks) or retransmission 

probability (Slotted Aloha networks) of station i 

PRP = Packet Rejection Probability 

PRP; = Packet Rejection Probability of station i 

P(T,y,x) = Steady state number of stations occupying state (T,y,x) 

P(W,y,x) = Steady state number of stations occupying state (W,y,x) 

P(x); = Steady state probability of station i occupying state x 

P(y,x) = Steady state probability of being in state (y,x) 

= Average queue 

= Average queue of station i 

Q = Maximum buffer size per station (station based models) or average 
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maximum buffer size per slot (slot based models) 

R = Network transmission rate 

R, = Class 1 data arrival rate 

S = Probability that a station in a non-transmitting state will find the 

Si • 

S,.".k(K) 

S<o (K) 1.2 .. .k 

= 

= 
= 

next slot full 

Probability with which the next passing slot would appear full to 

station i when that station is not transmitting 

Throughput due to 1,2, ... k stations in a K station network 

Throughput contribution of station i in a K station network having 

the stations 1,2, ... k 

Throughput; = Throughput of station i 

T,.2 .. ,(K) = Probability that at least on of the stations 1,2, .. k of a K station 

network will attempt to transmit in the next slot (Slotted Aloha 

networks) 

(T,y,x) = Transmitting state with a remaining transmission time of y time 

units (station times), and x packets in the buffer 

(W,y,x) = Waiting state with y time units (station times) before the next slot 

header arrives and having x number of packets in the buffer 

(y,x) = The state after x number of time units since the start of 

transmission and y number of packet in the buffer 

u = Packet arrival probability (Slotted Aloha networks) 

u; = Packet arrival probability for station i (Slotted Aloha networks) 
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CHAPTER 1 

Introduction 

1.0 Local Area Networks· A Brief Introduction 

A Local Area Network (LAN), has been defined by Stallings (Stallings 87) to be 

" ... a communications network that provides interconnection of a variety of data 

communication devices within a small area." 

According to Edwards (Edwards 89), the development of LANs can be 

categorised into three generations based upon their transmission speeds and 

provision of facilities. These are· 

First Generation LANs: with speeds up to 10 Mbits/s, networking 

equipment such as fileservers, printers, etc., or distributed computer 

systems. e.g. Ethernet, Token Ring. 

Second Generation LANs: having transmission rates around 100 Mbits/s, 

capable of handling voice in addition to the services supported by the first 

generation LANs. 

Third Generation LANs: capable of speeds of 1 Gbits/s or higher, with 

enough capacity to support multimedia data transmission including real

time video. These networks are still under active development. 
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The topologies under which the stations may be interconnected can be broadly 

classified into four - bus, star, ring and tree networks, or a combination of thereof. 

Several access methods are available for each topology, the effectiveness of which 

depends on the packet length, transmission speed, delay tolerance of the data, etc. 

1.1 Literature Survey 

Since the advent of computer based communication networks (Abramson 73, 

CIark 78, KJessig 86), many simulation and mathematical modelling studies have 

been made for the various topologies under which they may be interconnected, 

as well as for the different access protocols that may be used under each such 

method. Such research include studies of the Aloha or Broadcast Bus type 

protocols (Ganz 89, Mukherjee 88, Ramana 82), ring networks such as the Token 

Ring (Bux 83), Slotted Ring (Arem 90a, King 87, Lee 91, Mitrani 87), as well as 

the Cambridge Ring (Harrus 85, Mitrani 84, Sorensen 85, Wilkes 79) - a practical 

network based on the former. , 

Kamal and Hamacher (Kamal 90), have suggested a more efficient extension to 

the basic Slotted Ring protocol where a station is allowed to use any number of 

slots repeatedly to transmit a given message. To prevent hogging, the station has 

to release those slots after completing the transmission of that particular message 

before attempting to transmit another message. 

Studies have also been made to investigate the effect of having multiple rings on 

a token, slotted or register insertion type ring network (Bhuyan 89). 

Due to the emergence of high speed networking hardware as well as the use of 

optical fibres as the transmission medium, several studies (Bux 81, Falconer 85, 

Friedman 89, Limb 84, Pattavina 88, Rodrigues 90, Shepherd 82) have been made 

on the relative merits of different network architectures and medium access 
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protocols which enable the transmission of multimedia (EMmC 90, Feldman 91) 

information that include isochronous messages such as voice and video, in 

addition to the non-isochronous data. Littlewood et al (Littlewood 87) have listed 

and analysed the important characteristics such networks should possess. It has 

been found that ring type networks, especially Slotted Rings (Zafirovic 88), can 

perform exceptionally well under short packet length, high speed environments 

since they can provide bounded medium access delay for any data packet in a 

finite buffered station. 

It is noted that the above studies do not consider the effects of signal 

compression, bandwidth saving due to the multiplexing of several channels (Chin 

89, Iohnson 85), and/or techniques such as layered video coding (Ghanbari 89). 

In this latter method, the video signals are coded into different classes (levels) 

and only the first layer need to be transmitted to create the basic picture, the 

other layer(s) only used to enhance the picture quality. Thus, the network need 

give guaranteed bandwidth only to the level 1 signals. 

Even though such techniques will not, most probably, affect a comparison of two 

protocols or network topologies as long as all networks under study ignore (or 

take into consideration) such methods, when considering the suitability of a 

specific network in carrying integrated services, it is felt that attention should be 

given to such details. 

In order to guarantee an upper bound to the delay suffered by isochronous data, 

a number of advanced medium access protocols for ring type networks have been 

suggested and analysed. For the token based rings, these include the FDDI and 

FDDI 11 protocols (Dykeman 88, Iayasumana 90, Iohnson 87, Ross 89, Sevcik 87, 

Takagi 90), as well as other algorithms such as the ones suggested by Pattavina 

(Pattavina 88a) using multiple tokens, and by The and Gibson (The 86) where a 

"transmission window scheme" and a token with priority and reservation fields are 

used. In another paper (Ibe 86a) the latter two authors have also studied the 

possibility of using non-reservation and reseIVation schemes for voice and data transmission 

3 



For the slot based rings, the Cambridge Fast Ring (Hopper 88), the MAGNET 

(Lazar 85), the LOCOST traffic scheduling scheme (Limb 87), the OrweU 

protocol (Adams 84, Arem 90, Falconer 85a, GaUagher 86, Lee 91, Mitrani 86) 

and its possible extensions, for example, using a movable boundary scheme 

(Woodward 91a), etc. have been suggested. A dynamic bandwidth allocation 

system for integrated services based upon a station, termed the "Head End 

station", responsible for generating slots has been suggested by Li (Li 88). 

However, such a mechanism does away with the distributed control that is present 

in the basic Slotted Rings. The possibility of transmitting voice and data on a 

Slotted Ring (source deletion) operating on a frame structure has been 

investigated by Abedin et al (Abedin 86), and, Takiyasu and Tanaka (Takiyasu 

89) have studied the effects of slot concatenation and reuse of the same slot 

during Iow traffic periods, specifically with regard to the transmission of 

integrated services. 

Investigations have also been made on the feasibility of transmitting voice and 

data through Broadcast Bus networks (Mukherjee 88a, Sharrock 89). Goel and 

Elhakeem (Goel 85) examined the possibility of achieving the same with the use 

of a "Frame Adaptable Reservation AIoha with Carrier Sensing" (F ARA/CS) and 

CSMA/CD for voice and data transmission respectively. 

In addition to the above mentioned publications on specific networks, of which 

some dealt in the aspect of mathematical modelling, several others, dealing with 

queueing networks in general, or in specific classes of such networks, are of 

particular interest with regard to this research. 

These include the studies made by Bharath-Kumar (Bharath 80) and Walrand 

(Walrand 83) on discrete time queueing networks. In Ganz 90, slotted 

communication networks with finite buffer capacities have been analysed and 

Sykas et al (Sykas 86) have proposed a scheme that may be used to model several 

slotted multiple-access protocols. Similarly, the study carried out by Daduna and 

Scha,Bberger (Daduna 83) on discrete time queueing networks is worthy of 
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reference. Sriram et al (Sriram 83) have modelled voice and data transmission 

using a movable boundary frame allocation system with and without speech 

activity detectors. In Kamal 89, a non-exhaustive multiserver polling system has 

been analysed and applied to slotted and partial-insertion rings. 

In Lavenberg 80 and Sevcik 81, it was independently shown that " ... the stationary 

state probabilities at instants at which customers of a particular type arrive at a 

particular service center and enter a particular class are equal to the stationary 

state probabilities at arbitrary times for the network with one less customer." 

(Lavenberg 80) This result, known as the Arrival Theorem, is of particular 

importance to some of the models in this thesis, especially those in chapter 7, 

where two algorithms will be developed to analyse statistically non-identical 

stations. 

In addition to the above publications, several books were consulted, both for 

general background reading, or, in ~ome cases, on specific areas of interest. These 

include books on communication network protocols and analysis (Edwards 89, 

Hammond 86, Held 91, Judge 88, Marsden 91, Mitrani 87, Schwartz 87, Stallings 

87, Stallings 89, Tanenbaum 81, Tasaka 86), simulation (Mitrani 82, Schoemaker 

82), as well as on basic queueing theory (Gnedenko 89, Hall 91, Kleinrock 75, 

Turin 90), probability and statistics (Daellenbach 83, Gray 67, Howard 60, 

Lipschutz 68), and, programming and numerical methods (Hume 83, NAG 87, 

Press 86, Reynolds 86, Williams 79). 

1.2 Modelling Methods Used In The Thesis 

A convenient way of analysing the performance of a time-slotted, multiple access 

protocol is to develop a model for the protocol based on a discrete-time Markov 

chain (Kleinrock 75a). In most practical cases, however, the state description is 

multidimensional, and an explicit solution of the balance equations is not feasible; 
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one must then proceed either numerically, or use some form of approximation to 

obtain a solution. All models in this thesis are concerned with methods that fall 

into the latter category, where the equilibrium distribution of the Markov chain 

is approximated by a Dirac delta function located at a point in the state space 
, 

where the system is in equilibrium (an equilibrium point). 

One such method is the equilibrium point analysis (EP A) (Tasaka 86). The 

method requires the solution of a set of coupled, non-linear equations, known as 

the equilibrium point equations, which can usually be reduced to a fixed-point 

equation for some parameter of interest. This, in turn, can be solved by the usual 

methods for such equations (iteration, bisection, etc.). 

Another approximation method that has been widely used is the Fixed Point 

Approximation Method (Harms 85, Lee 91, Mitrani 84). This scheme consists of 

solving the Markov chain for a single network station in isolation, the effects of 

the rest of the network being allowed for by the introduction of some global 

parameter(s), the value(s) of which is(are) then determined. To evaluate the 

network parameters, all the stations of the network are superimposed. 

It is of interest to note that these two methods have been shown to be equivalent 

under the constraints that users in the latter method are independent and 

statistically identical (Woodward 91). This fact will illustrated in chapter 2 by 

showing how a model based on a single station can be easily converted into one 

of the type mentioned in Tasaka 86. 

All models in this thesis will be based on discrete time techniques, most of which 

follow a discretised version of Mitrani's Fixed Point Approximation Method 

(Mitrani 84), which was originally specified in continuous time. 
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1.3 Objectives Of This Research 

As suggested by the title of this thesis, one of the main aims of the research is to 

develop Markovian models to analyse the performance of various medium access 

protocols for the Slotted Ring. 

As of to date, there has only been very little research done in modelling networks 

based on observing them from different subsystems. A second objective of this 

thesis to redress this deficiency by using Slotted Rings to illustrate how a given 

network may be modelled by viewing it from a user's (station's) or server's (slot's) 

point of view, or, globally. 

lA Organisation Of The Thesis 

The thesis will be organised in the following manner. 

In chapter 2, a brief introduction to the Slotted Rings will be given and four 

source deletion models based on observing the network from a station (station 

based models) presented. Of these, the second and the third will be simplified 

versions of the first and the degradation of performance due to this will be 

analysed. A matrix method, suitable for solving models which have state 

dependent transition probabilities, will be suggested and used to solve the fourth 

model. It will also be shown how a station based model may be easily converted 

to a model based on observing the network globally. The results of all models will 

be validated with the use of simulations. 

A slot based model for a Slotted Ring with a source deletion protocol will be 

developed in chapter 3 and its performance compared to simulation results 

obtained in the previous chapter. 
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Prior to modelling practical destination deletion protocols, chapters 4 and 5 will 

be used to investigate the basic destination deletion concept based on a station 

and a slot respectively. Two possible methods of calculating this destination 

deletion probability will be examined. As in chapter 2, the possibility of 

simplifying the main models and the cost of such an action on the performance 

will be analysed. 

Two models for the Orwell protocol, based on a station and a slot respectively, 

will be described in chapter 6. These models will be the extended versions of the 

models developed for the destination deletion protocol in the previous two 

chapters. As usual, the analytical results will be compared to the simulation 

results. 

In chapter 7, two algorithms which enable the modelling techniques used, to be 

extended to networks with statistically non-identical users, will be proposed and 

analysed. These algorithms will be based on interpreting the models used as 

discrete-time queueing networks. To show their generality, they will be applied 

to a Slotted Aloha network in addition to the Slotted Ring (source deletion) 

network, and the results examined in relation to simulations. 

Finally, chapter 8 will summarise the work carried out in this thesis and suggest 

further areas for research. 
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CHAPTER 2 

Slotted Ring Source Deletion Protocol : 

Station Based Models 

2.0 Introduction 

A Ring Network (Hammond 86, StalIings 87, Schwartz 87, Tanenbaum 81) 

consists of a number of stations interconnected in the manner shown in figure 

2.0.1, the connecting media between the stations being twisted pair, coaxial or 

fibre optic cables. 

In a Slotted Ring network (e.g. the Cambridge Ring (Wilkes 89», the bits 

contained in the ring (due to the delays at the stations and possible repeaters as 

well as the bits that are in the cables), are grouped in fixed numbers to form the 

slots. 

Each slot can be broadly divided into two main sections (figure 2.0.2) the control 

bits and the data bits, the former, containing bits for the source and destination 

addresses of the packet contained in the slot, a bit to indicate the Full/Empty 

state of the slot, bits for the response of the destination station, parity checking, 

monitoring, slot header and the trailer. 

A station wishing to transmit will attempt to do so in the next empty slot that 

passes, by marking it as full and loading the appropriate information and data 

9 



Header 

P - Peripheral 
S - Station 

Fig 2.0.1 Ring Network Structure 

Source Other 
Destination Data Control Trailer 

Address Address 
bits 

Fig 2.0.2 Slot Structure 
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bits. In the case of Source Deletion Protocols, the packets are deleted from the 

slots only by the stations that transmitted them. 

The response bits from the destination station with regard to the packet in a 

specific slot will enable the transmitting station to decide upon the action it 

should take with the copy of that packet that has been retained. 

To prevent hogging, a station is not allowed to reuse the slot it has just deleted. 

In this chapter, four models will be presented for a Slotted Ring with a Source 

Deletion Protocol, all the models being based upon the network being observed 

from a station. The models in sections 2.1 and 2.2 will assume that the packet is 

removed from the main buffer as soon as it is transmitted (It may be stored 

elseware in case of a necessity to retransmit.), whereas the models of sections 2.3 

and 2.5 will assume that the packet will not be removed from the main buffer 

until its transmitted copy has traversed around the ring. The model in section 2.2 

is a simplified version of the one in section 2.1 and will greatly reduce the solving 

procedure involved. It will be shown that both these models give close results, 

thus justifying the use of the second simplified model in place of the first. 

The model of section 2.5 is an extension to that in section 2.1 and will be 

presented by considering a segment of the network. This model will also be used 

to show how a station based model can be easily converted into a model based 

upon the network being observed globally. 

To prevent repetition, the assumptions that are common to all the models in this 

chapter are as follows -

(2.0.1) Each data packet will fit exactly into a slot; as such, if there are no 

message receiving failures, only one slot will be needed to transmit 

a packet. 

11 



(2.0.2) 

(2.0.3) 

(2.0.4) 

(2.0.5) 

(2.0.6) 

(2.0.7) 

(2.0.8) 

(2.0.9) 

(2.0.10) 

No conditions will arise that would necessitate the re transmission 

of a packet, or, broadly speaking, the receiving station will never be 

too busy to reject a packet and no transmission errors would occur. 

All the stations are statistically identical and independent. They are 

distributed evenly around the ring. 

All slots are independent and identical. This also implies that any 

gap between any two consecutive slots is a constant. 

The packet buffer at a station is at least unity; if not, the model 

would change slightly to accommodate that fact although the basic 

concepts would remain the same. 

A packet in any given slot is deleted after it has circulated once 

around the ring by the station that transmitted it (Source Deletion). 

A station is not allowed to use the slot it has just emptied in the 

same cycle. 

This is used in real systems to prevent hogging. 

A station is not allowed to have more than one packet under 

transmission at any given time. 

The number of stations is greater than, or equal to the number of 

slots, and is a large integer. 

State transitions take place just before the end of a time unit, and 

are completed just after beginning of the next time unit. 

Here, the time unit used will be based in terms of slot times or 

station times. 

12 



(2.0.11) The state is observed immediately after state transitions. 

(2.0.12) Packets arrive at the start of a time unit. 

Note that a slot time is defined as the amount of time required for a given slot 

to occupy the position of the next slot downstream. In other words, this is equal 

to the time required by a slot to complete one cycle around the ring divided by 

the total number of slots in the network. 

Similarly, the station time is the time needed by a slot adjacent to a given station 

to reach the next downstream station. Therefore, this is equal to the time a slot 

takes to complete a single cycle divided by the total number of stations in the 

network. 

2.1 Source Deletion. Station Based Model 1 (SDStnBMl) 

The following additional assumptions will be made -

(2.1.1) 

(2.1.2) 

(2.1.3) 

Only a single packet of data may arrive at any station per given slot 

time. 

Packet arrivals at a station have a Bernoulli distribution with 

parameter 'p', which has units of packets per station per slot time. 

A packet is deleted from the buffer at the start of its transmission. 

The Markov state diagram for the model is shown in figure 2.1.1. The two values 

shown inside each state represent the queue size of the station and the number 

of time units (slot times in this model) that have elapsed since the start of the 

transmission respectively. The letters beside the arrows show the probability of 
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r--t~/~ d(O,O) 

~ ~ (1,0) 

where - a = p(I-S) 
b = pS 
c = (l-p) (I-S) 

d = I-p 
e = (l-p)S 
f = S 

9 = P 
h = 1 

Fig 2.1.1 State transition diagram for a station 
based, discrete-time Markov model of a Slotted 

Ring with a Source Deletion Protocol. (SDStnBM1) 
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a transition in that direction within the next time unit. 

Let, 

N = Total number of stations in the network 

M = Total number of slots in the network 

Q = Maximum buffer size per station 

S = Probability that a station in a non transmitting state will find the 

next slot full. 

P(y,x) = Steady state probability of the station being in state (y,x) 

where y is the queue size of the station at that state and x is 

the number of slot times that have passed since the start of 

transmission. 

A station in state (0,0) will start to transmit in the next slot time by moving to 

state (0,1) if there is a packet arrival and if the next slot is empty. Since these two 

events are independent, their intersection is the product of the two probabilities. 

i.e., 

a - p(l-S) 

If there is a packet arrival, but the next slot is busy, then the station can be 

represented as transiting to state (1,0) with a probability 'b', where, 

b- pS 

With no packet arrival, it will remain in the same state (0,0) with a probability 'd', 

where, 

d- 1-p 

Similarly, if the next slot is empty, a station in a state (y,O) {O<y:5Q}, will start 

transmitting in the next slot time by moving onto states (y-l,l) or (y,l) with 

probabilities 'c', where, 

c - (l-p) (l-S) 

or 'a' respectively. In the event of the next slot being busy, and the buffer of that 
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station not being full, it will either remain in the same state with a probability 'e', 

where, 

e - (l-p) S 

or move vertically down in the state diagram to state (y+ 1,0) with probability 'b'. 

However, if the buffer is full and the next slot is busy, the station will remain in 

the same state with probability 'f, where, 

f-S 

A station in state (y,x) {OSy<Q, O<x<M} will, in the next slot time, move either 

to the state (y,x+ 1) or (y+ l,x+ 1) with probabilities 'd' or 'g' respectively, where, 

g-p 

When the buffer is full and the station is transmitting, Le., (Q,x) states with 

{O < x < M}, no more new packets can be accepted for transmission. Therefore, the 

station will always move to the state (Q,x+ 1) in the next time unit. 

i.e., 

h-1 

At the end of transmission (Le. all (y,M) states), the station will go into an idle 

state (y + 1,0) or (y,O) depending upon whether there is a packet arrival or not. 

The few remaining unexplained transitions may be interpreted in a similar 

manner. 

Assuming a steady state, 

total probability of entering a given state-
total probability of exiting that state 

Using this principle and substituting for state transition probabilities, the following 

balance equations may be derived for the different states -

P(O, O)p - P(O,M) (l-p) (2.1.1) 
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P(y,l) - P(y,O)p(l-S) + P(y+1,O) (l-p) (1-5) {o~y<QI (2.1.2) 

P(O,X) - P(0,x-1) (l-p) 12,;x,;MJ (2.1.3) 

P(y,x) - P(y,x-1) (l-p) + P(y-1,x-1)p 

{O<y<Q, 2,;x,;M} 
(2.1.4) 

P(y, 0) [1- (l-p) S] - P(y,Ml (l-p) + P(y-1, O)pS 
(2.1.5) 

+ P(y-1,Mlp {O<y<Q} 

P ( Q, 0) (1-S) - P ( 0, Ml + P (Q-1, 0) pS + P (0-1 , Ml p (2 • 1. 6 ) 

P(Q,l) - Pto, O)p(l-S) 

P(Q,x) - P(0,x-1) + P(0-1,x-1)p 

From equations (2.1.1) and (2.1.3), 

P(O,l) - p(O,O) . p 
(l-p)M 

then, from (2.1.1), 

P (0, Ml - P (0, 0) (1 ~ P) 

from (2.1.2), 

(2.1.7) 

(2.1.8) 

(2.1.9) 

(2.1.10) 

P(y,O) - P(y-1,1) - P(y-1,0)p(1-S) {l~y';Q} (2.1.11) 
(l-p) (l-S) 

from (2.1.5), 

P(y M) _ P(y,O) [1-(1-p)S]-P(y-1,O)pS-P(y-1,M)p 
, (1- p) 

{O<y<Q} 
(2.1.12) 

Long and tedious simplification of equation (2.1.4) shows that P(y,x) {O!5y<Q, 
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2sxsM} has the following relationship -

Y 
P(y,x) -}' P(j,l)p(Y-}) (l-p) (X-l-y.j) (X-l)C(y_}) 

H 
(2.1.13) 

However, for the purpose of the thesis, this equation will be proved by induction. 

Assume that the relationship (2.1.13) holds true for the states (a-l,,e-l), (a,,e-l). 

Then, 

pea, p) - P(a-1, P-1)p + pea, P-1) (l-p) 
(.-1) 

- p L P (j, 1) P (.-l-j) (l-p) (~-l-•• j) (~-2) C(._l_j) + 
j-O 

u-1 

u 

(l-p) L P(j, l)p (u-j) (l-p) (~-2-•• j) (~-2) C(._j) 

j-O 

- "P(]' 1) p (.-j) (l-p) (~-l-u.j) [(~-2) C . + (~-2) C . 1 L..J ' (.-1-) (u-) 
j-O 

- [P(j 1) P (.-j) (l-p) (~-l-u.j) (~-2) C 1 
' (u-j) j_. 

u - L P(j, 1) P (u-j) (l-p) (~-l-•• j) 

j-O 

Considering all (y,2) states, 

(P-1) C 
(u-j) 

P(D,2) - P(D, 1) (l-p) 
P(1,2) - P(l, 1) (l-p) + P(D, l)p . . . . . . . . 

P(Q-1,2) - P(Q-1, 1) (l-p) + P(Q-2, l)p 

Thus, equation (2.1.13) can be said to hold true for all (y,x) states where OSy<Q 

and x = 2. Therefore from induction, it may be said that (2.1.13) is true for all 

Osy<Q and 2sxsM. 

From (2.1.13), 
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y-l 

P(y,M) - L P(j, 1) p (y-j) (l-p) (M-l-y+j) (M-l) e(y_j) 

P(y,l) ________ J~·-~o __________ ~~--------------
(l-p) (M-l) (2.1.14) 

{O<y<Q} 

Calculation of P(y,O) values 

If the values of P(O,O) and S are known, the following sequence may be used to 

calculate all the other P(y,O) values-

(2,1.9) to obtain P(O,l) 

(2,1.10) to obtain P(O,M) 

the following loop to be executed repeatedly for all 1 <y< Q, 

(2,1.11) to obtain P(y,O) 

(2,1.12) to obtain P(y,M) 

(2,1.14) to obtain P(y,l) 

(2,1.11) to obtain P(Q,O) 

Considering the sum of all the state probabilities, 

o M 

L L P(y,x) - 1 
y .. o x-a 

(2.1.15) 

As it may be seen from figure 2,1.1, a station in a state (y,x) {O<x<M} will 

always move to one of the states (y,x+ 1) or (y+ 1,x+ 1), Therefore, we can say 

that as long as the station is in steady state equilibrium, 

o 0 
L P(y,x) - L P(y,X+1) 
y .. o y-O 

therefore, using equation (2,1.15), 
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o 0 
LP(Y,O) +LP(y,1)M-1 
y-O y-o 

substituting for P(y,l) from (2.1.2) and (2.1.7), 

o 
1 - [1 + M(l-S) 1 L P(y, 0) 

P ( ° , 0) - ___ ,-:-.,.--;c;-:-;-::-,Y::-~l ,--
[1 + Mp(l-S) 1 

o 
Probability that a station - 1 - L P(y,O) 

is transmitting 
y-O 

(2.1.16) 

Therefore, the probability of a given station in a non-transmitting state seeing the 

next slot full, is the probability that one of the other N-1 stations are transmitting 

in that slot (Harrus 85). Thus, 

S - (N-1) (l-"E P (Y,Q)) 
M y-o 

(2.1.17) 

Both equations (2.1.16) and (2.1.17) are functions of P(O,O) and S. (Note that 

P(y,O) is a function of P(O,O).) Therefore, an iterative method may be used to 

solve them. 

A simple iterative method that may be used is as follows -

Step 1 . 

Step 2 . 

Step 3 . 

Step 4 . 

Guess an initial value for P(O,O) and S. 

Apply the latest P(O,O) and S in equation (2.1.16) find the new 

value of P(O,O). 

Substitute the latest P(O,O) and S in equation (2.1.17) find the new 

value of S. 

Repeat Steps 2 and 3 until the values of P(O,O) and S converge onto 

an acceptable level of error. 
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It is noted that in order to carry out steps 2 and 3, the sequence of calculating the 

P(y,O) values mentioned above has to be used. 

Once the solution for P(O,O) and S have been found, they may be used to 

calculate the rest of the steady state probabilities. 

Since S is the probability of a slot being filled by one of N-1 stations, 

Throughput _ ( N ) S 
N-1 

Average Queue (q) - ~ (yt. P(y,X») (packets) 

From Little's result, 

(2.1.18) 

(2.1.19) 

Average Queue - Mean Arrival Rate x Waiting Time 

therefore, 

Delay (d) - Nq +1 
Throughput 

(slot times) (2.1.20) 

Since the packet is removed from the buffer as soon as it is transmitted, the delay 

calculated here is the channel access delay, the' + l' being due to the fact that any 

packet has to wait at least one slot-time before transmission (due to assumption 

2.0.12). 

Packet Rejection Probability- Arrival Rate - Service Rate 
Arrival Rate 

(givenpacket arrival) 

therefore, 

PRP _ NpM - Throughputx M 
NpM 
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PRP _ 1 _ Throughput 
Np 

(2.1.21) 

Another way to calculate the same measure is to obtain the probability of a 

packet arrival when the buffer of the station is full. Then, 

M 

PRP - p(Q,O)pS + PLP(Q,x) 
x-l 

- P (P(Q, 0) S + t, P(Q,x») 

(2.1.22) 

Both (2.1.21) and (2.1.22) give identical results. 

One of the greatest drawbacks of this model is the large number of equations that 

have to be solved in order to calculate the system performance. 

The fact that the iterative method suggested does not always converge, forces one 

to seek more complex iterative methods such as Mathematical Annealing, etc., 

which usually take a long time to reach the solution. It is not feasible to use the 

"Generalised Newton's Method" to solve for the above two unknowns, as the 

complexity of the equations involved prevent them from producing simple 

equations for their partial derivatives. 

2.2 Source Deletion, Station Based Model 2 (SDStnBM2) 

The model presented in this section is a simplified version of the previous one, 

the method of packet arrival being similar to that used by Tasaka (Tasaka 86) 

when modelling the CSMA-CD protocol. It provides a single variable for which 

one may iterate for a solution, thus, reducing the amount of computations 

involved considerably. As shown later, this provides a satisfactory match to the 
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h 
(0, 0) 

(1, 0) 
g 

')-49:h ~ 1,M (1,0) 

(2, 0) 
g 

g 

)--~/"'\ (.\ ...... _J""" /.\ .......... J."\... h 

J~~~.~\,.J, 

where - a = p(1-5) 
b = p5 
c = (l-p) (1-5) 

d = 1-p 
e = (l-p) 5 
f = 5 

g = Mp 
h = 1- Mp 
i = 1 

(Q,O) 
g 

i 
(Q,O) 

Fig 2.2.1 State transition diagram for a simplified, 
station based, discrete-time Markov model of a 
Slotted Ring with a Source Deletion Protocol. 

(SDStnBM2) 
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results obtained from the model in section 2.1. 

In addition to the general assumptions mentioned in the introduction to this 

chapter, the following are assumed -

(2.2.1) 

(2.2.2) 

When a station is idling, a single packet may arrive to that station 

every slot time with probability 'p'. This arrival process will follow 

a Bernoulli distribution. 

However, when the station is transmitting, no new packets will 

arrive at the station until the end of transmission. Since 'M' slot 

times are needed to complete a packet transmission, a single 

packet, with an arrival probability of 'Mp' packets per station, may 

be generated at the end of each transmission. 

Assumption (2.1.3). 

Note that assumption (2.2.2) effectively approximates a binomial distribution with 

parameters (M,p) with a Bernoulli distribution with parameter Mp. 

Figure 2.2.1 shows the Markov state diagram for the model. The transition from 

one state to the other may be explained in a similar manner to that in section 2.1. 

As before, let, 

N = Total number of stations in the network 

M = Total number of slots in the network 

Q = Maximum buffer size per station 

S = Probability that a station in a non transmitting state will find the 

next slot full 

P(y,x) = Steady state probability of the station being in state (y,x) 

where y is the queue size of the station at that state and x is 

the number of slot times that have passed since the start of 
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transmission. 

Considering the equality of the probabilities of total arrivals and total exits to and 

from a given state at steady state equilibrium, the following balance equations 

may be derived. 

Pia, O)p - P(O,M) (l-pM) 

P(y,l) - P(y,O)p(l-S) + P(y+l, 0) (l-p) (l-S) 

{o,;y<Q} 

P(Q,l) - P(Q,O)p(l-S) 

(2.2.1) 

(2.2.2) 

(2.2.3) 

P(y, 0) [1- (l-p) S] - P(y,M) (l-pM) + P(y-l,M)Mp + 
(2.2.4) 

P(y-l,O)pS {l,;y<Q} 

P(Q,O} (l-S) - P(Q,M) + P(Q-l,M)Mp + P(Q-l,O)pS (2.2.5) 

P(y,x) - P(y,x+l) (O,;y,;Q, l,;x<M} (2.2.6) 

applying equation (2.2.6) to (2.2.4) and (2.2.5), 

P(y, 0) [1- (l-p) S] - P(y,l) (l-pM) + P(y-l, l)Mp + 
(2.2.7) 

P(y-l,O)pS {l,;y<Q} 

P (Q, 0) (1-S) - P (Q, 1) + P (Q-l, 1) Mp + P (Q-l , 0) ps (2.2.8) 

substituting in (2.2.8) for P(Q,l) and P(Q-l,l) from equations (2.2.3) and (2.2.2) 

respectively, 

P(Q-l,O) - P(Q,O) A 

where, 

A -
(l-p) (l-S) (Mp-l) 
p[S(Mp-l) -Mp] 

(2.2.9) 

(2.2.10) 
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Re-substituting in (2.2.2), 

P(Q-l,l) - P(Q-l,O) p 
(l-Mp) 

(2.2.11) 

Induction will be used to prove that -

P(Q-r,O) - p(Q-r+l,O) A (O<r~Q) (2.2.12) 

P(Q-r,l) - p(Q-r,O) p {O<H Q} 
(l-Mp) 

(2.2.13) 

Assume that equation (2.2.13) holds true for a queue size of (Q-r) where O<r<Q. 

Then, substituting in equation (2.2.7) for P(Q-r-1,1) and P(Q-r,l) from the 

equations (2.2.2) and (2.2.13) respectively, it can be easily shown that, 

P(Q-(r+l) ,0) - P(Q-r,O) A (O~r<Q) 

re-substituting in (2.2.2), 

P(Q- (r+l) ,1) - P(Q- (r+l), 0) (l~P) {O<r<Q} 

This implies that, if the above equation is true for a queue of (Q-r), then, it is 

true for a queue of (Q-(r+ 1» as well. Since equations (2.2.9) and (2.2.11) show 

that it is valid for r= 1, we may say that both equations (2.2.12) and (2.2.13) hold 

true for all l:sr:sQ. 

Since S is the throughput contribution of N-1 stations, 

Q M 
S - (N-l) L L P(y,x) 

M y-O x-l 
Q 

- (N-l) ML P(y,l) 
M y-O 

- (N-l) [P(Q,l) + P(Q-l,l) + •••• + P(l,!) + P(O,l: 

using equations (2.2.3), (2.2.12) and (2.2.13), 
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S - (N-1)[P(1-S) + P 
(l-Mp) 

[A+A'+A'+ •.. +AOlj PlO, 0) 

-1 (N-1)pP(0,0) [(l-S) + 

(N-1)pP(0, 0) [(l-S) + 

1 A(l-AO)] 
(l-Mp) (1 A) (Ml) 

(l-~P) 0] (A-1) 

(2.2.14) 

Considering the sum of all P(y,x) values and using equation (2.2.12), 

Q M 

1 - L L P(y,x) 
y .. o x-a 

SM 
(N-1) 

SM 
(N-1) 

_ (N-1) 

° + LP(y,a) 
y-O 

+ P(Q, a} [AO+AQ-l+ 

+ p(Q a} (l-AQ+l) 
, (l-A) 

(A~l) 

1 
SM 

SM 
(N-1) 

+ P(Q, a} (Q+1) (A-1) 

therefore, 

_I [1 - SM 1 (l-A) 
(N-1) (l-AO+l) 

p(Q,a} 

[1 SM 1 1 
(N-1) (Q+1) 

substituting in (2.2.14), 

!
(N-1)P[(1-S)+ 1 A(l-A O)][l_ 

S- (l-Mp) (l-A) 

(N-1)P[ (1-S) + (l-~P) 0][1- (:..~)] 

SM ] 
(N-1) 

1 
(0+1) 

(AH) 

(A-1) 

(2.2.15) 

(Ml) 
(2.2.16) 

(A-1) 

This fixed point equation can be solved for S using a simple iterative method. In 
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the event of it not converging to the solution (as it happens at times when p is 

increased near to maximum possible), the following method may be used on the 

modified (2.2.16) equation. 

j [ + 1 AU-AO)][ SM 1 s- (N-l)p (1-5) (l-Mp) (l-A) 1- (N-1) 

£(5) -

5- (N-1)P[(1-S) + (l-~P) 0][1- (!~) 1 CO~l) 

(l-A) 
(l-A"") 

(M1) 

(A-1) (2.2.17) 

At the point of solution, f(S) will be zero, and the Bisection Method of iteration 

(Williams 79) may be used. 

Once S is known, (2.2.15) may be used to compute the relevant P(Q,D) value. 

As before, 

Throughput - S (N~l) 

o N 

AverageQueue(Q) - E E yP(y, x) 
y-O x-o 
o 

- E y[P(y, 0) + MP(y,l)] 
y-O 

- Q[P(Q,O) + MP(Q,l)] + 

<>-1 
Ey[p(y,o) + MP(y,l)] 
y-' 

substituting for P(y,l) from equations (2.2.3) and (2.2.13), 

q - P(O,O) 0 [1 + Mp(l-S) I + 
1 001 

(l-M ) I>p(y, 0) 
p y-1 

(2.2.18) 

substituting from equation (2.2.12), and summing up the resulting series, 
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10 [l+Mp(l-S») + 
1 

(AQ-'-l) + (O-l)(~-ll I p(O.O) (Ml) 

q-
(l-Mp) 

(l-~ r 
(2.2.19) 

{ 0 [l+Mp(l-S) I + 1 [(0-1) Q] } p(Q 0) 
(l-Mp) 2 • 

(A-l) 

Using Little's law, 

d- qN +1 
Throughput 

(slot times) (2.2.20) 

As in the previous model, 

Packet Rejection Probability - 1 _ Throughput 
Np 

(PRP) 
(2.2.21) 

The major disadvantage of this model is due to the fact that, since a probability 

cannot be greater than unity, the probability of a packet arrival at any given 

instance should also follow the same rule. i.e., 

Mp < 1 

P < 1 
M 

This means that this model is not valid for values of 'p' greater than or equal to 

l/M, thus restricting its useful range. However, to prevent instability and buffer 

overflow losses, real life systems whose the number of stations are much higher 

than the number of slots do not operate near these throughput saturation regions, 

thus making this model usable for most practical purposes. 
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2.3 Source Deletion. Station Based Model 3 (SDStnBM3) 

In this model, the only difference to the previous one is the assumption that -

(2.3.1) a packet is not deleted from its buffer until its transmission is 

complete. 

In other words, the packet will be retained in the buffer until the transmitted copy 

of it has completely travelled once around the ring. 

Assumptions (2.2.1) and (2.2.2) will apply in this model as well, assumption (2.1.3) 

being modified as above to suit the new condition. 

The Markov state diagram for this model (Figure 2.3.1) may be explained in the 

usual manner. Let the variables N, M, Q, Sand P(y,x) denote the usual variables. 

Considering steady state equilibrium, 

p(a, a)p - P(l,M) (l-Mp) 

p(y,a) [l-(l-p)S] - p(y-1,a)pS + P(y,M)Mp + 

P(y+1,M) (l-Mp) {l,;y<Q} 

p(Q,a) (l-S) - p(Q-1,a)pS + P(Q,M)Mp 

P(y,l) - P(y-l, a)p(l-S) + P(y, a) (l-p) (l-S) 

{l,;y<Q} 

P (Q, 1) - P(Q-l, a) p (1-3) + P(Q, a) (1-3) 

P(y,x) - P(y,x+1) {l,;y,;Q, 1,;x,;M-1} 

applying equation (2.3.6) in (2.3.1), (2.3.2) and (2.3.3) respectively, 
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h 
(0,0) 

h 
~(1'0) 

where - a = p(1-S) 
b = pS 
c = (l-p) (I-S) 

d - 1-p 
e = (l-p)S 
f = S 

'-.J~ . g 

g = Mp 
h = 1- Mp 
i = 1 

Fig 2.3.1 State transition diagram for a simplified, 
station based, discrete-time Markov model of a 

Slotted Ring with a Source Deletion Protocol. 
(SDStnBM3) 
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P(O, O)p - P(l, 1) (l-Mp) 

P(y, 0) [1- (l-p) S] - P(y-l, O)pS + P(y, l)Mp + 

P(y+l, 1) (l-Mp) {l;;y<Q} 

P ( Q, 0) (1-S) - P ( Q-l, 0) pS + P ( Q, 1) Mp 

Induction will be used to prove the following, 

where, 

P(y,l) - P(y-l, 0) (l!'MP) 

P(y,O) - P(y-l,O)A 

A _ p[l- (l-S) (l-Mp)] 
(l-p) (l-S) (l-Mp) 

{1;;y<Q} 

Equation (2.3.7) shows that (2.3.10) is true for y= 1. 

(2.3.7) 

(2.3.8) 

(2.3.9) 

(2.3.10) 

(2.3.11) 

(2.3.12) 

Substituting (2.3.7) in (2.3.4) for y= 1, it can be easily shown that (2.3.11) hold 

true for y = 1 as well. 

Assume that equations (2.3.10) and (2.3.11) hold true for y=a. Then from 

equations (2.3.4) and (2.3.8), 

P(cx+l 1)- P(cx,O) [l-(l-p) (S+(1-S)Mp)]-P(cx-1,0)p[S+Mp(1-S)] 
, (l-Mp) 

substituting for P(a-1,0) from equation (2.3.11), 

P(cx+l,l) - P(cx, 0) ( p ) 
l-Mp 

thus (2.3.10) is correct for 1sy<Q. 
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From (2.3.5) and (2.3.9) it can be shown that, 

P(O,l) - P(Q-1, 0) ( p ) 
. 1-Mp 

therefore, (2.3.10) hold true for all lsysQ. 

Substituting (2.3.13) in (2.3.4), 

p(a+1,a) - p(a,a)A {2~a+1<Q} 

Since this relationship is true for y = 1, it holds for the range 1 sy < Q. 

Using the equation (2.3.11) repeatedly, it can be shown that, 

p(y,a) - P(O, 0) AY {l,;y<Q} 

p(O,a) - pea, 0) A" (l-p) 

P(y,l) - p(a,O)AY-l p 
(l-Mp) 

Considering the sum of all the state probabilities, 

" " M 
1 - L p(y,a) + L L P(y,x) 

y-o 

" 
y-l x-l 

o 
- L P(y,o) + ML P(y,x) 

y-O y-l 

substituting from (2.3.14), (2.3.15) and (2.3.16), 

p(a,a) -
[ 

(l-A") + A"(l_
P
)]-l 

(l-A) (l-Mp) 

[ ° ]-1 (l-Mp) .. (l-p) 

Considering the throughput contribution of N-1 stations, 
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(M1) 

(A-1) 

(2.3.14) 

(2.3.15) 

(2.3.16) 

(2.3.17) 



" M S - N-1 L L P(y,x) 
M y-l x-l 

" - N-1 L p(y,X) 
y-l 

substituting from (2.3.14) and summing the resulting series, 

s-j 
p(N-1) (l-A") PlO, 0) 
(l-Mp) (l-A) 

p(N-1) Qp(O, 0) 
(l-Mp) . 

(A-1) 

(2.3.18) 

This last equation is a fixed point equation that can be solved for'S' using an 

iterative method as in Section 2.2, the value of P(O,O) required being obtained 

from (2.3.15). 

Then, 

Throughput - S ( N ) 
N-1 

Q Q 

g- LYP(y,O) +MLYP(y,l) 
y-l y-l 

P(O O)[A(l-AO>l) _ (O-l)A" + OAO(l-P)] 
, (1-A)2 (l-A) 

+ P(O,O) Mp [(l-A") - OAO] 
(l-Mp) (l-A) 2 (l-A) 

P(O 0)[ (0-1) 0 + O(l-P)j + P(O 0) Mp 0(0+1) 
'2 ' (l-Mp) 2 

d- qN +1 
Throughput 

(slot times) 
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(2.3.19) 

(2.3.20) 

(AH) 

(A-l) 

(2.3.21) 



Packet Rejection Probability _ 1 _ Throughput 
Np (2.3.22) 

(given packet arrival) 

It is noted that the value of 'p' should be less than l/M in this model as well. 

2.4 Matrix Solving Method 

When a Markov model is large and complex, one practical method of obtaining 

a solution is to use iteration on the transition matrix. The first step in order to do 

this is to generate the State Transition Matrix [Plo (DaelIenbach 83, chapter 13) 

If [t], is a row matrix of size 'n' containing the State Probabilities of this Markov 

Chain at the i<h time interval, then, from Markov theory, 

[ tl i [pl - [tl i+1 

At steady state equilibrium, 

if, 

and 

[tl 1 - [tl 1+1 
- [tl 

[Pl -

(2.4.1) 

(2.4.2) 

(Note that these t; values are similar to the steady state equilibrium probabilities 
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P(y,x) of the Markov models in this thesis. They should not be confused with the 

above state transition probabilities Pi) 

expanding the above relationship in equation (2.4.1), 

t , Pll + t 2P21 + . + t nPn1 - t, 
t , P'2 + t 2P22 + . . + tnPnz - t z . . . . . . . . 
t , P'n + t ZP2n + + tnPnn - tn 

which in turn provide the following set of equations -

t, (Pll -1) + t 2 P21 + 
t , P, • + t2 (P22 -1) + 

+ 

- 0 
- 0 

As it can be seen, this set of equations are not independent. Therefore, one of 

them has to be replaced by another independent equation. For convenience, the 

last equation will be replaced by the following equation indicating the sum of all 

state probabilities being unity -

Then, by converting these equations back into their matrix form, 

· 1] 
· ~ - (0 0 0 . 1) 

· 1 

(2.4.3) 

P
'2 

P
'3 

(P22- 1 ) P23 

When the State Transition Probabilities P(y,x) are known, this last equation may 

be solved for [t] using any ofthe large number of matrix solving procedures that 

are available for most computers. In this research, two such routines have been 

used - the NAG F04A TF procedure which have an exact solution (NAG 87), and, 

the iterative routine recommended for solving sparse matrices in reference (Press 
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86). 

This latter procedure, which takes advantage of the sparseness of the [Pl matrix, 

was used extensively when there were a large number of states (say over 200) 

involved, thus making it difficult to use the memory intensive NAG F04ATF 

routine. 

It is noted that both these routines solved for an unknown column matrix [xl 

having the following relationship -

[A] [x] - [b] 

where [b 1 is a row vector. 

Therefore, in order to obtain a solution, the equation (2.4.3) was converted into 

the following form by transposing both sides of that equation -

(P11- 1 ) P'2 P'3 

P2l (P22 -1) P23 

- [:] 
(2.4.4) , 

Matrix Solution for the Station Based Models 

In these models, since the transition from a non transmitting state (Le., x = 0 state) 

to a transmitting state (X'i'O) depend upon the probability of the next slot being 

empty, which, in turn, depend on the X'i'O states, we end up with a situation of 

having to iterate for a solution. 
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When the matrix method is used, the following steps may be followed to obtain 

a solution -

(1) Guess a value for'S'; where, S = Probability that the next slot is full. 

(2) Generate the State Transition Matrix (STM) using'S'. 

(3) Modify the STM as above to make it suitable for solving the system when 

it is at Steady State. 

(4) Solve the matrix and find the new'S' value using the given Steady State 

Probabilities. 

(5) Compare the initial and the new'S' values, and accept the new'S' as the 

solution if the error is within the tolerance limits. Else go back to Step (1). 

There are two main methods of choosing a value for'S' in Step (1), viz, the 

Simple Iterative Method and the Bisection Method (WiIIiams 79). The Newton

Raphson Method cannot be used due to the fact that it is extremely difficult, if 

not impossible, to even express the equation of'S', let alone differentiate it as 

required by that method. 

The Simple Iteration Method converges very rapidly toward the solution for all 

values of p in the region where the throughput is linearly increasing : this is a 

feature of all the station based models to follow in this thesis, and is due to the 

fact that a graph of S.~ v SOld is quite flat within this range of p. (See later figures 

(6.4.42) to (6.4.46) of chapter 6.) 

However, this method may not be used when the Throughput is saturated, as, at 

the point of intersection with the y=x line, the modulus of the gradient of the S.~ 

v SOld curve is greater than 1, thus making the iteration diverge away from the 

solution. On such occasions, the relatively slower to converge Binary Iterative 
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Method should be used. 

Due to the repetitive nature of iterative solutions, the above method is slower 

than the method used by Lee (Lee 91) in solving similar problems, but, is far 

more versatile and gives an accurate solution to the model as it is not limited to 

the assumptions made by Lee. 

2.5 Source Deletion. Station Based Model Considering A Single Slot Segment Of 

The Network (SDStnBM4) 

In this section, the waiting time for the stations that are not transmitting is 

considered in greater detail. This waiting time will be modelled considering a 

segment of the network corresponding to a single slot. 

The logic behind this approach can be explained in the following manner -

Since all the stations are assumed statistically identical and are distributed evenly 

around the ring, and also the ring is divided uniformly into M identical and 

independent slots, the non transmitting stations in a Slotted Ring network can be 

divided and grouped according to the time they have to wait for the next slot 

header to arrive. Therefore, using this criteria in a network having eight stations 

and two slots as in figure (2.5.1), the stations can be considered as four groups of 

two stations (1 & 5, 2 & 6, 3 & 7, and 4 & 8) and represented as in figures (2.5.2) 

or (2.5.3). 

Additional assumptions -

(2.5.1) Only a single packet of data may arrive per station at a given 

station time. 
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Sn - Station 'n' 

Fig 2.5.1 

87 

S1,5 

Fig 2.5.2 Fig 2.5.3 
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.j>. ...... 

a 

a 

(T,K,l) 

(W,L,O) (W,L,l) (W,L,Q) 

Fig 2.5.4 Markov model for Section 2,5 

(T,K,Q) 

Where: a = p 
b = I-p 
c - 1 
d = S 
e = 1-S 
K .. N-l 
L - (N/M)-l 

b 

,1 Q • (W,L,Q) 

(W,L,l) 

'-'--+ - • (W,L,O) 



(2.5.2) 

(2.5.3) 

This packet arrival rate will follow a Bemoulli distribution with 

parameter 'p' packets per station per station time. 

The number of stations will be an integer multiple of the number 

of slots. 

Assumption (2.3.1). 

Figure 2.5.4 shows the Markov state diagram for the model. The state (W,y,x) 

represents a waiting 'W' state, with 'y' station times before the next slot header 

arrives and having 'x' number of packets in the buffer. A (T,y,x) state is a 

transmitting 'T' state with 'x' packets in the buffer and having 'y' station times up 

to the end of transmission. 

Let, 

M = total number of slots 

N = total number of stations 

Q = maximum buffer size per station 

S = probability that a station wishing to transmit finds the next slot busy 

P(T,y,x) = number of stations occupying state (T,y,x) 

P(W,y,x) = number of stations occupying state (W,y,x) 

A station in (W,y;X) {y,.O, x"Q} state may, in the next station time, transit to a 

state (W,y-l,x+ 1) or (W,y-l,x) depending upon whether there is a packet arrival 

or not. When it reaches the state (W,O,x) {X,.Q} that station will start transmitting 

and move to a state (T,N-l,x+ 1) or (T,N-l,x) if the next slot is empty, or else, 

move to (W,N/M,x+ 1) or (W,N/M,x) to wait 'N/M' station times for the next slot 

to arrive. 

Similarly, a station in (T,y,x) state {y,.O, x,.Q}, will transit to (T,y-l,x+ 1) or (T,y

l,x), again depending upon the probability of a packet arrival. At the end of 
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transmission (y=O), the station will assume a state of (W,N/M -1,x+ 1) or 

(W,N /M -1,x) to wait for the next slot to arrive. 

The transition probabilities indicated in figure (2.5.4) are as follows -

a-p 
b - 1-p 
c - 1 
d-s 
e - l-S 
K - N-1 

N L - --1 
M 

Considering the sum of all P(T,y,x) and P(W,y,x) values, 

~-l 0 

L L P(W,j, i) 
j-O i-a 

N-l Q 

+ LLP(T,j,i) - ~ 
j-a i-a 

(2.5.1) 

Since'S' is the probability of the next slot being busy due to N-l stations, 

N-l 0 S - N;/ LLP(T,j,i) 
j-O i-1 

(2.5.2) 

The matrix method of solving described in Section 2.4 may be used to solve this 

model. The only modification that has to be made to account for the change in 

the value of the sum of all state occupancies, is to replace the'!, in the Right 

Hand Side matrix of the equations (2.4.3) and (2.4.4) with the value 'N/M'. 

Then, 

Throughput _ S N 
(N-1) 

(2.5.3) 

q - It' f iP(W,j,i) + ~f iP(T,j'i)}M (packets) 
~~ ~~ N 

(2.5.4) 
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- ___ q~N.:-.-_ 
d - Throughput 

+ M 
N 

(slot times) (2.5.5) 

The term M/N was added to account for the minimum packet delay of one 

station time that occurs due to the assumption (2.0.12). 

Packet Rejection Probability _ 1 _ Throughput M 
pN2 (2.5.6) 

(PRP) 

Conversion into a basic Station Based Model 

As mentioned in the introduction to this chapter, this model can be easily 

converted into an extended version of SDStnBM1 with the following minimal 

changes -

N-l (} 

+ EEp(T,j,i) - 1 
(2.5.7) 

j .. o i .. a 

N-l (} 

S - (N-l) E E p(T,j,i) 
M j-a i-l 

(2.5.8) 

Throughput - (N~l) S (2.5.9) 

!! -1 
M (} 

q - E E ip(W,j,i) 
N-l (} 

+ EEiP(T,j,i) 
(2.5.10) 

j ... o i-a j-O i-a 

the Average Delay and the Packet Rejection Probability remaining the same as 

in equations (2.5.5) and (2.5.6) respectively. Note that in this case, both P(T,j,i) I 

and P(W,j,i) are the probabilities of a station occupying those given states. 
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It is noted that the method formulated in Section 2.4 may be used without any 

modifications to solve this converted model. 

Both the models in this section give identical results. 

The major disadvantage of the model is the fact that it cannot correctly reflect the 

waiting states unless the number of stations is an integral multiple of the number 

of slots. 

2.6 Results 

The models are solved for the varying combinations of N, M and Q. For two 

different cases of N (16 and 64), three different values each of M (1, 8 and 16) 

and Q (1, 10 and 50) are considered. However, in order to limit the amount of 

graphs presented, the combinations containing M = 16 or Q =50 are omitted from 

the thesis. The differences that occur in the performance measures when M is 

increased from 8 to 16, or when Q is increased from 10 to 50 are either 

negligible, or usually predictable. However, for the purpose of the analysis, all 

results obtained are considered. The results obtained for the Throughput, Average 

Queue, Average Delay and the Packet Rejection Probability will be compared to 

simulations. 

Due to the fact that most models frequently show almost identical results, for 

clarity, their performance will be plotted as discrete points whereas the simulation 

results will be shown as a solid line. 

It is noted that, in order to present the results of all the models having similar 

network parameters in a single graph, the packet arrival rate of SDStnBM4 (p) 

has been converted into the units of "packets per station per slot time" (say pi) 

using the following transformation -
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pi _ pN 
M 

Such a step amounts to an assumption that the two binomial distributions of M 

trials with success probability P, and N trials with a probability of success MP IN 
are identical. Clearly such an assumption is incorrect. However, for convenience 

and also due to the fact that only the mean values are of greater importance here, 

the errors resulting from this transformation have been ignored. 

Throughput 

When the maximum buffer size is very small (say 1), the models and the 

simulation tend to show an increasingly poor match with the increase of the 

number of slots. Also, in the region where the throughput reaches saturation, the 

simulation varies in an irregular manner when M> 1. This again is more persistent 

when the number of slots is large compared the number of stations. 

Both these above effects are due to the quasi stable states that occur for high 

levels of packet arrival rates (Falconer 85). It is also due to this reason that the 

saturation throughputs of the simulations for the cases where M> 1 is less than 

that for the cases where M = 1. No quasi stable states can occur when there is only 

one slot in the network, thus under such cases, the simulation correctly shows the 

maximum possible throughput (Appendix A) which one may achieve with this type 

of network. That is -

Throughput __ ...cl=---_ 
1 + 1 

N 

When considering the effect of increasing the buffer size (Q) with the other 

factors (N and M) remaining constant, it can be seen that the throughput 

characteristics for the models tend to become parts of two intersecting straight 

lines. In the unsaturated region, this line has an equation that can be expressed 
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as -

Throughput - Stations * Packet Arrival Rate 
- N * P 

and in the saturated region, 

Throughput - constant 

The increase of the number of stations keeping the Q and M constant tend to 

give rise to more evenly changing throughput characteristics. This is due to the 

fact that the ratio of the number slots to the number of stations is becoming 

smaller, thus limiting the number of adverse quasi stable state combinations 

possible. 

In general, all the models show an excellent match to the simulation in the 

unsaturated region, the only exception being when Q = 1 and M> 1. At saturation, 

except under the above conditions, the comparison can be considered as 

satisfactory. 

It is noted that though the models do not consider the effects of quasi stable 

states, the saturation values shown fall close to those of the simulation. This is 

due to the fact that, even though we assume the stations to be totally independent 

of other stations in the network, the fact that a slot being full is a function of 

itself, S = f(S), brings in, to some extent, the effects of the other stations on that 

particular station. 

Average Queue 

At low packet arrival rates models SDStnBM3 and SDStnBM4 show a higher 

average queue than the other two models and the simulation. This is due to the 

fact that in these models, a packet is not deleted from the buffer until the end of 

its transmission. Though this effect can be seen clearly only in the cases where 

Q = 1, it does occur for the other values of Q as well, but is less visible due to the 
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lack of resolution of the y axis. 

Apart from this deviation, SDStnBM1 and SDStnBM4 tend to reflect fairly similar 

results, with SDStnBM4 at times giving out a slightly improved match to the 

simulations. 

Therefore, other than in special circumstances, it is felt that SDStnBM4 does not 

justify its usage compared to the less complex SDStnBMl. 

Except in the case of M = 1, SDStnBM2 and SDStnBM3 show relatively poor 

results, the latter model being the worse. 

All models tend to generally improve their ability to reflect the simulation results 

with the increase of N. The performance of SDStnBM2 and SDStnBM3 degrade 

with the increase of M. 

With the increase of Q, it can be seen that, when the throughput is not in 

saturation, the average queue remains very low. However, this changes in a 

manner of a step function to near maximum as soon as the throughput saturates. 

Average Delay 

As in the case of average queue, SDStnBM3 and SDStnBM4 show a 

comparatively higher value at low packet arrival rates. In this case it is a 

minimum value equal to the summation of the number of slots in the network and 

the minimum delay encountered before transmission. This is due to the fact that 

in these two models, any packet, even if it is transmitted in the next slot after its 

arrival, has to remain in the buffer (M + 1) or (M + M/N) slot times respectively 

before it is discarded. 

All models tend to show improved match to the simulation with the increase of 
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N or Q. Conversely, all the models, especially SDStnBM2 and SDStnBM3, give 

out a deteriorating comparison to the simulation with the increase in the number 

of slots. This again is due to the quasi stable states that occur in greater 

frequencies with the increase of M. 

The reason for the wider disparity between the models and the simulation near 

the saturation regions is again due to the quasi stable states that appear in the 

simulation thus reducing the throughput and increasing the delay. 

Since the saturation throughput shown in the models are slightly higher than the 

simulation, the fact that the delays of all the models are calculated using this 

throughput is another reason as to the fact that the delay shown by them are 

slightly lower than that of the simulation. 

Packet Rejection Probability 

When Q = 1, as can be expected, packets tend to get rejected due to buffer 

overflow even at low packet arrival rates. However, with the increase of Q, buffer 

overflow starts occurring only when the throughput reaches saturation. 

All models in general give a good match to the simulation. However, for the case 

of Q = 1, SDStnBM4 tends to produce relatively high results for low packet arrival 

rates. This effect worsens with the increase of the number of slots. In all other N, 

M and Q combinations, all the models tend to predict a higher packet arrival rate 

before buffer overflow starts to occur. 

SDStnBM1 gives the best overall performance in predicting the packet rejection 

probability. 
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2.7 Summary 

In this chapter, four models for the slotted ring with a source deletion protocol 

have been analysed. All the models were based upon observing the network from 

a station. 

Models SDStnBM2 and SDStnBM3 were the simplified versions of the first model 

SDStnBMl and resulted in much simpler solutions with only minimal degradation 

to the performance measures. Therefore, they may be used when the network 

constants permit their use. 

The last model SDStnBM4 is an extended version of SDStnBMl, the former 

paying more attention to the changes in the queue size when the station is not 

transmitting. However, there was very little improvement in the performance 

metrics when compared to the first model. 

A matrix method for solving the above type of Markov models was also 

introduced. This method will be widely used in the models in the following 

chapters. 
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CHAPTER 3 

Slotted Ring, Source Deletion Protocol: 

Slot Based Model 

3.0 Introduction 

In this chapter, the Slotted Ring network with a source deletion protocol will be 

modelled observing the system from a single slot. 

3.1 Source Deletion. Slot Based Model (SDSlotBM) 

The following assumptions made in the previous chapter wiIl apply in this chapter 

as well -

assumptions (2.0.1) to (2.0.12). 

assumption (2.1.3). 

In addition, the following assumption will also be made -

(3.1.1) 

(3.1.2) 

The total buffer size of the entire network (Le., N * maximum 

buffer size per station) is an integer multiple of the number of slots. 

Only a single packet of data may arrive per slot at any given station 
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(3.1.3) 

time. 

The packet arrival rate will follow a Bernoulli distribution and is 

denoted by 'p' packets per slot per station time. 

Figure 3.1.1 shows the Markov state diagram applicable to this model. Of the two 

values shown inside each state, the first indicates the queue size per slot, and the 

second, the number of station times that have elapsed since the start of 

transmission. 

For this model, 

P(y,x) = steady state probability of a slot being in state (y,x). 

Q = Average maximum buffer size per slot 

= (N * Maximum buffer size per station) / M 

N and M have their usual meanings. 

An empty slot (states (y,O)), will be filled with a packet for transmission in the 

next station time if there are packets awaiting to be transmitted (y;:: 1 states), or 

if there is a packet arrival when there is no queue (y=O state). 

To complete the transmission, the slot will need to travel once around the ring -

i.e., N number of station times, after which it will be emptied by the transmitting 

station. Packets may arrive to the network at any given station time, thus making 

the slot change its state in the usual manner. 

When solving the model for steady state, in order to avoid the lengthy 

simplification of the equations involved, the common properties of this model 

with that of SDStnBM1 will be used. 

It may be easily observed that the two following changes to SDStnBM1's Markov 

state diagram will convert it into SDSlotBM -

(1) Let S=O. 
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where - a = p 
b = I-p 
c = 1 

b 
(0,0) 

(1,0) 

a 

b 
(1,0) 

(2,0) 
a 

Fig 3.1.1 Discrete-time slot based Markov model 
for a Slotted Ring with a Source Deletion 

Protocol (SDSlotBM) 
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(2) Change the number of horizontal 'x' states from M + 1 to N + 1. This will 

take into account the station times involved in this model over the slot 

times that were considered in SDStnBM1. 

Then, the equations (2.1.9), (2.1.10), (2.1.11), (2.1.12) and (2.1.14) can be 

respectively converted to suit the current model as follows -

P(0,1) - P(O,O) p 
(1-p)N 

(3.1.1) 

P(O,N) - P(O,O) (1~P) (3.1.2) 

P(y,O) _ P(y-1,1) - P(y-1,0)p {1"y"Q} 
(1-p) 

(3.1.3) 

P(y,N) _ P(y,O) - P(y-1,N) p {1"y<Q} 
(1-p) 

(3.1.4) 

y-l 

P(y,N) - L P(j, 1) p(y-j) (1-p) (N-l-y+j) (N-l)C(y_j) 

P(y,1) - j.O (3.1. 5) 
(1-p) (N-l) 

(1"y<Q} 

Considering the summation of all the state probabilities and converting equation 

(2.1.16) to suit, 

N 0 

1 - L L P(y,x) 
x-o y-O 

o (3.1.6) 

- P(O,O) (1+Np) + (N+1)LP(y,0) 
y-l 

If P(O,O) is known, then the other P(y,O) states can be calculated thus -

(3.1.1) to calculate P(O,l) 
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(3.1.2) to calculate P(O,N) 

The following loop to be executed repeatedly for aUl<y<Q, 

(3.1.3) to calculate P(y,O) 

(3.1.4) to calculate P(y,N) 

(3.1.5) to calculate P(y, 1) 

Finally, (3.1.3) to obtain P(Q,O). 

Using equation (3.1.6) and applying the values calculated for P(y,O) using the 

above sequence, a suitable numerical method (simple iteration, bisection method) 

may be used to solve for P(O,O), which in turn can be utilised to compute the rest 

of the steady state probabilities. 

Then, 

Throughput - Number of transmissions per cycle per slot 

- N(P(O,O)P + f,P(Y'O») 
y-l 

() 

probability of a slot being full - 1 - :E p(y,O) 
y-o 

(3.1.7) 

(3.1.8) 

It can be shown that both the above equations give identical results thus 

confirming the fact that, for Source Deletion protocols, the throughput is the 

probability of a slot being full. 

Average Queue per Station 

(q) 

Average Delay (d) _ qN + M 
Throughput N 
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Packet Rejection Probabili ty _ 1 _ Throughput 

(PRP) pN 
(3.1.11) 

One of the greatest shortcomings of solving for P(O,O) initially is the large errors 

that result when the value of P(O,O) becomes close to zero at network overload 

(i.e., when the throughput is at saturation and the average queue is at maximum 

possible levels). On such occasions, one has to either express the above formulae 

in a different manner to make them stable, or, resort to a matrix solution. 

It is noted that this model can be solved by using the simplification used in the 

models SDStnBM2 and SDStnBM3. However, this reduces the upper limit of the 

packet arrival probability to l/N so that the model isnot useable in the saturated 

throughput region. Also, the fact that the complete model SDSlotBM can be 

reduced to a single variable solution, reduces the need for such simplification. 

3.2 Matrix Solution 

In the case of slot based models, solving for the steady state probabilities is 

theoretically quite straightforward once the problem has be transformed into a 

soluble form as in section 2.4. However, the greatest practical problem is the size 

of the matrix that has to be solved, which arises due to the fact that the maximum 

queue of the slot based model is at least N/M times greater than that for the 

similar station based models considered in chapter 2. Therefore, in order to get 

round this, use is made of sparse matrix solution techniques mentioned earlier. 

Even though these sparse matrix methods can, to a large extent, reduce the 

computer memory usage, it does little to reduce the computation time, which can 

run into several hours of CPU time for just one solution. To alleviate this 

problem, a property of the network was used as follows. 
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It was observed that, when the throughput is either in the linear or saturated 

regions, other variables remaining the same, the steady state probabilities of the 

model are independent of the maximum queue size, especially when it is high (say 

over 15). Due to this same effect, when the packet arrival probability is increased 

from 0 to 1, it was observed that the average queue tends to be either quite low 

(in the region where the throughput is linear), or, take a value close to its 

maximum possible under saturated conditions. As it may be seen from 'Average 

Queue v Packet Arrival Probability' graphs, the region between these two 

extremes, the transition region, is extremely small. This means that, except within 

the transition region, the higher values of the P(y,x) are always concentrated 

either in the region where the queue is low (states representing lower queue size), 

or, in the region where the queue is high (states representing a queue size close 

to the maximum queue), the rest of the P(y,x) values being zero, or very close to 

zero. 

Therefore, except in this transition region, by observing the steady state 

probabilities for a model with a lower maximum queue with all other network 

parameters being identical, the above fact can be used to guess an almost 100% 

correct initial set of values for P(y,x) when solving for a relatively high maximum 

queue per station using the iterative sparse matrix method. 

The following steps are used to bring about this solution -

(1) Solve the network for a lower maximum queue size, the other variables of 

the system remaining the same, and record the steady state probabilities. 

The maximum queue size here should be low enough to bring about a 

speedy solution to this intermediate step, but not too low so as to prevent 

a natural state distribution taking place due to buffer overflow even when 

the throughput is not close to saturation. 

(2) If the throughput for the above packet arrival rate is expected to be in the 

linear region, then the steady state probabilities recorded above may be 
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used as the initial guess for the similar states in the system under 

consideration. The states that are not given such an initial value, 

(amounting to the difference between the total number of states in the 

model under consideration and the intermediate model) will be given a 

value of zero. (see figure 3.2.1) 

(3) Alternately, if the throughput for the given packet arrival rate is expected 

to lie in the saturated region, then since the steady state probability 

distribution shows more weight around the maximum queue region, the 

values obtained in step (1) are substituted as initial values to the 

corresponding maximum queue states as shown in figure 3.2.2. In other 

words, the state (y,x) of the intermediate model is assumed to be the state 

(y+QM-Q"X) upon being substituted; where, QM is the maximum queue of 

the model under consideration and Q, is the maximum queue of the 

Intermediate model. 

As in step (2), the states that are not given an initial steady state 

probability value in this manner are given a value of zero. 

It is noted that this method, depending upon the QM and Q, involved, can easily 

increase the speed of execution over a thousandfold. 

3.3 Results 

As in the case of the previous chapter, the model was solved for all the possible 

combinations of N (16 and 64), M (1, 8 and 16) and Q (1, 10 and 50) and the 

usual parameters observed. 
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Throughput 

The throughput characteristics for this model, as in the case of station based 

models, tend to become two intersecting straight lines with the increase of the 

maximum buffer size Q, the first line indicating the linear increase of the 

throughput with the packet arrival probability being identical. The line that 

represents the saturated region shows the ideal throughput that one may ever 

achieve -

Throughput -
1+1. 

N 

1 

(See appendix A.) Due to this, the model performs poorly with increasing M when 

matched with the simulation, since the latter is prone to the earlier mentioned 

quasi stable states. 

Average Queue 

As mentioned before in section 3.2, the average queue remains independent of 

Q for lower packet arrival rates, but, changes nearly in the manner of a step 

function to the maximum buffer value when the system reaches saturation. 

A comparison with the simulation indicates a general improvement of match with 

the increase of Q, a slight improvement with the increase of N and a slight 

degradation with the increase of M. 

Average Delay 

When comparing with the simulation, the average delay shows a marked 

improvement with the increase of Q, and a slight improvement with the increase 
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of N. The effect of changing M on this comparison being varied - an improvement 

with the increase of M except when N = 16 and Q .. 1. 

Packet Rejection Probability 

The comparison with the simulation for this parameter shows an improvement in 

match with the increase of N. For the case of N = 64, the increase of M or Q on 

its own does not make any significant effect on the results. However, for N = 16, 

there is a general degradation of match with the increase of M except for Q = 1 

and low packet arrival rates where it actually improves. There is a similar 

improvement with the increase of Q for N = 16 and M = 1. 

3.4 Summary 

Slot or server based models are uncommon, especially in the area of Slotted Ring 

networks. One of the main purposes of this chapter was to lay the groundwork in 

viewing the system from this angle by modelling a basic Slotted Ring so that it 

may be later extended to predict the behaviour of more advanced protocols. 

The model was first solved by the use of equations developed for the station 

based models that were modified to suit the new situation. An alternate matrix 

solution was then suggested with possible (network dependent) shortcuts which 

one may use to shorten the computation time when there are a large number of 

states due to a large packet buffer. 

One of the main outcomes that can be concluded from such a method is the fact 

that it is quite sufficient to solve the model for a maximum buffer size (Q) of 

about 10, so as to enable the prediction of the effects a much higher maximum 

buffer size would have on the network performance. 
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Since the model assume independent stations and slots, the results tend to show 

ideal performance characteristics. Thus, when there is only a single slot, due 

to the absence of quasi stable states (Falconer 85), the simulation shows an 

excellent match to the model- especially when the network is more stable under 

a higher maximum buffer size. 
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CHAPTER 4 

Slotted Ring, Destination Deletion 

Protocol : Station Based Models 

4.0 Introduction 

In destination deletion slotted ring networks, the packet is removed from the 

network by the recipient station rather than by the station that transmitted it. 

Though this effectively prevents the error checking that can be done by the 

transmitting station by comparing the returned message with that of the original, 

the advances made in hardware have resulted in extremely low error rates, thus 

making such a check unnecessary in many situations. This is particularly the case 

for isochronous data, such as voice or video, when the effects of errors are likely 

to be no more catastrophic than a small degradation in reproduction quality. 

In this chapter, four models for this type of network will be considered. The first 

two will be similar in all aspects except that they will assume that, throughout its 

traverse around the ring, the probability of a packet being addressed to a given 

station can be either constant or variable. Due to the complexity of the resulting 

Markov diagrams, the matrix method will be used to solve them. 

Models 3 and 4 will be the simplified versions of the models 1 and 2 respectively, 

such that the solution can be expressed using basic equations, thus greatly 

reducing the amount of computation needed. 
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The assumptions (2.0.1) to (2.0.5), (2.0.7) to (2.0.12), (2.1.3) and (2.5.1) will be 

applicable to all the models in this chapter as well. In addition, the following are 

assumed -

(4.0.1) Packets are removed from the network by the receiving station. 

(4.0.2) A station will not transmit to itself. 

(4.0.3) No general broadcasts take place. 

Although the use of the assumption (2.0.8) may defeat one of the main 

advantages of the destination deletion protocol, due to assumption (2.0.9) and 

(2.0.3), the average of having a maximum of 1 slot per station, conveniently 

alleviates any serious objections. Physically, this process may be interpreted as not 

transmitting another packet until the current packet has reached its destination. 

All the models will consider time intervals measured in station times. 

4.1 Destination Deletion. Station Based Model 1 fDDStnBMl) 

Figure 4.1.1 shows the Markov chain applicable for this model. Considering 

assumption (4.0.2), the maximum distance a packet may travel is up to the last 

station before the transmitting station in the direction of data flow. Accordingly, 

the maximum time a packet can occupy a slot is (N-l) station times. Thus in 

figure 4.1.1, 

K - N-l 
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Fig 4.1.1 Discrete Time, Station Based Markov 
Model for a Slotted Ring with a 
Destination Deletion Protocol 
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The transitions c" d, and f" 1 :5x:s;K, indicate the probability that the packet 

transmitted is addressed to the x" downstream station from the current station. 

Due to destination deletion, these probabilities also represent the probability of ' 

an end of transmission of the packet and the station returning to its idle or 

waiting state. 

In addition to the general assumptions mentioned in section 4.0, assumption 

(2.5.2) and the following are made -

(4.1.1) Probability of destination deletion is IlK at all stations except the 

last downstream station from which the packet will be deleted with 

unit probability. 

From assumptions (4.1.1), • and (4.0.2.), 

Probabili ty of a destination deletion 1 
(except in last downstream station) K 

Therefore, 

d - P 
x K 

f _ 1 
x K 

{ 1~x<KJ 

{ 1~x<KJ 

{ l~x<KJ 

(4.1.1) 

(4.1.2) 

(4.1.3) 

The transitions a" b" e., g, h, i, j, k and I can be explained as in the model 

SDStnBMl. 
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After accounting for the possible values of c'" d, and f, above, 

{ l;;x<K} 

{ l;;x<K} 

{ l;;x<K} 

As in the case of similar transitions \. model SDStnBMl, 

g - (l-p) (1-8) 

h - p(1-8) 

i - (1-p)8 

j - p8 

k - 1-p 

1 - 8 

where, as before, 

8 _ N-1 
M (1-f, P(y, 0») 

y-O 

(4.1.4) 

(4.1.5) 

(4.1.6) 

(4.1.7) 

(4.1.8) 

(4.1.9) 

(4.1.10) 

(4.1.11) 

(4.1.12) 

(4.1.13) 

Using these transition probabilities, one may solve the model using the matrix 

method described in section 2.4. 

Then, considering the number of packets transmitted per slot per cycle, 

Throughput - (f,P(y,O) +PP(Q,Q») (1-8) 
y-l 
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As usual, 

K 0 
Average Queue (q) - L LYP(Y,x} (4.1.15) 

x-o y-o 

Average Delay (d) _ q N + M 
Throughput N 

(4.1.16) 

Packet Rejection Throughput M 
ProbabilitY(PRP} - 1 - N 2 p (4.1.17) 

4.2 Destination Deletion. Station Based Model 2 (DDStnBM2) 

Even though a station may choose anyone of the other stations as the destination 

for its packets with equal probability, it can be argued that further a packet 

travels around the ring, due to the decreasing number of possible destinations, 

higher becomes the probability that it will reach its destination. Therefore we may 

assume that -

(4.2.1) A station will transmit to all other stations with the same frequency. 

In addition to all the assumptions of section 4.0, assumption (2.5.2) will also be 

applicable. 

If a packet has travelled 'x' station times from the start of its transmission, then, 

including the current station, there are (K-x+ 1) possible stations left to which the 
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packet may be addressed. Therefore, 

probabili ty that the packet is addressed 1 
to the current xth downstream station K-x+1 

Since the Markov chain applicable for this model remains the same as that of Fig 

4.1.1, using the above factor, 

c _ (1-p) 
x (K-x+1) 

( 1;;x;;K) (4.2.1) 

d - P 
x (K-x+1) 

(4.2.2) 

f _ 1 
x (K-x+1) 

(4.2.3) 

Thus, 

a - (1- 1 ) (1-p) 
x (K-x+1) 

(4.2.4) 

(4.2.5) 

1 
ex - 1 - -:('""K:-_'::X-+""17") ( 1 ;;x;;K) (4.2.6) 

The transition probabilities g, h, i, j, k and I remain the same as in DDStnBMl 

(equations (4.1.7) to (4.1.12». 

A matrix solution is opted for this model, the equations for the network 

performance measures - throughput, average queue, average delay and the packet 

rejection probability being identical to those in the previous section (equations 

(4.1.14) to (4.1.17». 
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4.3 Destination Deletion. Station Based Model 3 (DDStnBM3) 

As mentioned in the introduction to this chapter, the model will be a simplified 

version ofDDStnBM1, the simplification which follows, being fairly similar to that 

of SDStnBM2. 

Assumptions -

(4.3.1) 

(4.3.2) 

When a station is idling, a single packet may arrive to that station 

every station time with probability 'p', this arrival process following 

a Bernoulli distribution. 

However, when the station is transmitting, no new packets may 

arrive to that station until the end of transmission. Thus, at the 

point where the packet is deleted from the buffer, probability of a 

packet arrival will be considered to be 'px', where 'x' represents the 

number of station times that have elapsed since the start of 

transmission. 

Assumption (4.1.1). 

Figure 4.3.1 shows the Markov chain for this model. Since the probability of a slot 

being deleted from the network remains a constant, as in DDStnBM1, 

f _ 1 
x K 

- f 
fK - 1 

{ 1 ;;x<K) 

(say) 

However, due to the assumptions (4.3.1) and (4.3.2), 
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Fig 4.3.1 Simplified Discrete Time, Station Based 
Markov Model for a Slotted Ring with a 
Destination Deletion Protocol 
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c -
(l-px) 

{ lSx<K} x K 

CK - 1-pK 

d -
px { lSx<K} x K 

d K - pK 

a -x 1 - ( cx+d) 

- 1 -
1 { lsx<K} 
K 

- a (say) 

The transition probabilities g, h, i, j, k and I remain identical to that of 

DDStnBM1 (equations (4.1.7) to (4.1.12». 

Considering the steady state, 

K 

P(D, D)p - L p(a,x) Cx (4.3.1) 
x-l 

K 

p(y,a) [1- (l-p) S] - P(y-1, a)pS + L P(y-1,x) d x 

K 
~l (4.3.2) 

+ L P(y,x) Cx { lSy<Q} 
x-l 

K 

p(Q,a) (l-S) - P(Q-1,D)pS + LP(Q-1,X)dx 
x-l 

K 
(4.3.3) 

+ L P(Q,x) fx 
x-l 
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P(y,l) - P(y, O)p(l-S) + P(y+1, 0) (l-p) (1-S) 

P(Q,l) - Pto, O)p(l-S) 

P(y,x) - P(y,x-1) ax _1 

By repeated use of (4.3.6), 

Let, 

P(y,x) - pry, 1) a x - 1 

K 

L P(y,x) ex 
x-l ex - -""''-::-,,...-..,...,.-

P (y, 1) 

K 

L P(y,x) dx 
P _ ..:;X,-,-l,-=:-:---'":."7_ 

P(y,l) 

K 

L P(O,x) fx 
x-l y -

P(Q,ll 

(4.3.4) 
{ O;;y<Q} 

(4.3.5) 

(4.3.6) 

(4.3.7) 

then, by using equation (4.3.6) and summing the result, it can be easily shown 

that, 

ex - l-pK(l-a K) (4.3.8) 

p _ pK(l-a K) (4.3.9) 

y - 1 (4.3.10) 

From equation (4.3.4), 
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P(y+1,0) - P(y,l) - P(y,0)p(1-8) {O/ <Q) (4 3 11) ~y • • 
(l-p) (1-8) 

Induction will be used to prove that, 

and, 

where, 

P(y+1,0) - P(y,O)/l 

P(y,l) - p(y,O)e 

/l _ p(8+(1-8)~) 

(l-p) (1-8) (1-~) 

{O~y<Q) 

{ O~y<Q) 

Assume that equation (4.3.13) is correct for y=r (Osr< Q). Then, 

P(r,l) - p(r,o)e 

Substituting this in (4.3.11), it can be easily shown that, 

P(r+1,0) - /lP(r,o) 

(4.3.12) 

(4.3.13) 

(4.3.14) 

Using y=O in equation (4.3.11) and substituting from (4.3.1), (4.3.8) and (4.3.9), 

P(l,O) - P(O,O)/l 

Thus by the rules of induction, equation (4.3.12) can be considered true within the 

given range. 

Substituting y=r+ 1 in (4.3.2) and using the equations (4.3.8), (4.3.9), (4.3.12) and 

(4.3.14), it may be shown that, 

P(r+1,1) - P(r+1,0)e { OH<Q) 

Since equations (4.3.1), (4.3.8) and (4.3.9) show that 

P(O,l} - p(O,o)e 
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equation (4.3.13) too is valid in the specified region. 

Using equation (4.3.12) repeatedly by increasing the value of y from 0, it can be 

shown that, 

P(y,O) - P(O,O)&Y {O~y~Q} 

Then from (4.3.13), 

P(y,l) - P(O,O)e&Y { ° ~y<Q} 
Considering the sum of all state probabilities, 

° K 
1 - LLP(y,x) 

y·o x-a 

But, 

K 

L P(y,x) - P(y, 1) (l+a+a 2 + . •.• +a K- 1 ) 

x-1 
- P(y, 1) (l-a K) K 

- P(y, 1) ~ 
p 

Using the equations (4.3.5), (4.3.15), (4.3.16) and (4.3.18), 

" K L L P(y,x) -
y .. O x-l 

" ~ L P(y, 1) 
PY-O 

~P(O, 0) [e (1-&0) 
P (1-&) 

+ &op (l-B) 1 

Similarly, using (4.3.15), 

° L P(y, 0) - P(O, 0) (1_&°+1) 
y-O (1-&) 

Substituting (4.3.19) and (4.3.20) in (4.3.17), 
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(4.3.15) 

(4.3.16) 

(4.3.17) 

(4.3.18) 

(4.3.19) 

(4.3.20) 



1 _ Pto o){ (1-5 0
+

1
) + 1.[e(1-50

) + 50P(1-S)]} (4.3.21) 
, (1-5) p (1-5) 

As in previous station based models, 

S - N-1(1 - t P(y,O») 
M y-O (4.3.22) 

_ N-1(1 _ Pto 0) (1-5 0
+

1 ») 
M '(1-5) 

Substituting for P(O,D) from (4.3.21), an iterative equation for S may be obtained 

from the above formula. 

Considering the number of packets transmitted per cycle per slot, 

Throughput - [t P(y, 0) + pP(O, 0)] N
2 

(l-S) 
y-1 M 

_ [ 5 (1-5
0

) + p] N
2 

(l-S) Pto 0) 
(1-5) M ' 

After the summation of several series, it can be shown that, 

° K 
q- LLYP(y,x) 

y-O x-a 

_ P(0,0)[5(1-5 0- 1 ) 

(l-P) (1-5) 
_ (0- 1 )5°] 1 

(1-5) 

+ Pto, 0) 05°(1+P (l-S)] 

(4.3.23) 

(4.3.24) 

Thus, by substituting for P(D,O) from the equation (4.3.21), the average queue may 

be obtained. The average delay and the packet rejection probability may be 
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calculated using the equations in section 4.1. 

