Loughborough University
Browse
Fusion_DeSilva_Double_Col.pdf (564.54 kB)

Fusion of LiDAR and camera sensor data for environment sensing in driverless vehicles

Download (564.54 kB)
preprint
posted on 2018-05-29, 11:37 authored by Varuna De Silva, Jamie Roche, Ahmet Kondoz
Driverless vehicles operate by sensing and perceiving its surrounding environment to make the accurate driving decisions. A combination of several different sensors such as LiDAR, radar, ultrasound sensors and cameras are utilized to sense the surrounding environment of driverless vehicles. The heterogeneous sensors simultaneously capture various physical attributes of the environment. Such multimodality and redundancy of sensing need to be positively utilized for reliable and consistent perception of the environment through sensor data fusion. However, these multimodal sensor data streams are different from each other in many ways, such as temporal and spatial resolution, data format, and geometric alignment. For the subsequent perception algorithms to utilize the diversity offered by multimodal sensing, the data streams need to be spatially, geometrically and temporally aligned with each other. In this paper, we address the problem of fusing the outputs of a Light Detection and Ranging (LiDAR) scanner and a wide-angle monocular image sensor. The outputs of LiDAR scanner and the image sensor are of different spatial resolutions and need to be aligned with each other. A geometrical model is used to spatially align the two sensor outputs, followed by a Gaussian Process (GP) regression based resolution matching algorithm to interpolate the missing data with quantifiable uncertainty. The results indicate that the proposed sensor data fusion framework significantly aids the subsequent perception steps, as illustrated by the performance improvement of a typical free space detection algorithm.

History

School

  • Loughborough University London

Published in

Sensors

Volume

abs/1710.06230

Citation

DE SILVA, V., ROCHE, J. and KONDOZ, A., 2018. Fusion of LiDAR and camera sensor data for environment sensing in driverless vehicles. arXiv:1710.06230v2

Publisher

arXiv.org

Version

  • SMUR (Submitted Manuscript Under Review)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2018

Notes

This is an arXiv preprint. It can be found at: https://arxiv.org/abs/1710.06230v2

Language

  • en

Usage metrics

    Loughborough Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC