Loughborough University
Browse
2016 Analyst DMS and Alcohols DOI 10.1039 C6AN00435K.pdf (3.64 MB)

Fragmentation, auto-modification and post ionisation proton bound dimer ion formation: the differential mobility spectrometry of low molecular weight alcohols

Download (3.64 MB)
Version 2 2020-12-18, 13:46
Version 1 2016-05-19, 15:02
journal contribution
posted on 2020-12-18, 13:46 authored by Dorota Ruszkiewicz, Paul Thomas, Gary Eiceman
Differential mobility spectrometry (DMS) is currently being used for environmental monitoring of space craft atmospheres and has been proposed for the rapid assessment of patients at accident and emergency receptions. Three studies investigated hitherto undescribed complexity in the DMS spectra of methanol, ethanol, propan-1-ol and butan-1-ol product ions formed from a 63Ni ionisation source. 54000 DMS spectra obtained over a concentration range of 0.01 mg m−3(g) to 1.80 g m−3(g) revealed the phenomenon of auto-modification of the product ions. This occurred when the neutral vapour concentration exceeded the level required to induce a neutral-ion collision during the low field portion of the dispersion field waveform. Further, post-ionisation cluster-ion formation or protonated monomer/proton bound dimer inter-conversion within the ion-filter was indicated by apparent shifts in the values of the protonated monomer compensation field maximum; indicative of post-ionisation conversion of the protonated monomer to a proton-bound dimer. APCI-DMS-quadrupole mass spectrometry studies enabled the ion dissociation products from dispersion-field heating to be monitored and product ion fragmentation relationships to be proposed. Methanol was not observed to dissociate, while propan-1-ol and butan-1-ol underwent dissociation reactions consistent with dehydration processes that led ultimately to the generation of what is tentatively assigned as a cyclo-C3H3+ ion (m/z 39) and hydrated protons. Studies of the interaction of ion filter temperature with dispersion-field heating of product ions isolated dissociation/fragmentation product ions that have not been previously described in DMS. The implications of these combined findings with regard to data sharing and data interpretation were highlighted.

Funding

The authors wish to thank: the Engineering and Physical Science Research Council alongside John Hoggs Technical Solutions for the support of D. M. Ruszkiewicz through an Industrial Case Studentship Award.

History

School

  • Science

Department

  • Chemistry

Published in

The Analyst

Volume

141

Issue

15

Pages

4587-4598

Citation

RUSZKIEWICZ, D., THOMAS, C.L.P. and EICEMAN, G.A., 2016. Fragmentation, auto-modification and post ionisation proton bound dimer ion formation: the differential mobility spectrometry of low molecular weight alcohols. Analyst, 141 (15), pp. 4587-4598.

Publisher

© Royal Society of Chemistry

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-05-19

Publication date

2016-05-19

Copyright date

2016

Notes

This paper was accepted for publication in the journal Analyst and the definitive published version is available at http://dx.doi.org/10.1039/C6AN00435K

ISSN

0003-2654

eISSN

1364-5528

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC