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“Tor Vergata”, Via del Politecnico 1, 00133 Roma, Italy

bUCD School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4,
Ireland

cDepartment of Civil Engineering, Università di Roma Tre, Via Vito Volterra 62, 00146
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1. Introduction1

The flap gate systems, i.e. one or more floating bodies hinged at the2

bottom of the sea and rolling under incoming waves, have recently proved3

very effective to extract energy from the sea (Whittaker et al. [1]). The4

mechanical behaviour of a rolling flap gate was initially investigated during5

the design phase of the storm barriers for protecting Venice Lagoon from6

flooding. For one array of gates spanning the entire width of a channel,7

experiments showed that the gates can be excited to oscillate at half the8

incident wave frequency with a very large amplitude (Mei et al.[2]). In that9

case, resonance occurs through a nonlinear mechanism when the frequency10

of the incoming wave is twice the eigenfrequency of the system (Sammarco et11

al. [3]-[4]). Li & Mei [5] found the (Q−1) eigenfrequencies of one array made12

by Q identical gates spanning the full width of a channel. Later, Sammarco13

et al. [6] in Part 1 of this paper considered a P ×Q gate farm, and showed14

that there exist P × (Q − 1) eigenfrequencies and associated modal forms.15

If the gates are not completely confined in a channel, radiation damping is16

always present, i.e. wave trapping is imperfect and therefore linear resonance17

of the eigenmodes is possible (Adamo & Mei [7]).18

In this paper a linear theory is developed in order to analyse the resonant19

behaviour of the P ×Q gate farm in an open sea of constant depth. Unlike20

in previous models available in the literature (Renzi et al. [8], Renzi & Dias21

[9]-[10]-[11]-[12]-[13], Renzi et al. [14]-[15], Sarkar et al. [16]), all based on22

the ”thin-gate hypothesis“ (Linton & McIver [17]), in this work the gate23

thickness is assumed finite, i.e. comparable with the other gate dimensions.24

By means of Green’s theorem a system of hypersingular integral equations25

for the radiation and scattering potential on the boundaries of the gate farm26

is obtained. Achenbach & Li [18] and Martin & Rizzo [19] adopted a similar27

procedure to solve crack and acoustic problems, while Parsons & Martin [20]-28

[21]-[22] used this method to solve scattering and trapping of water waves by29

rigid plates. Subsequently, Martin & Farina [23] and Farina & Martin [24]30

used the hypersingular integral equation approach to solve the radiation and31

scattering problem for a submerged horizontal circular plate.32

Here we find the solution in terms of Legendre polynomials. The Haskind-33

Hanaoka relation is utilised to check the accuracy and the computational34

cost of the semi-analytical method. We show that in the open sea there are35
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P × (Q − 1) out-of-phase natural modes similar in shape to the case of the36

gate farm in a channel. The irregular frequencies (Linton & McIver [17] - Mei37

et al [25]) are then evaluated. We also investigate the response of the gate38

farm to plane incident waves of varying frequency. The gate farm is designed39

to work in the nearshore, hence normal incidence of the waves is assumed.40

Large amplitude motions of the gates occur when the incident wave frequency41

approaches the eigenfrequencies. Hence a linear resonant mechanism of the42

natural modes in the open sea is effective. Finally, the P ×Q gate farm and43

a system of P ×Q isolated and independent gates are compared in terms of44

energy production.45

2. Governing equations for the P × Q gate farm46

As shown in Figure 1, consider P arrays of neighbouring flap gates.47

Each array, p = 1, 2, ..., P , is composed by Q identical floating gates (q =48

1, 2, ..., Q). Let a and 2b be, respectively, the width and the thickness of each49

gate and let w = Qa. Consider a three dimensional Cartesian coordinate50

system with the x and y axes lying on the mean free surface and the z axis51

pointing vertically upward. The y-axis bisects the first array (p = 1), while52

the x-axis is orthogonal to the arrays and is centred among them. All the53

gates of the pth array are hinged on a common axis lying on x = (p − 1)L,54

z = −h, where L is the distance between the arrays and h the sea constant55

depth. The symbol Gpq denotes the qth gate of the pth array, while Θpq56

indicates the angular displacement of Gpq, positive if clockwise. Monochro-57

matic plane normal incidence waves of amplitude A, period T and angular58

frequency ω = 2π/T , coming from x = +∞, force the gates to oscillate back59

and forth.60

Let Θp(y, t) indicate the angular displacement function of the pth array:61

Θp(y, t) = {Θp1(t), ...,Θpq(t), ...,ΘpQ(t)} . (1)

Θp(y, t) is a piece-wise function of y, still unknown. The analysis is performed62

in the framework of irrotational flow and in the limit of small-amplitude63

oscillations. Therefore, the velocity potential Φ(x, y, z, t) must satisfy the64

Laplace equation in the fluid domain Ω:65

∇2Φ = 0, (x, y, z) ∈ Ω. (2)

On the free surface, the kinematic-dynamic boundary condition reads:66

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0, z = 0, (3)
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Figure 1: Plan geometry and side view.
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while the no-flux condition on the seabed requires:67

∂Φ

∂z
= 0, z = −h. (4)

On the p = 1, ..., P arrays the kinematic boundary conditions are:68

∂Φ

∂x
=
∂Θp

∂t
(z + h) , x = (p− 1)L± b, y ∈

[
−w

2
,
w

2

]
, z ∈ [−h, 0] , (5)

∂Φ

∂y
= 0, x ∈ [(p− 1)L− b, (p− 1)L+ b], y = ±w

2
, z ∈ [−h, 0] .

(6)

Note that the no flux condition (6) is given on the finite edges of each array69

facing the open sea, without channel walls. The time dependence of Φ and70

Θp can be separated by assuming a harmonic motion of given frequency ω:71

Φ(x, y, z, t) = Re{φ(x, y, z)e−iωt}, (7)

Θp(y, t) = Re{θp(y)e−iωt}. (8)

3. Semi-Analytical solution72

The linearity of the problem allows the following decomposition of the73

potential φ(x, y, z):74

φ = φI + φS +
P∑
p=1

Q∑
q=1

φRpq, (9)

where:75

φI = − iAg

ω

ch k(h+ z)

ch kh
e−ikx, (10)

is the potential of the plane incident waves incoming from x = +∞, φS is the76

potential of the scattered waves and φRpq is the potential of the radiated waves77

due to the moving gate Gpq while all the other gates are at rest. In (10),78

k denotes the wave number, root of the dispersion relation ω2 = gkth kh,79

while i is the imaginary unit. ch , sh and th indicate shorthand notation80

respectively for cosh, sinh and tanh. According to the separation (7)-(8) and81

the decomposition (9), both φRpq and φS must satisfy the Laplace equation82

(2), the kinematic-dynamic boundary condition on the free surface (3), and83
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the no-flux condition on the seabed (4). Let x±p indicate the x-coordinate of84

the rest position of the vertical surface of the pth array:85

x±p = (p− 1)L± b. (11)

Each gate Gpq spans a y-width given by:86

y ∈ [yq, yq+1], yq = (q − 1)a− w

2
, q = 1, ..., Q. (12)

The kinematic boundary conditions on the gate-farm surfaces then become:

∂φRpq
∂x

=

{
−iωθpq(z + h), x = x±p , y ∈ [yq, yq+1], z ∈ [−h, 0] , (13a)

0, elsewhere on the gate farm, (13b)
87

∂φRpq
∂y

= 0, x ∈ [x−p , x
+
p ], y = ±w

2
, z ∈ [−h, 0] , (13c)

∂φS

∂x
= −∂φ

I

∂x
, x = x±p , y ∈ [yq, yq+1], z ∈ [−h, 0] , (13d)

∂φS

∂y
= 0, x ∈ [x−p , x

+
p ], y = ±w

2
, z ∈ [−h, 0] , (13e)

88

p = 1, ..., P, q = 1, ..., Q.