As in some previous cases, since the value of P(O,O) can become quite small or 

even zero at higher packet arrival rates, when calculating the throughput and the 

average queue using the above equations it is not advisable to calculate P(O,O) 

separately to be substituted in (4.3.23) and (4.3.24). Instead, equation (4.3.21) 

should be incorporated in them, and, the resulting equations, (too long to be 

shown here) expressed so as to be stable for different values of 181. 

It is noted that in order to have the transition probability CK positive under all 

circumstances, the packet arrival rate should not be allowed to exceed the value 

IlK, thus limiting the range of p. 

4.4 Destination Deletion. Station Based Model 4 (DDStnBM4) 

In this model, a simplification similar to that in DDStnBM3 is used, this time 

however, the probability of a destination deletion considered to be varying 

(increasing) with the progression of a packet through the network. 

In addition to all the assumptions in section 4.0, (4.2.1), (4.3.1) and (4.3.2) are 

applied. 

The Markov state diagram for the model remains identical to that in figure 4.3.1, 

the new state transition probabilities being, 

a -
(K-x) { 1 ;;x;;K} x (K-x+l) 

c -
(l-px) { 1 ;;x;;K} x (K-x+l) 

96 



d _ pX 
x (K-x+1) 

{ l,;x,;K} 

f _ 1 
x (K-x+1) 

The values of g, h, i, j, k and I remain the same as in DDStnBM3. 

Due to the considerable similarity between DDStnBM3 and DDStnBM4, it can 

be shown that, except for the equations (4.3.7) to (4.3.10) of the former, all other 

numbered equations and derivations remain the same for the current model. Even 

a summation similar to that in (4.3.18) under the new conditions, as shown below, 

results in an identical equation. Therefore, by calculating the new a, f3 and y 

values and substituting them, the new network parameters can be obtained. 

By the repeated use of (4.3.6), 

P(y,x) _ (K-~+l) P(y,l) 

Summing up the resulting series, 

K 

L P(y,x) ex 
x-l 

IX -
P(y, 1) 

_ 1 _ p(K+1) 
2 

Similarly, 

~ _ p(K+1) 
2 

y - 1 

(4.4.7) 

(4.4.8) 

(4.4.9) 

(4.4.10) 
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K 

L P(y,x) - P(y,l) [K+ (K-1) + (K-2) + ••. +1) 
K x-l 

- P(y, 1) ~ 
(4.4.18) 

Note that for convenience of comparison, the above equations have been 

numbered so that there is a one to one correspondence between equations in 

section 4.4 and those in section 4.3. For example, equation (4.4.18) and (4.3.18) 

represent the same quantity in the respective models. 

4.5 Results 

The four models presented above were solved for most combinations of the 

following parameters - N (16 and 64), M (1, 8 and 16) and Q (1, 10 and 50). As 

in the case of chapter 2, even though the graphs containing the combinations of 

M = 16 or Q = 50 have been excluded to limit the size of the thesis, the analysis 

has been made considering all the results obtained. 

As in the case of model SDStnBM4, the packet arrival rates in the graphs 

presented (say pi) are in units of packets per station per slot time in contrast to 

the units of packets per station per station time used in the models. The 

transformation has been done by -

pi _ pN 
M 

and, as before,. the errors resulting from this type of transformation have been 

ignored. 

Although the 95% confidence limits were calculated for the simulation results, in 

most cases they were found to be too close to show any significant difference. 
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Throughput 

As in the case of source deletion models, with the increase of packet arrival rate, 

the throughput increases steadily and becomes saturated. Again, as in the previous 

models, with the increase of Q, the characteristics tend to become two intersecting 

straight lines, one having an equation -

Throughput - Np 

and the other, 

Throughput - constant 

Quasi stable states, first examined by Falconer et al (Falconer 85), cannot exist 

in destination deletion protocols since such an effect can only occur in source 

deletion systems. Therefore simulations reflect the theoretically highest mean 

throughput attainable, 

Throughput - 1 

1 + 1 
2 N 

(For proof, see appendix A) 

With regard to the models, though all of these show similar results in the linear 

region, the ones that consider a variable destination deletion probability tend to 

give a higher saturation throughput. The same models also give a better match 

to the simulation with the increase of N. 

The increase of M has no effect on the simulation (non existence of quasi stable 

states), but causes the saturation throughput of the models to decrease, this 

reduction becoming less with the increase of N. 
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Average Queue 

With the increase of Q, the average queue shown by all the curves tend to 

become a step function with the limits of 0 and Q. This transition takes place 

when the network moves into saturation. 

Models DDStnBM2 and DDStnBM4 show a better match to the simulation with 

the increase of N. The average queue of all the models increase with M, this 

change however being nominal for larger values of N. The simulation remains 

unaffected by changes in M. 

Average Delay 

As in the case for average queue, the delay tends to rise sharply from near zero 

to its maximum with the increase of Q. However, this transition takes place at a 

lower packet arrival rate than that for the average queue. 

The comparison of N = 16 and N =64 results show an improved match to the 

simulation for DDStnBM2 and DDStnBM4 for higher number of stations. The 

delay curves of the models increase with M in the unsaturated region, this being 

due the use of assumption (2.0.12). With respect to the simulation, all models 

show an increase in delay with p, although the difference is negligible for higher 

values of N. 

Packet Rejection Probability (PRP) 

As can be expected, for very Iow values of Q (1 in this case), PRP is considerable 

even at Iow packet arrival rates. The increase of Q results in no, or negligible 

packet loss when the system is not in saturation. 
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The models show an increase in PRP with M, this change, again being quite small 

when N = 64. The simulation however tends to be unaffected by the changes to M. 

An increase in N results in the models DDStnBM2 and DDStnBM4 giving a 

better match to the simulation, especially when Q is 10 or more. 

4.6 Summary 

In this chapter, four models based on a single station for a destination deletion 

slotted ring network have been presented. 

The last two models were the simplified versions of the first two, thus enabling 

them to be solved using fixed point equations rather than a direct numerical 

approach. However, as in the case of previously similarly simplified models, this 

effectively reduced the range of the packet arrival rate applicable to these models. 

The first and the third models assumed a constant destination deletion probability 

of a packet at all stations except the last downstream station, whereas the other 

two models assumed this to change depending upon the distance the packet has 

travelled. 

From the results obtained, it may be seen that the assumption of a variable 

destination deletion probability of a packet gives better results. At least one 

reason for this is the fact that a constant destination deletion probability does not 

give rise to an average packet being transmitted halfway around the ring 

(appemllx B) - a condition that should exist since all stations are assumed 

i~enti~al. 

The simplified models give a reasonably good match to their respective complete 

models, and thus may be used when the network constants permit this. 
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CHAPTER 5 

Slotted Ring, Destination Deletion 

Protocol : Slot Based Models 

5.0 Introduction 

In this chapter, the destination deletion slotted ring network will be modelled 

based on observing the system from a slot. The two methods of considering the 

destination deletion probabilities mentioned in the previous chapter, i.e., constant 

and variable, will be used here as well, thus resulting in the models DDSlotBM1 

and DDSlotBM2 respectively. 

If any of the above two models are to be simplified as in DDStnBM3 or 

DDStnBM4, the result will only be valid for a packet arrival probability "p" of less 

than 1/(N-1), where p has the units of - packets per slot per station time. This 

limit, as it may be seen from the performance curves of the above models, is 

insufficient to cover even the standard operating range (non-saturated) of the 

network. Thus, such simplified models will not be considered. 

The assumptions (2.0.1) to (2.0.5), (2.0.7), (2.0.IQ) to (2.0.12), (2.1.3), (3.1.1) to 

(3.1.3) and (4.0.1) to (4.0.3) will be common to both models in this chapter. As 

in the previous chapter, both models will be based on time intervals measured in 

station times. 
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5.1 Destination Deletion. Slot Based Model 1 (DOSlotHMI) 

As mentioned under the introduction to this chapter, this model will assume a 

constant destination deletion probability for any given packet. Thus the 

assumption (4.1.1), in addition to those mentioned in section 5.0, will apply. 

Figure 5.1.1 shows the Markov model of DDSlotBM1, all the transition 

probabilities except c" d, and f, (1 :s;x:s;K) having the same interpretation as those 

under SDSlotBM of chapter 3. The probabilities c" d, and f, model the effects of 

destination deletion, f, indicating the probability of a packet in that particular slot 

reaching its destination address; d, the probability of a packet arrival during this 

process, and c, the probability of no packet arrival within the station time the slot 

reaches its destination. Q is the maximum queue per slot. 

From assumption (4.0.2), 

K - N-l 

Considering the similarity between this model and DDStnBMl, it can be seen that 

the transition probabilities a" b" c" d" e, and f, remain identical (equations (4.1.1) 

to (4.1.6». However, due to the different method of observing the network, the 

values of g and h change to -

g - l-p 

h-p 

This is due to the fact that, whenever a slot is empty, it will be filled by the 

station against which its header is aligned provided the station has a packet to 

transmit. 

The model can be solved using the matrix method described in sections 2.4 and 

3.2, the network performance rneasures- throughput, average queue, average delay 

and the packet rejection probability being calculated in a similar manner to that 

in the section 3.1 (equations (3.1.7) to (3.1.11». 
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Fig 5.1.1 Discrete Time, Slot Based Markov Model 
for a Slotted Ring with a Destination 
Deletion Protocol (DDSlotBM) 
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5.2 Destination Deletion, Slot Based Model 2 (DDSlotBM2) 

This method assumes a varying destination deletion probability for a packet when 

it moves across the network. Thus the assumption (4.2.1) is also applicable in 

addition to the ones mentioned in the introduction to this chapter. 

All other factors remaining identical to DDSlotBM1, the Markov model remains 

unchanged to that in figure 5.1.1. However, the transition probabilities a., b" c" 

d" e, and f, change to become similar to those in model DDStnBM2 of section 

4.2 (equations (4.2.1) to (4.2.6)). The values of g and h remain the same as those 

in DDSlotBMl. 

This model too is solved using the matrix method, and the relevant network 

performance measures are again calculated using the equations (3.1.7) to (3.1.11). 

5.3 Results 

Results were obtained for all the usual combinations of system parameters, and 

will be considered in the analysis below. However, as in chapters 2 and 4, some 

of the resulting graphs will be omitted to limit the amount of graphs presented. 

Throughput 

As in all other previous models, the throughput tends follow the path of two 

intersecting straight lines with the increase of Q; these being -

Throughput - Np 

and, 
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Throughput - 1 

.!+.! 
2 N 

DDSlotBM2 shows an excellent match to the simulation at all times, especially 

at the higher levels of Q; the DDSlotBMl, however, performs quite poorly at 

saturation. 

Both models show very little dependency on M at higher values of Q, and no 

noticeable difference exits for all the curves when Q is increased from 10 to 50. 

Average Queue 

Similar to the other models, the average queue tends to show an increasing 

similarity to a step function with the increase of Q, its limits being 0 and Q. 

Both models tend to reflect a higher value compared to the simulation, the 

disparity being highest in the transition region from a low average queue to its 

maximum. This difference between the models and the simulation appear to be 

increasing in only minute quantities compared to the increase in Q for a given p, 

and, as such, becomes negligible with subsequent increase of Q. 

Even though the increase of Q sharpens the transition, the increase of M has the 

opposite effect. 

Since a larger number of stations cause the network to saturate at a lower packet 

arrival rate per station, the increase of N also results in the curves giving a higher 

resemblance to a step function. 
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Average Delay 

As in the case of the average queue above, here too, the curves tend to show an 

increasing similarity to a step function with the increase of Q or N, and its 

opposite effect with an increase in M. 

Both models show an improved match with the increase in Q, the DDSlotBM2 

resulting in an extremely close fit to the simulation at higher values of Q. 

Compared to the simulation, the increase of M causes the DDSlotBM2 to attain 

its maximum value prematurely. 

Packet Rejection Probability (PRP) 

The values predicted by both models improve with the increase of Q, DDSlot13M2 

again giving an excellent match to the simulation at higher values of Q. 

The simulations indicate an independence from M, the models too showing this 

same effect at higher values of maximum buffer size. 

The comparison with the simulation improves with the increase of N. 

5.4 Summary 

In this chapter, the destination deletion protocol for a slotted ring has been 

analysed based on observing the system from a slot. Two models, differing on the 

basis of how they consider their destination deletion probabilities have been 

presented. 
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Results show that the assumption of a variable destination deletion probability 

gives rise to an extremely satisfactory model. Also, for the destination deletion 

protocol, the DDSlotBM2 gives a superior performance compared to all the 

station based models. 

119 



-::I 
Q. 
.c 

2.0 

1.5 

~ 1.0 
o 
~ 

.c 
I-

0.5 

.' 
---------------- ---_ . . ' 

", 6 

.. 

.. Simulation 

-- DDSlotBMl 

---- DDSlotBM2 
O.O+--....---r--....--....--....-'==;======', 

0.00 

Fig. 5.3.1 

2.0 

1.5 -::I 
Q. 
.c 
Cl 1.0 ::I 
0 
~ 

.c 
I-

0.5 

0.0 
0.00 

Fig. 5.3.2 

2.0 

1.5 -::I 
Q. 
.c 
Cl 1.0 ::I 
0 
~ 

.c 
I-

0.5 

0.0 
0.00 

Fig. 5.3.3 

0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Throughput Performance (N=16, M=I, Q=I) 

0.05 

.. .' .' 

0.10 

_------.. ------- ----6 

.. Simulation 

- DDSlotBMl 

---- DDSlotBM2 

0.15 0.20 
Packet Arrival Probability (p) 

Throughput Performance (N=16, M=I, Q=10) 

0.05 

.' .' .' 
.' 

0.10 

-------_. 
~------ 6 __ .... - A .,:::..--=---

.. Simulation 

-- DDSlotBMl 

---- DDSlotBM2 

0.15 0.20 
Packet Arrival Probability (p) 

Throughput Performance (N=16, M=8, Q=I) 

120 



-" a. 

"" Cl 

" 0 
~ 

"" ~ 

Fig. 

-" ... 
"" 

2.0 

1.5 

1.0 

0.5 

0.0 
0.00 

5.3.4 

2.0 

1.5 

g' 1.0 
o 
~ 

"" ~ 
0.5 

0.05 

," , --

0.10 

--_----....... --------- ... -6 

.. Simulation 

- DDSlotBM1 

---- DDSlotBM2 

0.15 0.20 
Packet Arrival Probability (p) 

Throughput Performance (N=16, M=8, 0=10) 

;----;----'----4-X------------------------.. , , 
/r6~ __________________________________ _ 
, , , , , , , , 

.. Simulation 

-- DDSlotBM1 

---- DDSlotBM2 
0.0 ~-..,......-...--~-...--..,......=:;==::;=:=!., 

0.00 

Fig. 5.3.5 

2.0 

1.5 -" ... 
"" Cl 1.0 
" 0 
~ 

"" ~ 
0.5 

0.0 
0.00 

Fig. 5.3.6 

0.05 0.10 0.15 
Packet Arrival Probability (p) 

0.20 

Throughput Performance (N=64, M=1, 0=1) 

,. ...... ----.. ----.. -* ------------------------.. , , 
/r------------------------------------, , , , , , , 

0.05 0.10 

.. Simulation 

- DDSlotBMl 

---. DDSlotBM2 

0.15 
Packet Arrival Probability (p) 

0.20 

Throughput Performance (N=64, M=1, 0=10) 

121 



-::I 
<I. 
.c 

2.0 

1.5 

g' 1.0 
o 
~ 

.c 
I-

0.5 

.. -----&,----,,-1[------------------------6 
r"'" A 
• /6 , 

• • , , , , , 

6 Simulation 

-- DDSlotBMl 

---- DDSlotBM2 
0.0 ~-...---.--...---.--...-!:::::::;==:::;====', 

0.00 0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Fig. 5.3.7 Throughput Performance (N=64. M=8. Q=1) 

-::I 
<I. 
.c 
Cl 
::I 
0 
~ 

.c 
I-

Fig. 

.. 
::I 

" ::I a .. 
Cl 
os 
~ .. 
> 
<I: 

2.0 

1.5 

1.0 

0.5 

0.0 
0.00 

5.3.8 

1.0 

0.8 

0.6 

0.4 

0.2 

_--- .. 6----.----6-*------------------------6 , , 
/,-------------------------------------, , , , , , , , 

0.05 0.10 

6 Simulation 

- DDSlotBMl 

---- DDSlotBM2 

0.15 0.20 
Packet Arrival Probability (p) 

Throughput Performance (N=64. M=8, Q=10) 

6 Simulation 

-- DDSlotBMl 

---- DDSlotBM2 

,,/"'" 

• • • • • • , 
• • • • • 

,,~ 
.6 ,6' 

.... ---_ .. -----

6 

6 

.. .,. 
-~.-~~~~~-~.~-~----~----~----r_---T----~ 0.0 

0.00 0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Fig. 5.3.9 Queuing Performance (N=16, M=1, Q=1) 

122 



.. 
::I .. 
::I o .. 
Cl 

:! .. 
> 

'" 

10 

8 

6 

4 

2 

,.- ,----
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

A 

: A Simulation 

: -- DDSlotBM1 

A 

,I if J' .-.- DDSlotBM2 
O~~~~~~~T~.k~~_~A~_;J ____ -r-l===r====T===~ 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.10 Queuing Performance (N=16. M=1, Q=10) 

.. 
::I 

" ::I 
0 .. 
Cl .. 
~ 

" > 

'" 

1.0 

0.8 

0.6 

0.4 

0.2 

A Simulation 

-- DDSlotBM1 
• __ • DDSlotBM2 

" " 
" " ", 

" A ....... ,6 
.,.,. .. ; .... 

" " " 

" ",' 

A 

" , ... " 
--' ,,-

A 

.. -- .. A 
O.O+--~~+"::""-'----r-~--'--~--, 

0.00 0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Fig. 5.3.11 Queuing Performance (N=16. M=8, Q=1) 

10 
.,. ...... - ... ....... --

" 8 
"" A .. 

::I { 

" I 
::I 6 I 
0 I , , 
" 

, 
Cl 

, 
4 

, .. I ~ , 
" , 
> , A Simulation 

'" , 
2 , I - DDSlotBM1 

-,' A •••• DDSlotBM2 

0 - ... t" .. 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.12 Queuing Performance (N=16, M=8, Q=10) 

123 



1.0- r • • • • A 
0.8 - • • 

" / • • ::I • A 
A 

" • ::I 0.6 • 0 • .. , 
• " • Cl , 

A .. 0.4- • 
~ • .. • • > • A Simulation <C • 0.2 • -- DDSlotBMl • • A 

• ---- DDSlotBM2 I' 
0.0 . . 

0.00 0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Fig. 5.3.13 Queuing Performance (N=64, M=1, Q=1) 

10 
I , 

• A A A , 
8 

lA , 
" 

, , 
::I • .. , 
::I 6 

, 
0 , , 

• " , 
Cl • .. 4 , 
~ , .. , 
> , 

A Simulation '" • 
2 - 11( - DDSlotBMl , 

[.. • .1 ---- DDSlotBM2 • 
0 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.14 Queuing Performance (N=64, M=1, Q=10) 

1.0 --" r" A 
0.8 • I 

" • I 
::I I .. A .. I 
::I 0.6 I 

a • A • • .. I • Cl • A .. 0.4 • ~ • " • > • A Simulation 

'" • 
0.2 • - DDSlotBMl I • A • ---- DDSlotBM2 
0.0 

0.00 0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Fig. 5.3.15 Queuing Performance (N=64, M=s, Q=1) 

124 



10 - r • ... A • A • 
8 -

:A 
• • .. • " • .. • " 6 - • a • • • .. • Cl • .. 4 , 

~ • GO • > • A Simulation 
cC • 

2 ~ - DDSlotBM1 
, ," ---- DDSlotBM2 

0 I" , , 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.16 Queuing Performance (N=64. M=8, Q=10) 

>.. .. 
c 

100 

10 

A Simulation 

- DDSlotBM1 

---- DDSlotBM2 

A." 
A " .-' 

-_ .............. ------_ . 
" ... -... -

A 

"" 
A 

6 6 ",-

1~~~-~·-~·~--·~~r_~-,_-~_, 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.17 Delay Performance (N=16, M=1, Q=1) 

1000 

>.. 
GO 
C 

100 

10 

,r ............ - ... --- ...... --- .......... , , , , , 
A " , , , , 

A ,,1 
A ,.-

A Simulation 

- DDSlotBM1 

A _.- ---- DDSlotBM2 
1~~~-~-·~-·~--~--~~~~ 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.18 Delay Perfo rmanee (N=16, M=1, Q=10) 

125 



,.. .. 
" Q 

100 

10 

A Simulation 

-- DDSlotBMl 

---- DDSlotBM2 

0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Fig. 5.3.19 Delay Performance (N=16, M=8, Q=1) 

1000 

,.. .. 
" Q 

100 

10 

" ,/ 
", .6 

", .. 
" ,- A 

.,."",. .. '" A 

,. ,_-----.------------.0 

.. Simulation 

-- DDSlotBMl 
__ ... -~ A A ---- DDSlotBM2 

14-~A6~.o __ -r ___ r_--_r--~===r========~ 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.20 Delay Performance (N=16, M=8, Q=10) 

,.. .. 
" Q 

100 

10 

,,----_ .. ---_ .... -_ .. ----- .... ---_ .. ----_ ...... --.. 
" .a A .. A 

( A , 
• • · .. • • • • • • • • • 

A Simulation 

-- DDSlotBMl 

---- DDSlotBM2 
1~~~-.--__ --.---~~==~~ 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.21 Delay Performance (N=64, M=1, Q=1) 

126 



1000 

,.. .. .. 
c 

100 

10 

41: .. ---.. ----.-*--- ... ------- .... ---------...... , , , , , .. ' , , 
I , , , , , , , , , , 

• • 

.. Simulation 

-- DDSlotBMl 

---- DDSlotBM2 

1~~~-.--~--~--~~==~~ 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.22 Delay Performance (N=64. M=1, 0=10) 

,.. 
ca .. 
C 

100 

,,---.... ---- .. ---- .. - -- .... ----------- .. --""":6 
, .... 

" .. . ' .. , 
10 • • • : .. , 

• , 
• • I • .. 

.. Simulation 

-- DDSlotBMl 

---- DDSlotBM2 

1~"-------.-------r--~-=~====~~ 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.23 Deley Performance (N=64, M=8. 0=1) 

1000 

,., 
ca .. 

C 

,,----.----.-*------------------------6 
100 

"", 

.' , , 

10 

I 
I 

I 
I 

I 

• , 
I 

I 
I 

I , , 

.. Simulation 

- DDSlotBMl 

---- DDSlotBM2 
~ .. 

1~~~-.--~--~--~~==~~ 
0.00 0.05 0.10 0.15 0.20 

Packet Arrival Probability (p) 

Fig. 5.3.24 Delay Performance (N=64, M=8, 0=10) 

127 



0.6 

.<i 
0 
~ 

"-
c 0.4 
.!! 
U 
" 'ii) 
a: 

0.2 -.. 
"" u .. 
"-

0.0 
0.00 

Fig. 5.3.25 

0.6 

,,; 
0 
~ 

"-
c 0.4 
.!! 
U 
" 'ii) 
a: 

0.2 -.. 
"" u .. 
"-

0.0 
0.00 

Fig. 5.3.26 

0.6 

,,; 
0 
~ 

c.. 

c 0.4 
.!! 
U .. 
'ii) 
a: 

0.2 -" "" u .. 
"-

0.0 
0.00 

Fig. 5.3.27 

" Simulation 

-- DDSlotBMl 

---- DDSlotBM2 

A 
" " " 

" 

0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Buffer Overflow Characteristics (N=16, M=l, 0=1) 

" Simulation 

-- DDSlotBMl 

---- DDSlotBM2 

0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Buffer Overflow Characteristics (N=16, M=l, 0=10) 

,6 Simulation 

-- DDSlotBMl 

---- DDSlotBM2 

0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Buffer Overflow Characteristics (N=16, M=8, Q=l) 

128 



0.6 

J:i 
0 -11. 

c 0.4 
0 
;: 
" .. 
'0; 
a: 

0.2 
~ .. ... 
" .. 

11. 

0.0 
0.00 

Fig. 5.3.28 

1.0 

J:i 
0 0.8 -11. 

c 
.!! 0.6 
U .. 
'0; 

0.4 a: 

Q; ... 0.2 " ca 
11. 

0.0 
0.00 

Fig. 5.3.29 

1.0 

J:i 
0 0.8 -11. 

c 
.!! 0.6 
U .. 
'0; 

0.4 a: 
~ .. ... 0.2 " ca 
11. 

0.0 
0.00 

Fig. 5.3.30 

.. Simulation 

- DDSlotBMl 

---- DDSlotBM2 

0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Buffer Overflow Characteristics (N=16, M=8, 0=10) 

................. .. --_ .... - .... -.... 
........... - ...... 

..... 
.' 

",~"'" 

," , 
" .6 Simulation , , .. t -- DDSlotBMl 

.. ---- DDSlotBM2 , 

0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Buffer Overflow Characteristics (N=64, M=l, 0=1) 

I"""~ 
, , , , , , , , , 

,. 
..... 

.' 
.. -----------------------_ ... 

.. Simulation 

-- DDSlotBMl 

---- DDSlotBM2 

0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Buffer Overflow Characteristics (N=64, M=l, 0=10) 

129 



1.0 

.a 
0 0.8 ~ 

"-
c 
~ 0.6 

" .. .... 
0.4 a: -.. ... 0.2 " ca 

"-

0.0 
0.00 

Fig. 5.3.31 

1.0 

.a 
0 0.8 ~ 

"-
c 
0 0.6 

'" " .. .... 
0.4 a: 

;; ... 0.2 " ca 
"-

0.0 
0.00 

Fig. 5.3.32 

,.' , , , , , , 
6/ , 
.~ .. ' 

0.05 

",,11."'''' 
.' 

.... ~----------------
--_ ..... ........ 

0.10 

6 Simulation 

-- DDSlotBM1 

---- DDSlotBM2 

0.15 0.20 
Packet Arrival Probability (p) 

Buffer Overflow Characteristics (N=64, M=8, Q=1) 

11.'-/,4 
, , , , , , 

I , , , 

.' .' 
.... ....... -.. .. ------- ...... - .................... - ... 

6 Simulation 

-- DDSlotBM1 

---- DDSlotBM2 

0.05 0.10 0.15 0.20 
Packet Arrival Probability (p) 

Buffer Overflow Characteristics (N=64, M=8, Q=10) 

130 



CHAPTER 6 

OrweIl Protocol for the Slotted Ring 

6.0 Introduction 

With the advances made in optical fibre links and hardware in general, it was 

realised that slotted rings can provide extremely high levels of efficiency and 

performance (Bux 81). Orwell (Adams 84, Arem 90, Falconer 85a, Lee 91, 

Mitrani 86) is a protocol designed by the British Telecom in order for such a 

distributed control network to provide multi class and delay sensitive data 

transmission capabilities. Under this protocol data is categorised into two classes: 

class 1 which is delay sensitive, and class 2 which is delay tolerant. 

The protocol incorporates destination deletion of packets. To allow for time 

critical real time communications, counters are used at each station, so that when 

a packet is transmitted, the transmitting station will increment its counter. Upon 

reaching a locally agreed maximum "Di" value of the counter, that station will 

enter a state termed as the "Paused" state, which is a state where the station will 

not transmit any data before a network "Reset". This gives a opportunity for the 

other stations to transmit their packets up to their own Di limits. 

A station in a Paused or "Idle" state is allowed to transmit "Trial" slots on empty 

slots. A trial consists of a special bit pattern in the slot header and is addressed 

to the trial originator. A station downstream that wishes to transmit may use these 

Trial slots. 
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Therefore, if a trial slot returns to its originator, it implies that no stations are in 

need for further transmissions due to lack of data, or that they are Paused. Thus, 

upon receiving a successful Trial slot, its originator converts it into a Reset slot, 

a slot having a special dedicated bit pattern in its header, which is then 

transmitted. A station that has a Reset slot under transmission is said to have a 

"Outstanding Reset". 

