Flexible $\boldsymbol{\kappa}^{4}$-PNN`O-tetradentate ligands: synthesis, complexation and structural studies \dagger

Sean E. Durran, Mark R. J. Elsegood, Shelly R. Hammond and Martin B. Smith ${ }^{*}$
Received (in $X X X, X X X)$ Xth $X X X X X X X X X$ 200X, Accepted Xth XXXXXXXXX 200X
${ }_{5}$ First published on the web Xth $X X X X X X X X X ~ 200 X$
DOI: 10.1039/b000000x

The three-step synthesis of new, air-stable, PNN`O-tetradentate ligands \(\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- 3} \mathbf{c} \cdot \mathbf{H H}\) by Schiff base condensation of the \(1^{\circ}\) amines \(\mathbf{2 a}-\mathbf{2 c}\) with \(2-\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{CHO})\) in refluxing EtOH is described. The racemic ligand \(\mathbf{3 d} \cdot \mathbf{H H}\), isolated in \(79 \%\) yield, was successfully prepared from 2- \({ }_{10} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})\left\{\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\} 2 \mathrm{~d}\) and \(2-\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{CHO})\) in absolute EtOH. Upon careful choice of metal precursor, ligands \(\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- 3 d} \cdot \mathbf{H H}\) display various coordination modes. Reaction of \(\mathbf{3 a} \cdot \mathbf{H H}\) with \(\mathrm{AuCl}\left(\right.\) tht) (\(1: 1\) molar ratio) affords \(\mathrm{AuCl}(\mathbf{3 a} \cdot \mathbf{H H}), \mathbf{4 a}\), in which \(\kappa^{1}\)-P-complexation of the functionalised ligand is observed. In contrast, reaction of \(\mathbf{3 a \cdot} \cdot \mathbf{H H}\) (or \(\mathbf{3 d} \cdot \mathbf{H H}\)) with \(\mathrm{MCl}_{2}(\mathrm{cod})\) \((\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})\) affords \(\mathrm{MCl}_{2}(\mathbf{3 a} \cdot \mathbf{H H})(\mathrm{M}=\mathrm{Pt}, \mathbf{5 a} ; \mathrm{M}=\mathrm{Pd}, \mathbf{5 b})\) or \(\mathrm{MCl}_{2}(\mathbf{3 d} \cdot \mathbf{H H})(\mathrm{M}=\mathrm{Pt}, \mathbf{5 c} ; \mathrm{M}=\) \({ }_{15} \mathrm{Pd}, \mathbf{5 d}\)) in which ligand chelation is achieved using both P and imine N donor atoms. Moreover \(\kappa^{2}\) \(\mathrm{P}, \mathrm{N}\)-chelation was also observed when \(\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- 3 \mathbf { c } \cdot \mathbf { H H } \text { were separately allowed to react with }}\) \(\left[\operatorname{PdCl}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}\) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) affording new cationic \(\eta^{3}\)-allyl complexes \(\left[\operatorname{Pd}\left(\eta^{3}\right.\right.\) \(\left.\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathbf{3 a} \cdot \mathbf{H H}-\mathbf{3 c} \cdot \mathbf{H H})\right] \mathrm{Cl}, \mathbf{6 a}-\mathbf{6 c}\). Two neutral (methyl)chloropalladium(II) complexes, 7a/7c, were isolated in high yields from \(\mathbf{3 a} \cdot \mathbf{H H}\) or \(\mathbf{3 c} \cdot \mathbf{H H}\) and \(\mathrm{Pd}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}(\mathrm{cod})\). Elimination of cod and \({ }_{20}\) single methyl protonation from \(\operatorname{Pt}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{cod})\) with 1 equiv. of \(\mathbf{3 a} \cdot \mathbf{H H}, \mathbf{3} \mathbf{b} \cdot \mathbf{H H}\) or \(\mathbf{3 d} \cdot \mathbf{H H}\) in toluene, at room temperature, afforded square-planar complexes \(\operatorname{Pt}\left(\mathrm{CH}_{3}\right)\left(\kappa^{3}-\mathbf{3 a} \cdot \mathbf{H} / \mathbf{3} \mathbf{b} \cdot \mathbf{H} / \mathbf{3 d} \cdot \mathbf{H}\right)\), \(\mathbf{8 a} / \mathbf{8 b} / \mathbf{8 d}\), containing monoanionic \(\kappa^{3}\)-PNN`-tridentate ligands. The κ^{3}-PNN`-tridentate mode was likewise observed for \(\operatorname{Pd}\left(\mathrm{CH}_{3}\right)(\mathbf{3 a} \cdot \mathbf{H} / \mathbf{3} \mathbf{c} \cdot \mathbf{H}), \mathbf{1 0 a} / \mathbf{1 0} \mathbf{c}\), upon treatment of a methanolic solution of \(\mathrm{Pd}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}(\mathbf{3 a} \cdot \mathbf{H H} / \mathbf{3} \mathbf{c} \cdot \mathbf{H H})\) with \({ }^{t} \mathrm{BuOK}\). Similarly the monohapto (allyl) \(\mathrm{Pd}^{\mathrm{II}}\) compounds \({ }_{25} \mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)(\mathbf{3 a} \cdot \mathbf{H H}-\mathbf{3 c} \cdot \mathbf{H H}), \mathbf{9 a}-\mathbf{9 c}\), were obtained cleanly from \(\mathbf{6 a}-\mathbf{6 c}\) and \({ }^{t} \mathrm{BuOK}\) via an \(\eta^{3} \rightarrow \eta^{1}\) allyl isomerisation. Both amide and phenolic protons in \(\mathbf{5 a - 5 d}\) were smoothly deprotonated, with base, to give the \(\kappa^{4}\)-PNN`O`-tetradentate complexes 11a/11b and 11d/11e containing the dianionic ligands $3 \mathbf{a}^{2-} / 3 \mathbf{d}^{2-}$ respectively. The $\mathrm{Ni}^{\text {II }}$ complexes $\mathbf{1 1 c}$ and 11 f were synthesised directly from $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathbf{3 a} \cdot \mathbf{H H}$ (or $\mathbf{3 d} \cdot \mathbf{H H}$) and ${ }^{t} \mathrm{BuOK}$ in $\mathrm{CH}_{3} \mathrm{OH}$. All new
${ }_{30}$ compounds were characterised by multinuclear NMR, FT-IR, mass spectrometry and microanalysis. Single crystal X-ray studies have been undertaken on the compounds $\mathbf{3 a} \cdot \mathbf{H H}$, $\mathbf{3 c} \cdot \mathbf{H H}, 4 \mathrm{a}, 7 \mathrm{c}, 8 \mathrm{a}, \mathbf{8 b}, 8 \mathrm{~d}$ and 11a-11d.

Introduction

${ }_{35}$ Significant developments in functionalised phosphine chemistry ${ }^{1}$ continue to play a crucial role in understanding how these versatile ligands coordinate to metals, influence metal reactivity (stereoelectronic properties) and find applications in, for example, homogeneous catalysis. The ${ }_{40}$ marriage of two different donor atoms, one a soft $\mathrm{P}^{\text {III }}$ centre and the other typically N^{2} or O^{3}, has led to a wealth of tertiary phosphines being studied of which hemilabile ligands ${ }^{4}$ are a notable class. Whilst many functionalised tertiary phosphines

[^0]have been shown to act as bidentate ligands ${ }^{5}$, few literature examples of tridentate PNO systems are known. ${ }^{6}$ In contrast, tetradentate ligands with two (or more) donor types, including 5 tetradentate π radical ligands ${ }^{7}$, have attracted considerable interest for their radioimaging/radiotherapeutic ${ }^{8}$, liquid crystalline ${ }^{9}$ and phosphorescent properties ${ }^{10}$ and applications in catalysis (including asymmetric variations). ${ }^{11}$ Within this family of ligands the most popular examples of donor set ${ }_{60}$ combinations are those comprising $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{12}$ and $\mathrm{P}_{2} \mathrm{~N}_{2}{ }^{13}$ atoms whereas unsymmetrical systems e.g. PNN`N" are either uncommon \({ }^{14}\), or in the case of the PNN`O donor motif, extremely rare. ${ }^{15}$ Barandov and Abram ${ }^{16}$ recently described the synthesis of two new pentadentate Schiff base ligands
${ }_{65}$ containing a rare $\mathrm{PN}_{2} \mathrm{O}_{2}$ donor set. Herein we describe the synthesis of a series of tetradentate κ^{4}-PNN`O ligands and a stepwise survey of their coordination capabilities towards selected transition-metal centres. Our studies have revealed these flexible \(\kappa^{4}\)-PNN`O ligands adopt numerous ligation modes and afford new examples of chelate stabilised amido ${ }^{2 b}$ and amido/phenoxo metal(II) complexes. All new compounds have been structurally verified both in solution and the solid5 state.

Experimental

Materials

All reactions were carried out under aerobic conditions, with the exception of ligands $\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- 3 d} \cdot \mathbf{H H}$ whose syntheses 10 were conducted under an atmosphere of dry, oxygen-free, nitrogen. All solvents were distilled prior to use. The compounds 1a, ${ }^{17}$ 2a, ${ }^{17}{ }^{2 d},{ }^{18} 2-\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{CHO}),{ }^{19} \mathrm{AuCl}($ tht $)$ (tht = tetrahydrothiophene), ${ }^{20} \mathrm{MCl}_{2}(\operatorname{cod})(\mathrm{M}=\mathrm{Pt}, \mathrm{Pd}$; cod $=$ cycloocta-1,5-diene), ${ }^{21} \mathrm{Pd}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}(\text { cod })^{22}$ and $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}(\text { cod })^{23}$
${ }_{15}$ were all prepared according to published procedures. All other reagents were purchased from commercial suppliers.

Instrumentation

FT-IR spectra were recorded as KBr pellets over the range $204000-400 \mathrm{~cm}^{-1}$ using a Perkin-Elmer system 2000 FT spectrometer. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded either on Bruker AC250 or DPX-400 FT spectrometers with chemical shifts (δ) reported relative to external TMS or $\mathrm{H}_{3} \mathrm{PO}_{4}$. All NMR spectra (250 or 400 MHz) 25 were recorded in CDCl_{3} solutions unless otherwise stated. Elemental analyses (Perkin-Elmer 2400 CHN Elemental Analyzer) were performed by the Loughborough University Analytical Service within the Department of Chemistry.

${ }_{30}$ X-ray crystallography

Suitable crystals were grown by vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into either a $\mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (for 4a), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ (for $7 \mathbf{c} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$) or CDCl_{3} solution (for $\mathbf{8 b} \cdot 1.5 \mathrm{C}_{7} \mathrm{H}_{8}$, $\mathbf{1 1 b} \cdot 0.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}, \mathbf{1 1 \mathbf { c }}$ and $\mathbf{1 1 d} \cdot \mathrm{CHCl}_{3}$). Slow ${ }_{35}$ evaporation of an EtOH (for $\mathbf{3 a \cdot} \mathbf{H H \cdot E t O H}$), CHCl_{3} (for $\mathbf{3 c} \cdot \mathbf{H H} \cdot 0.5 \mathrm{CHCl}_{3}$) or $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ solution (for $\mathbf{1 1 a} \cdot \mathrm{MeOH}$) afforded X-ray quality crystals. Suitable crystals of $\mathbf{8 a} \cdot \mathrm{CHCl}_{3}$ (and $\mathbf{8 d} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$) were obtained from a $\mathrm{C}_{7} \mathrm{H}_{8}$ solution of $\mathbf{3 a} \cdot \mathbf{H H}$ (or $\mathbf{3 d} \cdot \mathbf{H H}$) and $\operatorname{Pt}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{cod})$. All measurements were made 40 on a Bruker AXS SMART 1000 CCD area-detector diffractometer, at 150 K , using graphite-monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation ($\lambda=0.71073 \AA$) and narrow frame exposures $\left(0.3^{\circ}\right)$ in ω. Cell parameters were refined from the observed (ω) angles of all strong reflections in each data set. 45 Intensities were corrected semiempirically for absorption based on symmetry-equivalent and repeated reflections. The structures were solved by direct methods (Patterson synthesis for $\mathbf{7 c} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{1 1 d} \cdot \mathrm{CHCl}_{3}$) and refined on F^{2} values for all unique data by full-matrix least-squares (Table 1). All non${ }_{50}$ hydrogen atoms were refined anisotropically. Programs used were Bruker AXS SMART and SAINT for diffractometer control and frame integration, ${ }^{24}$ Bruker SHELXTL for structure solution, refinement and molecular graphics, ${ }^{25}$ and local programs.
${ }_{55}$ For $\mathbf{3 c} \cdot \mathbf{H H} \cdot \mathbf{0} .5 \mathrm{CHCl}_{3}$, the CHCl_{3} molecule was disordered over an inversion centre. For $\mathbf{8 b} \cdot 1.5 \mathrm{C}_{7} \mathrm{H}_{8}$, point atom modelling was attempted for the $\mathrm{C}_{7} \mathrm{H}_{8}$ molecules but no suitable disorder model could be established. The Platon Squeeze procedure was therefore successfully applied. ${ }^{26}$ For
${ }_{60} \mathbf{8 d} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$, one of the $\mathrm{C}_{7} \mathrm{H}_{8}$ molecules was disordered and successfully modelled. In $11 \mathbf{b} \cdot 0.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$, the highly disordered $\mathrm{Et}_{2} \mathrm{O}$ molecule was modelled using the Platon Squeeze procedure. For the chiral structures the absolute structure parameters were: 4a, $x=0.555(6)$, twinned by 65 inversion; 11d, $x=-0.025(8)$, single enantiomer, well determined.

