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Abstract

We consider a flap gate farm, i.e. a series of P arrays, each made of () neigh-
bouring flap gates, in an open sea of constant depth, forced by monochro-
matic incident waves. The effect of the gate thickness on the dynamics of
the system is taken into account. By means of Green’s theorem a system
of hypersingular integral equations for the velocity potential in the fluid do-
main is solved in terms of Legendre polynomials. We show that synchronous
excitation of the natural frequencies of Sammarco et al. (Applied Ocean Re-
search 43, 206-213, 2013) yields large amplitude response of gate motion.
This aspect is fundamental for the optimisation of the gate farm for energy
production.
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1. Introduction

The flap gate systems, i.e. one or more floating bodies hinged at the
bottom of the sea and rolling under incoming waves, have recently proved
very effective to extract energy from the sea (Whittaker et al. [1]). The
mechanical behaviour of a rolling flap gate was initially investigated during
the design phase of the storm barriers for protecting Venice Lagoon from
flooding. For one array of gates spanning the entire width of a channel,
experiments showed that the gates can be excited to oscillate at half the
incident wave frequency with a very large amplitude (Mei et al.[2]). In that
case, resonance occurs through a nonlinear mechanism when the frequency
of the incoming wave is twice the eigenfrequency of the system (Sammarco et
al. [3]-]4]). Li & Mei [5] found the (Q —1) eigenfrequencies of one array made
by () identical gates spanning the full width of a channel. Later, Sammarco
et al. [6] in Part 1 of this paper considered a P x @ gate farm, and showed
that there exist P x (@ — 1) eigenfrequencies and associated modal forms.
If the gates are not completely confined in a channel, radiation damping is
always present, i.e. wave trapping is imperfect and therefore linear resonance
of the eigenmodes is possible (Adamo & Mei [7]).

In this paper a linear theory is developed in order to analyse the resonant
behaviour of the P x () gate farm in an open sea of constant depth. Unlike
in previous models available in the literature (Renzi et al. [8], Renzi & Dias
9]-[10]-[11]-[12]-[13], Renzi et al. [14]-[15], Sarkar et al. [16]), all based on
the ”thin-gate hypothesis“ (Linton & Meclver [17]), in this work the gate
thickness is assumed finite, i.e. comparable with the other gate dimensions.
By means of Green’s theorem a system of hypersingular integral equations
for the radiation and scattering potential on the boundaries of the gate farm
is obtained. Achenbach & Li [18] and Martin & Rizzo [19] adopted a similar
procedure to solve crack and acoustic problems, while Parsons & Martin [20]-
[21]-[22] used this method to solve scattering and trapping of water waves by
rigid plates. Subsequently, Martin & Farina [23] and Farina & Martin [24]
used the hypersingular integral equation approach to solve the radiation and
scattering problem for a submerged horizontal circular plate.

Here we find the solution in terms of Legendre polynomials. The Haskind-
Hanaoka relation is utilised to check the accuracy and the computational
cost of the semi-analytical method. We show that in the open sea there are
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P x (@ — 1) out-of-phase natural modes similar in shape to the case of the
gate farm in a channel. The irregular frequencies (Linton & Mclver [17] - Mei
et al [25]) are then evaluated. We also investigate the response of the gate
farm to plane incident waves of varying frequency. The gate farm is designed
to work in the nearshore, hence normal incidence of the waves is assumed.
Large amplitude motions of the gates occur when the incident wave frequency
approaches the eigenfrequencies. Hence a linear resonant mechanism of the
natural modes in the open sea is effective. Finally, the P x ) gate farm and
a system of P x () isolated and independent gates are compared in terms of
energy production.

2. Governing equations for the P X @ gate farm

As shown in Figure 1, consider P arrays of neighbouring flap gates.
Each array, p = 1,2, ..., P, is composed by @ identical floating gates (¢ =
1,2,...,Q). Let a and 2b be, respectively, the width and the thickness of each
gate and let w = Qa. Consider a three dimensional Cartesian coordinate
system with the z and y axes lying on the mean free surface and the z axis
pointing vertically upward. The y-axis bisects the first array (p = 1), while
the z-axis is orthogonal to the arrays and is centred among them. All the
gates of the pth array are hinged on a common axis lying on x = (p — 1)L,
2z = —h, where L is the distance between the arrays and h the sea constant
depth. The symbol G,, denotes the gth gate of the pth array, while ©,,
indicates the angular displacement of G, positive if clockwise. Monochro-
matic plane normal incidence waves of amplitude A, period T" and angular
frequency w = 27/T, coming from z = +o0, force the gates to oscillate back
and forth.

Let ©,(y,t) indicate the angular displacement function of the pth array:

O,(3:8) = {Op1(1), s Op(t), - Oy (1)} &
©,(y,t) is a piece-wise function of y, still unknown. The analysis is performed
in the framework of irrotational flow and in the limit of small-amplitude
oscillations. Therefore, the velocity potential ®(z,y, z,t) must satisfy the
Laplace equation in the fluid domain Q:

Ve =0, (2,9,2)€Q. (2)
On the free surface, the kinematic-dynamic boundary condition reads:

0?P 0P

W‘FQ@—O, Z—O, (3)

3
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Figure 1: Plan geometry and side view.
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while the no-flux condition on the seabed requires:

00

On the p =1, ..., P arrays the kinematic boundary conditions are:

o® 00, w ow

o= Stth),  w=(p-DLEb ye|-.5] zel-h0, ()
0]

5 = vellp-1L—b(p-DL+b, y=+5, =€ [-h0].

