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Forecasting Market Returns: Bagging or Combining? 

 

Abstract 
 

This paper provides a rigorous and detailed analysis of the methods of bagging, which addresses both 

model and parameter uncertainty. We provide a multi-country study of bagging, of which there are very 

few to date, that examines out-of-sample forecasts for the G7 and a broad set of Asian countries. We find 

that, when portfolio weight restrictions are applied, bagging generally improves forecast accuracy and 

generates economic gains relative to the benchmark. Bagging also performs well compared to forecast 

combinations in this setting. We incorporate data mining critical values for appropriate inference on 

bagging and combination forecast methods. We provide new evidence that the results for bagging cannot 

be fully explained by data mining concerns. Finally, forecasting gains are highest for countries with high 

trade openness and high FDI. The potentially substantial economic gains could well be operational given 

the existence of index funds for most of these countries. 
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1. INTRODUCTION 

Most out-of-sample return forecasting evidence rests on major developed countries and is 

especially focused on US data.  The evidence generally suggests that it is difficult to consistently 

outperform a simple benchmark.  For example, Goyal and Welch (2003) state: “By assuming that the 

equity premium was `like it always has been,’ a trader would have performed at least as well in most of 

our samples.”  The majority of the international literature considers several macro variables and 

fundamental predictor variables based on dividends and earnings;1 it provides mixed evidence on the 

extent of out-of-sample (OOS) predictability.2  However, there has been very little prior international 

evidence on amalgamating information from these different predictor variables (Jordan and Vivian, 2011, 

is a notable exception that considers one simple forecast combination technique).  Our paper addresses 

this topic in detail using the bagging method that explicitly accounts for model uncertainty and parameter 

instability.  

In the stock return context, given that predictive ability of individual variables is unstable, it is 

important to control for model uncertainty and parameter instability (Bossaerts and Hillion, 1999; Paye 

and Timmermann, 2006; Rapach and Wohar, 2006; amongst many others). According to Inoue and 

Kilian, 2008 p511: “Bagging involves generating a large number of bootstrap resamples of the original 

forecasting problem, applying a pretest model selection rule to each of the resamples, and averaging the 

forecasts from the models selected by the pretest on each bootstrap sample.” Bagging explicitly accounts 

for the model uncertainty by allowing the predictive model to change not only over time but also across 

bootstrap samples for the same time period, by effectively averaging the parameter estimates across 

bootstrap samples in each time period bagging addresses the parameter instability issue as well. Bagging 

has recently been implemented for forecasting economic variables with applications to US inflation 

                                                 

1 Bossaerts and Hillion (1999) use fundamental predictors.  Rapach, Wohar, and Rangvid (2005) examine macro 
predictors. Rapach and Wohar (2009) use the dividend-price ratio. Giot and Petitjean (2011) use fundamental predictors. Jordan 
and Vivian (2011) use fundamental predictors.  

2 Jordan (2012) examines one particular type of time-variation in aggregate returns, long-term reversals. He finds these 
reversals can be explained by asset pricing models with time-varying risk factors and time-varying alphas; this suggests that 
macroeconomic factors are important determinants of time variation in equity returns. 
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(Inoue and Kilian, 2008) and US employment growth (Rapach and Strauss, 2010) but there is, to our 

knowledge, very little empirical evidence on the effectiveness of bagging for a dataset of international 

stock market returns nor in a multi-country setting more broadly.3   

The main contribution of this paper is to provide a rigorous and detailed analysis of the bagging 

method (Inoue and Kilian, 2008) for forecasting stock returns in Asia and the G7. The bagging method 

has also been used for binary prediction problems where Lee and Yang (2006) considered an asymmetric 

loss function with an application to forecasting the sign of the US stock market return. The branch of 

bagging examined by Inoue and Kilian (2008) and followed in this paper applies to linear regression 

models with continuous variables (predictors and predictand) where it is designed to reduce mean squared 

forecast errors. Results of the bagging method relative to the no-predictability benchmark (a random-walk 

with drift model) 4  are compared to the performance of forecast combination methods which have 

received little attention in stock return forecasting applications until recent studies of the US (Rapach, 

Strauss and Zhou, 2010) and the G7 countries (Jordan and Vivian, 2011).5 We extend prior literature on 

bagging in important dimensions. Firstly, we incorporate data mining critical values for appropriate 

inference on bagging (and combination forecast methods), which may be particularly important for the set 

of G7 countries. Secondly, we estimate the utility gain that can be derived from bagging continuous 

variables. Thirdly, we provide comprehensive evidence on bagging from 17 countries compared to prior 

single country studies; this also enables us to examine cross-country determinants of forecast ability. 

First, we examine whether or not data mining can account for the evidence of predictability that 

we report? Prior literature focuses on the G7 applying bivariate regressions multiple times. Rapach and 

Wohar (2006) demonstrate that data mining can partly account for evidence on aggregate return 

                                                 

3 Bagging was also implemented to estimate the appropriate restrictions on univariate US stock return predictability 
regressions by Hillebrand et al., (2013) but this setting is rather different to ours where we are using it in a multivariate predictive 
setting to tackle model uncertainty in an analogous way to Inoue and Kilian (2008) and Rapach and Strauss (2010).  

4 We utilize an historical average benchmark to be consistent with prior literature. Robustness results using the AR(p) 
benchmark provide similar results to the historical average. 

5 Forecast combination methods have been well established as effective in improving forecast accuracy in many 
disparate applications (Clemen, 1989), but perhaps surprisingly received little attention for stock returns until recently.  
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forecastability in the US. This suggests data mining could be a concern. The data mining issue is more 

acute for the G7 countries as these countries have been investigated more often than the Asian countries. 

Second, we investigate whether or not bagging generates utility gains in an asset allocation 

exercise.  Prior empirical investigations of bagging to US macroeconomic series do not examine the 

economic value of bagging forecasts, while contemporaneous work does so in single country settings (e.g. 

Jordan et al., 2016 for Canadian industries in terms of a sector rotation strategy). From a practical 

perspective, our results suggest implementing equity index trading strategies based upon the new bagging 

method in medium and smaller markets could help investors to time-vary their portfolio allocations 

between debt and equity.  Hence, we provide new evidence that bagging can generate economic value 

which is robust to reasonable trading costs and cannot be fully accounted for by data mining concerns. 

Third, we examine aggregate stock return forecasting for 11 Asian countries and the G7 (Japan is 

in both groups) compared to prior international studies of equity market return predictability that 

generally utilize a similar set of large economies consisting of the major developed countries.6  Major 

developed countries stock returns are highly correlated with each other; for example in the G7 monthly 

correlations are about 0.7 amongst country pairs.  This suggests that data from these countries is only 

partly independent from each other and may reflect one (or a small number of) common effect(s).7  In 

contrast, Asian financial markets have much lower correlations with each other and thus broaden 

evidence compared to a sample exclusively of G7 countries.  Moreover, Asian economies are of global 

interest given that they produce about 30% of global economic output; make up over 40% of the world 

population, are (generally) growing rapidly, and whose financial markets are emerging as an important 

                                                 

6 Bossaerts and Hillion (1999) use data from 1969-1995 for G7 and 7 other developed European countries.  Rapach, 
Wohar, and Rangvid (2005) use data from mid 1970s to late 1990s for G7 and 5 other developed European countries. Rapach and 
Wohar (2009) study the G7 countries.  Giot and Petitjean (2011) use data starting from early 1950s until 2005 for 10 developed 
countries. Jordan and Vivian (2011) use data from 1927-2009 for  7 developed countries. McMillan and Wohar (2011) use less 
sophisticated measures of economic value but include the G-7 countries and 4 Asian. Guidolin, Hyde, McMillan and Ono (2009) 
study the G-7. 

7 Guidolin et al. (2009) find G7 countries return forecasting performance could be broadly split into two groups those 
that are Anglo-Saxon and those which are Continental European.  Thus, results that hold for G7 markets may not transfer well to 
other markets and thus examining countries outside of Anglo-Saxon and Continental European warrants investigation. 
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investment class despite their higher volatility of stock returns and of economic fundamentals.8 Asian 

countries also differ in terms of economic, institutional, and cultural characteristics in comparison to the 

US and other major developed countries.9  Forecast accuracy for a range of different predictands varies 

across countries with differences in such characteristics (e.g. advanced versus developing countries, 

Loungani, 2001; information disclosure and cultural traits, Bilinski et al., 2013; legal setting, Chen et al., 

2010), although rarely is the channel or mechanism through which this occurs formally outlined (notable 

exceptions include Dovern et al., 2015; Loungani et al., 2013 who link forecast accuracy of professional 

economists to information rigidities and efficient use of information). In terms of a stock return 

application the characteristics outlined can impact the speed of the market response, e.g. market 

development, information frictions and equity market liquidity should all impact how quickly news is 

incorporated into stock prices.10 The greater the delay in reaction to news the more accurately the next 

periods return can be forecast. Whilst this area of analysis is at an early stage it still enables us to further 

our understanding beyond that provided in prior analysis that considered alternative settings. 11  By 

providing analysis on both Asian and G7 markets, we can provide comprehensive evidence on bagging 

and whether country characteristics impact aggregate return forecastability across countries.   

 

2. DATA DESCRIPTION  

We examine two samples of countries: (1) the G7 countries for comparison to prior work and (2) 

a subset of Asian countries for out-of-sample testing.  Our eleven Asian countries include: China (CH), 

                                                 

8 Recent forecasting studies purely on Asia include Chen et al. (2012), Chen et al., (2016) and Qin et al. (2008) which 
have a multi-country focus, while single country studies include Chang et al. (2011) for Taiwan, Prskawetz et al. (2007) for India, 
Lewis-Beck and Tien (2012) for Japan and Wang et al. (2015) for China. 

9 Compared to the G7 countries, our sample of Asian countries consist of firm that have: (1) smaller size, (2) higher 
B/M, and (3) more negative B/M firms. Culturally, our Asian sample of countries is more accepting of power inequalities and 
less individualistic than the G7 countries. 

10  Theoretically, imperfect information models (Sims, 2003; Woodford, 2002) indicate there could be sluggish 
adjustment to indicator variables. 

11 For example Jordan, Vivian and Wohar (2014b) provided some evidence on the cross-country variation in market 
return forecasts for European countries from bivariate predictive regressions (and a simple average combination). The current 
paper considers a larger number of countries, a broader set of factors and focuses on bagging but includes more while including a 
wider range of combination methods.     
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Hong Kong (HK), India (IN), Indonesia (ID), Japan (JP), Korea (KO), Malaysia (MY), Philippines (PH), 

Singapore (SG), Thailand (TH) and Taiwan (TW), over a balanced sample period of 1995-2011 

employing monthly data.  The selection criteria are to include Central, East, South, and Southeast Asian 

countries for which: (1) there is a Datastream (DS) Total Market Index and (2) there is data available 

from at least 1995.12 

The data is primarily from Thomson Datastream.  We collect monthly data from January 1995 to 

June 2011. The start date enables inclusion of a wide number of Asian countries for which there is 

virtually no prior OOS forecasting evidence, with the exception of Japan.13 It also enables a reasonably 

sized OOS test period. We have 96 monthly observations (some combination methods use 36 

observations for optimization) before beginning the OOS forecasting period in 2003. G7 countries were 

subsequently included at the suggestion of an Associate Editor. We obtain data for 10 predictor variables 

including 8 of the variables used by Goyal and Welch (2008, hereafter GW).   

We include the following fundamental variables from GW: i) Dividend–price ratio (log), (DP): 

Difference between the log of dividends paid on the market index and the log of market index price, 

where dividends are measured using a one-year moving sum, ii) Dividend yield (log), (DY): Difference 

between the log of dividends and the log of one month lagged market index price, iii) Earnings–price ratio 

(log), (EP): Difference between the log of earnings on the market index and the log of stock prices, where 

earnings are measured using a one-year moving sum and iv) Book-to-market ratio, (BM): Ratio of book 

value to market value for the market index. 

We include the following two macroeconomic variables from GW: i) Risk-free rate, (RF): Interest 

rate on a low risk short-term security and ii) Inflation, (INFL): Calculated from CPI; since inflation rate 

data are generally released in the following month, we use one month lagged inflation data. 
                                                 

12 The following countries did not have a DS Total Market Index: Afghanistan, Bhutan, Brunei, Burma, Cambodia, 
East Timor, Laos, Macau, Maldives, Mongolia, Nepal, Tajikstan, Turkmenistan, and Uzbekistan.  For the following countries 
Market index data (not DS index) started after 1995: Bangladesh, Kazakhstan, and Vietnam. At the suggestion of a referee we 
excluded two small illiquid markets (Pakistan and Sri Lanka) and included Taiwan using alternative data from Datastream, such 
as the policy interest rate as a proxy for the risk-free rate.  

13 In particular, there is very little prior OOS forecasting evidence on the economic value of return forecasts (portfolio 
allocation evidence) in our sample of countries, except for Japan. 



8 

We include the following two technical variables from GW: i) Stock variance, (SVAR): Sum of 

squared weekly returns on the market index and ii) Net equity expansion, (NTIS): Ratio of twelve-month 

moving sums of net issues by listed stocks to total market capitalization of index. We consider two new 

variables in this context, which are also of interest to technical traders: i) Price Pressure, (PRES): 

Calculated as the ratio of the number of rising stocks in the previous month divided by the number of 

falling stocks and ii) Change in Volume, (CVm): Calculated as the monthly change in the volume of 

traded stocks (in the index).  

Table 1 provides a summary of descriptive statistics for our sample countries.  We report the 

mean and the standard deviation for each independent variable used and for the aggregate market return.  

There are several interesting comparisons.  First, the average nominal returns (RET) vary substantially 

across countries from -0.0015 (-0.15% per month or -1.8% per year compounded) in Japan, up to 0.0111 

(1.11% per month or 14.2% per year compounded) in Indonesia. The standard deviation of returns also 

varies substantially across countries from 0.0422 for the UK to 0.1048 for China.  This means the Sharpe 

ratio (return per unit of risk) varies dramatically across countries from over 0.09 in the US to a negative -

0.029 in the Philippines. The wide variation across countries exists for most of the variables we study.  

[INSERT TABLE 1 AROUND HERE] 

Table 2 contains the correlation matrix for returns across our sample countries.  There is 

substantial difference in correlation between the different country pairs.  Interestingly the cross-

correlations in Asian countries’ returns are modest, on average about 0.40; the lowest correlation is 

between China and Indonesia at 0.195.  This is interesting since the G7 developed markets typically used 

in prior literature tend to have correlations above 0.70 on average; this is important since G7 studies may 

be capturing just a single (or small number) of common effect(s).   

[INSERT TABLE 2 AROUND HERE] 
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3. METHODOLOGY 

3.A. Assessing the Impact of Individual Variables 

Individual predictive regression models are used to estimate the linkage between the dependent, 

lagged dependent, and a potential predictor variable (including its lags). Define ΔRIt = RIt − RIt−1, where 

RIt is the log-level of the total stock return index (stock price index that includes reinvested dividends) at 

month t. 14  In addition, define ( ), 11/h h
t t h j t jy h RI+ = += ∆∑  so that ,

h
t t hy +  is the (approximate) monthly 

growth rate of the stock return index from time t to t + h, where h is the forecast horizon. In this section 

we outline the general models for h step ahead forecasts, however in the empirical analysis we purely 

focus on 1 step ahead forecasts (h=1). These predictive regression models take the form of (1) below: 

, ,α λ ε+ += + +h h
t t h i t t hy x  (1) 

This model can be employed to estimate h-step ahead forecasts of stock returns using a recursive 

expanding window. ,
h
t t hy + , is linear in the potential predictor variables (i.e., Xt). The parameter α is a 

constant. The parameter λ capture the effect of the potential predictor variable.  Finally, h
ht+ε  is an error 

term.  For each country’s stock return, 10 regression models are estimated one for each of the 10 

explanatory variables.  

The models generated are used to conduct 1 step-ahead out-of-sample forecasts of stock returns. 

These forecasts are then compared to the respective benchmark model, which takes the form of the 

historical average (a random walk with drift model). The form of the benchmark model is the same as in 

(1) where all the λj’s = 0. 

 

                                                 

14 This section draws upon Rapach and Strauss (2010). 
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3.B. Assessing the Impact of Variable Groups  

3.B.1. Forecast Combinations 

The method of forecast combining is considered to be a useful technique for "...sharing strengths 

of different forecasting procedures..." (Yang, 2004:205) and is an alternative method of imposing 

"...structure on high-dimensional forecasting models" (Stock and Watson, 2004:1). Empirical as well as 

theoretical evidence (see Clemen and Winkler, 1986; Rapach and Strauss, 2010; Stock and Watson, 2003; 

2004; and Yang, 2004) indicates that forecast combining generally improves the predictive ability of 

models because it includes more variables or potential predictors, thus increasing the amount of 

information used in generating forecasts. Recent work by Rapach, Strauss and Zhou (2010) demonstrates 

combination forecasts are also useful for US stock index returns.  The forecast combination methods used 

in this paper include mean, median, trimmed mean, Discounted Mean Squared Forecast Errors (MSFE), 

and Cluster (C), and Principal Components (PC) combinations. According to Rapach and Strauss (2008, 

2010), these combination methods can be described below in (2): 

∑
=

++ =
n

i

h
t|ht,it,i

h
t|ht,CB ŷwŷ

1
 (2) 

where h
t|ht,CBŷ +  is the combined forecast of the variable of interest from individual regression models (1) 

and wi,t is the weight of the individual regression forecasts, h
t|h,t,iŷ +  is the individual forecast. The weights 

sum to unity.  

 It is now well known that combining forecasts generally improves OOS forecast performance in a 

wide range of applications including aggregate financial variables.  Hence, we discuss each method 

intuitively and refer the reader to Rapach and Strauss (2010) for full details of its estimation.  We 

investigate a total of eight combination methods from four different types. Firstly, three simple 

combination strategies are examined: Mean, Median, and the Trimmed mean, where the trim excludes the 

lowest and highest forecasts from the average.  Second, we use two discount forecast combination 

models.  By decreasing the discount rate, more recent observations can be weighted more heavily.  As in 
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Stock and Watson (2004), we use use δ = 1.0 (no discounting of past forecasts) and δ = 0.9 (more weight 

on most recent forecasts) resulting in Stock and Watson's discounted mean-square forecast error 

(DMSFE) methods DMSFE(1) and DMSFE(0.9).  Thirdly, we use cluster combinations to control for 

forecast persistence (see Aiolfi and Timmermann, 2006).  Utilizing a hold-out period, the individual 

ARDL models are ranked by their mean square forecast error (MSFE) and clusters are created by 

consecutively adding the next lowest MSFE ARDL model to the cluster.  Clusters are formed on the 

MSFE over a rolling window.  Within the cluster with previous best (PB) MSFE an average of ARDL 

model forecasts are taken to generate the cluster combination forecast.   We utilize this method with two 

clusters [C(2,PB)] and three clusters  [C(3,PB)].15 Finally, we apply a principal component method to the 

individual ARDL model forecasts.  We estimate the number of components with the ICp3 criterion up to 

a maximum of 4 (Bai and Ng, 2002).  See Stock and Watson (2004) for further details.  We label this final 

combination method as PC(C,3B). 

 

3.C. Construction of Bagging Forecasts 

Recall that ,
h
t t hy +  is the monthly stock return from time t to t + h, where h is the forecast horizon. 

Let xi,t denote one of n potential predictors of stock returns (so that i = 1, . . ., n). We consider 10 potential 

predictors of stock returns (n = 10) in our analysis. 

We compute bagging forecasts of stock returns at horizon h using the bagging-augmented 

pretesting procedure (BA) of Inoue and Kilian (2008). The procedure begins with the general model: 

, ,
1

,
n

h h
t t h i i t t h

i
y xµ δ x+ +

=

= + +∑   (3) 

where h
ht+x  is an error term characterized by autocorrelation of degree h − 1. Suppose we are interested in 

forming a forecast of h
hty +  at time t . The pretesting procedure involves estimating (3) via ordinary least 

                                                 

15 C(P,PB) uses P clusters. PB denotes that we employ the Previous Best conditional combination strategy 
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squares (OLS) using data from the start of the available sample through time t and computing the t-

statistics corresponding to each of the potential predictors.16  The xi,t variables with t-statistics less than 

1.645 in absolute value are dropped from (3), and the model is estimated a second time using only 

significant predictors.   

Bagging can be implemented for the pretesting procedure via a moving-block bootstrap. More 

specifically, a large number (B) of pseudo samples of size t for the left-hand-side and right-hand-side 

variables in (5) are generated by randomly drawing blocks of size m (with replacement) from the 

observations of these variables available from the beginning of the sample through time t. For each 

pseudo-sample, we estimate (5) using the pseudo-data and OLS, the (pretesting) procedure determines the 

predictors to include in the forecasting model, the model is re-estimated using the pseudo-data, and a 

forecast of h
hty +  is formed by plugging the actual included xi,t values into the re-estimated version of the 

forecasting model (and again setting the error term equal to its expected value of zero). The bagging 

model forecast corresponds to the average of the B forecasts for the bootstrapped pseudo samples.17 

Dividing the complete available sample of T observations for Δyt and xi,t (i = 1, . . . , n) into an in-

sample portion comprised of the first R observations and an out-of-sample period comprised of the last P 

observations, we can form a series of P − (h − 1) recursive simulated out-of-sample forecasts using the 

bagging procedure.18  We denote this series by { } .ŷ
hT

Rt
h

t|ht,BA
−

=+  

 

3.D. Statistical Tests 

Tests for encompassing and equal forecast accuracy 

In the case of nested models, Clark and McCracken (2001) and McCracken (2007) develop a set 

of asymptotics that allow for an out-of-sample test of equal population-level predictive ability between 

                                                 

16 The t -statistics for the OLS estimates of δi in (5) are computed using Newey and West (1987) heteroscedasticity and 
autocorrelation consistent (HAC) standard errors based on a lag truncation of h − 1. 

17 Following Inoue and Kilian (2008), we use m = h. We use B = 1000. 
18 “Recursive” indicates that the forecasts are generated using an expanding estimation window.  
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two nested models. They show that, in the context of linear, OLS-estimated models, a number of different 

statistics can be employed to test for equal forecast accuracy and forecast encompassing, despite the fact 

that the models are nested. Based on Monte Carlo simulations, Clark and McCracken (2001, 2004) 

indicate that ENC–NEW is the most powerful statistic, followed by their ENC-t, MSE – F and the MSE – 

T statistics. These rankings suggest that the forecast encompassing statistics, especially ENC – NEW, can 

have important power advantages over test statistics based on relative MSFE. We report results for the 

most powerful statistic ENC-NEW, which is an F type test and is related to the Harvey et al. (1998) 

statistic designed to test for forecast encompassing.  It has been shown through extensive Monte Carlo 

simulations in Clark and McCracken (2001, 2004) that the ENC-NEW statistic has power 

advantages over the original Diebold and Mariano (1995) statistic as well as the Harvey et al. (1998) 

ENC-t statistic which applies to nested forecasting models. 

Under the null hypothesis, the restricted model forecasts encompass the unrestricted model 

forecasts, while under the one-sided (upper-tail) alternative hypothesis the restricted model forecasts do 

not encompass the unrestricted model forecasts. Clark and McCracken (2001) note that the limiting 

distribution of the ENC-NEW statistic is non-standard and pivotal for one step ahead forecasts (h 

= 1) considered in this paper. Clark and McCracken (2004) recommend basing inferences the ENC – 

NEW statistics on a bootstrap procedure, given that the statistics are not in general asymptotically pivotal 

(when h>1). The bootstrap procedure we employ is similar to the one in Clark and McCracken (2004), 

which is a version of the Kilian (1999) bootstrap procedure, and is discussed in detail in Rapach and 

Weber (2004) and Rapach and Wohar (2006).  

Clark and West (2006, 2007) demonstrate that the ENC-t test can be viewed as an adjusted test 

for equal MSE. In the Clark and West framework the null hypothesis is a random walk and the alternative 

hypothesis is of a predictive regression. If the null hypothesis of a random walk is true then it will have a 

lower mean-squared error relative to the alternative (despite the fact the alternative include an additional 

variable) due to the fact that there is sampling error associated with estimating the alternative model. The 

Clark and West t-test adjusts the forecast error of the alternative model to take account of this sampling 
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error. The CW-t statistic proposed by Clark and West (2006, 2007) is equivalent to the Harvey et al. 

(1998) ENC-t test for forecast encompassing as considered in such studies as Clark and McCracken 

(2001, 2005).  

 

3.E. Measuring Economic Value 

Our final set of empirical tests deal with the economic value of forecasts. We analyze if portfolio 

allocations could have been improved by following the regression model rather than the historical average 

benchmark. We consider a mean-variance optimizing investor. We take the return forecast from the 

historical average benchmark and compare it to an alternative return forecast from i) bagging and ii) 

combination forecast methods.   

Recall that 1ty + is the log stock return. Define Yt+1 as the stock return (Yt+1 = exp(yt+1)-1. A mean-

variance optimizing investor has objective function:  

2 2 21( ) ( )
2 2 2p p pp Y p y yO E Y E yγ γσ σ σ= − ≈ + −      (4) 

where O is the objective, Yp is the portfolio return, py is the portfolio log return, and γ  is the coefficient 

of relative risk aversion. Such an investor will choose a portfolio weight, ,t bω  ( ),t zω of the risky asset 

under the prediction from the historical average benchmark (the alternative forecast model [bagging or 

forecast combination]):19 

 1,
, 2

( )1 t b f
t b

t

E Y Y
ω

γ σ
+ − 

=      
        (5) 

1,
, 2

( )1 t z f
t z

t

E Y Y
ω

γ σ
+ − 

=      
        (6) 

                                                 

19 Weights are recalculated in every time period and portfolio allocations adjusted accordingly. 
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Yf is the risk-free rate. We use 5-year rolling monthly data to estimate volatility ( )2
tσ ; however, 

estimating volatility using alternative horizons has very little impact on the utility gain since 2
tσ  is the 

same in the benchmark weight, ,t bω , and the alternative model weight placed, ,t zω  (see the denominator 

in equations 12 and 13 above). 

The utility gain ( O∆ ) from using the regression model rather than the historical average 

benchmark is: 

( )2 2
2 z bz b Y YO Y Y γ σ σ∆ = − − −           (7) 

Second, we implement Goetzmann et al.’s (2007) performance measure (referred to as GISW):  

1 11 1
1, 1,

1, 1,0 0

1 11 1 1ln ln
1 1 1

ln[ (1 )] ln(1 )
              where:  =          

Var[ln(1 )]

T T
t z t b

t f t ft t

m f

m

Y Y
GISW

T Y T Y

E Y Y
Y

−G −G− −
+ +

+ += =

       + +    = −          −G + +        
+ − +

G
+

∑ ∑
  (8) 

GISW measures the average performance of a portfolio relative to the risk-free rate; it is a certainty 

equivalent measure of abnormal performance.  The parameter G is set to reflect the overall reward 

(return) to risk (variance) ratio for each country based upon our sample data. This reduces the possibility 

of manipulation and incorrect inference.  

 

3.F. Data Mining Robust Critical Values 

When testing the predictive ability of a large number of financial variables, Lo and MacKinlay 

(1990) and Inoue and Kilian (2005) note that data mining is a serious concern when one is dealing with 

stock return predictability regardless of whether the tests are in-sample or out-out-sample.  Inoue and 

Kilian (2005) note that an important way in which data mining can be controlled for is to use appropriate 

critical values, which explicitly account for the possibility of data mining. Here we employ the data mining 

bootstrap used in Rapach and Wohar (2006).  While Rapach and Wohar (2006) consider individual 
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predictive regressions, we focus on combinations and bagging in this paper. We calculate the two out-of-

sample statistics (MSE-F and CW-t) and the economic value measures for all models (each of the forecast 

combination techniques and bagging) in turn. For each pseudo sample we store the maximal values for 

each metric.  We repeat this (whole) process 5000 times, to generate an empirical distribution for each of 

the maximal out-of-sample statistics and for each of the maximal economic value measures. After 

ordering the empirical distribution for each maximal statistic, the 4,500th, 4,750th, and 4,950th values 

serve as the 10%, 5%, and 1% critical values for each maximal statistic. 

 

4. OUT-OF-SAMPLE STOCK RETURN FORECASTS 

Could investors’ actually utilize fundamental-price based models in order to benefit from more 

accurate predictions of future stock returns? This issue is of importance to both practitioners and 

academics alike. Asset managers, economic policymakers, as well as pension providers and contributors 

all need accurate estimates of future market returns. 

In this section, we examine a range of fundamental-price ratios as well as macro and technical 

variables for a sample of Asian countries. Following Rapach, Strauss, and Zhou (2010) and Stock and 

Watson (2004) we consider if various combining forecasts or bagging methods can improve forecast 

accuracy over individual models. The historical average model is used as the benchmark.   

 

4.A  OOS Forecast Accuracy (Individual Regression Forecasts) 

Table 3 shows 1-month forecast results for individual predictive regression models.20  Overall, the 

individual predictive models have mixed results.  In the Asian markets, some predictors provide dismal 

forecasts, such as stock variance (SVAR), net equity issuance (NTIS), and change in volume at the 

monthly frequency (CVM).  However, the performance of individual fundamental-price ratios, e.g., 

dividend-price ratio (DP), dividend yield (DY), earnings price (EP), and book-to-market (BM), with the 

                                                 

20 We focus on one-step-ahead forecasts due to space considerations. 
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exception of EP, show evidence of predictability.  DP, DY, and BM show predictability above that of the 

benchmark model in 8 of 11 countries.  We implement the Clark and McCracken (2001) ENC-NEW 

encompassing test and the Clark and West (2007) CW-T test of equal forecast accuracy.  Predictability in 

our Asian sample is robust even if very high hurdles associated with data snooping adjustments are made, 

however data-snooping significance in fundamentals is found only under the ENC-NEW.  Technical 

indicators, e.g., price pressure as measured by rising stocks against falling stocks (PRES), also 

demonstrate some predictability.  PRES demonstrates predictability in 6 of 11 countries using standard 

statistical significance tests and in 2 of 11 countries after adjusting for data-snooping bias.  The risk-free 

rate (RF) and inflation (INFL) are the only two predictors that demonstrate predictability under both the 

CW-T test and data-snooping bias adjustments.  Thus, it appears that investors interested in Asian 

markets should specifically consider these variables in forecasting models.   

[INSERT TABLE 3 AROUND HERE] 

Predictability in the G7 countries is not found to be robust in our tests.  Fundamental ratios do not 

perform well in the G7 sample. The lack of robust statistical evidence of predictability in the G7 countries 

contrasts sharply with the robust predictability found in our sample of Asian countries. The evidence for 

predictability in G7 countries is even more dismal once data mining adjustments are made.  When data 

mining adjustments are used, there is virtually no evidence of predictability in the G7 countries.  

There is also considerable variation in predictability across countries.  Although there is virtually 

no predictability in the G7, there is evidence at the 5% significance level for DE (Germany), JP, and the 

US.  In the Asian sample, we find there is no evidence of OOS predictability in China as no variable 

demonstrates predictability when data-snooping bias is controlled.  Predictability is also weak for the 

other large Asian markets (HK, India, Japan, Korea, and Taiwan) where out of 10 predictor variables only 

one exhibits some predictability after data-snooping bias adjustments.  However, four countries 

(Indonesia, Malaysia, Singapore, and Thailand) have robust predictability, even after data-snooping bias.   
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4.B  OOS Forecast Accuracy (Bagging and forecast combinations) 

This section contains the forecast results from bagging and forecast combinations.  Table 4 

reports results for the 1-month forecast horizon.  We find consistent evidence in our Asian sample that 

combining forecasts improves forecast accuracy in our sample of Asian countries even after adjustments 

are made for data-snooping bias.  This is true for seven of eight methods examined, the lone exception is 

the principal component method (PC(C,3B)), and in 10 of 11 countries there are consistent improvements 

in forecast accuracy, the sole exception is China. The lack of predictability in China may be due to 

structural reforms in its equity market that substantially increase the proportion of tradable shares after 

2005, which is near the start of our forecasting period (see Li et al., 2011 for further information on the 

impact of this reform). Combination forecasts provide consistently large gains in HK, India, Indonesia, 

Malaysia, Singapore, and Thailand. The finding that combination forecasts consistently perform well is 

strengthened by the fact they are subject to greater parameter estimation error than the benchmark. Clark-

West (2007) emphasize that parameter estimation error leads to an expectation that the mean-squared 

prediction error from an alternative model (here the forecast combination) is larger than that from a 

parsimonious model (here the benchmark).   

[INSERT TABLE 4 AROUND HERE] 

 Once more, in the G7 set of countries the results for predictability is not promising.  There is little 

to no evidence with predictability only documented for JP and the US for combination methods and only 

for JP for bagging methods.  Again, this is in complete contrast to the results found for Asia. 

We note that the various classes of forecast combination methods yield broadly similar results; 

hence in the subsequent analysis we only report results from one method in each class: Mean, DMSFE(1), 

C(2,PB) and PC(C,3B); we can confirm results from the other combination techniques in the subsequent 

tests are qualitatively similar to those of the same combination class that is reported.  

In terms of forecast errors, the bagging method provides mixed results for the majority of Asian 

countries; in general it underperforms the benchmark.  For several countries (China, HK, Korea, 

Singapore and Taiwan) bagging forecast errors are 5% larger than those from the benchmark, a 
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substantial magnitude.  However, bagging does provide substantial improvement for four countries: 

Indonesia, Japan, Malaysia, and Thailand.  These results for bagging are in contrast to prior literature that 

provides favorable results for the bagging method when applied to macroeconomic forecasts (Inoue and 

Kilian, 2008; Rapach and Strauss, 2010). 

 

6. ECONOMIC SIGNIFICANCE OF STOCK RETURN FORECASTS 

6.A  Economic Gains (Bagging and Combination Forecasts) 

Table 5 and Table 6 present the results for the bagging method and various combination methods 

for economic gains.  Tables 5 and 6 provide results for the utility gain method and the manipulation proof 

method, respectively.   

The utility gain method for bagging indicates large outperformance of the benchmark is available 

in several Asian countries, including HK, ID, KO, SG, TH, and TW. For Singapore, annualized gains in 

utility of more than 10 percentage points across most models are possible.  For other countries gains are 

more modest, but still economically large, e.g., one can easily gain more than 5 percentage points in HK, 

ID, and MY. For the average forecast combinations (AV COMB), utility gains are generally about 1 to 10 

percentage points for 9 of the 11 countries. In the G7 countries, modest utility gains are generally 

available.  However, more than 5% can be realized in DE, FR, and the UK.  The evidence suggests that 

bagging performance is robust to data mining adjustments. 

Economic gains with combination forecasts exist for China.  Overall, combination methods 

consistently provide economic value across countries and these results are robust to data snooping bias in 

the Asian sample of countries.  Before data bias adjustments, almost every combination model performs 

well across our sample of countries.  After data snooping bias adjustments evidence of predictability 

weakens substantially; the most consistently performing method is the cluster approach PC(3,PB) with 

economic gains in only 4 of 11 markets.  So far, the results are broadly consistent with the statistical test 

results in Table 4.  The major difference between Table 4 and Table 5 is that bagging demonstrates large 

and significant economic gains in 9 of 11 countries.  Some of the gains are very large, e.g., 18.73% in SG 
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and 15.63% in TW.  We report gains when relative risk aversion is 3, i.e., P(UG), and when relative risk 

aversion is 5 , i.e., P(UG5).  The results are consistent for both values. 

The bagging method can generate value for investors in G7 markets and this is statistically 

significant in most markets except the US and Canada. The statistical evidence for bagging is most 

consistent for Germany and France although Japan and UK also have some support that gains are 

significant using the approach we implement to address data mining concerns. In terms of the 

combination methods, the results are generally, quite similar to those for bagging. Positive gains can be 

earned in most countries; however, these are typically smaller than those from the bagging method and 

statistical evidence of outperformance largely evaporates when measures to adjust for data mining are 

implemented. 

[INSERT Table 5 AROUND HERE] 

Table 6 provides results for a manipulation proof measure of economic gain.  The GISW certainty 

equivalent gains confirm the conclusions drawn from Table 5.  For the G7, the GISW results are much 

larger than under the utility gain measure. Overall, GISW gains can be large both in Asian countries (e.g., 

14.62 for the mean combination in SG) and exist across almost all countries.21  Again, bagging is a 

reliable model for attaining economic gains.  After the manipulation proof adjustments, bagging 

outperforms the benchmark in every country and does so at a significant level in 6 of the 11 Asian 

countries and in 4 of the 7 G7 countries.  Unlike the combination models, gains are available by using the 

bagging method even after controlling for data snooping bias.  As in Table 5, we report gains when 

relative risk aversion is 3, i.e., GISW, and when relative risk aversion is 5, i.e., GISW5.  The results are 

again broadly consistent for both values of risk aversion. 

[INSERT Table 6 and 7 AROUND HERE] 

                                                 

21 In some countries, e.g., TH, the risk-return tradeoff is negative, meaning that the risk-free rate is higher than the 
average stock return.  This will affect the manipulation-proof measure since it looks at the return on the model relative to the risk-
free rate.  Then it takes this to the power of 1-risk-return tradeoff.  But in the case of Thailand this is negative, so this inverts the 
relationship, which will drive the undesirable negative result.  So a caveat to using the manipulation proof method is that one 
must be careful to ensure there is a positive equity premium;  if not, then one should interpret the method’s results cautiously. 
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In Table 7 we examine the impact of accounting for trading costs on the utility gain measure. We 

report results for trading costs of 10 basis points (on the portion of the portfolio adjusted), although 

results are qualitatively similar if 30 basis points are used or if the GISW measure is implemented. The 

results in Table 7 are very similar to Table 5. In fact, generally the net impact on economic value is less 

than 0.2% p.a. It should be noted that re-balancing costs are incurred by the historical average allocations 

as well, but even if these are assumed to be zero, the impact of transaction costs is not large because the 

average change in portfolio allocation per period is small. 