Any station which may come across a Reset slot will reset its counters to zero, 

and, as such, the whole network will start afresh. The reset slots are converted 

into normal slots by any station with an Outstanding Reset. 

When a request for a new connection wi th guaranteed bandwidth is received, the 

station will check the current reset rate, and accept the request if this call will not 

make the new expected reset time to exceed the maximum allowable reset time. 

The Di ceiling of that station will be accordingly incremented to accommodate 

the new connection. 

In this manner, the number of links are controlled, such that, by making the 

network reset within a critical time (maximum allowable reset time), real time 

data can be transmitted at regular time intervals without giving rise to 

unacceptable delays. 

In this chapter, two models for the Orwell protocol will be analyzed. The first one 

will be based on observing the system from a station (Orwell Station Based Model 

- OStnBM), and the second based on observing the system from a slot (Orwell 

Slot Based Model - OSlotBM). 

The following assumptions are common to both the models in this chapter -

(6.0.1) Both class 1 and class 2 data packets will fit exactly into a slot. 

(6.0.2) A packet, on average, will be transmitted to a station halfway 
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around the ring. 

(6.0.3) There are no gap bi.ts between slots. 

In addition, the assumptions (2.0.2) to (2.0.5), (2.0.7), (2.0.9) to (2.0.12), (2.1.3), 

(4.0.1) to (4.0.3) and (4.2.1) will be applicable in general. 

The use of assumption (6.0.2) essentially implies that we have to use the variable 

destination deletion probabilities. A simple calculation can prove that only this 

method of the two discussed in the previous two chapters, can result in the 

condition specified by assumption (6.0.2). (See appendix B) 

6.1 Orwell Station Based Model (OStnRM) 

Figure 6.1.1 shows the Markov chain of the model for the Orwell protocol based 

on observing the network from a station. 

In addition to the assumptions made in section 6.0, the following are assumed -

(6.1.1) A station with no packets in its buffer will not enter a Paused state. 

Assumptions (2.0.8), (2.5.1) and (2.5.2) also apply. 

As in all previous models, the nodes of the model show the states a given station 

may occupy. The first value inside a node indicates the queue size. The second 

value denotes the number of station times that have elapsed since the start of 

transmission (values between 0 and K), or the Paused state (indicated by P). Note 

that this (y,P) state also represents the state of station when it has a trial and/or 

reset slot(s) under transmission. 
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FIg 6.1.1 DIscrete TIme, StatIon Based Markov 
Model for a Slotted RIng Operating 
Under The Orwell Protocol (OStnBM) 
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As before, from assumption (4.0.~), 

K - N-1 

The transitions denoted by the probabilities a, b, c" d" e" f" i" j" I, m, nand 0 

(l:s;x:s;K) can be explained in a manner similar to that in DDStnBM2. The 

transition probabilities hand g indicate the chance of the station entering a 

Paused state, with and without the arrival of a packet at the same instant 

respectively. 

Similarly, a station in a Paused state (y,P), where (l:s;y<Q), will move on to a 

state (y,O), (y+ 1,0) or (y+ I,P) with a probability t, u or w respectively, or, remain 

in the same state with a probability v. 

Considering steady state equilibrium, as before, 

a - p(1-S) 

b - (1-p) (1-S) 

1 - I-p 

m = pS 

n - (1-p) S 

o - S 

From assumption (4.2.1), 

Probability that the slot has 
reached its destination 

Therefore, 

e -x 
(1-p) 

(K-x+l) 

f - P 
x (K-x+l) 
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(K-x+1) 

(6.1.1) 

(6.1. 2) 



c - {1- 1 } (l-p) 
x (K-x+1) 

(6.1.3) 

(6.1.4) 

Since all stations are statistically equivalent, let the maximum Di value of all 

stations be Dmax. 

From assumption (6.0.2), 

Thus, 

Average time needed for a 
station in a transmitting _ N 
state to transmit a packet 2 

Average time needed to transmi t 
Dmax packets of all stations when 

they are in a transmitting state 
N N Dmax - - x -"'-",-,,:= 
2 M 

Whenever the station is in a transmitting state with a non zero buffer, it will enter 

the Paused state only after transmitting its full quota of packets amounting to 

Dmax. 

Therefore, 

Probability of entering the 
Paused state from a transmitting -

state in the next transition 

This leads to, 

g _ 2M (l-p) 
(N2 Dmax) 

2M h - -,--.."..=...:..:....---:- p 
(N2 Dmax) 

The following equation now applies, 
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2M (6.1.5) 
(N2 Dmax) 

(6.1.6) 

(6.1. 7) 



Substituting from (6.1.3), (6.1.4), (6.1.6) and (6.1.7), 

1 2M 
(K-X+1) (N2 Dmax) 

Thus, 

i -x { 
1 _ 2M }(l-P ) 

(K-x+1) (N2 Dmax) 
(6.1.8) 

{ 
1 2M}p 

(K-x+1) (N2 Dmax) 
(6.1.9) 

In Appendix C, it is shown that i, and j, are positive for all reasonable network 

parameter values. 

When the stations are Paused, due to statistical equivalence of stations, 

Time needed to Reset the network _ N + N 
M 

(6.1.10) 

Here, the first term is the time needed for the trial; the second term being due 

to the average extra time needed for the Reset slot to reach the next station with 

an outstanding Reset. 

Therefore, 

Probability of a Reset when the 
station is in a Paused state 
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M 
(M+1) N 



t - (M+~)N (1-p) 

u -
M 

(M+1)N P 

v - {1- M }(1-P ) 
(M+1)N 

W-{1 M}p 
(M+1)N 

Calculation of Dmax 

Let, 

Then, 

g = Gap bits between slots 

L = Total bits per slot 

Ld = Class 1 data bits per slot 

R = Transmission rate 

RI = Class 1 data rate 

(6.1.11) 

(6.1.12) 

(6.1.13) 

(6.1.14) 

Propergation delay of the ring (T) - M(g+L) (sec) 
R 

From assumption (6.0.3), g=O. Thus, 

T _ ML 
R 

(sec) (6.1.15) 

Average time needed N+ 1 (station times) 
to transmit one packet - 2 
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The + 1 of the above equation represents the overhead involved at the receiving 

station in passing the slot to the next station. 

Therefore, 

Time needed to transmi t Dmax ( N + 1) N Dmax 
packets of all stations -"2 M 

Considering the fact that one station time is wasted after a slot is cleared from 

a Reset state to be passed to the next station before being filled up for 

transmission, and using equation (6.1.10), 

Total time needed to Reset N + 1 
when all stations are Paused - N + M (6.1.16) 

Therefore, 

Maximum time 
betw(;~~)sets - {( ~+ 1) ND;ax +(N+ ~+ 1)} ~ 

_ Ld (6. 1. 17) 
Rl 

since, at every Ld/R\ interval, a new packet from the class 1 source will be 

awaiting transmission on the newly Reset ring. 

Substituting for T from equation (6.1.15), 

Dmax- -1+-+-
{ 

Ld R ( 1 1)} 
R~ML M N 

M 

N+1 
2 

Since Di is always a whole number, the decimals of Dmax are 

truncated. 

(6.1.18) 

The transition probabilities calculated above may be used to obtain the State 

Transition Matrix, which in turn can be used as described in section 2.4 to solve 
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the Markov chain at equilibrium. 

Once all the P(y,x) values are known, the performance measures can be obtained 

in the following manner. 

S - (l-t P (y,O») (N-l) 
y-O M 

Considering the number of transmissions per slot per cycle, 

Throughput - {tp(Y,Q) + PP(O,O)} 
y-l 

o T 

Average Queue (q) - L LYP(y,x) 
Y-l x-o 

Average Delay _ q N 
Throughput 

M + 
N 

Cl-S) N 2 

M 

Packet Rejection 
Probability given 
packet arrival (PRP) 

_ 1 _ Throughput M 

pN2 

(6.1.19) 

(6.1.20) 

(6.1.21) 

(6.1. 22) 

(6.1.23) 

~;~b';bi1i ty - ( t+u) t P(y, P) + p(a, 0) (l-p) (1-8) ) N 
per Cycle y-l (l+.!+.!)N 

M N (6.1.24) 

Here the second term on the right hand side represents the probability of a Reset 

when a station is idle. 
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6.2 Onvell Slot 8ased Model (oSlo18M) 

As in the case of previous protocols analysed, the differences between this model 

and OStnBM are minimal. 

Since slots do not physically get paused, the state (y,P) {l!5y!5Q} indicates the 

probability that the station against which the slot header is aligned does not wish 

to transmit a data packet due to the fact that it is paused. However, the slot at 

this state may be converted into a trial slot or a reset slot by that station. 

The following additional assumptions are made -

(6.:U) A slot having an average of zero packets waiting to be transmitted 

(states represented by (O,x) where 0!5x!5N-1), will not enter the 

pseudo paused state mentioned above. Thus a state (O,P) does not 

exist. 

Assumptions (3.1.1) to (3.1.3) also apply. 

Figure 6.2.1 shows the Markov chain applicable to this model. Here, 

Q - Average maximum buffer size per slot 

and, as before from assumption (4.0.2), 

K - N-l 

The transition probabilities c" d" e" f" g, h, i" j" t, u, v and w (1 !5x!5K), as well 

as Dmax remain the same as in the previous model, except that now, they are 

applied to the slot under consideration. 

However, the values of a and b change to -

a-p 
b - l-p 
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FIg 6.2.1 DIscrete TIme, Slot Based Markov Model 
for a Slotted RIng Operating Under 
The Orwell Protocol (OSlotBM) 
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Since all the transition probabilities are known, the model can be solved using the 

matrix method described in sections 2.4 and 3.2. 

The network performance measures can then be calculated as follows -

Nwnber of transmissions 
Throughput - per cycle per slot 

- N(P(O,OlP + fP(Y'O') 
y-l 

Probabili ty of a 
slot being full 

o K 

- L L P(y,x) 
y-O x-l 

Average Queue per _ 

Sta tion (q) 

MOP 

N L LYP(y,x) 
y-O x-a 

Average Delay (d) _ qN 
Throughput 

M + 
N 

Packet Rejection Throughput 
Probabil i ty (PRP) - 1 - P N 

Probability- (t+u)LP(Y,P)+P 0,0 (l-p N Reset (Q (» ) 
per Cycle y-l (l+~+~)N 
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(6.2.1) 

( 6 • 2 • 2 ) 

(6.2.3) 

(6.2.4) 

(6.2.5) 

(6.2.6) 



6.3 Simulation 

As in the case of previous simulations, this too was done in two parts. Firstly, the 

network was allowed to reach a steady state. Then, in the second part, the 

performance measures were evaluated while in the steady state. 

It is noted that, even though this second part of the simulation was done for a 

minimum of 10,000 slot times per station in each case, when compared to a real 

time situation, this amounts to less than even 1 second of operation of a ring with 

a transmission rate of 20 Mbaud and a slot size of 160 bits. Due to the large 

amount of computing time required to run the simulation, it was not feasible to 

lengthen the run time any further. Thus, it was assumed that -

(6.3.1 ) No existing calls terminate. 

In other words, stations will not decrement their Di values and 

release bandwidth to the network. 

Due to the lack of standards, the following protocol rules have also been 

assumed-

(6.3.2) 

(6.3.3) 

Current Average Reset Interval = linear average of the last two 

Reset Intervals. 

Here the "Reset Interval" refers to the amount of time between one 

network reset and the next. The average was used to smooth out 

any sudden variations that may occur within the short running time 

of the simulation. 

A constant value termed "TxTolerance" (having units of slot times), 

was used when giving permission for an increase in the Di value of 

a station. 

This was done by firstly making sure that, from its current state, at 

least that amount of time was available before the network should 
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6.4 Results 

definitely reset (a check on the current status of that particular 

station). This was necessary due to the fact that, within a given 

network reset interval, more than one station may need extra 

bandwidth, but not be aware of this similar need of the other 

station(s). 

The second check was to make sure that the extra time needed 

would not push the average current reset interval to an 

unacceptable limit (a check on the average network reset interval). 

The value of TxTolerance was selected on a trial and error basis so 

as to ensure that the network reset within the maximum allowable 

time, but did not do so too often when the load is high. For the 

cases 16 and 64 stations this value was kept constant at 75 and 100 

respectively. 

The network performance measures for the models and the simulation were made 

for all the combinations of N (16 and 64), M (1, 8 and 16) and Q (1, 10 and 50), 

but the results containing M= 16 or Q=50 excluded from the thesis for the usual 

reasons. When considering the maximum buffer size, the fact that there is very 

little difference in the performance measures between the cases where Q is 10 

and 50 (throughput, PRP and reset rate), or where there is a difference (average 

queue and delay), the fact that it can be easily predicted by observing the similar 

case with Q = 10 justifies this omission. However, as in the previous chapter, all 

results have been considered for the analysis of the performance measures. 

Considering the proposed slot architecture (Falconer 85), the following network 

parameters were assumed constant throughout -

L = 160 bits per slot 

Ld = 128 bits per slot 
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R = 20 Mbaud 

RI = 64 Kbaud 

Throughput 

As in the case of all previous throughput curves, with the increase of Q, these also 

tend to follow the path of two intersecting lines; the first part a line of type -

Throughput - Np 

and the second part, 

Throughput - Constant 

Both models show a good match to the simulation in the linear region, the 

OSlotBM showing a better, but slightly higher match in the saturated region. The 

reason for this disparity is the fact that OSlotBM tend to show the ideal values 

obtainable. 

An increase of M causes the saturation values of all the models to decrease, this 

effect being more pronounced in the OStnBM since all station based models are 

prone to such behaviour. The reason for this effect in the case of the slot based 

model can be explained by noting the behaviour of equation (A.19) with respect 

to M. 

No apparent change can be detected in the comparison when N is increased, 

except the usual change in the gradient of the linear region and the improved 

saturation throughput of all curves. 
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Average Queue 

The comparison shows the OStnBM giving a better match to the simulation. All 

three curves tend to become a step function with the increase of Q, the slot based 

model tending to predict the instance of this change in level more accurately. 

The increase of M causes the station based model values to increase with respect 

to the simulation, this being due to the drop in the throughput for the same 

change in M. This increase becomes less in magnitude with the increase of N. 

Average Delay 

For the case of Q = 1, the models show a relatively poor match to the simulation, 

but improve rapidly with the increase of Q, the OSlotBM resulting in a better 

match overall. 

The increase of Q also gives rise to a more pronounced step function shape in 

both models as well as the simulation. The increase of M however has an 

opposite effect on the shape. 

The delay of QStnBM tend to rise with the increase of M, the same effect being 

seen on the other two curves, although to a very minor extent. 

A slightly improved match to the simulation can be seen on the OSlotBM with 

the increase of N. 

Packet Rejection Probability (PRP) 

Although the change in Q has little effect on both models, an increase of N 

results in an improved match to the simulation. An increase in M causes the 
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values of OStnBM to increase with respect to the simulation. 

In general, the OSlotBM shows a better overall match to the simulation than 

OStnBM. 

Reset Rate 

Here again, the OSlotBM results in a superior match to the simulation, especially 

when the network is in saturation. Both models improve greatly with the increase 

of N, and an increase of Q causes all the curves to transit more sharply into 

saturation. The effect of an increase in M is to increase the reset rate. This effect 

can be logically explained by the use of equations (A. 12) and, (A.13) and (6.1.18), 

where an increase of M causes the two limits of the reset rate to increase. 

Finally, it is noted that the simulation results for lower N /M ratios decrease at 

a lower rate, or, at times, even increase with the increase of the packet arrival 

rate before declining to follow the values predicted by the models. This effect can 

be explained as follows -

Assume that stations 2, 3 and 4 of figure 6.4.41 are idle at the instance shown. 

Slots A and C are successful trial slots of the stations 2 and 4 respectively, and 

thus will be duly converted into reset slots at the end of the current slot time. Slot 

Band D are full and addressed to a station beyond station 4 and to station 3 

respectively. Slot E carries another trial of station 4. 

Within the next five slot times, the status' of the slots are shown in the table 

below. Since station 4 will generate a trial on slot D at the end of the fourth slot 

time, and thus have an outstanding trial, it will convert slot E into a reset slot, 

thus creating another network reset within the same cycle. 

As it can be seen, a lower N/M ratio with. both N and M being considerably 
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large, as well as a low and irregular packet arrival rate is needed for this effect 

to occur. 

Slot Time Slot A Slot B 

1 Reset Full, 
Ad>4 

2 Imm Full, 
Ad>4 

3 Imm Imm 

4 Imm Imm 

5 Imm Imm 

where, 

Ad~4 ~ Addressed to station 4 

Imm ~ Immaterial 

Slot C Slot D Slot E 

Reset Full, Trial, 
Ad~3 Ad~4 

Reset Full, Trial, 
Ad~3 Ad~4 

Empty Empty Trial, 
Ad~4 

Imm Trial, Trial, 
Ad~4 Ad~4 

Imm Imm Reset 

Figures (6.4.42) to (6.4.46) show the convergence properties of OStnBM when 

simple iteration, as mentioned in section 2.4, was used to calculate S. 

At lower packet arrival probabilities "p", since the gradient with which the S ~ f(S) 

curve intersect the S ~ S line was quite low, a fast convergence to the solution was 

achieved. 

However, as it may be observed from the above graphs, for higher values of p, the 

curve S ~ f(S) intersect the S ~ S with a gradient of over unity, thus diverging away 

from the solu tion. 

This change of the gradient "m" at intersection from I m I < 1 to I m I 2: 1 takes 

place near the saturation region, and under these circumstances, the bisection 

method was used to obtain a solution. 
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6.5 Summary 

In this chapter, the Orwell protocol for the slotted ring was analysed using two 

models based on observing the system from a station and a slot respectively. The 

performance measures thus obtained were compared to simulation results. 

All the results, in general, show a reasonably good match when compared with the 

simulation, especially when the maximum buffer size of a station is increased. The 

slot based model - OSlotBM, shows a superior comparison overall. 
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CHAPTER 7 

Modelling of Nonidentical, 

Independent Stations 

7.0 Introduction 

Although it has been demonstrated that the Equilibrium Point Analysis (EPA) 

method (Tasaka 86), widely used to model time slotted multiple access protocols 

including all the models in this thesis, can give excellent results when compared 

with simulations if the modelled protocol is stable, a major restriction associated 

with the method in the form presented by Tasaka is that the network's stations 

must be statistically identical. The purpose of this chapter is to show that, for 

station based models, by reformulating the EPA to reduce to a recursion instead 

of a fixed point equation, or by extending the equation which considers the effect 

the other stations have upon the station being modelled, the restriction of 

identical users can be relaxed without otherwise impairing the performance results 

to any noticeable extent. 

In order to demonstrate the generality of the methods, they will be applied to the 

Slotted Ring (source deletion) network and the Slotted Aloha network in the 

sections 7.1, 7.4, 7.3 and 7.5. Section 7.2 is used to develop a station based model 

for the Slotted Aloha protocol which is utilized in the later sections to generate 

the nonidentical station modelling methods. 
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A general, more formal recursive model based on queuing networks is presented 

in Woodward 93. 

7.1 Slotted Ring Recursive Model (SRRM) 

In order to simplify the explanation, an unbuffered model based upon SDStnBM1 

will be used. However, as it will become apparent, the method may be applied to 

any station based model with the stations having differing packet arrival rates, 

buffer sizes, etc. 

As usual, consider a network of N stations with M slots, where N2:M. Also, for 

a station i {1~i$N}, let, 

p; = Packet arrival probability per slot time. 

SI; = Probability with which the next passing slot would appear full to 

station i when that station is not transmitting. 

P(x); = Steady state probability of the station occupying state "x". 

The assumptions (2.0.1), (2.0.2), (2.0.4), (2.0.6) to (2.0.12), (2.1.1) to (2.1.3) will 

be applicable for this model. 

Then, the state transition diagram will be of the form Fig. 7.1.1. 

Solving the system for steady state in the usual manner, the following equations 

may be obtained -

PtO) i -
1 

(7.1.1) 

P(1)i- P (2)i·'· .·P(M)i-P(O)iPi (7.1.2) 
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-\ ___ <:i~d 
__ "'~(O) 

where - a = p ,(1 - S',) b = P ,S~ c = 1- S', 
1. 

Fig 7.1.1 

1. 1. 

d=l 
1. 1. 

e=l-p, 
1. 

f = S~ 
1. 

Discrete Time Markov model based on a 
Station for a Slotted Ring with a 

Source Deletion Protocol 
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P(M+1)i - P(O)i Pi(~) 
1-81 

(7.1.3) 

Since station i will not see itself occupying a passing slot, such a slot can only 

contain packets from the other N-I stations. 

Thus, for a K station network, if 

8 (K) 1,2, ... K 

is the throughput due to all the stations 1,2, ... K, and, 

8(i) (K) 
1,2, .. IK 

the throughput contribution of station i, then, 

and, 

Also, 

8: - 8 . (K-1) ~ 1,2, •• ,i-l.~+1, ••• K 

K 

8 1 ,2, ",K(K) - r; 8 1<,11,,, ,K(K) 
i-1 

total network throughput - 8 (N) 1,2, .. ,N 

N 

- r; 8 1<:L .N(N) 
i ... 1 

From equations (7.1.1) and (7.1.2), 

1 
1 8 .. (K-1) 

_ + M + -:;--"1;0" 2",,-'. • .:..!"",'",-1,-<'.!.' +",1'-'., .:..;,,:..!,-".K-,--;-;;:---:--;-

p, l-S .. (K-1) .. 1.2 •..• J-l,.l+1, ..• K 
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(7.1.5) 

(7.1.6) 

(7.1.7) 



This is in recursive form; thus defining 

S(O) - 0 (7.1.8) 

the following sequence may be used to calculate the throughput contribution of 

each station and the total throughput. 

sm 
Si2) 

S'j,(3) 

for NCI combinations of i € {l,2, .. N} 

for NC, combinations of i,j € {1,2, .. N} 

for Ne, combinations of i,j,k € {1,2, .. N} 

for the single NCN = 1 combination. (network throughput) 

For example, let N =4. Then, using the above sequence, and equations (7.1.5), 

(7.1.7) and (7.1.8), 

Sl (1) 
1 -

2+M 
P1 

S2 (1) - 1 

2+M 
P 2 

S3 (1) 
1 -

2+M 
P 3 

S4 (1) 
1 -

2+M 
P 4 
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Sl,2 (2) 
1 1 - + 

~+M+ S2 (1) ~+M+ Sl (1) 

P1 1-S2 (1) P 2 1-S1 (1) 

Sl,3 (2) 
1 + 1 -

~+M+ S3 (1) ~+M+ Sl (1) 

P1 1-S3 (1) P3 1-S1 (1) 

S2" (2) 
1 1 - + 

~+M+ S, (1) ~+M+ S2 (1) 

P2 l-S, (1) P, l-S,(l) 

Sl,,(2) -
S2,3 (2) -
S3,4 (2) -

S",,3(3) 
1 1 1 - + + 

1 S, 3(2) 
....!..+M+ 

S,,3 (2) 1 S", (2) 
-+M+ ' 

1-S, ,3 (2) 
-+M+ 

1-S
"

,(2) P , 1-S,,3 (2) P, P3 

S"", (3) 
1 

+ 1 1 - + 

....!..+M+ 
S", (2) 1 S".(2) ....!..+M+ 

S", (2) 

1-S,,4 (2) 
-+M+ 

l-S
"

• (2) 1-S1.,(2) P , P, P. 

S,,3,.(3) -
S',3,4 (3) -

Sl",3" (4) -
1 

+ 1 

~+M+ S,,3,4 (3) 
P1 1-S2,3,4 (3) 

~+M+ S1.),4 (3) 
P2 1-S1 ,),4 (3) 

+ 
1 

+ 
1 

1 S (3) -+M+ 1,2,4 

p) 1-S1 ,',4 (3) 

As it may be seen, as long as the throughput contribution of any station i to a K 
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station network is calculated using the condition that, at the time of transmission 

it only sees the throughput of the other K-l stations, it is correct to assume that 

the sum of all such partial throughputs represent the total utilization of the slots 

by those K stations. 

Once the final throughput contribution of station i€{1..N}, 

(7.1.9) 

is known, the other performance measures of that station may be obtained as 

follows -

from equations (7.1.1) and (7.1.3), 

P(M+1) i -

( S; ) p. --
" l-S; 

1 

Average queue of i th station (qi) - P(M+1) i (7.1.10) 

Average delay for 
i th station (dj ) 

Using equation (7.1.2) and (7.1.7), 

(Throughput) i 
(7.1.11) 

Packet Rejection Probabili ty MPl - M( Throughput) 1 

ofstationi(PRP)i - M ) Pl (7.1. 12 

-l-P(O)j 
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the value of P(O), being substituted from equation (7.1.1). 

This iterative process may be carried out for any of the station based models to 

obtain their performance with regard to stations having varying parameters such 

as the buffer size, packet arrival probabilities, transmit back-off probabilities, etc. 

The main difficulty that arises when carrying out the recursion in a normal (non 

parallel) computer is that, for large numbers of stations, the amount of 

combinations become far too excessive to give a result within a reasonable time. 

This becomes even more pronounced if a matrix solving method which considers 

a large number of states is to be used. 

7.2 Slotted Aloha Station Rased Model (SAStnRM) 

In this section, the familiar model for the Slotted Aloha protocol by Tasaka 

(Tasaka 86) will be used to create a model based on observing the network from 

a station. The purpose of this exercise is to have a model that can be later 

modified to accommodate nonidentical stations. However, we first assume that all 

stations are identical. 

To avoid complicating this with unnecessary parameters, the assumption is made 

of N identical unbuffered stations and a channel having zero propagation delay. 

This, as shown in figure 7.2.1, results in a simple two-node model for any given 

station in the network. 

The nodes 1 and 2 of the figure respectively show the idle and the retransmission 

states a station may occupy. Thus, a station in state 1 can generate a new packet 

(which implies a transmission attempt) with probability a per slot, with packets 

assumed to be generated at the beginning of a slot. A station in state 2 has a 

packet waiting for retransmission, and it will attempt this retransmission with 
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probability p per slot. If exactly one station attempts a transmission from node 1 

or a retransmission from node 2 in a slot, this is successful, and the corresponding 

station jumps to node 1 at the end of the slot. If two or more transmissions or 

retransmissions are attempted in a slot, the corresponding users are involved in 

a collision and jump to node 2 at the end of the slot. If no transmissions or 

retransmissions are attempted in a slot, the users do not jump, but remain at their 

respective nodes. 

If, 

T = Probability that at least one of the other N-1 stations will attempt 

to transmit in the next slot, 

m = Probability that the station is idle, 

considering the steady state equilibrium of node 1 and using the fact that the 

station must always occupy one of the two nodes, 

ma - [ma + (l-m)p] (l-T) 

which simplifies to -

Since, 

m - 1 

aT +1 
p(1-T) 

Probabili tyo[ a station 
not attempting to transmi t - 1 - ma - (l-m) p 

T - l-[l-ma - (l-m)p)N-l 

(7.2.1) 

(7.2.2) 

The iteration of equation (7.2.1) may be solved for m by substituting for T from 

equation (7.2.2). 

Then, 
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Throughput - maN 

AverageQueue(q) - 1-m 

AverageDelay(d) _ 1-m+1 
ma 

7.3 Slotted Aloha Recursive Model (SARM) 

(7.2.3) 

(7.2.4) 

(7.2.5) 

This model will make use of SAStnBM in developing the recursive algorithm that 

can take into consideration stations which are nonidentical, but independent. 

Figure 7.2.1 is applicable for this model as well. In this case however, a and p 

should be replaced byai and Pi respectively, the subscript i indicating the relevant 

parameter of station i, where l$i$N. 

For a K station network, let, 

TI.2 .. AK) = Probability that at least one of the stations 1, 2, ... K will attempt to 

transmit in the next slot, 

mi,,' .. K(K) = Probability of station i being in the idle state, 

S\" .. AK) = Throughput contribution of station i. 

Considering a single station of the network, since the probability of a station 

occupying nodes 1 or 2 is unity, 

At steady state, 
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(l-T

"
2,, "i-',i." .. K(K-l)} 



From equations (7.3.1) and (7.3.2), 

mi (K) _ 1 
1.2, .. ,K {a T (K-l)} i l,2,..i-l,i+l ... K + 1 

Pi (l-T1,2, .. i-1,i+1, .. K(K-l) 

Also, for a K station network, 

thus, 

probability of . 
statior:i~ot - l-mt,2, .. K(K) 0i-[1-m;'2, .. K(Kl]Pi 
tr ansm~ t t~ng 

K 

T1,2, .. K(K) - 1 - IT {l - mt,2, .. K(K) (a i-P) - pd 
,-1 

(7.3.2) 

(7.3.3) 

(7.3.4) 

(7.3.5) 

Equations (7.3.3) and (7.3.5) may now be alternately solved for increasing 

population levels by using the condition that -

T( 0) - 0 (7.3.6) 

For example, consider three station network. Then, using equation (7.3.6), 

m; (1) - 1 

mi(l) - 1 

mi(l) - 1 
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T1 (1) - m; (1) (01-P1) + P1 

T2 (1) - mt (1) (02-P2) + P2 

m;,3 (2) -

m;,3(2) -

mt,3 (2) -

mi,3(2) -

1 

T
"

, (2) - l-{l-m,'-" (2) [a , -p, l- Pl}{l-m~" (2) [a,-P21- P2} 

T
"

, (2) - l-{l-m,'-" (2) [a , -p, l- p,}{l-m;" (2) [a,-p,l- p,} 
T",(2) - .... 

m;,2,3 (3) -

m;,2,3 (3) -

m;,2,3 (3) -

1 

{ 
a1 T2 ,3 (2) + l} 

P 1 [1-T2 ,3 (2) 1 

1 

{ 
a2 Tl ,3 (2) + 1} 

P2 [1-Tl ,3 (2) 1 

179 



Then, since, 

Throughput contribution i 
of station i - m, ,2, .. N(N) a i 

the total throughput is given by, 

Also, 

N 

8 1 ,2, .. N(N) - L m/2' .. N(N) a i 
i .. l 

(7.3.7) 

Averagequeueofithstation (qi) - 1-m/2, .. N(N) (7.3.8) 

Average delay for 
i th sta tion «(ii) 

qi 
+ 1 

(Throughput) i 

Packet Rejection Probabili ty 

(7.3.9) 

ofithsta~iongiven - [1-m/ 2 , •• N(N)]a i (7.3.10) 
packetarr~val (PRP) i 

7.4 Slotted Ring Extended Model (SREM) 

In the previous chapters, all the models that were based on a station assumed that 

a station in a non transmitting state would see the next passing slot full with the 

probability -

8 _ N-1 probability that the station 
~ x is transmi tting (7.4.1) 

This was due to the fact that, since all stations were considered identical, the 

throughput contribution of each station to the network is the same. Thus with the 

stations assumed to behave independently, the summation of the contributions of 

the other N-! stations on a per slot basis resulted in the above equation. 
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However, if for a station i {1:;;i:;;N}, 

Si = Probability that the station is occupying a given slot. 

SI, = Probability with which the next passing slot would appear full to 

station i when that station is not transmitting. 

then, for a station r, the equation (7.4.1) can be extended to give -

(7.4.2) 

This equation can now be converted into an iterative form as shown below. 

Let S.(n) = The value of Si after the n" iteration. 

Since 

(7.4.3) 

which can be solved for the given model, by making initial guesses for S.(O) of all 

stations and using equations (7.4.2) and (7.4.3), the following sequence of 

calculations may be used to solve the system. 

S, (1) - f(S2 (0) + S3 (0) +. . + SN(O» 

S2 (1) - f(S, (1) + S3 (0) +. • + SN(O» 

Sr (1) - f(S, (1) + S2 (1) + .. + Sr_' (1) 

+ Sr+' (0) + .. + SN(O» 

S, (2) - f(S2 (1) + S3 (1) +. . + SN(l» 

S2 (2) - f(S, (2) + S3 (1) +. . + SN(l» 

Sr(2) - f(S,(2) +S2(2) + .. +Sr_1(2) 

+ Sr+1 (1) + .. + SN(l» 

181 



This procedure is continued until, for all stations, 

ISI (n) -SI (n-1) I ;; Maximum All owabl e Error 

{1 ;;r;;N} 

Once all the S, values are known, the other performance measures may be 

computed in the usual manner. 

7.5 Slotted Aloha Extended Model (SA EM) 

In orderto illustrate the generality of the method without complicating the model 

with added parameters, the basic model of the Slotted Aloha mentioned in 

section 7.3 will be used once again. Thus, all the similar notations in this model 

will have the same meaning. 

Since this method considers the population level of the network to be N stations 

throughout the calculation, from equation (7.3.3), 

But, 

mi (~ 1 
1,2, .. ,K - {T () o· .. K-1 l _1.2 .. . l-l,l+l, .. K _ 

Pi (1 T1,2, .. i-l,i.l, .. K(K 1) 

T, ,2, . .. i-l,i+l" .N(N-l) 

(say) 

Prob that at least one of 
- the other (N-l) stations 

will attempt to transmi t 

Using equations (7.3.4), 
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N 

T'.2 .... i_,.i+, ••. N(N-l) - 1 - IT (l - m'~2 .. "N(N) [Or-Pr] - Pr} 
r-l,r ol i 

N 

- 1- IT (1-mr[Or-Pr1-pr) 
c-l,c .. l 

(say) (7.5.2) 

To solve the model, an iteration similar to that done for SREM may be used as 

follows -

(1) For all stations guess initial values for m' (say m'(O» 

(2) For i = 1 to N do 

Calculate T by applying the latest values of m' in equation (7.5.2). 

Calculate new m' using equation (7.5.1) and the new T. 

(3) Repeat step (2) until -

Imi(n)-mi(n-l) I,; MaximumAllowableError 

ie(l. .N) 

Once convergence is reached, the other performance measures may be calculated 

using the equations (7.3.2), (7.3.7) to (7.3.10). 

7.6 Results 

For both types of networks, initially, all stations will be assumed identical. The 

average results obtained from the recursive and extended models and the 

simulation will be compared with their respective equivalent station models using 

graphs. 

Then, the performance measures obtained from the recursive and the extended 

models for each station having different packet arrival rates (and retransmission 
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probabilities as well in the case of Slotted Aloha) will be compared in tabular 

form to simulation results. The column to the right of each model's performance 

measures show its percentage error with respect to simulation results. 

Under this tabular comparison, large errors that arose due to a difference in two 

small numbers under consideration (e.g., 0.0001 and 0.0003 for throughput) will 

be ignored. 

It is noted that, for the unbuffered models (Q=O), the queue size used to find the 

delay is considered to be the probability of a station being in a blocked or 

retransmission state for the models Slotted Ring and Slotted Aloha respectively. 

The queuing performance itself as well as the packet rejection probability have 

been omitted in the performance comparison to limit the amount of graphs and 

tables included in the thesis. However, they too provided an excellent match to 

the simulations whenever the delay and throughput, to which they are closely 

related, gave good predictions. 

For the case of the extended models, two sets of results were obtained by 

initialising the iteration with the two possible extreme values. When the results 

were different, both sets have been presented. The basic models that consider 

identical stations have been solved by using a linear search and bisection method 

so as to detect any unstable equilibrium points. 

Slotted Ring - Identical Station Case 

Figures 7.6.1 to 7.6.12 show the relevant performance curves. SREM and 

SDStnBMl, as expected, give identical results for all performance measures. This 

is due to the fact that the extended model is equivalent to SDStnBMl when all 

the stations are identical. Thus, all the observations made for SDStnBMl with 

regard to the simulation in chapter 2 are applicable in this situation. 
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For N = 16 and M = 1, SRRM becomes unstable when the throughput reaches 

saturation, and thus, is inapplicable for higher packet arrival rates. Also, since the 

increase of buffer size causes the system to saturate at lower packet arrival rates, 

as can be expected, the instability too starts to occur at an earlier stage. 

When compared to simulations, the SRRM, under stable conditions, generally 

show slightly improved results to those displayed by SREM. 

Slotted Ring - Non Identical Stations Case 

Here, the packet arrival rates were increased linearly across the stations for a 

given average packet arrival rate. Varying average packet arrival rates were 

obtained by multiplying this distribution by a constant so that this linearity was 

preserved. (Tables 7.6.1 to 7.6.3) 

It is noted that, even though the model used to illustrate the two methods 

considered unbuffered stations, in this case, a constant maximum buffer size of 

3 has been used, by utilizing the basic model SDStnBMl. The reason for this is 

that a buffered model is more representative of a real life situation and that 

buffered models for the Slotted Ring were readily available unlike for the Slotted 

Aloha. 

The results obtained indicate that SRRM and SREM give excellent predictions 

for all performance measures when the average packet arrival rate is low. In the 

ranges of p and a considered, the accuracy of SRRM (when stable) and SREM 

were within the range of 91 % - 100% and 85% - 100% for throughput, and, 69% -

99% and 24% - 99% for delay respectively. 

As in case where all stations were considered identical, here too, the SREM 

consistently show a higher saturation throughput to that given by the simulation, 
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the value predicted by SRRM, when stable, generally resulting in a better 

comparison. 

As before, the increase of packet arrival rates cause SRRM to become unstable 

for M = 1, thus limiting the applicable range of the model for lower numbers of 

slots. 

Slotted Aloha - Identical Station Case 

To avoid having too many curves on a single graph, SAStnBM and SAEM will be 

initially compared to the model suggested by Tasaka (Tasaka 86). This latter 

model will be abbreviated as SATM (Slotted Aloha Tasaka's Model). (Figures 

7.6.13 to 7.6.15 and 7.6.19 to 7.6.21) 

Next, the average performance measure results of SAEM, SARM and simulations 

will be compared to each other. (Figures 7.6.16 to 7.6.18 and 7.6.22 to 7.6.24) 

The curves show that SAStnBM and SAEM give the same results - this being due 

the fact that both the models become equivalent when the stations are identical. 

These models do not always give similar results to SATM. This is because, unlike 

the other models considered in this chapter, SATM is based on observing the 

network globally rather than from a particular station. However, both models do 

give identical results when the network is not in saturation, thus, conforming to 

a proof given in one of the references (Woodward 91a). 

As it may be seen, all the models show bistable characteristics for certain values 

of packet arrival rates and retransmission probabilities. For the case of a=O.Ol, 

the higher value of throughput in the bistable region is identical for all the 

models. SAStnBM, and SATM can also show a third (unstable) solution. 
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SARM always tend to predict similar or higher throughputs (i.e., similar or lower 

delays) with comparison to simulation results. For example, in the case where 

a=O.OI, SARM performance curves tend to merge with the locally stable 

equilibrium point curves of SAEM associated with the higher value of throughput 

(or lower delay). This, and the reason for unique solutions, is undoubtedly due to 

the fact that the starting population of all recursive models is always zero. One 

of the major disadvantages of SARM is its inability to predict the region over 

which the network is bistable. 

In general, when compared with simulations, all models show an excellent match, 

especially for lower p and a values. 

Slotted Aloha - Non Identical Stations Case 

The performance of the SARM and SAEM in the case of 16 stations, each having 

different p and a values are shown in the tables 7.6.4 to 7.6.6. For the case of 

average packet arrival rate = 0.03, two columns have been provided for each 

performance parameter of SAEM to display the bistable solutions that occur 

within the region of retransmission probabilities considered. When left empty a 

unique solution is indicated. 

These results are typical of the accuracy that can be achieved when a network is 

operating under stable conditions. 

When compared to simulation in this region, the SARM, when stable, tend to give 

an accuracy within the range of 88% to 100% for delay and 91% to 99% for 

throughput. However, when the SARM tend not to follow the degradation of 

network performance under overload as shown in figures 7.6.16, 7.6.17, 7.6.22 and 

7.6.23 the above accuracy is sharply reduced. 
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For SAEM, a similar comparison to above show typical accuracies of - 89% to 

99% for delay, and 92% to 100% for throughput. The fact that one of the two 

possible results tends to follow the simulation, ensures that even under overload 

conditions, the method gives a reasonably good prediction provided the basic 

model upon which it is based also performs satisfactorily for similar average 

network parameters. 

7.7 Summary 

In this chapter, two methods for calculating the individual and overall 

performance of stations in a time slotted network were presented. 

In the first method, the EPA method was reformulated into a recursion based 

upon the number of stations, which was then solved by initiating the recursion 

from a zero population level. 

The second method consisted of replacing the total average network usage of the 

stations with the sum of individual network usages, which in turn allowed the 

effect of non identical stations to be taken into account in the form of an 

iteration. 

One of the greatest disadvantages of the recursive model is its time requirements 

to reach the solution. For the case of the Slotted Ring with N stations, a total of 

combinations have to be solved. In SARM, due to the use of two operators, 

namely m\., .. ,K(K) and T", .... K(K), this situation is worsened by the need to solve for 

a total of 
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combinations of the above two operators respectively. 

Although the recursive algorithm has been presented in a form where each user 

(i.e., station) belongs to a different user class, it generalises in a rather obvious 

way to the case of C user classes, 1 < = C < = N. If at a particular population 

level, for a given subset of users there is more than one user in the same class, 

then a calculation need only be carried out once for the class, since the results 

will be identical for all users in the same class. When C= 1, then the algorithm 

will evaluate in a time proportional to O(N), where O(N) is a function such that 

O(N)/N converges to a positive number when N -> 00. At the other extreme, 

when C=N, the time will be proportional to 0(2N-1). In this worst-case situation, 

when using standard (non-parallel) computing facilities, the maximum number of 

users that can be handled has been found to be in the range of 20-25 for the 

given network parameters. 

For the extended method, the time required to converge is proportional to the 

number of stations, the accuracy required and of course the rate of convergence. 

Under this method, both the networks reached their solution within a few 

(maximum 15) iterations for the network parameters considered, thus showing an 

improvement to the computation time upto several thousand times faster than the 

recursive model. Provided the algorithm converges in a finite number of 

iterations, time complexity in this case is O(N). 

As it can be seen from the comparison of identical stations with Tasaka's model, 

the errors of the extended method were mainly due to the limitations of the basic 

models that were used rather than the algorithm itself. When the network was 

operating under stable conditions, this observation is also applicable to the 

recursive method. 
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It can be concluded that, when the network is stable, both algorithms give 

excellent predictions of performance for individual stations as well as the overall 

network. 
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Fig 7.6.16 Throughput Performance (N=16, 0=0) 
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Table (7.6.1) Slotted Ring (N=16. M=I. Q=3) 

Delay Througbput 
Stn p Simul SRRM error SREM error SlmulSRRM error SREM error 
1 0.0010 1.0742 1.1111 3.44% 1.1111 3.44% 0.0013 0.0010 -22.08% 0.0010 -22.08% 
2 0.0017 1.1136 1.1111 -0.22% 1.1111 -0.22% 0.0018 0.0017 -6.42% 0.0017 -6.42% 
3 0.0024 1.1412 1.1111 -2.63% 1.1111 -2.63% 0.0028 0.0024 -12.73% 0.0024 -12.73% 
4 0.0031 1.1093 1.1111 0.17% 1.1111 0.17% 0.0032 0.0031 -1.59% 0.0031 -1.59% 
5 0.0038 1.1413 1.1111 -2.64% 1.1111 -2.64% 0.0036 0.0038 6.54% 0.0038 6.54% 
6 0.0045 1.1084 1.1111 0.25% 1.1111 0.25% 0.0043 0.0045 4.25% 0.0045 4.25% 
7 0.0052 1.0914 1.1111 1.81% 1.1111 1.81% 0.0050 0.0052 4.00% 0.0052 4.00% 
8 0.0059 1.1227 1.1112 -1.03% 1.1112 -1.03% 0.0051 0.0059 16.07% 0.0059 16.07% 
9 0.0066 1.0930 1.1112 1.66% 1.1112 1.66% 0.0065 0.0066 1.28% 0.0066 1.28% 
10 0.0073 1.1474 1.1112 -3.16% 1.1112 -3.16% 0.0072 0.0073 1.15% 0.0073 1.15% 
11 0.0080 1.1108 1.1112 0.03% 1.1112 0.03% 0.0080 0.0080 0.00% 0.0080 0.00% 
12 0.0087 1.1314 1.1112 -1.78% 1.1112 -1.78% 0.0078 0.0087 11.54% 0.0087 11.54% 
13 0.0094 1.1024 1.1112 0.80% 1.1112 0.80% 0.0100 0.0094 -6.16% 0.0094 -6.16% 
14 0.0101 1.1138 1.1112 -0.23% 1.1112 -0.23% 0.0094 0.0101 7.07% 0.0101 7.07% 
15 0.0108 1.1439 1.1113 -2.85% 1.1113 -2.85% 0.0104 0.0108 4.35% 0.0108 4.35% 
16 0.0115 1.1095 1.1113 0.16% 1.1113 0.16% 0.0120 0.0115 -4.43% 0.0115 -4.43% 

0.0063 1.1193 1.1112 -0.72% 1.1112 -0.72% 0.0983 0.1000 1.69% 0.1000 1.69% 

1 0.0050 1.8403 2.0000 8.68% 2.0000 8.68% 0.0048 0.0050 4.53% 0.0050 4.53% 
2 0.0085 1.9502 2.0002 2.57% 2.0002 2.57% 0.0086 0.0085 -0.97% 0.0085 -0.97% 
3 0.0120 1.8377 2.0005 8.86% 2.0005 8.86% 0.0124 0.0120 -3.49% 0.0120 -3.49% 
4 0.0155 2.0471 2.0009 -2.26% 2.0009 -2.26% 0.0160 0.0155 -3.02% 0.0155 -3.02% 
5 0.0190 1.9089 2.0014 4.85% 2.0014 4.85% 0.0195 0.0190 -2.65% 0.0190 -2.65% 
6 0.0225 1.9419 2.0020 3.09% 2.0020 3.09% 0.0213 0.0225 5.80% 0.0225 5.80% 
7 0.0260 2.0393 2.0027 -1.80% 2.0026 -1.80% 0.0264 0.0260 -1.39% 0.0260 -1.39% 
8 0.0295 1.9530 2.0034 2.58% 2.0034 2.58% 0.0298 0.0295 -0.90% 0.0295 -0.90% 
9 0.0330 2.0229 2.0043 -0.92% 2.0043 -0.92% 0.0335 0.0330 -1.44% 0.0330 -1.44% 
10 0.0365 2.0907 2.0053 -4.09% 2.0053 -4.09% 0.0354 0.0365 3.25% 0.0365 3.25% 
11 0.0400 2.0710 2.0064 -3.12% 2.0064 -3.12% 0.0412 0.0400 -2.92% 0.0400 -2.92% 
12 0.0435 2.1485 2.0076 -6.56% 2.0075 -6.56% 0.0425 0.0435 2.43% 0.0435 2.43% 
13 0.0470 2.1063 2.0088 -4.63% 2.0088 -4.63% 0.0454 0.0470 3.48% 0.0470 3.48% 
14 0.0505 2.1909 2.0102 -8.25% 2.0102 -8.25% 0.0505 0.0505 -0.04% 0.0505 -0.04% 
15 0.0540 2.1075 2.0117 -4.55% 2.0117 -4.55% 0.0541 0.0540 -0.13% 0.0540 -0.13% 
16 0.0575 2.1261 2.0133 -5.31% 2.0133 -5.31% 0.0556 0.0575 3.38% 0.0575 3.38% 

0.0312 2.0738 2.0049 -3.32% 2.0049 -3.32% 0.4968 0.5000 0.64% 0.5000 0.64% 

1 0.0200 11.9738 -0.9298 -107.8% 70.0117 484.71% 0.0208 0.0200 -3.91% 0.0169 -18.69% 
2 0.0340 14.2618 -0.9517 -106.7% 57.0267 299.86% 0.0330 0.0340 3.26% 0.0262 -20.49% 
3 0.0480 19.1250 -1.3968 -107.3% 49.2602 157.57% 0.0460 0.0482 4.75% 0.0344 -25.22% 
4 0.0620 23.6559 -0.7782 -103.3% 44.0994 86.42% 0.0552 0.0623 12.74% 0.0418 -24.30% 
5 0.0760 27.5755 -0.7815 -102.8% 40.4507 46.69% 0.0597 0.0767 28.42% 0.0486 -18.66% 
6 0.0900 30.8129 -0.8443 -102.7% 37.7730 22.59% 0.0633 0.0916 44.80% 0.0547 -13.50% 
7 0.1040 33.9891 -0.9465 -102.8% 35.7650 5.22% 0.0647 0.1077 66.39% 0.0603 -6.82% 
8 0.1180 35.6668 -0.8614 -102.4% 34.2438 -3.99% 0.0653 0.1241 90.12% 0.0653 0.06% 
9 0.1320 37.3867 0.1004 -99.7% 33.0905 -11.49% 0.0656 0.1384 111.01% 0.0698 6.38% 
10 0.1460 38.7092 -0.9715 -102.5% 32.2229 -16.76% 0.0659 0.1677 154.65% 0.0737 11.97% 
11 0.1600 39.1210 0.5600 -98.6% 31.5813 -19.27% 0.0657 0.1600 143.59% 0.0772 17.51% 
12 0.1740 39.9468 1.3958 -96.5% 31.1200 -22.10% 0.0658 0.1740 164.49% 0.0801 21.78% 
13 0.1880 40.6352 1.2913 -96.8% 30.8029 -24.20% 0.0658 0.1880 185.56% 0.0826 25.47% 
14 0.2020 40.9939 -2.8474 -106.9% 30.6004 -25.35% 0.0659 0.7301 1008.7% 0.0847 28.60% 
15 0.2160 41.3441 1.0212 -97.5% 30.4878 -26.26% 0.0658 0.2160 228.10% 0.0864 31.23% 
16 0.2300 41.7206 -5.7563 -113.8% 30.4447 -27.03% 0.0659 -1.0448 -1687.% 0.0878 33.31% 

0.1250 34.3506 -0.7935 -102.3% 38.6863 12.62% 0.9342 1.2938 38.49% 0.9905 6.02% 

Note: The % error Is based on tbe results expressed to 6 decimal places. 
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Table (7.6.2) Slotted Ring (N=16, M=8, Q=3) 

Delay Throughput 
Stn p Slmul SRRM error SREM error SlmulSRRM error SREM error 
1 0.0010 1.1368 1.1472 0.92% 1.1472 0.92% 0.0011 0.0010 -5.14% 0.0010 -5.14% 
2 0.0017 1.2084 1.1729 -2.94% 1.1729 -2_94% 0.0018 0.0017 -5.12% 0.0017 -5.12% 
3 0.0024 1.2199 1.1989 -1.72% 1.1989 -1.72% 0.0025 0.0024 -2.04% 0.0024 -2.04% 
4 0.0031 1.2512 1.2253 -2.07% 1.2253 -2_07% 0.0031 0.0031 -0.53% 0.0031 ·0.53% 
5 0.0038 1.2572 1.2520 -0.41% 1.2520 -0.41% 0.0039 0.0038 -2.04% 0.0038 -2.04% 
6 0.0045 1.2798 1.2790 -0.06% 1.2790 -0.06% 0.0047 0.0045 -3.49% 0.0045 -3.49% 
7 0.0052 1.2846 1.3064 1.70% 1.3064 1.70% 0.0053 0.0052 ·1.65% 0.0052 -1.65% 
8 0.0059 1.4585 1.3342 -8.52% 1.3342 -8.52% 0.0057 0.0059 2.68% 0.0059 2.68% 
9 0.0066 1.3208 1.3624 3.15% 1.3624 3.15% 0.0067 0.0066 ·1.31% 0.0066 -1.31% 
10 0.0073 1.3804 1.3909 0.76% 1.3909 0.76% 0.0074 0.0073 -1.57% 0.0073 -1.57% 
11 0.0080 1.3761 1.4199 3.18% 1.4199 3.18% 0.0078 0.0080 2.73% 0.0080 2.73% 
12 0.0087 1.4541 1.4492 -0.34% 1.4492 -0.34% 0.0086 0.0087 1.31% 0.0087 1.31% 
13 0.0094 1.4425 1.4790 2.53% 1.4790 2.53% 0.0094 0.0094 0.04% 0.0094 0.04% 
14 0.0101 1.4890 1.5091 1.35% 1.5091 1.35% 0.0100 0.0101 1.38% 0.0101 1.38% 
15 0.0108 1.5675 1.5397 -1.77% 1.5397 -1.77% 0.0109 0.0108 -1.26% 0.0108 -1.26% 
16 0.0115 15299 15707 2.67% 1.5707 2.67% 0.0114 0.0115 0.91% 0.0115 0.91% 

0.0063 1.4175 1.3523 -4.60% 1.3523 -4.60% 0.1002 0.1000 -0.16% 0.1000 -0.16% 

1 0.0050 2.5164 2.2138 -12.02% 2.2137 ·12.03% 0.0049 0.0050 1.35% 0.0050 1.35% 
2 0.0085 2.7044 2.3828 ·11.89% 2.3826 ·11.90% 0.0082 0.0085 3.92% 0.0085 3.92% 
3 0.0120 2.8990 2.5650 ·11.52% 2.5648 ·11.53% 0.0119 0.0120 0.73% 0.0120 0.73% 
4 0.0155 3.1701 2.7618 -12.88% 27615 -12.89% 0.0156 0.0155 -0.64% 0.0155 -0.64% 
5 0.0190 3.5151 2.9745 ·15.38% 2.9741 ·15.39% 0.0186 0.0190 2.17% 0.0190 2.17% 
6 0.0225 3.6899 3.2047 ·13.15% 3.2043 -13.16% 0.0222 0.0225 1.36% 0.0225 1.36% 
7 0.0260 4.0855 3.4539 ·15.46% 3.4534 -15.47% 0.0264 0.0260 -1.62% 0.0260 ·1.62% 
8 0.0295 4.6400 3.7237 -19.75% 3.7230 ·19.76% 0.0299 0.0295 -1.26% 0.0295 ·1.26% 
9 0.0330 4.8750 4.0155 -17.63% 4.0147 -17.65% 0.0330 0.0330 -0.12% 0.0330 ·0.12% 
10 0.0365 5.3881 4.3307 -19.62% 4.3299 -19.64% 0.0364 0.0365 0.13% 0.0365 0.13% 
11 0.0400 5.8759 4.6708 -20.51% 4.6698 ·20.53% 0.0397 0.0399 0.45% 0.0399 0.45% 
12 0.0435 6.3640 5.0367 -20.86% 5.0357 ·20.87% 0.0434 0.0434 0.02% 0.0434 0.02% 
13 0.0470 7.0447 5.4295 ·22.93% 5.4284 ·22.94% 0.0468 0.0468 0.05% 0.0468 0.05% 
14 0.0505 7.3194 5.8497 ·20.08% 5.8485 -20.09% 0.0494 0.0502 1.64% 0.0502 1.64% 
15 0.0540 7.8000 6.2976 ·19.26% 6.2964 -19.28% 0.0531 0.0536 0.93% 0.0536 0.93% 
16 0.0575 8.2027 6.7729 ·17.43% 6.7718 -17.44% 0.0562 0.0569 1.24% 0.0569 1.24% 