(6)

Note that the no flux condition (6) is given on the finite edges of each array
facing the open sea, without channel walls. The time dependence of ® and
©, can be separated by assuming a harmonic motion of given frequency w:

O(z,y, 2,t) = Re{o(z,y, 2)e ™'}, (7)
O,(y,t) = Re{f,(y)e ™"} (8)

3. Semi-Analytical solution

The linearity of the problem allows the following decomposition of the
potential ¢(z,y, 2):

P Q
d=0"+0"+> > op 9)

p=1 g¢=1

where: Ag e k(h + 2)
I 1Agc +2) ik
- _ 1
¢ w  chkh 7 (10)

is the potential of the plane incident waves incoming from z = +o00, ¢° is the
potential of the scattered waves and ¢fq is the potential of the radiated waves
due to the moving gate G,, while all the other gates are at rest. In (10),
k denotes the wave number, root of the dispersion relation w? = gkth kh,
while i is the imaginary unit. ch, sh and th indicate shorthand notation
respectively for cosh, sinh and tanh. According to the separation (7)-(8) and
the decomposition (9), both ¢£f1 and ¢° must satisfy the Laplace equation
(2), the kinematic-dynamic boundary condition on the free surface (3), and
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the no-flux condition on the seabed (4). Let z indicate the z-coordinate of
the rest position of the vertical surface of the pth array:

vf=(p—1)L+b. (11)

p

Each gate G, spans a y-width given by:

w
Y€ WaYen] va=(@-1Da—-5, ¢=1,..Q. (12)
The kinematic boundary conditions on the gate-farm surfaces then become:

0 zll%q _ { —iwlpy (2 + h), T = xpi7 Y € [Ygr Ygr1], 2 € [=D,0], (13a)

ox 0, elsewhere on the gate farm, (13b)
oplt B w
a—;q:O, x € [xp,x}ﬂ,y::ta, z € [=h,0], (13c¢)
¢ olod
% = _%7 T = x;tv ye [yququl}v z € [—h,O], (13d>
0¢° _ w
3_y:07 ZEE[xp,I;],y::tg,ZE[—h,O], (1?)6)

p=1,...P, g=1,..,0Q.

Finally ¢! and ¢° must be outgoing when /z? + y? — oc.
Separation of variables gives:

(32l sn)ee

where Z,,(z) represents the normalized eigenfunctions:

Z(2) = V2ch ky(h + 2) (15)

(h+ %sh2k,h) "

which satisfy the orthogonality property

0
/ Z0(2)Zm(2)dz = Opm, n,m=0,1,..., (16)

—h
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with §,,, the Kronecker delta. In (15), k, are the roots of the dispersion
relation:

(,L)2 = gk’oth koh,

2 _ 7 7 7 B (17)
w” = —gk, tan k,h, k, =ik,, n=1,...,00.

Following (14), for each of the goﬁpq, ¢ the Laplace equation becomes the
Helmholtz equation

R (g
£ Emn Lo i = (v R2). (1)
(2, y)
Now define the boundary Sy, of the gate G, as
Spq - {CL’ - m;;t’ Yy e [yqa yq—i—l]} ) (19>

and the end boundaries of the pth array of width 2b

Sp:{xe[:vlj,x;],y::t%}. (20)

We can so refer to the entire gate farm boundary Sg as:

P Q P
Se=Y Y SU> 5, (21)
p=1

p=1 ¢q=1

The boundary conditions (13a)-(13e) become

Oy [ —iwbpfn, on Sy (22a)
ox |0, elsewhere, (22b)
Opn
a—y’pq =0, on S, (22¢)
6805 —iknx
B = Ad,e " on S, (22d)
S
a@% =0, on S, (22e)

7
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where the coefficients f,, and d,, are
\/5(1 — ch k,h + k,hsh k,h)
(h + Lsh2k,h)"? k2
Gk (h+ %sh2k,h)"?
V2wch k,h

fn:

n=0,1,.. (23)

d, =

Son, m=0,1,.. (24)

Note that in (24) only do is non-zero. We also require ¢, and ¢; to be
outgoing as \/x? + y?> — o0o. The solution of the boundary value problem
defined by the Helmholtz equation (18) and by the boundary conditions
(22a)-(22¢) can be found by using Green’s theorem and Green’s functions.

Consider the plane fluid domain ¥ enclosed within the boundary of the gate
farm Sg and a circle of large radius S, surrounding the gate farm. Define
the Green function G, (z,y;&,n) as the solution of the Helmholtz equation:

LG, (r,y;6,m) =0, (z,y) €Y, (z,y) # (&), (25)

with )
G, ~ Py Inr, r—0, (26)

where r = \/(z — €)%+ (y — 1)
G, must be outgoing as r — 0o, hence the solution of (25)-(26) is

Gu(z,y:&n) = _ZH (Kt ). (27)

In the latter, Hél) is the Hankel function of the first kind and order zero.
Application of Green’s theorem yields

// H gpnm }EG (z,y;&,m) — (x,y;f,n)ﬁ{ ¢£p§<x’y)}] ¥ =
on (2,y) ©n(,y)

SOnpq( ) aG (33,?./,5,77) a soﬁpq(‘ray)
= ST Gl g€ n) o ds
Fovss H R ,w} o ( “”>an{ ¢5<x,y>}]

where ¥ = X\ (£,7), S. is a semicircle of radius € — 0 centred at (£,7) and
finally 0(-)/0n is the derivative of (-) in the direction of the outward normal
to the boundaries of 3.
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Because of the governing equations (18)-(25) and the behaviour of G,, for
r — 0 (26) and r — 00, equation (28) simplifies to (see also Linton & Mclver
[17] - Mei et al [25])

P& | 0G,, 0 [ enp&sn) L[ (. y)
: EARE R s — =47 —0,
/SG H 905(5,77)} on 5n{ wi(é,n)}] 2{ wi(w,y)} ’
(ZL’,y) € SG,
(29)

where the line integral is now evaluated in terms of (£, ) on the boundary Sg.
. . . R . . S

The radiation potential ¢, and the scattering potential ¢, are expressed

in integral form. Define f;t and 7, as follows:

f;t = l,;l:’ Mg = Yq- (30)
Since:
9 s
a :Fa5 on pq
$a—n on S,

substitution of the boundary conditions (22a)-(22e) inside equation (29),
yields:

o (T, y) =
P w L
: oG 5 oG
=2 —/ ol (Em) = d77+/ A () e dn
pzjl{ e 08 Jeer, —w OC Jee-,
e oG &e oG
/,,* e G| der [T lnEngy|  d
Tg+1
+ 2iwl,, £ / <Gn]£:§; - Gn|£:£p+) dn,
Mq
(x,y)ESG,
(32)



127

128

129

131

132

133

134

135

136

137

138

139

140

141

142

Pn(r,y) =
P w z
: oG ; oG
=2 —/ P& )5 dn+/ pn(&m) | dn
pzZ:l{ % 08 g=¢, 5 08 E=¢€
& o 0G, & o 0G,
- [T enen e e [TelenT| (33)
- =% vt =3

Note that (32) and (33) are more complex than their thin-gate counterparts
of Renzi et al. [14]. Since the radiation potential ¢f =~ and the scattering
potential ©7 on the boundary of the gate-farm are unknown, the first four
integrals inside the expressions (32)-(33) are still unknown. The integrals
inside the summations are evaluated on the boundary of each array, except
for the last integral of (32) which is evaluated on the boundary of the moving
gate Gp,. Imposing the boundary conditions (22a)-(22e) to (32)-(33) yields
a system of hypersingular integral equations for goﬁpq and ¢° evaluated on
the boundaries of the gate farm. The solution of the system is found by
expanding gpﬁpq and ¢? in terms of Legendre polynomials P, of integer order
m =0,..., M (see Appendix for details). Finally the radiation potential qbfq
due to the motion of the gate Gy, on the lateral surfaces of each array
p=1,..., P, is expressed as follow:

R

+
E) | o (0t
w = Zn(2)0 P s (34)
(el 2) [ 2 2 PO g

while the scattering potential on the same surfaces is given by:

PaEns) | A (Eaess }
w o\ =S Zyz Jome 35
o (2 ) [~ 2 ”{Pm( )5 &

re[-b+F-1)Lb+F-1)L], ye [—%%}

10
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where x5 and y’ are dimensionless variables defined in [—1,1]:

/ r— (]5 — 1>L / 2y

AP e — =7 36
P b ) y w ) ( )
while afnfp - agip, fnfﬁm and 5% 5 are complex constants determined by
solving the linear systems (A.38a)- (A 38c) and (A.39a)-(A.39b) with a nu-

merical collocation scheme (see Appendix for further details).

X

3.1. Gate dynamics

Consider each gate G, coupled with an energy generator at the hinge.
Assume that the generator exerts a torque proportional to the angular ve-
locity of the gate G, I/pto(;)pq, where v, is the power take-off coefficient.
Conservation of angular momentum requires:

. ) Ya+1 0
10pq + COpg + Vp1oOpg = p/ dy/ |:<D|m:x2' - (I)’:p:z; . (z+h)dz, (37)
Yq —h

where I is the moment of inertia of the gate about the hinge and C' is the
net restoring torque:

C = pg(I, + 1)) = Myg(zy + h), (38)

Ifx://SAa:zdxdy, IZV:///V(erh)dV, (39)

where S4 denotes the cross sectional area of the gate at the water line and
V' the water volume displaced by the gate in its rest vertical position. M,
and z, are respectively the mass and the vertical coordinate of the center of
mass of the gate. For the geometry of Figure 1, I and IV are:

with:

2ab>
3

Using (7)—(9) and the expressions of the potentials (10), (34) and (35), the
momentum equation (37) gives

I = , 1V = abh®. (40)

M@

P
(—wQI +C — iwupto Z

p=1

2 : _
Opg (W?pbd 4 iwrhd) = Fp, (41)

1

3
™
Il

p=1,...P; q=1,..0Q,

11
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where

pqg — T

“ 2Agae*0P=DE sin kob(1 — ch koh + kohsh koh) N
P wk2ch koh

Yg+1 OO 5 2y
+f0/ aOmp_OéOmp)P (U)) dy}

is the exciting torque due to the incident and scattered waves, while:

:upq pIm {Z fn /qurl Z nmppq 7}1277_1191311) Pm (?) dy} (4?))

and

Yq+1 M R 2y
Vog = _pRe an/ Z nmppq nn_mpPQ) Pm (w) dy (44>
n=0 m=0

represent, respectively, the added inertia and the radiation damping of the
gate G, due to the unit rotation of the gate Gz;. Equation (41) can be
written in matrix form:

[(_WQI +C — inptO) I- WQM( IWN } {9} F <45>

where {9} is a column vector of length s = P x ) that contains all the
angular displacements of the gates:

(o)
)=} (1)
{0} )

I is the identity matrix of size s x s, M and N are respectively the added
inertia matrix and the radiation damping matrix also of size s x s:

M! ... ML N! ... N
M= : .. ,N=| ¢+ 0 ], (47)
MP ... ME NP ... NE

12
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where both M and NI are symmetrical square matrices of size @ x Q:

1 1 1 1
oy oo Moo R %o

Mj = | o NE= (48)
Q Q Q Q
N [ 7S Zad

Finally, once the angular displacements of the gates are known, the average
power absorbed over a wave cycle by the gate farm, is equal to:

.
P =203 1ol (49)

3.2. Eigenfrequencies and eigenvectors

The momentum equations given by (45) are equivalent to a system of
P x @ linear damped harmonic oscillators with given mass, stiffness and
damping. In order to find the eigenfrequencies of the system, the exciting
torque and the damping terms are set equal to zero. System (45) becomes

homogeneous:
[(—w?T +C) I - w*M(w)] {6} = 0. (50)

To find non-trivial solutions the following implicit non linear eigenvalue con-
dition must then be solved:

det [(—w?I + C) I — w*M(w)] = 0. (51)

Once the eigenfrequencies are known, the respective modal forms can be
obtained by setting the displacement of the gate G;; = 1 and then solving
system (50).