The most striking part of the economic value results (in Tables 5-7) is that for bagging these are 

in clear contrast to those under the forecast accuracy approach (see Table 4).  In contrast to its poor 

forecast accuracy performance, bagging performs well in economic tests across countries and usually is a 

top or comparable performer when compared to the combination predictor results.  We shall explore 

reasons for this difference in Tables 8.  Overall, the economic value results are consistent for both the 

utility gain and the manipulation proof measure methods, with the prior results slightly stronger.  For the 

G7 especially, both bagging and forecast combination methods provide more consistent evidence of 

economic gains than of forecast accuracy.  

 

6.B  Discussion and Further Exploration 

Section 6.A demonstrates that both bagging and combination forecasts would enable an investor 

to tilt their portfolio to increase utility and to make certainty equivalent gains. Simply, when the 

regression model predicts high (low) returns, the portfolio is tilted towards equities (T-bills). Our 

empirical results suggest there is some economic value from forecasting returns with macro and technical 

variables that could potentially be exploited by practitioners.  Our results also indicate that noise may be 

an issue and that consistent results are best obtained with a combination of many forecasts or by 

simulating the relationship utilizing in-sample data. 

The economic value results differ from forecast accuracy results. A possible reason for this is that 

they weight extreme predictions differently. Forecast accuracy penalizes these large errors heavily under a 
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squared error rule; however, in the economic value exercise a restriction on portfolio weight ameliorates 

the impact of large forecast errors. The results for bagging were different when we conducted economic 

value tests (performed well) compared to forecast accuracy measures (performed poorly).  The economic 

value tests employ a restriction that the portfolio weight is between 0 and 1.5. The forecast accuracy tests 

do not have such a portfolio weight restriction.  In Table 8, we explore whether the bagging method 

performed poorly in the forecast accuracy tests due to lack of restrictions.  The restricted model (here 

winsorization of extreme forecasts) will reduce the variance of the forecast compared to the unrestricted 

model and if it moves the unrestricted model 'closer' to the true model will generate gains in forecasting 

by reducing forecast error.  Thus, we apply equivalent restrictions on the forecast accuracy tests as we did 

in the economic value tests.  We require that the forecast return must be between the risk-free rate (Yf) 

and 1.5 times the risk aversion coefficient (γ ) times the variance of the return ( 2
tσ ) plus the risk-free 

rate (Yf):   

2
1,( ) 1.5( )f t b f tY E Y Y γ σ+≤ ≤ +  . 

We rerun the forecast accuracy tests of Table 4 with these restrictions imposed, which are 

reported in Table 8. For the Asian subset of countries the results with restrictions applied are given in 

Panel A of Table 8.  Almost every single model outperforms the benchmark for more than one-half of the 

countries, with many methods doing considerably better when restrictions apply.  Bagging now performs 

strongly and the performance is very robust to data mining bias.  The average combination forecasts 

generally perform better and are more robust to data mining bias.  Our results of this table indicate that 

applying restrictions on the forecast return may be an important improvement to forecast performance 

tests in Asian markets.  This finding is consistent with the restricted model being 'closer' to the true model 

than the unrestricted model since in this case gains in forecasting occur due to reduced estimation error of 

the forecast. The lack of restrictions on Bagging in our initial forecast accuracy tests (Table 4) are thus an 

important factor for the differing results between the accuracy tests and the economic gain tests (Tables 5-

7).   
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Panel B of Table 8 also provides some evidence that the bagging procedure can beat the 

benchmark in 5 (4) of the G7 countries using the RMSFE (RMAFE) measure. There is also consistent 

statistical evidence in favor of bagging in 5 of 7 countries using conventional critical values but using 

data mining critical values this is confined to the CW-t test for Germany, UK and US. There is also 

evidence that combinations are generally able to beat the benchmark in terms of point estimates. 

However, the statistical evidence is weak. Only for the US is consistent evidence found that the 

benchmark is beaten by a statistically significant amount (corroborating Rapach et al., 2010). The US 

results are robust to the data-mining procedure we implement using the CW-t test. The evidence of 

statistical significance from combinations is not widespread. Apart from the US there is some sporadic 

evidence for Japan in favor of combinations, but there is relatively little statistically significant support 

for combinations from other G7 countries. 

[INSERT Table 8 AROUND HERE] 

 

7. FURTHER ANALYSIS 

7.A  Encompassing tests and the optimal weights  

Table 9 provides results from the encompassing test of whether the combination forecast is 

encompassed by the bagging forecast. It reports the optimal weight on a combination forecast when being 

used with bagging to obtain a composite return forecast. The statistical significance of the HLN (1997) 

test is denoted by stars.  

The results in Panel A of Table 9 are for Asian countries. These indicate that the weight on the 

combination forecast is typically less than 0.5 (this is true for 30 of the 44 observations) suggesting it is 

optimal to put greater weight on the bagging forecast. The HLN test is generally insignificant except for 

India and Taiwan. Thus, in 9 of 11 Asian countries the encompassing tests indicate that the combination 

forecast does not add new information beyond that contained in the bagging forecast.  Panel B of Table 9 

gives results for the G7 countries. Of these, 15 of the 28 optimal weights are below 0.5 suggesting that in 

the majority of cases more weight is placed on the bagging forecast. Only in Canada are weights typically 
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above 1 observed for the combination forecasts. Medium weights France, Italy, Japan and US are 

typically less than 0.5. In Germany and the UK the weights are typically low or even negative. Canada is 

the only country where the null hypothesis of the HLN test can be rejected. That is, only in Canada do the 

combination forecasts consistently add information beyond that contained in the bagging forecasts. This 

indicates that for the G7 countries except Canada, the combination forecasts do not contain incremental 

information beyond the bagging forecast. In both sets of countries there is little statistically significant 

evidence that combination forecasts add new information to that contained in the bagging forecast. 

Overall, this implies the bagging forecast should be used by itself (or as the senior partner in a composite 

forecast) in practical applications of stock return forecasting.  

 [INSERT Table 9 AROUND HERE] 

 

7.B  Cross-country evidence  

Table 10 examines cross-country evidence on forecasting performance. A wide range of country-

level variables are employed including economic development, trade, financial development, information 

availability, institutional setting. Most of these characteristics outlined can impact the speed of the market 

response, e.g. market development, information frictions and equity market liquidity should all impact 

how quickly news is incorporated into stock prices.22 The greater the delay in reaction to news the more 

accurately the next periods return can be forecast. 

Panel A reports results from bivariate cross-sectional regressions for RMSFE by these variables 

across our sample of 17 countries. Many variables linked to legal institutional setting (anti-self dealing, 

property rights, common law), market development (GDP, FDI, market development) and investor 

sophistication (internet usage, mobile phone usage) are not significantly linked to RMSFE. Nonetheless 

there are several variables that are significantly related to RMSFE. Results suggest that trade openness 

(Trade / GDP) is an important determinant of RMSFE. The higher the trade openness is the lower the 
                                                 

22  Theoretically, imperfect information models (Sims, 2003; Woodford, 2002) indicate there could be sluggish 
adjustment to indicator variables. 
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RMSFE and hence the better the forecast accuracy. Perhaps as outlined in Jordan et al. (2014a) there is 

information flow between trading partners (especially importers) from other countries but the market fails 

to full incorporate this information immediately. Finally there is a positive relationship between stock 

turnover (trading volume / equity capitalization) and RMSFE for most combinations. This indicates that 

the higher the turnover and the more liquid the equity market the higher the RMSFE, which indicates 

reduced precision of forecasts since there is less ability to forecast based on stale data.  

Table 10 Panel B examines the relationship between utility gains and these country-level 

variables across our sample of 17 countries. Empirical results indicate that Trade openness and FDI are 

pervasively related to utility gain, as well as forecast accuracy. Panel C of Table 11 examines the 

relationship between GISW manipulation proof certainty equivalent gains and the country-level variables. 

At the 5% significance level, there continues to be evidence of predictability via trade-to-GDP (TRADE) 

and foreign direct investments (FDI). However, there seems to be no consistently strong relationship 

between several country-level groups of variables and forecast performance. There is little linkage 

between investor sophistication and forecast performance established and sporadic significance for 

proxies linked to legal structure or equity market development. This suggests that good forecast 

performance can be achieved regardless of a country’s ranking by these characteristics. 

[INSERT Table 10 AROUND HERE] 

Trade openness is the only pervasive factor that predicts across all the measures of forecast 

accuracy / economic value we consider at the 5% significance level. Trade openness is statistically 

significant at the 5% level by all forecast metrics for the bagging method and by all metrics for three of 

the four combination methods. We can conclude that there is strong support that trade openness is related 

to predictability. It is plausible that for countries with greater trade links there is a larger information set 

of potentially relevant information, which takes more time to be fully absorbed into market data by 

investors with limited processing power.  This is consistent with the view that information relevant to 

equity markets travels via trading links (Jordan et al., 2014a). 
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7.C  Summary of other Tests 

We also conducted other tests in the process of producing this paper. The main ones revolved 

around i) whether bagging did well on alternative measures of forecast performance (e.g. sign prediction), 

ii) which measure of forecast performance was most closely related to economic value and iii) whether 

the empirical results for forecast accuracy were driven by prediction of volatility rather than prediction of 

mean. These results suggested that: i) bagging’s performance for alternative measures of forecast 

performance was mixed, ii) of the forecast performance measures RMSFE and RMAFE are generally the 

most closely related to economic value and iii) results for prediction of return volatility are not as 

favorable as for the mean. These results are available upon request.  

 

8. CONCLUSION 

This study focuses on the bootstrap aggregating method (bagging), which explicitly addresses 

model and parameter instability as well as providing inference that explicitly addresses data mining 

concerns.  The bagging method has been recently applied to forecasting macroeconomic series using 

linear regressions with continuous variables. In this study we apply the bagging method to forecast market 

stock returns out-of-sample (OOS) in a multi-country setting.  We study the G7 which is commonly 

studied in past return forecasting literature and a sample of 11 Asian countries that covers countries with 

differing characteristics and for which there is relatively little prior literature on return forecasting. 23  In 

our tests, we consider three types of predictors (fundamental ratios, macro variables, and technical 

variables); we examine if bagging and combining methods, proposed to overcome poor return 

predictability, can improve forecast accuracy or increase economic value. We apply bagging methods to 

                                                 

23 Balsara, Chen, Zheng (2007) demonstrate that an ARIMA forecasting model outperforms forecasts based on a 
random walk model and Goh, Jiang, Tu, and Wang (2013) find Chinese stock returns can be forecast by both Chinese and US 
economic variables since 2001. However, neither of these papers examines bagging nor forecast combinations.  
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international stock return forecasts, which provides new and broader insights on whether or not bagging is 

effective internationally.24  Our findings are as follows. 

Firstly, we find for stock return forecasts in both G7 and in Asian markets that bagging is of 

economic importance and can lead to sizable gains from an asset allocation strategy. The empirical results 

indicate that economic gains from bagging are generally statistically different from those from the 

benchmark and are robust to reasonable trading costs. Further the economic gains from bagging tend to be 

greater than those from forecast combinations. 25  Thus, bagging methods may prove useful to 

practitioners.  

We examine forecast accuracy metrics when restrictions (i.e., winsorization of extreme forecast 

values) on forecasts implied from the economic value exercises are applied.26  When these restrictions are 

applied, bagging generally performs well for standard forecast accuracy metrics (RMSFE, RMAFE), 

whilst the unrestricted results are weaker.27  Consequently, although bagging is a technique to reduce 

forecast variance, we find it is necessary to winsorize extreme forecasts in order for it to perform well in 

standard forecast accuracy tests. Thus these restrictions appear to be an important factor that can help 

reconcile the initially differing results between statistical and economic gain tests. Overall, we provide 

evidence that bagging methods are effective in a range of small, medium, and large-sized Asian markets 

with different characteristics to the US and other G7 countries. Thus, bagging could generate gains 

universally. 

Secondly, we provide statistical evidence that explicitly accounts for data mining issues. We 

adapt the approach of Rapach and Wohar (2006) which is based on the pioneering work of White (2000) 

and Inoue and Kilian (2005). To our knowledge this process for generating data mining robust critical 

                                                 

24 To our knowledge there is no prior multi-country study of bagging applied to international (non-US) stock returns. 
25 Forecast combination techniques have been widely applied in many different disciplines but only recently applied to 

US stock return forecasts (Rapach, Strauss and Zhou, 2010). 
26 We restrict the stock return forecast to be consistent with portfolio weights between 0 and 1.5. This winsorises the 

stock return forecast to be in the range: 2
1,( ) 1.5( )f t b f tY E Y Y γ σ+≤ ≤ + , where Yf is the risk-free rate, γ is the coefficient of risk 

aversion and σt
2 is equity index return volatility. 