Preparation of $1,2-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}=\mathbf{C H}-\right.$

$\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{P P h} \mathbf{2}_{2} \mathbf{\}}(\mathbf{3 a} \cdot \mathbf{H H})$. A suspension of 2a $(0.307 \mathrm{~g}, 1.848$
70 mmol) and $2-\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{CHO})(0.556 \mathrm{~g}, 1.915 \mathrm{mmol})$ in absolute $\mathrm{EtOH}(30 \mathrm{ml})$ was refluxed, under a N_{2} atmosphere, for ca. 4 h . After cooling to r.t., the volume was reduced to $c a .10 \mathrm{ml}$ under reduced pressure and the solid collected by suction filtration. The solid was washed with a small portion 75 of EtOH and dried in vacuo. Yield: $0.498 \mathrm{~g}, 61 \%$. Selected data: ${ }^{31} \mathrm{P}:-8.1 \mathrm{ppm} .{ }^{1} \mathrm{H}: 9.86(\mathrm{~s}, 1 \mathrm{H}), 9.41(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~d}$, $\left.{ }^{4} J_{\text {PH }} 4.0,1 \mathrm{H}\right), 7.77-6.85(\mathrm{~m}, 18 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. FT-IR: 3304, $1655 \mathrm{~cm}^{-1}$. EI-MS: m/z 438 [M ${ }^{+}$. Anal. (\%) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 73.95$; H, 5.30; N, 6.39. Found: C, 73.39; H, ${ }_{80} 5.25$; N, 6.33. Compounds $\mathbf{3 b} \cdot \mathbf{H H}$ and $\mathbf{3 c} \cdot \mathbf{H H}$ were similarly prepared in 65% and 76% yields respectively. Selected data for $\mathbf{3 b} \cdot \mathbf{H H}:{ }^{31} \mathrm{P}:-11.4 \mathrm{ppm} .{ }^{1} \mathrm{H}: 9.54(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H})$, 8.04-6.86 (m, 18H), $4.64(\mathrm{~s}, 2 \mathrm{H}), 4.28$ (s, 2H) ppm. FT-IR: 3371, 3269 (NH, OH), 1673 (CO amide I), 1534 (CO amide ${ }_{85}$ II) cm^{-1}. EI-MS: m/z $452\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 72.86 ; \mathrm{H}, 5.69$; N, 6.07. Found: C, 72.69 ; H, 5.61; N, 5.83. Selected data for $\mathbf{3 c} \cdot \mathbf{H H}:{ }^{31} \mathrm{P}:-8.8$ ppm. ${ }^{1} \mathrm{H}: 9.39\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}} 3.8,1 \mathrm{H}\right), 8.58(\mathrm{~m}, 1 \mathrm{H}), 7.77-6.77$ (m, $18 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. FT-IR: 3249, 3145, ${ }_{90} 1659,1649 \mathrm{~cm}^{-1}$. EI-MS: $\mathrm{m} / \mathrm{z} 438\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: \mathrm{C}, 71.88 ; \mathrm{H}, 6.28 ; \mathrm{N}, 6.05$. Found: C, 71.88; H, 5.84; N, 5.78.

Preparation of $1,2-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{N}=\mathbf{C H}-\right.$ $\left.\left.{ }_{95} \mathbf{C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{P P h} \mathbf{2}_{2}\right\} \mathbf{(3 d} \cdot \mathbf{H H}\right)$. A mixture of $\mathbf{2 d}(0.326 \mathrm{~g}, 1.678 \mathrm{mmol})$ and $2-\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{CHO})(0.505 \mathrm{~g}, 1.740 \mathrm{mmol})$ in absolute $\mathrm{EtOH}(40 \mathrm{ml}$) was stirred for ca. 24 h . The solvent was evaporated to $c a .10 \mathrm{ml}$ and $\mathbf{3 d} \cdot \mathbf{H H}$ isolated by suction filtration and dried in vacuo. Yield: $0.618 \mathrm{~g}, 79 \%$. Selected ${ }_{100}$ data: ${ }^{31} \mathrm{P}:-7.8 \mathrm{ppm} .{ }^{1} \mathrm{H}: 12.56(\mathrm{~s}, 1 \mathrm{H}), 8.53\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}} 3.8,1 \mathrm{H}\right)$, $7.75-6.71(\mathrm{~m}, 19 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~m}$, 1 H), 0.93 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.4,3 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 3240, 1641, 1630 cm^{-1}. ES-MS: m/z $467 \quad\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 74.65$; H, 5.85; N, 6.01. Found: C, 74.92; H, 105 5.64; N, 6.34.

Preparation of $1,2-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}=\mathbf{C H}-\right.$

 $\left.\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{P P h}_{2} \mathbf{A u C l}\right\} \mathbf{(4 a)} . \mathrm{AuCl}($ tht $)(0.0056 \mathrm{~g}, 0.0175 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and $\mathbf{3 a} \cdot \mathbf{H H}(0.079 \mathrm{~g}, 0.0180$ 110 mmol) added to afford a colourless solution. After stirring the solution for 45 min , the volume was reduced to $c a .1-2 \mathrm{ml}$ and diethyl ether (20 ml) and petroleum ether (b.p $60-80{ }^{\circ} \mathrm{C}$,10 ml) added to give 4a which was collected by filtration and dried in vacuo. Yield: $0.107 \mathrm{~g}, 91 \%$. Selected data: ${ }^{31} \mathrm{P}: 29.2$ ppm. ${ }^{1} \mathrm{H}: 8.82$ (s, 1H), 8.68 (s, 1H), 7.94 (s, 1H), 7.69-6.78 (m, 18H), 4.36 (s, 2H) ppm. FT-IR: 3294, $1655 \mathrm{~cm}^{-1}$. ${ }_{5}$ ES-MS: m/z 635 [M-Cl]. Anal. (\%) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{AuClN}_{2} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 48.33 ; \mathrm{H}, 3.46 ; \mathrm{N}, 4.18$. Found: C, 48.51; H, 3.54; N, 3.71.

Preparation of $1,2-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}=\mathbf{C H}-\right.$ ${ }_{10} \mathbf{C}_{6} \mathbf{H}_{4} \mathbf{P P h}_{2} \mathbf{P t C l}_{2}$ \} (5a). To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ solution of $\mathrm{PtCl}_{2}(\mathrm{cod})(0.090 \mathrm{~g}, 0.241 \mathrm{mmol})$ was added $\mathbf{3 a} \cdot \mathbf{H H}(0.104 \mathrm{~g}$, 0.237 mmol) to give a yellow solution. After stirring the solution for 15 min , the volume was reduced under vacuum to ca. $1-2 \mathrm{ml}$ and addition of diethyl ether (25 ml) afforded a 15 yellow solid. The solid was collected by suction filtration and dried in vacuo. Yield: 0.150 g, 89\%. Compound 5b (91\%) was similarly prepared from PdCl_{2} (cod) and $\mathbf{3 a} \cdot \mathbf{H H}$. Selected data for 5a: ${ }^{31} \mathrm{P}\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}\right)$: 10.7 ppm , ${ }^{1} \mathrm{~J}_{\mathrm{PtP}} 3492 \mathrm{~Hz} ; 3.0$ ppm, ${ }^{1} J_{\mathrm{PtP}} 3324 \mathrm{~Hz} . \mathrm{FT}-\mathrm{IR}: 3258,1670,1632 \mathrm{~cm}^{-1}$. ES-MS: ${ }_{20} \mathrm{~m} / \mathrm{z} 669$ [M-Cl]. Anal. (\%) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPtCl}_{2}$: C, 46.03; H, 3.30; N, 3.98. Found: C, 45.95; H, 3.28; N, 3.43. Selected data for $\mathbf{5 b}$: ${ }^{31} \mathrm{P}\left(\mathrm{CDCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}\right): 38.2 \mathrm{ppm} .{ }^{1} \mathrm{H}$: 10.30 (s, 1H), 10.01 (s, 1H), 8.74 (s, 1H), 8.12-6.79 (m, 18H), 5.37 (s, 2H) ppm. FT-IR: 3324, 3258, 1698, $1645 \mathrm{~cm}^{-1}$. ${ }_{25}$ MALDI-MS: m/z 580 [M-Cl]. Anal. (\%) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPdCl}_{2}$: C, $52.66 ; \mathrm{H}, 3.77$; N, 4.55. Found: C, 52.54 ; H, 3.72; N, 4.33. Compounds 5c (99\%) and 5d (92\%) were similarly prepared from $\mathbf{3 d} \cdot \mathbf{H H}$ and the appropriate MCl_{2} (cod). Selected data for 5 c : ${ }^{31} \mathrm{P}\left[\mathrm{CDCl}_{3} /\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$: ${ }_{30} 6.1 \mathrm{ppm},{ }^{1} J_{\mathrm{PtP}} 3799 \mathrm{~Hz} .{ }^{1} \mathrm{H}: 12.18$ (s, 1H), 8.41 (s, 1H), 8.37 (d, ${ }^{4} J_{\text {PH }} 7.3,1 \mathrm{H}$), 7.70-6.66 (m, 18H), $5.64(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}$, 1 H), $3.16(\mathrm{~m}, 1 \mathrm{H}), 0.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}} 6.8,3 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 3295, $1640 \mathrm{~cm}^{-1}$. ES-MS: m/z 697 [M-Cl]. Anal. (\%) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPtCl}_{2}$: C, $47.55 ; \mathrm{H}, 3.72$; N, 3.83. Found: C, ${ }_{35}$ 47.78; H, 3.78; N , 4.21. Selected data for 5 d : ${ }^{31} \mathrm{P}$ $\left[\mathrm{CDCl}_{3} /\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: 32.9 \mathrm{ppm} .{ }^{1} \mathrm{H}: 12.30(\mathrm{~s}, 1 \mathrm{H}), 8.50\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{PH}}\right.$ $6.2,1 \mathrm{H}), 8.23-6.74(\mathrm{~m}, 19 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H})$, $3.18(\mathrm{~m}, 1 \mathrm{H}), 0.69\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}} 6.8,3 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 3269, 1639 cm^{-1}. ES-MS: m/z $571\left[\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}^{+}\right]$. Anal. (\%) Calcd. for ${ }_{40} \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPdCl}_{2}$: C, 54.09; H, 4.24; N, 4.35. Found: C, 53.86; H, 4.28; N, 4.33.

Preparation of $\left[1,2-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}-\right.\right.$ $\left.\left.\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{P P h}_{2} \mathbf{P d}\left(\eta^{3}-\mathbf{C}_{3} \mathbf{H}_{5}\right)\right\}\right] \mathbf{C l}$ (6a). To a solution of $\left[\operatorname{PdCl}\left(\eta^{3}-\right.\right.$ $\left.\left.{ }_{45} \mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}(0.037 \mathrm{~g}, 0.101 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added $\mathbf{3 a} \cdot \mathbf{H H}(0.091 \mathrm{~g}, 0.208 \mathrm{mmol})$ to afford a yellow solution. After stirring for 1 h the solution was concentrated under reduced pressure to $c a .1-2 \mathrm{ml}$ and diethyl ether (10 ml) added. The yellow solid was collected and dried in vacuo. ${ }_{50}$ Yield: 0.107 g, 85%. Compounds 6b (96\%) and 6c (84\%) were prepared in a related manner. Selected data for $\mathbf{6 a}:{ }^{31} \mathrm{P}$: 24.3 ppm. ${ }^{1} \mathrm{H}: 11.66(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H})$, $7.84-6.85(\mathrm{~m}, 18 \mathrm{H}), 5.83(\mathrm{q}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{br}), 3.07$ (br) ppm. FT-IR: 3214, 3145, $1654 \mathrm{~cm}^{-1}$. ES-MS: $\mathrm{m} / \mathrm{z} 585$ [M-Cl]. Anal. (\%) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPdCl}$: C, 57.98; H , 4.55; N, 4.51. Found: C, 57.46; H, 4.56; N, 4.52. Selected data for $\mathbf{6 b}$: ${ }^{31} \mathrm{P}: 24.2 \mathrm{ppm} .{ }^{1} \mathrm{H}: 10.31$ (s, 1 H), 8.84 (s, 1H), 7.85-7.12 (m, 19H), 5.82 (q, 1H), 5.44 (s, 2H), 4.61 (s, 2H),
4.06 (br), 3.03 (br) ppm. FT-IR: 3394, $1684 \mathrm{~cm}^{-1}$. ES-MS: ${ }_{60} \mathrm{~m} / \mathrm{z} 599 \quad[\mathrm{M}-\mathrm{Cl}]$ Anal. (\%) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPdCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.77$; H, 4.86; N, 4.35. Found: C, 57.64 ; H, 4.84; N, 4.23. Selected data for $\mathbf{6 c}$: ${ }^{31} \mathrm{P}: 24.2$ ppm. ${ }^{1} \mathrm{H}: 10.56(\mathrm{~s}, 1 \mathrm{H}), 8.57$ (s, 1H), 7.82-6.74 (m, 19H), 5.70 (q, 1H), 5.09 (s, 2H), 3.90 (br), 2.90 (br) ppm. FT-IR: 65 3240, 3196, 3141, $1674 \mathrm{~cm}^{-1}$. ES-MS: m/z 585 [M-Cl]. Anal. (\%) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ PPdCl $\cdot 1.5 \mathrm{H}_{2} \mathrm{O}$: C, 55.56 ; $\mathrm{H}, 4.83$; N, 4.32. Found: C, 55.53 ; H, 4.68; N, 4.03.