3.3. The radiation potential in the far field
Consider the polar coordinates r and ~ defined by

(x,y) = r(cos~y,sin~y). (52)

Following a similar procedure as in Renzi & Dias [10], the radiation potential
in the far field (i.e. for » — 00), for unit rotational velocity of the gate G,
can be approximated as

_ —z'gqu(fy)ch k(h+ z) 2 in

R
pa(T27:2) = wch kh ThrC s (53)

13
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+ B(?Jp*,pqpm (5/*> e—z’k;[g cosy+4 sin] sinfy df

B wfnZ(O) /ntﬁ_1 (efik{[ber(pfl)L} cosy+nmsiny} efik{[b+(p71)L] cos'err]sinfy})

4g

Mg

P

= | B P () €777 E M siny d&}

dn,
(54)

represents the angular variation of the radially spreading wave (Mei et al.
[25]). The latter can be used to derive some useful formulas that relate the
hydrodynamic parameters.

3.4. The Haskind-Hanaoka relation for the gate farm
Consider the 3D Haskind-Hanaoka relation (Mei et al. [25])

F,

4
pg = _EPQAA;E(O)CQ»

(55)

where F),, is the exciting torque given by expression (42) while qu(O) repre-
sents the wave amplitude in the direction opposite to the incident waves

P
kZ(0 . .
qu(()) _ _CL ( ) Z {O&R+ e—zk[b+(p —1)L]

~ wafaZ(0)
29Q

2 g 00p*,pq

pr=1

(efik[flﬁ(pfl)L} o efik[bJr(pfl)L]) '

R_
— Q00p*,pq

o= ikl=b+(p*~1)L] }

(56)

Expression (55) has been used to check the numerical computation via the

relative error €

~ |Lhs. —r.hs.|

r.hus.|

14

Y

(57)
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where Lh.s. and r.h.s. refer to equation (55) itself. Taking M = 16 in (34)-
(35) we obtain a maximum relative error ¢ = O(1073) for expression (55).

4. Results and discussion

4.1. One gate in the open sea: the effects of the gate thickness

In order to evaluate the effects of the finite gate thickness 2b, the simplest
case of P = () = 1, i.e. the case of one gate in the open sea is considered.
Inertia, buoyancy and width of the gate, and water depth, are listed in Table
1. Different values of the thickness 2b have been chosen, i.e. 2b € [0.1;1.5] m.
The limit value of 2b = 0.1 m corresponds to the case where the ”thin-gate”
hypothesis can be applied (b/a < 1 - Renzi & Dias [9]). Figure 2 shows the
values of the added inertia u, the radiation damping v and the magnitude
of the exciting torque |F| versus the frequency of the incident waves for
different values of b. The effects of the gate thickness on the added inertia and
radiation damping are significant for w € [1,3.5]rad s™'. In particular, the
larger the gate thickness the larger the added mass and radiation damping.
As a consequence the eigenfrequency of the system decreases if the gate
thickness increases. The eigenfrequency w; of the single gate for five different
values of 20 is listed in Table 2.

4.2. The gate farm in the open sea

With reference to Figure 1, we consider P = 3 arrays each with () = 5
gates. The input parameters are defined in Table 1.

4.2.1. Eigenfrequencies and eigenvectors

The eigenvalue condition (51) has been solved in order to find the eigen-
frequencies of the system within a range of w from 0 to 1.2 rad s™!. The
frequency range includes the P x (Q — 1) = 12 eigenfrequencies of the out-
of-phase motion and the first two eigenfrequencies of the in-phase motion,
where the p-th array moves at unison. The numerical values of the eigen-
frequencies are listed in Table 3 for the out-of-phase motion and in Table
4 for the in-phase motion. Solution of the momentum equations (50) gives
the corresponding modal forms. Note that the generic out-of-phase natural
mode N;; follows the same definition of Sammarco et al. [6], that is: for
modes Nyy, Not, N31, and Nyp, each array has the same modal shape, but for
the central array (p = 2); modes Nya, Nog, N3o, and Ny, are characterized
by having the middle array (p = 2) with null angular displacement, while the

15
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Figure 2: Behaviour of the added inertia p (a), the radiation damping v (b) and the
magnitude of the exciting torque |F| (c) versus incident wave frequency for five different
values of the gate thickness 2b. 16
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last array (p = 3) is in opposite phase with respect to the first (p = 1); for
the remaining modes Ni3, Noz, N33, and N3, modal deformation is the same,
but for the middle array (p = 2), which is in opposition of phase with the
other two. N(w;) represents the in-phase natural mode characterized by the
middle array in opposite phase with respect to the first and the last array.
Similarly N(w,) represents the in-phase natural mode characterized by the
middle array (p = 2) with null angular displacements while the arrays p = 1
and p = 3 are in opposition of phase. Let K be the number of the gates
per modal wavelength of the first array, p = 1; the eigenfrequencies of the
out-of-phase modes decrease as K increases.

4.2.2. Irregular frequencies

Because of the geometry of the gate farm, the integral equations (32) and
(33) possess the so-called irregular frequencies when n = 0 (Linton & Mclver
[17] - Mei et al [25]).
Define the boundaries of the pth array as

Q
S = Z Spg U S,, (58)
q=1

and let 3, be the interior of S,. We can so define ], as the interior potential
that satisfy the Helmholtz equation in 3,

2 20 _q
Vi, + k', =0 in X, (59)

with boundary conditions
¢, =0 onS), (60)

The eigensolutions of the homogeneous Dirichlet problem (59)-(60) are found
by separation of variables:

nr[z — (p—1)L] i 2mmy (61)

/ .
0, = Apmsin
P o b w

where A, is an arbitrary constant and n,m = 0,1, ....
The corresponding eigenvalues are

k= ko = \/<%ﬂ>2+ (MTWY (62)
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while the related eigenfrequencies w,,, can be found via the dispersion rela-
tion
w2, = ghnmth kymh. (63)

These eigenfrequencies are the so-called irregular frequencies (Linton & Mclver
[17] - Mei et al [25]).

The lowest value of w,,, corresponds to the case of n =0 and m =1 and it
is equal to ~ 2 rad s7!, i.e. higher than the range of our interest. For this
reason we don’t need to exclude them from the analysis.

4.2.3. Forced response

Extensive computations have been carried out for the range of interest
of the incident wave frequencies w = 0.1 — 1.2rad s™* without the PTO.
The amplitude of the incident wave is A = 1m. Resonance occurs at eight
frequencies whose values are near the natural frequencies of the homogeneous
system previously calculated. Because of the direction of the incident wave,
orthogonal to the axes of the arrays, only the symmetric natural modes with
respect to the x-axis can be excited; i.e, P x (Q — 1)/2 = 6 out-of-phase
and 2 in-phase natural modes are resonated. Let w;; be the eigenfrequency
of the out-of-phase mode N;;. In Figure 3 we show the amplitude of the
angular displacements versus the incident wave frequency and indicate the
eigenfrequencies of the resonating natural modes. Note that the high and
unrealistic values of the peaks are related to the weakness of the radiation
damping corresponding to the resonance frequencies. In this case the gate-
farm is almost undamped and radiates low energy at infinity. On Figure 4
and Figure 5 the shapes of the gate-farm forced at the resonance frequencies
w;; are shown. Note that the number near each gate G,, represents Re{6,,}
normalized with respect to Re{f11}. The values of Re{6} at the resonance
frequencies are listed in Table 5.

4.3. The influence of the power take-off on the capture width

A parametric analysis is performed to investigate the effect of the power
take-off coefficient 1, on the generated power P over a wave cycle (see (49)).
Define the capture width ratio C'r as the ratio of the generated power P per
unit gate-farm width to the incident power per unit width of the crest (see
Renzi et al [15]):

P

O p—
P 1pgA2C,(P x Q)a’

(64)
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Figure 3: Gate amplitude response versus incident wave frequency and eigenfrequencies
of the natural modes symmetric with respect to the z-axis. (a) Array p = 1. (b) Array

=2 (c) A =3
p (c) Array p 19
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where () is the group velocity:

w 2kh
=1+ =),
Cy 2k< +sh2/~ch> (65)

Waves of amplitude A = 1 m are normally incident on the flaps. Differ-
ent values of the PTO coefficient have been chosen, i.e. vy, € [10% 10°]
kg m*s~'. Figure 6 shows the behaviour of the capture width ratio Cp
versus the incident wave frequency for three different values of the PTO co-
efficient. When v, = 10°kg m?s~! and w > 0.6 rad s, the capture width
ratio is equal to ~ 0.5 for a wide range of frequencies. Consider the case
of v, = 108kg m*s™! and the behaviour of the magnitude of the exciting
torque |Fp3| on each gate Gp3 shown in Figure 7: the behaviour of Cp is
quite similar to |Fp3|. In other words, the dynamics is dominated by the
exciting torque due to diffracted waves (see Renzi & Dias [10]). Differently,
the behaviour of the capture width ratio for v, = 10* kg m?s~', resembles
that of the amplitude of the angular displacements shown in Figure 3, hence
in this case the dynamics is dominated by the resonance effects.

4.4. Wave power generation and efficiency: (Px Q) gate farm versus (Px Q)
1solated gates

In this section the (P x )) gate farm and a system of (P x Q) isolated and
independent gates are compared in terms of energy production. The single

21
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Figure 6: Behaviour of the capture width ratio Cr versus incident wave frequency for
three different values of the PTO coefficient v,,. For large values of vp, the behaviour
of Cr is dominated by the exciting torque due to diffracted waves. Differently, for small
values of v, the behaviour of Cr is dominated by the resonance effects.
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Figure 7: Magnitude of the exciting torque |F3| on each flap gate Gps versus incident
wave frequency.
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flap gate has the same characteristics for both systems (see Table 1 for the
values).

Consider the PTO coefficient that maximize the power output for incident
wave frequency w = 0.9 rad s7!, i.e. a typical value in the Mediterranean
Sea. The optimal PTO coefficient for a system of isolated gates v, 1¢ can
be designed such that (Renzi & Dias [10])

C—(I 2]2
Vpto1G = \/[ ( tﬂ)w ] + 12~ 10°kg m?s™!, (66)
w

where p and v represent respectively the added inertia and the radiation
damping of a single isolated gate at w = 0.9 rad s™! (see Figure 2 for the
values). The optimal PTO coefficient for the gate farm v, qr is found
numerically by maximizing the function (49) for a fixed w. For w = 0.9 rad
s7Y Uptogr = 7 x 10°kg m®s™L. The difference between v, rq and vy, o
is related to the behaviour of the exciting torque. Inspection of the different
relations between radiation damping and exciting torque (Renzi & Dias [11]-
Mei et al [25]) shows that when w is far from resonance the larger the exciting
torque the larger the optimal PTO coefficient. In the present case the value
w = 0.9 rad s7! is very close to the peaks of the exciting torque for the gate
farm (see Figure 7), while is distant from the peak of the exciting torque for
a single isolated gate (see Figure 2). As a consequence, vy, ¢r is larger than
Upto,1:- Hereafter, both vy, or and vy, 1o are fixed.

Now define the capture width ratio of the gate farm Cgpr and the capture
width ratio of (P x @) isolated gates Cjg as

FPor Pra

Cor=1—5+ Cio=1—75—,
“r 1pgsA2C,a e 1pgA2C,a

(67)

where Pgp and Pjg represent respectively the averaged power generated by
the gate farm and by the single isolated flap gate. Figure 8 shows the capture
width ratio curves of both systems. The gate farm captures significantly
more energy than a system of isolated gates. Also the bandwidth of the gate
farm curve is larger than the other. Note that Cqr behaves as the exciting
torque magnitude shown in Figure 7, hence the performance is dominated
by diffracted waves. In Renzi et al [15] have been obtained similar results.

Now consider the amplitude of the angular displacements 033 of the gate Gs3
and the amplitude of the angular displacements 6;¢ of the isolated gate shown
in Figure 9. The maximum value for |f33] is ~ 0.2 rad, hence the influence
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Figure 8: Capture width ratio of the (P x Q) gate farm Cgp and capture width ratio of
(P x Q) isolated gates Cg versus incident wave frequency.

of the PTO coefficient decreases significantly the unrealistic amplitudes of
the gates without PTO damping (see Figure 2 for the gate farm). This fact
justifies the hypothesis of small-amplitude oscillations and the applicability
of the linear theory.

5. Conclusions

A semi-analytical model has been developed in order to solve the dynamic
behaviour of the P x () gate farm when excited by planar incident waves. By
means of the Green theorem, a system of hypersingular integral equations for
the radiation and scattering potential on the wet surfaces of the gate farm is
obtained. The system is solved in terms of Legendre polynomials of integer
order. Then the expressions of the added inertia, the radiation damping and
the exciting torque are derived. The theory takes into account the thickness
of each gate without resorting to the "thin-gate” hypothesis.

A parametric analysis of one gate in the open sea reveals the effect of the
gate thickness on the eigenfrequency and on the gate response to incident
waves. We have shown that the larger the thickness the larger the added
inertia and the lower the eigenfrequency. Moreover, the radiation damping
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Figure 9: Gate G33 and isolated gate amplitude response versus incident wave frequency.

increases as the thickness increases, while the exciting torque shows negligible
variations.

The solution of the eigenvalue condition for the P x () gate farm, gives
P x (@ —1) out-of-phase natural modes similar in shape to those of the P x @
gate farm in a channel of Sammarco et al. [6]. The system response is then
evaluated for a wide range of incident wave frequencies. Numerical results
show that the resonant peaks are close to the natural frequencies of the sys-
tem. In particular, the narrow resonant peaks indicate that the radiation
damping is small, hence synchronous excitation of the natural modes is sig-
nificant. An asymptotic expression of the radiation potential is obtained in
order to apply the Haskind-Hanaoka relation to the gate farm. The (P x Q)
gate farm and a system of (P x @) isolated gates are compared in terms of
energy production. The results show that the gate farm capture more energy
than a system of isolated gates.

The amplitude response at the resonance frequencies is large and non-
realistic, hence the hypothesis of small-amplitude oscillation at the basis
of this linear theory, is not satisfied. However, the amplitude response is
significantly reduced when the gates are coupled with a PTO device at the
hinge. Also fluid viscosity and vortex shedding should be considered in order
to better evaluate dissipation effects (see Wei et al. [27]). For this reason,
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s the development of a non-linear theory is necessary. This will also allow
ss the evaluation of the gate response when the natural modes are excited sub-
srs  harmonically by incident waves.
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;3 Appendix. Solution of the radiation and scattering potentials

384 For shorthand notations define the following integrals as follows:
Wi S (oh (e
Wnp* *% ‘Pn(fﬂ?) 05 5:52[*
B & [ OB (€
Bnp* ﬁp_* “n (57 T]) 677 —
R . Ng+1
Wipa = lwequn/ [G"|E=§; B Gn|&=f§} dn, (A.3)

Nq
w
2

Wiy = Ad, / )

2

—ikn, —ikn,
[e ﬁGn‘gzgg*—e 5Gn’g:gp—*] dn, (A.4)

35 lmposing the boundary conditions (22a)-(22e) to the radiation and scattering
1 potentials (32)-(33) yields:

890571011 -9 d d WR+ WRf BRJr BRf WR _
T a,. % Z { + + + np*,pq} + -
*=1

or np*,pq np*,pq np*,pq n,pq
_ { —iwlpg fr,  on Sy, (A.5a)
0, on Spg, p#pV 4#q, (A.5Db)
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389
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391

392

393

394

395

396

397

398

399

400

N . )
8 . - 8_y [Z {Wﬁj »Pq W;ﬁ’) sPq Bflj_ pq BR pq} + n pQI =
p*=1

Yy
= 0, on Sﬁ,
(A.5c)

8@5 - +S S— +S +S S

o= 2— Z WS+ Wi+ B+ B+ Wi} = (A6
= Adne’iknzi’t, on Sp,

0pS 0 | <& B

= Wi+ Wi + B+ B+ Wa | =
gy dy LZ: { H = (A.6b)

= 0, on Sp‘,
p=1..,P q¢=1,..,Q.

Expressions (A.5a)-(A.6b) form two systems of 4 x P integro-differential equa-
tions whose unknowns are respectively gpﬁpq and ¢ evaluated on the bound-
ary of the gate farm. Consider the case where the index of the summation
p* is equal to p. The integrals inside (A.5a)-(A.6b), given by

R+ R+
ﬁ Wnppq 2 Bnppq (A.7)
Ox | W=+ "oy | B '
np np
are hypersingular when 7 = £y and £ = +x. In this case, the inversion

between the outer derivative and the integral sign is possible by means of the
Hadamard finite-part integral H [

Recalling the expression of the Hankel function H (Gradshteyn & Ryzhik

[26]) ”
HY(a) = == + Ru(), (A.8)

T
where:

Ru() = (a) + %{2J1(a) (1“70‘ i 7) s

i k+l a/2)2k1< 2k 1%>}

=2 m=1

(A.9)
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405

406
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410

with J; () the Bessel function of the first kind and order 1 and v the Euler-
Mascheroni constant, the integrals in (A.7 ) can be rewritten as:

P Wb;ipq 1 2 gOR £R:t(g0R )
v np, — 4+ n,pq _ )24 n,pq .
O {W% Z / i L UTTIT ey

(A.10)
9 BRﬁipq 1 /g R TRE(GR
9 np, L H n,pq r—&)2de pq on Sj,
dy { By |2 g el J e T (¢) ’
(A.11)
where:
‘CR:t (gpﬁpq) - 2 (’Oﬁpq kann (kn’y B 77’) d A
L7 (e) T U PP |
T ()| /s; - kniRy (Kl = €]) . (A13)
T () & len J,uw  Ho—g

Note that when |[y—n| — 0 and [z —¢| = 0, R, (k,ly —1]) ~ ly—n|In|y — n|
and R, (kn|r —¢€]) ~ |z — €| In |z — €|, hence, both £(%9) and 759 are
not singular. In order to simplify notations, rewrite (A.10)-(A.11) as:

Rt Rt Rt Rt
0 { Wm},pq} _ { In;ﬁ,pq} ﬁ { Bnﬁ,pQ} _ { H”ﬁvl"]} (A 14)
- S+ S+ I S+ S+ ’ ’
dx | Wi I dy | By; Ho

define z, and §, as follows:

and introduce the dimensionless variables denoted by primes:

2n 2y § r
r_ Al r_ 29 ) r_ 7P A.16
77 w7 y w7 é—p b, Ip b ( )

The radiation and scattering potentials on the boundary of each array p =
1,...P, can be expressed in terms of the new functions f and g each defined
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414

415

416

417

418

419

420

in the interval [—1,1]:

on (&= m) of (& = b, n)} { rﬁq(n’)}
- : . (AT
{ o€ = fif, } { (& = %b,m) o (1) (A7)

Qpnpq 5 n= gnppq } ' (A18>
oh (& = gnp
According to (A.15), (A.16), (A.17) and (A.18), expressions (A.1) and (A.2)
become:
R+
{Wnp pQ} — :Fﬂ /1 { np*, pQ} aG dn, (A 19)
S+ S+ / ) .
Wi 2b )4 fnp* 0 o o
R+ R+
{B"” pq} = $2—b 1 {g”p*’pq} 9Gn de! (A.20)
ijj*: w1 gfpi* o y=+1 '

while the expressions (A.10)-(A.11) including the singular part can be written
as:

TR+ 1 1 R+ LRE(fRE
np,pq = 4+ H/ np,pq I =2 d ! np,pq A2]_

np

i —+lp /1 I\ (o1 gty gy {7 o) |
H%t 2mb gnp : g : T (gfpi)

(A.22)
In order to solve the hypersingular integrals, let us seek solutions of the
type:
R+ M
- P60 }
np,pq nmp,pq Pq
=y < : (A.23)
{ np } m=0 { anmﬁp
R+ M
gnp 2 nmp qu 61’61
=3 { PPt a2
Ty =0 \ i
where oszﬁmq, oz;fffm, ﬁfmq and ﬁnmp are unknown complex constants, P,

are the Legendre polynomials of order m with m € N and M is a finite in-
teger. The proposed expansion is motivated by the works of Renzi & Dias
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439

[9] and Parsons & Martin [20] who have used Chebyshev polynomials to rep-
resent scattering and radiation potential on the ”thin-gate” surface. This
expansion respects the behaviour of the jump in potential Ay near the end-
points of the flap, i.e. Ap — 0 (Renzi & Dias [9]). However, differently
from the case of the thin gate, the behaviour at the corners of the gate farm
(i.e. the counterpart of the ”end-points”) is unknown, hence we can’t use
Chebyshev expansion.

Legendre polynomials are advantageous in that, the related hypersingular
integral, interpreted as a finite-part integral, can be evaluated in the closed
form. Another feature of using Legendre polynomials is that the values of
the potential can be determined throughout a low computation effort; see for
example Kolm & Rokhlin [28], Yang [29] and Carley [30], who also employ
Legendre polynomials.

By definition of Hadamard integral, the hypersingular integrals inside ex-
pressions (A.21)-(A.22) then become:

1 R+ d 1 R+
H/1{ ﬁpq}(y/—n’ﬂdﬁlzd_yp 1{ Zipq}(@/’—n’)ldﬁ” (A.25)

np
1 gRgt d 1 gREt
i [ { ;jf"}<:v;—s;>2ds;—@f> { S’j.;”}(zv;—s;)lds;, (A.26)
-1 gnﬁ —1 gnﬁ

where P [ is the Cauchy principal-value integral. Now consider the integral
relation (Kaya & Erdogan [31] expression (27)):

' Pu(¥)
-1 w — T

where ), are the Legendre functions of the second kind and order m. Sub-
stitution of the series expansions (A.23)-(A.24) in the (A.25)-(A.26) yields:

d_ [ { e

“p np,pq} (o — n/)—l dn =
S+

dy/ -1 fnﬁ

M { Oéfnj:;ﬁ’pqepq} |:_2(m + 1)Z/Qm(?/) B Qm+1 (y,)

P

dip = =2Qn,(1), —-l<71<1 (A.27)

(A.28)

S+ 1 — 2 )
m=0 anmﬁ Yy
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444

445

446

d ! gffl’: / IN— /
ar - {gsgtpq}(%_fﬁ) tdgs =

nmp,pq -~ P9 ,Qm ! _Qm LU/
=S [ Pt

Finally the hypersingular integrals are solved in terms of Legendre polyno-
mials, hence (A.21) and (A.22) become:

R+ M R+ TR+
In:ﬁ,pq _ Z anMﬁ,pqepq %—m ( A. 3())
I3* —~ | ahs 55|

m=0

R+ M R+ v
{anpq} _ Z {Bnm@pqepq} {Hﬁi} (A 31>
S+ S+ ~ ) :
Hop =0 \ Brmip Hyt
where:

il 2 YOn(y) = Q) LT (Py)
{fgi}‘%w [<m+> ]x{ ( )}, (A.32)

(A.29)

1 — y ESi Pm
i 1 7' Qun (') = Qs () T (Pn)
{ o } T {(m 1) )= ] F{ s [ (A.33)

The expressions (A.19) and (A.20) which include the functions f and g, after
substitution of (A.23)-(A.24) are given by:

Wfﬁ,pq __w - agip*,pqepq ! nO0Gh r_
S+ _:F_Z S+ Po(0) 55— dn =
W * 2b (0% * —1 85
np m=0 nmp p* ¢ =%1 (A 34)
M R+ R+ '
_ ﬂ { nmp* pqeptI} { me* }
S+ A, ’
2b 7= | gy Wi
BEL ob L pEE . 9 1 len
{ v } —w > g e RS dg -
np* m=0 { Pnmp* -1 U (A.35)
M R+ PR+ )
_ 2_b { nmp quPQ} { Bmp*}
S+
v\ e B
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w7 Define the normalized boundaries SI’?q and SI’) as follows:

! / 2y 2y +1
A%q:{xp:jﬂ,ye{zf,—i—}}, (A.36)
::{x;E[—J,H,y’::tl}, (A.37)

us  the two system (A.5a)-(A.5c) and (A.6a)-(A.6b) can be rewritten as:

{Z Z { nmp pq W”:FL;)IE + B nmp* P‘I BZ;*

nmp np* pa¥pa BR }

f’ p*=1m=0
P M
33l W+ Wl |+l T -
=1 m=0
s

1wl fr

_ —%, on S, (A.38a)
0, on S, p#pV q#4q, (A.38b)
449

P M
a%{ 3 {Bnmp DB A altt 0, WS Lol g qW;,j;*} +

nmp*,pq
p*=1m=0

P M
zz%mwwﬂm}ﬁmwﬁwe

(A.38¢)

450

nmp*

P M
82’ {Z Z {O@fp W:FS B;;;Zp B+S S— Bsf +WS }

P M N M
Ty agip*wiz*} £y asE 7 = (A.39)
=41 m=0

nmp m
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nmp*~ mp* nmp
p*=1m=0 =41 m=
prED P
=0, on S,

p=1,..Pd=1.0.
Expressions (A.38a)-(A.38¢c) and (A.39a)-(A.39b) define two systems of lin-

ear equations whose unknowns are respectively . . and nmp pq for the
and 5%

radiation problem, anmp* omp+ tor the scattering problem. Each system
has 4 x P x M + 1 unknowns, hence M + 1 evaluation points must be chosen
for each side of the single array. A good choice for the collocation points
(xp.;,y;) is given by the roots of Chebyshev polynomials of the first kind
(Parsons & Martin [20] - Kaya & Erdogan [31]) i.e.

B (25 +1)m w
(pj,yj) = (b Cos 07 ) (p—1)L,+ 5 | (A.40)

w (25 + D)
(p.j,Y5) (j:b (p 1)L,§Co oM T2 ) , (A.41)
j=01,...M,p=1,.,P (A.42)
Systems (A.38a)-(A.38¢c) and (A.39a)-(A.39b) can be solved numerically for
each modal order n = 0,1, ..., therefore the radiation potential qu and the

scattering potential ngS on the boundary of the pth array, are given by:

R ( | N R+
pq p7y’ B (Y') Qg }
: DI SEAETR il ST
(l’ :i:E Z) n=0 m=0 Pm( ;3) ﬁnmﬁ,pq
qbs (.7)~ » Ys Z) M Pm O[S:t
s T w =Y Zy(2) { (&) omy } : (A.44)
¢ <.7?, iE? Z) m=0 ( ) ﬁOmp
e [-b+ (- 1)L,b+(15— D e =53]
Note that the complex coefficients a 5 and %% for n = 1,2, ..., are equal

nmp
to zero.
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Table 1: Gate farm characteristics.

parameters symbol Value

gate width a 3m

gate thickness 2b 1.5m

distance between arrays L 10 m

moment of inertia 1 72000 kg m?
buoyancy restoring torque C 300000 kg m?s~2
gate mass M, 2600 kg

water depth h 5m

density of water p 1000 kg m ™3

Table 2: Eigenfrequency w; of the single gate in the open sea for different values of 2b.

2b (m) w; (rad/s) Period (s)

0.1 0.89 7.05
0.45 0.86 7.30
0.8 0.84 7.47
1.15 0.82 7.65
1.5 0.81 7.75
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Table 3: Natural frequencies of the out-of-phase modes. Note that 3.3 represents the
number 3.333...

w (rad/s) Period (s) K Mode

1.013 6.199 25 Ny
1.012 6.205 25  Np
1.011 6211 25 Ny
0.934 6.723 33 Ny
0.931 6.745 3.3 Ny
0.929 6.760 3.3  Nu
0.814 7.715 5 Ny
0.805 7.801 5  Ni
0.793 7.919 5  Ng
0.679 9248 10 Ny
0.644 9.751 10 Ny
0.625 10.048 10 Ny

Table 4: Natural frequencies of the in-phase modes.

w (rad/s) Period (s) Mode

0.395 15.898  N(ws)
0.366 17158 N(w)
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Table 5: Re{f11} at the resonance frequencies.

Re{b11} (rad) Mode

5.18 Nll
-3.3 Ny
—4.02 Nis
1.83 N3,
—7.98 N3a
—14.11 N33
—9.04 N(wl)
—9.68 N (ws)
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