27 Della Corte, Sarno and Valente (2010) and Cenesizoglu and Timmermann (2012) find forecasts may have economic 
value even though statistical tests provide no evidence of superior performance.  
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values has not previously been applied to forecast combinations or to bagging. These data mining robust 

critical values place a very high hurdle on empirical tests. Interestingly we find that even after accounting 

for data mining there is some evidence that bagging beats the historical average in both forecast accuracy 

tests and economic value tests. 

Finally, we explore if predictability is related to specific country characteristics.  Somewhat 

surprisingly, legal origin, economic or financial development has no significant relation to predictability, 

which contrasts with prior studies that suggest such variables may impact the effective operation of 

financial markets in various settings. However, we find strong support that predictability is related to 

trade-to-GDP and to an extent to foreign direct investment.  These results provide further evidence that 

trading links can impact forecast performance (Jordan et al., 2014a).  
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Table 1: Descriptive Statistics (1995:1-2011:6) 
CH HK IN ID KO MY PH SG TH TW CN DE FR IT JP UK US

RET     Mean 0.0099 0.0076 0.0099 0.0111 0.0073 0.0052 0.0049 0.0047 0.0022 0.0033 0.0090 0.0061 0.0075 0.0049 -0.0015 0.0066 0.0073
SD 0.1048 0.0754 0.0847 0.0937 0.0926 0.0726 0.0723 0.0643 0.1002 0.0775 0.0450 0.0568 0.0539 0.0614 0.0519 0.0422 0.0471

DP       Mean -3.556 -3.530 -4.215 -3.831 -4.124 -3.664 -4.164 -3.755 -3.681 -3.858 -3.865 -3.873 -3.519 -3.548 -4.548 -3.427 -4.087
SD 0.477 0.220 0.300 0.402 0.327 0.347 0.500 0.277 0.578 0.587 0.237 0.305 0.247 0.433 0.391 0.180 0.234

DY -3.549 -3.525 -4.207 -3.822 -4.119 -3.661 -4.161 -3.752 -3.681 -3.856 -3.858 -3.869 -3.514 -3.546 -4.550 -3.423 -4.082
0.469 0.218 0.305 0.411 0.313 0.346 0.505 0.277 0.579 0.587 0.233 0.299 0.241 0.422 0.387 0.178 0.237

EP -2.374 -2.690 -2.780 -2.696 -2.572 -2.761 -2.777 -2.751 -2.542 -2.919 -2.884 -2.753 -2.731 -2.822 -3.604 -2.745 -3.018
0.430 0.244 0.267 0.330 0.331 0.263 0.257 0.325 0.417 0.345 0.175 0.241 0.227 0.308 0.439 0.257 0.218

BM 0.617 0.473 0.349 0.902 0.560 0.639 0.676 0.508 0.471 0.498 0.524 0.551 0.640 0.646 0.451 0.353
0.118 0.133 0.109 0.217 0.122 0.211 0.120 0.158 0.120 0.078 0.163 0.151 0.226 0.159 0.125 0.098

RF 0.003 0.003 0.007 0.012 0.005 0.003 0.007 0.002 0.004 0.003 0.003 0.002 0.003 0.003 0.000 0.004 0.003
0.002 0.002 0.006 0.013 0.004 0.002 0.003 0.001 0.004 0.002 0.001 0.001 0.001 0.002 0.000 0.002 0.002

INFL 0.031 0.089 0.005 0.010 0.003 0.002 0.005 0.001 0.003 0.001 0.079 0.081 0.080 0.079 0.000 0.082 0.025
0.047 0.005 0.007 0.012 0.001 0.001 0.003 0.002 0.002 0.001 0.008 0.006 0.006 0.008 0.001 0.007 0.012

SVAR 0.045 0.033 0.038 0.039 0.040 0.028 0.031 0.026 0.042 0.035 0.021 0.026 0.026 0.028 0.027 0.022 0.023
0.017 0.012 0.012 0.015 0.016 0.016 0.009 0.010 0.015 0.011 0.008 0.010 0.010 0.009 0.008 0.009 0.009

NTIS 0.023 0.005 0.007 0.010 0.007 0.004 0.005 0.004 0.007 0.006 0.002 0.002 0.003 0.005 0.002 0.002 0.002
0.081 0.012 0.028 0.034 0.016 0.011 0.020 0.019 0.017 0.017 0.012 0.016 0.010 0.019 0.006 0.009 0.007

PRES 1.012 0.977 0.988 0.982 0.974 0.998 0.954 0.972 0.959 0.987 1.013 0.995 0.984 0.970 0.953 1.036 1.030
0.276 0.231 0.231 0.253 0.229 0.272 0.262 0.238 0.257 0.259 0.154 0.169 0.173 0.210 0.176 0.238 0.176

CVm 0.125 0.059 0.067 0.138 0.080 0.080 0.093 0.064 0.159 0.067 0.027 0.054 0.043 0.059 0.027 0.029 0.026
0.608 0.331 0.354 0.574 0.391 0.427 0.463 0.331 0.884 0.403 0.175 0.363 0.254 0.346 0.192 0.218 0.160

 
 

 Notes: This table shows the sample mean and standard deviations. The top row gives the country code. The first column gives the code for each variable. Mean is the sample average, SD is 
the standard deviation, Results are reported for the following countries: CH is China, HK is Hong Kong, IN is India, ID is Indonesia, JP is Japan, KO is Korea, MY is Malaysia, PH is 
Philippines, SG is Singapore, TH is Thailand, TW is Taiwan, CN is Canada, DE is Germany, FR is France, IT is Italy, JP is Japan, UK is United Kingdom and US is United States.  RET is the 
stock return, DP is log dividend-price ratio, DY is log dividend-yield, EP is log earnings-price ratio, BM is book-to-market ratio, RF is the risk-free rate, INFL is inflation, SVAR is stock 
variance, NTIS is net equity issuance, PRES is price pressure measured by numbers of rising stocks divided by number of falling stocks, and CVm is change in volume at monthly frequency. 
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Table 2: Return Correlation Matrix 
CH HK IN ID KO MY PH SG TH TW CN FR BD IT JP UK US

CH 1.000

HK 0.620 1.000

IN 0.343 0.469 1.000

ID 0.195 0.404 0.405 1.000

KO 0.307 0.513 0.384 0.462 1.000

MY 0.424 0.589 0.351 0.523 0.385 1.000

PH 0.351 0.553 0.360 0.594 0.460 0.584 1.000

SG 0.474 0.782 0.490 0.537 0.523 0.594 0.671 1.000

TH 0.380 0.517 0.350 0.563 0.608 0.559 0.624 0.615 1.000

TW 0.472 0.565 0.451 0.331 0.525 0.473 0.414 0.559 0.486 1.000

CN 0.413 0.673 0.465 0.534 0.459 0.485 0.506 0.626 0.493 0.511 1.000

FR 0.234 0.551 0.428 0.461 0.462 0.364 0.395 0.572 0.366 0.521 0.713 1.000

BD 0.251 0.562 0.413 0.462 0.438 0.420 0.406 0.585 0.410 0.538 0.687 0.904 1.000

IT 0.125 0.417 0.440 0.465 0.409 0.286 0.322 0.476 0.329 0.451 0.613 0.852 0.765 1.000

JP 0.273 0.433 0.435 0.449 0.487 0.248 0.334 0.497 0.394 0.437 0.540 0.556 0.521 0.491 1.000

UK 0.328 0.620 0.427 0.497 0.536 0.378 0.445 0.625 0.475 0.497 0.751 0.845 0.799 0.748 0.554 1.000

US 0.352 0.650 0.417 0.490 0.512 0.424 0.477 0.646 0.479 0.524 0.821 0.787 0.791 0.664 0.539 0.827 1.000

AV. ALL 0.346 0.558 0.414 0.461 0.467 0.443 0.468 0.580 0.478 0.485 0.581 0.563 0.559 0.491 0.449 0.585 0.588

AV. ASIA 0.396 0.557 0.400 0.446 0.463 0.498 0.512 0.583 0.523 0.475

AV. G7 0.688 0.776 0.744 0.689 0.533 0.754 0.738
 

 
Notes: This table shows the return correlations (Pearson) between different country pairs. Results are reported for the following countries:  
CH is China, HK is Hong Kong, IN is India, ID is Indonesia, KO is Korea, MY is Malaysia, PH is Philippines, SG is Singapore, TH is Thailand, 
TW is Taiwan, CN is Canada, DE is Germany, FR is France, IT is Italy, JP is Japan, UK is United Kingdom and US is United States. AV. 
denotes the average correlation between other countries and the country given in the column header.  
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Table 3: Individual Predictive Models Forecast Performance – 1 Month Horizon 
Panel A: Asian Countries 

CH HK IN ID JP KO MY PH SG TH TW
HA (MSFE) 0.008 0.004 0.008 0.006 0.003 0.004 0.002 0.003 0.003 0.006 0.004

DP RMSFE | ENC-NEW 1.038 0.998 ** 0.973 ** 0.995 ** $$ 1.046 0.994 0.984 ** $$ 0.963 ** 0.995 * 0.975 ** 1.027 **

RMAFE | CW-T 1.012 1.009 1.006 ** 0.957 ** 1.016 0.991 0.959 * 0.943 ** 0.947 0.963 * 1.001

DY RMSFE | ENC-NEW 1.052 0.966 ** 0.960 ** $$ 0.981 ** $$ 1.051 0.990 ** 0.987 ** $$ 0.951 ** $$ 0.970 ** 0.972 ** 1.030 **

RMAFE | CW-T 1.021 1.008 * 1.000 ** 0.948 ** 1.011 0.973 0.962 ** 0.929 ** 0.936 * 0.966 ** 1.001

EP RMSFE | ENC-NEW 1.079 1.020 0.974 ** 1.000 1.029 0.985 * 1.017 0.991 * 1.026 0.989 ** 1.062

RMAFE | CW-T 1.037 1.001 0.993 ** 1.005 1.014 0.989 * 1.007 0.980 1.027 0.980 * 1.012

SVAR RMSFE | ENC-NEW 1.003 ** 1.007 1.006 * 1.010 1.015 1.064 1.044 1.018 1.023 0.999 1.028

RMAFE | CW-T 1.021 0.988 0.996 1.002 1.006 1.034 1.024 1.010 1.035 0.981 1.002

NTIS RMSFE | ENC-NEW 1.010 * 0.994 0.998 0.995 1.001 1.009 1.005 1.012 1.102 1.003 1.002

RMAFE | CW-T 1.013 1.005 0.998 0.991 1.000 1.003 1.002 1.007 1.035 1.003 1.000

BM RMSFE | ENC-NEW 0.983 ** $$ 1.000 0.972 ** $$ 0.999 ** 1.052 ** 0.960 ** $$ 0.986 * 0.944 ** $$ 0.954 ** $$ 0.954 **

RMAFE | CW-T 1.052 ** 1.020 1.013 ** $$ 0.971 1.050 0.990 ** 1.002 0.985 ** 0.966 ** 0.973 **

RF RMSFE | ENC-NEW 1.050 1.044 1.016 1.003 0.970 ** 0.976 ** 0.943 ** $$ 1.019 0.992 * 0.945 ** $$ 1.001

RMAFE | CW-T 1.030 1.040 1.008 0.998 0.983 ** $$ 0.978 ** 0.943 ** $$ 1.009 0.990 * 0.944 ** $$ 0.993

INFL RMSFE | ENC-NEW 1.000 0.977 ** 1.001 1.010 0.982 ** 0.960 ** 0.927 ** $$ 1.047 0.916 ** $$ 0.904 ** $$ 0.928 ** $$

RMAFE | CW-T 0.999 0.979 ** 0.995 1.008 0.993 0.979 ** $$ 0.979 ** 1.018 1.057 ** $$ 0.951 ** $$ 0.979 ** $$

PRES RMSFE | ENC-NEW 1.003 * 0.988 1.002 0.956 ** 0.977 ** 1.003 0.917 ** $$ 1.016 ** 0.933 ** $$ 1.050 0.999

RMAFE | CW-T 1.020 1.003 1.007 0.991 ** 0.978 * 0.979 0.968 ** $$ 1.006 * 0.982 ** 1.017 1.001

CVM RMSFE | ENC-NEW 1.004 0.997 ** 1.004 1.009 1.014 1.008 1.040 1.026 1.034 1.003 1.004

RMAFE | CW-T 1.000 1.009 0.998 0.996 1.013 1.001 1.017 1.012 1.020 0.997 1.003
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Panel B: G7 Countries 
CN DE FR IT JP UK US