Finally φRpq and φS must be outgoing when
√
x2 + y2 →∞.89

Separation of variables gives:90 {
φRpq

φS

}
=
∞∑
n=0

{
ϕRn,pq(x, y)

ϕSn(x, y)

}
Zn(z), (14)

where Zn(z) represents the normalized eigenfunctions:91

Zn(z) =

√
2ch kn(h+ z)(

h+ g
ω2 sh 2knh

)1/2
, (15)

which satisfy the orthogonality property92 ∫ 0

−h
Zn(z)Zm(z) dz = δnm, n,m = 0, 1, ... , (16)
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with δnm the Kronecker delta. In (15), kn are the roots of the dispersion93

relation:94

ω2 = gk0th k0h,

ω2 = −gk̄n tan k̄nh, kn = ik̄n, n = 1, ...,∞.
(17)

Following (14), for each of the ϕRn,pq, ϕ
S
n, the Laplace equation becomes the95

Helmholtz equation96

L

{
ϕRn,pq(x, y)

ϕSn(x, y)

}
= 0, with L ≡

(
∇2 + k2

n

)
. (18)

Now define the boundary Spq of the gate Gpq as97

Spq =
{
x = x±p , y ∈ [yq, yq+1]

}
, (19)

and the end boundaries of the pth array of width 2b98

Sp =
{
x ∈ [x−p , x

+
p ], y = ±w

2

}
. (20)

We can so refer to the entire gate farm boundary SG as:99

SG =
P∑
p=1

Q∑
q=1

Spq ∪
P∑
p=1

Sp. (21)

The boundary conditions (13a)-(13e) become

∂ϕRn,pq
∂x

=

{ −iωθpqfn, on Spq (22a)

0, elsewhere, (22b)
100

∂ϕRn,pq
∂y

= 0, on Sp, (22c)

∂ϕSn
∂x

= Adne
−iknx, on Spq, (22d)

∂ϕSn
∂y

= 0, on Sp, (22e)

101

p = 1, ..., P, q = 1, ..., Q,
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where the coefficients fn and dn are102

fn =

√
2(1− ch knh+ knhsh knh)(
h+ g

ω2 sh 2knh
)1/2

k2
n

, n = 0, 1, ... (23)

dn =
gkn

(
h+ g

ω2 sh 2knh
)1/2

√
2ωch knh

δ0n, n = 0, 1, ... (24)

Note that in (24) only d0 is non-zero. We also require ϕRn,pq and ϕSn to be103

outgoing as
√
x2 + y2 → ∞. The solution of the boundary value problem104

defined by the Helmholtz equation (18) and by the boundary conditions105

(22a)-(22e) can be found by using Green’s theorem and Green’s functions.106

Consider the plane fluid domain Σ enclosed within the boundary of the gate107

farm SG and a circle of large radius S∞ surrounding the gate farm. Define108

the Green function Gn(x, y; ξ, η) as the solution of the Helmholtz equation:109

LGn(x, y; ξ, η) = 0, (x, y) ∈ Σ, (x, y) 6= (ξ, η), (25)

with110

Gn '
1

2π
ln r, r → 0, (26)

where r =
√

(x− ξ)2 + (y − η)2.111

Gn must be outgoing as r →∞, hence the solution of (25)-(26) is:112

Gn(x, y; ξ, η) = − i

4
H

(1)
0 (knr). (27)

In the latter, H
(1)
0 is the Hankel function of the first kind and order zero.113

Application of Green’s theorem yields114 ∫∫
Σ̄

[{
ϕRn,pq(x, y)

ϕSn(x, y)

}
LGn(x, y; ξ, η)−Gn(x, y; ξ, η)L

{
ϕRn,pq(x, y)

ϕSn(x, y)

}]
dΣ =

=

∮
SG+S∞+Sε

[{
ϕRn,pq(x, y)

ϕSn(x, y)

}
∂Gn(x, y; ξ, η)

∂n
−Gn(x, y; ξ, η)

∂

∂n

{
ϕRn,pq(x, y)

ϕSn(x, y)

}]
dS

(28)

where Σ̄ = Σ \ (ξ, η), Sε is a semicircle of radius ε→ 0 centred at (ξ, η) and115

finally ∂(·)/∂n is the derivative of (·) in the direction of the outward normal116

to the boundaries of Σ̄.117
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Because of the governing equations (18)-(25) and the behaviour of Gn for118

r → 0 (26) and r →∞, equation (28) simplifies to (see also Linton & McIver119

[17] - Mei et al [25])120 ∫
SG

[{
ϕRn,pq(ξ, η)

ϕSn(ξ, η)

}
∂Gn

∂n
−Gn

∂

∂n

{
ϕRn,pq(ξ, η)

ϕSn(ξ, η)

}]
dS − 1

2

{
ϕRn,pq(x, y)

ϕSn(x, y)

}
= 0,

(x, y) ∈ SG,
(29)

where the line integral is now evaluated in terms of (ξ, η) on the boundary SG.121

The radiation potential ϕRn,pq and the scattering potential ϕSn are expressed122

in integral form. Define ξ±p and ηq as follows:123

ξ±p = x±p , ηq = yq. (30)

Since:124

∂

∂n
=


∓ ∂

∂ξ
on Spq

∓ ∂

∂η
on Sp

, (31)

substitution of the boundary conditions (22a)-(22e) inside equation (29),125

yields:126

ϕRn,pq(x, y) =

= 2
P∑

p∗=1

{
−
∫ w

2

−w
2

ϕRn,pq(ξ, η)
∂Gn

∂ξ

∣∣∣∣
ξ=ξ+

p∗

dη +

∫ w
2

−w
2

ϕRn,pq(ξ, η)
∂Gn

∂ξ

∣∣∣∣
ξ=ξ−

p∗

dη

−
∫ ξ+

p∗

ξ−
p∗

ϕRn,pq(ξ, η)
∂Gn

∂η

∣∣∣∣
η=w

2

dξ +

∫ ξ+
p∗

ξ−
p∗

ϕRn,pq(ξ, η)
∂Gn

∂η

∣∣∣∣
η=−w

2

dξ

}

+ 2iωθpqfn

∫ ηq+1

ηq

(
Gn|ξ=ξ−p − Gn|ξ=ξ+p

)
dη,

(x, y) ∈ SG,
(32)
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127

ϕSn(x, y) =

= 2
P∑

p∗=1

{
−
∫ w

2

−w
2

ϕSn(ξ, η)
∂Gn

∂ξ

∣∣∣∣
ξ=ξ+

p∗

dη +

∫ w
2

−w
2

ϕSn(ξ, η)
∂Gn

∂ξ

∣∣∣∣
ξ=ξ−

p∗

dη

−
∫ ξ+

p∗

ξ−
p∗

ϕSn(ξ, η)
∂Gn

∂η

∣∣∣∣
η=w

2

dξ +

∫ ξ+
p∗

ξ−
p∗

ϕSn(ξ, η)
∂Gn

∂η

∣∣∣∣
η=−w

2

dξ

+ Adn

∫ w
2

−w
2

(
e−iknξGn

∣∣
ξ=ξ+

p∗
− e−iknξGn

∣∣
ξ=ξ−

p∗

)
dη

}
,

(x, y) ∈ SG.

