Loughborough University
Browse
CEJ_15459.pdf (1.46 MB)

Formation of size-tuneable biodegradable polymeric nanoparticles by solvent displacement method using micro-engineered membranes fabricated by laser drilling and electroforming

Download (1.46 MB)
journal contribution
posted on 2016-07-08, 09:20 authored by Rahimah Othman, Goran VladisavljevicGoran Vladisavljevic, Hamed Shahmohamadi, Zoltan NagyZoltan Nagy, Richard Holdich
Biodegradable poly(ε-caprolactone) (PCL) drug-carrier nanoparticles (NPs) were produced by rapid membrane micromixing combined with nanoprecipitation in a stirred cell employing novel membrane dispersion. The organic phase composed of 0.1−0.6 wt% PCL dissolved in tetrahydrofuran was injected into the aqueous phase (Mili-Q water or 0.2−1 wt% poly(vinyl alcohol) using two microfabricated membranes with different pore morphologies and spatial pore arrangements: ringed stainless steel membrane of reduced (annular) operating area with a square array of cylindrical laser-drilled pores and electroformed nickel membrane of full operating area with a hexagonal array of conical, funnel-shaped pores. The size of the NPs was precisely controlled over a range of 159−394 nm by changing the aqueous-to-organic volumetric ratio, stirring rate, transmembrane flux, the polymer content in the organic phase, membrane type and pore size. The smallest and most uniform particles with a Z-average of 159 nm and a polydispersity index of 0.107±0.014 were obtained using a 10 μm pore-sized stainless steel membrane at the transmembrane flux of 140 L m-2 h-1, a stirring rate of 1,300 rpm, and an aqueous-to-organic phase volume ratio of 10 using 1 g L-1 PCL in the organic phase. The particle size decreased by increasing the stirring rate and the aqueous-to-organic volumetric ratio, and by decreasing the polymer concentration in the aqueous phase and the transmembrane flux. The existence of the peak shear stress within a transitional radius and a rapid decline of the shear stress away from the membrane surface were revealed by numerical modelling.

Funding

The authors acknowledge the financial support given for this work through the Ministry of Higher Education Malaysia and the technical assistance by Dr Zhaoxia Zhou and Dr Keith Yendall from the Department of Materials at Loughborough University for TEM and FEG-SEM analyses. The authors also acknowledge the financial support provided by the EPSRC grant EP/HO29923/1 and the European Research Council grant [280106-CrySys].

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Chemical Engineering Journal

Citation

OTHMAN, R. ... et al, 2016. Formation of size-tuneable biodegradable polymeric nanoparticles by solvent displacement method using micro-engineered membranes fabricated by laser drilling and electroforming. Chemical Engineering Journal, doi:10.1016/j.cej.2016.07.010

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-07-04

Publication date

2016

Notes

This paper was accepted for publication in the journal Chemical Engineering Journal and the definitive published version is available at http://dx.doi.org/10.1016/j.cej.2016.07.010.

ISSN

0300-9467

Language

  • en