HA (MSFE) 0.002 0.002 0.002 0.003 0.003 0.002 0.002

DP RMSFE | ENC-NEW 1.048 1.037 1.022 1.033 1.046 1.039 1.073

RMAFE | CW-T 0.988 1.009 0.999 1.007 1.016 0.997 1.005

DY RMSFE | ENC-NEW 1.052 1.036 1.023 1.045 1.051 1.026 1.045

RMAFE | CW-T 0.986 1.003 0.993 1.015 1.011 0.995 0.990

EP RMSFE | ENC-NEW 1.027 1.023 1.005 1.038 1.029 1.059 1.108

RMAFE | CW-T 0.997 0.993 1.002 0.997 1.014 0.988 1.039

SVAR RMSFE | ENC-NEW 1.029 1.055 1.034 1.022 1.015 1.035 1.066

RMAFE | CW-T 0.995 1.000 1.005 0.989 1.006 1.014 1.040

NTIS RMSFE | ENC-NEW 1.015 1.005 1.009 1.008 1.001 0.995 1.015

RMAFE | CW-T 1.013 1.005 1.002 1.006 1.000 1.005 1.003

BM RMSFE | ENC-NEW 1.055 1.039 1.058 0.999 ** 1.081 1.043

RMAFE | CW-T 0.996 1.003 1.022 0.971 1.005 0.998

RF RMSFE | ENC-NEW 1.016 0.980 ** $$ 0.988 ** 1.006 0.970 ** 1.073 1.049

RMAFE | CW-T 1.007 0.979 ** $$ 0.974 1.001 0.983 ** $$ 1.053 1.045

INFL RMSFE | ENC-NEW 1.074 1.155 1.106 1.029 0.982 ** 1.108 0.926 ** $$

RMAFE | CW-T 1.079 1.091 1.057 1.016 0.993 1.084 0.946 **

PRES RMSFE | ENC-NEW 0.990 * 0.977 ** 0.987 * 1.005 0.977 ** 1.001 1.002

RMAFE | CW-T 0.997 0.983 * 0.977 1.004 0.978 * 1.002 0.995

CVM RMSFE | ENC-NEW 1.016 1.025 1.011 ** 1.027 1.014 1.008 ** 1.026

RMAFE | CW-T 1.004 1.023 1.011 1.012 1.013 1.001 1.013
 

Notes: This table shows the forecast results for individual predictive regression models at the one-month forecast horizon. The top row gives the country code. The second row [HA(MSFE)] reports the 
mean-squared forecast error for the historical average benchmark model. The other rows report the ratios of the mean-squared forecast errors for each predictive regression model to the mean-squared 
forecast error of the Historical Average model. Bold typeface denotes if the mean-squared forecast error from the individual model is smaller than the historical average model. RMSFE is the relative 
mean-squared forecast error. RMAFE is relative mean absolute forecast error. ** and * shows significance at the 5% and 10% level respectively using conventional critical values. $$ and $ shows 
significance at the 5% and 10% level respectively using data-mining robust critical values. We implement the Clark-McCracken (2001) ENC-NEW encompassing test and the Clark-West (2007) CW-T test 
of equal forecast accuracy.  Results are reported for the following countries: CH is China, HK is Hong Kong, IN is India, ID is Indonesia, JP is Japan, KO is Korea, MY is Malaysia, PH is Philippines, SG 
is Singapore, TH is Thailand, TW is Taiwan, CN is Canada, DE is Germany, FR is France, IT is Italy, JP is Japan, UK is United Kingdom and US is United States. Individual predictors are denoted as 
follows: DP is log dividend-price ratio, DY is log dividend-yield, EP is log earnings-price ratio, SVAR is stock variance, NTIS is net equity issuance, BM is book-to-market ratio, RF is the risk-free rate, 
INFL is inflation, PRES is price pressure measured by numbers of rising stocks divided by number of falling stocks, and CVM is change in volume at monthly frequency. 
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Table 4: Bagging and Combination Forecast Performance – 1 Month Horizon 
Panel A: Asian Countries 

CH HK IN ID JP KO MY PH SG TH TW

BA RMSFE | ENC-NEW 1.127 1.002 ** $$ 1.001 0.944 ** $$ 0.988 ** $ 1.062 ** $$ 0.888 ** $$ 1.021 ** 1.070 ** $$ 0.939 ** $$ 1.070 ** $$

RMAFE | CW-T 1.078 1.083 * 1.001 0.985 ** $$ 0.980 ** 1.031 * 0.956 ** $$ 1.000 1.077 ** $ 0.951 ** $$ 1.032 ** $

Mean RMSFE | ENC-NEW 1.010 0.974 ** 0.979 * 0.958 ** 0.993 0.986 0.948 ** 0.984 * 0.955 ** 0.967 ** 0.986 *

RMAFE | CW-T 1.005 0.993 ** 0.987 ** $ 0.968 ** $$ 0.988 0.990 ** 0.963 ** $$ 0.981 ** 0.978 ** $$ 0.969 ** $$ 0.984 *

Median RMSFE | ENC-NEW 1.011 0.969 ** 0.990 0.980 * 0.990 0.987 0.961 ** 0.990 0.969 ** 0.971 ** 0.979 *

RMAFE | CW-T 1.003 0.989 ** $$ 0.995 ** 0.984 ** $$ 0.992 ** $ 0.989 * 0.973 ** $$ 0.992 ** $ 0.981 ** $$ 0.973 ** $$ 0.985 ** $

Trimmed RMSFE | ENC-NEW 1.006 0.971 ** 0.976 * 0.962 ** 0.990 0.987 0.954 ** 0.988 0.961 ** 0.972 ** 0.985 *

RMAFE | CW-T 1.003 0.990 ** $$ 0.986 ** $$ 0.972 ** $$ 0.989 * 0.989 ** $ 0.966 ** $$ 0.986 * 0.974 ** $$ 0.971 ** $$ 0.983 *

DMSFE(1) RMSFE | ENC-NEW 1.009 0.974 ** 0.978 * 0.958 ** 0.992 0.986 0.948 ** 0.984 * 0.955 ** 0.967 ** 0.986 *

RMAFE | CW-T 1.005 0.994 ** 0.987 ** $ 0.966 ** $$ 0.987 0.990 ** 0.963 ** $$ 0.981 * 0.978 ** $$ 0.969 ** $$ 0.984 *

DMSFE(0.9) RMSFE | ENC-NEW 1.006 0.972 ** 0.978 * 0.959 ** 0.988 0.985 0.944 ** 0.982 * 0.952 ** 0.965 ** 0.985 *

RMAFE | CW-T 1.003 0.990 ** $ 0.987 ** $ 0.968 ** $$ 0.986 * 0.990 ** $ 0.962 ** $$ 0.979 ** $ 0.976 ** $$ 0.968 ** $$ 0.985 *

C(2,PB) RMSFE | ENC-NEW 0.989 0.988 0.994 * 1.001 0.970 ** 0.987 0.936 ** $ 1.001 0.956 ** 0.953 ** 0.988 *

RMAFE | CW-T 0.994 1.000 ** 0.995 0.985 0.975 ** $$ 0.990 0.956 ** $$ 0.985 0.976 ** $$ 0.952 ** $$ 0.997 *

C(3,PB) RMSFE | ENC-NEW 0.986 * 0.989 * 0.990 ** 1.004 * 0.965 ** 0.992 0.929 ** $$ 1.002 0.937 ** $ 0.945 ** 0.987 **

RMAFE | CW-T 0.995 * 1.000 0.999 * 0.990 0.975 ** $$ 0.998 0.954 ** $$ 0.983 0.963 ** $$ 0.946 ** $$ 0.998 *

PC(C,3B) RMSFE | ENC-NEW 1.011 * 1.011 ** 1.071 ** 0.991 ** 1.069 1.056 1.281 1.032 1.072 ** 1.125 ** $$ 1.131

RMAFE | CW-T 1.028 1.012 1.077 0.993 * 1.027 1.042 1.125 0.983 1.081 1.022 * 1.044

AV COMB RMSFE | ENC-NEW 0.998 0.971 ** 0.985 * 0.970 ** 0.990 0.988 0.958 ** 0.991 0.957 ** 0.956 ** 0.994

RMAFE | CW-T 1.001 0.989 ** $ 0.989 * 0.970 ** $ 0.985 * 0.993 0.969 ** $$ 0.981 0.984 ** $$ 0.960 ** $$ 0.992
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Panel B: G7 Countries 
CN DE FR IT JP UK US

BA RMSFE | ENC-NEW 1.128 1.088 ** 1.068 ** 1.113 0.988 ** $ 1.051 * 1.089

RMAFE | CW-T 1.088 1.117 1.047 1.039 0.980 ** 1.012 1.040

Mean RMSFE | ENC-NEW 1.009 1.002 0.998 1.014 0.993 1.015 1.013

RMAFE | CW-T 1.000 0.994 0.998 1.002 0.988 1.003 0.993

Median RMSFE | ENC-NEW 1.010 1.001 1.001 1.021 0.990 1.001 1.001

RMAFE | CW-T 1.000 0.994 0.996 1.009 0.992 ** $ 0.999 0.988

Trimmed RMSFE | ENC-NEW 1.002 1.003 0.994 1.011 0.990 1.014 1.015

RMAFE | CW-T 0.995 0.995 0.991 1.002 0.989 * 1.001 0.992

DMSFE(1) RMSFE | ENC-NEW 1.009 1.002 0.999 1.014 0.992 1.015 1.014

RMAFE | CW-T 1.000 0.994 0.998 1.002 0.987 1.003 0.993

DMSFE(0.9) RMSFE | ENC-NEW 1.008 1.002 0.999 1.013 0.988 1.013 1.009

RMAFE | CW-T 0.999 0.993 0.997 1.001 0.986 * 1.001 0.993

C(2,PB) RMSFE | ENC-NEW 1.001 0.995 1.004 1.003 0.970 ** 1.019 0.983 *

RMAFE | CW-T 0.992 0.991 0.997 0.992 0.975 ** $$ 0.999 0.988 ** $

C(3,PB) RMSFE | ENC-NEW 1.011 1.031 1.001 1.012 0.965 ** 1.054 0.961 **

RMAFE | CW-T 0.991 1.003 0.996 0.987 0.975 ** $$ 1.010 0.979 ** $$

PC(C,3B) RMSFE | ENC-NEW 1.147 1.057 ** 1.215 * 1.080 1.069 1.201 1.037

RMAFE | CW-T 1.069 1.080 1.156 1.052 1.027 1.088 1.017

AV COMB RMSFE | ENC-NEW 1.015 1.000 1.000 1.015 0.990 1.021 1.001

RMAFE | CW-T 1.002 0.998 1.008 1.002 0.985 * 1.000 0.991
 

Notes: This table shows the forecast results for bagging and forecast combination methods at the one-month forecast horizon. The top row gives the country code. The other rows report the ratios of the 
mean-squared forecast errors for each ARDL models to the mean-squared forecast error of the historical average benchmark. Bold typeface denotes if the mean-squared forecast error from the individual 
model is smaller than the historical average benchmark. RMSFE is the relative mean-squared forecast error. RMAFE is relative mean absolute forecast error. ** and * shows significance at the 5% and 
10% level respectively using conventional critical values. $$ and $ shows significance at the 5% and 10% level respectively using data-mining robust critical values. We implement the Clark-McCracken 
(2001) ENC-NEW encompassing test and the Clark-West (2007) CW-T test of equal forecast accuracy.  
Results are reported for the following countries: CH is China, HK is Hong Kong, IN is India, ID is Indonesia, JP is Japan, KO is Korea, MY is Malaysia, PH is Philippines, SG is Singapore, TH is 
Thailand, TW is Taiwan, CN is Canada, DE is Germany, FR is France, IT is Italy, JP is Japan, UK is United Kingdom and US is United States.  BA represents the bagging method. Combinations based on 
measures of central tendency are the Mean, Median and Trimmed (Mean). Combinations based on weighted past forecast errors are DMSFE(1) and DMSFE(0.9). Combinations based on cluster methods 
are C(2,PB) and C(3,PB). Combination based on principal components are PC(C,3B). AV COMB is the mean of all 8 combination methods.  
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Table 5: Economic Value of One Month Return Forecasts using Bagging or Forecast Combinations - Utility Gain Method.  
Panel A: Asian Countries 

CH HK IN ID JP KO MY PH SG TH TW

BA UG         | p(UG) -0.07 6.29 ** $ -0.68 11.87 ** $$ 2.95 ** 5.04 ** $ 9.93 ** $$ 3.84 ** 18.73 ** $$ 12.11 ** $$ 15.63 ** $$

UG5       | p(UG5) 0.39 4.69 ** $$ -0.41 7.15 ** $$ 1.08 2.50 ** $ 8.48 ** $$ 3.33 ** $$ 11.95 ** $$ 6.68 ** $$ 10.42 ** $$