(33)

Note that (32) and (33) are more complex than their thin-gate counterparts128

of Renzi et al. [14]. Since the radiation potential ϕRn,pq and the scattering129

potential ϕSn on the boundary of the gate-farm are unknown, the first four130

integrals inside the expressions (32)-(33) are still unknown. The integrals131

inside the summations are evaluated on the boundary of each array, except132

for the last integral of (32) which is evaluated on the boundary of the moving133

gate Gpq. Imposing the boundary conditions (22a)-(22e) to (32)-(33) yields134

a system of hypersingular integral equations for ϕRn,pq and ϕSn evaluated on135

the boundaries of the gate farm. The solution of the system is found by136

expanding ϕRn,pq and ϕSn in terms of Legendre polynomials Pm of integer order137

m = 0, ...,M (see Appendix for details). Finally the radiation potential φRpq138

due to the motion of the gate Gpq, on the lateral surfaces of each array139

p̃ = 1, ..., P, is expressed as follow:140 φRpq
(
x±p̃ , y, z

)
φRpq

(
x,±w

2
, z
) =

∞∑
n=0

M∑
m=0

Zn(z)θpq

{
Pm (y′)αR±nmp̃,pq

Pm
(
x′p̃
)
βR±nmp̃,pq

}
, (34)

while the scattering potential on the same surfaces is given by:141 φS
(
x±p̃ , y, z

)
φS
(
x,±w

2
, z
) =

M∑
m=0

Z0(z)

{
Pm (y′)αS±0mp̃

Pm
(
x′p̃
)
βS±0mp̃

}
, (35)

142

x ∈ [−b+ (p̃− 1)L, b+ (p̃− 1)L], y ∈
[
−w

2
,
w

2

]
,
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where x′p̃ and y′ are dimensionless variables defined in [−1, 1]:143

x′p̃ =
x− (p̃− 1)L

b
, y′ =

2y

w
, (36)

while αR±nmp̃,pq, α
S±
0mp̃, β

R±
nmp̃,pq and βS±0mp̃ are complex constants determined by144

solving the linear systems (A.38a)-(A.38c) and (A.39a)-(A.39b) with a nu-145

merical collocation scheme (see Appendix for further details).146

3.1. Gate dynamics147

Consider each gate Gpq coupled with an energy generator at the hinge.148

Assume that the generator exerts a torque proportional to the angular ve-149

locity of the gate Gpq, νptoΘ̇pq, where νpto is the power take-off coefficient.150

Conservation of angular momentum requires:151

IΘ̈pq +CΘpq + νptoΘ̇pq = ρ

∫ yq+1

yq

dy

∫ 0

−h

[
Φ|x=x+p

− Φ|x=x−p

]
t
(z+h) dz, (37)

where I is the moment of inertia of the gate about the hinge and C is the152

net restoring torque:153

C = ρg(IAxx + IVz )−Mgg(zg + h), (38)

with:154

IAxx =

∫∫
SA

x2 dxdy, IVz =

∫∫∫
V

(z + h) dV, (39)

where SA denotes the cross sectional area of the gate at the water line and155

V the water volume displaced by the gate in its rest vertical position. Mg156

and zg are respectively the mass and the vertical coordinate of the center of157

mass of the gate. For the geometry of Figure 1, IAxx and IVz are:158

IAxx =
2ab3

3
, IVz = abh2. (40)

Using (7)–(9) and the expressions of the potentials (10), (34) and (35), the159

momentum equation (37) gives160

(
−ω2I + C − iωνpto

)
θpq −

P∑
p̄=1

Q∑
q̄=1

θpq
(
ω2µpqpq + iωνpqpq

)
= Fpq,

p = 1, ..., P ; q = 1, ...Q,

(41)
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where161

Fpq =− iωρ

{
2Agae−ik0(p−1)L sin k0b(1− ch k0h+ k0hsh k0h)

ωk2
0ch k0h

+

+ f0

∫ yq+1

yq

∞∑
m=0

(
α+S

0mp − αS−0mp

)
Pm

(
2y

w

)
dy

}
,

(42)

is the exciting torque due to the incident and scattered waves, while:162

µpqpq =
ρ

ω
Im

{
∞∑
n=0

fn

∫ yq+1

yq

M∑
m=0

(
αR+
nmp,pq − αR−nmp,pq

)
Pm

(
2y

w

)
dy

}
, (43)

and163

νpqpq = −ρRe

{
∞∑
n=0

fn

∫ yq+1

yq

M∑
m=0

(
αR+
nmp,pq − αR−nmp,pq

)
Pm

(
2y

w

)
dy

}
, (44)

represent, respectively, the added inertia and the radiation damping of the164

gate Gpq due to the unit rotation of the gate Gpq. Equation (41) can be165

written in matrix form:166 [(
−ω2I + C − iωνpto

)
I− ω2M(ω)− iωN(ω)

] {
θ
}

= F(ω), (45)

where
{
θ
}

is a column vector of length s = P × Q that contains all the167

angular displacements of the gates:168

{
θ
}

=



{
θ1

}
...{
θp
}

...{
θP
}


, (46)

I is the identity matrix of size s × s, M and N are respectively the added169

inertia matrix and the radiation damping matrix also of size s× s:170

M =

M
1
1 . . . M1

P
...

. . .
...

MP
1 . . . MP

P

 , N =

N
1
1 . . . N1

P
...

. . .
...

NP
1 . . . NP

P

 , (47)
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where both Mm
m and Np

p are symmetrical square matrices of size Q×Q:171

Mp
p̄ =

µ
p1
p̄1 . . . µp1p̄Q
...

. . .
...

µpQp̄1 . . . µpQp̄Q

 , Np
p̄ =

ν
p1
p̄1 . . . νp1p̄Q
...

. . .
...

νpQp̄1 . . . νpQp̄Q

 . (48)

Finally, once the angular displacements of the gates are known, the average172

power absorbed over a wave cycle by the gate farm, is equal to:173

P =
ω2νpto

2

P∑
p=1

Q∑
q=1

|θpq|2 . (49)

3.2. Eigenfrequencies and eigenvectors174

The momentum equations given by (45) are equivalent to a system of175

P × Q linear damped harmonic oscillators with given mass, stiffness and176

damping. In order to find the eigenfrequencies of the system, the exciting177

torque and the damping terms are set equal to zero. System (45) becomes178

homogeneous:179 [(
−ω2I + C

)
I− ω2M(ω)

] {
θ
}

= 0. (50)

To find non-trivial solutions the following implicit non linear eigenvalue con-180

dition must then be solved:181

det
[(
−ω2I + C

)
I− ω2M(ω)

]
= 0. (51)

Once the eigenfrequencies are known, the respective modal forms can be182

obtained by setting the displacement of the gate G11 = 1 and then solving183

system (50).184

3.3. The radiation potential in the far field185

Consider the polar coordinates r and γ defined by186

(x, y) = r(cos γ, sin γ). (52)

Following a similar procedure as in Renzi & Dias [10], the radiation potential187

in the far field (i.e. for r →∞), for unit rotational velocity of the gate Gpq,188

can be approximated as189

φRpq(r, γ, z) w
−igARpq(γ)ch k(h+ z)

ωch kh

√
2

πkr
eikr−

iπ
4 , (53)
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where190

ARpq(γ) =

= −kZ(0)

4g

P∑
p∗=1

M∑
m=0

{∫ w
2

−w
2

αR+
0mp∗,pqPm (η′) e−ik{[b+(p∗−1)L] cos γ+η sin γ} cos γ dη

−
∫ w

2

−w
2

αR−0mp∗,pqPm (η′) e−ik{[−b+(p∗−1)L] cos γ+η sin γ} cos γ dη

+

∫ ξ+
p∗

ξ−
p∗

βR+
0mp∗,pqPm

(
ξ′p∗
)
e−ik[ξ cos γ+w

2
sin γ] sin γ dξ

−
∫ ξ+

p∗

ξ−
p∗

βR−0mp∗,pqPm
(
ξ′p∗
)
e−ik[ξ cos γ−w

2
sin γ] sin γ dξ

}

− ωfnZ(0)

4g

∫ ηq+1

ηq

(
e−ik{[−b+(p−1)L] cos γ+η sin γ} − e−ik{[b+(p−1)L] cos γ+η sin γ}) dη,

(54)

represents the angular variation of the radially spreading wave (Mei et al.191

[25]). The latter can be used to derive some useful formulas that relate the192

hydrodynamic parameters.193

3.4. The Haskind-Hanaoka relation for the gate farm194

Consider the 3D Haskind-Hanaoka relation (Mei et al. [25])195

Fpq = −4

k
ρgAARpq(0)Cg, (55)

where Fpq is the exciting torque given by expression (42) while ARpq(0) repre-196

sents the wave amplitude in the direction opposite to the incident waves197

ARpq(0) = −akZ(0)

2g

P∑
p∗=1

{
αR+

00p∗,pqe
−ik[b+(p∗−1)L] − αR−00p∗,pqe

−ik[−b+(p∗−1)L]

}

− ωafnZ(0)

2gQ

(
e−ik[−b+(p−1)L] − e−ik[b+(p−1)L]

)
.

(56)

Expression (55) has been used to check the numerical computation via the198

relative error ε199

ε =
|l.h.s.− r.h.s.|
|r.h.s.|

, (57)
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where l.h.s. and r.h.s. refer to equation (55) itself. Taking M = 16 in (34)-200

(35) we obtain a maximum relative error ε = O(10−3) for expression (55).201

4. Results and discussion202

4.1. One gate in the open sea: the effects of the gate thickness203

In order to evaluate the effects of the finite gate thickness 2b, the simplest204

case of P = Q = 1, i.e. the case of one gate in the open sea is considered.205

Inertia, buoyancy and width of the gate, and water depth, are listed in Table206

1. Different values of the thickness 2b have been chosen, i.e. 2b ∈ [0.1; 1.5] m.207

The limit value of 2b = 0.1 m corresponds to the case where the ”thin-gate”208

hypothesis can be applied (b/a� 1 - Renzi & Dias [9]). Figure 2 shows the209

values of the added inertia µ, the radiation damping ν and the magnitude210

of the exciting torque |F | versus the frequency of the incident waves for211

different values of b. The effects of the gate thickness on the added inertia and212

radiation damping are significant for ω ∈ [1, 3.5] rad s−1. In particular, the213

larger the gate thickness the larger the added mass and radiation damping.214

As a consequence the eigenfrequency of the system decreases if the gate215

thickness increases. The eigenfrequency ω1 of the single gate for five different216

values of 2b is listed in Table 2.217

4.2. The gate farm in the open sea218

With reference to Figure 1, we consider P = 3 arrays each with Q = 5219

gates. The input parameters are defined in Table 1.220

4.2.1. Eigenfrequencies and eigenvectors221

The eigenvalue condition (51) has been solved in order to find the eigen-222

frequencies of the system within a range of ω from 0 to 1.2 rad s−1. The223

frequency range includes the P × (Q − 1) = 12 eigenfrequencies of the out-224

of-phase motion and the first two eigenfrequencies of the in-phase motion,225

where the p-th array moves at unison. The numerical values of the eigen-226

frequencies are listed in Table 3 for the out-of-phase motion and in Table227

4 for the in-phase motion. Solution of the momentum equations (50) gives228

the corresponding modal forms. Note that the generic out-of-phase natural229

mode Nij follows the same definition of Sammarco et al. [6], that is: for230

modes N11, N21, N31, and N41, each array has the same modal shape, but for231

the central array (p = 2); modes N12, N22, N32, and N42, are characterized232

by having the middle array (p = 2) with null angular displacement, while the233
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Figure 2: Behaviour of the added inertia µ (a), the radiation damping ν (b) and the
magnitude of the exciting torque |F | (c) versus incident wave frequency for five different
values of the gate thickness 2b.
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last array (p = 3) is in opposite phase with respect to the first (p = 1); for234

the remaining modes N13, N23, N33, and N43, modal deformation is the same,235

but for the middle array (p = 2), which is in opposition of phase with the236

other two. N(ω1) represents the in-phase natural mode characterized by the237

middle array in opposite phase with respect to the first and the last array.238

Similarly N(ω2) represents the in-phase natural mode characterized by the239

middle array (p = 2) with null angular displacements while the arrays p = 1240

and p = 3 are in opposition of phase. Let K be the number of the gates241

per modal wavelength of the first array, p = 1; the eigenfrequencies of the242

out-of-phase modes decrease as K increases.243

4.2.2. Irregular frequencies244

Because of the geometry of the gate farm, the integral equations (32) and245

(33) possess the so-called irregular frequencies when n = 0 (Linton & McIver246

[17] - Mei et al [25]).247

Define the boundaries of the pth array as248

S ′p =

Q∑
q=1

Spq ∪ Sp, (58)

and let Σ′p be the interior of S ′p. We can so define ϕ′p as the interior potential249

that satisfy the Helmholtz equation in Σ′p250

∇2ϕ′p + k2ϕ′p = 0 in Σ′p, (59)

with boundary conditions251

ϕ′p = 0 on S ′p. (60)

The eigensolutions of the homogeneous Dirichlet problem (59)-(60) are found252

by separation of variables:253

ϕ′p = Anm sin
nπ[x− (p− 1)L]

b
sin

2mπy

w
, (61)

where Anm is an arbitrary constant and n,m = 0, 1, ....254

The corresponding eigenvalues are255

k = knm =

√(nπ
b

)2

+

(
2mπ

w

)2

, (62)
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while the related eigenfrequencies ωnm can be found via the dispersion rela-256

tion257

ω2
nm = gknmth knmh. (63)

These eigenfrequencies are the so-called irregular frequencies (Linton & McIver258