Preparation of $\quad 1,2-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{NHC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}=\mathbf{C H}-\right.$

$\left.{ }_{70} \mathbf{C}_{6} \mathbf{H}_{4} \mathbf{P P h}{ }_{2} \mathbf{P d}\left(\mathbf{C H}_{3}\right) \mathbf{C l}\right\}$ (7a). To a solution of $\mathrm{Pd}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}(\mathrm{cod})$ $(0.050 \mathrm{~g}, 0.189 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added $\mathbf{3 a} \cdot \mathbf{H H}$ ($0.086 \mathrm{~g}, 0.196 \mathrm{mmol}$) to give an initial pale yellow solution whereupon, after a few minutes, a colourless solid 7a deposited. After stirring for 25 min , the volume was 75 concentrated under reduced pressure to $c a .2 \mathrm{ml}$ and diethyl ether (20 ml) added. The solid was collected and dried in vacuo. Yield: 0.097 g, 87%. Compound 7c (91\%) was likewise prepared. Selected data for 7a: ${ }^{31} \mathrm{P}$ $\left[\mathrm{CDCl}_{3} / \mathrm{CH}_{3} \mathrm{OH} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right]: 39.3 \mathrm{ppm} .{ }^{1} \mathrm{H}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: 9.68$ ${ }_{80}(\mathrm{~s}, 1 \mathrm{H}), 9.32(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.66-6.54(\mathrm{~m}, 18 \mathrm{H}), 4.85$ (s, 2H), 0.00 (d, $\left.{ }^{3} J_{\mathrm{PH}} 3.2,3 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 3242, 1650, 1628 cm^{-1}. ES-MS: m/z 559 [M-Cl]. Anal. (\%) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPdCl}: \mathrm{C}, 56.48 ; \mathrm{H}, 4.41$; N, 4.71. Found: C, 56.14; H, 4.48; N, 4.68. Selected data for $7 \mathrm{c}:{ }^{31} \mathrm{P}: 38.0 \mathrm{ppm}$. ${ }_{85}{ }^{1} \mathrm{H}: 10.29(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.53-6.71(\mathrm{~m}, 18 \mathrm{H}), 6.39(\mathrm{~s}$, 1 H), $4.88(\mathrm{~s}, 2 \mathrm{H}), 0.53$ ($\left.\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PH}} 4.0,3 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 3245, 3204, 3153, 1656, $1608 \mathrm{~cm}^{-1}$. ES-MS: m/z 559 [M-Cl]. Anal. (\%) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPd} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $52.39 ; \mathrm{H}$, 4.21; N, 4.25. Found: C, 52.38; H, 4.24; N, 4.03.
${ }_{90}$ Preparation of $\mathbf{1 , 2 - (O H)} \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{NC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}=\mathbf{C H}-\right.$ $\left.\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{P P h}{ }_{2} \mathbf{P t}\left(\mathbf{C H}_{3}\right)\right\}$ (8a). To the solids $\operatorname{Pt}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{cod})(0.040$ $\mathrm{g}, 0.120 \mathrm{mmol})$ and $\mathbf{3 a} \cdot \mathbf{H H}(0.053 \mathrm{~g}, 0.121 \mathrm{mmol})$ was added toluene (2 ml) to afford a yellow solution. After standing for 2 d, a yellow crystalline solid formed which was collected and ${ }_{95}$ dried. Yield: $0.072 \mathrm{~g}, 92 \%$. The κ^{3}-PNN`-tridentate complexes $\mathbf{8 b}(62 \%)$ and $\mathbf{8 d}(84 \%)$ were prepared similarly. Selected data for 8a: ${ }^{31} \mathrm{P}: 13.7 \mathrm{ppm},{ }^{1} J_{\mathrm{PtP}} 3865 \mathrm{~Hz} .{ }^{1} \mathrm{H}: 8.43\left({ }^{3} J_{\mathrm{PtH}} 43.8,1 \mathrm{H}\right)$, $7.57-6.72(\mathrm{~m}, 18 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 0.00\left({ }^{2} J_{\mathrm{PtH}} 72.8,3 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 2926, 1636, 1605, $1574 \mathrm{~cm}^{-1}$. ES-MS: m/z 646 [M ${ }^{+}$]. 100 Anal. (\%) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPt} \cdot \mathrm{CHCl}_{3}$: C, 45.42 ; H, 3.42; N, 3.65. Found: C, 45.46; H, 3.27; N, 3.43. Selected data for $\mathbf{8 b}$: ${ }^{31} \mathrm{P}: 13.6 \mathrm{ppm},{ }^{1} J_{\mathrm{PtP}} 3809 \mathrm{~Hz} .{ }^{1} \mathrm{H}: 8.63\left({ }^{3} J_{\mathrm{PtH}} 43.2,1 \mathrm{H}\right)$, $7.71-7.06(\mathrm{~m}, 18 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 4.87\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}} 11.0,1 \mathrm{H}\right)$, 4.47 (d, $\left.{ }^{2} J_{\mathrm{HH}} 11.0,1 \mathrm{H}\right), 3.99(\mathrm{br}, 1 \mathrm{H}), 0.00\left({ }^{2} J_{\mathrm{PtH}} 72.0,3 \mathrm{H}\right)$ ${ }_{105} \mathrm{ppm}$. FT-IR: 3384, 3292, 1639, 1602, 1585, $1570 \mathrm{~cm}^{-1}$. ES-MS: m/z $662\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPt}$: C, 52.64; H, 4.12; N, 4.24. Found: C, 52.58; H, 4.08; N, 3.81. Selected data for 8d: ${ }^{31} \mathrm{P}: 14.4 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{PtP}} 3834 \mathrm{~Hz} .{ }^{1} \mathrm{H}: 12.60$ $(\mathrm{s}, 1 \mathrm{H}), 8.62\left({ }^{3} J_{\mathrm{PtH}} 42.4,1 \mathrm{H}\right), 8.35(\mathrm{dd}, 1 \mathrm{H}), 7.62-6.49(\mathrm{~m}$, 11017 H), 4.15 (ddd, 1H), 4.03 (m, 1H), 3.64 (dd, 1H), 1.33 (d, $\left.{ }^{3} J_{\mathrm{HH}} 6.8,3 \mathrm{H}\right), 0.01\left({ }^{2} J_{\mathrm{PtH}} 75.2,3 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 1618, 1555 cm^{-1}. ES-MS: m/z $676 \quad\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPt} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$: C, 61.45; H, 5.29; N, 3.26. Found: C, 61.57; H, 5.25; N, 3.52.

Preparation of $\quad 1,2-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{NC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}-\right.$
$\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2} \mathrm{Pd}\left(\eta^{1}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)\right\}(9 \mathrm{a})$.

To a $\mathrm{CH}_{3} \mathrm{OH}(2 \mathrm{ml})$ solution of $\mathbf{6 a}(0.051 \mathrm{~g}, 0.0821 \mathrm{mmol})$ was added ${ }^{\text {t }} \mathrm{BuOK}(0.012 \mathrm{~g}, 0.107 \mathrm{mmol})$ with immediate formation of a yellow solid. The suspension was stirred for 30 min , and the solid 9 a collected by suction filtration and dried. ${ }_{5}$ Yield: $0.041 \mathrm{~g}, 85 \%$. The η^{1}-allylpalladium(II) complexes $\mathbf{9 b}$ (51\%) and 9c (51\%) were prepared similarly. Selected data for 9a: ${ }^{31} \mathrm{P}: 32.4$ ppm. ${ }^{1} \mathrm{H}: 8.33$ (s, 1H), 8.27 (s, 1H), 7.64-6.85 $(\mathrm{m}, 18 \mathrm{H}), 5.39(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 4.16\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 1.83\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Pd}\right) \mathrm{ppm}$. ${ }_{10}$ FT-IR: 3268, 1642, 1605, $1556 \mathrm{~cm}^{-1}$. ES-MS: m/z $585\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}$ PPd: C, 61.59; H, 4.66; N, 4.79. Found: C, 61.46; H, 4.40; N, 4.45. Selected data for $\mathbf{9 b}$: ${ }^{31} \mathrm{P}: 32.6 \mathrm{ppm} .{ }^{1} \mathrm{H}: 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.08(\mathrm{~m}, 18 \mathrm{H}), 5.25(\mathrm{~m}$, $1 \mathrm{H},=\mathrm{CH}), 4.73(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}$, ${ }_{15} 1 \mathrm{H},=\mathrm{CH}_{2}$), $3.74\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 1.60\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Pd}\right) \mathrm{ppm}$. FT-IR: 1648 (CO amide I), 1556 (CO amide II) cm^{-1}. ES-MS: m/z $599 \quad\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPd} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 59.47 ; \mathrm{H}, 5.16$; $\mathrm{N}, 4.48$. Found: C, 59.29; H, 4.71; N, 4.54. Selected data for 9c: ${ }^{31} \mathrm{P}: 31.8$ ${ }_{20} \mathrm{ppm} .{ }^{1} \mathrm{H}: 8.37$ (s, 1H), 8.33 (s, 1H), 7.67-6.75 (m, 18H), 5.40 $(\mathrm{m}, 1 \mathrm{H},=\mathrm{CH}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.20\left(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 3.86(\mathrm{~m}, 1 \mathrm{H}$, $=\mathrm{CH}_{2}$), $1.70\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Pd}\right) \mathrm{ppm}$. FT-IR: 3211, 1646, 1558 cm^{-1}. ES-MS: m/z $585 \quad\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}$ PPd: C, 61.59; H, 4.66; N, 4.79. Found: C, 60.90;
${ }_{25} \mathrm{H}, 4.43$; N, 4.44.

Preparation of $1,2-(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{NC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}=\mathbf{C H}-\right.$ $\left.\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{PPh}_{2} \mathrm{Pd}\left(\mathrm{CH}_{3}\right)\right\}(10 a)$.

To a $\mathrm{CH}_{3} \mathrm{OH}(2 \mathrm{ml})$ solution of $7 \mathrm{a}(0.050 \mathrm{~g}, 0.084 \mathrm{mmol})$ was ${ }_{30}$ added ${ }^{\text {t}} \mathrm{BuOK}(0.012 \mathrm{~g}, \quad 0.107 \mathrm{mmol})$ with immediate formation of a pale pink solid 10a. The mixture was stirred for 40 min and the solid isolated by suction filtration and dried in vacuo. Yield: $0.045 \mathrm{~g}, 96 \%$. The methylpalladium(II) complex 10c (74\%) was similarly prepared. Selected data for $10 \mathrm{a}:{ }^{31} \mathrm{P}$: ${ }_{35} 36.2 \mathrm{ppm} .{ }^{1} \mathrm{H}: 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.68-6.82(\mathrm{~m}, 18 \mathrm{H})$, 4.77 (s, 2H), 0.00 (d, ${ }^{3} J_{\mathrm{PH}} 3.2,3 \mathrm{H}$) ppm. FT-IR: 2945, 1651, 1594, $1567 \mathrm{~cm}^{-1}$. ES-MS: m/z 559 [M ${ }^{+}$]. Anal. (\%) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ PPd: C, 60.16; H, 4.52; N, 5.01. Found: C, 59.66; $\mathrm{H}, 4.20$; N, 4.89. Selected data for $\mathbf{1 0 c}:{ }^{31} \mathrm{P}: 34.7 \mathrm{ppm} .{ }^{1} \mathrm{H}$
${ }_{40}\left[\mathrm{CDCl}_{3} /\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.77-6.81(\mathrm{~m}$, 18 H), 4.76 (s, 2H), 0.00 (d, ${ }^{3} J_{\mathrm{PH}} 3.2,3 \mathrm{H}$) ppm. FT-IR: 3384, 3212, 2949, 1646, $1555 \mathrm{~cm}^{-1}$. ES-MS: m/z 559 [M ${ }^{+}$. Anal. (\%) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPd} \cdot \mathrm{H}_{2} \mathrm{O}$: C, 58.29 ; $\mathrm{H}, 4.73$; N , 4.86. Found: C, 58.27 ; H, 4.20; N, 4.79.
${ }_{4} 4$
Preparation of $1,2-(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{NC}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2} \mathrm{Pt}\right\}$ (11a).
Method 1. A $\mathrm{CH}_{3} \mathrm{OH}(3 \mathrm{ml})$ solution of $5 \mathbf{5 a}(0.101 \mathrm{~g}, 0.143$ mmol) was treated with ${ }^{t} \mathrm{BuOK}(0.044 \mathrm{~g}, 0.392 \mathrm{mmol})$. The ${ }_{50}$ orange/red suspension was stirred for 40 min , filtered and washed with a small portion of $\mathrm{CH}_{3} \mathrm{OH}$. Yield: $0.079 \mathrm{~g}, 88 \%$. Compound 11b was prepared similarly in quantitative yield whereas 11c was prepared (in 91% yield) from $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, ${ }^{t} \mathrm{BuOK}$ and $\mathbf{3 a} \cdot \mathbf{H H}$. Selected data for 11a: ${ }^{31} \mathrm{P}: 8.0 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ ${ }_{55} 3371 \mathrm{~Hz} .{ }^{1} \mathrm{H}: 8.38\left({ }^{3} \mathrm{~J}_{\mathrm{PtH}} 99.6,1 \mathrm{H}\right), 8.34$ (d, 1H), 7.80-6.63 (m, 17H), $5.13 \mathrm{ppm}\left({ }^{3} J_{\mathrm{PtH}} 15.8,2 \mathrm{H}\right)$. FT-IR: 1628 (CO), 1609 cm^{-1}. ES-MS: m/z $632 \quad\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ PPt: C, 51.35 ; H, 3.36; N, 4.44. Found: C, 50.82;

H, 3.17; N, 4.78. Selected data for $\mathbf{1 1 b}:{ }^{31} \mathrm{P}: 21.3 \mathrm{ppm} .{ }^{1} \mathrm{H}$: ${ }_{60} 8.18(\mathrm{~d}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.70-6.68(\mathrm{~m}, 17 \mathrm{H}), 5.03 \mathrm{ppm}(\mathrm{s}$, 2H). FT-IR: 1642 (CO), $1616 \mathrm{~cm}^{-1}$. ES-MS: $\mathrm{m} / \mathrm{z} 543$ [M $\left.{ }^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ PPd: C, 59.73; H, 3.91; N, 5.16. Found: C, 59.53; H, 3.83; N, 5.85. Selected data for 11c: ${ }^{31} \mathrm{P}: 19.7$ ppm. ${ }^{1} \mathrm{H}: 8.17$ (d, 1H), 8.03 (s, 1H), 7.74-6.46 (m, 6517 H), $4.59 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H})$. FT-IR: 1634 (CO), $1608 \mathrm{~cm}^{-1}$. ES-MS: m/z 495 [M $\left.{ }^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PNi} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 57.97; H, 4.00; N, 4.83. Found: C, 57.84 ; H, 3.80; N, 4.90 .
${ }_{70}$ Method 2. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{~g}$, 0.111 mmol) was added $\mathbf{3 a} \cdot \mathbf{H H}(0.050 \mathrm{~g}, 0.114 \mathrm{mmol})$ to give a deep red solution. The solution was stirred for 45 min , the volume reduced to $c a .1-2 \mathrm{ml}$ and addition of diethyl ether $(20 \mathrm{ml})$ gave 11b which was collected by suction filtration 75 and dried in vacuo. Yield: 0.056 g, 93%.

The complexes 11d-11f (78, 83 and 80% yields respectively) were prepared using the same procedure as for 11a-11c. Selected data for 11d: ${ }^{31} \mathrm{P}: 10.4 \mathrm{ppm},{ }^{1} J_{\mathrm{PtP}} 3378 \mathrm{~Hz} .{ }^{1} \mathrm{H}: 8.58$ ${ }_{80}\left({ }^{3} J_{\mathrm{PtH}} 95.2,1 \mathrm{H}\right), 8.32(\mathrm{dd}, 1 \mathrm{H}), 7.73-6.48(\mathrm{~m}, 17 \mathrm{H}), 4.11(\mathrm{~m}$, $1 \mathrm{H}), 3.89$ (ddd, 1H), 3.60 (dd, 1H), 1.39 (d, $\left.{ }^{3} J_{\mathrm{HH}} 6.6,3 \mathrm{H}\right)$ ppm. FT-IR: 1598, 1566, $1526 \mathrm{~cm}^{-1}$. ES-MS: $\mathrm{m} / \mathrm{z} 660\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPt} \cdot \mathrm{CHCl}_{3}$: $\mathrm{C}, 46.25$; H , 3.37; N, 3.60. Found: C, 46.29; H, 3.32; N, 3.53. Selected data ${ }_{85}$ for $11 \mathrm{e}:{ }^{31} \mathrm{P}: 24.3 \mathrm{ppm} .{ }^{1} \mathrm{H}: 8.27$ (s, 1 H$), 8.24(\mathrm{dd}, 1 \mathrm{H})$, $7.70-6.44(\mathrm{~m}, 17 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{ddd}, 1 \mathrm{H}), 3.51(\mathrm{dd}$, 1 H), 1.32 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}} 6.5,3 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 1595, 1563, 1525 cm^{-1}. ES-MS: m/z $571 \quad\left[\mathrm{M}^{+}\right]$. Anal. (\%) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ PPd: C, 61.00; H, 4.42; N, 4.91. Found: C, 60.36; ${ }_{90} \mathrm{H}, 4.45$; N, 4.65. Selected data for 11f: ${ }^{31} \mathrm{P}$: $22.7 \mathrm{ppm} .{ }^{1} \mathrm{H}$: 8.13 (m, 2H), 7.83-6.09 (m, 17H), 3.84 (m, 1H), 3.72 (ddd, 1 H), 3.39 (dd, 1H), 1.51 (d, $\left.{ }^{3} J_{\mathrm{HH}} 6.4,3 \mathrm{H}\right) \mathrm{ppm}$. FT-IR: 1597, 1569, $1522 \mathrm{~cm}^{-1}$. FAB-MS: m/z 523 [M^{+}]. Anal. (\%) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PNi} \cdot \mathrm{CHCl}_{3}$: C, 56.07; H, 4.09; $\mathrm{N}, 4.36$. Found: ${ }_{95} \mathrm{C}, 55.51 ; \mathrm{H}, 4.01$; N, 4.12 .

Results and discussion

Ligand Syntheses

The new unsymmetric ligands $\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- 3} \mathbf{c} \cdot \mathbf{H H}$ were synthesised from 2a-2c (Scheme 1) using a previous literature ${ }_{100}$ method for the synthesis of ligands with $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{17,27 \mathrm{a}}$ and $\mathrm{N}_{3} \mathrm{O}^{27 \mathrm{~b}}$ donor sets. Reaction of the aminoalcohols $\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ ($\mathrm{R}=2$ $\mathrm{OH}, 4-\mathrm{OH}$ or $2-\mathrm{CH}_{2} \mathrm{OH}$) with carbobenzyloxyglycine and a slight excess of DCC in THF for 4 h gave $\mathbf{1 a - 1 c}$ in high yields. Treatment of $\mathbf{1 a} \mathbf{- 1 c}$ with Pd / C (10\%) and cyclohexene 105 in refluxing EtOH gave, after filtration and evaporation of the solvent, the 1° amines $\mathbf{2 a} \mathbf{- 2 c}$ (characterising data for $\mathbf{1 b}$, 1c, 2b and 2c provided in the ESI). Using a well established route ${ }^{14 \mathrm{~d}, 14 \mathrm{e}, 16,28,29 \mathrm{e}}$ for synthesising phosphinoimines, reaction of 2a-2c with $2-\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{CHO})$ in refluxing EtOH gave, 110 after workup, the tetradentate ligands $\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- 3} \mathbf{c} \cdot \mathbf{H H}$ in good yields (61-76\%). This synthetic approach was also used to prepare $\mathbf{3 d} \cdot \mathbf{H H}$ from $2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})\left\{\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}(\mathrm{Me}) \mathrm{NH}_{2}\right\}$ $\mathbf{2 d}{ }^{18}$ and $2-\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{CHO})$ in EtOH at ambient temperature (Scheme 2). Compounds $\mathbf{3 a \cdot} \cdot \mathbf{H H} \mathbf{- 3 d} \cdot \mathbf{H H}$ were obtained as 115 off-white solids, soluble in a range of common organic
solvents. The spectroscopic data confirm Schiff base condensation, with formation of a $\mathrm{CH}=\mathrm{N}$ bond, since new ${ }^{31} \mathrm{P}$ signals were observed at $\delta(\mathrm{P})-8 \mathrm{ppm}$ [c.f. $\delta(\mathrm{P})-11.2 \mathrm{ppm}$ for 2- $\left.\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{CHO})\right]$. Furthermore the ${ }^{1} \mathrm{H}$ NMR spectra, in all ${ }_{5}$ four cases, show a distinct $\mathrm{CH}=\mathrm{N}$ resonance in the range $\delta(\mathrm{H})$ $8.58-8.83 \mathrm{ppm}$ and a singlet in the region $\delta(\mathrm{H}) 4.25-4.32 \mathrm{ppm}$ for the methylene group $\left(\mathrm{CH}_{2} \mathrm{~N}\right)$. Compounds $\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- 3 d} \cdot \mathbf{H H}$ adopt an E - (anti-) configuration as previously observed for other phosphinoimine ligand systems ${ }^{14 a}$ and based on single 10 crystal X-ray studies for $\mathbf{3 a} \cdot \mathbf{H H}$ and $\mathbf{3 c} \cdot \mathbf{H H}$ (vide infra).

$\mathrm{X}=\mathrm{OH}, \mathrm{Y}=\mathrm{H} \quad$ 2a $\mathrm{X}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{Y}=\mathrm{H} \quad$ 2b
$X=\mathrm{H}, \mathrm{Y}=\mathrm{OH}$

$$
\begin{array}{ll}
X=\mathrm{OH}, Y=\mathrm{H} & \text { 3a } \cdot \mathbf{H H} \\
X=\mathrm{CH}_{2} \mathrm{OH}, Y=\mathrm{H} & \text { 3b} \cdot \mathbf{H H} \\
X=\mathrm{H}, Y=\mathrm{OH} & \text { 3c } \cdot \mathbf{H H}
\end{array}
$$

Scheme 1

15
2d

3d•HH

Scheme 2

The X -ray structures of $\mathbf{3 a} \cdot \mathbf{H H} \cdot \mathrm{EtOH}$ [Fig. 1(a)] and $\mathbf{3} \mathbf{c} \cdot \mathbf{H H} \cdot 0.5 \mathrm{CHCl}_{3}$ [Fig. 1(b)] have been determined. In both ${ }_{20} \mathbf{3 a} \cdot \mathbf{H H}$ and $\mathbf{3 c} \cdot \mathbf{H H}$ the geometry around $\mathrm{P}(1)$ is distorted tetrahedral with $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles in the range 101.03(8)-104.08(8) ${ }^{\circ}$. The most distinct structural difference between these isomeric ligands is the relative orientation of the $\mathrm{Ph}_{2} \mathrm{P}$ - unit with respect to the $\mathrm{N}(1) / \mathrm{N}(2) / \mathrm{O}(2)$ donor ${ }_{25}$ atoms. In $\mathbf{3 a} \cdot \mathbf{H H}$ the $\mathrm{Ph}_{2} \mathrm{P}-$ group points away from $\mathrm{N}(1) / \mathrm{N}(2) / \mathrm{O}(2)$ yet in $\mathbf{3 c} \cdot \mathbf{H H}$ this group faces both the $\mathrm{N}(1) / \mathrm{N}(2)$ donor atoms. Free rotation about C(7)-C(aryl) is plausible thus predisposing all four donor atoms (for $\mathbf{3 a} \cdot \mathbf{H H}$) in the same plane when bound in a tetradentate fashion. ${ }_{30}$ Various H -bonding interactions in $\mathbf{3 a} \cdot \mathbf{H H}$ and $\mathbf{3 c} \cdot \mathbf{H H}$ exist including, common to both structures, an intramolecular $\mathrm{N}(1) \cdots \mathrm{H}(2)-\mathrm{N}(2) \quad \mathrm{H}$-bond $\quad[\mathrm{N}(1) \cdots \mathrm{N}(2) \quad 2.638(2) \quad \AA$, $\mathrm{N}(1) \cdots \mathrm{H}(2)-\mathrm{N}(2) \quad 117.0(17)^{\circ} \quad$ for $\quad \mathbf{3 a} \cdot \mathbf{H H} ; \quad \mathrm{N}(1) \cdots \mathrm{N}(2)$ 2.688(2) $\AA, \quad \mathrm{N}(1) \cdots \mathrm{H}(2)-\mathrm{N}(2) \quad 116.6(16)^{\circ}$ for $\left.\mathbf{3 c} \cdot \mathbf{H H}\right]$. ${ }_{35}$ Furthermore, additional intermolecular H-bonding to an EtOH solvate $[\mathrm{O}(1) \cdots \mathrm{O}(3 \mathrm{~A}) 2.6846(19) \AA$, $\mathrm{O}(1) \cdots \mathrm{H}(3 \mathrm{~B})-\mathrm{O}(3 \mathrm{~A})$ $172(3)^{\circ}$ and $\mathrm{O}(2) \cdots \mathrm{O}(3) 2.598(2) \AA, \mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{O}(3)$ $167(3)^{\circ}$] is evident in $\mathbf{3 a} \cdot \mathbf{H H}$. Compound $\mathbf{3 c} \cdot \mathbf{H H}$ forms chains along the c direction via intermolecular H-bonding ${ }_{40}\left[\mathrm{O}(2) \cdots \mathrm{O}(1 \mathrm{~A}) 2.694(2) \AA, \mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{O}(1 \mathrm{~A}) 158(3)^{\circ}\right]$ between adjacent molecules (see ESI for further details).

(a)

45

(b)

Fig. 1 Molecular structures of (a) $\mathbf{3} \mathbf{a} \cdot \mathbf{H H} \cdot \mathbf{E t O H}$ and (b) ${ }_{50} \mathbf{3 c} \cdot \mathbf{H H} \cdot 0.5 \mathrm{CHCl}_{3}$. The disordered CHCl_{3} and all hydrogen atoms except those on $N(2), O(2), O(3)$ and $O(3 A)$ are removed for clarity. Symmetry operator $\mathrm{A}=-\mathrm{x}+1, \mathrm{y}+\frac{1}{2},-\mathrm{z}+\frac{5}{2}$.