Mean UG         | p(UG) -1.99 4.70 ** 2.58 ** 5.68 ** $ 0.04 2.21 ** 7.34 ** $$ 0.60 11.82 ** $$ 3.49 ** 1.76 **

UG5       | p(UG5) -1.20 3.43 ** $ 1.55 ** 3.42 ** $ 0.03 1.32 ** 4.66 ** $$ 0.36 7.10 ** $$ 2.10 ** 1.06 **

DMSFE(1) UG         | p(UG) -1.76 4.45 ** 2.74 ** 5.61 ** $ 0.10 2.19 ** 7.34 ** $$ 0.52 11.91 ** $$ 3.51 ** 1.82 **

UG5       | p(UG5) -1.06 3.28 ** 1.65 ** 3.38 ** $ 0.06 1.31 ** 4.66 ** $$ 0.31 7.15 ** $$ 2.11 ** 1.10 **

C(2,PB) UG         | p(UG) 3.69 ** 1.97 2.87 ** 0.18 4.10 ** 1.61 ** 8.06 ** $$ -2.82 9.82 ** $$ 6.28 ** $$ 3.89 **

UG5       | p(UG5) 2.34 ** 1.79 ** 1.73 ** 0.11 2.24 ** 0.96 ** 5.74 ** $$ -1.70 5.31 ** $$ 3.77 ** $$ 2.34 **

PC(C,3B) UG         | p(UG) 4.59 ** 2.60 7.20 ** $$ 6.01 ** $$ -8.49 -0.72 6.80 ** $ -2.32 10.71 ** $$ 1.93 -4.30

UG5       | p(UG5) 3.03 ** $ -1.82 5.22 ** $$ 4.17 ** $$ -6.13 -0.43 5.59 ** $$ -2.93 6.20 ** $$ -4.38 -2.58
 

Panel B: G7 Countries 
CN DE FR IT JP UK US

BA UG         | p(UG) -4.48 8.44 ** $$ 5.58 ** $ 3.23 ** 2.95 ** 6.38 ** $$ 3.25

UG5       | p(UG5) -1.26 5.57 ** $$ 2.07 ** -0.89 1.08 2.61 ** $ 4.83 ** $$

Mean UG         | p(UG) -0.67 2.68 ** 0.76 0.90 0.04 -1.74 1.69 **

UG5       | p(UG5) -0.85 1.61 ** 1.30 ** -0.03 0.03 -4.03 0.44

DMSFE(1) UG         | p(UG) -0.69 2.88 ** 0.78 0.87 0.10 -1.71 1.76 **

UG5       | p(UG5) -0.86 1.72 ** 1.24 ** -0.06 0.06 -4.18 0.53

C(2,PB) UG         | p(UG) -0.06 3.38 ** 2.06 ** 3.88 ** 4.10 ** 0.63 4.20 **

UG5       | p(UG5) 1.37 ** 1.53 ** 1.23 ** 1.17 ** 2.24 ** -1.36 6.27 ** $$

PC(C,3B) UG         | p(UG) -8.50 5.57 ** 3.97 ** 0.10 -8.49 0.70 -1.68

UG5       | p(UG5) -6.85 3.21 ** 2.57 ** -1.15 -6.13 -0.89 -0.73
 

Notes: Table 5 reports the economic significance of regression forecasts using the utility gain measure. Results are reported for the coefficient of relative risk aversion of 3 (UG) and of 5 (UG5). Utility 
gains are in percentage points, which are annualized by multiplying monthly values by 12. Utility gains are calculated for an investor with mean-variance and limits the weight in the risky asset to be no 
less than 0 and no more than 1.5 (as in Campbell and Thompson, 2008). We forecast the return and use the current market risk-free rate to calculate the excess return. ** and * shows significance at the 5% 
and 10% level respectively using bootstrapped critical values. $$ and $ shows significance at the 5% and 10% level respectively using data-mining robust bootstrap critical values. CH is China, HK is 
Hong Kong, IN is India, ID is Indonesia, JP is Japan, KO is Korea, MY is Malaysia, PH is Philippines, SG is Singapore, TH is Thailand, TW is Taiwan, CN is Canada, DE is Germany, FR is France, IT is 
Italy, JP is Japan, UK is United Kingdom and US is United States.  BA is the bagging method. The combination reported based on central tendency is the Mean, the combinations based on weighted past 
forecast errors is DMSFE(1). The combinations based on cluster methods is C(2,PB) and the combination based on principal components is PC(C,3B). 
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Table 6: Economic Value of One Month Return Forecasts using Bagging or Forecast Combinations - GISW method.  
Panel A: Asian Countries 

CH HK IN ID JP KO MY PH SG TH TW

BA GISW    | p(GISW) 1.88 11.60 ** $$ -0.63 1.84 6.37 ** $ 3.67 6.44 ** -1.43 20.48 ** $$ -19.48 15.64 ** $$

GISW5  | p(GISW5) 0.75 5.76 ** $ -0.39 3.95 ** $ 6.05 ** $$ 2.20 6.70 ** $$ 1.33 13.17 ** $$ 0.69 12.65 ** $$

Mean GISW    | p(GISW) -0.83 6.85 ** $ 3.17 ** -4.47 1.11 2.24 ** 3.22 ** -0.36 14.62 ** $$ 3.22 ** 1.55 **

GISW5  | p(GISW5) -0.97 3.90 ** 1.59 ** 0.89 ** 0.72 1.33 ** 3.39 ** 0.09 7.64 ** $$ 2.07 ** 1.54 **

DMSFE(1) GISW    | p(GISW) -0.64 6.39 ** 3.32 ** -6.36 1.27 ** 2.23 ** 3.31 ** -0.52 14.69 ** $$ 3.23 ** 1.62 **

GISW5  | p(GISW5) -0.84 3.73 ** 1.69 ** 0.42 0.83 ** 1.32 ** 3.42 ** 0.02 7.70 ** $$ 2.08 ** 1.58 **

C(2,PB) GISW    | p(GISW) 4.17 ** 3.04 ** 2.24 ** -22.03 5.64 ** 0.72 1.61 -7.08 10.03 ** $$ 5.59 ** 3.85 **

GISW5  | p(GISW5) 2.49 ** 2.17 ** 1.64 ** -4.72 3.65 ** 0.84 3.38 ** -2.76 5.14 ** $ 3.72 ** 2.62 **

PC(C,3B) GISW    | p(GISW) 0.78 -4.34 3.62 ** -21.53 -4.11 -1.84 5.35 ** -22.06 12.84 ** $$ -27.95 -4.50

GISW5  | p(GISW5) 2.64 -7.35 4.91 ** $ -4.02 -1.59 -0.60 4.75 ** -12.84 7.76 ** $$ -28.19 -2.48
 

Panel B: G7 Countries 
CN DE FR IT JP UK US

BA GISW    | p(GISW) 3.13 9.15 ** $$ 6.15 ** $ 4.18 ** 6.37 ** $ 6.28 ** 4.19

GISW5  | p(GISW5) 1.58 5.80 ** $ 3.48 1.40 6.05 ** $$ 2.31 5.90 ** $

Mean GISW    | p(GISW) 0.20 3.00 ** 0.71 0.31 1.11 -2.84 1.28 **

GISW5  | p(GISW5) -1.76 1.64 ** 1.25 ** -0.23 0.72 -4.76 0.73 **

DMSFE(1) GISW    | p(GISW) 0.20 3.21 ** 0.73 0.29 1.27 ** -2.81 1.34 **

GISW5  | p(GISW5) -1.74 1.76 ** 1.20 ** -0.25 0.83 ** -4.97 0.82 **

C(2,PB) GISW    | p(GISW) 1.11 2.48 ** 2.21 ** 3.22 ** 5.64 ** 1.45 ** 4.34 **

GISW5  | p(GISW5) 2.29 ** 1.39 ** 1.16 ** 1.08 ** 3.65 ** -1.51 6.81 ** $$

PC(C,3B) GISW    | p(GISW) -4.77 5.25 ** 4.74 ** -0.55 -4.11 1.07 -1.58

GISW5  | p(GISW5) -8.34 3.45 ** 3.17 ** -1.16 -1.59 -1.30 -0.63
 

Notes: This table reports the economic significance of regression forecasts using the GISW certainty equivalent measure of abnormal performance (see Goetzmann, Ingersoll, Spiegel and Welch, 2007), 
which is robust to manipulation motives of agents. Gains are in percentage points, which are annualized by multiplying monthly values by 12. Gains are reported for portfolios where the weights are based 
on mean-variance preferences and a relative risk aversion coefficient of 3 (GISW) and 5 (GISW5). The weight in the risky asset is limited to be no less than 0 and no more than 1.5 (as in Campbell and 
Thompson, 2008). We forecast the return and use the current market risk-free rate to calculate the excess return.  
CH is China, HK is Hong Kong, IN is India, ID is Indonesia, JP is Japan, KO is Korea, MY is Malaysia, PH is Philippines, SG is Singapore, TH is Thailand, TW is Taiwan, CN is Canada, DE is Germany, 
FR is France, IT is Italy, JP is Japan, UK is United Kingdom and US is United States. BA is the bagging method. The combination reported based on central tendency is the Mean, the combinations based 
on weighted past forecast errors is DMSFE(1). The combinations based on cluster methods is C(2,PB) and the combination based on principal components is PC(C,3B).  
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Table 7: Economic Value of One Month Return Forecasts using Bagging or Forecast Combinations - Utility Gain Method – Transaction Cost adjusted.  
Panel A: Asian Countries 

CH HK IN ID JP KO MY PH SG TH TW

BA UG         | p(UG) -0.26 5.95 ** -0.72 11.74 ** $$ 2.73 ** 4.89 ** $ 9.76 ** $$ 3.09 ** 18.47 ** $$ 11.72 ** $$ 15.43 ** $$

UG5       | p(UG5) 0.26 4.43 ** $ -0.44 7.07 ** $$ 0.85 2.41 ** $ 8.30 ** $$ 2.80 ** $ 11.70 ** $$ 6.39 ** $$ 10.20 ** $$

Mean UG         | p(UG) -2.08 4.52 ** 2.61 ** 5.60 ** $ -0.11 2.16 ** 7.14 ** $$ 0.44 11.68 ** $$ 3.44 ** 1.70 **

UG5       | p(UG5) -1.25 3.33 ** 1.57 ** 3.37 ** $ -0.06 1.30 ** 4.52 ** $$ 0.27 7.01 ** $$ 2.07 ** 1.02 **

DMSFE(1) UG         | p(UG) -1.86 4.27 ** 2.77 ** 5.52 ** $ -0.06 2.14 ** 7.13 ** $$ 0.36 11.77 ** $$ 3.46 ** 1.77 **

UG5       | p(UG5) -1.12 3.18 ** 1.66 ** 3.33 ** $ -0.03 1.29 ** 4.52 ** $$ 0.22 7.07 ** $$ 2.08 ** 1.06 **

C(2,PB) UG         | p(UG) 3.52 ** 1.72 2.86 ** -0.01 3.92 ** 1.52 ** 7.84 ** $$ -3.04 9.58 ** $$ 6.21 ** $$ 3.75 **

UG5       | p(UG5) 2.24 ** 1.64 ** 1.73 ** 0.00 2.10 ** 0.91 ** 5.51 ** $$ -1.83 5.14 ** $$ 3.73 ** $$ 2.25 **

PC(C,3B) UG         | p(UG) 4.23 ** 1.98 7.11 ** $$ 5.47 ** $ -8.80 -0.84 6.32 ** $ -2.67 10.58 ** $$ 1.61 -4.35

UG5       | p(UG5) 2.80 ** -2.42 5.12 ** $$ 3.78 ** $$ -6.37 -0.51 5.16 ** $$ -3.24 6.12 ** $$ -4.65 -2.61
 