[17] - Mei et al [25]).259

The lowest value of ωnm corresponds to the case of n = 0 and m = 1 and it260

is equal to ∼ 2 rad s−1, i.e. higher than the range of our interest. For this261

reason we don’t need to exclude them from the analysis.262

4.2.3. Forced response263

Extensive computations have been carried out for the range of interest264

of the incident wave frequencies ω = 0.1 − 1.2 rad s−1 without the PTO.265

The amplitude of the incident wave is A = 1 m. Resonance occurs at eight266

frequencies whose values are near the natural frequencies of the homogeneous267

system previously calculated. Because of the direction of the incident wave,268

orthogonal to the axes of the arrays, only the symmetric natural modes with269

respect to the x-axis can be excited; i.e, P × (Q − 1)/2 = 6 out-of-phase270

and 2 in-phase natural modes are resonated. Let ωij be the eigenfrequency271

of the out-of-phase mode Nij. In Figure 3 we show the amplitude of the272

angular displacements versus the incident wave frequency and indicate the273

eigenfrequencies of the resonating natural modes. Note that the high and274

unrealistic values of the peaks are related to the weakness of the radiation275

damping corresponding to the resonance frequencies. In this case the gate-276

farm is almost undamped and radiates low energy at infinity. On Figure 4277

and Figure 5 the shapes of the gate-farm forced at the resonance frequencies278

ωij are shown. Note that the number near each gate Gpq represents Re{θpq}279

normalized with respect to Re{θ11}. The values of Re{θ11} at the resonance280

frequencies are listed in Table 5.281

4.3. The influence of the power take-off on the capture width282

A parametric analysis is performed to investigate the effect of the power283

take-off coefficient νpto on the generated power P over a wave cycle (see (49)).284

Define the capture width ratio CF as the ratio of the generated power P per285

unit gate-farm width to the incident power per unit width of the crest (see286

Renzi et al [15]):287

CF =
P

1
2
ρgA2Cg(P ×Q)a

, (64)
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Figure 3: Gate amplitude response versus incident wave frequency and eigenfrequencies
of the natural modes symmetric with respect to the x-axis. (a) Array p = 1. (b) Array
p = 2. (c) Array p = 3.
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(a) Response for ω = ω11 (b) Response for ω = ω12

(c) Response for ω = ω13 (d) Response for ω = ω31

(e) Response for ω = ω32 (f) Response for ω = ω33

Figure 4: Gate-farm profiles forced at ω = ωij . The number near each gate Gpq represents
Re{θpq} normalized with respect to Re{θ11}. The response of the gate farm is similar to
the modal form of the mode Nij . (a) Response for ω = ω11. (b) Response for ω = ω12. (c)
Response for ω = ω13. (d) Response for ω = ω31. (e) Response for ω = ω32. (f) Response
for ω = ω33.
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(a) Response for ω = ω1 (b) Response for ω = ω2

Figure 5: Gate-farm profiles forced at ω = ωi. The number near each gate Gpq represents
Re{θpq} normalized with respect to Re{θ11}. The response of the gate farm is similar to
the modal form of the mode N(ωi). (a) Response for ω = ω1. (b) Response for ω = ω2.

where Cg is the group velocity:288

Cg =
ω

2k

(
1 +

2kh

sh 2kh

)
. (65)

Waves of amplitude A = 1 m are normally incident on the flaps. Differ-289

ent values of the PTO coefficient have been chosen, i.e. νpto ∈ [104; 108]290

kg m2 s−1. Figure 6 shows the behaviour of the capture width ratio CF291

versus the incident wave frequency for three different values of the PTO co-292

efficient. When νpto = 106 kg m2 s−1 and ω > 0.6 rad s−1, the capture width293

ratio is equal to ∼ 0.5 for a wide range of frequencies. Consider the case294

of νpto = 108 kg m2 s−1 and the behaviour of the magnitude of the exciting295

torque |Fp3| on each gate Gp3 shown in Figure 7: the behaviour of CF is296

quite similar to |Fp3|. In other words, the dynamics is dominated by the297

exciting torque due to diffracted waves (see Renzi & Dias [10]). Differently,298

the behaviour of the capture width ratio for νpto = 104 kg m2 s−1, resembles299

that of the amplitude of the angular displacements shown in Figure 3, hence300

in this case the dynamics is dominated by the resonance effects.301

4.4. Wave power generation and efficiency: (P×Q) gate farm versus (P×Q)302

isolated gates303

In this section the (P×Q) gate farm and a system of (P×Q) isolated and304

independent gates are compared in terms of energy production. The single305
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Figure 6: Behaviour of the capture width ratio CF versus incident wave frequency for
three different values of the PTO coefficient νpto. For large values of νpto the behaviour
of CF is dominated by the exciting torque due to diffracted waves. Differently, for small
values of νpto the behaviour of CF is dominated by the resonance effects.
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flap gate has the same characteristics for both systems (see Table 1 for the306

values).307

Consider the PTO coefficient that maximize the power output for incident308

wave frequency ω = 0.9 rad s−1, i.e. a typical value in the Mediterranean309

Sea. The optimal PTO coefficient for a system of isolated gates νpto,IG can310

be designed such that (Renzi & Dias [10])311

νpto,IG =

√
[C − (I + µ)ω2]2

ω2
+ ν2 ' 105 kg m2 s−1, (66)

where µ and ν represent respectively the added inertia and the radiation312

damping of a single isolated gate at ω = 0.9 rad s−1 (see Figure 2 for the313

values). The optimal PTO coefficient for the gate farm νpto,GF is found314

numerically by maximizing the function (49) for a fixed ω. For ω = 0.9 rad315

s−1, νpto,GF = 7 × 106 kg m2 s−1. The difference between νpto,IG and νpto,GF316

is related to the behaviour of the exciting torque. Inspection of the different317

relations between radiation damping and exciting torque (Renzi & Dias [11]-318

Mei et al [25]) shows that when ω is far from resonance the larger the exciting319

torque the larger the optimal PTO coefficient. In the present case the value320

ω = 0.9 rad s−1 is very close to the peaks of the exciting torque for the gate321

farm (see Figure 7), while is distant from the peak of the exciting torque for322

a single isolated gate (see Figure 2). As a consequence, νpto,GF is larger than323

νpto,IG. Hereafter, both νpto,GF and νpto,IG are fixed.324

Now define the capture width ratio of the gate farm CGF and the capture325

width ratio of (P ×Q) isolated gates CIG as326

CGF =
PGF

1
2
ρgsA2Cga

, CIG =
PIG

1
2
ρgA2Cga

, (67)

where PGF and PIG represent respectively the averaged power generated by327

the gate farm and by the single isolated flap gate. Figure 8 shows the capture328

width ratio curves of both systems. The gate farm captures significantly329

more energy than a system of isolated gates. Also the bandwidth of the gate330

farm curve is larger than the other. Note that CGF behaves as the exciting331

torque magnitude shown in Figure 7, hence the performance is dominated332

by diffracted waves. In Renzi et al [15] have been obtained similar results.333

Now consider the amplitude of the angular displacements θ33 of the gate G33334

and the amplitude of the angular displacements θIG of the isolated gate shown335

in Figure 9. The maximum value for |θ33| is ∼ 0.2 rad, hence the influence336
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Figure 8: Capture width ratio of the (P ×Q) gate farm CGF and capture width ratio of
(P ×Q) isolated gates CIG versus incident wave frequency.