Coordination studies

${ }_{55}$ The reactivity of $\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- 3 d} \cdot \mathbf{H H}$ towards linear and squareplanar metal centres was explored in order to evaluate their flexibility and coordination potential. Classical κ^{1}-Pcoordination was achieved upon stoichiometric reaction of $\mathbf{3 a} \cdot \mathbf{H H}$ with $\mathrm{AuCl}($ tht $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ affording 4a in 91% yield ${ }_{60}$ (Scheme 3). The downfield shift of $\delta(\mathrm{P}) 29.2 \mathrm{ppm}$ [in addition to a minor (ca. 5\%) species identified as $\mathrm{AuCl}\{2-$ $\left.\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{CHO})\right\}, \delta(\mathrm{P}) 32.2 \mathrm{ppm}$, presumably arising from hydrolysis of the imine bond] clearly support P-coordination of $\mathbf{3 a} \cdot \mathbf{H H}$.

$$
\begin{array}{ll}
M=P t, L_{1}=L_{2}=\mathrm{Cl}, X=\mathrm{OH}, \mathrm{Y}=\mathrm{H} & \mathbf{5 a} \\
M=P d, L_{1}=\mathrm{L}_{2}=\mathrm{Cl}, X=\mathrm{OH}, Y=\mathrm{H} & \mathbf{5 b} \\
M=P d, L_{1}=\mathrm{CH}_{3}, L_{2}=\mathrm{Cl}, X=\mathrm{OH}, Y=\mathrm{H} & \mathbf{7 a} \\
M=P d, L_{1}=\mathrm{CH}_{3}, \mathrm{~L}_{2}=\mathrm{Cl}, X=\mathrm{H}, \mathrm{Y}=\mathrm{OH} & \mathbf{7 c}
\end{array}
$$

Scheme 3

The X-ray structure of 4a (Fig. 2, Table 2) shows typical ${ }_{5} \mathrm{Au}-\mathrm{P}[2.2283(10) \AA$], $\mathrm{Au}-\mathrm{Cl}[2.2714(12) \AA$] and $\mathrm{Cl}-\mathrm{Au}-\mathrm{P}$ [179.61(6) ${ }^{\circ}$] parameters consistent with a near linear geometry around $\mathrm{Au}(\mathrm{I})$. Upon coordination, the conformation of $\mathbf{3 a} \cdot \mathbf{H H}$, with respect to the $\mathrm{NN}^{`} \mathrm{O}$ - group, remains unaltered. Furthermore there persists a strong intramolecular
${ }_{10} \mathrm{~N}(1) \cdots \mathrm{H}(2)-\mathrm{N}(2) \quad \mathrm{H}$-bond $\quad[\mathrm{N}(1) \cdots \mathrm{N}(2) \quad 2.592(5) \quad \AA$, $\left.\mathrm{N}(1) \cdots \mathrm{H}(2)-\mathrm{N}(2) 116^{\circ}\right]$ and neighbouring molecules form chains (see ESI) along the a direction through $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$ intermolecular H -bonds $[\mathrm{O}(2) \cdots \mathrm{O}(1 \mathrm{~A})$ 2.661(4) \AA, $\left.\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{O}(1 \mathrm{~A}) 143^{\circ}\right]$.

15

Fig. 2 Molecular structure of 4a. All hydrogen atoms except those on $\mathrm{N}(2)$ and $\mathrm{O}(2)$ are removed for clarity.

Phosphinoimines are well known to form late transition${ }_{20}$ metal chelate complexes using both P and imine N -donor atoms. ${ }^{29}$ Furthermore $\mathrm{Pd}^{\mathrm{II}}$ iminophosphine complexes have been used in a range of catalytic applications highlighting the versatility of these ligand systems. ${ }^{6 f, 30}$ In order to probe the coordination behaviour of ligands $\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- 3} \mathbf{d} \cdot \mathbf{H H}$ treatment 25 of $\mathrm{MCl}_{2}(\operatorname{cod})(\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ with one equiv. of $\mathbf{3 a} \cdot \mathbf{H H}$ (or $\mathbf{3 d} \cdot \mathbf{H H}$) afforded the chelate complexes $\mathbf{5 a}, \mathbf{5 b}$ (or $\mathbf{5 c}, \mathbf{5 d}$) (Scheme's 3 \& 4). Mononuclear cationic $\left[\operatorname{Pd}\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathbf{3 a} \cdot \mathbf{H H}-\mathbf{3 c} \cdot \mathbf{H H})\right] \mathrm{Cl} \quad(\mathbf{6 a}-\mathbf{6 c}) \quad$ and neutral $\mathrm{Pd}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}(\mathbf{3 a} \cdot \mathbf{H H} / \mathbf{3 c} \cdot \mathbf{H H})(\mathbf{7 a}, 7 \mathbf{7})$ complexes were readily
${ }_{30}$ prepared from $\left[\operatorname{PdCl}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$ and $\operatorname{Pd}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}(\mathrm{cod})$ (Scheme's $3 \& 5$). In all complexes, $\kappa^{2}-P, N$-chelation was deduced from downfield phosphorus chemical shifts [$\delta(\mathrm{P})$ 38.2 ppm (for 5b); ca. 24 ppm (for 6a-6c); ca. 38 ppm (for $7 \mathbf{7 a}, 7 \mathbf{c})$]. For $5 \mathbf{5 a}$, in $\mathrm{CDCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ solution, two species at ${ }_{35} \delta(\mathrm{P}) 10.7 \mathrm{ppm},{ }^{1} J_{\mathrm{PtP}} 3492 \mathrm{~Hz}$ and $3.0 \mathrm{ppm},{ }^{1} J_{\mathrm{PtP}} 3324 \mathrm{~Hz}$ were observed, tentatively assigned neutral and cationic structures, the later presumably involving NH/OH coordination.

8d

Scheme 4
40

Scheme 5

The X-ray structure of $\mathbf{7 c} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Fig. 3, Table 2) shows 45 the phosphinoimine κ^{2}-P, N -donor atoms to chelate the palladium(II) centre with six-membered ring formation. The methyl group lies trans to N with $\mathrm{Pd}-\mathrm{P}, \mathrm{Pd}-\mathrm{N}, \mathrm{Pd}-\mathrm{C}$ and $\mathrm{Pd}-\mathrm{Cl}$ bond lengths similar to those in previous reported compounds. ${ }^{6 j}$ In $\mathbf{7 c} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ the " $\mathrm{Pd}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$ " fragment is 50 hinged about $\mathrm{P}(1) \cdots \mathrm{N}(1) / \mathrm{C}(7)$ with $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$ lying essentially flat (within $\pm 0.032 \AA$). The $\operatorname{Pd}(1)$ metal atom resides out of the basal plane of the $\mathrm{P}(1), \mathrm{N}(1), \mathrm{Cl}(1)$ and $\mathrm{C}(28)$ donor substituents by $0.027 \AA$. An intermolecular $\mathrm{O}\left(1{ }^{`}\right) \cdots \mathrm{H}(2 \mathrm{~A})-\mathrm{O}(2) \quad\left[\mathrm{O}\left(1^{`}\right) \cdots \mathrm{O}(2) \quad 2.696(3) \quad \AA\right.$ and
${ }_{55} \mathrm{O}\left(1^{`}\right) \cdots \mathrm{H}(2 \mathrm{~A})-\mathrm{O}(2) 178(4)^{\circ}$; symmetry operator ${ }^{\prime}=\mathrm{x},-\mathrm{y}+$ $\frac{1}{2}, \mathrm{z}-\frac{1}{2}$] H-bond links molecules into chains along the c direction (see ESI) and there also exists an intramolecular $\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{Cl}(1) \quad[\mathrm{N}(2) \cdots \mathrm{Cl}(1) \quad 3.131(2) \quad \AA \quad$ and
$\left.\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{Cl}(1) 166(3)^{\circ}\right] \mathrm{H}$-bond. From the solid state structure it is possible to envisage how $\mathbf{3 c} \cdot \mathbf{H H}$ could further function as a tridentate ligand.

Fig. 3 Molecular structure of 7c. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent of crystallisation and all hydrogen atoms except on $\mathrm{N}(2)$ are removed for clarity.

Scheme 6

In order to verify whether ligands $\mathbf{3 a} \cdot \mathbf{H H} \mathbf{- \mathbf { 3 d } \cdot \mathbf { H H } \text { could }}$ function as κ^{3}-PNN`-tridentate ligands it was necessary to 15 find a synthetic method which would permit single deprotonation of the NH amide group. Klein et $a l^{31}$ demonstrated the secondary amide phosphine 2$\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}(\mathrm{NHR})$ smoothly reacts with $\mathrm{Co}\left(\mathrm{CH}_{3}\right)\left\{\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right\}_{4}$ to afford a five-coordinate Co^{1} complex accompanied by CH_{4} ${ }_{20}$ elimination. When $\operatorname{Pt}\left(\mathrm{CH}_{3}\right)_{2}$ (cod) was employed instead, we reasoned the $\mathrm{P}, \mathrm{N}_{\text {imine }}$ group would displace the cod ligand and position the coordinated ligand for methyl protonation/elimination by the NH amide hydrogen (the OH group could function similarly). Satisfyingly, in toluene this ${ }_{25}$ reaction proceeds cleanly to give $\mathbf{8 a}$ (and $\mathbf{8 b}, \mathbf{8 d}$) in high
yields as yellow, air-stable solids (Scheme's 4 \& 6) which were fully characterised by NMR, FT-IR, ES-MS and microanalyses. In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{8 d}$, clean ${ }^{31} \mathrm{P}$ resonances were observed around $\delta(\mathrm{P}) 13 \mathrm{ppm}\left[{ }^{1} J_{\mathrm{PtP}}\right.$ $3800-3870 \mathrm{~Hz}]$. The ${ }^{1} \mathrm{H}$ NMR spectra clearly show retention of one methyl group [$\delta(\mathrm{H}) c a .0 .00 \mathrm{ppm},{ }^{2} J_{\mathrm{PtH}} c a .73 \mathrm{~Hz}$] and was further corroborated by single crystal X-ray structure determinations of 8a (Fig. 4), 8b (Fig. 5) and 8d (Fig. 6).

35
Fig. 4 Molecular structure of 8a showing the intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} \mathrm{H}$-bond. The CHCl_{3} solvent of crystallisation is removed for clarity.

40

Fig. 5 Molecular structure of $\mathbf{8 b}$ showing the H-bonded dimer pair formation. The $\mathrm{C}_{7} \mathrm{H}_{8}$ solvent of crystallisation is removed for clarity.

The complexes $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{8 d}$ display an essentially squareplanar environment around the platinum centre with bond angles in the range $80.31(13)-95.45(9)^{\circ}$ (Table 2). The $\mathrm{Pt}-\mathrm{N}(1)$ and $\mathrm{Pt}-\mathrm{N}(2)$ bond lengths vary slightly whilst the $\mathrm{Pt}-\mathrm{P}$ and $\mathrm{Pt}-\mathrm{C}$ bond distances are similar. ${ }^{14 \mathrm{a}}$ Furthermore, ${ }_{50}$ trigonal planar geometries around $\mathrm{N}(1)$ and $\mathrm{N}(2)$ can be inferred from bond angles (ca. $\sum 360^{\circ}$) at both nitrogen centres in accord with amide functional groups. In 8a, the $\operatorname{Pt}(1)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$ ring is essentially flat (within $\pm 0.09 \AA$) with $\mathrm{P}(1)$ lying $0.39 \AA$ out of this plane whereas in ${ }_{55} \mathbf{8 b}$ the $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{P}(1)$ ring is essentially flat (within $\pm 0.07 \AA$) with $\operatorname{Pt}(1)$ lying $0.37 \AA$ out of this plane. For the five-membered ring in $\mathbf{8 a}, \mathrm{N}(1)$ lies $0.38 \AA$ out of the plane with respect to $\operatorname{Pt}(1)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$ which is essentially flat (within $\pm 0.004 \AA$) and this feature remains for ${ }_{60} \mathbf{8 b}$. For 8d, the $N(2)-\operatorname{Pt}(1)-N(1)-C(8)$ is co-planar (within
$\pm 0.006 \AA$) with $\mathrm{C}(10)$ out of this plane by $0.68 \AA$ resulting in an envelope conformation. The two compounds $\mathbf{8 a}$ and $\mathbf{8 b}$, differing only by an extra methylene group, give rise to disparate intramolecular and intermolecular $\mathrm{O} \cdots \mathrm{H}-\mathrm{O} \quad \mathrm{H}-$ ${ }_{5}$ bonding motifs. In 8a and $\mathbf{8 d}$ there is an intramolecular $\mathrm{O}(1) \cdots \mathrm{H}(2)-\mathrm{O}(2) \quad \mathrm{H}$-bond $[\mathrm{O}(1) \cdots \mathrm{O}(2) \quad 2.543(5) \quad \AA$, $\mathrm{O}(1) \cdots \mathrm{H}(2)-\mathrm{O}(2) 151^{\circ}$ for 8a; $\mathrm{O}(1) \cdots \mathrm{O}(2) 2.509(5) \AA$, $\mathrm{O}(1) \cdots \mathrm{H}(2)-\mathrm{O}(2) 160(6)^{\circ}$ for $\left.\mathbf{8 d}\right]$. For $\mathbf{8 b}$, dimer pairs are formed through intermolecular $\mathrm{O} \cdots \mathrm{H}-\mathrm{O} \quad \mathrm{H}$-bonding ${ }_{10}\left[\mathrm{O}(1 \mathrm{~A}) \cdots \mathrm{O}(2) \quad 2.758(5) \quad \AA, \quad \mathrm{O}(1 \mathrm{~A}) \cdots \mathrm{H}(2)-\mathrm{O}(2) \quad 127^{\circ}\right.$; symmetry operator $\mathrm{A}=-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$] generating an $R^{2}{ }_{2}(16)$ ring motif. The effect of amide deprotonation and complexation has clearly reduced the potential for any further H -bonding.