Panel B: G7 Countries 
CN DE FR IT JP UK US

BA UG         | p(UG) -4.85 8.40 ** $$ 5.09 ** $ 2.89 ** 2.73 ** 5.59 ** $$ 3.02

UG5       | p(UG5) -1.57 5.51 ** $$ 1.64 -1.21 0.85 1.79 ** 4.65 ** $$

Mean UG         | p(UG) -0.75 2.58 ** 0.60 0.84 -0.11 -1.94 1.66 **

UG5       | p(UG5) -0.92 1.55 ** 1.20 ** -0.08 -0.06 -4.17 0.39

DMSFE(1) UG         | p(UG) -0.76 2.77 ** 0.62 0.80 -0.06 -1.91 1.73 **

UG5       | p(UG5) -0.92 1.66 ** 1.14 ** -0.11 -0.03 -4.34 0.48

C(2,PB) UG         | p(UG) -0.16 3.17 ** 1.84 ** 3.78 ** 3.92 ** 0.40 4.05 **

UG5       | p(UG5) 1.28 ** 1.39 ** 1.08 ** 1.10 ** 2.10 ** -1.54 6.14 ** $$

PC(C,3B) UG         | p(UG) -8.72 5.55 ** 3.55 ** -0.29 -8.80 0.36 -1.89

UG5       | p(UG5) -7.07 3.17 ** 2.22 ** -1.43 -6.37 -1.23 -0.90
 

Notes: This table reports the economic significance of regression forecasts using the utility gain measure with transaction costs of 10 basis points incurred on portfolio weight adjustmens. Results are 
reported for the coefficient of relative risk aversion of 3 (UG) and of 5 (UG5). Utility gains are in percentage points, which are annualized by multiplying monthly values by 12. Utility gains are calculated 
for an investor with mean-variance and limits the weight in the risky asset to be no less than 0 and no more than 1.5 (as in Campbell and Thompson, 2008). We forecast the return and use the current 
market risk-free rate to calculate the excess return. ** and * shows significance at the 5% and 10% level respectively using bootstrapped critical values. $$ and $ shows significance at the 5% and 10% 
level respectively using data-mining robust bootstrap critical values. CH is China, HK is Hong Kong, IN is India, ID is Indonesia, JP is Japan, KO is Korea, MY is Malaysia, PH is Philippines, SG is 
Singapore, TH is Thailand, TW is Taiwan, CN is Canada, DE is Germany, FR is France, IT is Italy, JP is Japan, UK is United Kingdom and US is United States.  BA is the bagging method. The 
combination reported based on central tendency is the Mean, the combinations based on weighted past forecast errors is DMSFE(1). The combinations based on cluster methods is C(2,PB) and the 
combination based on principal components is PC(C,3B). 
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Table 8: Bagging and Combination Forecast Performance – 1 Month Horizon – WITH PORTFOLIO WEIGHT RESTRICTIONS APPLIED 
Panel A: Asian Countries 

CH HK IN ID JP KO MY PH SG TH TW

BA RMSFE | ENC-NEW 1.000 0.985 ** 1.013 0.938 ** $$ 0.983 ** 0.972 ** 0.947 ** $ 0.948 ** $ 0.920 ** $$ 0.934 ** $$ 0.993 ** $$

RMAFE | CW-T 1.002 1.026 * 1.003 0.968 ** $$ 0.969 * 0.967 * 0.959 ** $$ 0.953 ** $$ 0.957 ** $$ 0.949 ** $$ 0.992 ** $$

Mean RMSFE | ENC-NEW 1.008 0.975 * 0.998 0.958 ** 0.991 0.985 0.950 ** 0.955 ** 0.953 ** 0.963 ** 0.986 *

RMAFE | CW-T 1.004 0.994 ** 0.997 0.968 ** $$ 0.986 0.990 ** $ 0.964 ** $$ 0.963 ** $$ 0.975 ** $$ 0.966 ** $$ 0.984 *

DMSFE(1) RMSFE | ENC-NEW 1.007 0.975 * 0.997 0.958 ** 0.991 0.985 0.951 ** 0.955 ** 0.952 ** 0.963 ** 0.986 *

RMAFE | CW-T 1.004 0.994 ** 0.996 0.966 ** $$ 0.986 0.990 ** 0.965 ** $$ 0.963 ** $$ 0.974 ** $$ 0.966 ** $$ 0.984 *

C(2,PB) RMSFE | ENC-NEW 0.985 0.988 0.997 0.991 * 0.979 * 0.986 0.952 ** 0.967 ** 0.954 ** 0.952 ** 0.987 *

RMAFE | CW-T 0.993 * 0.999 ** 0.992 0.978 0.977 ** $$ 0.990 * 0.958 ** $$ 0.965 ** $$ 0.966 ** $$ 0.952 ** $$ 0.996 *

PC(C,3B) RMSFE | ENC-NEW 0.990 ** 0.979 ** 0.983 ** 0.978 ** 1.028 1.012 0.977 ** 0.961 ** 0.951 ** 0.968 ** $$ 1.015

RMAFE | CW-T 1.010 0.984 * 0.987 * 0.966 ** 0.997 1.007 0.987 ** $$ 0.948 ** $ 0.991 ** $$ 0.971 ** $$ 1.005
 

Panel B: G7 Countries 
CN DE FR IT JP UK US

BA RMSFE | ENC-NEW 1.008 0.979 ** 0.984 ** 1.000 0.983 ** 0.982 * 0.974 **

RMAFE | CW-T 1.026 1.004 ** $ 0.995 * 0.994 0.969 * 0.979 ** $ 1.001 ** $$

Mean RMSFE | ENC-NEW 0.988 0.992 0.993 1.002 0.991 1.004 0.976 *

RMAFE | CW-T 1.003 0.996 * 0.995 1.001 0.986 0.998 0.987 ** $$

DMSFE(1) RMSFE | ENC-NEW 0.988 0.991 0.993 1.002 0.991 1.004 0.976 *

RMAFE | CW-T 1.003 0.996 * 0.995 1.001 0.984 0.998 0.986 ** $$

C(2,PB) RMSFE | ENC-NEW 0.985 * 0.988 0.990 0.994 0.978 ** 1.005 0.971 **

RMAFE | CW-T 0.999 0.991 ** $ 0.993 0.993 0.975 ** $$ 0.993 0.987 ** $$

PC(C,3B) RMSFE | ENC-NEW 1.025 0.992 * 0.988 ** 1.011 0.988 * 1.003 0.987 *

RMAFE | CW-T 1.040 1.010 1.016 1.015 0.983 * 0.987 1.007 *

 
Notes: This table shows forecast results for bagging and forecast combination methods at the one-month forecast horizon when the portfolio weight restrictions are applied. The top row gives the country code. The 
second row [AR(MSFE)] reports the mean-squared forecast error for the historical average benchmark model. The other rows report the ratios of the mean-squared forecast errors for each predictive regression model to 
the mean-squared forecast error of the historical average benchmark. Bold typeface denotes if the mean-squared forecast error from the individual model is smaller than the historical average benchmark. RMSFE is the 
relative mean-squared forecast error. RMAFE is relative mean absolute forecast error. ** and * shows significance at the 5% and 10% level respectively using conventional critical values. $$ and $ shows significance 
at the 5% and 10% level respectively using data-mining robust critical values. We implement the Clark-McCracken (2001) ENC-NEW encompassing test and the Clark-West (2007) CW-T test of equal forecast 
accuracy. Results are reported for the following countries: CH is China, HK is Hong Kong, IN is India, ID is Indonesia, JP is Japan, KO is Korea, MY is Malaysia, PH is Philippines, SG is Singapore, TH is Thailand, 
TW is Taiwan, CN is Canada, DE is Germany, FR is France, IT is Italy, JP is Japan, UK is United Kingdom and US is United States. BA represents the bagging method. The combination reported based on central 
tendency is the Mean. The combinations based on weighted past forecast errors is DMSFE(1). The combinations based on cluster methods is C(2,PB). The combination based on principal components is PC(C,3B).  
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Table 9: Encompassing Tests 
Panel A: Encompassing of Combination Forecasts – Asia 
 

CH HK IN ID JP KO MY PH SG TH TW
Mean -0.018 0.777 6.112 ** 0.003 0.239 0.292 0.415 0.309 -0.376 0.306 0.548 **

DMSFE(1) 0.027 0.774 6.221 ** 0.011 0.249 0.289 0.401 0.301 -0.365 0.306 0.549 **

C(2,PB) 1.357 0.408 4.217 * -0.261 0.614 0.269 0.381 -0.077 -0.494 0.356 0.538 **

PC(C,3B) 0.726 0.580 1.243 ** -0.012 -0.937 -0.038 -0.005 0.030 -0.290 -0.299 0.408 *

 
 
Panel B: Encompassing of Combination Forecasts – G7 

CN DE FR IT JP UK US
Mean 1.291 ** -0.034 0.227 0.458 0.239 -1.988 0.439

DMSFE(1) 1.294 ** -0.011 0.233 0.457 0.249 -2.021 0.451

C(2,PB) 1.359 ** 0.200 0.354 0.652 0.614 -1.378 0.607

PC(C,3B) -0.311 -1.770 0.340 0.317 -0.937 -0.626 -1.228
 

 
Notes: This table reports results of forecast encompassing tests on pairs of bagging and one of the combination methods. The optimal 

weight on the forecast combination is reported when generating a forecast comprising the forecast combination method and bagging. For 
example for CH-DMSFE(1) this indicates a weight of 0.027 on the mean and 0.973 on bagging. Results are reported for the HLN forecast 
encompassing test (Harvey, Leybourne and Newbold, 1998). The null hypothesis is that the combination return forecast has a weight of 
zero when combined with the bagging forecast. ** and * shows significance at the 5% and 10% level respectively. 

For example for Panel A TW-Mean, ** indicates that we can reject the null hypothesis that the forecast based on the Mean 
combination has a weight of zero when included with the bagging forecast. Thus, the Mean forecast is not encompassed by the bagging 
forecast, i.e., the Mean forecast adds new information over and above that contained in the bagging forecast.  
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Table 10: Cross-sectional Regressions across 17 countries of Forecast measures on Country-level variables 
Panel A: RMSFE 

GDP TRADE FDI        
BA 0.226 -0.486 ** -0.205

Mean 0.238 -0.548 ** -0.272

DMSFE(1) 0.235 -0.552 ** -0.275

C(2,PB) 0.047 -0.469 * -0.175

PC(C,3B) 0.259 -0.556 ** -0.414 *

 MKT DEV TURN INT USE MOB PH ANTI SD PROP RT CMN LAW
-0.053 0.441 * 0.156 -0.035 -0.323 0.208 -0.133

-0.230 0.584 ** 0.178 0.049 -0.297 0.221 -0.268

-0.228 0.581 ** 0.180 0.053 -0.299 0.221 -0.269

-0.115 0.362 0.065 0.066 -0.318 0.155 -0.316

-0.201 0.433 * 0.475 * 0.108 -0.315 0.318 -0.306
 

Panel B: UG 
GDP TRADE FDI        

BA -0.299 0.764 ** 0.513 **

Mean -0.046 0.753 ** 0.653 **

DMSFE(1) -0.311 0.790 ** 0.546 **

C(2,PB) 0.305 0.356 0.202

PC(C,3B) -0.214 0.719 ** 0.515 **

 MKT DEV TURN INT USE MOB PH ANTI SD PROP RT CMN LAW
0.346 -0.358 -0.023 0.221 0.445 * 0.064 0.335

0.682 ** -0.260 0.164 0.372 0.397 0.252 0.362

0.393 -0.387 -0.018 0.245 0.469 * 0.050 0.324

0.121 0.062 -0.020 0.004 0.406 0.023 0.327

0.358 -0.259 -0.017 0.253 0.522 ** 0.079 0.342
 

Panel C: GISW 
GDP TRADE FDI        

BA -0.166 0.823 ** 0.698 **

Mean 0.030 0.637 ** 0.749 **

DMSFE(1) -0.210 0.865 ** 0.732 **

C(2,PB) 0.422 * 0.167 0.205

PC(C,3B) -0.010 0.641 ** 0.542 **

 MKT DEV TURN INT USE MOB PH ANTI SD PROP RT CMN LAW
0.505 ** -0.083 0.266 0.429 * 0.368 0.409 0.415 *

0.771 ** -0.066 0.183 0.414 * 0.235 0.336 0.244

0.528 ** -0.165 0.211 0.416 * 0.414 * 0.345 0.385

0.228 0.418 * 0.453 * 0.267 0.227 0.513 ** 0.362

0.369 0.060 0.360 0.391 0.420 * 0.478 * 0.387
 

Notes: This table reports the correlations between measures of forecast performance and country characteristics across all 17 
countries we examined (11 Asian countries and the 6 non-Asian members of the G7). Panel A reports results for the correlation between 
country characteristics and relative mean-squared forecast error. Panel B (C) reports results for the correlation between country 
characteristics and utility gain (GISW) with a coefficient of relative risk aversion equal to 3. The country characteristics are GDP per 
capita (GDP), TRADE (Total trade/Total GDP), FDI (Foreign Direct Investment/Total GDP), MKT DEV is stock market development 
(Market Capitalization/GDP), TURN (turnover calculated as Trading Volume/MV), INTUSE (Proportion of Internet Users), MOBPH 
(Proportion of Mobile Phone Users), ANTISD (Anti Self-Dealing), PROP RT (Index of Property Rights) and CMN LAW (Common law 
legal tradition dummy). Country characteristics are from the World Development Indicators, with the exception of ANTISD, PROP RT 
and CMNLAW which are from La Porta et al. (2008). **, * indicate statistical significance at the 5% and 10% level respectively. 