of the PTO coefficient decreases significantly the unrealistic amplitudes of337

the gates without PTO damping (see Figure 2 for the gate farm). This fact338

justifies the hypothesis of small-amplitude oscillations and the applicability339

of the linear theory.340

5. Conclusions341

A semi-analytical model has been developed in order to solve the dynamic342

behaviour of the P ×Q gate farm when excited by planar incident waves. By343

means of the Green theorem, a system of hypersingular integral equations for344

the radiation and scattering potential on the wet surfaces of the gate farm is345

obtained. The system is solved in terms of Legendre polynomials of integer346

order. Then the expressions of the added inertia, the radiation damping and347

the exciting torque are derived. The theory takes into account the thickness348

of each gate without resorting to the ”thin-gate” hypothesis.349

A parametric analysis of one gate in the open sea reveals the effect of the350

gate thickness on the eigenfrequency and on the gate response to incident351

waves. We have shown that the larger the thickness the larger the added352

inertia and the lower the eigenfrequency. Moreover, the radiation damping353
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increases as the thickness increases, while the exciting torque shows negligible354

variations.355

The solution of the eigenvalue condition for the P × Q gate farm, gives356

P×(Q−1) out-of-phase natural modes similar in shape to those of the P×Q357

gate farm in a channel of Sammarco et al. [6]. The system response is then358

evaluated for a wide range of incident wave frequencies. Numerical results359

show that the resonant peaks are close to the natural frequencies of the sys-360

tem. In particular, the narrow resonant peaks indicate that the radiation361

damping is small, hence synchronous excitation of the natural modes is sig-362

nificant. An asymptotic expression of the radiation potential is obtained in363

order to apply the Haskind-Hanaoka relation to the gate farm. The (P ×Q)364

gate farm and a system of (P × Q) isolated gates are compared in terms of365

energy production. The results show that the gate farm capture more energy366

than a system of isolated gates.367

The amplitude response at the resonance frequencies is large and non-368

realistic, hence the hypothesis of small-amplitude oscillation at the basis369

of this linear theory, is not satisfied. However, the amplitude response is370

significantly reduced when the gates are coupled with a PTO device at the371

hinge. Also fluid viscosity and vortex shedding should be considered in order372

to better evaluate dissipation effects (see Wei et al. [27]). For this reason,373
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the development of a non-linear theory is necessary. This will also allow374

the evaluation of the gate response when the natural modes are excited sub-375

harmonically by incident waves.376
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Appendix. Solution of the radiation and scattering potentials383

For shorthand notations define the following integrals as follows:384 {
WR±

np∗pq

WS±
np∗

}
= ∓

∫ w
2

−w
2

{
ϕRn,pq(ξ, η)

ϕSn(ξ, η)

}
∂Gn

∂ξ

∣∣∣∣∣
ξ=ξ±

p∗

dη, (A.1)

{
BR±np∗,pq
BS±np∗

}
= ∓

∫ ξ+
p∗

ξ−
p∗

{
ϕRn,pq(ξ, η)

ϕSn(ξ, η)

}
∂Gn

∂η

∣∣∣∣∣
η=±w

2

dξ, (A.2)

WR
n,pq = iωθpqfn

∫ ηq+1

ηq

[
Gn|ξ=ξ−p − Gn|ξ=ξ+p

]
dη, (A.3)

WS
np∗ = Adn

∫ w
2

−w
2

[
e−iknξGn

∣∣
ξ=ξ+

p∗
− e−iknξGn

∣∣
ξ=ξ−

p∗

]
dη, (A.4)

Imposing the boundary conditions (22a)-(22e) to the radiation and scattering385

potentials (32)-(33) yields:386

∂ϕRn,pq
∂x

= 2
∂

∂x

[
P∑

p∗=1

{
WR+

np∗,pq +WR−
np∗,pq + BR+

np∗,pq + BR−np∗,pq
}

+WR
n,pq

]
=

=

{ −iωθpqfn, on Spq, (A.5a)

0, on Sp̃q̃, p̃ 6= p ∨ q̃ 6= q, (A.5b)
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387

∂ϕRn,pq
∂y

=
∂

∂y

[
P∑

p∗=1

{
WR+

np∗,pq +WR−
np∗,pq + BR+

np∗,pq + BR−np∗,pq
}

+WR
n,pq

]
=

= 0, on Sp̃,

(A.5c)
388

∂ϕSn
∂x

= 2
∂

∂x

[
P∑

p∗=1

{
W+S

np∗ +WS−
np∗ + B+S

np∗ + B+S
np∗ +WS

np∗

}]
=

= Adne
−iknx

±
p , on Sp̃q̃,

(A.6a)

389

∂ϕSn
∂y

=
∂

∂y

[
P∑

p∗=1

{
W+S

np∗ +WS−
np∗ + B+S

np∗ + B+S
np∗ +WS

np∗

}]
=

= 0, on Sp̃,

(A.6b)

390

p̃ = 1, ..., P, q̃ = 1, ..., Q.

Expressions (A.5a)-(A.6b) form two systems of 4×P integro-differential equa-391

tions whose unknowns are respectively ϕRn,pq and ϕSn evaluated on the bound-392

ary of the gate farm. Consider the case where the index of the summation393

p∗ is equal to p̃. The integrals inside (A.5a)-(A.6b), given by394

∂

∂x

{
WR±

np̃,pq

WS±
np̃

}
,

∂

∂y

{
BR±np̃,pq
BS±np̃

}
(A.7)

are hypersingular when η = ±y and ξ = ±x. In this case, the inversion395

between the outer derivative and the integral sign is possible by means of the396

Hadamard finite-part integral H
∫

.397

Recalling the expression of the Hankel function H
(1)
1 (Gradshteyn & Ryzhik398

[26])399

H
(1)
1 (α) = − 2i

απ
+Rn(α), (A.8)

where:400

Rn(α) =J1(α) +
i

π

{
2J1(α)

(
lnα

2
+ γ

)
− α

2
−

∞∑
k=2

(−1)k+1 (α/2)2k−1

k!(k − 1)!

(
1

k
+ 2

k−1∑
m=1

1

m

)}
,

(A.9)
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with J1(α) the Bessel function of the first kind and order 1 and γ the Euler-401

Mascheroni constant, the integrals in (A.7 ) can be rewritten as:402

∂

∂x

{
WR±

np̃,pq

WS±
np̃

}
= ± 1

2π
H

∫ w
2

−w
2

{
ϕRn,pq

ϕSn

}
ξ=ξ±p̃

(y − η)−2 dη ∓

{
LR±(ϕRn,pq)

LS±(ϕSn)

}
on Sp̃q̃,

(A.10)

∂

∂y

{
BR±np̃,pq
BS±np̃

}
± 1

2π
H

∫ ξ+p̃

ξ−p̃

{
ϕRn,pq

ϕSn

}
η=±w

2

(x− ξ)−2 dξ ∓

{
T R±(ϕRn,pq)

T S±(ϕSn)

}
on Sp̃,

(A.11)

where:403 {
LR±(ϕRn,pq)

LS±(ϕSn)

}
=

∫ w
2

−w
2

{
ϕRn,pq

ϕSn

}
ξ=ξ±p̃

kniRn (kn|y − η|)
4|y − η|

dη, (A.12)

{
T R±(ϕRn,pq)

T S±(ϕSn)

}
=

∫ ξ+p̃

ξ−p̃

{
ϕRn,pq

ϕSn

}
η=±w

2

kniRn (kn|x− ξ|)
4|x− ξ|

dξ. (A.13)

Note that when |y−η| → 0 and |x−ξ| → 0, Rn (kn|y − η|) ' |y−η| ln |y − η|404

and Rn (kn|x− ξ|) ' |x − ξ| ln |x− ξ|, hence, both L±,(R,S) and T ±,(R,S) are405

not singular. In order to simplify notations, rewrite (A.10)-(A.11) as:406

∂

∂x

{
WR±

np̃,pq

WS±
np̃

}
=

{
IR±np̃,pq
IS±np̃

}
,

∂

∂y

{
BR±np̃,pq
BS±np̃

}
=

{
HR±
np̃,pq

HS±
np̃

}
, (A.14)

define xp and ξp as follows:407

xp = x− (p− 1)L, ξp = ξ − (p− 1)L, (A.15)

and introduce the dimensionless variables denoted by primes:408

η′ =
2η

w
, y′ =

2y

w
, ξ′p =

ξp
b
, x′p =

xp
b
. (A.16)