15

Fig. 6 Molecular structure of 8d. The $\mathrm{C}_{7} \mathrm{H}_{8}$ solvent is removed for clarity.

20 Two further studies were undertaken regarding the formation of $\mathbf{8 a}$ and $\mathbf{8 b}$ from $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}$ (cod). Firstly, in solution by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, could we possibly observe the intermediate formation of $\operatorname{Pt}\left(\mathrm{CH}_{3}\right)_{2}(\mathbf{3 a} \cdot \mathbf{H H}) \mathbf{8 a}{ }^{\text {` }}$ and, secondly, could a second methane elimination be 25 thermally induced? In situ monitoring of a $1: 1$ mixture of $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{cod}) / 3 \mathbf{a} \cdot \mathbf{H H}$ in toluene $/ \mathrm{C}_{6} \mathrm{D}_{6}$ revealed the immediate formation of two new species at $\delta(\mathrm{P}) 24.8 \mathrm{ppm}$ [$\left.{ }^{1} J_{\mathrm{PtP}} 1905 \mathrm{~Hz}\right]$ and $\delta(\mathrm{P}) 25.2 \mathrm{ppm}$ [${ }^{1} J_{\mathrm{PtP}} 1831 \mathrm{~Hz}$]. For both speices, the magnitude of ${ }^{1} J_{\mathrm{PtP}}$ was indicative of $\kappa^{2}-\mathrm{P}, \mathrm{N}$-chelation with
30 trans coordinated methyl ligands. We believe restricted rotation about the amide bond leads to these two species which are E/Z-conformational isomers. ${ }^{14 \mathrm{a}}$ Over $c a .2 \mathrm{~h}$ the intensity of these phosphorus signals diminishes as a new signal at $\delta(\mathrm{P})$ appears corresponding to the formation of $\mathbf{8 a}$ in ${ }_{35}$ solution. When 8b was refluxed in toluene under N_{2} for 68 h only the starting compound was isolated, clearly indicating that a second methane protonation by the benzylalcohol group is extremely slow. Likewise, 8a in refluxing toluene for 24 h showed no evidence, by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, of O ${ }_{40}$ coordination despite the more acidic phenolic substituent.

Alternatively, κ^{3}-PNN`-tridentate ligation could be induced by reacting 6a-6c, $\mathbf{7 a}$ or $\mathbf{7 c}$ with ${ }^{t} \mathrm{BuOK}$ in $\mathrm{CH}_{3} \mathrm{OH}$ at room temperature (Scheme 6). These clean transformations afforded the compounds 9a-9c, 10a and 10c in good to excellent ${ }_{45}$ isolated yields (51-96\%). Very few examples of
tridentate ${ }^{28,32}$, and fewer still of didentate ${ }^{33}$, ligands have been shown to stabilise soft metal centres towards η^{1}-allyl coordination. Upon complexation, there was a small change in $\delta(\mathrm{P})$ of $c a .5-10 \mathrm{ppm}$ for $\mathbf{9 a}-\mathbf{9 c}$. However the most significant 50 insight was provided by new, sharp ${ }^{1} \mathrm{H}$ resonances for all five protons on the η^{1}-allyl ligand, clearly supporting monohapto coordination. The solution stability of 10a towards internal protonation by the OH group was also investigated since Pd compounds are often more reactive than their Pt counterparts. ${ }_{55}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR monitoring of a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 0 a}$ over several days at r.t. affored a mixture of phosphorus containing compounds including 11b (vide infra).

60
Scheme 7

Having established three distinct binding modes for these ligands, we were interested to see whether they could function as κ^{4}-tetradentate ligands using all four donor atoms ($\mathrm{P}, \mathrm{N} / \mathrm{N}^{-}$ 65 and O). Complexed ligands with either an ortho -OH or $\mathrm{CH}_{2} \mathrm{OH}$ group would be anticipated to use the O-donor in bonding to a single metal centre with concomitant formation of a five- or six-membered chelate ring. Accordingly reaction of $\mathbf{5 a}, \mathbf{5 b}$, bearing the more acidic phenolic group, in $\mathrm{CH}_{3} \mathrm{OH}$ 70 with ${ }^{t} \mathrm{BuOK}$ gave the neutral compounds 11a and 11b. The nickel complex 11c was obtained directly from $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $\mathbf{3 a} \cdot \mathbf{H H}$ and ${ }^{t} \mathrm{BuOK}$ in $\mathrm{CH}_{3} \mathrm{OH}$ (Scheme 7). Compounds 11d-11f were prepared cleanly using an identical approach to those described for 11a-11c (Scheme 8). Upon N, O-chelation, 75 there is a marked reduction in ${ }^{1} J_{\mathrm{PtP}}$ for $\mathbf{1 1 a}(3371 \mathrm{~Hz})$ and $\mathbf{1 1 d}$ $(3378 \mathrm{~Hz})$ in comparison to the κ^{3}-PNN`-tridentate compounds 8a (3865 Hz) and 8d (3834 Hz). Sharp ${ }^{31} \mathrm{P}$ resonances at $\delta(\mathrm{P}) 19.7 \mathrm{ppm}$ (for 11c) and 22.7 ppm (for 11f) are indicative of square-planar, diamagnetic species. ${ }_{80}$ Alternatively 11b could be prepared, in one-step, by reaction of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathbf{3 a} \cdot \mathbf{H H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 8

(a)

(b)

5
Fig. 7 Molecular structure of (a) 11c (compounds 11a and 11b isomorphous) (b) side-on view showing the ring conformations in 11c.

10
Fig. 8 Molecular structure of $\mathbf{1 1 d}$. The CHCl_{3} solvent is removed for clarity.

The X-ray structures of the Pt, Pd and Ni complexes 11a11c and 11d have each been determined (Fig's 7, 8 and ESI; 15 Table 2). In compounds 11a-11c tetradentate κ^{4}-PNN`Ocomplexation has clearly resulted with formation of one six-\((\mathrm{M}-\mathrm{P}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{N})\) and two five-membered (\(\mathrm{M}-\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}\) and \(\mathrm{M}-\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{O}\)) chelate rings. As an illustration, the three ring conformations in 11c are described as follows: the \({ }_{20} \mathrm{Ni}(1)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)\) part of the ring is essentially flat (within \(\pm 0.05 \AA\)) with \(\mathrm{P}(1)\) lying \(0.30 \AA\) out of this plane, whereas both five-membered rings are effectively planar [within \(\pm 0.04 \AA\) for \(\mathrm{Ni}(1)-\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{O}(2)\) and \(\pm 0.07\) \(\AA\) for \(\mathrm{Ni}(1)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(2)]\). Within this series the \({ }_{25} \mathrm{M}-\mathrm{P}, \mathrm{M}-\mathrm{N}\) and \(\mathrm{M}-\mathrm{O}\) bond lengths follow the expected trend on going from \(\mathrm{Pt}>\mathrm{Pd}>\mathrm{Ni}\). In 11a the \(\mathrm{Pt}(1)-\mathrm{N}(1)\) [1.977(3) \(\AA\)] and \(\operatorname{Pt}(1)-\mathrm{N}(2)\) [2.000(3) \(\AA\)] distances are similar, the later compares favourably with previous \(\mathrm{Pt}-\mathrm{N}_{\text {amide }}\) bond lengths [2.035(6) \(\AA\) and 2.067(5) \(\AA\)]. \({ }^{13 i}\) The Pd-O bond lengths for 30 the two independent molecules in 11b [2.001(5) \(\AA\) and 1.997(5) \(\AA\)] are similar to those in \(\mathrm{Pd}(\mathrm{OPh})_{2}(\mathrm{bpy})\) [1.996(7) \(\AA]^{34}\) but significantly shorter than found in \(\operatorname{Pd}\left\{\kappa^{2}-\mathrm{P}, \mathrm{N}-2-\right.\) \(\left.\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right\} \mathrm{Cl}(\mathrm{OPh})(\mathrm{P}\) trans to \(\mathrm{O}, 2.088(5) \AA\) vs. \(\mathrm{P}(1)\) trans to \(\mathrm{N}(1)\) in \(\mathbf{1 1 b}] .{ }^{35}\) Crystallographically 35 characterised examples with this combination of donor atoms around the central \(\mathrm{Ni}^{\mathrm{II}}, \mathrm{Pd}^{\mathrm{II}}\) or \(\mathrm{Pt}^{\mathrm{II}}\) are extremely sparse. \({ }^{15,36-38}\) As far as we are aware only one \(\mathrm{Ni}^{\mathrm{II}}\) complex containing a \(\kappa^{4}\) PNN`O tetradentate ligand has been crystallographically reported ${ }^{15}$ and shows similar $\mathrm{Ni}-\mathrm{P}$ and $\mathrm{Ni}-\mathrm{O}$ distances to
40 those found in 11c [2.1553(5) and 1.8405(12) \AA respectively]. For 11a, there is an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular H -bond $\left[\mathrm{O}(2) \cdots \mathrm{O}(3) 2.775(4) \AA, \mathrm{O}(2) \cdots \mathrm{H}(3)-\mathrm{O}(3) 174^{\circ}\right]$ to a $\mathrm{CH}_{3} \mathrm{OH}$ solvate molecule.

Conclusions

45 In summary, we have developed an efficient, simple, procedure to four new PNN`O-functionalised tertiary phosphines and shown these ligands can adopt a range of coordination modes, including tetradentate ligation, at different transition-metal centres with either linear or square${ }_{50}$ planar geometries. Further studies are in progress and will be reported in due course.

Acknowledgements

We should like to thank the EPSRC for funding, Johnson Matthey for the generous loan of precious metal salts and the ${ }_{55}$ EPSRC Mass Spectrometry Service Centre at Swansea. We also wish to acknowledge the use of the EPSRC's Chemical Database Service at Daresbury.

References

1. J. H. Downing and M. B. Smith, Phosphorus Ligands in

60 Comprehensive Coordination Chemistry II, 2004, vol. 1 (vol. Editor, A. B. P. Lever), 253.
2. (a) P. Espinet and K. Soulantica, Coord. Chem. Rev., 1999, 193-195, 499; (b) D. Hedden and D. M. Roundhill, Inorg. Chem., 1985, 24, 4152.

65 3. (a) V. V. Grushin, Chem. Rev., 2004, 104, 1629; (b) S. Burger, B. Therrien and G. Süss-Fink, Inorg. Chim. Acta, 2004, 357, 1213; (c)
G. Sánchez, J. García, D. Meseguer, J. L. Serrano, L. García, J. Pérez and G. López, Dalton Trans., 2003, 4709.
4. N. C. Gianneschi, M. S. Masar III and C. A. Mirkin, Acc. Chem. Res., 2005, 38, 825.
5 5. For recent examples of P, N-coordination, see: (a) M. O’Reilly, R. Pattacini and P. Braunstein, Dalton Trans., 2009, 6092; (b) G. Erdogan and D. B. Grotjahn, J. Am. Chem. Soc., 2009, 131, 10354; (c) J. Flapper, H. Kooijman, M. Lutz, A. L. Spek, P. W. N. M. van Leeuwen, C. J. Elsevier and P. C. J. Kamer, Organometallics, 2009,
10 28, 1180; (d) L. J. Hounjet, M. Bierenstiel, M. J. Ferguson, R. McDonald and M. Cowie, Dalton Trans., 2009, 4213.
6. (a) O. del Campo, A. Carbayo, J. V. Cuevas, A. Muñoz, G. GarcíaHerbosa, D. Moreno, E. Ballesteros, S. Basurto, T. Gómez and T. Torroba, Chem. Commun., 2008, 4576; (b) O. M. Ni Dhubhghaill, J.
15 Lennon and M. G. B. Drew, Dalton Trans., 2005, 3213; (c) W.-Q. Hu, X.-L. Sun, C. Wang, Y. Gao, Y. Tang, L.-P. Shi, W. Xia, J. Sun, H.-L. Dai, X.-Q. Li, X.-L. Yao and X.-R. Wang, Organometallics, 2004, 23, 1684; (d) H. Dai, X. Hu, H. Chen, C. Bai and Z. Zheng, Tetrahedron: Asymmetry, 2003, 14, 1467; (e) V. Cadierno, P. 20 Crochet, J. Díez, J. Garcia-Álvarez, S. E. García-Garrido and J. Gimeno, Inorg. Chem., 2003, 42, 3293; (f) P.-Y. Shi, Y.-H. Liu, S.M. Peng and S.-T. Liu, Organometallics, 2002, 21, 3203; (g) J. D. G. Correia, A. Domingos, I. Santos and H. Spies, J. Chem. Soc., Dalton Trans., 2001, 2245; (h) P. Bhattacharyya, M. L. Loza, J. Parr and A.
25 M. Z. Slawin, J. Chem. Soc., Dalton Trans., 1999, 2917; (i) P. Bhattacharyya, J. Parr and A. M. Z. Slawin, J. Chem. Soc., Dalton Trans., 1998, 3609; (j) E. K. van den Beuken, N. Veldman, W. J. J. Smeets, A. L. Spek and B. L. Feringa, Organometallics, 1998, 17, 636; (k) G. J. P. Britovsek, K. J. Cavell, M. J. Green, F. Gerhards, B.
30 W. Skelton and A. H. White, J. Organomet. Chem., 1997, 533, 201.
7. K. S. Min, T. Weyhermuller, E. Bothe and K Wieghardt, Inorg. Chem., 2004, 43, 2922.
8. (a) J. Le Gal, F. Tisato, G. Bandoli, M. Gressier, J. Jaud, S. Michaud, M. Dartiguenave and E. Benoist, Dalton Trans., 2005, 3800; (b) R.