0.0312 5.9545 4.1052 ·31.06% 4.1045 -31.07% 0.4957 0.4982 0.50% 0.4982 0.50% 

1 0.0200 12.1300 13.2657 9.36% 16.7287 37.91% 0.0203 0.0199 ·1.93% 0.0198 -2.33% 
2 0.0340 17.9377 17.4211 ·2.88% 19.5267 8.86% 0.0329 0.0330 0.35% 0.0328 -0.44% 
3 0.0480 24.2406 22.1260 ·8.72% 22.6513 -6.56% 0.0431 0.0441 2.31% 0.0439 1.92% 
4 0.0620 30.1515 26.7961 ·11.13% 25.9529 -13.92% 0.0499 0.0521 4.56% 0.0526 5.50% 
5 0.0760 35.4563 30.9597 ·12.68% 29.1922 -17.67% 0.0532 0.0571 7.37% 0.0585 10.00% 
6 0.0900 39.3815 34.3889 ·12.68% 32.1202 -18.44% 0.0548 0.0599 9.30% 0.0621 13.37% 
7 0.1040 42.2822 37.0743 ·12.32% 34.5848 ·18.20% 0.0554 0.0613 10.71% 0.0641 15.73% 
8 0.1180 44.6440 39.1266 -12.36% 36.5621 ·18.10% 0.0556 0.0620 11.42% 0.0651 16.99% 
9 0.1320 45.9015 40.6880 -11.36% 38.1112 -16.97% 0.0557 0.0623 11.85% 0.0655 17.69% 
10 0.1460 46.9988 41.8852 -10.88% 39.3187 -16.34% 0.0559 0.0624 11.78% 0.0658 17.76% 
11 0.1600 47.8060 42.8169 -10.44% 40.2660 -15.77% 0.0558 0.0625 12.12% 0.0659 18.18% 
12 0.1740 48.3596 43.5547 ·9.94% 41.0187 -15.18% 0.0558 0.0626 12.11% 0.0660 18.21% 
13 0.1880 48.9996 44.1499 ·9.90% 41.6262 -15.05% 0.0557 0.0626 12.25% 0.0660 18.37% 
14 0.2020 49.5079 44.6384 -9.84% 42.1244 -14.91% 0.0558 0.0626 12.23% 0.0660 18.35% 
15 0.2160 49.9791 45.0460 ·9.87% 42.5393 -14.89% 0.0558 0.0626 12.26% 0.0660 18.39% 
16 0.2300 50.1807 45.3911 -9.54% 42.8900 -14.53% 0.0559 0.0626 12.05% 0.0660 18.17% 

0.1250 41.7590 35.5830 -14.79% 34.0758 ·18.40% 0.8114 0.8896 9.64% 0.9261 14.14% 

Note: The % error Is based on the results expressed to 6 decimal places. 
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Table (7.6.3) Slotted Ring (N=16, M=16, Q=3) 

Delay Throughput 
Stn p Slmul SRRM error SREM error SlmulSRRM error SREM error 
1 0.0010 1.2468 1.2502 0.27% 1.2502 0.27% 0.0010 0.0010 0.00% 0.0010 0.00% 
2 0.0017 1.3402 1.3504 0.76% 1.3504 0.76% 0.0017 0.0017 0.00% 0.0017 0.00% 
3 0.0024 1.3927 1.4532 4.34% 1.4532 4.34% 0.0024 0.0024 0.00% 0.0024 0.00% 
4 0.0031 1.6578 1.5585 -5.99% 1.5585 -5.99% 0.0031 0.0031 0.00% 0.0031 0.00% 
5 0.0038 1.7555 1.6665 -5.07% 1.6665 -5.07% 0.0037 0.0038 2.70% 0.0038 2.70% 
6 0.0045 1.7876 1.7774 -0.57% 1.7774 -0.57% 0.0046 0.0045 -2.17% 0.0045 -2.17% 
7 0.0052 1.9596 1.8911 -3.50% 1.8911 -3.50% 0.0050 0.0052 4.00% 0.0052 4.00% 
8 0.0059 1.8868 2.0078 6.41% 20078 6.41% 0.0057 0.0059 3.51% 0.0059 3.51% 
9 0.0066 2.1699 2.1276 -1.95% 21276 -1.95% 0.0067 0.0066 -1.49% 0.0066 -1.49% 
10 0.0073 2.2115 2.2506 1.77% 2.2506 1.77% 0.0072 0.0073 1.39% 0.0073 1.39% 
11 0.0080 2.4492 2.3769 -2.95% 2.3769 -2.95% 0.0081 0.0080 -1.24% 0.0080 -1.23% 
12 0.0087 2.3891 2.5067 4.92% 2.5067 4.92% 0.0087 0.0087 0.00% 0.0087 0.00% 
13 0.0094 2.5543 2.6400 3.36% 2.6400 3.36% 0.0094 0.0094 0.00% 0.0094 0.00% 
14 0.0101 2.8600 2.7771 -2.90% 27771 -2.90% 0.0101 0.0101 0.00% 0.0101 0.00% 
15 0.0108 2.9452 2.9179 -0.93% 2.9179 -0.93% 0.0110 0.0108 -1.82% 0.0108 -1.82% 
16 0.0115 3.1529 3.0626 -2.86% 3.0626 -2.86% 0.0117 0.0115 -1.72% 0.0115 -1.71% 

0.0063 2.4194 2.1009 -13.16% 2.1009 -13.16% 0.1000 0.1000 0.00% 0.1000 0.00% 

1 0.0050 2.9154 2.7173 -6.80% 24078 -17.41% 0.0049 0.0050 2.04% 0.0050 2.04% 
2 0.0085 3.8507 3.3891 -11.99% 2.8712 -25.44% 0.0085 0.0085 0.00% 0.0084 -1.18% 
3 . 0.0120 4.3713 4.1622 -4.78% 3.3209 -24.03% 0.0120 0.0120 -0.01% 0.0117 -2.50% 
4 0.0155 5.3185 5.0537 -4.98% 3.7572 -29.36% 0.0153 0.0155 1.27% 0.0150 -1.96% 
5 0.0190 6.5864 6.0811 -7.67% 4.1805 -36.53% 0.0182 0.0190 4.29% 0.0181 -0.55% 
6 0.0225 7.9737 7.2597 -8.95% 4.5910 -42.42% 0.0225 0.0224 -0.23% 0.0211 -6.22% 
7 0.0260 10.1041 8.6012 -14.87% 4.9890 -50.62% 0.0260 0.0259 -0.46% 0.0239 -8.08% 
8 0.0295 11.1279 10.1114 -9.13% 5.3748 -51.70% 0.0290 0.0293 0.88% 0.0266 -8.28% 
9 0.0330 13.3713 11.7877 -11.84% 5.7486 -57.01% 0.0329 0.0325 -1.10% 0.0291 -11.55% 
10 0.0365 15.8164 13.6184 -13.90% 6.1109 -61.36% 0.0353 0.0357 1.12% 0.0314 -11.05% 
11 0.0400 17.1286 15.5816 -9.03% 6,4619 -62.27% 0.0384 0.0387 0.73% 0.0336 -12.50% 
12 0.0435 20.0126 17.6472 -11.82% 6.8018 -66.01% 0.0411 0.0414 0.85% 0.0356 -13.38% 
13 0.0470 21.9408 19.7780 -9.86% 7.1309 -67.50% 0.0432 0.0440 1.78% 0.0375 -13.19% 
14 0.0505 24.3537 21.9339 -9.94% 7.4496 -69.41% 0.0451 0.0462 2.46% 0.0392 -13.08% 
15 0.0540 26.5320 24.0747 -9.26% 7.7580 -70.76% 0.0470 0.0482 2.47% 0.0408 -13.19% 
16 0.0575 28.6384 26.1637 -8.64% 8.0566 -71.87% 0.0482 0.0498 3.36% 0.0422 -12.45% 

0.0312 17.6046 12.3726 -29.72% 5.4382 -69.11% 0.4674 0.4741 1.43% 0.4191 -10.33% 

1 0.0200 12.2237 9.9684 -18.45% 6.1490 -49.70% 0.0199 0.0199 0.20% 0.0184 -7.54% 
2 0.0340 21.5761 17.5353 -18.73% 7.6308 -64.63% 0.0326 0.0330 1.21% 0.0284 -12.88% 
3 0.0480 33.2401 27.0072 -18.75% 8.9415 -73.10% 0.0411 0.0428 4.17% 0.0358 -12.90% 
4 0.0620 42.0765 35.7249 -15.10% 10.0984 -76.00% 0.0447 0.0480 7.48% 0.0411 -8.05% 
5 0.0760 47.8206 42.1449 -11.87% 11.1169 -76.75% 0.0458 0.0501 9.40% 0.0447 -2.40% 
6 0.0900 52.1271 46.4093 -10.97% 12.0121 -7696% 0.0462 0.0508 9.95% 0.0472 2.16% 
7 0.1040 54.4443 49.2021 -9.63% 12.7981 -76.49% 0.0463 0.0510 10.19% 0.0489 5.62% 
8 0.1180 56.2338 51.0876 -9.15% 13.4886 -76.01% 0.0464 0.0511 10.10% 0.0500 7.76% 
9 0.1320 57.4720 52.4190 -8.79% 14.0956 -75.47% 0.0463 0.0511 10.39% 0.0508 9.72% 
10 0.1460 58.4131 53.4024 -8.58% 14.6302 -74.95% 0.0464 0.0511 10.17% 0.0513 10.56% 
11 0.1600 59.1532 54.1580 -8.44% 15.1020 -74.47% 0.0464 0.0511 10.17% 0.0516 11.21% 
12 0.1740 59.7050 54.7581 -8.29% 15.5195 -74.01% 0.0463 0.0511 10.41% 0.0519 12.10% 
13 0.1880 60.1651 55.2477 -8.17% 15.8900 -73.59% 0.0464 0.0511 10.18% 0.0520 12.07% 
14 0.2020 60.6106 55.6560 -8.17% 16.2199 -73.24% 0.0463 0.0511 10.41% 0.0521 12.53% 
15 0.2160 60.8931 56.0027 -8.03% 16.5145 -72.88% 0.0464 0.0511 10.18% 0.0522 12.50% 
16 0.2300 61.2876 56.3015 -8.14% 16.7785 -72.62% 0.0463 0.0511 10.41% 0.0523 12.96% 

0.1250 51.9847 44.8141 -13.79% 12.9366 -75.11% 0.6938 0.7558 8.93% 0.7287 5.03% 

Note: The % error Is based on the results expressed to 6 decimal places. 
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Table (7.6.4) Slotted Aloha (N=16. Q=O) 

StnPktArr ReTx Delay Throughput 
Rate Prob Slmul SARM % err SA EM % err Slmul SARM % err SAEM % err 

1 0.0070 0.0010171.9180164.600 ·4.26% 164.6042 -4.25% 0.0033 0.0033 -0.74% 0.0033 -0.74% 
2 0.0074 0.0022 78.6043 74.4600 -5.27% 74.4245 -5.32% 0.0047 0.0048 2.52% 0.0048 2.54% 
3 0.0078 0.003447.701248.1800 1.00% 48.1501 0.94% 0.0057 0.0057 -0.08% 0.0057 -0.06% 
4 0.0082 0.004636.190635.6800 -1.41% 35.6504 -1.49% 0.0064 0.0064 0.17% 0.0064 0.19% 
5 0.0086 0.005828.4081 28.3700 -0.13% 28.3477 -0.21% 0.0070 0.0070 -0.13% 0.0070 -0.11% 
6 0.0090 0.007023.095023.5900 2.14% 23.5602 2.01% 0.0075 0.0075 -0.66% 0.0075 -0.65% 
7 0.0094 0.008220.3592 20.2000 -0.78% 20.1797 -0.88% 0.0080 0.0080 -0.29% 0.0080 -0.27% 
8 0.0098 0.0094 17.8000 17.6900 ·0.62% 17.6657 -0.75% 0.0084 0.0084 0.10% 0.0084 0.12% 
9 0.0102 0.010615.913515.7500 -1.03% 15.7230 ·1.20% 0.0088 0.0089 0.47% 0.0089 0.49% 
10 0.0106 0.0118 14.6153 14.2000 -2.84% 14.1768 -3.00% 0.0093 0.0093 -0.05% 0.0093 ·0.03% 
11 0.0110 0.0130 12.9411 12.9400 -0.01% 12.9169 -0.19% 0.0098 0.0097 -0.49% 0.0097 -0.47% 
12 0.0114 0.014211.875011.8900 0.13% 11.8706 -0.04% 0.0102 0.0101 -0.42% 0.0101 -0.39% 
13 0.0118 0.0154 10.6013 11.0100 3.86% 10.9879 3.65% 0.0106 0.0106 -0.86% 0.0106 -0.80% 
14 0.0122 0.016610.1221 10.2530 1.29% 10.2331 1.10% 0.0110 0.0110 -0.19% 0.Q110 -0.15% 
15 0.0126 0.0178 9.5507 9.6000 0.52% 9.5803 0.31% 0.0114 0.0114 0.06% 0.Q114 0.06% 
16 0.0130 0.0190 9.0067 9.0300 0.26% 9.0102 0.04% 0.0117 0.0118 0.29% 0.0118 0.32% 

0.0100 0.010032.418931.7200 -2.16% 31.6926 -2.24% 0.1337 0.1337 -0.04% 0.1337 -0.05% 

1 0.0070 0.010021.050020.4400 -2.90% 20.6428 -1.93% 0.0061 0.0062 1.10% 0.0062 0.97% 
2 0.0074 0.0220 9.8600 9.7780 -0.83% 9.8772 0.17% 0.0069 0.0069 0.33% 0.0069 0.26% 
3 0.0078 0.0340 7.0893 6.6550 -6.13% 6.7221 -5.18% 0.0074 0.0075 0.74% 0.0075 0.69% 
4 0.0082 0.0460 5.4149 5.1630 -4.65% 5.2151 -3.69% 0.0080 0.0079 -0.35% 0.0079 -0.38% 
5 0.0086 0.0580 4.5118 4.2900 -4.92% 4.3324 -3.98% 0.0083 0.0084 0.73% 0.0084 0.70% 
6 0.0090 0.0700 3.8534 3.7160 -3.57% 3.7525 -2.62% 0.0087 0.0088 1.08% 0.0088 1.05% 
7 0.0094 0.0820 3.4402 3.3100 -3.78% 3.3425 -2.84% 0.0092 0.0092 0.18% 0.0092 0.15% 
8 0.0098 0.0940 3.2326 3.0080 -6.95% 3.0373 -6.04% 0.0095 0.0096 0.74% 0.0096 0.71% 
9 0.0102 0.1060 2.9132 2.7750 -4.74% 2.8012 -3.85% 0.0099 0.0100 0.73% 0.0100 0.69% 
10 0.0106 0.1180 2.6637 2.5890 -2.80% 2.6131 -1.90% 0.0104 0.0104 0.40% 0.0104 0.41% 
11 0.0110 0.1300 2.5530 2.4370 -4.54% 2.4598 -3.65% 0.0108 0.0108 0.04% 0.0108 0.00% 
12 0.0114 0.1420 2.4393 2.3110 -5.26% 2.3324 -4.38% 0.0112 0.0112 0.53% 0.0112 0.53% 
13 0.0118 0.1540 2.3571 2.2050 -6.45% 2.2249 -5.61% 0.0116 0.0116 0.03% 0.Q116 0.04% 
14 0.0122 0.1660 2.2200 2.1140 -4.77% 2.1330 -3.92% 0.0119 0.0120 0.97% 0.0120 0.92% 
15 0.0126 0.1780 2.1351 2.0350 -4.69% 2.0534 -3.83% 0.0125 0.0124 -0.28% 0.0124 -0.32% 
16 0.0130 0.1900 2.0761 1.9663 -5.29% 1.9839 -4.44% 0.0128 0.0128 0.51% 0.0128 0.48% 

0.0100 0.1000 4.8631 4.6740 -3.89% 4.7202 -2.94% 0.1552 0.1559 0.43% 0.1559 0.41% 

1 0.0070 0.0300 7.8920 7.5920 -3.80% 7.6781 -2.71% 0.0066 0.0067 1.10% 0.0067 1.05% 
2 0.0074 0.0660 4.4966 3.9820-11.44% 4.0235 -10.52% 0.0073 0.0072 -0.79% 0.0072 -0.81% 
3 0.0078 0.1020 3.3977 2.9230-13.97% 2.9501 -13.17% 0.0076 0.0077 0.68% 0.0077 0.65% 
4 0.0082 0.1380 2.7772 2.4160-13.01% 2.4370 -12.25% 0.0081 0.0081 0.19% 0.0081 0.17% 
5 0.0086 0.1740 2.4678 2.1190-14.13% 2.1363 -13.43% 0.0086 0.0085 -1.08% 0.0085 -1.10% 
6 0.0090 0.2100 2.2992 1.9238-16.33% 1.9387 -15.68% 0.0089 0.0089 -0.19% 0.0089 -0.21 % 
7 0.0094 0.2460 2.1116 1.7859 -15.42% 1.7990 -14.80% 0.0094 0.0093 -0.37% 0.0093 -0.39% 
8 0.0098 0.2820 2.0422 1.6832 -17.58% 1.6949 -17.01% 0.0097 0.0097 0.29% 0.0097 0.28% 
9 0.0102 0.3180 1.9287 1.6037 -16.85% 1.6144 -16.29% 0.0101 0.0101 0.67% 0.0101 0.63% 
10 0.0106 0.3540 1.8332 1.5404-15.97% 1.5503 -15.43% 0.0105 0.0105 0.15% 0.0105 0.14% 
11 0.0110 0.3900 1.7796 1.4888-16.34% 1.4981 -15.82% 0.0109 0.0109 0.18% 0.0109 0.18% 
12 0.0114 0.4260 1.7392 1.4460-16.86% 1.4546 -16.36% 0.0113 0.0113 -0.08% 0.0113 -0.07% 
13 0.0118 0.4620 1.6775 1.4098 -15.96% 1.4180 -15.47% 0.0117 0.0117 0.25% 0.0117 0.27% 
14 0.0122 0.4980 1.6303 1.3788 -15.43% 1.3866 -14.95% 0.0121 0.0121 0.59% 0.0121 0.61% 
15 0.0126 0.5340 1.5988 1.3520 -15.44% 1.3595 -14.97% 0.0126 0.0125 -0.21% 0.0125 -0.18% 
16 0.0130 0.5700 1.5722 1.3287 -15.49% 1.3358 -15.04% 0.0129 0.0129 0.42% 0.0129 0.45% 

0.0100 0.3000 2.5777 2.2480-12.79% 2.2672 -12.05% 0.1584 0.1586 0.15% 0.1585 0.11% 

Note: The % error is based on the results expressed to 6 decimal piaces. 
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Table (7.6.5) Slotted Aloha (N=16. Q=O) 

StllPktArrReTIl De", Throushput 
R.te Pro" ShaulSARMIJiI errSAEMIJiI err SAEMIJiI ... SI.ur SARM " err SAEM% err SAEM .. ... 

1 0.0210 0.0010 402.23 357.70 -11~ 358.04 ·1115 0.0023 0,0025 8.1'" 0.0025 8.011-
2 0.0222 0.0022 165.95 161.60 -2.6'10 161.29 -2.89110 0.0048 0.0049 1.6' 0.0049 1.7'" 
3 0.0234 0.0034 103.55 104.10 O.S'" 103.64 0.1910 0.0069 0.0069 -0.89110 0.0069 ·O.S9I. 
4 0.0246 0.0046 77.937 76.640 -1.7" 76.172 -2.3% 0.0085 0.0086 0.8% 0.0086 1.2 ... 
5 0.0258 0.0058 61.638 60.600 -1.7" 60.126 ·2.SlIL 0.0100 0.0102 1.2% 0.0102 1.7".., , 0.0270 0.0070 49.417 50.090 1.49110 49.615 O.4'K. 0.0117 0.0116 ·1.0,," 0.0117 -0.49:0 
7 0.0282 0.0082 42.S7S 42.680 0.2'" 42.201 -0.9910 0.0130 0.0130 -0.15'" 0.0130 0.0110 , 0.0294 0.0094 36.917 37.170 0.7'" 36.694 ·0.6" 0.0143 0.0143 ·0.5~ 0.0143 0.2~ 

9 0.0306 0.0106 32.789 32.910 0.4'" 31.443 ·1.1~ 0.0155 0.0155 ·0.4'" 0.0156 0.44 
10 0.0318 0.0118 29.524 29.520 0.0'" 29.064 ·1.64 0.0167 0.0167 ·0.3'" 0.0168 0.4'" 
11 0.0330 0.0130 26.159 26.770 2.3'" 26.313 0.6'" 0.0181 0.0178 -1.2'" 0.0180 ·0.4'" 
12 0.0342 0.0142 24.144 24.480 1.4'" 24.031 ·0.54 0.0191 0.0190 ·0.7~ 0.0191 0.2" 
13 0.0354 0.0154 21.666 22.550 4.1'" 22.108 2.0'" 0.0205 0.0201 -1.9'" 0.0203 ·1.0~ 
14 0.0366 0.0166 20.453 20.900 2.2'" 20.464 0.1 ,. 0.0213 0.0212 ·0.8'" 0.0214 0.1'" 
150.0378 0.0178 18.744 19.480 3.9% 19.044 1.6~ 0.0226 0.0223 -1.4'" 0.0225 ·0.5% 
160.0390 0.0190 17.704 18.230 3.0% 17.80.5 0.6~ 0.0235 0.0233 ·0.9'" 0.0236 0.1'" 

0.0300 0.0100 70.71267.830 ·4.1'" 67.441 -4.6% 0.2290 0.2276 ·0.6% 0.2293 O.l~ 

0.0210 0.0100 102.16 97.56 ·4.5~ 101.89 ·0.3" 0.0068 0.0069 2.7'" 0.0067 ·0.3~ 
2 0.0222 0.0220 46.501 43.7.50 ·.5.9% 46.066 ·0.9~ 0.0111 0.0114 3.0" 0.0111 0.3% 
3 0.0234 0.0340 30.484 28.210 ·7 . .5% 29.827 ·2.2% 0.0138 0.0143 3.3'" 0.0140 0.9% 
4 0.0246 0.0460 22.753 20.870 ·8.3/10 22.119 ·2.8/10 0.0160 0.0165 3.0% 0.0162 1.0'" 
5 0.0258 0.0580 18.039 16.600 ·8.0/10 17.625 ·2.34 0.0180 0.0184 2.2" 0.0181 0.3" , 0.0270 0.0700 15.242 13.810 ·9.41lo 14.684 ·3.79:0 0.0195 0.0201 2.8~ 0.0197 1.0~ 

7 0.0282 0.0820 12.978 11.840 ·8.8" 12.610 ·2.8'" 0.0211 0.0216 2.69:0 0.0212 0.94 , 0.0294 0.0940 11.614 10.38.5 ·11" 11.070 ·4.7'" 0.0223 0.0230 3.4" 0.0227 1.8'" 
9 0.0306 0.1060 10.349 9.261 ·11% 9.881 ·4.5~ 0.0238 0.0244 2.5" 0.0241 1.0/10 
100.0318 0.1180 9.386 8.368 ·11~ 8.935 ·4.8'" 0.0251 0.0258 2.717- 0.0254 1.3% 
11 0.0330 0.1300 8.630 7.642 ·11" 8.165 ·.5.4/10 0.0264 0.0271 2.6" 0.0267 1.2% 
12 0.0342 0.1420 7.941 7.040 ·11/10 7.526 ·5.2% 0.0275 0.0283 2.9'" 0.0280 1..5'" 
13 0.0354 0.1.540 7.418 6 . .532 ·12~ 6.988 ·5.8% 0.0288 0.0296 2.8'" 0.0292 1.4% 
140.0366 0.1660 6.938 6.099 ·12% 6 • .528 ·5.9'" 0.0299 0.0308 3.1~ 0.0304 1.89:0 
1.5 0.0378 0.1780 6.572 5.725 ·13% 6.130 .6.7'" 0.0313 0.0321 2.4'" 0.0317 1.1,. 
160.0390 0.1900 6.127 .5.398 ·12'" 5.783 ·5.6'" 0.0325 0.0333 2.3'" 0.0319 1.0'" 

0.0300 0.1000 20.196 18.690 ·7.5" 19.739 ·2.3'" 0.3539 0.3637 2.8'" 0.3580 1.1'" 

1 0.0210 0.6300 3940.1 49.83 ·9917- 9529.0 142% 94.17 ·98~ 0.0003 0.6104 3784'" 0.0001 ·6 I,. 0.0071 25609:0 
2 0.0222 0.0660 2005.9 22.37 ·99% 4172.5 108~ 42.39 -98'" 0.000.5 O.OtSl 28329:0 0.0002 ·.54% 0.0116 2152~ 
3 0.0234 0.1020 1374.2 14.55 ·99" 2598.2 "" 27.39 -98'" 0.0007 0.0178 23639:0 0.0004 .47'" 0.0145 1905% 
4 0.0246 0.1380 1082.9 10.86 ·99'10 1846.0 " .. 20.29 -98'" 0.0009 0.0198 2058% 0.0005 .42% 0.0167 1719'5 
5 0.0258 0.1740 911.7 8.72 ·99«' 1405.7 54" 16.16 -98«' 0.0011 0.02lS 1900,. 0.0007 ·36/10 0.018.5 1625% , 0.0270 0.2100 708.7 7.33 ·99'10 1116.9 5'" 13.45 -984 0.0014 0.0231 15849:. 0.0009 ·37~ 0.0202 13759:. 
7 0.0282 0.2460 624.5 6.34 ·99" 913.1 4'" 11..55 -989:. 0.0015 0.0245 1.500% 0.0011 ·31~ 0.0217 1319er. , 0.0294 0.2820 539.2 5.61 ·999:. 761.7 41" 10.14 -98'" 0.0018 0.02.59 1362'" 0.0013 ·29~ 0.0232 1209% 
9 0.0306 0.3180 470.3 5.05 ·99'" 644.9 37 .. 9.05 -98'" 0.0020 0.0272 1251,. O.OOlS ·27'10 0.0246 1118'5 
10 0.0318 0.3540 418.4 4.60 ·99~ 552.3 " .. 8.18 -98~ 0.0022 0.0285 1168'" 0.0017 ·24~ 0.0259 1051'" 
11 0.0330 0.3900 365.6 4.24 ·99~ 477.1 3 ... 7.48 -98'" 0.0026 0.0298 1067'" 0.0020 ·23~ 0.0272 965'1:0 
120.0342 0.4260 325.5 3.94 ·99% 41.5.0 " .. 6.89 -98% 0.0029 0.0311 990'" 0.0023 ·219; 0.0285 898% 
13 0.0354 0.4620 300.4 3.69 ·99910 362.9 " .. 6.40 -98% 0.0031 0.0323 952% 0.0026 ·17910 0.0297 867910 
14 0.0366 0.4980 266.1 3.47 ·99/10 318.8 2 ... .5.98 -98~ 0.0034 0.0336 879'" 0.0029 ·16/10 0.0310 803 er. 
15 0.0378 0.5340 235.5 3.28 ·99/10 280.9 19 .. .5.62 -98~ 0.0038 0.0348 8059:. 0.0033 ·IS/Io 0.0322 737er. 
16 0.0390 0.5700 210.0 3.12 ·99," 248.2 " .. 5.30 ·97er. 0.0043 0.0360 740,. 0.0037 • IS 9; 0.0334 679% 

0.0300 0.3000 861.2 9.81 ·99/10 1602.7 " .. 18.1.5 ·98~ 0.0325 0.4113 1167~ 0.0249 ·231lo 0.3658 1027 er. 