The radiation and scattering potentials on the boundary of each array p̄ =409

1, ...P, can be expressed in terms of the new functions f and g each defined410
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in the interval [−1, 1]:411 {
ϕRn,pq(ξ = ξ±p̄ , η)

ϕSn(ξ = ξ±p̄ , η)

}
=

{
ϕRn,pq(ξp̄ = ±b, η)

ϕSn(ξp̄ = ±b, η)

}
=

{
fR±np̄,pq(η

′)

fS±np̄ (η′)

}
, (A.17)ϕRn,pq(ξ, η = ±w

2
)

ϕSn(ξ, η = ±w
2

)

 =

{
gR±np̄,pq(ξ

′
p̄)

gS±np̄ (ξ′p̄)

}
. (A.18)

According to (A.15), (A.16), (A.17) and (A.18), expressions (A.1) and (A.2)412

become:413 {
WR±

np∗,pq

WS±
np∗

}
= ∓w

2b

∫ 1

−1

{
fR±np∗,pq

fS±np∗

}
∂Gn

∂ξ′p∗

∣∣∣∣∣
ξ′
p∗=±1

dη′, (A.19)

{
BR±np∗,pq
BS±qp∗

}
= ∓2b

w

∫ 1

−1

{
gR±np∗,pq

gS±np∗

}
∂Gn

∂η′

∣∣∣∣∣
η′=±1

dξ′p∗ , (A.20)

while the expressions (A.10)-(A.11) including the singular part can be written414

as:415 {
IR±np̃,pq
IS±np̃

}
= ± 1

wπ
H

∫ 1

−1

{
fR±np̃,pq

fS±np̃

}
(y′ − η′)−2 dη′ ∓

{
LR±(fR±np̃,pq)

LS±(fS±np̃ )

}
, (A.21){

HR±
np̃,pq

HS±
np̃

}
= ± 1

2πb
H

∫ 1

−1

{
gR±np̃,pq

gS±np̃

}
(x′p̃ − ξ′p̃)−2 dξ′p̃ ∓

{
T R±(gR±np̃,pq)

T S±(gR±np̃ )

}
.

(A.22)

In order to solve the hypersingular integrals, let us seek solutions of the416

type:417 {
fR±np̄,pq

fS±np̄

}
=

M∑
m=0

{
αR±nmp̄,pqPmθpq

αS±nmp̄Pm

}
, (A.23){

gR±np̄,pq

gS±np̄

}
=

M∑
m=0

{
βR±nmp̄,pqPmθpq

βS±nmp̄Pm

}
, (A.24)

where αR±nmp̄,pq, α
S±
nmp̄, β

R±
nmp̄,pq and βS±nmp̄ are unknown complex constants, Pm418

are the Legendre polynomials of order m with m ∈ N and M is a finite in-419

teger. The proposed expansion is motivated by the works of Renzi & Dias420
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[9] and Parsons & Martin [20] who have used Chebyshev polynomials to rep-421

resent scattering and radiation potential on the ”thin-gate” surface. This422

expansion respects the behaviour of the jump in potential ∆ϕ near the end-423

points of the flap, i.e. ∆ϕ → 0 (Renzi & Dias [9]). However, differently424

from the case of the thin gate, the behaviour at the corners of the gate farm425

(i.e. the counterpart of the ”end-points”) is unknown, hence we can’t use426

Chebyshev expansion.427

Legendre polynomials are advantageous in that, the related hypersingular428

integral, interpreted as a finite-part integral, can be evaluated in the closed429

form. Another feature of using Legendre polynomials is that the values of430

the potential can be determined throughout a low computation effort; see for431

example Kolm & Rokhlin [28], Yang [29] and Carley [30], who also employ432

Legendre polynomials.433

By definition of Hadamard integral, the hypersingular integrals inside ex-434

pressions (A.21)-(A.22) then become:435

H

∫ 1

−1

{
fR±np̃,pq

fS±np̃

}
(y′ − η′)−2 dη′ =

d

dy′
P

∫ 1

−1

{
fR±np̃,pq

fS±np̃

}
(y′ − η′)−1 dη′, (A.25)

H

∫ 1

−1

{
gR±np̃,pq

gS±np̃

}
(x′p̃ − ξ′p̃)−2 dξ′p̃ =

d

dx′
P

∫ 1

−1

{
gR±np̃,pq

gS±np̃

}
(x′p̃ − ξ′p̃)−1 dξ′p̃, (A.26)

where P
∫

is the Cauchy principal-value integral. Now consider the integral436

relation (Kaya & Erdogan [31] expression (27)):437

P

∫ 1

−1

Pm(ψ)

ψ − τ
dψ = −2Qm(τ), −1 < τ < 1 (A.27)

where Qm are the Legendre functions of the second kind and order m. Sub-438

stitution of the series expansions (A.23)-(A.24) in the (A.25)-(A.26) yields:439

d

dy′
P

∫ 1

−1

{
fR±np̃,pq

fS±np̃

}
(y′ − η′)−1 dη′ =

=
M∑
m=0

{
αR±nmp̃,pqθpq

αS±nmp̃

}[
−2(m+ 1)

y′Qm(y′)−Qm+1(y′)

1− y′2

]
,

(A.28)
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440

d

dx′
P

∫ 1

−1

{
gR±np̃,pq

gS±np̃

}
(x′p̃ − ξ′p̃)−1 dξ′p̃ =

=
M∑
m=0

{
βR±nmp̃,pqθpq

βS±nmp̃

}[
−2(m+ 1)

x′Qm(x′)−Qm+1(x′)

1− x′2

]
.

(A.29)

Finally the hypersingular integrals are solved in terms of Legendre polyno-441

mials, hence (A.21) and (A.22) become:442 {
IR±np̃,pq
IS±np̃

}
=

M∑
m=0

{
αR±nmp̃,pqθpq

αS±nmp̃

}{
ĨR±m
ĨS±m

}
, (A.30){

HR±
np̃,pq

HS±
np̃

}
=

M∑
m=0

{
βR±nmp̃,pqθpq

βS±nmp̃

}{
H̃R±
m

H̃S±
m

}
, (A.31)

where:443 {
ĨR±m
ĨS±m

}
= ∓ 2

wπ

[
(m+ 1)

y′Qm(y′)−Qm+1(y′)

1− y′2

]
∓

{
LR±(Pm)

LS±(Pm)

}
, (A.32){

H̃R±
m

H̃S±
m

}
= ∓ 1

bπ

[
(m+ 1)

x′Qm(x′)−Qm+1(x′)

1− x′2

]
∓

{
T R±(Pm)

T S±(Pm)

}
. (A.33)

The expressions (A.19) and (A.20) which include the functions f and g, after444

substitution of (A.23)-(A.24) are given by:445 {
WR±

np∗,pq

WS±
np∗

}
= ∓w

2b

M∑
m=0

{
αR±nmp∗,pqθpq

αS±nmp∗

}∫ 1

−1

Pm(η′)
∂Gn

∂ξ′p∗

∣∣∣∣∣
ξ′
p∗=±1

dη′ =

=
w

2b

M∑
m=0

{
αR±nmp∗,pqθpq

αS±nmp∗

}{
W̃R±

mp∗

W̃S±
mp∗

}
,

(A.34)

446 {
BR±np∗,pq
BS±np∗

}
= ∓2b

w

M∑
m=0

{
βR±nmp∗,pqθpq

βS±nmp∗

}∫ 1

−1

Pm(ξ′p∗)
∂Gn

∂η′

∣∣∣∣∣
η′=±1

dξ′p∗ =

=
2b

w

M∑
m=0

{
βR±nmp∗,pqθpq

βS±nmp∗

}{
B̃R±mp∗
B̃S±mp∗

}
.