35 Visentin, R. Rossin, M. C. Giron, A. Dolmella, G. Bandoli and U. Mazzi, Inorg. Chem., 2003, 42, 950; (c) K. J. C. van Bommel, W. Verboom, R. Hulst, H. Kooijman, A. L. Spek and D. N. Reinhoudt, Inorg. Chem., 2000, 39, 4099; (d) S. S. Jurisson and J. D. Lydon, Chem. Rev., 1999, 99, 2205.
40 9. J. Szydlowska, A. Krówczyński, E. Górecka and D. Pociecha, Inorg. Chem., 2000, 39, 4879.
10. C.-M. Che, S.-C. Chan, H.-F. Xiang, M. C. W. Chan, Y. Liu and Y. Wang, Chem. Commun., 2004, 1484.
11. For examples, see: (a) M. Ranocchiari and A. Mezzetti,

45 Organometallics, 2009, 28, 1286; (b) M. Ranocchiari and A. Mezzetti, Organometallics, 2009, 28, 3611; (c) A. Cohen, A. Yeori, J. Kopilov, I. Goldberg and M. Kol, Chem. Commun., 2008, 2419; (d) M. Zintl, F. Molnar, T. Urban, V. Bernhart, P. Preishuber-Pflügl and B. Rieger, Angew. Chem. Int. Ed., 2008, 47, 3458; (e) R. J. Long, D. J. Jones, V. C. Gibson and A. J. P. White, Organometallics, 2008, 27, 5960; (f) G. J. Clarkson, V. C. Gibson, P. K. Y. Goh, M. L. Hammond, P. D. Knight, P. Scott, T. M. Smit, A. J. P. White and D. J. Williams, Dalton Trans., 2006, 5484; (g) N. T. S. Phan, D. H. Brown, H. Adams, S. E. Spey and P. Styring, Dalton Trans., 2004,
55 1348; (h) W.-K. Wong, X.-P. Chen, T.-W. Chik, W.-Y. Wong, J.-P. Guo and F.-W Lee, Eur. J. Inorg. Chem., 2003, 3539; (i) H. Zhang, C.-B. Yang, Y.-Y. Li, Z.-R. Donga, J.-X. Gao, H. Nakamura, K. Murata and T. Ikariya, Chem. Commun., 2003, 142; (j) Y. K. Kim, T. Livinghouse and Y. Horino, J. Am. Chem. Soc., 2003, 125, 9560; (k)
60 C. M. Thomas, R. Mafua, B. Therrien, E. Rusanov, H. StoeckliEvans and G. Süss-Fink, Chem. -Eur. J., 2002, 8, 3343; (l) N. End, L. Macko, M. Zehnder and A. Pfaltz, Chem.-Eur. J., 1998, 4, 818.
12. For selected examples of $\mathrm{N}_{2} \mathrm{O}_{2}$-coordination, see: (a) D. Peri, S. Meker, M. Shavit and E. Y. Tshuva, Chem.-Eur. J., 2009, 15, 2403;
65 (b) P. Horeglad, G. Nocton, Y. Filinchuk, J. Pécaut and M. Mazzanti, Chem. Commun., 2009, 1843; (c) A. W. Kleij, Dalton Trans., 2009, 4635; (d) L. Benisvy, R. Kannappan, Y.-F. Song, S. Milikisyants, M. Huber, I. Mutikainen, U. Turpeinen, P. Gamez, L. Bernasconi, E. J. Baerends, F. Hartl and J. Reedijk, Eur. J. Inorg. Chem., 2007, 637; Naruta and O. Yamauchi, J. Am. Chem. Soc., 2007, 129, 2559.
13. For selected examples of $P_{2} N_{2}$-coordination, see: (a) A. Buchard, H. Heuclin, A. Auffrant, X. F. Le Goff and P. Le Floch, Dalton Trans., 2009, 1659; (b) N. Tsukada, M. Wada, N. Takahashi and Y. Inoue, J.
75 Organomet. Chem., 2009, 694, 1333; (c) W. A. Chomitz and J. Arnold, Dalton Trans., 2009, 1714; (d) W. A. Chomitz, A. D. Sutton, J. L. Krinsky and J. Arnold, Organometallics, 2009, 28, 3338; (e) M. R. J. Elsegood, A. J. Lake and M. B. Smith, Dalton Trans., 2009, 30; (f) C. Sui-Seng, F. N. Haque, A. Hadzovic, A.-M. Pütz, V. Reuss, N. Meyer, A. J. Lough, M. Zimmer-De Iuliis and R. H. Morris, Inorg. Chem., 2009, 48, 735; (g) A. A. Mikhailine, E. Kim, C. Dingels, A. J. Lough and R. H. Morris, Inorg. Chem., 2008, 47, 6587; (h) C. Amatore, A. Jutand, L. Mensah and L. Ricard, J. Organomet. Chem., 2007, 692, 1457; (i) S. Burger, B. Therrien and G. Süss-Fink, Eur. J. Inorg. Chem., 2003, 3099; (j) J.-C. Hierso, R. Amardeil, E. Bentabet, R. Broussier, B. Gautheron, P. Meunier and P. Kalck, Coord. Chem. Rev., 2003, 236, 143.
14. (a) S. E. Durran, M. R. J. Elsegood, S. R. Hammond and M. B. Smith, Inorg. Chem., 2007, 46, 2755; (b) C. Dubs, T. Yamamoto, A.
90 Inagaki and M. Akita, Organometallics, 2006, 25, 1359; (c) C. Dubs, T. Yamamoto, A. Inagaki and M. Akita, Organometallics, 2006, 25, 1344; (d) S. E. Watkins, D. C. Craig and S. B. Colbran, J. Chem. Soc., Dalton Trans., 2002, 2423; (e) S. E. Watkins, D. C. Craig and S. B. Colbran, Inorg. Chim. Acta, 2000, 307, 134.

95 15. G. A. Bogdanović, A. Spasojević-de Biré, B. V. Prelesnik and V. M. Leovac, Acta Crystallogr., Sect. C, 1998, 54, 766.
16. A. Barandov and U. Abram, Inorg. Chem., 2009, 48, 8072.
17. M. R. Bermejo, A. M. González, M. Fondo, A. García-Deibe, M. Maneiro, J. Sanmartín, O. L. Hoyos and M. Watkinson, New J. Chem., 2000, 24, 235.
18. J.-P Costes, F. Dahan, B. Donnadieu, M.-J. Rodriguez Douton, M.-I. Fernandez Garcia, A. Bousseksou and J.-P. Tuchagues, Inorg. Chem., 2004, 43, 2736.
19. J. E. Hoots, T. B. Rauchfuss and D. M. Roundhill, Inorg. Synth., 1985, 21, 175.
20. R. Uson, A. Laguna and M. Laguna, Inorg. Synth., 1989, $26,85$.
21. (a) D. Drew and J. R. Doyle, Inorg. Synth., 1972, 13, 47; (b) J. X. McDermott, J. F. White J. F. and G. M. Whitesides, J. Am. Chem. Soc., 1976, 98, 6521.
110 22. R. E. Rülke, J. M. Ernsting, A. L. Spek, C. J. Elsevier, P. W. N. M. van Leeuwen and K. Vrieze, Inorg. Chem., 1993, 32, 5769.
23. E. Costa, P. G. Pringle and M. Ravetz, Inorg. Synth., 1997, 31, 284.
24. SMART and SAINT software for CCD diffractometers, Bruker AXS Inc., Madison, WI, 1994.
115 25. (a) G. M. Sheldrick, SHELXTL user manual, version 5, Bruker ACS Inc., Madison, WI, 1994; (b) G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.
26. A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, C34.
27. (a) M. R. Bermejo, A. M. González, M. Fondo, M. Maneiro, M. Rey, M. Vázquez, O. L. Hoyos and J. C. García-Monteagudo, Inorg. Chim. Acta, 2000, 307, 106; (b) O. L. Hoyos, M. R. Bermejo, M. Fondo, A. García-Deibe, A. M. González, M. Maneiro and R. Pedrido, J. Chem. Soc., Dalton Trans., 2000, 3122.
28. C. Yang, Y. K. Cheung, J. Yao, Y. T. Wong and G. Jia, Organometallics, 2001, 20, 424.
29. For examples, see: (a) A. R. Shaffer and J. A. R. Schmidt, Organometallics, 2009, 28, 2494; (b) L. B. Schenkel and J. A. Ellman, J. Org. Chem., 2004, 69, 1800; (c) B. Crociani, S. Antonaroli, L. Canovese, P. Uguagliati and F. Visentin, Eur. J. Inorg. Chem., 2004, 732; (d) H. Mizutani, S. J. Degrado and A. H. Hoveyda, J. Am. Chem. Soc., 2002, 124, 779; (e) S. E. Durran, M. R. J. Elsegood and M. B. Smith, New J. Chem., 2002, 26, 1402; (f) P. Crochet, J. Gimeno, S. García-Granda and J. Borge, Organometallics, 2001, 20, 4369; (g) B. Crociani, S. Antonaroli, M. L. Di Vona and S. Licoccia, J. Organomet. Chem., 2001, 631, 117; (h) T. Kohara, Y. Hashimoto and K. Saigo, Synlett, 2000, 517; (i) B. Crociani, S. Antonaroli, G. Bandoli, L. Canovese, F. Visentin and P. Uguagliati, Organometallics, 1999, 18, 1137.
30. (a) E. K. van den Beuken, W. J. J. Smeets, A. L. Spek and B. L. Feringa, J. Chem. Soc., Chem. Commun., 1998, 223; (b) K. R. Reddy, C. L. Chen, Y. H. Liu, S. M. Peng, J. T. Chen and S. T. Liu, Organometallics, 1999, 18, 2574.
31. H.-F. Klein, R. Beck, U. Flörke and H.-J. Haupt, Eur. J. Inorg. Chem., 2003, 240.
32. (a) B. Wucher, M. Moser, S. A. Schumacher, F. Rominger and D. Kunz, Angew. Chem. Int. Ed., 2009, 48, 4417; (b) J. Takaya and N. Cantat, N. Mézailles and P. Le Floch, J. Org. Chem., 2007, 72, 4228; (d) N. Solin, J. Kjellgren and K. J. Szabó, J. Am. Chem. Soc., 2004, 126, 7026; (e) L. Barloy, S. Ramdeehul, J. A. Osborn, C. Carlotti, F. Taulelle, A. De Cain and J. Fischer, Eur. J. Inorg. Chem., 2000, 2523.
33. (a) J. Zhang, P. Braunstein and R. Welter, Inorg. Chem., 2004, 43, 4172; (b) P. Braunstein, J. Zhang and R. Welter, Dalton Trans., 2003, 507.
34. G. M. Kapteijn, D. M. Grove, H. Kooijman, W. J. J. Smeets, A. L.
35. G. M. Kapteijn, M. P. R. Spee, D. M. Grove, H. Kooijman, A. L. Spek and G. van Koten, Organometallics, 1996, 15, 1405.
36. The United Kingdom Chemical Database Service, D. A. Fletcher, R. F. McMeeking and D. Parkin, J. Chem. Inf. Comput. Sci., 1996, 36, 746. CSD version 5.31, Nov. 2009.
37. T. Miyaji, M. Kujime, S. Hikichi, Y. Moro-oka and M. Akita, Inorg. Chem., 2002, 41, 5286.
38. G. Bombieri, G. Bruno, M. Cusumano and G. Guglielmo, Acta Crystallogr., Sect. C, 1984, 40, 409.

Table 1 Details of the X-ray data collections and refinements for compounds $\mathbf{3 a} \cdot \mathbf{H H} \cdot \mathrm{EtOH}, \mathbf{3 c} \cdot \mathbf{H H} \cdot 0.5 \mathrm{CHCl} 3,4 \mathbf{a}, 7 \mathbf{c} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{8 a} \cdot \mathrm{CHCl}_{3}, \mathbf{8 b} \cdot 1.5 \mathrm{C}_{7} \mathrm{H}_{8}$, $\mathbf{8 d} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}, \mathbf{1 1 a} \cdot \mathrm{CH}_{3} \mathrm{OH}, \mathbf{1 1 b} \cdot 0.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}, 11 \mathbf{c}$ and $\mathbf{1 1 d} \cdot \mathrm{CHCl}_{3}$.

Compound	$\mathbf{3 a} \cdot \mathbf{H H} \cdot \mathrm{EtOH}$	$\mathbf{3 c} \cdot \mathbf{H H} \cdot \mathbf{0 . 5 C H C l} 3$	4a	7c. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8a $\cdot \mathrm{CHCl}_{3}$	$\mathbf{8 b} \cdot 1.5 \mathrm{C}_{7} \mathrm{H}_{8}$
Formula	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$	$\mathrm{C}_{27.5} \mathrm{H}_{23.5} \mathrm{Cl}_{1.5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{AuClN}_{2} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPd}$	$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPt}$	$\mathrm{C}_{39.5} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPt}$
M	484.51	498.13	670.86	680.25	766.93	799.79
Crystal dimensions	$0.79 \times 0.16 \times 0.06$	$0.61 \times 0.26 \times 0.10$	$0.24 \times 0.19 \times 0.15$	$0.31 \times 0.20 \times 0.18$	$0.65 \times 0.15 \times 0.09$	$0.24 \times 0.19 \times 0.06$
Colour, habit	Lath, colourless	Lath, colourless	Block, colourless	Block, colourless	Rod, yellow	Block, yellow
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Triclinic	Monoclinic
Space group	$P 2_{1} / \mathrm{C}$	$P 2_{1} / \mathrm{C}$	$P 2_{1} 2_{1} 2_{1}$	$P 2_{1} / \mathrm{c}$	P $\overline{1}$	$P 2_{1} / \mathrm{C}$
a / \AA	11.0184(8)	18.7587(11)	7.3440(6)	13.6159(6)	9.1632(14)	11.8821(10)
b/A	18.5035(13)	8.3781(5)	16.0841(13)	13.2505(6)	11.944(2)	14.1839(12)
c/Å	12.7514(9)	17.3155(10)	21.1068(17)	16.1783(7)	14.872(2)	21.8916(18)
$\alpha /^{\circ}$					99.169(3)	
$\beta 1^{\circ}$	95.4000(13)	114.6476(9)		95.7566(8)	103.818(2)	103.7463(13)
$\gamma 1^{\circ}$					112.534(2)	
V / \AA^{3}	2588.2(3)	2473.4(3)	2493.2(3)	2904.1(2)	1401.7(4)	3583.8(5)
Z	4	4	4	4	2	4
μ / mm^{-1}	0.139	0.301	6.099	1.000	5.379	3.995
θ range $/{ }^{\circ}$	1.86-27.50	2.36-27.50	1.59-28.97	1.99-29.00	1.92-28.92	1.73-28.87
Measured reflections	22131	20748	21675	25451	12247	30189
Independent reflections	5901	5646	5974	7080	6407	8575
Observed reflections $\left(F^{2}>2 \sigma\right)$	4303	4273	5330	5579	5961	6516
Goodness of fit on F^{2}	1.019	1.040	1.050	1.060	1.082	0.951
$R_{\text {int }}$	0.0272	0.0270	0.0382	0.0301	0.0251	0.0490
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]^{\text {a }}$	0.0442	0.0428	0.0269	0.0320	0.0328	0.0374
$w R 2$ [all data] ${ }^{\text {b }}$	0.1176	0.1175	0.0572	0.0707	0.0872	0.0904
Largest difference map features/e \AA^{3}	0.611, -0.474	0.636, -0.443	1.177, -0.967	0.679, -0.879	2.698, -2.572	1.949, -2.115

Table 1 Contd

Compound	8d• $2 \mathrm{C}_{7} \mathrm{H}_{8}$	11a. $\mathrm{CH}_{3} \mathrm{OH}$	$\mathbf{1 1 b} \cdot 0.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$	11c	11d $\cdot \mathrm{CHCl}_{3}$
Formula	$\mathrm{C}_{44} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPt}$	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{PPt}$	$\mathrm{C}_{29.5} \mathrm{H}_{26.5} \mathrm{Cl}_{1.5} \mathrm{~N}_{2} \mathrm{O}_{2.5} \mathrm{PPd}$	$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{NiO}_{2} \mathrm{P}$	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PPt}$
M	859.88	663.56	639.57	495.14	778.94
Crystal dimensions	$0.33 \times 0.32 \times 0.14$	$0.51 \times 0.26 \times 0.03$	$0.16 \times 0.08 \times 0.05$	$0.32 \times 0.13 \times 0.11$	$0.53 \times 0.13 \times 0.10$
Colour, habit	Block, yellow	Plate, orange	Block, orange	Block, red	Plate, yellow
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic	Orthorhombic
Space group	$P 2_{1} / n$	P $\overline{1}$	$P 2_{1} / n$	P $\overline{1}$	Pna2 ${ }_{1}$
a / \AA ¢	14.8590(8)	8.5258(4)	14.2900(9)	8.9313(4)	18.5242(8)
b/A	15.6070(8)	9.3993(4)	24.1029(16)	11.5187(6)	17.4935(8)
c/Å	16.2867(9)	15.6457(7)	17.0697(11)	11.5474(6)	9.2080(4)
$\alpha /^{\circ}$		91.4448(7)		73.327(2)	
$\beta 1^{\circ}$	95.8849(9)	100.6844(7)	110.6250(13)	84.831(2)	
$\gamma /{ }^{\circ}$		108.3565(7)		70.061(2)	
V / \AA^{3}	3757.1(3)	1164.66(9)	5502.5(6)	1069.76(9)	2983.9(2)
Z	4	2	8	2	4
μ / mm^{-1}	3.817	6.128	0.911	1.011	5.055
θ range $/^{\circ}$	1.77-29.05	2.29-28.96	1.60-25.00	1.84-29.10	1.60-27.49
Measured reflections	29318	10164	39875	9613	25028
Independent reflections	9048	5347	9684	4986	6745
Observed reflections $\left(F^{2}>2 \sigma\right)$	6720	5037	5908	4309	5392
Goodness of fit on F^{2}	1.061	1.044	0.940	1.046	1.070
$R_{\text {int }}$	0.0378	0.0268	0.0860	0.0132	0.0350
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]^{\text {a }}$	0.0322	0.0230	0.0626	0.0291	0.0324
$w R 2$ [all data] ${ }^{\text {b }}$	0.0653	0.0582	0.1643	0.0776	0.0752
Largest difference map features/e \AA^{3}	1.051, -1.060	1.358, -1.814	0.969, -1.281	0.368, -0.260	1.956, -1.482

Table 2 Selected bond distances and angles for compounds $\mathbf{3 a} \cdot \mathbf{H H} \cdot \mathrm{EtOH}, \mathbf{3} \mathbf{c} \cdot \mathbf{H H} \cdot 0.5 \mathrm{CHCl}_{3}, \mathbf{4 a}, \mathbf{7} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{8 a} \cdot \mathrm{CHCl}_{3}, \mathbf{8 b} \cdot 1.5 \mathrm{C}_{7} \mathrm{H}_{8}, \mathbf{8 d} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$, $11 \mathbf{a} \cdot \mathrm{CH}_{3} \mathrm{OH}, 11 \mathbf{b} \cdot 0.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}, 11 \mathrm{c}$ and $11 \mathrm{~d} \cdot \mathrm{CHCl}_{3}$.

Bond length (\AA)	$\mathbf{3 a} \cdot \mathbf{H H} \cdot \mathrm{EtOH}$	$\mathbf{3 c} \cdot \mathbf{H H} \cdot \mathbf{0 . 5 C H C l} 3$	$\begin{gathered} \mathbf{4 a} \\ (\mathrm{M}=\mathrm{Au}) \end{gathered}$	$\begin{gathered} 7 \mathbf{c} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ (\mathrm{M}=\mathrm{Pd}) \end{gathered}$	$\begin{gathered} \mathbf{8 a} \cdot \mathrm{CHCl}_{3} \\ (\mathrm{M}=\mathrm{Pt}) \end{gathered}$	$\begin{gathered} \mathbf{8 b} \cdot 1_{1.5 C_{7} \mathrm{H}_{8}} \\ (\mathrm{M}=\mathrm{Pt}) \end{gathered}$	$\begin{gathered} \mathbf{8 d} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8} \\ (\mathrm{M}=\mathrm{Pt}) \end{gathered}$
$\mathrm{M}(1)-\mathrm{P}(1)$			2.2283(10)	2.1983(6)	2.1795(12)	2.1842(10)	2.1889 (10)
$\mathrm{M}(1)-\mathrm{Cl}(1)$			2.2714(12)	2.4062(6)			
$\mathrm{M}(1)-\mathrm{C}_{\text {methyl }}$				2.031(3)	2.044(5)	2.052(4)	2.061(4)
$\mathrm{M}(1)-\mathrm{N}(1)$				2.1899 (19)	2.050(4)	2.061(3)	2.077(3)
$\mathrm{M}(1)-\mathrm{N}(2)$					2.090(4)	2.075(3)	2.070(3)
$\mathrm{M}(1)-\mathrm{O}(1)$							
$\mathrm{C}(7)-\mathrm{N}(1)$	1.254(2)	1.266(2)	1.249(5)	1.281(3)	1.279(6)	1.274(5)	1.275(5)
$\mathrm{C}(9)-\mathrm{O}(1)$	1.229(2)	1.234(2)	1.220(5)	1.236(3)	1.257(6)	$1.260(5)$	
$\mathrm{C}(11)-\mathrm{O}(1)$							1.275(4)
Bond angle (${ }^{\circ}$)							
$\mathrm{Cl}(1)-\mathrm{M}(1)-\mathrm{P}(1)$			179.61(6)	177.18(2)			
$\mathrm{Cl}(1)-\mathrm{M}(1)-\mathrm{N}(1)$				93.33(5)			
$\mathrm{Cl}(1)-\mathrm{M}(1)-\mathrm{C}_{\text {methyl }}$				87.53(8)			
$\mathrm{P}(1)-\mathrm{M}(1)-\mathrm{C}_{\text {methyl }}$				91.15(8)	89.05(14)	90.54(14)	89.38(11)
$\mathrm{N}(1)-\mathrm{M}(1)-\mathrm{C}_{\text {methyl }}$				174.39(11)	174.77(17)	173.98(16)	172.59(14)
$\mathrm{N}(2)-\mathrm{M}(1)-\mathrm{C}_{\text {methyl }}$					95.44(17)	92.97(17)	94.90(14)
$\mathrm{N}(1)-\mathrm{M}(1)-\mathrm{P}(1)$				88.23(5)	95.26(11)	95.45(9)	95.27(9)
$\mathrm{N}(2)-\mathrm{M}(1)-\mathrm{P}(1)$					173.78(11)	176.45(10)	175.43(9)
$\mathrm{N}(1)-\mathrm{M}(1)-\mathrm{N}(2)$					80.48(14)	81.04(13)	80.31(13)
$\mathrm{O}(2)-\mathrm{M}(1)-\mathrm{P}(1)$							
$\mathrm{O}(2)-\mathrm{M}(1)-\mathrm{N}(1)$							
$\mathrm{O}(2)-\mathrm{M}(1)-\mathrm{N}(2)$							

Table 2 Contd

Bond length (\AA)	$\mathbf{1 1 a} \cdot \mathrm{CH}_{3} \mathrm{OH}$ $(\mathrm{M}=\mathrm{Pt})$	$\mathbf{1 1 b} \cdot 0.5 \mathrm{CHCl}_{3} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ $(\mathrm{M}=\mathrm{Pd})^{\mathrm{a}}$	$\mathbf{1 1 c}$ $(\mathrm{M}=\mathrm{Ni})$		
$\mathrm{M}(1)-\mathrm{P}(1)$	$2.2368(8)$	$2.2494(18)[2.2403(19)]$	$2.1553(5)$		$\mathbf{1 1 \mathbf { d } \cdot \mathrm { CHCl } _ { 3 }}(\mathrm{M}=\mathrm{Pt})$
:---:					

Bond angle (${ }^{\circ}$)
$\mathrm{Cl}(1)-\mathrm{M}(1)-\mathrm{P}(1)$
$\mathrm{Cl}(1)-\mathrm{M}(1)-\mathrm{N}(1)$
$\mathrm{Cl}(1)-\mathrm{M}(1)-\mathrm{C}_{\text {methyl }}$
$\mathrm{P}(1)-\mathrm{M}(1)-\mathrm{C}_{\text {methyl }}$
$\mathrm{N}(1)-\mathrm{M}(1)-\mathrm{C}_{\text {methyl }}$

$\mathrm{N}(2)-\mathrm{M}(1)-\mathrm{C}_{\text {methyl }}$			
$\mathrm{N}(1)-\mathrm{M}(1)-\mathrm{P}(1)$	$95.34(8)$	$94.50(16)[96.07(18)]$	$96.70(5)$
$\mathrm{N}(2)-\mathrm{M}(1)-\mathrm{P}(1)$	$178.58(7)$	$174.70(16)[178.85(17)]$	$176.78(5)$
$\mathrm{N}(1)-\mathrm{M}(1)-\mathrm{N}(2)$	$83.36(11)$	$83.8(2)[83.7(2)]$	$86.20(6)$
$\mathrm{O}(2)-\mathrm{M}(1)-\mathrm{P}(1)$	$98.56(6)$	$98.18(13)[96.97(14)]$	$90.24(4)$
$\mathrm{O}(2)-\mathrm{M}(1)-\mathrm{N}(1)$	$166.11(10)$	$167.2(2)[166.7(2)]$	$172.18(16)$
$\mathrm{O}(2)-\mathrm{M}(1)-\mathrm{N}(2)$	$82.75(9)$	$83.7(2)[83.2(2)]$	$89.4(2)$

$5{ }^{a}$ Two independent molecules in the asymmetric unit. Equivalent parameters for the second molecule are given in parentheses.

[^0]: $45{ }^{a}$ Department of Chemistry, Loughborough University, Loughborough, UK LE11 3TU. Fax: +44 1509 223925; Tel: +44 1509 222553; E-mail: m.b.smith@lboro.ac.uk
 \dagger Electronic Supplementary Information (ESI) available: [Experimental procedures for $\mathbf{1 b}, \mathbf{1 c}, \mathbf{2 b}$ and 2c; spectroscopic data for $\mathbf{1 b}, \mathbf{1 c}, \mathbf{2 b}$ and 2c
 50 and additional X-ray figures]. See DOI: 10.1039/b000000x/