Note: The % error is based on the results expressed to 6 decimal places. 
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Table (7.6.6) Slolled Aloha (N=16, Q=O) 

StnPklArr ReT. Delay Throughput 
Rate Prob 8lmu. SARM % err SA EM % err Slmul SARM % err SAEM % err 

I 0.0420 0.0010 463.05 455.10 -1.72% 458.41 -1.00% 0.0021 0.0021 -1.24% 0.0021 -1.90% 
2 0.0444 0.0022 200.85 206.00 2.56% 206.70 2.91% 0.0045 0.0044 -2.94% 0.0044 -3.25% 
3 0.0468 0.0034 132.36 132.80 0.33% 132.77 0.31 % 0.0066 0.0065 -0.90% 0.0065 -0.91% 
4 0.0492 0.0046 96.23 97.77 1.60% 97.47 1.29% 0.0087 0.0085 -1.59% 0.0086 -1.34% 
5 0.0516 0.0058 75.44 77.29 2.46% 76.82 1.83% 0.0107 0.0105 -2.02% 0.0105 -1.51% 
6 0.0540 0.0070 62.65 63.84 1.90% 63.27 0.99% 0.0125 0.0123 -1.75% 0.0124 -1.04% 
7 0.0564 0.0082 53.39 54.34 1.77% 53.70 0.57% 0.0143 0.0141 -1.40% 0.0142 -0.49% 
8 0.0588 0.0094 47.20 47.28 0.16% 46.58 -1.32% 0.0159 0.0158 -0.37% 0.0160 0.75% 
9 0.0612 0.0106 40.54 41.82 3.15% 41.09 1.35% 0.0179 0.0175 -2.35% 0.0177 -1.11% 
10 0.0636 0.0118 36.93 37.47 1.46% 36.72 -0.59% 0.0194 0.0192 -1.01% 0.0194 0.44% 
11 0.0660 0.0130 33.08 33.93 2.57% 33.16 0.23% 0.0212 0.0208 -2.02% 0.0211 -0.43% 
12 0.0684 0.0142 30.25 30.99 2.44% 30.20 -0.17% 0.0228 0.0224 -1.79% 0.0228 -0.03% 
13 0.0708 0.0154 28.13 28.51 1.35% 27.71 -1.50% 0.0242 0.0240 -0.92% 0.0245 1.02% 
14 0.0732 0.0166 25.34 26.39 4.13% 25.58 0.93% 0.0263 0.0256 -2.69% 0.0262 -0.64% 
15 0.0756 0.0178 23.91 24.56 2.70% 23.74 -0.74% 0.0277 0.0272 -1.96% 0.0278 0.26% 
16 0.0780 0.0190 22.06 22.95 4.02% 22.13 0.31 % 0.0295 0.0288 -2.63% 0.0295 -0.28% 

0.0600 0.0100 85.71 86.31 0.69% 86.00 0.34% 0.2644 0.2596 -1.81% 0.2636 -0.28% 

I 0.0420 0.0100 280.66 275.00 -2.02% 281.68 0.36% 0.0033 0.0034 1.76% 0.0033 -0.45% 
2 0.0444 0.0220 127.29 122.50 -3.76% 126.32 -0.76% 0.0067 0.0069 3.13% 0.0068 0.46% 
3 0.0468 0.0340 79.75 77.91 -2.31% 80.81 1.32% 0.0100 0.0102 1.73% 0.0099 -1.13% 
4 0.0492 0.0460 59.12 56.75 -4.01% 59.14 0.03% 0.0128 0.0131 2.99% 0.0127 -0.11% 
5 0.0516 0.0580 46.18 44.44 -3.77% 46.50 0.68% 0.0155 0.0159 2.75% 0.0154 -0.52% 
6 0.0540 0.0700 38.61 36.41 -5.70% 38.22 -1.00% 0.0178 0.0185 4.10% 0.0179 0.73% 
7 0.0564 0.0820 32.41 30.77 -5.05% 32.40 -0.03% 0.0204 0.0211 3.34% 0.0204 -0.07% 
8 0.0588 0.0940 28.00 26.60 -5.00% 28.07 0.26% 0.0227 0.0235 3.32% 0.0227 -0.14% 
9 0.0612 0.1060 24.89 23.39 -6.03% 24.74 -0.60% 0.0248 0.0258 3.94% 0.0249 0.43% 
10 0.0636 0.1180 22.18 20.85 -6.00% 22.10 -0.37% 0.0271 0.0281 3.68% 0.0272 0.17% 
11 0.0660 0.1300 20.07 18.79 -6.36% 19.95 -0.58% 0.0293 0.0304 3.65% 0.0293 0.14% 
12 0.0684 0.1420 18.38 17.09 -7.00% 18.17 -1.12% 0.0313 0.0326 4.13% 0.0315 0.60% 
13 0.0708 0.1540 16.96 15.66 -7.67% 16.67 -1.71% 0.0332 0.0347 4.63% 0.0336 1.09% 
14 0.0732 0.1660 15.67 14.45 -7.81% 15.39 -1.79% 0.0353 0.0369 4.62% 0.0356 1.09% 
15 0.0756 0.1780 14.43 13.40 -7.16% 14.29 -0.99% 0.0375 0.0390 3.99% 0.0377 0.50% 
16 0.0780 0.1900 13.50 12.49 -7.51% 13.33 -1.29% 0.0395 0.0411 4.14% 0.0398 0.65% 

0.0600 0.1000 52.38 50.41 -3.76% 52.36 -0.04% 0.3672 0.3812 3.82% 0.3686 0.40% 

I 0.0420 0.030014670.90 7222.00 -50.77% 12978.2 -11.54% 0.0001 0.0001 69.67% 0.0001 -5.43% 
2 0.0444 0.0660 6190.36 2768.00 -55.29% 5680.90 -8.23% 0.0002 0.0004 104.47% 0.0002 0.02% 
3 0.0468 0.1020 3592.58 1538.00 -57.19% 3535.18 -1.60% 0.0003 0.0006 118.94% 0.0003 -4.01 % 
4 0.0492 0.1380 2524.20 989.70 -60.79% 2509.36 -0.59% 0.0004 0.0010 146.54% 0.0004 -1.63% 
5 0.0516 0.1740 1910.27 690.40 -63.86% 1908.33 -0.10% 0.0005 0.0014 167.40% 0.0005 -1.64% 
6 0.0540 0.2100 1560.35 507.60 -67.47% 1513.64 -2.99% 0.0006 0.0019 194.89% 0.0007 1.15% 
7 0.0564 0.2460 1177.67 387.60 -67.09% 1234.69 4.84% 0.0008 0.0025 192.43% 0.0008 -5.51% 
8 0.0588 0.2820 1013.62 304.50 -69.96% 1027.19 1.34% 0.0010 0.0031 218.91% 0.0010 -2.02% 
9 0.0612 0.3180 885.09 244.80 -72.34% 866.88 -2.06% 0.0011 0.0038 241.49% 0.0011 0.70% 
10 0.0636 0.3540 753.22 200.60 -73.37% 739.38 -1.84% 0.0013 0.0046 254.13% 0.0013 1.10% 
11 0.0660 0.3900 620.82 166.90 -73.12% 635.62 2.38% 0.0016 0.0055 248.68% 0.0015 -2.82% 
12 0.0684 0.4260 556.95 140.90 -74.70% 549.62 -1.32% 0.0018 0.0065 266.66% 0.0018 0.55% 
13 0.0708 0.4620 477.10 120.20 -74.81 % 477.24 0.03% 0.0020 0.0075 266.23% 0.0020 -0.39% 
14 0.0732 0.4980 415.91 103.70 -75.07% 415.57 -0.08% 0.0023 0.0086 267.48% 0.0023 -0.13% 
15 0.0756 0.5340 361.89 90.27 -75.06% 362.48 0.16% 0.0027 0.0098 263.52% 0.0027 -0.57% 
16 0.0780 0.5700 318.42 79.21 -75.12% 316.38 -0.64% 0.0030 0.0110 261.79% 0.0030 0.31% 

0.0600 0.3000 2314.34 972.20 -57.99% 2171.92 -6.15% 0.0198 0.0684 244.50% 0.0197 -0.60% 

Note: The % error is based on the results expressed to 6 decimai places. 
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CHAPTER 8 

Discussion and Conclusions 

8.0 Discussion 

Even though Slotted Rings are still to be made popular and be standardised 

internationally, previous research has shown that they can perform exceptionally 

well in high speed, short packet length environments such as those required to 

transmit voice, video and computer data as integrated services (Zafirovic 88). 

The common availability of high speed communication hardware and their ever 

increasing transmission rates are therefore likely to focus attention toward Slotted 

Rings as a network for future integrated services local area communication, thus 

generating the motivation for some of the research carried out in this thesis. 

Most modelling studies carried out to date in the area of Slotted Rings (hoth 

basic slotted rings as well as its extensions such as the Orwell ring) only consider 

those cases where the packet buffer of a station is either unity or infinite (Arem 

90, Harrus 85, King 87, Mitrani 86, etc.). Such models are quite limited in their 

ability to reflect practical networks having finite buffers and suffer from being 

unable to accurately predict one or more of the performance measures such as 

the average the packet queue, delay and the packet rejection probability; all of 

which are essential in designing real-life systems. In this research, an attempt has 

been made to rectify this deficiency. 
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Due to the reason mentioned above, except for the throughput which is less 

dependent on the maximum buffer size, no data or graphs of the other 

performance measures for models with a finite buffer were readily available, from 

different studies, for a direct comparison between the models in this thesis. 

For the case of the throughput, such a comparison shows that all the models in 

this thesis, in general, give out as good, or better results, when matched to 

simulations. 

The models developed in this thesis and their characteristics will be briefly 

summarised below. 

8.0.1 Slotted Ring. Source Deletion. Station Rased Models 

In chapter 2, four models for the Slotted Ring with a source deletion protocol 

were analysed, all models being based upon observing the network from a station. 

The second and third models, SDStnBM2 and SDStnBM3 respectively, were 

obtained by the simplification of the first model SDStnBMl by using an additional 

assumption that no packets may arrive to a station while it is transmitting. Even 

though the degradation of results due to this assumption were minimal and was 

greatly outweighed by the extent of simplicity achieved, for increasing M/N ratios, 

it did however continue to limit the range of packet arrival probabilities 

applicable to those models. 

SDStnBM3 only differed from SDStnBM2 by the fact that it assumed that the 

packet was retained in the station buffer until the slot in which it was being 

transmitted was emptied upon its return to the transmitting station. This model 

thus reflects a situation where an acknowledgement of reception is required. 
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SDStnBM4 was an extended model of SDStnBMl in which the performance of 

the queue, when the station is not transmitting, was modelled in greater detail. 

However, the improvement from this exercise to the performance predictions 

were only marginal when compared to the increase in complexity it brought forth. 

When Markov models become too complex to be solved using equations, an 

alternate option available is to convert the balance equations into a matrix form 

so that they may be solved numerically using a computer based method. Such a 

method, which suits models with state dependent transition probabilities as 

present in station based models, was introduced in chapter 2 and used to solve 

SDStnBM4. 

This last model was also used to illustrate how a station based model may be 

easily converted into a model based on observing the network globally. 

8.0.2 Slotted Ring. Source Deletion. Slot Based Model 

An uncommon, but quite effective way of modelling a time slotted network is to 

model it by observing the network from a server (slot in this case). In chapter 3, 

such a model was developed for the slotted ring source deletion protocol. 

Unlike for the SDStnBMl, equations were easily obtained to solve the slot based 

model (SDSlotBM) for a single variable, thus greatly simplifying the iterative 

procedure involved. 

The results, as expected due to the assumption o[independent stations and slots, 
~7 

showed the ideal performance characteristics (see Appendix A). Therefore, the 

best match to the simulation was when there was only one slot in the network, 

thus eliminating the occurrence of performance degrading quasi stable states. 
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In this chapter, an alternative method of solving slot based models using matrices 

was also introduced. Even though this method was simpler than the one suggested 

for the station based models, the large maximum buffer size per slot that was 

generated when the N /M ratio was high, created a large number of states and 

hence a large number of equations which had to be solved. Though this lead to 

a prohibitively high computation time, an often effective shortcut, applicable to 

all slot based models in this thesis when solved by an iterative sparse matrix 

routine, was used. It is noted that other models of time slotted networks based on 

the server may not always lend themselves to such a sbortcut. 

8.0.3 Slotted Ring. Destination Deletion. Station Rased Models 

As a prelude to modelling practical destination deletion slotted rings protocols 

such as the Orwell Ring, chapters 4 and 5 were dedicated to model and 

investigate the basic destination deletion mechanism based on a station and a slot 

respectively. 

Two possible ways of calculating the destination deletion probability, viz constant 

or variable, were considered and their relative merits analysed for both complete 

and simplified models. 

The results showed that the assumption of a variable destination deletion 

probability gave the best results. This is undoubtedly due to the fact that, as 

shown in appendix n, it is only under this method that a packet will be, on 

average, addressed to a station half way round the ring - a situation which will 

occur in a real life network with statistically identical stations. 

The greatest shortcoming of the simplified models was their limitation of the 

maximum packet arrival rate, which, when the ratio M/N was large, did not even 

reach up to the network saturation levels. However, since this ratio is low in most 
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real life networks, these models may be used effectively under normal operating 

(unsaturated) conditions. 

8.0.4 Slotted Ring. Destination Deletion. Slot Based Models 

In chapter 5, the basic destination deletion protocol for the slotted ring was 

modelled based upon observing the network from a slot. Both the earlier 

mentioned methods of calculating the destination deletion probability were 

analysed and it was found that the variable destination deletion probability gave 

an excellent prediction to the simulation results as well as giving the overall best 

match when considering all the basic destination deletion models in the thesis. 

Due to the fact that the type of simplification done in the previous chapters would 

greatly reduce the range of validity of the packet arrival rate for all possible 

combinations of network parameters, such a simplification was not carried out for 

the two models in chapter 5. 

8.0.5 Omell Protocol For The Slotted Ring 

Though still in an experimental stage, the Orwell Ring with its trial/reset 

mechanism has been found to be quite effective in carrying delay sensitive, real 

time data. 

I n chapter 6, two models based on a station and a slot respectively, were 

developed for the Orwell Protocol by extending the destination deletion models 

to incorporate the above mentioned trial/reset mechanism. 

Performance measures obtained for the transmission of voice as class 1 data by 
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using the network standards suggested by the designers - British Telecom, show 

a good match to the simulation results. Of the two models, the slot based one give 

superior predictions overall. 

8.0.6 Modelling Of Nonidentical Stations 

One of the major restrictions in the station based models of cbapters 1 to 6 is that 

all stations should be statistically identical. In chapter 7, two algorithms which 

may be used to relax this constraint were introduced. 

In the first algorithm, the method was reformulated into a recursion based upon 

the number of users (stations). To solve, this recursion was started with an initial 

population of zero stations and then built up to the required population level. 

The second algorithm broadly consisted of replacing the variable of the EPA 

method which considers the total average usage of the network, with the su m of 

the individual station usages. This enabled the contribution of each station to be 

calculated in an iterative manner. 

In order to show the generality of these methods, they were applied to both a 

Slotted Aloha and a Slotted Ring network. Validations made via simulations 

showed a good match in general, whenever the network and the model were 

stable. The accuracy of the results predicted were of course subject to the 

limitations of the basic models. 

The major shortcoming of the recursive algorithm was that its worst case time 

complexity is of order 0(2N-1) where N is the number of nonidentical stations. 

However, the second iterative algorithm had a much improved worst case time 

complexity of order O(N). 
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8.1 Further Research 

When the packet arrival rate increases, it becomes erroneous to assume that only 

a single packet may arrive at a station in a given time slot (slot-times or station

times). Some research should be done to examine the use of other arrival 

distributions, such as extended Bernoulli distributions for example (Pujolle 91), 

that allow for multiple packet arrivals in a time slot. 

Under the analysis of nonidentical stations considered so far, the only variation 

between stations consisted of dissimilar packet arrival rates or retransmission 

probabilities. Since the algorithms suggested may be readily applied to the cases 

where there are variations in the maximum buffer size, preferential data sources 

(such as file servers) and targets (e.g. data gathering devices), etc., these 

algorithms could be used to analyse the performance of various time slotted 

networks under such different conditions. 

The Orwell models and the simulation can be extended to cover effects such as 

data compression and talkspurt/silence characteristics which enable a greater 

amount of information to be transmitted in a given system. Details of the slot 

structure, transmission rate, line delays, etc. could be included so that they may 

be optimised in accordance with the accepted standards. 

One of the important factors still to be standardised in the Orwell protocol is 

exactly when a station should stop incrementing its Di counter and reject any 

further requests for new connections. It is felt that this area could be investigated 

more thoroughly with the use of models and simulations. 
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8.2 Conclusion 

This research attempted to model various medium access control protocols for 

Slotted Ring local area networks using fixed point approximation methods based 

on Markov chains. The models developed for tbe protocols - source deletion, 

destination deletion and the Orwell, were based on observing the network from 

a station as well as from a slot, and, provided satisfactory performance 

pred ictions. Where possible, various simplifying assumptions and their effect on 

the accuracy of the solution were examined. 

Finally, two general algorithms which may be used to model nonidentical stations 

were presented. To demonstrate their generality, these were applied to both 

Slotted Ring and Slotted Aloha type networks which reflect two quite different 

access mechanisms, the latter being a satellite packet broadcast network. 
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APPENDIX A 

In this section, a comparison of the network performance measures at the two 

possible limits of packet arrival probability, between the logically expected values 

and the ones obtained by some of the models, will be made. This comparison will 

not cover the station based models due to the fact that they always give rise to an 

iterative solution, rather than a closed form result. 

Logical expected limits 

Throughput 

The throughput can be considered as the packet service rate, or, as the number 

of packets carried by a single average slot within one cycle. 

At saturation, a slot is filled by the station downstream to the one that emptied 

it. (It is noted that in the case of the Source Deletion protocol, this occurs only 

under ideal conditions due to the quasi stable states. (Falconer 85» Therefore, 

only one station time is wasted before the slot is filled with a new packet. Thus, 

considering the mean transmission time per packet, 

Saturation throughput for source 
deletion slotted rinv networks 

under ideal cond~ tions 
1 

1 + 1 
N 

(A.l ) 

where the denominator represents the time needed to transmit a single packet. 

Also, 
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Saturation throughput for 
destination deletion 
slotted ring networks 

1 

1 + 1 
2 N 

(A. 2) 

The Orwell protocol uses the destination deletion of packets, but adds its own 

overheads due to the trial/reset mechanism used. From equation (6.1.16), this 

amounts to -

(cycles) (A. 3) 

As we are considering the saturated values, the reset times are at their highest. 

Therefore from equations (6.1.17) and (A.3), 

Per formance degreda ti on Dmax N (2 + 2) 
du e to tr i a 1/ res e t - __ ----:c:-:-c:--'M:.:,....>,.:2::....,...:.N'-'-:_-:-:-

mechanism DmaxN(2+2) +(1+2+2) 
M 2 N M N 

(A. 4) 

Since the destination deletion of slots is independent of this trial/reset 

mechanism, by multiplying the equations (A.2) and (AA), 

Ideal saturated 
throughput of the
Orwe11 network 

Average Oueue 

Dmax~ 
(A. 5) 

At saturation, the average queue should obviously be equal to the maximum 

buffer size. 
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Average Delay 

When the packet arrival rate is zero, this parameter is not defined. However, 

since any packet has to wait at least 1 slot time before transmission, minimum 

delay is unity. 

Assuming a full buffer and an ideal throughput at saturation, using Little's law, 

Average Delayat saturation for 
source deletion slotted ring - NQ(l+ ~) + 1 

- (N+l) Q+ 1 

AverageDelayat saturation for NQ( 21 + NI) + 1 
destination deletion slotted ring = 

- (N+2) Q + 1 
2 

Average Delay a t 
saturation for -
Qrwell ring 

NQ[Dmax~(~ +i) + (l+~J+i)l 
+ 1 

Packet Rejection Probability 

Assuming ideal saturation throughputs, 

Packet service rate at 
saturation for source 
deletion slotted rings 

Dmax N 
M 

1 

N+l {per station time) 

Therefore, when packet arrival rate is unity, 
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1 - 1 
Saturation PRP for source 

deletion slotted rings 
N+1 

Similarly, 

Packet service ra te at 
saturation for destination
deletion slotted rings 

1 

1 
1 1+
N 

1 

N+1 
2 

Saturation PRP for destination 
deletion slot ted rings 

Saturation PRP for _ 1 _ 
Orwell protocol 

Network Reset Rate (Orwell protocol only) 

(A. 9) 

{per station time} 

1 - 1 

(~ +1) 

1 

1 

1+~ 
N 

Dmax 
M 

(A.1Q) 

When there are no packets arriving to the network, the reset rate is at its highest. 

Thus, 
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ResetRatewithno 1 
packet arrivals - 1 1 

1+-+
M N 

(A.12) 

However, at saturation, considering the time needed to transmit Dmax packets 

per station as well as the average time needed for the trial/reset mechanism, 

ResetRateat 1 
saturation - N( 1 1) ( 1 1) Dmax- -+- + 1+-+-

M 2 N M N 

(A.13) 

SDSlotnM 

At p=l, P(y,x)=0 (O~y<Q, O~x~N). Then the model simplifies to that shown 

in figure A.I. 

Considering the steady state equilibrium, 

P(Q,x) - P(Q,x-1) 

Summing all the state probabilities, 

Then, 

o N 

1 - LLP(Y,x) 
y-O x-a 

N 

- L P(Q,x) 
x-o 

- (N+l) P(Q,D) 

1 
P(Q,D) -

N+l 

{1 ;;x;;N} 
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1 
K 

1 
K 

F1g. A.I 

1 
K 

F1g. A.2 

...L 
K-l 

F1g. A.3 

F1g. A.4 
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Throughput at saturation - P(Q,O) N 

N 
N+1 

which is identical to equation (A. 1 ). 

(A.14) 

For p = 0 and p = I, the average queue takes the values of zero and Q respectively. 

This result is quite obvious, but can be shown to be true by solving the model 

after substituting these values of p. 

Considering the fact that at the two limits of possible packet arrival rates both the 

throughput and the average queue become equivalent to their logically expected 

values, the delay which is calculated using these two performance measures 

should also result in an ideal outcome as in equation (A.6). 

As in the case of average delay, since the throughput shows the ideal values, the 

PRP which is dependent on this performance measure should result in an 

equation identical to (A.9). 

DDSlotRMl 

At p= I, P(y,x) =0 (O:s;y< Q, O:s;x:s;K), where K=N-l. Thus the model reduces to 

that shown in figure A.2. 

Then, as in equation (4.3.7), 

where, 

P(Q,X) - P(Q, 1) a x - 1 

1 a - 1 -
K 

(1,;x,;K) 
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Since 

P(Q,O) - P(Q,l) 

P(Q,x) - p(Q,0)a X- 1 {l,;x,;K} 

Summing all the state probabilities, 

Thus, 

o K 

1 - L L p(y,x) 
y ... o x-a 

- P(Q, 0) [1 + (l-a K) KJ 

Throughput at saturation - P(Q, 0) N 

N 

[l+(l-a K )K] 
(A.15) 

This equation is quite different to (A.2). Since the average delay and the PRP are 

functions of the throughput, their saturation values too will be different from their 

respective logical values. 

OOSlotBM2 

When p= 1, the Markov diagram in figure 5.1.1 simplifies to that shown in figure 

A.3. 

At steady state equilibrium, 

P(Q,x) _ (K-~+l) P(Q, 1) {l,;x,;K} 
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as in equation (4.4.7). 

Since, 

P(Q, a) - p(Q, 1), 

P(Q,X) _ (K-;+l) p(Q,a) {l,;x,;K} 

As before, summing all the state probabilities, 

Then, 

K 

1 - L P(Q,X) 
x-o 

_ P(Q, a) N;2 

Throughput - p(Q,a) N 

2 
- --N 

N+2 

This is equivalent to equation (A.2). 

(A.16) 

Since the average queue does vary between 0 and Q for p = 0 and p = 1, ideal 

limits are achieved. 

Then, 

Average delay (cl) - NQ 
Throughput 

(N+2)Q + 1 
2 

which is identical to equation (A.7), and, 
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PRP _ 1 _ Throughput 
N 

1 

1+~ 
N 

identical to equation (AIQ). 

OSlotBM 

(A.18) 

As in the previous models, when p= I, the OSlotBM model simplifies to that 

shown in figure AA. Using equations (6.1.3) and (6.1.4), (6.1.6) and (6.1.7), (6.1.8) 

and (6.1.9), and, (6.1.11) and (6.l.I2), the following four equations may be 

obtained. 

gh - g+ h -
N 2 Dmax 

2M 

1 2M 
ij x = ix + jx -

K-x+l N 2 Dmax 

tu - t + U _ M 
N(M+l ) 

As in DDSlotBM2, it can be shown that, 

P(Q,x) _ p(Q,O) (K-x+l) 
K 

At steady state equilibrium, 
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K 

P(Q, T) tu - ghL P(Q,x) 
x-l 

which, using the above equations, simplify to -

P(Q, T) _ P(Q,O) M+l 
Dmax 

Summing all the state probabilities, 

Thus, 

K·l 

1 - L P(Q,x) 
x-o 

-P(Q,O)l+-+--[ 
N M+l 1 
2 Dmax 

Throughput at P(Q, 0) N 
saturation -

N 

1 + N + M+l 
2 Dmax 

~Dmax (A.19) 

When compared to (A.S), the only difference in the above equation is that the 

denominator of (A.19) lacks a term I/N. The effect of this is minimal and with 

the increase of N, becomes negligible. 

The average delay and the PRP, calculated in the usual way, too will show this 

small deficiency. 

223 



ResetRateat _ P(Q,T) tuN 
saturation 

1 
(A.20) 

which again, shows the lack of a 1/N term in the denominator when compared 

to (A.B). 

At P = 0, P(O,O) = 1. Therefore, from equation (6.2.6), 

Reset Ra te when 1 
nopacketsaIrive - 1 1 

1 + - +
M N 

which is identical to (A.12). 
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APPENDIX B 

In this appendix it will be shown that, of the two destination deletion probability 

methods used, only the variable destination deletion probability will result in a 

packet being addressed, on average, to a station half way round the ring. 

Constant Destination Deletion Probabilitv 

For ease of illustration and computation, consider a segment of the Markov chain 

where the buffer size remains constant (figure 8.1). The packet arrivals during 

transmission will be ignored since it does not affect the result. 

If P(x) denotes the probability of being in state x, then at steady state, 

P(2) - P(1)( K~l) 

P(3) _ P(2)(K~1) 

_p(1)(K~lr 

P(x) - P(l)(K~lr-" 

where, as usual, K = N-l 

(l,;x,;K) 

Mean distance 
travelled 

byapacket 

K Distance of node 1 L x State probabili ty of the node 
x-l xProbabilityofleavingthenode (B.l) 

~[StateprobabilitYOfthenode 1 
L.J x Probability of leaving the node 
x-l 
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.1 
K 

Fig. B.l 

...L 
K-l 

Fig. B.2 
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Thus, 

Mean distance 
travelled 

by a packet 

K-l 
LXP(l)(K-l)X-l.! + KP(l)(K-l)K-\ 
x-l K K K 

K-l L P(1)( K-l)X-l.! + P(l)( K-l)K-l 1 
x-l K K K 

Summing up and simplifying this, it can be shown that, 

# N 
2 

Variable Destination Deletion Probability 

Figure B.2 illustrates the relevant Markov chain. Then, 

P(2 ) _ P(l)(K~l) 

P(3) _ P(2)( K-2) 
K-l 

_ P(l)( K~2) 

P(x) - P(l)( K-Z+l) {l,;x,;K} 

Applying in equation (8.1), 
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Mean distance 
travelled 

byapacket 

N 
2 
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APPENDIX C 

Here, it will be shown that the variables i, and j, {l:5x:5K} of Chapter 6 are non

negative for practical systems. 

In order for the above condition to exist, from equations (6.1.8) and (6.1.9), 

1 

" 
2M 

K-x+l N'Dmax 

Considering the minimum value of the L.H.S., 

1" 2M 
K N'Dmax 

Dmax" 
2M(N-l) 

N2 

Substituting for Dmax from equation (6.1.18), 

which simplifies to, 

[ 
LdR - 1]1. 
R,L M 

_ 1 ?; N'+2N-2 

N2 

2M(N-l) 

N' 

The R.H.S. of this equation can be shown to have a maximum value of 1.5 at 

N =2. Therefore, 
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Considering the proposed slot architecture (Falconer 85), 

L = 160 bits per slot 

Ld = 128 bits per slot 

If RI = 64 Kbaud, tben 

R (Mbaud) M 

20 :5 99 

100 :5 499 

500 :5 2499 

At the network transmission rates considered above, the practical numbers of slots 

that may be used are far below the maximum allowable by the restrictions of the 

model. Therefore, as we can see, the maximum value of M that can be applied 

to the model far exceeds the practical limits. 
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