(A.35)

31



Define the normalized boundaries S ′pq and S ′p as follows:447

S ′pq =

{
x′p = ±1, y ∈

[
2yq
w
,
2yq+1

w

]}
, (A.36)

S ′p =
{
x′p ∈ [−1, 1], y′ = ±1

}
, (A.37)

the two system (A.5a)-(A.5c) and (A.6a)-(A.6b) can be rewritten as:448

∂

∂x′p̃

{
P∑

p∗=1

M∑
m=0

{
α∓,Rnmp∗,pqθpqW̃

∓,R
mp∗ + βR+

nmp∗,pqθpqB̃R+
mp∗ + βR−nmp∗,pqθpqB̃R−mp∗

}
+

P∑
p∗=1
p∗ 6=p̃

M∑
m=0

αR±nmp∗,pqθpqW̃R±
mp∗ +WR

n,pq

}
+

M∑
m=0

αR±nmp̃,pqθpqĨR±m =

=

−
iωθpqfn

2
, on S ′pq, (A.38a)

0, on S ′p̃q̃, p̃ 6= p ∨ q̃ 6= q, (A.38b)
449

∂

∂y′

{
P∑

p∗=1

M∑
m=0

{
β∓,Rnmp∗,pqθpqB̃

∓,R
mp∗ + αR+

nmp∗,pqθpqW̃R+
mp∗ + αR−nmp∗,pqθpqW̃R−

mp∗

}
+

P∑
p∗=1
p∗ 6=p̃

M∑
m=0

βR±nmp∗,pqθpqW̃R±
mp∗ +WR

n,pq

}
+

M∑
m=0

βR±nmp̃,pqθpqH̃R±
m =

= 0, on S ′p̃,

(A.38c)

450

∂

∂x′p̃

{
P∑

p∗=1

M∑
m=0

{
α∓,Snmp∗W̃

∓,S
mp∗ + β+S

nmp∗B̃+S
mp∗ + βS−nmp∗B̃S−mp∗ +WS

np∗

}
+

P∑
p∗=1
p∗ 6=p̃

M∑
m=0

αS±nmp∗W̃S±
mp∗

}
x′p̃=±1

+
M∑
m=0

αS±nmp̃ĨS±m =

=
Adne

−iknx
±
p̃

2
, on S ′p̃q̃,

(A.39a)
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451

∂

∂y′

{
P∑

p∗=1

M∑
m=0

{
β∓,Snmp∗B̃

∓,S
mp∗ + α+S

nmp∗W̃+S
mp∗ + αS−nmp∗W̃S−

mp∗ +WS
np∗

}
+

P∑
p∗=1
p∗ 6=p̃

M∑
m=0

βS±nmp∗B̃S±mp∗

}
x′p̃=±1

+
M∑
m=0

βS±nmp̃H̃S±
m =

= 0, on S ′p̃,

(A.39b)

452

p̃ = 1, ..., P, q̃ = 1, ..., Q.

Expressions (A.38a)-(A.38c) and (A.39a)-(A.39b) define two systems of lin-453

ear equations whose unknowns are respectively αR±nmp∗,pq and βR±nmp∗,pq for the454

radiation problem, αS±nmp∗ and βS±nmp∗ for the scattering problem. Each system455

has 4×P ×M + 1 unknowns, hence M + 1 evaluation points must be chosen456

for each side of the single array. A good choice for the collocation points457

(xp,j, yj) is given by the roots of Chebyshev polynomials of the first kind458

(Parsons & Martin [20] - Kaya & Erdogan [31]) i.e.459

(xp,j, yj) =

(
b cos

(2j + 1)π

2M + 2
− (p− 1)L,±w

2

)
, (A.40)

(xp,j, yj) =

(
±b− (p− 1)L,

w

2
cos

(2j + 1)π

2M + 2

)
, (A.41)

j = 0, 1, ...,M , p = 1, ..., P. (A.42)

Systems (A.38a)-(A.38c) and (A.39a)-(A.39b) can be solved numerically for460

each modal order n = 0, 1, ..., therefore the radiation potential φRpq and the461

scattering potential φS on the boundary of the p̃th array, are given by:462 φRpq
(
x±p̃ , y, z

)
φRpq

(
x,±w

2
, z
) =

∞∑
n=0

M∑
m=0

Zn(z)θpq

{
Pm (y′)αR±nmp̃,pq

Pm
(
x′p̃
)
βR±nmp̃,pq

}
, (A.43)

φS
(
x±p̃ , y, z

)
φS
(
x,±w

2
, z
) =

M∑
m=0

Z0(z)

{
Pm (y′)αS±0mp̃

Pm
(
x′p̃
)
βS±0mp̃

}
, (A.44)

463

x ∈ [−b+ (p̃− 1)L, b+ (p̃− 1)L], y ∈
[
−w

2
,
w

2

]
.

Note that the complex coefficients αS±nmp̃ and βS±nmp̃ for n = 1, 2, ..., are equal464

to zero.465
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Table 1: Gate farm characteristics.

parameters symbol Value

gate width a 3 m
gate thickness 2b 1.5 m
distance between arrays L 10 m
moment of inertia I 72000 kg m2

buoyancy restoring torque C 300000 kg m2s−2

gate mass Mg 2600 kg
water depth h 5 m
density of water ρ 1000 kg m−3

Table 2: Eigenfrequency ω1 of the single gate in the open sea for different values of 2b.

2b (m) ω1 (rad/s) Period (s)

0.1 0.89 7.05
0.45 0.86 7.30
0.8 0.84 7.47
1.15 0.82 7.65
1.5 0.81 7.75
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Table 3: Natural frequencies of the out-of-phase modes. Note that 3.3̄ represents the
number 3.333...

ω (rad/s) Period (s) K Mode

1.013 6.199 2.5 N11

1.012 6.205 2.5 N12

1.011 6.211 2.5 N13

0.934 6.723 3.3̄ N21

0.931 6.745 3.3̄ N22

0.929 6.760 3.3̄ N23

0.814 7.715 5 N31

0.805 7.801 5 N32

0.793 7.919 5 N33

0.679 9.248 10 N41

0.644 9.751 10 N42

0.625 10.048 10 N43

Table 4: Natural frequencies of the in-phase modes.

ω (rad/s) Period (s) Mode

0.395 15.898 N(ω2)
0.366 17.158 N(ω1)
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Table 5: Re{θ11} at the resonance frequencies.

Re{θ11} (rad) Mode

5.18 N11

−3.3 N12

−4.02 N13

1.83 N31

−7.98 N32

−14.11 N33

−9.04 N(ω1)
−9.68 N(ω2)
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